Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.13
      1 /* $NetBSD: adwlib.c,v 1.13 2000/05/14 18:25:49 dante Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 /*
     40  * Ported from:
     41  */
     42 /*
     43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  *
     45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46  * All Rights Reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that redistributions of source
     50  * code retain the above copyright notice and this comment without
     51  * modification.
     52  */
     53 
     54 #include <sys/types.h>
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/malloc.h>
     58 #include <sys/kernel.h>
     59 #include <sys/queue.h>
     60 #include <sys/device.h>
     61 
     62 #include <machine/bus.h>
     63 #include <machine/intr.h>
     64 
     65 #include <dev/scsipi/scsi_all.h>
     66 #include <dev/scsipi/scsipi_all.h>
     67 #include <dev/scsipi/scsiconf.h>
     68 
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <vm/vm.h>
     72 #include <vm/vm_param.h>
     73 #include <vm/pmap.h>
     74 
     75 #include <dev/ic/adwlib.h>
     76 #include <dev/ic/adw.h>
     77 #include <dev/ic/adwmcode.h>
     78 
     79 
     80 /* Static Functions */
     81 
     82 static u_int16_t AdvGet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     83      							ADW_EEP_3550_CONFIG *));
     84 static u_int16_t AdvGet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     85      							ADW_EEP_38C0800_CONFIG *));
     86 static u_int16_t AdvGet38C1600EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     87      							ADW_EEP_38C1600_CONFIG *));
     88 static u_int16_t AdvReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     89 static void AdvWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     90 static void AdvSet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     91 					                 ADW_EEP_3550_CONFIG *));
     92 static void AdvSet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     93 					                 ADW_EEP_38C0800_CONFIG *));
     94 static void AdvSet38C1600EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     95 					                 ADW_EEP_38C1600_CONFIG *));
     96 static void AdvInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     97 
     98 static void AdvSleepMilliSecond __P((u_int32_t));
     99 static void AdvDelayMicroSecond __P((u_int32_t));
    100 
    101 
    102 /*
    103  * EEPROM Configuration.
    104  *
    105  * All drivers should use this structure to set the default EEPROM
    106  * configuration. The BIOS now uses this structure when it is built.
    107  * Additional structure information can be found in advlib.h where
    108  * the structure is defined.
    109  */
    110 static ADW_EEP_3550_CONFIG
    111 Default_3550_EEPROM_Config = {
    112 	ADW_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
    113 	0x0000,			/* cfg_msw */
    114 	0xFFFF,			/* disc_enable */
    115 	0xFFFF,			/* wdtr_able */
    116 	0xFFFF,			/* sdtr_able */
    117 	0xFFFF,			/* start_motor */
    118 	0xFFFF,			/* tagqng_able */
    119 	0xFFFF,			/* bios_scan */
    120 	0,			/* scam_tolerant */
    121 	7,			/* adapter_scsi_id */
    122 	0,			/* bios_boot_delay */
    123 	3,			/* scsi_reset_delay */
    124 	0,			/* bios_id_lun */
    125 	0,			/* termination */
    126 	0,			/* reserved1 */
    127 	0xFFE7,			/* bios_ctrl */
    128 	0xFFFF,			/* ultra_able */
    129 	0,			/* reserved2 */
    130 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
    131 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
    132 	0,			/* dvc_cntl */
    133 	0,			/* bug_fix */
    134 	0,			/* serial_number_word1 */
    135 	0,			/* serial_number_word2 */
    136 	0,			/* serial_number_word3 */
    137 	0,			/* check_sum */
    138 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* oem_name[16] */
    139 	0,			/* dvc_err_code */
    140 	0,			/* adv_err_code */
    141 	0,			/* adv_err_addr */
    142 	0,			/* saved_dvc_err_code */
    143 	0,			/* saved_adv_err_code */
    144 	0,			/* saved_adv_err_addr */
    145 	0			/* num_of_err */
    146 };
    147 
    148 static ADW_EEP_38C0800_CONFIG
    149 Default_38C0800_EEPROM_Config = {
    150 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    151 	0x0000,			/* 01 cfg_msw */
    152 	0xFFFF,			/* 02 disc_enable */
    153 	0xFFFF,			/* 03 wdtr_able */
    154 	0x4444,			/* 04 sdtr_speed1 */
    155 	0xFFFF,			/* 05 start_motor */
    156 	0xFFFF,			/* 06 tagqng_able */
    157 	0xFFFF,			/* 07 bios_scan */
    158 	0,			/* 08 scam_tolerant */
    159 	7,			/* 09 adapter_scsi_id */
    160 	0,			/*    bios_boot_delay */
    161 	3,			/* 10 scsi_reset_delay */
    162 	0,			/*    bios_id_lun */
    163 	0,			/* 11 termination_se */
    164 	0,			/*    termination_lvd */
    165 	0xFFE7,			/* 12 bios_ctrl */
    166 	0x4444,			/* 13 sdtr_speed2 */
    167 	0x4444,			/* 14 sdtr_speed3 */
    168 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    169 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    170 	0,			/* 16 dvc_cntl */
    171 	0x4444,			/* 17 sdtr_speed4 */
    172 	0,			/* 18 serial_number_word1 */
    173 	0,			/* 19 serial_number_word2 */
    174 	0,			/* 20 serial_number_word3 */
    175 	0,			/* 21 check_sum */
    176 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    177 	0,			/* 30 dvc_err_code */
    178 	0,			/* 31 adv_err_code */
    179 	0,			/* 32 adv_err_addr */
    180 	0,			/* 33 saved_dvc_err_code */
    181 	0,			/* 34 saved_adv_err_code */
    182 	0,			/* 35 saved_adv_err_addr */
    183 	0,			/* 36 reserved */
    184 	0,			/* 37 reserved */
    185 	0,			/* 38 reserved */
    186 	0,			/* 39 reserved */
    187 	0,			/* 40 reserved */
    188 	0,			/* 41 reserved */
    189 	0,			/* 42 reserved */
    190 	0,			/* 43 reserved */
    191 	0,			/* 44 reserved */
    192 	0,			/* 45 reserved */
    193 	0,			/* 46 reserved */
    194 	0,			/* 47 reserved */
    195 	0,			/* 48 reserved */
    196 	0,			/* 49 reserved */
    197 	0,			/* 50 reserved */
    198 	0,			/* 51 reserved */
    199 	0,			/* 52 reserved */
    200 	0,			/* 53 reserved */
    201 	0,			/* 54 reserved */
    202 	0,			/* 55 reserved */
    203 	0,			/* 56 cisptr_lsw */
    204 	0,			/* 57 cisprt_msw */
    205 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    206 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    207 	0,			/* 60 reserved */
    208 	0,			/* 61 reserved */
    209 	0,			/* 62 reserved */
    210 	0			/* 63 reserved */
    211 };
    212 
    213 static ADW_EEP_38C1600_CONFIG
    214 Default_38C1600_EEPROM_Config = {
    215 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    216 	0x0000,			/* 01 cfg_msw */
    217 	0xFFFF,			/* 02 disc_enable */
    218 	0xFFFF,			/* 03 wdtr_able */
    219 	0x5555,			/* 04 sdtr_speed1 */
    220 	0xFFFF,			/* 05 start_motor */
    221 	0xFFFF,			/* 06 tagqng_able */
    222 	0xFFFF,			/* 07 bios_scan */
    223 	0,			/* 08 scam_tolerant */
    224 	7,			/* 09 adapter_scsi_id */
    225 	0,			/*    bios_boot_delay */
    226 	3,			/* 10 scsi_reset_delay */
    227 	0,			/*    bios_id_lun */
    228 	0,			/* 11 termination_se */
    229 	0,			/*    termination_lvd */
    230 	0xFFE7,			/* 12 bios_ctrl */
    231 	0x5555,			/* 13 sdtr_speed2 */
    232 	0x5555,			/* 14 sdtr_speed3 */
    233 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    234 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    235 	0,			/* 16 dvc_cntl */
    236 	0x5555,			/* 17 sdtr_speed4 */
    237 	0,			/* 18 serial_number_word1 */
    238 	0,			/* 19 serial_number_word2 */
    239 	0,			/* 20 serial_number_word3 */
    240 	0,			/* 21 check_sum */
    241 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    242 	0,			/* 30 dvc_err_code */
    243 	0,			/* 31 adv_err_code */
    244 	0,			/* 32 adv_err_addr */
    245 	0,			/* 33 saved_dvc_err_code */
    246 	0,			/* 34 saved_adv_err_code */
    247 	0,			/* 35 saved_adv_err_addr */
    248 	0,			/* 36 reserved */
    249 	0,			/* 37 reserved */
    250 	0,			/* 38 reserved */
    251 	0,			/* 39 reserved */
    252 	0,			/* 40 reserved */
    253 	0,			/* 41 reserved */
    254 	0,			/* 42 reserved */
    255 	0,			/* 43 reserved */
    256 	0,			/* 44 reserved */
    257 	0,			/* 45 reserved */
    258 	0,			/* 46 reserved */
    259 	0,			/* 47 reserved */
    260 	0,			/* 48 reserved */
    261 	0,			/* 49 reserved */
    262 	0,			/* 50 reserved */
    263 	0,			/* 51 reserved */
    264 	0,			/* 52 reserved */
    265 	0,			/* 53 reserved */
    266 	0,			/* 54 reserved */
    267 	0,			/* 55 reserved */
    268 	0,			/* 56 cisptr_lsw */
    269 	0,			/* 57 cisprt_msw */
    270 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    271 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    272 	0,			/* 60 reserved */
    273 	0,			/* 61 reserved */
    274 	0,			/* 62 reserved */
    275 	0			/* 63 reserved */
    276 };
    277 
    278 /*
    279  * Initialize the ASC3550.
    280  *
    281  * On failure set the ADW_SOFTC field 'err_code' and return ADW_ERROR.
    282  *
    283  * For a non-fatal error return a warning code. If there are no warnings
    284  * then 0 is returned.
    285  */
    286 int
    287 AdvInitAsc3550Driver(sc)
    288 ADW_SOFTC      *sc;
    289 {
    290 	bus_space_tag_t iot = sc->sc_iot;
    291 	bus_space_handle_t ioh = sc->sc_ioh;
    292 	u_int16_t	warn_code;
    293 	u_int32_t	sum;
    294 	int		begin_addr;
    295 	int		end_addr;
    296 	u_int16_t	code_sum;
    297 	int		word;
    298 	int		i, j;
    299 	int		adv_asc3550_expanded_size;
    300 	u_int16_t	scsi_cfg1;
    301 	u_int8_t	tid;
    302 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
    303 								0x40-0x8F. */
    304 	u_int16_t	wdtr_able = 0, sdtr_able, tagqng_able;
    305 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    306 
    307 
    308 	warn_code = 0;
    309 
    310 	/*
    311 	 * Save the RISC memory BIOS region before writing the microcode.
    312 	 * The BIOS may already be loaded and using its RISC LRAM region
    313 	 * so its region must be saved and restored.
    314 	 *
    315 	 * Note: This code makes the assumption, which is currently true,
    316 	 * that a chip reset does not clear RISC LRAM.
    317 	 */
    318 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    319 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM+(2*i), bios_mem[i]);
    320 	}
    321 
    322 	/*
    323 	 * Save current per TID negotiated values.
    324 	 */
    325 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] == 0x55AA) {
    326 
    327 		u_int16_t  bios_version, major, minor;
    328 
    329 		bios_version = bios_mem[(ASC_MC_BIOS_VERSION-ASC_MC_BIOSMEM)/2];
    330 		major = (bios_version  >> 12) & 0xF;
    331 		minor = (bios_version  >> 8) & 0xF;
    332 		if (major < 3 || (major == 3 && minor == 1)) {
    333 		    /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
    334 		    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    335 		} else {
    336 		    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
    337 		}
    338 	}
    339 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
    340 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
    341 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    342 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
    343 			max_cmd[tid]);
    344 	}
    345 
    346 	/*
    347 	 * Load the Microcode
    348 	 *
    349 	 * Write the microcode image to RISC memory starting at address 0.
    350 	 */
    351 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    352 
    353 	/* Assume the following compressed format of the microcode buffer:
    354 	 *
    355 	 *  254 word (508 byte) table indexed by byte code followed
    356 	 *  by the following byte codes:
    357 	 *
    358 	 *    1-Byte Code:
    359 	 *	00: Emit word 0 in table.
    360 	 *	01: Emit word 1 in table.
    361 	 *	.
    362 	 *	FD: Emit word 253 in table.
    363 	 *
    364 	 *    Multi-Byte Code:
    365 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    366 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    367 	 */
    368 	word = 0;
    369 	for (i = 253 * 2; i < adv_asc3550_mcode_size; i++) {
    370 		if (adv_asc3550_mcode[i] == 0xff) {
    371 			for (j = 0; j < adv_asc3550_mcode[i + 1]; j++) {
    372 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    373 				  (((u_int16_t)adv_asc3550_mcode[i + 3] << 8) |
    374 				  adv_asc3550_mcode[i + 2]));
    375 				word++;
    376 			}
    377 			i += 3;
    378 		} else if (adv_asc3550_mcode[i] == 0xfe) {
    379 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    380 			    (((u_int16_t)adv_asc3550_mcode[i + 2] << 8) |
    381 			    adv_asc3550_mcode[i + 1]));
    382 			i += 2;
    383 			word++;
    384 		} else {
    385 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    386 			 adv_asc3550_mcode[(adv_asc3550_mcode[i] * 2) + 1] <<8)|
    387 			 adv_asc3550_mcode[adv_asc3550_mcode[i] * 2]));
    388 			word++;
    389 		}
    390 	}
    391 
    392 	/*
    393 	 * Set 'word' for later use to clear the rest of memory and save
    394 	 * the expanded mcode size.
    395 	 */
    396 	word *= 2;
    397 	adv_asc3550_expanded_size = word;
    398 
    399 	/*
    400 	 * Clear the rest of ASC-3550 Internal RAM (8KB).
    401 	 */
    402 	for (; word < ADV_3550_MEMSIZE; word += 2) {
    403 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    404 	}
    405 
    406 	/*
    407 	 * Verify the microcode checksum.
    408 	 */
    409 	sum = 0;
    410 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    411 
    412 	for (word = 0; word < adv_asc3550_expanded_size; word += 2) {
    413 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    414 	}
    415 
    416 	if (sum != adv_asc3550_mcode_chksum) {
    417 		return ASC_IERR_MCODE_CHKSUM;
    418 	}
    419 
    420 	/*
    421 	 * Restore the RISC memory BIOS region.
    422 	 */
    423 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    424 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
    425 				bios_mem[i]);
    426 	}
    427 
    428 	/*
    429 	 * Calculate and write the microcode code checksum to the microcode
    430 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
    431 	 */
    432 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
    433 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
    434 	code_sum = 0;
    435 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    436 	for (word = begin_addr; word < end_addr; word += 2) {
    437 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    438 	}
    439 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
    440 
    441 	/*
    442 	 * Read and save microcode version and date.
    443 	 */
    444 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
    445 			sc->cfg.mcode_date);
    446 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
    447 			sc->cfg.mcode_version);
    448 
    449 	/*
    450 	 * Set the chip type to indicate the ASC3550.
    451 	 */
    452 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
    453 
    454 	/*
    455 	 * If the PCI Configuration Command Register "Parity Error Response
    456 	 * Control" Bit was clear (0), then set the microcode variable
    457 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    458 	 * to ignore DMA parity errors.
    459 	 */
    460 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    461 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    462 		word |= CONTROL_FLAG_IGNORE_PERR;
    463 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    464 	}
    465 
    466 	/*
    467 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
    468 	 * threshold of 128 bytes. This register is only accessible to the host.
    469 	 */
    470 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    471 			START_CTL_EMFU | READ_CMD_MRM);
    472 
    473 	/*
    474 	 * Microcode operating variables for WDTR, SDTR, and command tag
    475 	 * queuing will be set in AdvInquiryHandling() based on what a
    476 	 * device reports it is capable of in Inquiry byte 7.
    477 	 *
    478 	 * If SCSI Bus Resets haev been disabled, then directly set
    479 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    480 	 * the BIOS and warm boot to work without a SCSI bus hang on
    481 	 * the Inquiry caused by host and target mismatched DTR values.
    482 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    483 	 * be assumed to be in Asynchronous, Narrow mode.
    484 	 */
    485 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    486 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
    487 				sc->wdtr_able);
    488 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
    489 				sc->sdtr_able);
    490 	}
    491 
    492 	/*
    493 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    494 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    495 	 * bitmask. These values determine the maximum SDTR speed negotiated
    496 	 * with a device.
    497 	 *
    498 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    499 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    500 	 * without determining here whether the device supports SDTR.
    501 	 *
    502 	 * 4-bit speed  SDTR speed name
    503 	 * ===========  ===============
    504 	 * 0000b (0x0)  SDTR disabled
    505 	 * 0001b (0x1)  5 Mhz
    506 	 * 0010b (0x2)  10 Mhz
    507 	 * 0011b (0x3)  20 Mhz (Ultra)
    508 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
    509 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
    510 	 * 0110b (0x6)  Undefined
    511 	 * .
    512 	 * 1111b (0xF)  Undefined
    513 	 */
    514 	word = 0;
    515 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    516 		if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    517 			/* Set Ultra speed for TID 'tid'. */
    518 			word |= (0x3 << (4 * (tid % 4)));
    519 		} else {
    520 			/* Set Fast speed for TID 'tid'. */
    521 			word |= (0x2 << (4 * (tid % 4)));
    522 		}
    523 		/* Check if done with sdtr_speed1. */
    524 		if (tid == 3) {
    525 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, word);
    526 			word = 0;
    527 		/* Check if done with sdtr_speed2. */
    528 		} else if (tid == 7) {
    529 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, word);
    530 			word = 0;
    531 		/* Check if done with sdtr_speed3. */
    532 		} else if (tid == 11) {
    533 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, word);
    534 			word = 0;
    535 		/* Check if done with sdtr_speed4. */
    536 		} else if (tid == 15) {
    537 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, word);
    538 			/* End of loop. */
    539 		}
    540 	}
    541 
    542 	/*
    543 	 * Set microcode operating variable for the disconnect per TID bitmask.
    544 	 */
    545 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
    546 
    547 
    548 	/*
    549 	 * Set SCSI_CFG0 Microcode Default Value.
    550 	 *
    551 	 * The microcode will set the SCSI_CFG0 register using this value
    552 	 * after it is started below.
    553 	 */
    554 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
    555 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    556 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    557 
    558 	/*
    559 	 * Determine SCSI_CFG1 Microcode Default Value.
    560 	 *
    561 	 * The microcode will set the SCSI_CFG1 register using this value
    562 	 * after it is started below.
    563 	 */
    564 
    565 	/* Read current SCSI_CFG1 Register value. */
    566 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
    567 
    568 	/*
    569 	 * If all three connectors are in use, return an error.
    570 	 */
    571 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
    572 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
    573 		return ASC_IERR_ILLEGAL_CONNECTION;
    574 	}
    575 
    576 	/*
    577 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
    578 	 * register signals will be set. Check for and return an error if
    579 	 * this condition is found.
    580 	 */
    581 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
    582 			0x3F07) {
    583 		return ASC_IERR_REVERSED_CABLE;
    584 	}
    585 
    586 	/*
    587 	 * If this is a differential board and a single-ended device
    588 	 * is attached to one of the connectors, return an error.
    589 	 */
    590 	if ((scsi_cfg1 & ADW_DIFF_MODE) && (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
    591 		return ASC_IERR_SINGLE_END_DEVICE;
    592 	}
    593 
    594 	/*
    595 	 * If automatic termination control is enabled, then set the
    596 	 * termination value based on a table listed in a_condor.h.
    597 	 *
    598 	 * If manual termination was specified with an EEPROM setting
    599 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
    600 	 * is ready to be 'ored' into SCSI_CFG1.
    601 	 */
    602 	if (sc->cfg.termination == 0) {
    603 		/*
    604 		 * The software always controls termination by setting
    605 		 * TERM_CTL_SEL.
    606 		 * If TERM_CTL_SEL were set to 0, the hardware would set
    607 		 * termination.
    608 		 */
    609 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
    610 
    611 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
    612 			/* TERM_CTL_H: on, TERM_CTL_L: on */
    613 			case 0x3: case 0x7: case 0xB:
    614 			case 0xD: case 0xE: case 0xF:
    615 				sc->cfg.termination |=
    616 					(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
    617 				break;
    618 
    619 			/* TERM_CTL_H: on, TERM_CTL_L: off */
    620 			case 0x1: case 0x5: case 0x9: case 0xA: case 0xC:
    621 				sc->cfg.termination |= ADW_TERM_CTL_H;
    622 				break;
    623 
    624 			/* TERM_CTL_H: off, TERM_CTL_L: off */
    625 			case 0x2: case 0x6:
    626 				break;
    627 		}
    628 	}
    629 
    630 	/*
    631 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
    632 	 */
    633 	scsi_cfg1 &= ~ADW_TERM_CTL;
    634 
    635 	/*
    636 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
    637 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
    638 	 * referenced, because the hardware internally inverts
    639 	 * the Termination High and Low bits if TERM_POL is set.
    640 	 */
    641 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~sc->cfg.termination & ADW_TERM_CTL));
    642 
    643 	/*
    644 	 * Set SCSI_CFG1 Microcode Default Value
    645 	 *
    646 	 * Set filter value and possibly modified termination control
    647 	 * bits in the Microcode SCSI_CFG1 Register Value.
    648 	 *
    649 	 * The microcode will set the SCSI_CFG1 register using this value
    650 	 * after it is started below.
    651 	 */
    652 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1,
    653 		ADW_FLTR_DISABLE | scsi_cfg1);
    654 
    655 	/*
    656 	 * Set MEM_CFG Microcode Default Value
    657 	 *
    658 	 * The microcode will set the MEM_CFG register using this value
    659 	 * after it is started below.
    660 	 *
    661 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
    662 	 * are defined.
    663 	 *
    664 	 * ASC-3550 has 8KB internal memory.
    665 	 */
    666 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
    667 		ADW_BIOS_EN | ADW_RAM_SZ_8KB);
    668 
    669 	/*
    670 	 * Set SEL_MASK Microcode Default Value
    671 	 *
    672 	 * The microcode will set the SEL_MASK register using this value
    673 	 * after it is started below.
    674 	 */
    675 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
    676 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    677 
    678 
    679 	/*
    680 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    681 	 */
    682 
    683 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    684 		return ASC_IERR_NO_CARRIER;
    685 	}
    686 	sc->carr_freelist = adw_carrier_phys_kv(sc,
    687 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    688 
    689 	/*
    690 	 * The first command issued will be placed in the stopper carrier.
    691 	 */
    692 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
    693 
    694 	/*
    695 	 * Set RISC ICQ physical address start value.
    696 	 */
    697 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_ba);
    698 
    699 	/*
    700 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    701 	 */
    702 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    703 		return ASC_IERR_NO_CARRIER;
    704 	}
    705 	sc->carr_freelist = adw_carrier_phys_kv(sc,
    706 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    707 
    708 	/*
    709 	 * The first command completed by the RISC will be placed in
    710 	 * the stopper.
    711 	 *
    712 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    713 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
    714 	 */
    715 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
    716 
    717 	/*
    718 	 * Set RISC IRQ physical address start value.
    719 	 */
    720 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_ba);
    721 	sc->carr_pending_cnt = 0;
    722 
    723 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    724 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    725 
    726 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
    727 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    728 
    729 	/* finally, finally, gentlemen, start your engine */
    730 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    731 
    732 	/*
    733 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    734 	 * Resets should be performed. The RISC has to be running
    735 	 * to issue a SCSI Bus Reset.
    736 	 */
    737 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    738 	{
    739 		/*
    740 		 * If the BIOS Signature is present in memory, restore the
    741 		 * BIOS Handshake Configuration Table and do not perform
    742 		 * a SCSI Bus Reset.
    743 		 */
    744 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
    745 				0x55AA) {
    746 			/*
    747 			 * Restore per TID negotiated values.
    748 			 */
    749 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
    750 					wdtr_able);
    751 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
    752 					sdtr_able);
    753 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
    754 					tagqng_able);
    755 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    756 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    757 					ASC_MC_NUMBER_OF_MAX_CMD + tid,
    758 					max_cmd[tid]);
    759 			}
    760 		} else {
    761 			if (AdvResetCCB(sc) != ADW_TRUE) {
    762 				warn_code = ASC_WARN_BUSRESET_ERROR;
    763 			}
    764 		}
    765 	}
    766 
    767     return warn_code;
    768 }
    769 
    770 /*
    771  * Initialize the ASC-38C0800.
    772  *
    773  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
    774  *
    775  * For a non-fatal error return a warning code. If there are no warnings
    776  * then 0 is returned.
    777  */
    778 int
    779 AdvInitAsc38C0800Driver(sc)
    780 ADW_SOFTC      *sc;
    781 {
    782 	bus_space_tag_t iot = sc->sc_iot;
    783 	bus_space_handle_t ioh = sc->sc_ioh;
    784 	u_int16_t	warn_code;
    785 	u_int32_t	sum;
    786 	int	  	begin_addr;
    787 	int	   	end_addr;
    788 	u_int16_t	code_sum;
    789 	int	   	word;
    790 	int	   	i, j;
    791 	int	   	adv_asc38C0800_expanded_size;
    792 	u_int16_t	scsi_cfg1;
    793 	u_int8_t	byte;
    794 	u_int8_t	tid;
    795 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
    796 								0x40-0x8F. */
    797 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
    798 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    799 
    800 
    801 	warn_code = 0;
    802 
    803 	/*
    804 	 * Save the RISC memory BIOS region before writing the microcode.
    805 	 * The BIOS may already be loaded and using its RISC LRAM region
    806 	 * so its region must be saved and restored.
    807 	 *
    808 	 * Note: This code makes the assumption, which is currently true,
    809 	 * that a chip reset does not clear RISC LRAM.
    810 	 */
    811 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    812 	    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]);
    813 	}
    814 
    815 	/*
    816 	 * Save current per TID negotiated values.
    817 	 */
    818 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
    819 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
    820 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
    821 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    822 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
    823 			max_cmd[tid]);
    824 	}
    825 
    826 	/*
    827 	 * RAM BIST (RAM Built-In Self Test)
    828 	 *
    829 	 * Address : I/O base + offset 0x38h register (byte).
    830 	 * Function: Bit 7-6(RW) : RAM mode
    831 	 *			    Normal Mode   : 0x00
    832 	 *			    Pre-test Mode : 0x40
    833 	 *			    RAM Test Mode : 0x80
    834 	 *	     Bit 5	 : unused
    835 	 *	     Bit 4(RO)   : Done bit
    836 	 *	     Bit 3-0(RO) : Status
    837 	 *			    Host Error    : 0x08
    838 	 *			    Int_RAM Error : 0x04
    839 	 *			    RISC Error    : 0x02
    840 	 *			    SCSI Error    : 0x01
    841 	 *			    No Error	  : 0x00
    842 	 *
    843 	 * Note: RAM BIST code should be put right here, before loading the
    844 	 * microcode and after saving the RISC memory BIOS region.
    845 	 */
    846 
    847 	/*
    848 	 * LRAM Pre-test
    849 	 *
    850 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
    851 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
    852 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
    853 	 * to NORMAL_MODE, return an error too.
    854 	 */
    855 	for (i = 0; i < 2; i++) {
    856 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
    857 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    858 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    859 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    860 				PRE_TEST_VALUE) {
    861 			return ASC_IERR_BIST_PRE_TEST;
    862 		}
    863 
    864 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    865 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    866 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
    867 		    != NORMAL_VALUE) {
    868 			return ASC_IERR_BIST_PRE_TEST;
    869 		}
    870 	}
    871 
    872 	/*
    873 	 * LRAM Test - It takes about 1.5 ms to run through the test.
    874 	 *
    875 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
    876 	 * If Done bit not set or Status not 0, save register byte, set the
    877 	 * err_code, and return an error.
    878 	 */
    879 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
    880 	AdvSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
    881 
    882 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    883 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
    884 		/* Get here if Done bit not set or Status not 0. */
    885 		return ASC_IERR_BIST_RAM_TEST;
    886 	}
    887 
    888 	/* We need to reset back to normal mode after LRAM test passes. */
    889 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    890 
    891 	/*
    892 	 * Load the Microcode
    893 	 *
    894 	 * Write the microcode image to RISC memory starting at address 0.
    895 	 *
    896 	 */
    897 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    898 
    899 	/* Assume the following compressed format of the microcode buffer:
    900 	 *
    901 	 *  254 word (508 byte) table indexed by byte code followed
    902 	 *  by the following byte codes:
    903 	 *
    904 	 *    1-Byte Code:
    905 	 *	00: Emit word 0 in table.
    906 	 *	01: Emit word 1 in table.
    907 	 *	.
    908 	 *	FD: Emit word 253 in table.
    909 	 *
    910 	 *    Multi-Byte Code:
    911 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    912 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    913 	 */
    914 	word = 0;
    915 	for (i = 253 * 2; i < adv_asc38C0800_mcode_size; i++) {
    916 		if (adv_asc38C0800_mcode[i] == 0xff) {
    917 			for (j = 0; j < adv_asc38C0800_mcode[i + 1]; j++) {
    918 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    919 				    (((u_int16_t)
    920 				    adv_asc38C0800_mcode[i + 3] << 8) |
    921 				    adv_asc38C0800_mcode[i + 2]));
    922 				word++;
    923 			}
    924 			i += 3;
    925 		} else if (adv_asc38C0800_mcode[i] == 0xfe) {
    926 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    927 			    adv_asc38C0800_mcode[i + 2] << 8) |
    928 			    adv_asc38C0800_mcode[i + 1]));
    929 			i += 2;
    930 			word++;
    931 		} else {
    932 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    933 			  adv_asc38C0800_mcode[(adv_asc38C0800_mcode[i] * 2) + 1] << 8) |
    934 			  adv_asc38C0800_mcode[adv_asc38C0800_mcode[i] * 2]));
    935 			word++;
    936 		}
    937 	}
    938 
    939 	/*
    940 	 * Set 'word' for later use to clear the rest of memory and save
    941 	 * the expanded mcode size.
    942 	 */
    943 	word *= 2;
    944 	adv_asc38C0800_expanded_size = word;
    945 
    946 	/*
    947 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
    948 	 */
    949 	for (; word < ADV_38C0800_MEMSIZE; word += 2) {
    950 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    951 	}
    952 
    953 	/*
    954 	 * Verify the microcode checksum.
    955 	 */
    956 	sum = 0;
    957 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    958 
    959 	for (word = 0; word < adv_asc38C0800_expanded_size; word += 2) {
    960 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    961 	}
    962 
    963 	if (sum != adv_asc38C0800_mcode_chksum) {
    964 	    return ASC_IERR_MCODE_CHKSUM;
    965 	}
    966 
    967 	/*
    968 	 * Restore the RISC memory BIOS region.
    969 	 */
    970 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    971 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
    972 				bios_mem[i]);
    973 	}
    974 
    975 	/*
    976 	 * Calculate and write the microcode code checksum to the microcode
    977 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
    978 	 */
    979 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
    980 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
    981 	code_sum = 0;
    982 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    983 	for (word = begin_addr; word < end_addr; word += 2) {
    984 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    985 	}
    986 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
    987 
    988 	/*
    989 	 * Read microcode version and date.
    990 	 */
    991 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
    992 			sc->cfg.mcode_date);
    993 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
    994 			sc->cfg.mcode_version);
    995 
    996 	/*
    997 	 * Set the chip type to indicate the ASC38C0800.
    998 	 */
    999 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
   1000 
   1001 	/*
   1002 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   1003 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   1004 	 * cable detection and then we are able to read C_DET[3:0].
   1005 	 *
   1006 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   1007 	 * Microcode Default Value' section below.
   1008 	 */
   1009 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1010 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
   1011 			scsi_cfg1 | ADW_DIS_TERM_DRV);
   1012 
   1013 	/*
   1014 	 * If the PCI Configuration Command Register "Parity Error Response
   1015 	 * Control" Bit was clear (0), then set the microcode variable
   1016 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   1017 	 * to ignore DMA parity errors.
   1018 	 */
   1019 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
   1020 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1021 		word |= CONTROL_FLAG_IGNORE_PERR;
   1022 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1023 	}
   1024 
   1025 	/*
   1026 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
   1027 	 * START_CTL_TH [3:2] bits for the default FIFO threshold.
   1028 	 *
   1029 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
   1030 	 *
   1031 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
   1032 	 */
   1033 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
   1034 		BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   1035 
   1036 	/*
   1037 	 * Microcode operating variables for WDTR, SDTR, and command tag
   1038 	 * queuing will be set in AdvInquiryHandling() based on what a
   1039 	 * device reports it is capable of in Inquiry byte 7.
   1040 	 *
   1041 	 * If SCSI Bus Resets have been disabled, then directly set
   1042 	 * SDTR and WDTR from the EEPROM configuration. This will allow
   1043 	 * the BIOS and warm boot to work without a SCSI bus hang on
   1044 	 * the Inquiry caused by host and target mismatched DTR values.
   1045 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   1046 	 * be assumed to be in Asynchronous, Narrow mode.
   1047 	 */
   1048 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   1049 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, sc->wdtr_able);
   1050 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sc->sdtr_able);
   1051 	}
   1052 
   1053 	/*
   1054 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   1055 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   1056 	 * configuration values.
   1057 	 *
   1058 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1059 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1060 	 * without determining here whether the device supports SDTR.
   1061 	 */
   1062 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1063 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1064 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1065 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1066 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1067 
   1068 	/*
   1069 	 * Set SCSI_CFG0 Microcode Default Value.
   1070 	 *
   1071 	 * The microcode will set the SCSI_CFG0 register using this value
   1072 	 * after it is started below.
   1073 	 */
   1074 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
   1075 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
   1076 		ADW_OUR_ID_EN | sc->chip_scsi_id);
   1077 
   1078 	/*
   1079 	 * Determine SCSI_CFG1 Microcode Default Value.
   1080 	 *
   1081 	 * The microcode will set the SCSI_CFG1 register using this value
   1082 	 * after it is started below.
   1083 	 */
   1084 
   1085 	/* Read current SCSI_CFG1 Register value. */
   1086 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1087 
   1088 	/*
   1089 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
   1090 	 * register signals will be set. Check for and return an error if
   1091 	 * this condition is found.
   1092 	 */
   1093 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1094 			0x3F07) {
   1095 		return ASC_IERR_REVERSED_CABLE;
   1096 	}
   1097 
   1098 	/*
   1099 	 * All kind of combinations of devices attached to one of four connectors
   1100 	 * are acceptable except HVD device attached. For example, LVD device can
   1101 	 * be attached to SE connector while SE device attached to LVD connector.
   1102 	 * If LVD device attached to SE connector, it only runs up to Ultra speed.
   1103 	 *
   1104 	 * If an HVD device is attached to one of LVD connectors, return an error.
   1105 	 * However, there is no way to detect HVD device attached to SE connectors.
   1106 	 */
   1107 	if (scsi_cfg1 & ADW_HVD) {
   1108 		return ASC_IERR_HVD_DEVICE;
   1109 	}
   1110 
   1111 	/*
   1112 	 * If either SE or LVD automatic termination control is enabled, then
   1113 	 * set the termination value based on a table listed in a_condor.h.
   1114 	 *
   1115 	 * If manual termination was specified with an EEPROM setting then
   1116 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready to
   1117 	 * be 'ored' into SCSI_CFG1.
   1118 	 */
   1119 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1120 		/* SE automatic termination control is enabled. */
   1121 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1122 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1123 			case 0x1: case 0x2: case 0x3:
   1124 				sc->cfg.termination |= ADW_TERM_SE;
   1125 				break;
   1126 
   1127 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1128 			case 0x0:
   1129 				sc->cfg.termination |= ADW_TERM_SE_HI;
   1130 				break;
   1131 		}
   1132 	}
   1133 
   1134 	if ((sc->cfg.termination & ADW_TERM_LVD) == 0) {
   1135 		/* LVD automatic termination control is enabled. */
   1136 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1137 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1138 			case 0x4: case 0x8: case 0xC:
   1139 				sc->cfg.termination |= ADW_TERM_LVD;
   1140 				break;
   1141 
   1142 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1143 			case 0x0:
   1144 				break;
   1145 		}
   1146 	}
   1147 
   1148 	/*
   1149 	 * Clear any set TERM_SE and TERM_LVD bits.
   1150 	 */
   1151 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1152 
   1153 	/*
   1154 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1155 	 */
   1156 	scsi_cfg1 |= (~sc->cfg.termination & 0xF0);
   1157 
   1158 	/*
   1159 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE bits
   1160 	 * and set possibly modified termination control bits in the Microcode
   1161 	 * SCSI_CFG1 Register Value.
   1162 	 */
   1163 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1164 			~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1165 
   1166 	/*
   1167 	 * Set SCSI_CFG1 Microcode Default Value
   1168 	 *
   1169 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1170 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1171 	 *
   1172 	 * The microcode will set the SCSI_CFG1 register using this value
   1173 	 * after it is started below.
   1174 	 */
   1175 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1176 
   1177 	/*
   1178 	 * Set MEM_CFG Microcode Default Value
   1179 	 *
   1180 	 * The microcode will set the MEM_CFG register using this value
   1181 	 * after it is started below.
   1182 	 *
   1183 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1184 	 * are defined.
   1185 	 *
   1186 	 * ASC-38C0800 has 16KB internal memory.
   1187 	 */
   1188 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
   1189 		ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1190 
   1191 	/*
   1192 	 * Set SEL_MASK Microcode Default Value
   1193 	 *
   1194 	 * The microcode will set the SEL_MASK register using this value
   1195 	 * after it is started below.
   1196 	 */
   1197 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
   1198 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1199 
   1200 
   1201 	/*
   1202 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1203 	 */
   1204 
   1205 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1206 		return ASC_IERR_NO_CARRIER;
   1207 	}
   1208 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1209 			ASC_GET_CARRP(sc->icq_sp->next_ba));
   1210 
   1211 	/*
   1212 	 * The first command issued will be placed in the stopper carrier.
   1213 	 */
   1214 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
   1215 
   1216 	/*
   1217 	 * Set RISC ICQ physical address start value.
   1218 	 */
   1219 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_ba);
   1220 
   1221 	/*
   1222 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1223 	 */
   1224 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1225 		return ASC_IERR_NO_CARRIER;
   1226 	}
   1227 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1228 			ASC_GET_CARRP(sc->irq_sp->next_ba));
   1229 
   1230 	/*
   1231 	 * The first command completed by the RISC will be placed in
   1232 	 * the stopper.
   1233 	 *
   1234 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
   1235 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
   1236 	 */
   1237 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
   1238 
   1239 	/*
   1240 	 * Set RISC IRQ physical address start value.
   1241 	 */
   1242 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_ba);
   1243 	sc->carr_pending_cnt = 0;
   1244 
   1245 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1246 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1247 
   1248 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
   1249 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1250 
   1251 	/* finally, finally, gentlemen, start your engine */
   1252 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1253 
   1254 	/*
   1255 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1256 	 * Resets should be performed. The RISC has to be running
   1257 	 * to issue a SCSI Bus Reset.
   1258 	 */
   1259 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1260 		/*
   1261 		 * If the BIOS Signature is present in memory, restore the
   1262 		 * BIOS Handshake Configuration Table and do not perform
   1263 		 * a SCSI Bus Reset.
   1264 		 */
   1265 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
   1266 				0x55AA) {
   1267 			/*
   1268 			 * Restore per TID negotiated values.
   1269 			 */
   1270 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   1271 					wdtr_able);
   1272 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   1273 					sdtr_able);
   1274 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   1275 					tagqng_able);
   1276 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1277 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1278 						ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1279 						max_cmd[tid]);
   1280 			}
   1281 		} else {
   1282 			if (AdvResetCCB(sc) != ADW_TRUE) {
   1283 				warn_code = ASC_WARN_BUSRESET_ERROR;
   1284 			}
   1285 		}
   1286 	}
   1287 
   1288 	return warn_code;
   1289 }
   1290 
   1291 
   1292 /*
   1293  * Initialize the ASC-38C1600.
   1294  *
   1295  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   1296  *
   1297  * For a non-fatal error return a warning code. If there are no warnings
   1298  * then 0 is returned.
   1299  */
   1300 int
   1301 AdvInitAsc38C1600Driver(sc)
   1302 ADW_SOFTC      *sc;
   1303 {
   1304 	bus_space_tag_t iot = sc->sc_iot;
   1305 	bus_space_handle_t ioh = sc->sc_ioh;
   1306 	u_int16_t	warn_code;
   1307 	u_int32_t	sum;
   1308 	int	  	begin_addr;
   1309 	int	   	end_addr;
   1310 	u_int16_t	code_sum;
   1311 	int	   	word;
   1312 	int	   	i, j;
   1313 	int		adv_asc38C1600_expanded_size;
   1314 	u_int16_t	scsi_cfg1;
   1315 	u_int8_t	byte;
   1316 	u_int8_t	tid;
   1317 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
   1318 								0x40-0x8F. */
   1319 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   1320 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
   1321 
   1322 
   1323 	warn_code = 0;
   1324 
   1325 
   1326 	/*
   1327 	 * Save the RISC memory BIOS region before writing the microcode.
   1328 	 * The BIOS may already be loaded and using its RISC LRAM region
   1329 	 * so its region must be saved and restored.
   1330 	 *
   1331 	 * Note: This code makes the assumption, which is currently true,
   1332 	 * that a chip reset does not clear RISC LRAM.
   1333 	 */
   1334 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
   1335 	    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]);
   1336 	}
   1337 
   1338 	/*
   1339 	 * Save current per TID negotiated values.
   1340 	 */
   1341 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   1342 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   1343 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE, ppr_able);
   1344 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   1345 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1346 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1347 			max_cmd[tid]);
   1348 	}
   1349 
   1350 	/*
   1351 	 * RAM BIST (RAM Built-In Self Test)
   1352 	 *
   1353 	 * Address : I/O base + offset 0x38h register (byte).
   1354 	 * Function: Bit 7-6(RW) : RAM mode
   1355 	 *			    Normal Mode   : 0x00
   1356 	 *			    Pre-test Mode : 0x40
   1357 	 *			    RAM Test Mode : 0x80
   1358 	 *	     Bit 5	 : unused
   1359 	 *	     Bit 4(RO)   : Done bit
   1360 	 *	     Bit 3-0(RO) : Status
   1361 	 *			    Host Error    : 0x08
   1362 	 *			    Int_RAM Error : 0x04
   1363 	 *			    RISC Error    : 0x02
   1364 	 *			    SCSI Error    : 0x01
   1365 	 *			    No Error	  : 0x00
   1366 	 *
   1367 	 * Note: RAM BIST code should be put right here, before loading the
   1368 	 * microcode and after saving the RISC memory BIOS region.
   1369 	 */
   1370 
   1371 	/*
   1372 	 * LRAM Pre-test
   1373 	 *
   1374 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
   1375 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
   1376 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
   1377 	 * to NORMAL_MODE, return an error too.
   1378 	 */
   1379 	for (i = 0; i < 2; i++) {
   1380 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
   1381 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
   1382 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1383 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
   1384 				PRE_TEST_VALUE) {
   1385 			return ASC_IERR_BIST_PRE_TEST;
   1386 		}
   1387 
   1388 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1389 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
   1390 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1391 		    != NORMAL_VALUE) {
   1392 			return ASC_IERR_BIST_PRE_TEST;
   1393 		}
   1394 	}
   1395 
   1396 	/*
   1397 	 * LRAM Test - It takes about 1.5 ms to run through the test.
   1398 	 *
   1399 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
   1400 	 * If Done bit not set or Status not 0, save register byte, set the
   1401 	 * err_code, and return an error.
   1402 	 */
   1403 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1404 	AdvSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
   1405 
   1406 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1407 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
   1408 		/* Get here if Done bit not set or Status not 0. */
   1409 		return ASC_IERR_BIST_RAM_TEST;
   1410 	}
   1411 
   1412 	/* We need to reset back to normal mode after LRAM test passes. */
   1413 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1414 
   1415 
   1416 	/*
   1417 	 * Load the Microcode
   1418 	 *
   1419 	 * Write the microcode image to RISC memory starting at address 0.
   1420 	 *
   1421 	 */
   1422 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1423 
   1424 	/* Assume the following compressed format of the microcode buffer:
   1425 	 *
   1426 	 *  254 word (508 byte) table indexed by byte code followed
   1427 	 *  by the following byte codes:
   1428 	 *
   1429 	 *    1-Byte Code:
   1430 	 *	00: Emit word 0 in table.
   1431 	 *	01: Emit word 1 in table.
   1432 	 *	.
   1433 	 *	FD: Emit word 253 in table.
   1434 	 *
   1435 	 *    Multi-Byte Code:
   1436 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1437 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1438 	 */
   1439 	word = 0;
   1440 	for (i = 253 * 2; i < adv_asc38C1600_mcode_size; i++) {
   1441 		if (adv_asc38C1600_mcode[i] == 0xff) {
   1442 			for (j = 0; j < adv_asc38C1600_mcode[i + 1]; j++) {
   1443 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1444 				    (((u_int16_t)
   1445 				    adv_asc38C1600_mcode[i + 3] << 8) |
   1446 				    adv_asc38C1600_mcode[i + 2]));
   1447 				word++;
   1448 			}
   1449 			i += 3;
   1450 		} else if (adv_asc38C1600_mcode[i] == 0xfe) {
   1451 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1452 			    adv_asc38C1600_mcode[i + 2] << 8) |
   1453 			    adv_asc38C1600_mcode[i + 1]));
   1454 			i += 2;
   1455 			word++;
   1456 		} else {
   1457 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1458 			  adv_asc38C1600_mcode[(adv_asc38C1600_mcode[i] * 2) + 1] << 8) |
   1459 			  adv_asc38C1600_mcode[adv_asc38C1600_mcode[i] * 2]));
   1460 			word++;
   1461 		}
   1462 	}
   1463 
   1464 	/*
   1465 	 * Set 'word' for later use to clear the rest of memory and save
   1466 	 * the expanded mcode size.
   1467 	 */
   1468 	word *= 2;
   1469 	adv_asc38C1600_expanded_size = word;
   1470 
   1471 	/*
   1472 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
   1473 	 */
   1474 	for (; word < ADV_38C1600_MEMSIZE; word += 2) {
   1475 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1476 	}
   1477 
   1478 	/*
   1479 	 * Verify the microcode checksum.
   1480 	 */
   1481 	sum = 0;
   1482 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1483 
   1484 	for (word = 0; word < adv_asc38C1600_expanded_size; word += 2) {
   1485 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1486 	}
   1487 
   1488 	if (sum != adv_asc38C1600_mcode_chksum) {
   1489 	    return ASC_IERR_MCODE_CHKSUM;
   1490 	}
   1491 
   1492 	/*
   1493 	 * Restore the RISC memory BIOS region.
   1494 	 */
   1495 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
   1496 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
   1497 				bios_mem[i]);
   1498 	}
   1499 
   1500 	/*
   1501 	 * Calculate and write the microcode code checksum to the microcode
   1502 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
   1503 	 */
   1504 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
   1505 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
   1506 	code_sum = 0;
   1507 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1508 	for (word = begin_addr; word < end_addr; word += 2) {
   1509 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1510 	}
   1511 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
   1512 
   1513 	/*
   1514 	 * Read microcode version and date.
   1515 	 */
   1516 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
   1517 			sc->cfg.mcode_date);
   1518 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
   1519 			sc->cfg.mcode_version);
   1520 
   1521 	/*
   1522 	 * Set the chip type to indicate the ASC38C1600.
   1523 	 */
   1524 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
   1525 
   1526 	/*
   1527 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   1528 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   1529 	 * cable detection and then we are able to read C_DET[3:0].
   1530 	 *
   1531 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   1532 	 * Microcode Default Value' section below.
   1533 	 */
   1534 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1535 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
   1536 			scsi_cfg1 | ADW_DIS_TERM_DRV);
   1537 
   1538 	/*
   1539 	 * If the PCI Configuration Command Register "Parity Error Response
   1540 	 * Control" Bit was clear (0), then set the microcode variable
   1541 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   1542 	 * to ignore DMA parity errors.
   1543 	 */
   1544 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
   1545 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1546 		word |= CONTROL_FLAG_IGNORE_PERR;
   1547 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1548 	}
   1549 
   1550 	/*
   1551 	 * If the BIOS control flag AIPP (Asynchronous Information
   1552 	 * Phase Protection) disable bit is not set, then set the firmware
   1553 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
   1554 	 * AIPP checking and encoding.
   1555 	 */
   1556 	if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
   1557 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1558 		word |= CONTROL_FLAG_ENABLE_AIPP;
   1559 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1560 	}
   1561 
   1562 	/*
   1563 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
   1564 	 * and START_CTL_TH [3:2].
   1565 	 */
   1566 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
   1567 		FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   1568 
   1569 	/*
   1570 	 * Microcode operating variables for WDTR, SDTR, and command tag
   1571 	 * queuing will be set in AdvInquiryHandling() based on what a
   1572 	 * device reports it is capable of in Inquiry byte 7.
   1573 	 *
   1574 	 * If SCSI Bus Resets have been disabled, then directly set
   1575 	 * SDTR and WDTR from the EEPROM configuration. This will allow
   1576 	 * the BIOS and warm boot to work without a SCSI bus hang on
   1577 	 * the Inquiry caused by host and target mismatched DTR values.
   1578 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   1579 	 * be assumed to be in Asynchronous, Narrow mode.
   1580 	 */
   1581 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   1582 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, sc->wdtr_able);
   1583 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sc->sdtr_able);
   1584 	}
   1585 
   1586 	/*
   1587 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   1588 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   1589 	 * configuration values.
   1590 	 *
   1591 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1592 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1593 	 * without determining here whether the device supports SDTR.
   1594 	 */
   1595 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1596 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1597 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1598 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1599 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1600 
   1601 	/*
   1602 	 * Set SCSI_CFG0 Microcode Default Value.
   1603 	 *
   1604 	 * The microcode will set the SCSI_CFG0 register using this value
   1605 	 * after it is started below.
   1606 	 */
   1607 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
   1608 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
   1609 		ADW_OUR_ID_EN | sc->chip_scsi_id);
   1610 
   1611 	/*
   1612 	 * Calculate SCSI_CFG1 Microcode Default Value.
   1613 	 *
   1614 	 * The microcode will set the SCSI_CFG1 register using this value
   1615 	 * after it is started below.
   1616 	 *
   1617 	 * Each ASC-38C1600 function has only two cable detect bits.
   1618 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1619 	 */
   1620 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1621 
   1622 	/*
   1623 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1624 	 * will be set. Check for and return an error if this condition is
   1625 	 * found.
   1626 	 */
   1627 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1628 			0x3F07) {
   1629 		return ASC_IERR_REVERSED_CABLE;
   1630 	}
   1631 
   1632 	/*
   1633 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1634 	 * can not be connected to either connector. An LVD device or SE device
   1635 	 * may be connected to either connecor. If an SE device is connected,
   1636 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
   1637 	 *
   1638 	 * If an HVD device is attached, return an error.
   1639 	 */
   1640 	if (scsi_cfg1 & ADW_HVD) {
   1641 		return ASC_IERR_HVD_DEVICE;
   1642 	}
   1643 
   1644 	/*
   1645 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1646 	 * termination because there are two connectors for each function. Each
   1647 	 * function may use either LVD or SE mode. Corresponding the SE automatic
   1648 	 * termination control EEPROM bits are used for each function. Each
   1649 	 * function has its own EEPROM. If SE automatic control is enabled for
   1650 	 * the function, then set the termination value based on a table listed
   1651 	 * in a_condor.h.
   1652 	 *
   1653 	 * If manual termination is specified in the EEPROM for the function,
   1654 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
   1655 	 * ready to be 'ored' into SCSI_CFG1.
   1656 	 */
   1657 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1658 		/* SE automatic termination control is enabled. */
   1659 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1660 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1661 			case 0x1: case 0x2: case 0x3:
   1662 				sc->cfg.termination |= ADW_TERM_SE;
   1663 				break;
   1664 
   1665 			case 0x0:
   1666 	/* !!!!TODO!!!! */
   1667 //				if (ASC_PCI_ID2FUNC(asc_dvc->cfg->pci_slot_info) == 0) {
   1668 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1669 //				}
   1670 //				else
   1671 //				{
   1672 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1673 					sc->cfg.termination |= ADW_TERM_SE_HI;
   1674 //				}
   1675 				break;
   1676 			}
   1677 	}
   1678 
   1679 	/*
   1680 	 * Clear any set TERM_SE bits.
   1681 	 */
   1682 	scsi_cfg1 &= ~ADW_TERM_SE;
   1683 
   1684 	/*
   1685 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1686 	 */
   1687 	scsi_cfg1 |= (~sc->cfg.termination & ADW_TERM_SE);
   1688 
   1689 	/*
   1690 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1691 	 * modified termination control bits in the Microcode SCSI_CFG1
   1692 	 * Register Value.
   1693 	 */
   1694 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1695 
   1696 	/*
   1697 	 * Set SCSI_CFG1 Microcode Default Value
   1698 	 *
   1699 	 * Set possibly modified termination control bits in the Microcode
   1700 	 * SCSI_CFG1 Register Value.
   1701 	 *
   1702 	 * The microcode will set the SCSI_CFG1 register using this value
   1703 	 * after it is started below.
   1704 	 */
   1705 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1706 
   1707 	/*
   1708 	 * Set MEM_CFG Microcode Default Value
   1709 	 *
   1710 	 * The microcode will set the MEM_CFG register using this value
   1711 	 * after it is started below.
   1712 	 *
   1713 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1714 	 * are defined.
   1715 	 *
   1716 	 * ASC-38C1600 has 32KB internal memory.
   1717 	 */
   1718 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
   1719 		ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1720 
   1721 	/*
   1722 	 * Set SEL_MASK Microcode Default Value
   1723 	 *
   1724 	 * The microcode will set the SEL_MASK register using this value
   1725 	 * after it is started below.
   1726 	 */
   1727 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
   1728 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1729 
   1730 	/*
   1731 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1732 	 */
   1733 
   1734 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1735 		return ASC_IERR_NO_CARRIER;
   1736 	}
   1737 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1738 			ASC_GET_CARRP(sc->icq_sp->next_ba));
   1739 
   1740 	/*
   1741 	 * The first command issued will be placed in the stopper carrier.
   1742 	 */
   1743 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
   1744 
   1745 	/*
   1746 	 * Set RISC ICQ physical address start value. Initialize the
   1747 	 * COMMA register to the same value otherwise the RISC will
   1748 	 * prematurely detect a command is available.
   1749 	 */
   1750 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_ba);
   1751 	ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA, sc->icq_sp->carr_ba);
   1752 
   1753 	/*
   1754 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1755 	 */
   1756 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1757 		return ASC_IERR_NO_CARRIER;
   1758 	}
   1759 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1760 			ASC_GET_CARRP(sc->irq_sp->next_ba));
   1761 
   1762 	/*
   1763 	 * The first command completed by the RISC will be placed in
   1764 	 * the stopper.
   1765 	 *
   1766 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
   1767 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
   1768 	 */
   1769 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
   1770 
   1771 	/*
   1772 	 * Set RISC IRQ physical address start value.
   1773 	 */
   1774 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_ba);
   1775 	sc->carr_pending_cnt = 0;
   1776 
   1777 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1778 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1779 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
   1780 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1781 
   1782 	/* finally, finally, gentlemen, start your engine */
   1783 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1784 
   1785 	/*
   1786 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1787 	 * Resets should be performed. The RISC has to be running
   1788 	 * to issue a SCSI Bus Reset.
   1789 	 */
   1790 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1791 		/*
   1792 		 * If the BIOS Signature is present in memory, restore the
   1793 		 * per TID microcode operating variables.
   1794 		 */
   1795 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
   1796 				0x55AA) {
   1797 			/*
   1798 			 * Restore per TID negotiated values.
   1799 			 */
   1800 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   1801 					wdtr_able);
   1802 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   1803 					sdtr_able);
   1804 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE,
   1805 					ppr_able);
   1806 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   1807 					tagqng_able);
   1808 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1809 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1810 						ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1811 						max_cmd[tid]);
   1812 			}
   1813 		} else {
   1814 			if (AdvResetCCB(sc) != ADW_TRUE) {
   1815 				warn_code = ASC_WARN_BUSRESET_ERROR;
   1816 			}
   1817 		}
   1818 	}
   1819 
   1820 	return warn_code;
   1821 }
   1822 
   1823 
   1824 /*
   1825  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   1826  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   1827  * all of this is done.
   1828  *
   1829  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   1830  *
   1831  * For a non-fatal error return a warning code. If there are no warnings
   1832  * then 0 is returned.
   1833  *
   1834  * Note: Chip is stopped on entry.
   1835  */
   1836 int
   1837 AdvInitFrom3550EEP(sc)
   1838 ADW_SOFTC      *sc;
   1839 {
   1840 	bus_space_tag_t iot = sc->sc_iot;
   1841 	bus_space_handle_t ioh = sc->sc_ioh;
   1842 	u_int16_t		warn_code;
   1843 	ADW_EEP_3550_CONFIG	eep_config;
   1844 	int			i;
   1845 
   1846 
   1847 	warn_code = 0;
   1848 
   1849 	/*
   1850 	 * Read the board's EEPROM configuration.
   1851 	 *
   1852 	 * Set default values if a bad checksum is found.
   1853 	 *
   1854 	 * XXX - Don't handle big-endian access to EEPROM yet.
   1855 	 */
   1856 	if (AdvGet3550EEPConfig(iot, ioh, &eep_config) != eep_config.check_sum){
   1857 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   1858 
   1859 		/*
   1860 		 * Set EEPROM default values.
   1861 		 */
   1862 		for (i = 0; i < sizeof(ADW_EEP_3550_CONFIG); i++) {
   1863 			*((u_int8_t *) &eep_config + i) =
   1864 				*((u_int8_t *) &Default_3550_EEPROM_Config + i);
   1865 		}
   1866 
   1867 		/*
   1868 		 * Assume the 6 byte board serial number that was read
   1869 		 * from EEPROM is correct even if the EEPROM checksum
   1870 		 * failed.
   1871 		 */
   1872 		eep_config.serial_number_word3 =
   1873 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   1874 
   1875 		eep_config.serial_number_word2 =
   1876 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   1877 
   1878 		eep_config.serial_number_word1 =
   1879 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   1880 
   1881 		AdvSet3550EEPConfig(iot, ioh, &eep_config);
   1882 	}
   1883 	/*
   1884 	 * Set sc and sc->cfg variables from the EEPROM configuration
   1885 	 * that was read.
   1886 	 *
   1887 	 * This is the mapping of EEPROM fields to Adv Library fields.
   1888 	 */
   1889 	sc->wdtr_able = eep_config.wdtr_able;
   1890 	sc->sdtr_able = eep_config.sdtr_able;
   1891 	sc->ultra_able = eep_config.ultra_able;
   1892 	sc->tagqng_able = eep_config.tagqng_able;
   1893 	sc->cfg.disc_enable = eep_config.disc_enable;
   1894 	sc->max_host_qng = eep_config.max_host_qng;
   1895 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1896 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   1897 	sc->start_motor = eep_config.start_motor;
   1898 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   1899 	sc->bios_ctrl = eep_config.bios_ctrl;
   1900 	sc->no_scam = eep_config.scam_tolerant;
   1901 	sc->cfg.serial1 = eep_config.serial_number_word1;
   1902 	sc->cfg.serial2 = eep_config.serial_number_word2;
   1903 	sc->cfg.serial3 = eep_config.serial_number_word3;
   1904 
   1905 	/*
   1906 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   1907 	 * maximum queuing (max. 63, min. 4).
   1908 	 */
   1909 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   1910 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   1911 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG)
   1912 	{
   1913 		/* If the value is zero, assume it is uninitialized. */
   1914 		if (eep_config.max_host_qng == 0) {
   1915 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   1916 		} else {
   1917 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   1918 		}
   1919 	}
   1920 
   1921 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   1922 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   1923 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   1924 		/* If the value is zero, assume it is uninitialized. */
   1925 		if (eep_config.max_dvc_qng == 0) {
   1926 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   1927 		} else {
   1928 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   1929 		}
   1930 	}
   1931 
   1932 	/*
   1933 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   1934 	 * set 'max_dvc_qng' to 'max_host_qng'.
   1935 	 */
   1936 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   1937 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   1938 	}
   1939 
   1940 	/*
   1941 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   1942 	 * values based on possibly adjusted EEPROM values.
   1943 	 */
   1944 	sc->max_host_qng = eep_config.max_host_qng;
   1945 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1946 
   1947 
   1948 	/*
   1949 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   1950 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   1951 	 *
   1952 	 * If the termination is specified with a non-zero 'termination'
   1953 	 * value check that a legal value is set and set the ADV_DVC_CFG
   1954 	 * 'termination' field appropriately.
   1955 	 */
   1956 
   1957 	sc->cfg.termination = 0;	/* auto termination */
   1958 	switch(eep_config.termination) {
   1959 	case 3:
   1960 		/* Enable manual control with low on / high on. */
   1961 		sc->cfg.termination |= ADW_TERM_CTL_L;
   1962 	case 2:
   1963 		/* Enable manual control with low off / high on. */
   1964 		sc->cfg.termination |= ADW_TERM_CTL_H;
   1965 	case 1:
   1966 		/* Enable manual control with low off / high off. */
   1967 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
   1968 	case 0:
   1969 		break;
   1970 	default:
   1971 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   1972 	}
   1973 
   1974 	return warn_code;
   1975 }
   1976 
   1977 
   1978 /*
   1979  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   1980  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   1981  * all of this is done.
   1982  *
   1983  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   1984  *
   1985  * For a non-fatal error return a warning code. If there are no warnings
   1986  * then 0 is returned.
   1987  *
   1988  * Note: Chip is stopped on entry.
   1989  */
   1990 int
   1991 AdvInitFrom38C0800EEP(sc)
   1992 ADW_SOFTC      *sc;
   1993 {
   1994 	bus_space_tag_t iot = sc->sc_iot;
   1995 	bus_space_handle_t ioh = sc->sc_ioh;
   1996 	u_int16_t		warn_code;
   1997 	ADW_EEP_38C0800_CONFIG	eep_config;
   1998 	int			i;
   1999 	u_int8_t		tid, termination;
   2000 	u_int16_t		sdtr_speed = 0;
   2001 
   2002 
   2003 	warn_code = 0;
   2004 
   2005 	/*
   2006 	 * Read the board's EEPROM configuration.
   2007 	 *
   2008 	 * Set default values if a bad checksum is found.
   2009 	 */
   2010 	if (AdvGet38C0800EEPConfig(iot, ioh, &eep_config) !=
   2011 			eep_config.check_sum) {
   2012 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   2013 
   2014 		/*
   2015 		 * Set EEPROM default values.
   2016 		 */
   2017 		for (i = 0; i < sizeof(ADW_EEP_38C0800_CONFIG); i++) {
   2018 			*((u_int8_t *) &eep_config + i) =
   2019 				*((u_int8_t *)&Default_38C0800_EEPROM_Config+i);
   2020 		}
   2021 
   2022 		/*
   2023 		 * Assume the 6 byte board serial number that was read
   2024 		 * from EEPROM is correct even if the EEPROM checksum
   2025 		 * failed.
   2026 		 */
   2027 		eep_config.serial_number_word3 =
   2028 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   2029 
   2030 		eep_config.serial_number_word2 =
   2031 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   2032 
   2033 		eep_config.serial_number_word1 =
   2034 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   2035 
   2036 		AdvSet38C0800EEPConfig(iot, ioh, &eep_config);
   2037 	}
   2038 	/*
   2039 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
   2040 	 * EEPROM configuration that was read.
   2041 	 *
   2042 	 * This is the mapping of EEPROM fields to Adv Library fields.
   2043 	 */
   2044 	sc->wdtr_able = eep_config.wdtr_able;
   2045 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   2046 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   2047 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   2048 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   2049 	sc->tagqng_able = eep_config.tagqng_able;
   2050 	sc->cfg.disc_enable = eep_config.disc_enable;
   2051 	sc->max_host_qng = eep_config.max_host_qng;
   2052 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2053 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   2054 	sc->start_motor = eep_config.start_motor;
   2055 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   2056 	sc->bios_ctrl = eep_config.bios_ctrl;
   2057 	sc->no_scam = eep_config.scam_tolerant;
   2058 	sc->cfg.serial1 = eep_config.serial_number_word1;
   2059 	sc->cfg.serial2 = eep_config.serial_number_word2;
   2060 	sc->cfg.serial3 = eep_config.serial_number_word3;
   2061 
   2062 	/*
   2063 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   2064 	 * are set, then set an 'sdtr_able' bit for it.
   2065 	 */
   2066 	sc->sdtr_able = 0;
   2067 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2068 		if (tid == 0) {
   2069 			sdtr_speed = sc->sdtr_speed1;
   2070 		} else if (tid == 4) {
   2071 			sdtr_speed = sc->sdtr_speed2;
   2072 		} else if (tid == 8) {
   2073 			sdtr_speed = sc->sdtr_speed3;
   2074 		} else if (tid == 12) {
   2075 			sdtr_speed = sc->sdtr_speed4;
   2076 		}
   2077 		if (sdtr_speed & ADW_MAX_TID) {
   2078 			sc->sdtr_able |= (1 << tid);
   2079 		}
   2080 		sdtr_speed >>= 4;
   2081 	}
   2082 
   2083 	/*
   2084 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   2085 	 * maximum queuing (max. 63, min. 4).
   2086 	 */
   2087 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   2088 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2089 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
   2090 		/* If the value is zero, assume it is uninitialized. */
   2091 		if (eep_config.max_host_qng == 0) {
   2092 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2093 		} else {
   2094 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   2095 		}
   2096 	}
   2097 
   2098 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   2099 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2100 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   2101 		/* If the value is zero, assume it is uninitialized. */
   2102 		if (eep_config.max_dvc_qng == 0) {
   2103 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2104 		} else {
   2105 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   2106 		}
   2107 	}
   2108 
   2109 	/*
   2110 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   2111 	 * set 'max_dvc_qng' to 'max_host_qng'.
   2112 	 */
   2113 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   2114 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   2115 	}
   2116 
   2117 	/*
   2118 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   2119 	 * values based on possibly adjusted EEPROM values.
   2120 	 */
   2121 	sc->max_host_qng = eep_config.max_host_qng;
   2122 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2123 
   2124 	/*
   2125 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   2126 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   2127 	 *
   2128 	 * If the termination is specified with a non-zero 'termination'
   2129 	 * value check that a legal value is set and set the ADV_DVC_CFG
   2130 	 * 'termination' field appropriately.
   2131 	 */
   2132 
   2133 	switch(eep_config.termination_se) {
   2134 	case 0:
   2135 		/* auto termination for SE */
   2136 		termination = 0;
   2137 		break;
   2138 	case 1:
   2139 		/* Enable manual control with low off / high off. */
   2140 		termination = 0;
   2141 		break;
   2142 	case 2:
   2143 		/* Enable manual control with low off / high on. */
   2144 		termination = ADW_TERM_SE_HI;
   2145 		break;
   2146 	case 3:
   2147 		/* Enable manual control with low on / high on. */
   2148 		termination = ADW_TERM_SE;
   2149 		break;
   2150 	default:
   2151 		/*
   2152 		 * The EEPROM 'termination_se' field contains a bad value.
   2153 		 * Use automatic termination instead.
   2154 		 */
   2155 		termination = 0;
   2156 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2157 	}
   2158 
   2159 	switch(eep_config.termination_lvd) {
   2160 	case 0:
   2161 		/* auto termination for LVD */
   2162 		sc->cfg.termination = termination;
   2163 		break;
   2164 	case 1:
   2165 		/* Enable manual control with low off / high off. */
   2166 		sc->cfg.termination = termination;
   2167 		break;
   2168 	case 2:
   2169 		/* Enable manual control with low off / high on. */
   2170 		sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   2171 		break;
   2172 	case 3:
   2173 		/* Enable manual control with low on / high on. */
   2174 		sc->cfg.termination = termination | ADW_TERM_LVD;
   2175 		break;
   2176 	default:
   2177 		/*
   2178 		 * The EEPROM 'termination_lvd' field contains a bad value.
   2179 		 * Use automatic termination instead.
   2180 		 */
   2181 		sc->cfg.termination = termination;
   2182 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2183 	}
   2184 
   2185 	return warn_code;
   2186 }
   2187 
   2188 
   2189 /*
   2190  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
   2191  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
   2192  * all of this is done.
   2193  *
   2194  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   2195  *
   2196  * For a non-fatal error return a warning code. If there are no warnings
   2197  * then 0 is returned.
   2198  *
   2199  * Note: Chip is stopped on entry.
   2200  */
   2201 int
   2202 AdvInitFrom38C1600EEP(sc)
   2203 ADW_SOFTC      *sc;
   2204 {
   2205 	bus_space_tag_t iot = sc->sc_iot;
   2206 	bus_space_handle_t ioh = sc->sc_ioh;
   2207 	u_int16_t		warn_code;
   2208 	ADW_EEP_38C1600_CONFIG	eep_config;
   2209 	int			i;
   2210 	u_int8_t		tid, termination;
   2211 	u_int16_t		sdtr_speed = 0;
   2212 
   2213 
   2214 	warn_code = 0;
   2215 
   2216 	/*
   2217 	 * Read the board's EEPROM configuration.
   2218 	 *
   2219 	 * Set default values if a bad checksum is found.
   2220 	 */
   2221 	if (AdvGet38C1600EEPConfig(iot, ioh, &eep_config) !=
   2222 			eep_config.check_sum) {
   2223 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   2224 
   2225 		/*
   2226 		 * Set EEPROM default values.
   2227 		 */
   2228  		for (i = 0; i < sizeof(ADW_EEP_38C1600_CONFIG); i++) {
   2229 	/* !!!!TODO!!!! */
   2230 //			if (i == 1 && ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
   2231 			if (i == 1 ) {
   2232 				/*
   2233 				 * Set Function 1 EEPROM Word 0 MSB
   2234 				 *
   2235 				 * Clear the BIOS_ENABLE (bit 14) and INTAB (bit 11)
   2236 				 * EEPROM bits.
   2237 				 *
   2238 				 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 and
   2239 				 * old Mac system booting problem. The Expansion ROM must
   2240 				 * be disabled in Function 1 for these systems.
   2241 				 *
   2242 				 */
   2243 				*((u_int8_t *) &eep_config + i) =
   2244 					((*((u_int8_t *) &Default_38C1600_EEPROM_Config + i)) &
   2245 					(~(((ADW_EEPROM_BIOS_ENABLE | ADW_EEPROM_INTAB) >> 8) &
   2246 					0xFF)));
   2247 
   2248 				/*
   2249 				 * Set the INTAB (bit 11) if the GPIO 0 input
   2250 				 * indicates the Function 1 interrupt line is
   2251 				 * wired to INTA.
   2252 				 *
   2253 				 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
   2254 				 *   1 - Function 1 interrupt line wired to INT A.
   2255 				 *   0 - Function 1 interrupt line wired to INT B.
   2256 				 *
   2257 				 * Note: Adapter boards always have Function 0
   2258 				 * wired to INTA.
   2259 				 * Put all 5 GPIO bits in input mode and then
   2260 				 * read their input values.
   2261 				 */
   2262 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2263 					IOPB_GPIO_CNTL, 0);
   2264 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
   2265 						IOPB_GPIO_DATA) & 0x01) {
   2266 					/* Function 1 interrupt wired to INTA;
   2267 					   Set EEPROM bit. */
   2268 					*((u_int8_t *) &eep_config + i) |=
   2269 						((ADW_EEPROM_INTAB >> 8) &0xFF);
   2270 				}
   2271 			} else {
   2272 				*((u_int8_t *)&eep_config + i) =
   2273 				*((u_int8_t *)&Default_38C1600_EEPROM_Config+i);
   2274 			}
   2275 		}
   2276 
   2277 		/*
   2278 		 * Assume the 6 byte board serial number that was read
   2279 		 * from EEPROM is correct even if the EEPROM checksum
   2280 		 * failed.
   2281 		 */
   2282 		eep_config.serial_number_word3 =
   2283 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   2284 
   2285 		eep_config.serial_number_word2 =
   2286 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   2287 
   2288 		eep_config.serial_number_word1 =
   2289 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   2290 
   2291 		AdvSet38C1600EEPConfig(iot, ioh, &eep_config);
   2292 	}
   2293 
   2294 	/*
   2295 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
   2296 	 * EEPROM configuration that was read.
   2297 	 *
   2298 	 * This is the mapping of EEPROM fields to Adv Library fields.
   2299 	 */
   2300 	sc->wdtr_able = eep_config.wdtr_able;
   2301 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   2302 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   2303 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   2304 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   2305 	sc->ppr_able = 0;
   2306 	sc->tagqng_able = eep_config.tagqng_able;
   2307 	sc->cfg.disc_enable = eep_config.disc_enable;
   2308 	sc->max_host_qng = eep_config.max_host_qng;
   2309 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2310 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   2311 	sc->start_motor = eep_config.start_motor;
   2312 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   2313 	sc->bios_ctrl = eep_config.bios_ctrl;
   2314 	sc->no_scam = eep_config.scam_tolerant;
   2315 
   2316 	/*
   2317 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   2318 	 * are set, then set an 'sdtr_able' bit for it.
   2319 	 */
   2320 	sc->sdtr_able = 0;
   2321 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2322 		if (tid == 0) {
   2323 			sdtr_speed = sc->sdtr_speed1;
   2324 		} else if (tid == 4) {
   2325 			sdtr_speed = sc->sdtr_speed2;
   2326 		} else if (tid == 8) {
   2327 			sdtr_speed = sc->sdtr_speed3;
   2328 		} else if (tid == 12) {
   2329 			sdtr_speed = sc->sdtr_speed4;
   2330 		}
   2331 		if (sdtr_speed & ADW_MAX_TID) {
   2332 			sc->sdtr_able |= (1 << tid);
   2333 		}
   2334 		sdtr_speed >>= 4;
   2335 	}
   2336 
   2337 	/*
   2338 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   2339 	 * maximum queuing (max. 63, min. 4).
   2340 	 */
   2341 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   2342 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2343 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
   2344 		/* If the value is zero, assume it is uninitialized. */
   2345 		if (eep_config.max_host_qng == 0) {
   2346 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2347 		} else {
   2348 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   2349 		}
   2350 	}
   2351 
   2352 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   2353 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2354 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   2355 		/* If the value is zero, assume it is uninitialized. */
   2356 		if (eep_config.max_dvc_qng == 0) {
   2357 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2358 		} else {
   2359 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   2360 		}
   2361 	}
   2362 
   2363 	/*
   2364 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   2365 	 * set 'max_dvc_qng' to 'max_host_qng'.
   2366 	 */
   2367 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   2368 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   2369 	}
   2370 
   2371 	/*
   2372 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
   2373 	 * values based on possibly adjusted EEPROM values.
   2374 	 */
   2375 	sc->max_host_qng = eep_config.max_host_qng;
   2376 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2377 
   2378 	/*
   2379 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   2380 	 * the ASC_DVC_CFG 'termination' field to automatic also.
   2381 	 *
   2382 	 * If the termination is specified with a non-zero 'termination'
   2383 	 * value check that a legal value is set and set the ASC_DVC_CFG
   2384 	 * 'termination' field appropriately.
   2385 	 */
   2386 
   2387 	switch(eep_config.termination_se) {
   2388 	case 0:	/* auto termination for SE */
   2389 		termination = 0;
   2390 		break;
   2391 	case 1:	/* Enable manual control with low off / high off. */
   2392 		termination = 0;
   2393 		break;
   2394 	case 2:	/* Enable manual control with low off / high on. */
   2395 		termination = ADW_TERM_SE_HI;
   2396 		break;
   2397 	case 3:	/* Enable manual control with low on / high on. */
   2398 		termination = ADW_TERM_SE;
   2399 		break;
   2400 	default:
   2401 		/*
   2402 		 * The EEPROM 'termination_se' field contains a bad value.
   2403 		 * Use automatic termination instead.
   2404 		 */
   2405 		termination = 0;
   2406 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2407 	}
   2408 
   2409 	switch(eep_config.termination_lvd) {
   2410 	case 0:	/* auto termination for LVD */
   2411 		sc->cfg.termination = termination;
   2412 		break;
   2413 	case 1:	/* Enable manual control with low off / high off. */
   2414 		sc->cfg.termination = termination;
   2415 		break;
   2416 	case 2:	/* Enable manual control with low off / high on. */
   2417 		sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   2418 		break;
   2419 	case 3:	/* Enable manual control with low on / high on. */
   2420 		sc->cfg.termination = termination | ADW_TERM_LVD;
   2421 		break;
   2422 	default:
   2423 		/*
   2424 		 * The EEPROM 'termination_lvd' field contains a bad value.
   2425 		 * Use automatic termination instead.
   2426 		 */
   2427 		sc->cfg.termination = termination;
   2428 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2429 	}
   2430 
   2431 	return warn_code;
   2432 }
   2433 
   2434 
   2435 /*
   2436  * Read EEPROM configuration into the specified buffer.
   2437  *
   2438  * Return a checksum based on the EEPROM configuration read.
   2439  */
   2440 static u_int16_t
   2441 AdvGet3550EEPConfig(iot, ioh, cfg_buf)
   2442 	bus_space_tag_t		iot;
   2443 	bus_space_handle_t	ioh;
   2444 	ADW_EEP_3550_CONFIG	*cfg_buf;
   2445 {
   2446 	u_int16_t	       wval, chksum;
   2447 	u_int16_t	       *wbuf;
   2448 	int		    eep_addr;
   2449 
   2450 
   2451 	wbuf = (u_int16_t *) cfg_buf;
   2452 	chksum = 0;
   2453 
   2454 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2455 		eep_addr < ASC_EEP_DVC_CFG_END;
   2456 		eep_addr++, wbuf++) {
   2457 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   2458 		chksum += wval;
   2459 		*wbuf = wval;
   2460 	}
   2461 
   2462 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2463 	wbuf++;
   2464 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2465 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2466 			eep_addr++, wbuf++) {
   2467 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2468 	}
   2469 
   2470 	return chksum;
   2471 }
   2472 
   2473 
   2474 /*
   2475  * Read EEPROM configuration into the specified buffer.
   2476  *
   2477  * Return a checksum based on the EEPROM configuration read.
   2478  */
   2479 static u_int16_t
   2480 AdvGet38C0800EEPConfig(iot, ioh, cfg_buf)
   2481 	bus_space_tag_t		iot;
   2482 	bus_space_handle_t	ioh;
   2483 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   2484 {
   2485 	u_int16_t	wval, chksum;
   2486 	u_int16_t	*wbuf;
   2487 	int		eep_addr;
   2488 
   2489 
   2490 	wbuf = (u_int16_t *) cfg_buf;
   2491 	chksum = 0;
   2492 
   2493 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2494 		eep_addr < ASC_EEP_DVC_CFG_END;
   2495 		eep_addr++, wbuf++) {
   2496 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   2497 		chksum += wval;
   2498 		*wbuf = wval;
   2499 	}
   2500 
   2501 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2502 	wbuf++;
   2503 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2504 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2505 			eep_addr++, wbuf++) {
   2506 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2507 	}
   2508 
   2509 	return chksum;
   2510 }
   2511 
   2512 
   2513 /*
   2514  * Read EEPROM configuration into the specified buffer.
   2515  *
   2516  * Return a checksum based on the EEPROM configuration read.
   2517  */
   2518 static u_int16_t
   2519 AdvGet38C1600EEPConfig(iot, ioh, cfg_buf)
   2520 	bus_space_tag_t		iot;
   2521 	bus_space_handle_t	ioh;
   2522 	ADW_EEP_38C1600_CONFIG	*cfg_buf;
   2523 {
   2524 	u_int16_t	wval, chksum;
   2525 	u_int16_t	*wbuf;
   2526 	int		eep_addr;
   2527 
   2528 
   2529 	wbuf = (u_int16_t *) cfg_buf;
   2530 	chksum = 0;
   2531 
   2532 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2533 		eep_addr < ASC_EEP_DVC_CFG_END;
   2534 		eep_addr++, wbuf++) {
   2535 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   2536 		chksum += wval;
   2537 		*wbuf = wval;
   2538 	}
   2539 
   2540 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2541 	wbuf++;
   2542 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2543 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2544 			eep_addr++, wbuf++) {
   2545 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2546 	}
   2547 
   2548 	return chksum;
   2549 }
   2550 
   2551 
   2552 /*
   2553  * Read the EEPROM from specified location
   2554  */
   2555 static u_int16_t
   2556 AdvReadEEPWord(iot, ioh, eep_word_addr)
   2557 	bus_space_tag_t		iot;
   2558 	bus_space_handle_t	ioh;
   2559 	int			eep_word_addr;
   2560 {
   2561 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2562 		ASC_EEP_CMD_READ | eep_word_addr);
   2563 	AdvWaitEEPCmd(iot, ioh);
   2564 
   2565 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   2566 }
   2567 
   2568 
   2569 /*
   2570  * Wait for EEPROM command to complete
   2571  */
   2572 static void
   2573 AdvWaitEEPCmd(iot, ioh)
   2574 	bus_space_tag_t		iot;
   2575 	bus_space_handle_t	ioh;
   2576 {
   2577 	int eep_delay_ms;
   2578 
   2579 
   2580 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   2581 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   2582 				ASC_EEP_CMD_DONE) {
   2583 			break;
   2584 		}
   2585 		AdvSleepMilliSecond(1);
   2586 	}
   2587 
   2588 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   2589 }
   2590 
   2591 
   2592 /*
   2593  * Write the EEPROM from 'cfg_buf'.
   2594  */
   2595 static void
   2596 AdvSet3550EEPConfig(iot, ioh, cfg_buf)
   2597 	bus_space_tag_t		iot;
   2598 	bus_space_handle_t	ioh;
   2599 	ADW_EEP_3550_CONFIG	*cfg_buf;
   2600 {
   2601 	u_int16_t *wbuf;
   2602 	u_int16_t addr, chksum;
   2603 
   2604 
   2605 	wbuf = (u_int16_t *) cfg_buf;
   2606 	chksum = 0;
   2607 
   2608 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2609 	AdvWaitEEPCmd(iot, ioh);
   2610 
   2611 	/*
   2612 	 * Write EEPROM from word 0 to word 20
   2613 	 */
   2614 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2615 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2616 		chksum += *wbuf;
   2617 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2618 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2619 				ASC_EEP_CMD_WRITE | addr);
   2620 		AdvWaitEEPCmd(iot, ioh);
   2621 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   2622 	}
   2623 
   2624 	/*
   2625 	 * Write EEPROM checksum at word 21
   2626 	 */
   2627 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2628 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2629 			ASC_EEP_CMD_WRITE | addr);
   2630 	AdvWaitEEPCmd(iot, ioh);
   2631 	wbuf++;        /* skip over check_sum */
   2632 
   2633 	/*
   2634 	 * Write EEPROM OEM name at words 22 to 29
   2635 	 */
   2636 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2637 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2638 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2639 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2640 				ASC_EEP_CMD_WRITE | addr);
   2641 		AdvWaitEEPCmd(iot, ioh);
   2642 	}
   2643 
   2644 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2645 			ASC_EEP_CMD_WRITE_DISABLE);
   2646 	AdvWaitEEPCmd(iot, ioh);
   2647 
   2648 	return;
   2649 }
   2650 
   2651 
   2652 /*
   2653  * Write the EEPROM from 'cfg_buf'.
   2654  */
   2655 static void
   2656 AdvSet38C0800EEPConfig(iot, ioh, cfg_buf)
   2657 	bus_space_tag_t		iot;
   2658 	bus_space_handle_t	ioh;
   2659 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   2660 {
   2661 	u_int16_t *wbuf;
   2662 	u_int16_t addr, chksum;
   2663 
   2664 
   2665 	wbuf = (u_int16_t *) cfg_buf;
   2666 	chksum = 0;
   2667 
   2668 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2669 	AdvWaitEEPCmd(iot, ioh);
   2670 
   2671 	/*
   2672 	 * Write EEPROM from word 0 to word 20
   2673 	 */
   2674 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2675 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2676 		chksum += *wbuf;
   2677 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2678 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2679 				ASC_EEP_CMD_WRITE | addr);
   2680 		AdvWaitEEPCmd(iot, ioh);
   2681 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   2682 	}
   2683 
   2684 	/*
   2685 	 * Write EEPROM checksum at word 21
   2686 	 */
   2687 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2688 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2689 			ASC_EEP_CMD_WRITE | addr);
   2690 	AdvWaitEEPCmd(iot, ioh);
   2691 	wbuf++;        /* skip over check_sum */
   2692 
   2693 	/*
   2694 	 * Write EEPROM OEM name at words 22 to 29
   2695 	 */
   2696 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2697 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2698 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2699 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2700 				ASC_EEP_CMD_WRITE | addr);
   2701 		AdvWaitEEPCmd(iot, ioh);
   2702 	}
   2703 
   2704 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2705 			ASC_EEP_CMD_WRITE_DISABLE);
   2706 	AdvWaitEEPCmd(iot, ioh);
   2707 
   2708 	return;
   2709 }
   2710 
   2711 
   2712 /*
   2713  * Write the EEPROM from 'cfg_buf'.
   2714  */
   2715 static void
   2716 AdvSet38C1600EEPConfig(iot, ioh, cfg_buf)
   2717 	bus_space_tag_t		iot;
   2718 	bus_space_handle_t	ioh;
   2719 	ADW_EEP_38C1600_CONFIG	*cfg_buf;
   2720 {
   2721 	u_int16_t *wbuf;
   2722 	u_int16_t addr, chksum;
   2723 
   2724 
   2725 	wbuf = (u_int16_t *) cfg_buf;
   2726 	chksum = 0;
   2727 
   2728 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2729 	AdvWaitEEPCmd(iot, ioh);
   2730 
   2731 	/*
   2732 	 * Write EEPROM from word 0 to word 20
   2733 	 */
   2734 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2735 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2736 		chksum += *wbuf;
   2737 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2738 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2739 				ASC_EEP_CMD_WRITE | addr);
   2740 		AdvWaitEEPCmd(iot, ioh);
   2741 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   2742 	}
   2743 
   2744 	/*
   2745 	 * Write EEPROM checksum at word 21
   2746 	 */
   2747 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2748 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2749 			ASC_EEP_CMD_WRITE | addr);
   2750 	AdvWaitEEPCmd(iot, ioh);
   2751 	wbuf++;        /* skip over check_sum */
   2752 
   2753 	/*
   2754 	 * Write EEPROM OEM name at words 22 to 29
   2755 	 */
   2756 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2757 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2758 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2759 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2760 				ASC_EEP_CMD_WRITE | addr);
   2761 		AdvWaitEEPCmd(iot, ioh);
   2762 	}
   2763 
   2764 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2765 			ASC_EEP_CMD_WRITE_DISABLE);
   2766 	AdvWaitEEPCmd(iot, ioh);
   2767 
   2768 	return;
   2769 }
   2770 
   2771 
   2772 /*
   2773  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
   2774  *
   2775  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   2776  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   2777  *   RISC to notify it a new command is ready to be executed.
   2778  *
   2779  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   2780  * set to SCSI_MAX_RETRY.
   2781  *
   2782  * Return:
   2783  *      ADW_SUCCESS(1) - The request was successfully queued.
   2784  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   2785  *                       request completes.
   2786  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   2787  *                       host IC error.
   2788  */
   2789 int
   2790 AdvExeScsiQueue(sc, scsiq)
   2791 ADW_SOFTC	*sc;
   2792 ADW_SCSI_REQ_Q	*scsiq;
   2793 {
   2794 	bus_space_tag_t iot = sc->sc_iot;
   2795 	bus_space_handle_t ioh = sc->sc_ioh;
   2796 	ADW_CCB		*ccb;
   2797 	long		req_size;
   2798 	u_int32_t	req_paddr;
   2799 	ADW_CARRIER	*new_carrp;
   2800 
   2801 	/*
   2802 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   2803 	 */
   2804 	if (scsiq->target_id > ADW_MAX_TID) {
   2805 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   2806 		scsiq->done_status = QD_WITH_ERROR;
   2807 		return ADW_ERROR;
   2808 	}
   2809 
   2810 	/*
   2811 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   2812 	 */
   2813 
   2814 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   2815 
   2816 	/*
   2817 	 * Allocate a carrier ensuring at least one carrier always
   2818 	 * remains on the freelist and initialize fields.
   2819 	 */
   2820 	if ((new_carrp = sc->carr_freelist) == NULL) {
   2821 		return ADW_BUSY;
   2822 	}
   2823 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   2824 			ASC_GET_CARRP(new_carrp->next_ba));
   2825 	sc->carr_pending_cnt++;
   2826 
   2827 	/*
   2828 	 * Set the carrier to be a stopper by setting 'next_ba'
   2829 	 * to the stopper value. The current stopper will be changed
   2830 	 * below to point to the new stopper.
   2831 	 */
   2832 	new_carrp->next_ba = ASC_CQ_STOPPER;
   2833 
   2834 	req_size = sizeof(ADW_SCSI_REQ_Q);
   2835 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   2836 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   2837 
   2838 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   2839 	scsiq->scsiq_rptr = req_paddr;
   2840 
   2841 	/*
   2842 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   2843 	 * order during initialization.
   2844 	 */
   2845 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   2846 	scsiq->carr_va = sc->icq_sp->carr_ba;
   2847 
   2848 	/*
   2849 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   2850 	 * the microcode. The newly allocated stopper will become the new
   2851 	 * stopper.
   2852 	 */
   2853 	sc->icq_sp->areq_ba = req_paddr;
   2854 
   2855 	/*
   2856 	 * Set the 'next_ba' pointer for the old stopper to be the
   2857 	 * physical address of the new stopper. The RISC can only
   2858 	 * follow physical addresses.
   2859 	 */
   2860 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   2861 
   2862 #if ADW_DEBUG
   2863 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2864 			sc->icq_sp->carr_id,
   2865 			sc->icq_sp->carr_ba,
   2866 			sc->icq_sp->areq_ba,
   2867 			sc->icq_sp->next_ba);
   2868 #endif
   2869 	/*
   2870 	 * Set the host adapter stopper pointer to point to the new carrier.
   2871 	 */
   2872 	sc->icq_sp = new_carrp;
   2873 
   2874 	if (sc->chip_type == ADV_CHIP_ASC3550 ||
   2875 	    sc->chip_type == ADV_CHIP_ASC38C0800) {
   2876 		/*
   2877 		 * Tickle the RISC to tell it to read its Command Queue Head
   2878 		 * pointer.
   2879 		 */
   2880 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_A);
   2881 		if (sc->chip_type == ADV_CHIP_ASC3550) {
   2882 			/*
   2883 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   2884 			 * command 'clr_tickle_a' does not work unless the host
   2885 			 * value is cleared.
   2886 			 */
   2887 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   2888 					ADV_TICKLE_NOP);
   2889 		}
   2890 	} else if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   2891 		/*
   2892 		 * Notify the RISC a carrier is ready by writing the physical
   2893 		 * address of the new carrier stopper to the COMMA register.
   2894 		 */
   2895 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   2896 				new_carrp->carr_ba);
   2897 	}
   2898 
   2899 	/*
   2900 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   2901 	 */
   2902 
   2903 	return ADW_SUCCESS;
   2904 }
   2905 
   2906 
   2907 void
   2908 AdvResetChip(iot, ioh)
   2909 	bus_space_tag_t iot;
   2910 	bus_space_handle_t ioh;
   2911 {
   2912 
   2913 	/*
   2914 	 * Reset Chip.
   2915 	 */
   2916 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2917 			ADW_CTRL_REG_CMD_RESET);
   2918 	AdvSleepMilliSecond(100);
   2919 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2920 			ADW_CTRL_REG_CMD_WR_IO_REG);
   2921 }
   2922 
   2923 
   2924 /*
   2925  * Reset SCSI Bus and purge all outstanding requests.
   2926  *
   2927  * Return Value:
   2928  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   2929  *      ADW_FALSE(0) -  Microcode command failed.
   2930  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   2931  *                      may be hung which requires driver recovery.
   2932  */
   2933 int
   2934 AdvResetCCB(sc)
   2935 ADW_SOFTC	*sc;
   2936 {
   2937 	int	    status;
   2938 
   2939 	/*
   2940 	 * Send the SCSI Bus Reset idle start idle command which asserts
   2941 	 * the SCSI Bus Reset signal.
   2942 	 */
   2943 	status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   2944 	if (status != ADW_TRUE) {
   2945 		return status;
   2946 	}
   2947 
   2948 	/*
   2949 	 * Delay for the specified SCSI Bus Reset hold time.
   2950 	 *
   2951 	 * The hold time delay is done on the host because the RISC has no
   2952 	 * microsecond accurate timer.
   2953 	 */
   2954 	AdvDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   2955 
   2956 	/*
   2957 	 * Send the SCSI Bus Reset end idle command which de-asserts
   2958 	 * the SCSI Bus Reset signal and purges any pending requests.
   2959 	 */
   2960 	status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   2961 	if (status != ADW_TRUE) {
   2962 		return status;
   2963 	}
   2964 
   2965 	AdvSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   2966 
   2967 	return status;
   2968 }
   2969 
   2970 
   2971 /*
   2972  * Reset chip and SCSI Bus.
   2973  *
   2974  * Return Value:
   2975  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   2976  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   2977  */
   2978 int
   2979 AdvResetSCSIBus(sc)
   2980 ADW_SOFTC	*sc;
   2981 {
   2982 	bus_space_tag_t iot = sc->sc_iot;
   2983 	bus_space_handle_t ioh = sc->sc_ioh;
   2984 	int		status;
   2985 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   2986 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   2987 	u_int16_t	bios_sig;
   2988 
   2989 
   2990 	/*
   2991 	 * Save current per TID negotiated values.
   2992 	 */
   2993 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   2994 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   2995 	if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   2996 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE, ppr_able);
   2997 	}
   2998 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   2999 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   3000 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   3001 			max_cmd[tid]);
   3002 	}
   3003 
   3004 	/*
   3005 	 * Force the AdvInitAsc3550/38C0800Driver() function to
   3006 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
   3007 	 * The initialization functions assumes a SCSI Bus Reset is not
   3008 	 * needed if the BIOS signature word is present.
   3009 	 */
   3010 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, bios_sig);
   3011 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, 0);
   3012 
   3013 	/*
   3014 	 * Stop chip and reset it.
   3015 	 */
   3016 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   3017 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   3018 			ADW_CTRL_REG_CMD_RESET);
   3019 	AdvSleepMilliSecond(100);
   3020 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   3021 			ADW_CTRL_REG_CMD_WR_IO_REG);
   3022 
   3023 	/*
   3024 	 * Reset Adv Library error code, if any, and try
   3025 	 * re-initializing the chip.
   3026 	 */
   3027 	if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   3028 	    status = AdvInitAsc38C1600Driver(sc);
   3029 	} else if (sc->chip_type == ADV_CHIP_ASC38C0800) {
   3030 		status = AdvInitAsc38C0800Driver(sc);
   3031 	} else {
   3032 		status = AdvInitAsc3550Driver(sc);
   3033 	}
   3034 
   3035 	/* Translate initialization return value to status value. */
   3036 	status = (status == 0)? ADW_TRUE : ADW_FALSE;
   3037 
   3038 	/*
   3039 	 * Restore the BIOS signature word.
   3040 	 */
   3041 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, bios_sig);
   3042 
   3043 	/*
   3044 	 * Restore per TID negotiated values.
   3045 	 */
   3046 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   3047 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   3048 	if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   3049 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE, ppr_able);
   3050 	}
   3051 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   3052 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   3053 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   3054 			max_cmd[tid]);
   3055 	}
   3056 
   3057 	return status;
   3058 }
   3059 
   3060 
   3061 /*
   3062  * Adv Library Interrupt Service Routine
   3063  *
   3064  *  This function is called by a driver's interrupt service routine.
   3065  *  The function disables and re-enables interrupts.
   3066  *
   3067  *  When a microcode idle command is completed, the ADV_DVC_VAR
   3068  *  'idle_cmd_done' field is set to ADW_TRUE.
   3069  *
   3070  *  Note: AdvISR() can be called when interrupts are disabled or even
   3071  *  when there is no hardware interrupt condition present. It will
   3072  *  always check for completed idle commands and microcode requests.
   3073  *  This is an important feature that shouldn't be changed because it
   3074  *  allows commands to be completed from polling mode loops.
   3075  *
   3076  * Return:
   3077  *   ADW_TRUE(1) - interrupt was pending
   3078  *   ADW_FALSE(0) - no interrupt was pending
   3079  */
   3080 int
   3081 AdvISR(sc)
   3082 ADW_SOFTC	*sc;
   3083 {
   3084 	bus_space_tag_t iot = sc->sc_iot;
   3085 	bus_space_handle_t ioh = sc->sc_ioh;
   3086 	u_int8_t	int_stat;
   3087 	u_int16_t	target_bit;
   3088 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   3089 	u_int32_t	irq_next_pa;
   3090 	ADW_SCSI_REQ_Q	*scsiq;
   3091 	ADW_CCB		*ccb;
   3092 	int		s;
   3093 
   3094 
   3095 	s = splbio();
   3096 
   3097 	/* Reading the register clears the interrupt. */
   3098 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   3099 
   3100 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   3101 	     ADW_INTR_STATUS_INTRC)) == 0) {
   3102 		splx(s);
   3103 		return ADW_FALSE;
   3104 	}
   3105 
   3106 	/*
   3107 	 * Notify the driver of an asynchronous microcode condition by
   3108 	 * calling the ADV_DVC_VAR.async_callback function. The function
   3109 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
   3110 	 */
   3111 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   3112 		u_int8_t intrb_code;
   3113 
   3114 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_INTRB_CODE, intrb_code);
   3115 
   3116 		if (sc->chip_type == ADV_CHIP_ASC3550 ||
   3117 	    	    sc->chip_type == ADV_CHIP_ASC38C0800) {
   3118 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   3119 				sc->carr_pending_cnt != 0) {
   3120 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   3121 					IOPB_TICKLE, ADV_TICKLE_A);
   3122 				if (sc->chip_type == ADV_CHIP_ASC3550) {
   3123 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   3124 						IOPB_TICKLE, ADV_TICKLE_NOP);
   3125 				}
   3126 			}
   3127 		}
   3128 
   3129 		if (sc->async_callback != 0) {
   3130 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   3131 		}
   3132 	}
   3133 
   3134 	/*
   3135 	 * Check if the IRQ stopper carrier contains a completed request.
   3136 	 */
   3137 	while (((irq_next_pa = sc->irq_sp->next_ba) & ASC_RQ_DONE) != 0)
   3138 	{
   3139 #if ADW_DEBUG
   3140 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   3141 				sc->irq_sp->carr_id,
   3142 				sc->irq_sp->carr_ba,
   3143 				sc->irq_sp->areq_ba,
   3144 				sc->irq_sp->next_ba);
   3145 #endif
   3146 		/*
   3147 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   3148 		 * structure.
   3149 		 * The RISC will have set 'areq_ba' to a virtual address.
   3150 		 *
   3151 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   3152 		 * field to the carrier ADV_CARR_T.areq_ba field.
   3153 		 * The conversion below complements the conversion of
   3154 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdvExeScsiQueue().
   3155 		 */
   3156 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   3157 		scsiq = &ccb->scsiq;
   3158 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   3159 
   3160 		/*
   3161 		 * Request finished with good status and the queue was not
   3162 		 * DMAed to host memory by the firmware. Set all status fields
   3163 		 * to indicate good status.
   3164 		 */
   3165 		if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
   3166 			scsiq->done_status = QD_NO_ERROR;
   3167 			scsiq->host_status = scsiq->scsi_status = 0;
   3168 			scsiq->data_cnt = 0L;
   3169 		}
   3170 
   3171 		/*
   3172 		 * Advance the stopper pointer to the next carrier
   3173 		 * ignoring the lower four bits. Free the previous
   3174 		 * stopper carrier.
   3175 		 */
   3176 		free_carrp = sc->irq_sp;
   3177 		sc->irq_sp = adw_carrier_phys_kv(sc, ASC_GET_CARRP(irq_next_pa));
   3178 
   3179 		free_carrp->next_ba = sc->carr_freelist->carr_ba;
   3180 		sc->carr_freelist = free_carrp;
   3181 		sc->carr_pending_cnt--;
   3182 
   3183 
   3184 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   3185 
   3186 		/*
   3187 		 * Clear request microcode control flag.
   3188 		 */
   3189 		scsiq->cntl = 0;
   3190 
   3191 		/*
   3192 		 * Check Condition handling
   3193 		 */
   3194 		/*
   3195 		 * If the command that completed was a SCSI INQUIRY and
   3196 		 * LUN 0 was sent the command, then process the INQUIRY
   3197 		 * command information for the device.
   3198 		 */
   3199 		if (scsiq->done_status == QD_NO_ERROR &&
   3200 		    scsiq->cdb[0] == INQUIRY &&
   3201 		    scsiq->target_lun == 0) {
   3202 			AdvInquiryHandling(sc, scsiq);
   3203 		}
   3204 
   3205 		/*
   3206 		 * Notify the driver of the completed request by passing
   3207 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   3208 		 */
   3209 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   3210 		/*
   3211 		 * Note: After the driver callback function is called, 'scsiq'
   3212 		 * can no longer be referenced.
   3213 		 *
   3214 		 * Fall through and continue processing other completed
   3215 		 * requests...
   3216 		 */
   3217 	}
   3218 
   3219 	splx(s);
   3220 
   3221 	return ADW_TRUE;
   3222 }
   3223 
   3224 
   3225 /*
   3226  * Send an idle command to the chip and wait for completion.
   3227  *
   3228  * Command completion is polled for once per microsecond.
   3229  *
   3230  * The function can be called from anywhere including an interrupt handler.
   3231  * But the function is not re-entrant, so it uses the splbio/splx()
   3232  * functions to prevent reentrancy.
   3233  *
   3234  * Return Values:
   3235  *   ADW_TRUE - command completed successfully
   3236  *   ADW_FALSE - command failed
   3237  *   ADW_ERROR - command timed out
   3238  */
   3239 int
   3240 AdvSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   3241 ADW_SOFTC      *sc;
   3242 u_int16_t       idle_cmd;
   3243 u_int32_t       idle_cmd_parameter;
   3244 {
   3245 	bus_space_tag_t iot = sc->sc_iot;
   3246 	bus_space_handle_t ioh = sc->sc_ioh;
   3247 	u_int16_t	result;
   3248 	u_int32_t	i, j, s;
   3249 
   3250 	s = splbio();
   3251 
   3252 	/*
   3253 	 * Clear the idle command status which is set by the microcode
   3254 	 * to a non-zero value to indicate when the command is completed.
   3255 	 */
   3256 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   3257 
   3258 	/*
   3259 	 * Write the idle command value after the idle command parameter
   3260 	 * has been written to avoid a race condition. If the order is not
   3261 	 * followed, the microcode may process the idle command before the
   3262 	 * parameters have been written to LRAM.
   3263 	 */
   3264 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_PARAMETER,
   3265 			idle_cmd_parameter);
   3266 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD, idle_cmd);
   3267 
   3268 	/*
   3269 	 * Tickle the RISC to tell it to process the idle command.
   3270 	 */
   3271 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_B);
   3272 	if (sc->chip_type == ADV_CHIP_ASC3550) {
   3273 		/*
   3274 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   3275 		 * command 'clr_tickle_b' does not work unless the host
   3276 		 * value is cleared.
   3277 		 */
   3278 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_NOP);
   3279 	}
   3280 
   3281 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   3282 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   3283 		/* Poll once each microsecond for command completion. */
   3284 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   3285 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_STATUS, result);
   3286 			if (result != 0) {
   3287 				splx(s);
   3288 				return result;
   3289 			}
   3290 			AdvDelayMicroSecond(1);
   3291 		}
   3292 	}
   3293 
   3294 	splx(s);
   3295 	return ADW_ERROR;
   3296 }
   3297 
   3298 
   3299 /*
   3300  * Inquiry Information Byte 7 Handling
   3301  *
   3302  * Handle SCSI Inquiry Command information for a device by setting
   3303  * microcode operating variables that affect WDTR, SDTR, and Tag
   3304  * Queuing.
   3305  */
   3306 static void
   3307 AdvInquiryHandling(sc, scsiq)
   3308 ADW_SOFTC	*sc;
   3309 ADW_SCSI_REQ_Q *scsiq;
   3310 {
   3311 #ifndef FAILSAFE
   3312 	bus_space_tag_t iot = sc->sc_iot;
   3313 	bus_space_handle_t ioh = sc->sc_ioh;
   3314 	u_int8_t		tid;
   3315 	struct scsipi_inquiry_data *inq;
   3316 	u_int16_t		tidmask;
   3317 	u_int16_t		cfg_word;
   3318 
   3319 
   3320 	/*
   3321 	 * AdvInquiryHandling() requires up to INQUIRY information Byte 7
   3322 	 * to be available.
   3323 	 *
   3324 	 * If less than 8 bytes of INQUIRY information were requested or less
   3325 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   3326 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   3327 	 * microcode to the transfer residual count.
   3328 	 */
   3329 
   3330 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   3331 		return;
   3332 	}
   3333 
   3334 	tid = scsiq->target_id;
   3335 
   3336 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   3337 
   3338 	/*
   3339 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   3340 	 */
   3341 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   3342 	    ((inq->version & SID_ANSII) < 2)) {
   3343 		return;
   3344 	} else {
   3345 		/*
   3346 		 * INQUIRY Byte 7 Handling
   3347 		 *
   3348 		 * Use a device's INQUIRY byte 7 to determine whether it
   3349 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   3350 		 * is enabled in the EEPROM and the device supports the
   3351 		 * feature, then enable it in the microcode.
   3352 		 */
   3353 
   3354 		tidmask = ADW_TID_TO_TIDMASK(tid);
   3355 
   3356 		/*
   3357 		 * Wide Transfers
   3358 		 *
   3359 		 * If the EEPROM enabled WDTR for the device and the device
   3360 		 * supports wide bus (16 bit) transfers, then turn on the
   3361 		 * device's 'wdtr_able' bit and write the new value to the
   3362 		 * microcode.
   3363 		 */
   3364 #ifdef SCSI_ADW_WDTR_DISABLE
   3365 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   3366 #endif /* SCSI_ADW_WDTR_DISABLE */
   3367 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   3368 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   3369 					cfg_word);
   3370 			if ((cfg_word & tidmask) == 0) {
   3371 				cfg_word |= tidmask;
   3372 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   3373 						cfg_word);
   3374 
   3375 				/*
   3376 				 * Clear the microcode "SDTR negotiation" and "WDTR
   3377 				 * negotiation" done indicators for the target to cause
   3378 				 * it to negotiate with the new setting set above.
   3379 				 * WDTR when accepted causes the target to enter
   3380 				 * asynchronous mode, so SDTR must be negotiated.
   3381 				 */
   3382 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3383 						cfg_word);
   3384 				cfg_word &= ~tidmask;
   3385 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3386 						cfg_word);
   3387 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
   3388 						cfg_word);
   3389 				cfg_word &= ~tidmask;
   3390 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
   3391 						cfg_word);
   3392 			}
   3393 		}
   3394 
   3395 		/*
   3396 		 * Synchronous Transfers
   3397 		 *
   3398 		 * If the EEPROM enabled SDTR for the device and the device
   3399 		 * supports synchronous transfers, then turn on the device's
   3400 		 * 'sdtr_able' bit. Write the new value to the microcode.
   3401 		 */
   3402 #ifdef SCSI_ADW_SDTR_DISABLE
   3403 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   3404 #endif /* SCSI_ADW_SDTR_DISABLE */
   3405 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   3406 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, cfg_word);
   3407 			if ((cfg_word & tidmask) == 0) {
   3408 				cfg_word |= tidmask;
   3409 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   3410 						cfg_word);
   3411 
   3412 				/*
   3413 				 * Clear the microcode "SDTR negotiation" done indicator
   3414 				 * for the target to cause it to negotiate with the new
   3415 				 * setting set above.
   3416 				 */
   3417 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3418 						cfg_word);
   3419 				cfg_word &= ~tidmask;
   3420 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3421 						cfg_word);
   3422 			}
   3423 		}
   3424 		/*
   3425 		 * If the Inquiry data included enough space for the SPI-3
   3426 		 * Clocking field, then check if DT mode is supported.
   3427 		 */
   3428 		if (sc->chip_type == ADV_CHIP_ASC38C1600 &&
   3429 			(scsiq->cdb[4] >= 57 ||
   3430 				(scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   3431 			/*
   3432 			 * PPR (Parallel Protocol Request) Capable
   3433 			 *
   3434 			 * If the device supports DT mode, then it must be
   3435 			 * PPR capable.
   3436 			 * The PPR message will be used in place of the SDTR
   3437 			 * and WDTR messages to negotiate synchronous speed
   3438 			 * and offset, transfer width, and protocol options.
   3439 			 */
   3440 			if ((inq->flags4 & SID_Cloacking) &
   3441 					SIDV_CLOCKING_DT_ONLY)
   3442 			{
   3443 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE,
   3444 						sc->ppr_able);
   3445 				sc->ppr_able |= tidmask;
   3446 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE,
   3447 						sc->ppr_able);
   3448 			}
   3449 		}
   3450 
   3451 		/*
   3452 		 * If the EEPROM enabled Tag Queuing for the device and the
   3453 		 * device supports Tag Queueing, then turn on the device's
   3454 		 * 'tagqng_enable' bit in the microcode and set the microcode
   3455 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   3456 		 * value.
   3457 		 *
   3458 		 * Tag Queuing is disabled for the BIOS which runs in polled
   3459 		 * mode and would see no benefit from Tag Queuing. Also by
   3460 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   3461 		 * bugs will at least work with the BIOS.
   3462 		 */
   3463 #ifdef SCSI_ADW_TAGQ_DISABLE
   3464 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   3465 #endif /* SCSI_ADW_TAGQ_DISABLE */
   3466 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   3467 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   3468 					cfg_word);
   3469 			cfg_word |= tidmask;
   3470 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   3471 					cfg_word);
   3472 
   3473 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   3474 					ASC_MC_NUMBER_OF_MAX_CMD + tid,
   3475 					sc->max_dvc_qng);
   3476 		}
   3477 	}
   3478 #endif /* FAILSAFE */
   3479 }
   3480 
   3481 
   3482 static void
   3483 AdvSleepMilliSecond(n)
   3484 u_int32_t	n;
   3485 {
   3486 
   3487 	DELAY(n * 1000);
   3488 }
   3489 
   3490 
   3491 static void
   3492 AdvDelayMicroSecond(n)
   3493 u_int32_t	n;
   3494 {
   3495 
   3496 	DELAY(n);
   3497 }
   3498 
   3499