Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.16
      1 /* $NetBSD: adwlib.c,v 1.16 2000/05/26 15:13:43 dante Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 /*
     40  * Ported from:
     41  */
     42 /*
     43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  *
     45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46  * All Rights Reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that redistributions of source
     50  * code retain the above copyright notice and this comment without
     51  * modification.
     52  */
     53 
     54 #include <sys/types.h>
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/malloc.h>
     58 #include <sys/kernel.h>
     59 #include <sys/queue.h>
     60 #include <sys/device.h>
     61 
     62 #include <machine/bus.h>
     63 #include <machine/intr.h>
     64 
     65 #include <dev/scsipi/scsi_all.h>
     66 #include <dev/scsipi/scsipi_all.h>
     67 #include <dev/scsipi/scsiconf.h>
     68 
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <vm/vm.h>
     72 #include <vm/vm_param.h>
     73 #include <vm/pmap.h>
     74 
     75 #include <dev/ic/adwlib.h>
     76 #include <dev/ic/adwmcode.h>
     77 #include <dev/ic/adw.h>
     78 
     79 
     80 /* Static Functions */
     81 
     82 static u_int16_t AdwGet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     83      							ADW_EEP_3550_CONFIG *));
     84 static u_int16_t AdwGet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     85      							ADW_EEP_38C0800_CONFIG *));
     86 static u_int16_t AdwGet38C1600EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     87      							ADW_EEP_38C1600_CONFIG *));
     88 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     89 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     90 static void AdwSet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     91 					                 ADW_EEP_3550_CONFIG *));
     92 static void AdwSet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     93 					                 ADW_EEP_38C0800_CONFIG *));
     94 static void AdwSet38C1600EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     95 					                 ADW_EEP_38C1600_CONFIG *));
     96 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     97 
     98 static void AdwSleepMilliSecond __P((u_int32_t));
     99 static void AdwDelayMicroSecond __P((u_int32_t));
    100 
    101 
    102 /*
    103  * EEPROM Configuration.
    104  *
    105  * All drivers should use this structure to set the default EEPROM
    106  * configuration. The BIOS now uses this structure when it is built.
    107  * Additional structure information can be found in adwlib.h where
    108  * the structure is defined.
    109  */
    110 static ADW_EEP_3550_CONFIG
    111 Default_3550_EEPROM_Config = {
    112 	ADW_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
    113 	0x0000,			/* cfg_msw */
    114 	0xFFFF,			/* disc_enable */
    115 	0xFFFF,			/* wdtr_able */
    116 	0xFFFF,			/* sdtr_able */
    117 	0xFFFF,			/* start_motor */
    118 	0xFFFF,			/* tagqng_able */
    119 	0xFFFF,			/* bios_scan */
    120 	0,			/* scam_tolerant */
    121 	7,			/* adapter_scsi_id */
    122 	0,			/* bios_boot_delay */
    123 	3,			/* scsi_reset_delay */
    124 	0,			/* bios_id_lun */
    125 	0,			/* termination */
    126 	0,			/* reserved1 */
    127 	0xFFE7,			/* bios_ctrl */
    128 	0xFFFF,			/* ultra_able */
    129 	0,			/* reserved2 */
    130 	ADW_DEF_MAX_HOST_QNG,	/* max_host_qng */
    131 	ADW_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
    132 	0,			/* dvc_cntl */
    133 	0,			/* bug_fix */
    134 	0,			/* serial_number_word1 */
    135 	0,			/* serial_number_word2 */
    136 	0,			/* serial_number_word3 */
    137 	0,			/* check_sum */
    138 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* oem_name[16] */
    139 	0,			/* dvc_err_code */
    140 	0,			/* adv_err_code */
    141 	0,			/* adv_err_addr */
    142 	0,			/* saved_dvc_err_code */
    143 	0,			/* saved_adv_err_code */
    144 	0,			/* saved_adv_err_addr */
    145 	0			/* num_of_err */
    146 };
    147 
    148 static ADW_EEP_38C0800_CONFIG
    149 Default_38C0800_EEPROM_Config = {
    150 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    151 	0x0000,			/* 01 cfg_msw */
    152 	0xFFFF,			/* 02 disc_enable */
    153 	0xFFFF,			/* 03 wdtr_able */
    154 	0x4444,			/* 04 sdtr_speed1 */
    155 	0xFFFF,			/* 05 start_motor */
    156 	0xFFFF,			/* 06 tagqng_able */
    157 	0xFFFF,			/* 07 bios_scan */
    158 	0,			/* 08 scam_tolerant */
    159 	7,			/* 09 adapter_scsi_id */
    160 	0,			/*    bios_boot_delay */
    161 	3,			/* 10 scsi_reset_delay */
    162 	0,			/*    bios_id_lun */
    163 	0,			/* 11 termination_se */
    164 	0,			/*    termination_lvd */
    165 	0xFFE7,			/* 12 bios_ctrl */
    166 	0x4444,			/* 13 sdtr_speed2 */
    167 	0x4444,			/* 14 sdtr_speed3 */
    168 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    169 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    170 	0,			/* 16 dvc_cntl */
    171 	0x4444,			/* 17 sdtr_speed4 */
    172 	0,			/* 18 serial_number_word1 */
    173 	0,			/* 19 serial_number_word2 */
    174 	0,			/* 20 serial_number_word3 */
    175 	0,			/* 21 check_sum */
    176 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    177 	0,			/* 30 dvc_err_code */
    178 	0,			/* 31 adv_err_code */
    179 	0,			/* 32 adv_err_addr */
    180 	0,			/* 33 saved_dvc_err_code */
    181 	0,			/* 34 saved_adv_err_code */
    182 	0,			/* 35 saved_adv_err_addr */
    183 	0,			/* 36 reserved */
    184 	0,			/* 37 reserved */
    185 	0,			/* 38 reserved */
    186 	0,			/* 39 reserved */
    187 	0,			/* 40 reserved */
    188 	0,			/* 41 reserved */
    189 	0,			/* 42 reserved */
    190 	0,			/* 43 reserved */
    191 	0,			/* 44 reserved */
    192 	0,			/* 45 reserved */
    193 	0,			/* 46 reserved */
    194 	0,			/* 47 reserved */
    195 	0,			/* 48 reserved */
    196 	0,			/* 49 reserved */
    197 	0,			/* 50 reserved */
    198 	0,			/* 51 reserved */
    199 	0,			/* 52 reserved */
    200 	0,			/* 53 reserved */
    201 	0,			/* 54 reserved */
    202 	0,			/* 55 reserved */
    203 	0,			/* 56 cisptr_lsw */
    204 	0,			/* 57 cisprt_msw */
    205 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    206 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    207 	0,			/* 60 reserved */
    208 	0,			/* 61 reserved */
    209 	0,			/* 62 reserved */
    210 	0			/* 63 reserved */
    211 };
    212 
    213 static ADW_EEP_38C1600_CONFIG
    214 Default_38C1600_EEPROM_Config = {
    215 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    216 	0x0000,			/* 01 cfg_msw */
    217 	0xFFFF,			/* 02 disc_enable */
    218 	0xFFFF,			/* 03 wdtr_able */
    219 	0x5555,			/* 04 sdtr_speed1 */
    220 	0xFFFF,			/* 05 start_motor */
    221 	0xFFFF,			/* 06 tagqng_able */
    222 	0xFFFF,			/* 07 bios_scan */
    223 	0,			/* 08 scam_tolerant */
    224 	7,			/* 09 adapter_scsi_id */
    225 	0,			/*    bios_boot_delay */
    226 	3,			/* 10 scsi_reset_delay */
    227 	0,			/*    bios_id_lun */
    228 	0,			/* 11 termination_se */
    229 	0,			/*    termination_lvd */
    230 	0xFFE7,			/* 12 bios_ctrl */
    231 	0x5555,			/* 13 sdtr_speed2 */
    232 	0x5555,			/* 14 sdtr_speed3 */
    233 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    234 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    235 	0,			/* 16 dvc_cntl */
    236 	0x5555,			/* 17 sdtr_speed4 */
    237 	0,			/* 18 serial_number_word1 */
    238 	0,			/* 19 serial_number_word2 */
    239 	0,			/* 20 serial_number_word3 */
    240 	0,			/* 21 check_sum */
    241 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    242 	0,			/* 30 dvc_err_code */
    243 	0,			/* 31 adv_err_code */
    244 	0,			/* 32 adv_err_addr */
    245 	0,			/* 33 saved_dvc_err_code */
    246 	0,			/* 34 saved_adv_err_code */
    247 	0,			/* 35 saved_adv_err_addr */
    248 	0,			/* 36 reserved */
    249 	0,			/* 37 reserved */
    250 	0,			/* 38 reserved */
    251 	0,			/* 39 reserved */
    252 	0,			/* 40 reserved */
    253 	0,			/* 41 reserved */
    254 	0,			/* 42 reserved */
    255 	0,			/* 43 reserved */
    256 	0,			/* 44 reserved */
    257 	0,			/* 45 reserved */
    258 	0,			/* 46 reserved */
    259 	0,			/* 47 reserved */
    260 	0,			/* 48 reserved */
    261 	0,			/* 49 reserved */
    262 	0,			/* 50 reserved */
    263 	0,			/* 51 reserved */
    264 	0,			/* 52 reserved */
    265 	0,			/* 53 reserved */
    266 	0,			/* 54 reserved */
    267 	0,			/* 55 reserved */
    268 	0,			/* 56 cisptr_lsw */
    269 	0,			/* 57 cisprt_msw */
    270 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    271 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    272 	0,			/* 60 reserved */
    273 	0,			/* 61 reserved */
    274 	0,			/* 62 reserved */
    275 	0			/* 63 reserved */
    276 };
    277 
    278 /*
    279  * Initialize the ASC3550.
    280  *
    281  * On failure set the ADW_SOFTC field 'err_code' and return ADW_ERROR.
    282  *
    283  * For a non-fatal error return a warning code. If there are no warnings
    284  * then 0 is returned.
    285  */
    286 int
    287 AdwInitAsc3550Driver(sc)
    288 ADW_SOFTC      *sc;
    289 {
    290 	bus_space_tag_t iot = sc->sc_iot;
    291 	bus_space_handle_t ioh = sc->sc_ioh;
    292 	u_int16_t	warn_code;
    293 	u_int32_t	sum;
    294 	int		begin_addr;
    295 	int		end_addr;
    296 	u_int16_t	code_sum;
    297 	int		word;
    298 	int		i, j;
    299 	int		adv_asc3550_expanded_size;
    300 	u_int16_t	scsi_cfg1;
    301 	u_int8_t	tid;
    302 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    303 								0x40-0x8F. */
    304 	u_int16_t	wdtr_able = 0, sdtr_able, tagqng_able;
    305 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    306 
    307 
    308 	warn_code = 0;
    309 
    310 	/*
    311 	 * Save the RISC memory BIOS region before writing the microcode.
    312 	 * The BIOS may already be loaded and using its RISC LRAM region
    313 	 * so its region must be saved and restored.
    314 	 *
    315 	 * Note: This code makes the assumption, which is currently true,
    316 	 * that a chip reset does not clear RISC LRAM.
    317 	 */
    318 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    319 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    320 	}
    321 
    322 	/*
    323 	 * Save current per TID negotiated values.
    324 	 */
    325 	if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] == 0x55AA) {
    326 
    327 		u_int16_t  bios_version, major, minor;
    328 
    329 		bios_version = bios_mem[(ADW_MC_BIOS_VERSION-ADW_MC_BIOSMEM)/2];
    330 		major = (bios_version  >> 12) & 0xF;
    331 		minor = (bios_version  >> 8) & 0xF;
    332 		if (major < 3 || (major == 3 && minor == 1)) {
    333 		    /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
    334 		    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    335 		} else {
    336 		    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    337 		}
    338 	}
    339 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    340 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    341 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    342 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    343 			max_cmd[tid]);
    344 	}
    345 
    346 	/*
    347 	 * Load the Microcode
    348 	 *
    349 	 * Write the microcode image to RISC memory starting at address 0.
    350 	 */
    351 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    352 
    353 	/* Assume the following compressed format of the microcode buffer:
    354 	 *
    355 	 *  254 word (508 byte) table indexed by byte code followed
    356 	 *  by the following byte codes:
    357 	 *
    358 	 *    1-Byte Code:
    359 	 *	00: Emit word 0 in table.
    360 	 *	01: Emit word 1 in table.
    361 	 *	.
    362 	 *	FD: Emit word 253 in table.
    363 	 *
    364 	 *    Multi-Byte Code:
    365 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    366 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    367 	 */
    368 	word = 0;
    369 	for (i = 253 * 2; i < adw_asc3550_mcode_data.mcode_size; i++) {
    370 		if (adw_asc3550_mcode_data.mcode_data[i] == 0xff) {
    371 			for (j = 0; j < adw_asc3550_mcode_data.mcode_data[i + 1]; j++) {
    372 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    373 				  (((u_int16_t)adw_asc3550_mcode_data.mcode_data[i + 3] << 8) |
    374 				  adw_asc3550_mcode_data.mcode_data[i + 2]));
    375 				word++;
    376 			}
    377 			i += 3;
    378 		} else if (adw_asc3550_mcode_data.mcode_data[i] == 0xfe) {
    379 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    380 			    (((u_int16_t)adw_asc3550_mcode_data.mcode_data[i + 2] << 8) |
    381 			    adw_asc3550_mcode_data.mcode_data[i + 1]));
    382 			i += 2;
    383 			word++;
    384 		} else {
    385 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    386 			 adw_asc3550_mcode_data.mcode_data[(adw_asc3550_mcode_data.mcode_data[i] * 2) + 1] <<8)|
    387 			 adw_asc3550_mcode_data.mcode_data[adw_asc3550_mcode_data.mcode_data[i] * 2]));
    388 			word++;
    389 		}
    390 	}
    391 
    392 	/*
    393 	 * Set 'word' for later use to clear the rest of memory and save
    394 	 * the expanded mcode size.
    395 	 */
    396 	word *= 2;
    397 	adv_asc3550_expanded_size = word;
    398 
    399 	/*
    400 	 * Clear the rest of ASC-3550 Internal RAM (8KB).
    401 	 */
    402 	for (; word < ADW_3550_MEMSIZE; word += 2) {
    403 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    404 	}
    405 
    406 	/*
    407 	 * Verify the microcode checksum.
    408 	 */
    409 	sum = 0;
    410 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    411 
    412 	for (word = 0; word < adv_asc3550_expanded_size; word += 2) {
    413 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    414 	}
    415 
    416 	if (sum != adw_asc3550_mcode_data.mcode_chksum) {
    417 		return ADW_IERR_MCODE_CHKSUM;
    418 	}
    419 
    420 	/*
    421 	 * Restore the RISC memory BIOS region.
    422 	 */
    423 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    424 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
    425 				bios_mem[i]);
    426 	}
    427 
    428 	/*
    429 	 * Calculate and write the microcode code checksum to the microcode
    430 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
    431 	 */
    432 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
    433 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
    434 	code_sum = 0;
    435 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    436 	for (word = begin_addr; word < end_addr; word += 2) {
    437 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    438 	}
    439 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
    440 
    441 	/*
    442 	 * Read and save microcode version and date.
    443 	 */
    444 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE,
    445 			sc->cfg.mcode_date);
    446 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM,
    447 			sc->cfg.mcode_version);
    448 
    449 	/*
    450 	 * Set the chip type to indicate the ASC3550.
    451 	 */
    452 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, ADW_CHIP_ASC3550);
    453 
    454 	/*
    455 	 * If the PCI Configuration Command Register "Parity Error Response
    456 	 * Control" Bit was clear (0), then set the microcode variable
    457 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    458 	 * to ignore DMA parity errors.
    459 	 */
    460 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    461 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    462 		word |= CONTROL_FLAG_IGNORE_PERR;
    463 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    464 	}
    465 
    466 	/*
    467 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
    468 	 * threshold of 128 bytes. This register is only accessible to the host.
    469 	 */
    470 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    471 			START_CTL_EMFU | READ_CMD_MRM);
    472 
    473 	/*
    474 	 * Microcode operating variables for WDTR, SDTR, and command tag
    475 	 * queuing will be set in AdwInquiryHandling() based on what a
    476 	 * device reports it is capable of in Inquiry byte 7.
    477 	 *
    478 	 * If SCSI Bus Resets have been disabled, then directly set
    479 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    480 	 * the BIOS and warm boot to work without a SCSI bus hang on
    481 	 * the Inquiry caused by host and target mismatched DTR values.
    482 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    483 	 * be assumed to be in Asynchronous, Narrow mode.
    484 	 */
    485 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    486 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    487 				sc->wdtr_able);
    488 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    489 				sc->sdtr_able);
    490 	}
    491 
    492 	/*
    493 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    494 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    495 	 * bitmask. These values determine the maximum SDTR speed negotiated
    496 	 * with a device.
    497 	 *
    498 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    499 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    500 	 * without determining here whether the device supports SDTR.
    501 	 *
    502 	 * 4-bit speed  SDTR speed name
    503 	 * ===========  ===============
    504 	 * 0000b (0x0)  SDTR disabled
    505 	 * 0001b (0x1)  5 Mhz
    506 	 * 0010b (0x2)  10 Mhz
    507 	 * 0011b (0x3)  20 Mhz (Ultra)
    508 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
    509 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
    510 	 * 0110b (0x6)  Undefined
    511 	 * .
    512 	 * 1111b (0xF)  Undefined
    513 	 */
    514 	word = 0;
    515 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    516 		if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    517 			/* Set Ultra speed for TID 'tid'. */
    518 			word |= (0x3 << (4 * (tid % 4)));
    519 		} else {
    520 			/* Set Fast speed for TID 'tid'. */
    521 			word |= (0x2 << (4 * (tid % 4)));
    522 		}
    523 		/* Check if done with sdtr_speed1. */
    524 		if (tid == 3) {
    525 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1, word);
    526 			word = 0;
    527 		/* Check if done with sdtr_speed2. */
    528 		} else if (tid == 7) {
    529 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2, word);
    530 			word = 0;
    531 		/* Check if done with sdtr_speed3. */
    532 		} else if (tid == 11) {
    533 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3, word);
    534 			word = 0;
    535 		/* Check if done with sdtr_speed4. */
    536 		} else if (tid == 15) {
    537 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4, word);
    538 			/* End of loop. */
    539 		}
    540 	}
    541 
    542 	/*
    543 	 * Set microcode operating variable for the disconnect per TID bitmask.
    544 	 */
    545 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE, sc->cfg.disc_enable);
    546 
    547 
    548 	/*
    549 	 * Set SCSI_CFG0 Microcode Default Value.
    550 	 *
    551 	 * The microcode will set the SCSI_CFG0 register using this value
    552 	 * after it is started below.
    553 	 */
    554 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    555 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    556 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    557 
    558 	/*
    559 	 * Determine SCSI_CFG1 Microcode Default Value.
    560 	 *
    561 	 * The microcode will set the SCSI_CFG1 register using this value
    562 	 * after it is started below.
    563 	 */
    564 
    565 	/* Read current SCSI_CFG1 Register value. */
    566 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
    567 
    568 	/*
    569 	 * If all three connectors are in use, return an error.
    570 	 */
    571 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
    572 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
    573 		return ADW_IERR_ILLEGAL_CONNECTION;
    574 	}
    575 
    576 	/*
    577 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
    578 	 * register signals will be set. Check for and return an error if
    579 	 * this condition is found.
    580 	 */
    581 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
    582 			0x3F07) {
    583 		return ADW_IERR_REVERSED_CABLE;
    584 	}
    585 
    586 	/*
    587 	 * If this is a differential board and a single-ended device
    588 	 * is attached to one of the connectors, return an error.
    589 	 */
    590 	if ((scsi_cfg1 & ADW_DIFF_MODE) && (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
    591 		return ADW_IERR_SINGLE_END_DEVICE;
    592 	}
    593 
    594 	/*
    595 	 * If automatic termination control is enabled, then set the
    596 	 * termination value based on a table listed in a_condor.h.
    597 	 *
    598 	 * If manual termination was specified with an EEPROM setting
    599 	 * then 'termination' was set-up in AdwInitFrom3550EEPROM() and
    600 	 * is ready to be 'ored' into SCSI_CFG1.
    601 	 */
    602 	if (sc->cfg.termination == 0) {
    603 		/*
    604 		 * The software always controls termination by setting
    605 		 * TERM_CTL_SEL.
    606 		 * If TERM_CTL_SEL were set to 0, the hardware would set
    607 		 * termination.
    608 		 */
    609 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
    610 
    611 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
    612 			/* TERM_CTL_H: on, TERM_CTL_L: on */
    613 			case 0x3: case 0x7: case 0xB:
    614 			case 0xD: case 0xE: case 0xF:
    615 				sc->cfg.termination |=
    616 					(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
    617 				break;
    618 
    619 			/* TERM_CTL_H: on, TERM_CTL_L: off */
    620 			case 0x1: case 0x5: case 0x9: case 0xA: case 0xC:
    621 				sc->cfg.termination |= ADW_TERM_CTL_H;
    622 				break;
    623 
    624 			/* TERM_CTL_H: off, TERM_CTL_L: off */
    625 			case 0x2: case 0x6:
    626 				break;
    627 		}
    628 	}
    629 
    630 	/*
    631 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
    632 	 */
    633 	scsi_cfg1 &= ~ADW_TERM_CTL;
    634 
    635 	/*
    636 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
    637 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
    638 	 * referenced, because the hardware internally inverts
    639 	 * the Termination High and Low bits if TERM_POL is set.
    640 	 */
    641 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~sc->cfg.termination & ADW_TERM_CTL));
    642 
    643 	/*
    644 	 * Set SCSI_CFG1 Microcode Default Value
    645 	 *
    646 	 * Set filter value and possibly modified termination control
    647 	 * bits in the Microcode SCSI_CFG1 Register Value.
    648 	 *
    649 	 * The microcode will set the SCSI_CFG1 register using this value
    650 	 * after it is started below.
    651 	 */
    652 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
    653 		ADW_FLTR_DISABLE | scsi_cfg1);
    654 
    655 	/*
    656 	 * Set MEM_CFG Microcode Default Value
    657 	 *
    658 	 * The microcode will set the MEM_CFG register using this value
    659 	 * after it is started below.
    660 	 *
    661 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
    662 	 * are defined.
    663 	 *
    664 	 * ASC-3550 has 8KB internal memory.
    665 	 */
    666 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
    667 		ADW_BIOS_EN | ADW_RAM_SZ_8KB);
    668 
    669 	/*
    670 	 * Set SEL_MASK Microcode Default Value
    671 	 *
    672 	 * The microcode will set the SEL_MASK register using this value
    673 	 * after it is started below.
    674 	 */
    675 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    676 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    677 
    678 
    679 	i = AdwInitCarriers(sc->sc_dmamap_carrier,
    680 			sc->sc_control->carriers, &sc->carr_freelist);
    681 	if (i == 0) {
    682 		return ADW_IERR_NO_CARRIER; /* (ENOMEM) */ ;
    683 	} else if (i != ADW_MAX_CARRIER) {
    684 		printf("%s: WARNING: only %d of %d Carriers created\n",
    685 		       sc->sc_dev.dv_xname, i, ADW_MAX_CARRIER);
    686 	}
    687 
    688 	/*
    689 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    690 	 */
    691 
    692 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    693 		return ADW_IERR_NO_CARRIER;
    694 	}
    695 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    696 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    697 
    698 	/*
    699 	 * The first command issued will be placed in the stopper carrier.
    700 	 */
    701 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
    702 
    703 	/*
    704 	 * Set RISC ICQ physical address start value.
    705 	 */
    706 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
    707 
    708 	/*
    709 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    710 	 */
    711 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    712 		return ADW_IERR_NO_CARRIER;
    713 	}
    714 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    715 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    716 
    717 	/*
    718 	 * The first command completed by the RISC will be placed in
    719 	 * the stopper.
    720 	 *
    721 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    722 	 * completed the RISC will set the ASC_RQ_DONE bit.
    723 	 */
    724 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
    725 
    726 	/*
    727 	 * Set RISC IRQ physical address start value.
    728 	 */
    729 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
    730 	sc->carr_pending_cnt = 0;
    731 
    732 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    733 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    734 
    735 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    736 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    737 
    738 	/* finally, finally, gentlemen, start your engine */
    739 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    740 
    741 	/*
    742 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    743 	 * Resets should be performed. The RISC has to be running
    744 	 * to issue a SCSI Bus Reset.
    745 	 */
    746 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    747 	{
    748 		/*
    749 		 * If the BIOS Signature is present in memory, restore the
    750 		 * BIOS Handshake Configuration Table and do not perform
    751 		 * a SCSI Bus Reset.
    752 		 */
    753 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    754 				0x55AA) {
    755 			/*
    756 			 * Restore per TID negotiated values.
    757 			 */
    758 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    759 					wdtr_able);
    760 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    761 					sdtr_able);
    762 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    763 					tagqng_able);
    764 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    765 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    766 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
    767 					max_cmd[tid]);
    768 			}
    769 		} else {
    770 			if (AdwResetCCB(sc) != ADW_TRUE) {
    771 				warn_code = ADW_WARN_BUSRESET_ERROR;
    772 			}
    773 		}
    774 	}
    775 
    776     return warn_code;
    777 }
    778 
    779 /*
    780  * Initialize the ASC-38C0800.
    781  *
    782  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
    783  *
    784  * For a non-fatal error return a warning code. If there are no warnings
    785  * then 0 is returned.
    786  */
    787 int
    788 AdwInitAsc38C0800Driver(sc)
    789 ADW_SOFTC      *sc;
    790 {
    791 	bus_space_tag_t iot = sc->sc_iot;
    792 	bus_space_handle_t ioh = sc->sc_ioh;
    793 	u_int16_t	warn_code;
    794 	u_int32_t	sum;
    795 	int	  	begin_addr;
    796 	int	   	end_addr;
    797 	u_int16_t	code_sum;
    798 	int	   	word;
    799 	int	   	i, j;
    800 	int	   	adv_asc38C0800_expanded_size;
    801 	u_int16_t	scsi_cfg1;
    802 	u_int8_t	byte;
    803 	u_int8_t	tid;
    804 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    805 								0x40-0x8F. */
    806 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
    807 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    808 
    809 
    810 	warn_code = 0;
    811 
    812 	/*
    813 	 * Save the RISC memory BIOS region before writing the microcode.
    814 	 * The BIOS may already be loaded and using its RISC LRAM region
    815 	 * so its region must be saved and restored.
    816 	 *
    817 	 * Note: This code makes the assumption, which is currently true,
    818 	 * that a chip reset does not clear RISC LRAM.
    819 	 */
    820 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    821 	    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i), bios_mem[i]);
    822 	}
    823 
    824 	/*
    825 	 * Save current per TID negotiated values.
    826 	 */
    827 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    828 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    829 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    830 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    831 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    832 			max_cmd[tid]);
    833 	}
    834 
    835 	/*
    836 	 * RAM BIST (RAM Built-In Self Test)
    837 	 *
    838 	 * Address : I/O base + offset 0x38h register (byte).
    839 	 * Function: Bit 7-6(RW) : RAM mode
    840 	 *			    Normal Mode   : 0x00
    841 	 *			    Pre-test Mode : 0x40
    842 	 *			    RAM Test Mode : 0x80
    843 	 *	     Bit 5	 : unused
    844 	 *	     Bit 4(RO)   : Done bit
    845 	 *	     Bit 3-0(RO) : Status
    846 	 *			    Host Error    : 0x08
    847 	 *			    Int_RAM Error : 0x04
    848 	 *			    RISC Error    : 0x02
    849 	 *			    SCSI Error    : 0x01
    850 	 *			    No Error	  : 0x00
    851 	 *
    852 	 * Note: RAM BIST code should be put right here, before loading the
    853 	 * microcode and after saving the RISC memory BIOS region.
    854 	 */
    855 
    856 	/*
    857 	 * LRAM Pre-test
    858 	 *
    859 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
    860 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
    861 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
    862 	 * to NORMAL_MODE, return an error too.
    863 	 */
    864 	for (i = 0; i < 2; i++) {
    865 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
    866 		AdwSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    867 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    868 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    869 				PRE_TEST_VALUE) {
    870 			return ADW_IERR_BIST_PRE_TEST;
    871 		}
    872 
    873 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    874 		AdwSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    875 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
    876 		    != NORMAL_VALUE) {
    877 			return ADW_IERR_BIST_PRE_TEST;
    878 		}
    879 	}
    880 
    881 	/*
    882 	 * LRAM Test - It takes about 1.5 ms to run through the test.
    883 	 *
    884 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
    885 	 * If Done bit not set or Status not 0, save register byte, set the
    886 	 * err_code, and return an error.
    887 	 */
    888 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
    889 	AdwSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
    890 
    891 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    892 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
    893 		/* Get here if Done bit not set or Status not 0. */
    894 		return ADW_IERR_BIST_RAM_TEST;
    895 	}
    896 
    897 	/* We need to reset back to normal mode after LRAM test passes. */
    898 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    899 
    900 	/*
    901 	 * Load the Microcode
    902 	 *
    903 	 * Write the microcode image to RISC memory starting at address 0.
    904 	 *
    905 	 */
    906 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    907 
    908 	/* Assume the following compressed format of the microcode buffer:
    909 	 *
    910 	 *  254 word (508 byte) table indexed by byte code followed
    911 	 *  by the following byte codes:
    912 	 *
    913 	 *    1-Byte Code:
    914 	 *	00: Emit word 0 in table.
    915 	 *	01: Emit word 1 in table.
    916 	 *	.
    917 	 *	FD: Emit word 253 in table.
    918 	 *
    919 	 *    Multi-Byte Code:
    920 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    921 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    922 	 */
    923 	word = 0;
    924 	for (i = 253 * 2; i < adw_asc38C0800_mcode_data.mcode_size; i++) {
    925 		if (adw_asc38C0800_mcode_data.mcode_data[i] == 0xff) {
    926 			for (j = 0; j < adw_asc38C0800_mcode_data.mcode_data[i + 1]; j++) {
    927 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    928 				    (((u_int16_t)
    929 				    adw_asc38C0800_mcode_data.mcode_data[i + 3] << 8) |
    930 				    adw_asc38C0800_mcode_data.mcode_data[i + 2]));
    931 				word++;
    932 			}
    933 			i += 3;
    934 		} else if (adw_asc38C0800_mcode_data.mcode_data[i] == 0xfe) {
    935 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    936 			    adw_asc38C0800_mcode_data.mcode_data[i + 2] << 8) |
    937 			    adw_asc38C0800_mcode_data.mcode_data[i + 1]));
    938 			i += 2;
    939 			word++;
    940 		} else {
    941 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    942 			  adw_asc38C0800_mcode_data.mcode_data[(adw_asc38C0800_mcode_data.mcode_data[i] * 2) + 1] << 8) |
    943 			  adw_asc38C0800_mcode_data.mcode_data[adw_asc38C0800_mcode_data.mcode_data[i] * 2]));
    944 			word++;
    945 		}
    946 	}
    947 
    948 	/*
    949 	 * Set 'word' for later use to clear the rest of memory and save
    950 	 * the expanded mcode size.
    951 	 */
    952 	word *= 2;
    953 	adv_asc38C0800_expanded_size = word;
    954 
    955 	/*
    956 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
    957 	 */
    958 	for (; word < ADW_38C0800_MEMSIZE; word += 2) {
    959 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    960 	}
    961 
    962 	/*
    963 	 * Verify the microcode checksum.
    964 	 */
    965 	sum = 0;
    966 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    967 
    968 	for (word = 0; word < adv_asc38C0800_expanded_size; word += 2) {
    969 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    970 	}
    971 
    972 	if (sum != adw_asc38C0800_mcode_data.mcode_chksum) {
    973 	    return ADW_IERR_MCODE_CHKSUM;
    974 	}
    975 
    976 	/*
    977 	 * Restore the RISC memory BIOS region.
    978 	 */
    979 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    980 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
    981 				bios_mem[i]);
    982 	}
    983 
    984 	/*
    985 	 * Calculate and write the microcode code checksum to the microcode
    986 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
    987 	 */
    988 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
    989 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
    990 	code_sum = 0;
    991 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    992 	for (word = begin_addr; word < end_addr; word += 2) {
    993 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    994 	}
    995 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
    996 
    997 	/*
    998 	 * Read microcode version and date.
    999 	 */
   1000 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE,
   1001 			sc->cfg.mcode_date);
   1002 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM,
   1003 			sc->cfg.mcode_version);
   1004 
   1005 	/*
   1006 	 * Set the chip type to indicate the ASC38C0800.
   1007 	 */
   1008 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, ADW_CHIP_ASC38C0800);
   1009 
   1010 	/*
   1011 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   1012 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   1013 	 * cable detection and then we are able to read C_DET[3:0].
   1014 	 *
   1015 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   1016 	 * Microcode Default Value' section below.
   1017 	 */
   1018 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1019 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
   1020 			scsi_cfg1 | ADW_DIS_TERM_DRV);
   1021 
   1022 	/*
   1023 	 * If the PCI Configuration Command Register "Parity Error Response
   1024 	 * Control" Bit was clear (0), then set the microcode variable
   1025 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   1026 	 * to ignore DMA parity errors.
   1027 	 */
   1028 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
   1029 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1030 		word |= CONTROL_FLAG_IGNORE_PERR;
   1031 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1032 	}
   1033 
   1034 	/*
   1035 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
   1036 	 * START_CTL_TH [3:2] bits for the default FIFO threshold.
   1037 	 *
   1038 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
   1039 	 *
   1040 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
   1041 	 */
   1042 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
   1043 		BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   1044 
   1045 	/*
   1046 	 * Microcode operating variables for WDTR, SDTR, and command tag
   1047 	 * queuing will be set in AdwInquiryHandling() based on what a
   1048 	 * device reports it is capable of in Inquiry byte 7.
   1049 	 *
   1050 	 * If SCSI Bus Resets have been disabled, then directly set
   1051 	 * SDTR and WDTR from the EEPROM configuration. This will allow
   1052 	 * the BIOS and warm boot to work without a SCSI bus hang on
   1053 	 * the Inquiry caused by host and target mismatched DTR values.
   1054 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   1055 	 * be assumed to be in Asynchronous, Narrow mode.
   1056 	 */
   1057 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   1058 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
   1059 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
   1060 	}
   1061 
   1062 	/*
   1063 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   1064 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   1065 	 * configuration values.
   1066 	 *
   1067 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1068 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1069 	 * without determining here whether the device supports SDTR.
   1070 	 */
   1071 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1072 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1073 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1074 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1075 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1076 
   1077 	/*
   1078 	 * Set SCSI_CFG0 Microcode Default Value.
   1079 	 *
   1080 	 * The microcode will set the SCSI_CFG0 register using this value
   1081 	 * after it is started below.
   1082 	 */
   1083 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
   1084 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
   1085 		ADW_OUR_ID_EN | sc->chip_scsi_id);
   1086 
   1087 	/*
   1088 	 * Determine SCSI_CFG1 Microcode Default Value.
   1089 	 *
   1090 	 * The microcode will set the SCSI_CFG1 register using this value
   1091 	 * after it is started below.
   1092 	 */
   1093 
   1094 	/* Read current SCSI_CFG1 Register value. */
   1095 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1096 
   1097 	/*
   1098 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
   1099 	 * register signals will be set. Check for and return an error if
   1100 	 * this condition is found.
   1101 	 */
   1102 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1103 			0x3F07) {
   1104 		return ADW_IERR_REVERSED_CABLE;
   1105 	}
   1106 
   1107 	/*
   1108 	 * All kind of combinations of devices attached to one of four connectors
   1109 	 * are acceptable except HVD device attached. For example, LVD device can
   1110 	 * be attached to SE connector while SE device attached to LVD connector.
   1111 	 * If LVD device attached to SE connector, it only runs up to Ultra speed.
   1112 	 *
   1113 	 * If an HVD device is attached to one of LVD connectors, return an error.
   1114 	 * However, there is no way to detect HVD device attached to SE connectors.
   1115 	 */
   1116 	if (scsi_cfg1 & ADW_HVD) {
   1117 		return ADW_IERR_HVD_DEVICE;
   1118 	}
   1119 
   1120 	/*
   1121 	 * If either SE or LVD automatic termination control is enabled, then
   1122 	 * set the termination value based on a table listed in a_condor.h.
   1123 	 *
   1124 	 * If manual termination was specified with an EEPROM setting then
   1125 	 * 'termination' was set-up in AdwInitFrom38C0800EEPROM() and is ready to
   1126 	 * be 'ored' into SCSI_CFG1.
   1127 	 */
   1128 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1129 		/* SE automatic termination control is enabled. */
   1130 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1131 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1132 			case 0x1: case 0x2: case 0x3:
   1133 				sc->cfg.termination |= ADW_TERM_SE;
   1134 				break;
   1135 
   1136 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1137 			case 0x0:
   1138 				sc->cfg.termination |= ADW_TERM_SE_HI;
   1139 				break;
   1140 		}
   1141 	}
   1142 
   1143 	if ((sc->cfg.termination & ADW_TERM_LVD) == 0) {
   1144 		/* LVD automatic termination control is enabled. */
   1145 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1146 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1147 			case 0x4: case 0x8: case 0xC:
   1148 				sc->cfg.termination |= ADW_TERM_LVD;
   1149 				break;
   1150 
   1151 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1152 			case 0x0:
   1153 				break;
   1154 		}
   1155 	}
   1156 
   1157 	/*
   1158 	 * Clear any set TERM_SE and TERM_LVD bits.
   1159 	 */
   1160 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1161 
   1162 	/*
   1163 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1164 	 */
   1165 	scsi_cfg1 |= (~sc->cfg.termination & 0xF0);
   1166 
   1167 	/*
   1168 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE bits
   1169 	 * and set possibly modified termination control bits in the Microcode
   1170 	 * SCSI_CFG1 Register Value.
   1171 	 */
   1172 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1173 			~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1174 
   1175 	/*
   1176 	 * Set SCSI_CFG1 Microcode Default Value
   1177 	 *
   1178 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1179 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1180 	 *
   1181 	 * The microcode will set the SCSI_CFG1 register using this value
   1182 	 * after it is started below.
   1183 	 */
   1184 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1185 
   1186 	/*
   1187 	 * Set MEM_CFG Microcode Default Value
   1188 	 *
   1189 	 * The microcode will set the MEM_CFG register using this value
   1190 	 * after it is started below.
   1191 	 *
   1192 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1193 	 * are defined.
   1194 	 *
   1195 	 * ASC-38C0800 has 16KB internal memory.
   1196 	 */
   1197 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1198 		ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1199 
   1200 	/*
   1201 	 * Set SEL_MASK Microcode Default Value
   1202 	 *
   1203 	 * The microcode will set the SEL_MASK register using this value
   1204 	 * after it is started below.
   1205 	 */
   1206 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
   1207 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1208 
   1209 
   1210 	i = AdwInitCarriers(sc->sc_dmamap_carrier,
   1211 			sc->sc_control->carriers, &sc->carr_freelist);
   1212 	if (i == 0) {
   1213 		return ADW_IERR_NO_CARRIER; /* (ENOMEM) */ ;
   1214 	} else if (i != ADW_MAX_CARRIER) {
   1215 		printf("%s: WARNING: only %d of %d Carriers created\n",
   1216 		       sc->sc_dev.dv_xname, i, ADW_MAX_CARRIER);
   1217 	}
   1218 
   1219 	/*
   1220 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1221 	 */
   1222 
   1223 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1224 		return ADW_IERR_NO_CARRIER;
   1225 	}
   1226 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1227 			ASC_GET_CARRP(sc->icq_sp->next_ba));
   1228 
   1229 	/*
   1230 	 * The first command issued will be placed in the stopper carrier.
   1231 	 */
   1232 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
   1233 
   1234 	/*
   1235 	 * Set RISC ICQ physical address start value.
   1236 	 */
   1237 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
   1238 
   1239 	/*
   1240 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1241 	 */
   1242 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1243 		return ADW_IERR_NO_CARRIER;
   1244 	}
   1245 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1246 			ASC_GET_CARRP(sc->irq_sp->next_ba));
   1247 
   1248 	/*
   1249 	 * The first command completed by the RISC will be placed in
   1250 	 * the stopper.
   1251 	 *
   1252 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
   1253 	 * completed the RISC will set the ASC_RQ_DONE bit.
   1254 	 */
   1255 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
   1256 
   1257 	/*
   1258 	 * Set RISC IRQ physical address start value.
   1259 	 */
   1260 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
   1261 	sc->carr_pending_cnt = 0;
   1262 
   1263 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1264 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1265 
   1266 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
   1267 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1268 
   1269 	/* finally, finally, gentlemen, start your engine */
   1270 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1271 
   1272 	/*
   1273 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1274 	 * Resets should be performed. The RISC has to be running
   1275 	 * to issue a SCSI Bus Reset.
   1276 	 */
   1277 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1278 		/*
   1279 		 * If the BIOS Signature is present in memory, restore the
   1280 		 * BIOS Handshake Configuration Table and do not perform
   1281 		 * a SCSI Bus Reset.
   1282 		 */
   1283 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
   1284 				0x55AA) {
   1285 			/*
   1286 			 * Restore per TID negotiated values.
   1287 			 */
   1288 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   1289 					wdtr_able);
   1290 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   1291 					sdtr_able);
   1292 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   1293 					tagqng_able);
   1294 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1295 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1296 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1297 						max_cmd[tid]);
   1298 			}
   1299 		} else {
   1300 			if (AdwResetCCB(sc) != ADW_TRUE) {
   1301 				warn_code = ADW_WARN_BUSRESET_ERROR;
   1302 			}
   1303 		}
   1304 	}
   1305 
   1306 	return warn_code;
   1307 }
   1308 
   1309 
   1310 /*
   1311  * Initialize the ASC-38C1600.
   1312  *
   1313  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   1314  *
   1315  * For a non-fatal error return a warning code. If there are no warnings
   1316  * then 0 is returned.
   1317  */
   1318 int
   1319 AdwInitAsc38C1600Driver(sc)
   1320 ADW_SOFTC      *sc;
   1321 {
   1322 	bus_space_tag_t iot = sc->sc_iot;
   1323 	bus_space_handle_t ioh = sc->sc_ioh;
   1324 	u_int16_t	warn_code;
   1325 	u_int32_t	sum;
   1326 	int	  	begin_addr;
   1327 	int	   	end_addr;
   1328 	u_int16_t	code_sum;
   1329 	int	   	word;
   1330 	int	   	i, j;
   1331 	int		adv_asc38C1600_expanded_size;
   1332 	u_int16_t	scsi_cfg1;
   1333 	u_int8_t	byte;
   1334 	u_int8_t	tid;
   1335 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
   1336 								0x40-0x8F. */
   1337 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   1338 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
   1339 
   1340 
   1341 	warn_code = 0;
   1342 
   1343 
   1344 	/*
   1345 	 * Save the RISC memory BIOS region before writing the microcode.
   1346 	 * The BIOS may already be loaded and using its RISC LRAM region
   1347 	 * so its region must be saved and restored.
   1348 	 *
   1349 	 * Note: This code makes the assumption, which is currently true,
   1350 	 * that a chip reset does not clear RISC LRAM.
   1351 	 */
   1352 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1353 	    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i), bios_mem[i]);
   1354 	}
   1355 
   1356 	/*
   1357 	 * Save current per TID negotiated values.
   1358 	 */
   1359 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1360 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1361 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1362 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1363 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1364 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1365 			max_cmd[tid]);
   1366 	}
   1367 
   1368 	/*
   1369 	 * RAM BIST (RAM Built-In Self Test)
   1370 	 *
   1371 	 * Address : I/O base + offset 0x38h register (byte).
   1372 	 * Function: Bit 7-6(RW) : RAM mode
   1373 	 *			    Normal Mode   : 0x00
   1374 	 *			    Pre-test Mode : 0x40
   1375 	 *			    RAM Test Mode : 0x80
   1376 	 *	     Bit 5	 : unused
   1377 	 *	     Bit 4(RO)   : Done bit
   1378 	 *	     Bit 3-0(RO) : Status
   1379 	 *			    Host Error    : 0x08
   1380 	 *			    Int_RAM Error : 0x04
   1381 	 *			    RISC Error    : 0x02
   1382 	 *			    SCSI Error    : 0x01
   1383 	 *			    No Error	  : 0x00
   1384 	 *
   1385 	 * Note: RAM BIST code should be put right here, before loading the
   1386 	 * microcode and after saving the RISC memory BIOS region.
   1387 	 */
   1388 
   1389 	/*
   1390 	 * LRAM Pre-test
   1391 	 *
   1392 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
   1393 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
   1394 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
   1395 	 * to NORMAL_MODE, return an error too.
   1396 	 */
   1397 	for (i = 0; i < 2; i++) {
   1398 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
   1399 		AdwSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
   1400 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1401 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
   1402 				PRE_TEST_VALUE) {
   1403 			return ADW_IERR_BIST_PRE_TEST;
   1404 		}
   1405 
   1406 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1407 		AdwSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
   1408 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1409 		    != NORMAL_VALUE) {
   1410 			return ADW_IERR_BIST_PRE_TEST;
   1411 		}
   1412 	}
   1413 
   1414 	/*
   1415 	 * LRAM Test - It takes about 1.5 ms to run through the test.
   1416 	 *
   1417 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
   1418 	 * If Done bit not set or Status not 0, save register byte, set the
   1419 	 * err_code, and return an error.
   1420 	 */
   1421 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1422 	AdwSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
   1423 
   1424 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1425 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
   1426 		/* Get here if Done bit not set or Status not 0. */
   1427 		return ADW_IERR_BIST_RAM_TEST;
   1428 	}
   1429 
   1430 	/* We need to reset back to normal mode after LRAM test passes. */
   1431 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1432 
   1433 
   1434 	/*
   1435 	 * Load the Microcode
   1436 	 *
   1437 	 * Write the microcode image to RISC memory starting at address 0.
   1438 	 *
   1439 	 */
   1440 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1441 
   1442 	/* Assume the following compressed format of the microcode buffer:
   1443 	 *
   1444 	 *  254 word (508 byte) table indexed by byte code followed
   1445 	 *  by the following byte codes:
   1446 	 *
   1447 	 *    1-Byte Code:
   1448 	 *	00: Emit word 0 in table.
   1449 	 *	01: Emit word 1 in table.
   1450 	 *	.
   1451 	 *	FD: Emit word 253 in table.
   1452 	 *
   1453 	 *    Multi-Byte Code:
   1454 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1455 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1456 	 */
   1457 	word = 0;
   1458 	for (i = 253 * 2; i < adw_asc38C1600_mcode_data.mcode_size; i++) {
   1459 		if (adw_asc38C1600_mcode_data.mcode_data[i] == 0xff) {
   1460 			for (j = 0; j < adw_asc38C1600_mcode_data.mcode_data[i + 1]; j++) {
   1461 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1462 				    (((u_int16_t)
   1463 				    adw_asc38C1600_mcode_data.mcode_data[i + 3] << 8) |
   1464 				    adw_asc38C1600_mcode_data.mcode_data[i + 2]));
   1465 				word++;
   1466 			}
   1467 			i += 3;
   1468 		} else if (adw_asc38C1600_mcode_data.mcode_data[i] == 0xfe) {
   1469 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1470 			    adw_asc38C1600_mcode_data.mcode_data[i + 2] << 8) |
   1471 			    adw_asc38C1600_mcode_data.mcode_data[i + 1]));
   1472 			i += 2;
   1473 			word++;
   1474 		} else {
   1475 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1476 			  adw_asc38C1600_mcode_data.mcode_data[(adw_asc38C1600_mcode_data.mcode_data[i] * 2) + 1] << 8) |
   1477 			  adw_asc38C1600_mcode_data.mcode_data[adw_asc38C1600_mcode_data.mcode_data[i] * 2]));
   1478 			word++;
   1479 		}
   1480 	}
   1481 
   1482 	/*
   1483 	 * Set 'word' for later use to clear the rest of memory and save
   1484 	 * the expanded mcode size.
   1485 	 */
   1486 	word *= 2;
   1487 	adv_asc38C1600_expanded_size = word;
   1488 
   1489 	/*
   1490 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
   1491 	 */
   1492 	for (; word < ADW_38C1600_MEMSIZE; word += 2) {
   1493 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1494 	}
   1495 
   1496 	/*
   1497 	 * Verify the microcode checksum.
   1498 	 */
   1499 	sum = 0;
   1500 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1501 
   1502 	for (word = 0; word < adv_asc38C1600_expanded_size; word += 2) {
   1503 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1504 	}
   1505 
   1506 	if (sum != adw_asc38C1600_mcode_data.mcode_chksum) {
   1507 	    return ADW_IERR_MCODE_CHKSUM;
   1508 	}
   1509 
   1510 	/*
   1511 	 * Restore the RISC memory BIOS region.
   1512 	 */
   1513 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1514 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1515 				bios_mem[i]);
   1516 	}
   1517 
   1518 	/*
   1519 	 * Calculate and write the microcode code checksum to the microcode
   1520 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1521 	 */
   1522 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1523 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1524 	code_sum = 0;
   1525 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1526 	for (word = begin_addr; word < end_addr; word += 2) {
   1527 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1528 	}
   1529 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1530 
   1531 	/*
   1532 	 * Read microcode version and date.
   1533 	 */
   1534 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE,
   1535 			sc->cfg.mcode_date);
   1536 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM,
   1537 			sc->cfg.mcode_version);
   1538 
   1539 	/*
   1540 	 * Set the chip type to indicate the ASC38C1600.
   1541 	 */
   1542 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, ADW_CHIP_ASC38C1600);
   1543 
   1544 	/*
   1545 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   1546 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   1547 	 * cable detection and then we are able to read C_DET[3:0].
   1548 	 *
   1549 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   1550 	 * Microcode Default Value' section below.
   1551 	 */
   1552 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1553 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
   1554 			scsi_cfg1 | ADW_DIS_TERM_DRV);
   1555 
   1556 	/*
   1557 	 * If the PCI Configuration Command Register "Parity Error Response
   1558 	 * Control" Bit was clear (0), then set the microcode variable
   1559 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   1560 	 * to ignore DMA parity errors.
   1561 	 */
   1562 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
   1563 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1564 		word |= CONTROL_FLAG_IGNORE_PERR;
   1565 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1566 	}
   1567 
   1568 	/*
   1569 	 * If the BIOS control flag AIPP (Asynchronous Information
   1570 	 * Phase Protection) disable bit is not set, then set the firmware
   1571 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
   1572 	 * AIPP checking and encoding.
   1573 	 */
   1574 	if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
   1575 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1576 		word |= CONTROL_FLAG_ENABLE_AIPP;
   1577 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1578 	}
   1579 
   1580 	/*
   1581 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
   1582 	 * and START_CTL_TH [3:2].
   1583 	 */
   1584 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
   1585 		FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   1586 
   1587 	/*
   1588 	 * Microcode operating variables for WDTR, SDTR, and command tag
   1589 	 * queuing will be set in AdwInquiryHandling() based on what a
   1590 	 * device reports it is capable of in Inquiry byte 7.
   1591 	 *
   1592 	 * If SCSI Bus Resets have been disabled, then directly set
   1593 	 * SDTR and WDTR from the EEPROM configuration. This will allow
   1594 	 * the BIOS and warm boot to work without a SCSI bus hang on
   1595 	 * the Inquiry caused by host and target mismatched DTR values.
   1596 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   1597 	 * be assumed to be in Asynchronous, Narrow mode.
   1598 	 */
   1599 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   1600 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
   1601 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
   1602 	}
   1603 
   1604 	/*
   1605 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   1606 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   1607 	 * configuration values.
   1608 	 *
   1609 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1610 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1611 	 * without determining here whether the device supports SDTR.
   1612 	 */
   1613 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1614 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1615 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1616 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1617 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1618 
   1619 	/*
   1620 	 * Set SCSI_CFG0 Microcode Default Value.
   1621 	 *
   1622 	 * The microcode will set the SCSI_CFG0 register using this value
   1623 	 * after it is started below.
   1624 	 */
   1625 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
   1626 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
   1627 		ADW_OUR_ID_EN | sc->chip_scsi_id);
   1628 
   1629 	/*
   1630 	 * Calculate SCSI_CFG1 Microcode Default Value.
   1631 	 *
   1632 	 * The microcode will set the SCSI_CFG1 register using this value
   1633 	 * after it is started below.
   1634 	 *
   1635 	 * Each ASC-38C1600 function has only two cable detect bits.
   1636 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1637 	 */
   1638 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1639 
   1640 	/*
   1641 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1642 	 * will be set. Check for and return an error if this condition is
   1643 	 * found.
   1644 	 */
   1645 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1646 			0x3F07) {
   1647 		return ADW_IERR_REVERSED_CABLE;
   1648 	}
   1649 
   1650 	/*
   1651 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1652 	 * can not be connected to either connector. An LVD device or SE device
   1653 	 * may be connected to either connecor. If an SE device is connected,
   1654 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
   1655 	 *
   1656 	 * If an HVD device is attached, return an error.
   1657 	 */
   1658 	if (scsi_cfg1 & ADW_HVD) {
   1659 		return ADW_IERR_HVD_DEVICE;
   1660 	}
   1661 
   1662 	/*
   1663 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1664 	 * termination because there are two connectors for each function. Each
   1665 	 * function may use either LVD or SE mode. Corresponding the SE automatic
   1666 	 * termination control EEPROM bits are used for each function. Each
   1667 	 * function has its own EEPROM. If SE automatic control is enabled for
   1668 	 * the function, then set the termination value based on a table listed
   1669 	 * in a_condor.h.
   1670 	 *
   1671 	 * If manual termination is specified in the EEPROM for the function,
   1672 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
   1673 	 * ready to be 'ored' into SCSI_CFG1.
   1674 	 */
   1675 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1676 		/* SE automatic termination control is enabled. */
   1677 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1678 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1679 			case 0x1: case 0x2: case 0x3:
   1680 				sc->cfg.termination |= ADW_TERM_SE;
   1681 				break;
   1682 
   1683 			case 0x0:
   1684 	/* !!!!TODO!!!! */
   1685 //				if (ASC_PCI_ID2FUNC(asc_dvc->cfg->pci_slot_info) == 0) {
   1686 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1687 //				}
   1688 //				else
   1689 //				{
   1690 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1691 					sc->cfg.termination |= ADW_TERM_SE_HI;
   1692 //				}
   1693 				break;
   1694 			}
   1695 	}
   1696 
   1697 	/*
   1698 	 * Clear any set TERM_SE bits.
   1699 	 */
   1700 	scsi_cfg1 &= ~ADW_TERM_SE;
   1701 
   1702 	/*
   1703 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1704 	 */
   1705 	scsi_cfg1 |= (~sc->cfg.termination & ADW_TERM_SE);
   1706 
   1707 	/*
   1708 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1709 	 * modified termination control bits in the Microcode SCSI_CFG1
   1710 	 * Register Value.
   1711 	 */
   1712 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1713 
   1714 	/*
   1715 	 * Set SCSI_CFG1 Microcode Default Value
   1716 	 *
   1717 	 * Set possibly modified termination control bits in the Microcode
   1718 	 * SCSI_CFG1 Register Value.
   1719 	 *
   1720 	 * The microcode will set the SCSI_CFG1 register using this value
   1721 	 * after it is started below.
   1722 	 */
   1723 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1724 
   1725 	/*
   1726 	 * Set MEM_CFG Microcode Default Value
   1727 	 *
   1728 	 * The microcode will set the MEM_CFG register using this value
   1729 	 * after it is started below.
   1730 	 *
   1731 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1732 	 * are defined.
   1733 	 *
   1734 	 * ASC-38C1600 has 32KB internal memory.
   1735 	 */
   1736 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1737 		ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1738 
   1739 	/*
   1740 	 * Set SEL_MASK Microcode Default Value
   1741 	 *
   1742 	 * The microcode will set the SEL_MASK register using this value
   1743 	 * after it is started below.
   1744 	 */
   1745 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
   1746 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1747 
   1748 
   1749 	i = AdwInitCarriers(sc->sc_dmamap_carrier,
   1750 			sc->sc_control->carriers, &sc->carr_freelist);
   1751 	if (i == 0) {
   1752 		return ADW_IERR_NO_CARRIER; /* (ENOMEM) */ ;
   1753 	} else if (i != ADW_MAX_CARRIER) {
   1754 		printf("%s: WARNING: only %d of %d Carriers created\n",
   1755 		       sc->sc_dev.dv_xname, i, ADW_MAX_CARRIER);
   1756 	}
   1757 
   1758 	/*
   1759 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1760 	 */
   1761 
   1762 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1763 		return ADW_IERR_NO_CARRIER;
   1764 	}
   1765 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1766 			ASC_GET_CARRP(sc->icq_sp->next_ba));
   1767 
   1768 	/*
   1769 	 * The first command issued will be placed in the stopper carrier.
   1770 	 */
   1771 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
   1772 
   1773 	/*
   1774 	 * Set RISC ICQ physical address start value. Initialize the
   1775 	 * COMMA register to the same value otherwise the RISC will
   1776 	 * prematurely detect a command is available.
   1777 	 */
   1778 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
   1779 	ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA, sc->icq_sp->carr_ba);
   1780 
   1781 	/*
   1782 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1783 	 */
   1784 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1785 		return ADW_IERR_NO_CARRIER;
   1786 	}
   1787 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1788 			ASC_GET_CARRP(sc->irq_sp->next_ba));
   1789 
   1790 	/*
   1791 	 * The first command completed by the RISC will be placed in
   1792 	 * the stopper.
   1793 	 *
   1794 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
   1795 	 * completed the RISC will set the ASC_RQ_DONE bit.
   1796 	 */
   1797 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
   1798 
   1799 	/*
   1800 	 * Set RISC IRQ physical address start value.
   1801 	 */
   1802 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
   1803 	sc->carr_pending_cnt = 0;
   1804 
   1805 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1806 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1807 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
   1808 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1809 
   1810 	/* finally, finally, gentlemen, start your engine */
   1811 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1812 
   1813 	/*
   1814 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1815 	 * Resets should be performed. The RISC has to be running
   1816 	 * to issue a SCSI Bus Reset.
   1817 	 */
   1818 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1819 		/*
   1820 		 * If the BIOS Signature is present in memory, restore the
   1821 		 * per TID microcode operating variables.
   1822 		 */
   1823 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
   1824 				0x55AA) {
   1825 			/*
   1826 			 * Restore per TID negotiated values.
   1827 			 */
   1828 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   1829 					wdtr_able);
   1830 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   1831 					sdtr_able);
   1832 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   1833 					ppr_able);
   1834 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   1835 					tagqng_able);
   1836 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1837 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1838 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1839 						max_cmd[tid]);
   1840 			}
   1841 		} else {
   1842 			if (AdwResetCCB(sc) != ADW_TRUE) {
   1843 				warn_code = ADW_WARN_BUSRESET_ERROR;
   1844 			}
   1845 		}
   1846 	}
   1847 
   1848 	return warn_code;
   1849 }
   1850 
   1851 
   1852 /*
   1853  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   1854  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   1855  * all of this is done.
   1856  *
   1857  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   1858  *
   1859  * For a non-fatal error return a warning code. If there are no warnings
   1860  * then 0 is returned.
   1861  *
   1862  * Note: Chip is stopped on entry.
   1863  */
   1864 int
   1865 AdwInitFrom3550EEP(sc)
   1866 ADW_SOFTC      *sc;
   1867 {
   1868 	bus_space_tag_t iot = sc->sc_iot;
   1869 	bus_space_handle_t ioh = sc->sc_ioh;
   1870 	u_int16_t		warn_code;
   1871 	ADW_EEP_3550_CONFIG	eep_config;
   1872 	int			i;
   1873 
   1874 
   1875 	warn_code = 0;
   1876 
   1877 	/*
   1878 	 * Read the board's EEPROM configuration.
   1879 	 *
   1880 	 * Set default values if a bad checksum is found.
   1881 	 *
   1882 	 * XXX - Don't handle big-endian access to EEPROM yet.
   1883 	 */
   1884 	if (AdwGet3550EEPConfig(iot, ioh, &eep_config) != eep_config.check_sum){
   1885 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
   1886 
   1887 		/*
   1888 		 * Set EEPROM default values.
   1889 		 */
   1890 		for (i = 0; i < sizeof(ADW_EEP_3550_CONFIG); i++) {
   1891 			*((u_int8_t *) &eep_config + i) =
   1892 				*((u_int8_t *) &Default_3550_EEPROM_Config + i);
   1893 		}
   1894 
   1895 		/*
   1896 		 * Assume the 6 byte board serial number that was read
   1897 		 * from EEPROM is correct even if the EEPROM checksum
   1898 		 * failed.
   1899 		 */
   1900 		eep_config.serial_number_word3 =
   1901 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   1902 
   1903 		eep_config.serial_number_word2 =
   1904 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   1905 
   1906 		eep_config.serial_number_word1 =
   1907 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   1908 
   1909 		AdwSet3550EEPConfig(iot, ioh, &eep_config);
   1910 	}
   1911 	/*
   1912 	 * Set sc and sc->cfg variables from the EEPROM configuration
   1913 	 * that was read.
   1914 	 *
   1915 	 * This is the mapping of EEPROM fields to Adw Library fields.
   1916 	 */
   1917 	sc->wdtr_able = eep_config.wdtr_able;
   1918 	sc->sdtr_able = eep_config.sdtr_able;
   1919 	sc->ultra_able = eep_config.ultra_able;
   1920 	sc->tagqng_able = eep_config.tagqng_able;
   1921 	sc->cfg.disc_enable = eep_config.disc_enable;
   1922 	sc->max_host_qng = eep_config.max_host_qng;
   1923 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1924 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   1925 	sc->start_motor = eep_config.start_motor;
   1926 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   1927 	sc->bios_ctrl = eep_config.bios_ctrl;
   1928 	sc->no_scam = eep_config.scam_tolerant;
   1929 	sc->cfg.serial1 = eep_config.serial_number_word1;
   1930 	sc->cfg.serial2 = eep_config.serial_number_word2;
   1931 	sc->cfg.serial3 = eep_config.serial_number_word3;
   1932 
   1933 	/*
   1934 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   1935 	 * maximum queuing (max. 63, min. 4).
   1936 	 */
   1937 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
   1938 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   1939 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
   1940 	{
   1941 		/* If the value is zero, assume it is uninitialized. */
   1942 		if (eep_config.max_host_qng == 0) {
   1943 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   1944 		} else {
   1945 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
   1946 		}
   1947 	}
   1948 
   1949 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
   1950 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   1951 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
   1952 		/* If the value is zero, assume it is uninitialized. */
   1953 		if (eep_config.max_dvc_qng == 0) {
   1954 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   1955 		} else {
   1956 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
   1957 		}
   1958 	}
   1959 
   1960 	/*
   1961 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   1962 	 * set 'max_dvc_qng' to 'max_host_qng'.
   1963 	 */
   1964 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   1965 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   1966 	}
   1967 
   1968 	/*
   1969 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   1970 	 * values based on possibly adjusted EEPROM values.
   1971 	 */
   1972 	sc->max_host_qng = eep_config.max_host_qng;
   1973 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1974 
   1975 
   1976 	/*
   1977 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   1978 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   1979 	 *
   1980 	 * If the termination is specified with a non-zero 'termination'
   1981 	 * value check that a legal value is set and set the ADV_DVC_CFG
   1982 	 * 'termination' field appropriately.
   1983 	 */
   1984 
   1985 	sc->cfg.termination = 0;	/* auto termination */
   1986 	switch(eep_config.termination) {
   1987 	case 3:
   1988 		/* Enable manual control with low on / high on. */
   1989 		sc->cfg.termination |= ADW_TERM_CTL_L;
   1990 	case 2:
   1991 		/* Enable manual control with low off / high on. */
   1992 		sc->cfg.termination |= ADW_TERM_CTL_H;
   1993 	case 1:
   1994 		/* Enable manual control with low off / high off. */
   1995 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
   1996 	case 0:
   1997 		break;
   1998 	default:
   1999 		warn_code |= ADW_WARN_EEPROM_TERMINATION;
   2000 	}
   2001 
   2002 	return warn_code;
   2003 }
   2004 
   2005 
   2006 /*
   2007  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   2008  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   2009  * all of this is done.
   2010  *
   2011  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   2012  *
   2013  * For a non-fatal error return a warning code. If there are no warnings
   2014  * then 0 is returned.
   2015  *
   2016  * Note: Chip is stopped on entry.
   2017  */
   2018 int
   2019 AdwInitFrom38C0800EEP(sc)
   2020 ADW_SOFTC      *sc;
   2021 {
   2022 	bus_space_tag_t iot = sc->sc_iot;
   2023 	bus_space_handle_t ioh = sc->sc_ioh;
   2024 	u_int16_t		warn_code;
   2025 	ADW_EEP_38C0800_CONFIG	eep_config;
   2026 	int			i;
   2027 	u_int8_t		tid, termination;
   2028 	u_int16_t		sdtr_speed = 0;
   2029 
   2030 
   2031 	warn_code = 0;
   2032 
   2033 	/*
   2034 	 * Read the board's EEPROM configuration.
   2035 	 *
   2036 	 * Set default values if a bad checksum is found.
   2037 	 */
   2038 	if (AdwGet38C0800EEPConfig(iot, ioh, &eep_config) !=
   2039 			eep_config.check_sum) {
   2040 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
   2041 
   2042 		/*
   2043 		 * Set EEPROM default values.
   2044 		 */
   2045 		for (i = 0; i < sizeof(ADW_EEP_38C0800_CONFIG); i++) {
   2046 			*((u_int8_t *) &eep_config + i) =
   2047 				*((u_int8_t *)&Default_38C0800_EEPROM_Config+i);
   2048 		}
   2049 
   2050 		/*
   2051 		 * Assume the 6 byte board serial number that was read
   2052 		 * from EEPROM is correct even if the EEPROM checksum
   2053 		 * failed.
   2054 		 */
   2055 		eep_config.serial_number_word3 =
   2056 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   2057 
   2058 		eep_config.serial_number_word2 =
   2059 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   2060 
   2061 		eep_config.serial_number_word1 =
   2062 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   2063 
   2064 		AdwSet38C0800EEPConfig(iot, ioh, &eep_config);
   2065 	}
   2066 	/*
   2067 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
   2068 	 * EEPROM configuration that was read.
   2069 	 *
   2070 	 * This is the mapping of EEPROM fields to Adw Library fields.
   2071 	 */
   2072 	sc->wdtr_able = eep_config.wdtr_able;
   2073 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   2074 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   2075 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   2076 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   2077 	sc->tagqng_able = eep_config.tagqng_able;
   2078 	sc->cfg.disc_enable = eep_config.disc_enable;
   2079 	sc->max_host_qng = eep_config.max_host_qng;
   2080 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2081 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   2082 	sc->start_motor = eep_config.start_motor;
   2083 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   2084 	sc->bios_ctrl = eep_config.bios_ctrl;
   2085 	sc->no_scam = eep_config.scam_tolerant;
   2086 	sc->cfg.serial1 = eep_config.serial_number_word1;
   2087 	sc->cfg.serial2 = eep_config.serial_number_word2;
   2088 	sc->cfg.serial3 = eep_config.serial_number_word3;
   2089 
   2090 	/*
   2091 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   2092 	 * are set, then set an 'sdtr_able' bit for it.
   2093 	 */
   2094 	sc->sdtr_able = 0;
   2095 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2096 		if (tid == 0) {
   2097 			sdtr_speed = sc->sdtr_speed1;
   2098 		} else if (tid == 4) {
   2099 			sdtr_speed = sc->sdtr_speed2;
   2100 		} else if (tid == 8) {
   2101 			sdtr_speed = sc->sdtr_speed3;
   2102 		} else if (tid == 12) {
   2103 			sdtr_speed = sc->sdtr_speed4;
   2104 		}
   2105 		if (sdtr_speed & ADW_MAX_TID) {
   2106 			sc->sdtr_able |= (1 << tid);
   2107 		}
   2108 		sdtr_speed >>= 4;
   2109 	}
   2110 
   2111 	/*
   2112 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   2113 	 * maximum queuing (max. 63, min. 4).
   2114 	 */
   2115 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
   2116 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   2117 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG) {
   2118 		/* If the value is zero, assume it is uninitialized. */
   2119 		if (eep_config.max_host_qng == 0) {
   2120 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   2121 		} else {
   2122 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
   2123 		}
   2124 	}
   2125 
   2126 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
   2127 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   2128 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
   2129 		/* If the value is zero, assume it is uninitialized. */
   2130 		if (eep_config.max_dvc_qng == 0) {
   2131 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   2132 		} else {
   2133 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
   2134 		}
   2135 	}
   2136 
   2137 	/*
   2138 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   2139 	 * set 'max_dvc_qng' to 'max_host_qng'.
   2140 	 */
   2141 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   2142 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   2143 	}
   2144 
   2145 	/*
   2146 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   2147 	 * values based on possibly adjusted EEPROM values.
   2148 	 */
   2149 	sc->max_host_qng = eep_config.max_host_qng;
   2150 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2151 
   2152 	/*
   2153 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   2154 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   2155 	 *
   2156 	 * If the termination is specified with a non-zero 'termination'
   2157 	 * value check that a legal value is set and set the ADV_DVC_CFG
   2158 	 * 'termination' field appropriately.
   2159 	 */
   2160 
   2161 	switch(eep_config.termination_se) {
   2162 	case 0:
   2163 		/* auto termination for SE */
   2164 		termination = 0;
   2165 		break;
   2166 	case 1:
   2167 		/* Enable manual control with low off / high off. */
   2168 		termination = 0;
   2169 		break;
   2170 	case 2:
   2171 		/* Enable manual control with low off / high on. */
   2172 		termination = ADW_TERM_SE_HI;
   2173 		break;
   2174 	case 3:
   2175 		/* Enable manual control with low on / high on. */
   2176 		termination = ADW_TERM_SE;
   2177 		break;
   2178 	default:
   2179 		/*
   2180 		 * The EEPROM 'termination_se' field contains a bad value.
   2181 		 * Use automatic termination instead.
   2182 		 */
   2183 		termination = 0;
   2184 		warn_code |= ADW_WARN_EEPROM_TERMINATION;
   2185 	}
   2186 
   2187 	switch(eep_config.termination_lvd) {
   2188 	case 0:
   2189 		/* auto termination for LVD */
   2190 		sc->cfg.termination = termination;
   2191 		break;
   2192 	case 1:
   2193 		/* Enable manual control with low off / high off. */
   2194 		sc->cfg.termination = termination;
   2195 		break;
   2196 	case 2:
   2197 		/* Enable manual control with low off / high on. */
   2198 		sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   2199 		break;
   2200 	case 3:
   2201 		/* Enable manual control with low on / high on. */
   2202 		sc->cfg.termination = termination | ADW_TERM_LVD;
   2203 		break;
   2204 	default:
   2205 		/*
   2206 		 * The EEPROM 'termination_lvd' field contains a bad value.
   2207 		 * Use automatic termination instead.
   2208 		 */
   2209 		sc->cfg.termination = termination;
   2210 		warn_code |= ADW_WARN_EEPROM_TERMINATION;
   2211 	}
   2212 
   2213 	return warn_code;
   2214 }
   2215 
   2216 
   2217 /*
   2218  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
   2219  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
   2220  * all of this is done.
   2221  *
   2222  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   2223  *
   2224  * For a non-fatal error return a warning code. If there are no warnings
   2225  * then 0 is returned.
   2226  *
   2227  * Note: Chip is stopped on entry.
   2228  */
   2229 int
   2230 AdwInitFrom38C1600EEP(sc)
   2231 ADW_SOFTC      *sc;
   2232 {
   2233 	bus_space_tag_t iot = sc->sc_iot;
   2234 	bus_space_handle_t ioh = sc->sc_ioh;
   2235 	u_int16_t		warn_code;
   2236 	ADW_EEP_38C1600_CONFIG	eep_config;
   2237 	int			i;
   2238 	u_int8_t		tid, termination;
   2239 	u_int16_t		sdtr_speed = 0;
   2240 
   2241 
   2242 	warn_code = 0;
   2243 
   2244 	/*
   2245 	 * Read the board's EEPROM configuration.
   2246 	 *
   2247 	 * Set default values if a bad checksum is found.
   2248 	 */
   2249 	if (AdwGet38C1600EEPConfig(iot, ioh, &eep_config) !=
   2250 			eep_config.check_sum) {
   2251 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
   2252 
   2253 		/*
   2254 		 * Set EEPROM default values.
   2255 		 */
   2256  		for (i = 0; i < sizeof(ADW_EEP_38C1600_CONFIG); i++) {
   2257 	/* !!!!TODO!!!! */
   2258 //			if (i == 1 && ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
   2259 			if (i == 1 ) {
   2260 				/*
   2261 				 * Set Function 1 EEPROM Word 0 MSB
   2262 				 *
   2263 				 * Clear the BIOS_ENABLE (bit 14) and INTAB (bit 11)
   2264 				 * EEPROM bits.
   2265 				 *
   2266 				 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 and
   2267 				 * old Mac system booting problem. The Expansion ROM must
   2268 				 * be disabled in Function 1 for these systems.
   2269 				 *
   2270 				 */
   2271 				*((u_int8_t *) &eep_config + i) =
   2272 					((*((u_int8_t *) &Default_38C1600_EEPROM_Config + i)) &
   2273 					(~(((ADW_EEPROM_BIOS_ENABLE | ADW_EEPROM_INTAB) >> 8) &
   2274 					0xFF)));
   2275 
   2276 				/*
   2277 				 * Set the INTAB (bit 11) if the GPIO 0 input
   2278 				 * indicates the Function 1 interrupt line is
   2279 				 * wired to INTA.
   2280 				 *
   2281 				 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
   2282 				 *   1 - Function 1 interrupt line wired to INT A.
   2283 				 *   0 - Function 1 interrupt line wired to INT B.
   2284 				 *
   2285 				 * Note: Adapter boards always have Function 0
   2286 				 * wired to INTA.
   2287 				 * Put all 5 GPIO bits in input mode and then
   2288 				 * read their input values.
   2289 				 */
   2290 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2291 					IOPB_GPIO_CNTL, 0);
   2292 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
   2293 						IOPB_GPIO_DATA) & 0x01) {
   2294 					/* Function 1 interrupt wired to INTA;
   2295 					   Set EEPROM bit. */
   2296 					*((u_int8_t *) &eep_config + i) |=
   2297 						((ADW_EEPROM_INTAB >> 8) &0xFF);
   2298 				}
   2299 			} else {
   2300 				*((u_int8_t *)&eep_config + i) =
   2301 				*((u_int8_t *)&Default_38C1600_EEPROM_Config+i);
   2302 			}
   2303 		}
   2304 
   2305 		/*
   2306 		 * Assume the 6 byte board serial number that was read
   2307 		 * from EEPROM is correct even if the EEPROM checksum
   2308 		 * failed.
   2309 		 */
   2310 		eep_config.serial_number_word3 =
   2311 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   2312 
   2313 		eep_config.serial_number_word2 =
   2314 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   2315 
   2316 		eep_config.serial_number_word1 =
   2317 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   2318 
   2319 		AdwSet38C1600EEPConfig(iot, ioh, &eep_config);
   2320 	}
   2321 
   2322 	/*
   2323 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
   2324 	 * EEPROM configuration that was read.
   2325 	 *
   2326 	 * This is the mapping of EEPROM fields to Adw Library fields.
   2327 	 */
   2328 	sc->wdtr_able = eep_config.wdtr_able;
   2329 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   2330 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   2331 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   2332 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   2333 	sc->ppr_able = 0;
   2334 	sc->tagqng_able = eep_config.tagqng_able;
   2335 	sc->cfg.disc_enable = eep_config.disc_enable;
   2336 	sc->max_host_qng = eep_config.max_host_qng;
   2337 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2338 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   2339 	sc->start_motor = eep_config.start_motor;
   2340 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   2341 	sc->bios_ctrl = eep_config.bios_ctrl;
   2342 	sc->no_scam = eep_config.scam_tolerant;
   2343 
   2344 	/*
   2345 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   2346 	 * are set, then set an 'sdtr_able' bit for it.
   2347 	 */
   2348 	sc->sdtr_able = 0;
   2349 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2350 		if (tid == 0) {
   2351 			sdtr_speed = sc->sdtr_speed1;
   2352 		} else if (tid == 4) {
   2353 			sdtr_speed = sc->sdtr_speed2;
   2354 		} else if (tid == 8) {
   2355 			sdtr_speed = sc->sdtr_speed3;
   2356 		} else if (tid == 12) {
   2357 			sdtr_speed = sc->sdtr_speed4;
   2358 		}
   2359 		if (sdtr_speed & ADW_MAX_TID) {
   2360 			sc->sdtr_able |= (1 << tid);
   2361 		}
   2362 		sdtr_speed >>= 4;
   2363 	}
   2364 
   2365 	/*
   2366 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   2367 	 * maximum queuing (max. 63, min. 4).
   2368 	 */
   2369 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
   2370 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   2371 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG) {
   2372 		/* If the value is zero, assume it is uninitialized. */
   2373 		if (eep_config.max_host_qng == 0) {
   2374 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   2375 		} else {
   2376 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
   2377 		}
   2378 	}
   2379 
   2380 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
   2381 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   2382 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
   2383 		/* If the value is zero, assume it is uninitialized. */
   2384 		if (eep_config.max_dvc_qng == 0) {
   2385 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   2386 		} else {
   2387 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
   2388 		}
   2389 	}
   2390 
   2391 	/*
   2392 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   2393 	 * set 'max_dvc_qng' to 'max_host_qng'.
   2394 	 */
   2395 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   2396 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   2397 	}
   2398 
   2399 	/*
   2400 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
   2401 	 * values based on possibly adjusted EEPROM values.
   2402 	 */
   2403 	sc->max_host_qng = eep_config.max_host_qng;
   2404 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2405 
   2406 	/*
   2407 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   2408 	 * the ASC_DVC_CFG 'termination' field to automatic also.
   2409 	 *
   2410 	 * If the termination is specified with a non-zero 'termination'
   2411 	 * value check that a legal value is set and set the ASC_DVC_CFG
   2412 	 * 'termination' field appropriately.
   2413 	 */
   2414 
   2415 	switch(eep_config.termination_se) {
   2416 	case 0:	/* auto termination for SE */
   2417 		termination = 0;
   2418 		break;
   2419 	case 1:	/* Enable manual control with low off / high off. */
   2420 		termination = 0;
   2421 		break;
   2422 	case 2:	/* Enable manual control with low off / high on. */
   2423 		termination = ADW_TERM_SE_HI;
   2424 		break;
   2425 	case 3:	/* Enable manual control with low on / high on. */
   2426 		termination = ADW_TERM_SE;
   2427 		break;
   2428 	default:
   2429 		/*
   2430 		 * The EEPROM 'termination_se' field contains a bad value.
   2431 		 * Use automatic termination instead.
   2432 		 */
   2433 		termination = 0;
   2434 		warn_code |= ADW_WARN_EEPROM_TERMINATION;
   2435 	}
   2436 
   2437 	switch(eep_config.termination_lvd) {
   2438 	case 0:	/* auto termination for LVD */
   2439 		sc->cfg.termination = termination;
   2440 		break;
   2441 	case 1:	/* Enable manual control with low off / high off. */
   2442 		sc->cfg.termination = termination;
   2443 		break;
   2444 	case 2:	/* Enable manual control with low off / high on. */
   2445 		sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   2446 		break;
   2447 	case 3:	/* Enable manual control with low on / high on. */
   2448 		sc->cfg.termination = termination | ADW_TERM_LVD;
   2449 		break;
   2450 	default:
   2451 		/*
   2452 		 * The EEPROM 'termination_lvd' field contains a bad value.
   2453 		 * Use automatic termination instead.
   2454 		 */
   2455 		sc->cfg.termination = termination;
   2456 		warn_code |= ADW_WARN_EEPROM_TERMINATION;
   2457 	}
   2458 
   2459 	return warn_code;
   2460 }
   2461 
   2462 
   2463 /*
   2464  * Read EEPROM configuration into the specified buffer.
   2465  *
   2466  * Return a checksum based on the EEPROM configuration read.
   2467  */
   2468 static u_int16_t
   2469 AdwGet3550EEPConfig(iot, ioh, cfg_buf)
   2470 	bus_space_tag_t		iot;
   2471 	bus_space_handle_t	ioh;
   2472 	ADW_EEP_3550_CONFIG	*cfg_buf;
   2473 {
   2474 	u_int16_t	       wval, chksum;
   2475 	u_int16_t	       *wbuf;
   2476 	int		    eep_addr;
   2477 
   2478 
   2479 	wbuf = (u_int16_t *) cfg_buf;
   2480 	chksum = 0;
   2481 
   2482 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2483 		eep_addr < ASC_EEP_DVC_CFG_END;
   2484 		eep_addr++, wbuf++) {
   2485 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   2486 		chksum += wval;
   2487 		*wbuf = wval;
   2488 	}
   2489 
   2490 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2491 	wbuf++;
   2492 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2493 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2494 			eep_addr++, wbuf++) {
   2495 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2496 	}
   2497 
   2498 	return chksum;
   2499 }
   2500 
   2501 
   2502 /*
   2503  * Read EEPROM configuration into the specified buffer.
   2504  *
   2505  * Return a checksum based on the EEPROM configuration read.
   2506  */
   2507 static u_int16_t
   2508 AdwGet38C0800EEPConfig(iot, ioh, cfg_buf)
   2509 	bus_space_tag_t		iot;
   2510 	bus_space_handle_t	ioh;
   2511 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   2512 {
   2513 	u_int16_t	wval, chksum;
   2514 	u_int16_t	*wbuf;
   2515 	int		eep_addr;
   2516 
   2517 
   2518 	wbuf = (u_int16_t *) cfg_buf;
   2519 	chksum = 0;
   2520 
   2521 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2522 		eep_addr < ASC_EEP_DVC_CFG_END;
   2523 		eep_addr++, wbuf++) {
   2524 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   2525 		chksum += wval;
   2526 		*wbuf = wval;
   2527 	}
   2528 
   2529 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2530 	wbuf++;
   2531 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2532 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2533 			eep_addr++, wbuf++) {
   2534 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2535 	}
   2536 
   2537 	return chksum;
   2538 }
   2539 
   2540 
   2541 /*
   2542  * Read EEPROM configuration into the specified buffer.
   2543  *
   2544  * Return a checksum based on the EEPROM configuration read.
   2545  */
   2546 static u_int16_t
   2547 AdwGet38C1600EEPConfig(iot, ioh, cfg_buf)
   2548 	bus_space_tag_t		iot;
   2549 	bus_space_handle_t	ioh;
   2550 	ADW_EEP_38C1600_CONFIG	*cfg_buf;
   2551 {
   2552 	u_int16_t	wval, chksum;
   2553 	u_int16_t	*wbuf;
   2554 	int		eep_addr;
   2555 
   2556 
   2557 	wbuf = (u_int16_t *) cfg_buf;
   2558 	chksum = 0;
   2559 
   2560 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2561 		eep_addr < ASC_EEP_DVC_CFG_END;
   2562 		eep_addr++, wbuf++) {
   2563 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   2564 		chksum += wval;
   2565 		*wbuf = wval;
   2566 	}
   2567 
   2568 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2569 	wbuf++;
   2570 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2571 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2572 			eep_addr++, wbuf++) {
   2573 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2574 	}
   2575 
   2576 	return chksum;
   2577 }
   2578 
   2579 
   2580 /*
   2581  * Read the EEPROM from specified location
   2582  */
   2583 static u_int16_t
   2584 AdwReadEEPWord(iot, ioh, eep_word_addr)
   2585 	bus_space_tag_t		iot;
   2586 	bus_space_handle_t	ioh;
   2587 	int			eep_word_addr;
   2588 {
   2589 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2590 		ASC_EEP_CMD_READ | eep_word_addr);
   2591 	AdwWaitEEPCmd(iot, ioh);
   2592 
   2593 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   2594 }
   2595 
   2596 
   2597 /*
   2598  * Wait for EEPROM command to complete
   2599  */
   2600 static void
   2601 AdwWaitEEPCmd(iot, ioh)
   2602 	bus_space_tag_t		iot;
   2603 	bus_space_handle_t	ioh;
   2604 {
   2605 	int eep_delay_ms;
   2606 
   2607 
   2608 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   2609 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   2610 				ASC_EEP_CMD_DONE) {
   2611 			break;
   2612 		}
   2613 		AdwSleepMilliSecond(1);
   2614 	}
   2615 
   2616 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   2617 }
   2618 
   2619 
   2620 /*
   2621  * Write the EEPROM from 'cfg_buf'.
   2622  */
   2623 static void
   2624 AdwSet3550EEPConfig(iot, ioh, cfg_buf)
   2625 	bus_space_tag_t		iot;
   2626 	bus_space_handle_t	ioh;
   2627 	ADW_EEP_3550_CONFIG	*cfg_buf;
   2628 {
   2629 	u_int16_t *wbuf;
   2630 	u_int16_t addr, chksum;
   2631 
   2632 
   2633 	wbuf = (u_int16_t *) cfg_buf;
   2634 	chksum = 0;
   2635 
   2636 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2637 	AdwWaitEEPCmd(iot, ioh);
   2638 
   2639 	/*
   2640 	 * Write EEPROM from word 0 to word 20
   2641 	 */
   2642 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2643 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2644 		chksum += *wbuf;
   2645 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2646 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2647 				ASC_EEP_CMD_WRITE | addr);
   2648 		AdwWaitEEPCmd(iot, ioh);
   2649 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   2650 	}
   2651 
   2652 	/*
   2653 	 * Write EEPROM checksum at word 21
   2654 	 */
   2655 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2656 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2657 			ASC_EEP_CMD_WRITE | addr);
   2658 	AdwWaitEEPCmd(iot, ioh);
   2659 	wbuf++;        /* skip over check_sum */
   2660 
   2661 	/*
   2662 	 * Write EEPROM OEM name at words 22 to 29
   2663 	 */
   2664 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2665 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2666 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2667 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2668 				ASC_EEP_CMD_WRITE | addr);
   2669 		AdwWaitEEPCmd(iot, ioh);
   2670 	}
   2671 
   2672 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2673 			ASC_EEP_CMD_WRITE_DISABLE);
   2674 	AdwWaitEEPCmd(iot, ioh);
   2675 
   2676 	return;
   2677 }
   2678 
   2679 
   2680 /*
   2681  * Write the EEPROM from 'cfg_buf'.
   2682  */
   2683 static void
   2684 AdwSet38C0800EEPConfig(iot, ioh, cfg_buf)
   2685 	bus_space_tag_t		iot;
   2686 	bus_space_handle_t	ioh;
   2687 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   2688 {
   2689 	u_int16_t *wbuf;
   2690 	u_int16_t addr, chksum;
   2691 
   2692 
   2693 	wbuf = (u_int16_t *) cfg_buf;
   2694 	chksum = 0;
   2695 
   2696 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2697 	AdwWaitEEPCmd(iot, ioh);
   2698 
   2699 	/*
   2700 	 * Write EEPROM from word 0 to word 20
   2701 	 */
   2702 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2703 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2704 		chksum += *wbuf;
   2705 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2706 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2707 				ASC_EEP_CMD_WRITE | addr);
   2708 		AdwWaitEEPCmd(iot, ioh);
   2709 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   2710 	}
   2711 
   2712 	/*
   2713 	 * Write EEPROM checksum at word 21
   2714 	 */
   2715 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2716 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2717 			ASC_EEP_CMD_WRITE | addr);
   2718 	AdwWaitEEPCmd(iot, ioh);
   2719 	wbuf++;        /* skip over check_sum */
   2720 
   2721 	/*
   2722 	 * Write EEPROM OEM name at words 22 to 29
   2723 	 */
   2724 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2725 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2726 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2727 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2728 				ASC_EEP_CMD_WRITE | addr);
   2729 		AdwWaitEEPCmd(iot, ioh);
   2730 	}
   2731 
   2732 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2733 			ASC_EEP_CMD_WRITE_DISABLE);
   2734 	AdwWaitEEPCmd(iot, ioh);
   2735 
   2736 	return;
   2737 }
   2738 
   2739 
   2740 /*
   2741  * Write the EEPROM from 'cfg_buf'.
   2742  */
   2743 static void
   2744 AdwSet38C1600EEPConfig(iot, ioh, cfg_buf)
   2745 	bus_space_tag_t		iot;
   2746 	bus_space_handle_t	ioh;
   2747 	ADW_EEP_38C1600_CONFIG	*cfg_buf;
   2748 {
   2749 	u_int16_t *wbuf;
   2750 	u_int16_t addr, chksum;
   2751 
   2752 
   2753 	wbuf = (u_int16_t *) cfg_buf;
   2754 	chksum = 0;
   2755 
   2756 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2757 	AdwWaitEEPCmd(iot, ioh);
   2758 
   2759 	/*
   2760 	 * Write EEPROM from word 0 to word 20
   2761 	 */
   2762 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2763 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2764 		chksum += *wbuf;
   2765 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2766 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2767 				ASC_EEP_CMD_WRITE | addr);
   2768 		AdwWaitEEPCmd(iot, ioh);
   2769 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   2770 	}
   2771 
   2772 	/*
   2773 	 * Write EEPROM checksum at word 21
   2774 	 */
   2775 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2776 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2777 			ASC_EEP_CMD_WRITE | addr);
   2778 	AdwWaitEEPCmd(iot, ioh);
   2779 	wbuf++;        /* skip over check_sum */
   2780 
   2781 	/*
   2782 	 * Write EEPROM OEM name at words 22 to 29
   2783 	 */
   2784 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2785 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2786 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2787 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2788 				ASC_EEP_CMD_WRITE | addr);
   2789 		AdwWaitEEPCmd(iot, ioh);
   2790 	}
   2791 
   2792 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2793 			ASC_EEP_CMD_WRITE_DISABLE);
   2794 	AdwWaitEEPCmd(iot, ioh);
   2795 
   2796 	return;
   2797 }
   2798 
   2799 
   2800 /*
   2801  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   2802  *
   2803  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   2804  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   2805  *   RISC to notify it a new command is ready to be executed.
   2806  *
   2807  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   2808  * set to SCSI_MAX_RETRY.
   2809  *
   2810  * Return:
   2811  *      ADW_SUCCESS(1) - The request was successfully queued.
   2812  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   2813  *                       request completes.
   2814  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   2815  *                       host IC error.
   2816  */
   2817 int
   2818 AdwExeScsiQueue(sc, scsiq)
   2819 ADW_SOFTC	*sc;
   2820 ADW_SCSI_REQ_Q	*scsiq;
   2821 {
   2822 	bus_space_tag_t iot = sc->sc_iot;
   2823 	bus_space_handle_t ioh = sc->sc_ioh;
   2824 	ADW_CCB		*ccb;
   2825 	long		req_size;
   2826 	u_int32_t	req_paddr;
   2827 	ADW_CARRIER	*new_carrp;
   2828 
   2829 	/*
   2830 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   2831 	 */
   2832 	if (scsiq->target_id > ADW_MAX_TID) {
   2833 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   2834 		scsiq->done_status = QD_WITH_ERROR;
   2835 		return ADW_ERROR;
   2836 	}
   2837 
   2838 	/*
   2839 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   2840 	 */
   2841 
   2842 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   2843 
   2844 	/*
   2845 	 * Allocate a carrier and initialize fields.
   2846 	 */
   2847 	if ((new_carrp = sc->carr_freelist) == NULL) {
   2848 		return ADW_BUSY;
   2849 	}
   2850 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   2851 			ASC_GET_CARRP(new_carrp->next_ba));
   2852 	sc->carr_pending_cnt++;
   2853 
   2854 	/*
   2855 	 * Set the carrier to be a stopper by setting 'next_ba'
   2856 	 * to the stopper value. The current stopper will be changed
   2857 	 * below to point to the new stopper.
   2858 	 */
   2859 	new_carrp->next_ba = ASC_CQ_STOPPER;
   2860 
   2861 	req_size = sizeof(ADW_SCSI_REQ_Q);
   2862 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   2863 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   2864 
   2865 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   2866 	scsiq->scsiq_rptr = req_paddr;
   2867 
   2868 	/*
   2869 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   2870 	 * order during initialization.
   2871 	 */
   2872 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   2873 	scsiq->carr_va = sc->icq_sp->carr_ba;
   2874 
   2875 	/*
   2876 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   2877 	 * the microcode. The newly allocated stopper will become the new
   2878 	 * stopper.
   2879 	 */
   2880 	sc->icq_sp->areq_ba = req_paddr;
   2881 
   2882 	/*
   2883 	 * Set the 'next_ba' pointer for the old stopper to be the
   2884 	 * physical address of the new stopper. The RISC can only
   2885 	 * follow physical addresses.
   2886 	 */
   2887 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   2888 
   2889 #if ADW_DEBUG
   2890 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2891 			sc->icq_sp->carr_id,
   2892 			sc->icq_sp->carr_ba,
   2893 			sc->icq_sp->areq_ba,
   2894 			sc->icq_sp->next_ba);
   2895 #endif
   2896 	/*
   2897 	 * Set the host adapter stopper pointer to point to the new carrier.
   2898 	 */
   2899 	sc->icq_sp = new_carrp;
   2900 
   2901 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2902 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2903 		/*
   2904 		 * Tickle the RISC to tell it to read its Command Queue Head
   2905 		 * pointer.
   2906 		 */
   2907 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_A);
   2908 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   2909 			/*
   2910 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   2911 			 * command 'clr_tickle_a' does not work unless the host
   2912 			 * value is cleared.
   2913 			 */
   2914 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   2915 					ADV_TICKLE_NOP);
   2916 		}
   2917 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   2918 		/*
   2919 		 * Notify the RISC a carrier is ready by writing the physical
   2920 		 * address of the new carrier stopper to the COMMA register.
   2921 		 */
   2922 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   2923 				new_carrp->carr_ba);
   2924 	}
   2925 
   2926 	/*
   2927 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   2928 	 */
   2929 
   2930 	return ADW_SUCCESS;
   2931 }
   2932 
   2933 
   2934 void
   2935 AdwResetChip(iot, ioh)
   2936 	bus_space_tag_t iot;
   2937 	bus_space_handle_t ioh;
   2938 {
   2939 
   2940 	/*
   2941 	 * Reset Chip.
   2942 	 */
   2943 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2944 			ADW_CTRL_REG_CMD_RESET);
   2945 	AdwSleepMilliSecond(100);
   2946 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2947 			ADW_CTRL_REG_CMD_WR_IO_REG);
   2948 }
   2949 
   2950 
   2951 /*
   2952  * Reset SCSI Bus and purge all outstanding requests.
   2953  *
   2954  * Return Value:
   2955  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   2956  *      ADW_FALSE(0) -  Microcode command failed.
   2957  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   2958  *                      may be hung which requires driver recovery.
   2959  */
   2960 int
   2961 AdwResetCCB(sc)
   2962 ADW_SOFTC	*sc;
   2963 {
   2964 	int	    status;
   2965 
   2966 	/*
   2967 	 * Send the SCSI Bus Reset idle start idle command which asserts
   2968 	 * the SCSI Bus Reset signal.
   2969 	 */
   2970 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   2971 	if (status != ADW_TRUE) {
   2972 		return status;
   2973 	}
   2974 
   2975 	/*
   2976 	 * Delay for the specified SCSI Bus Reset hold time.
   2977 	 *
   2978 	 * The hold time delay is done on the host because the RISC has no
   2979 	 * microsecond accurate timer.
   2980 	 */
   2981 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   2982 
   2983 	/*
   2984 	 * Send the SCSI Bus Reset end idle command which de-asserts
   2985 	 * the SCSI Bus Reset signal and purges any pending requests.
   2986 	 */
   2987 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   2988 	if (status != ADW_TRUE) {
   2989 		return status;
   2990 	}
   2991 
   2992 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   2993 
   2994 	return status;
   2995 }
   2996 
   2997 
   2998 /*
   2999  * Reset chip and SCSI Bus.
   3000  *
   3001  * Return Value:
   3002  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   3003  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   3004  */
   3005 int
   3006 AdwResetSCSIBus(sc)
   3007 ADW_SOFTC	*sc;
   3008 {
   3009 	bus_space_tag_t iot = sc->sc_iot;
   3010 	bus_space_handle_t ioh = sc->sc_ioh;
   3011 	int		status;
   3012 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   3013 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   3014 	u_int16_t	bios_sig;
   3015 
   3016 
   3017 	/*
   3018 	 * Save current per TID negotiated values.
   3019 	 */
   3020 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   3021 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   3022 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   3023 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   3024 	}
   3025 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   3026 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   3027 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   3028 			max_cmd[tid]);
   3029 	}
   3030 
   3031 	/*
   3032 	 * Force the AdwInitAsc3550/38C0800Driver() function to
   3033 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
   3034 	 * The initialization functions assumes a SCSI Bus Reset is not
   3035 	 * needed if the BIOS signature word is present.
   3036 	 */
   3037 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   3038 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   3039 
   3040 	/*
   3041 	 * Stop chip and reset it.
   3042 	 */
   3043 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   3044 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   3045 			ADW_CTRL_REG_CMD_RESET);
   3046 	AdwSleepMilliSecond(100);
   3047 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   3048 			ADW_CTRL_REG_CMD_WR_IO_REG);
   3049 
   3050 	/*
   3051 	 * Reset Adv Library error code, if any, and try
   3052 	 * re-initializing the chip.
   3053 	 */
   3054 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   3055 	    status = AdwInitAsc38C1600Driver(sc);
   3056 	} else if (sc->chip_type == ADW_CHIP_ASC38C0800) {
   3057 		status = AdwInitAsc38C0800Driver(sc);
   3058 	} else {
   3059 		status = AdwInitAsc3550Driver(sc);
   3060 	}
   3061 
   3062 	/* Translate initialization return value to status value. */
   3063 	status = (status == 0)? ADW_TRUE : ADW_FALSE;
   3064 
   3065 	/*
   3066 	 * Restore the BIOS signature word.
   3067 	 */
   3068 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   3069 
   3070 	/*
   3071 	 * Restore per TID negotiated values.
   3072 	 */
   3073 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   3074 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   3075 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   3076 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   3077 	}
   3078 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   3079 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   3080 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   3081 			max_cmd[tid]);
   3082 	}
   3083 
   3084 	return status;
   3085 }
   3086 
   3087 
   3088 /*
   3089  * Adv Library Interrupt Service Routine
   3090  *
   3091  *  This function is called by a driver's interrupt service routine.
   3092  *  The function disables and re-enables interrupts.
   3093  *
   3094  *  When a microcode idle command is completed, the ADV_DVC_VAR
   3095  *  'idle_cmd_done' field is set to ADW_TRUE.
   3096  *
   3097  *  Note: AdwISR() can be called when interrupts are disabled or even
   3098  *  when there is no hardware interrupt condition present. It will
   3099  *  always check for completed idle commands and microcode requests.
   3100  *  This is an important feature that shouldn't be changed because it
   3101  *  allows commands to be completed from polling mode loops.
   3102  *
   3103  * Return:
   3104  *   ADW_TRUE(1) - interrupt was pending
   3105  *   ADW_FALSE(0) - no interrupt was pending
   3106  */
   3107 int
   3108 AdwISR(sc)
   3109 ADW_SOFTC	*sc;
   3110 {
   3111 	bus_space_tag_t iot = sc->sc_iot;
   3112 	bus_space_handle_t ioh = sc->sc_ioh;
   3113 	u_int8_t	int_stat;
   3114 	u_int16_t	target_bit;
   3115 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   3116 	u_int32_t	irq_next_pa;
   3117 	ADW_SCSI_REQ_Q	*scsiq;
   3118 	ADW_CCB		*ccb;
   3119 	int		s;
   3120 
   3121 
   3122 	s = splbio();
   3123 
   3124 	/* Reading the register clears the interrupt. */
   3125 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   3126 
   3127 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   3128 	     ADW_INTR_STATUS_INTRC)) == 0) {
   3129 		splx(s);
   3130 		return ADW_FALSE;
   3131 	}
   3132 
   3133 	/*
   3134 	 * Notify the driver of an asynchronous microcode condition by
   3135 	 * calling the ADV_DVC_VAR.async_callback function. The function
   3136 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   3137 	 */
   3138 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   3139 		u_int8_t intrb_code;
   3140 
   3141 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   3142 
   3143 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   3144 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   3145 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   3146 				sc->carr_pending_cnt != 0) {
   3147 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   3148 					IOPB_TICKLE, ADV_TICKLE_A);
   3149 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   3150 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   3151 						IOPB_TICKLE, ADV_TICKLE_NOP);
   3152 				}
   3153 			}
   3154 		}
   3155 
   3156 		if (sc->async_callback != 0) {
   3157 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   3158 		}
   3159 	}
   3160 
   3161 	/*
   3162 	 * Check if the IRQ stopper carrier contains a completed request.
   3163 	 */
   3164 	while (((irq_next_pa = sc->irq_sp->next_ba) & ASC_RQ_DONE) != 0)
   3165 	{
   3166 #if ADW_DEBUG
   3167 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   3168 				sc->irq_sp->carr_id,
   3169 				sc->irq_sp->carr_ba,
   3170 				sc->irq_sp->areq_ba,
   3171 				sc->irq_sp->next_ba);
   3172 #endif
   3173 		/*
   3174 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   3175 		 * structure.
   3176 		 * The RISC will have set 'areq_ba' to a virtual address.
   3177 		 *
   3178 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   3179 		 * field to the carrier ADV_CARR_T.areq_ba field.
   3180 		 * The conversion below complements the conversion of
   3181 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   3182 		 */
   3183 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   3184 		scsiq = &ccb->scsiq;
   3185 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   3186 
   3187 		/*
   3188 		 * Request finished with good status and the queue was not
   3189 		 * DMAed to host memory by the firmware. Set all status fields
   3190 		 * to indicate good status.
   3191 		 */
   3192 		if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
   3193 			scsiq->done_status = QD_NO_ERROR;
   3194 			scsiq->host_status = scsiq->scsi_status = 0;
   3195 			scsiq->data_cnt = 0L;
   3196 		}
   3197 
   3198 		/*
   3199 		 * Advance the stopper pointer to the next carrier
   3200 		 * ignoring the lower four bits. Free the previous
   3201 		 * stopper carrier.
   3202 		 */
   3203 		free_carrp = sc->irq_sp;
   3204 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   3205 
   3206 		free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
   3207 					: sc->carr_freelist->carr_ba;
   3208 		sc->carr_freelist = free_carrp;
   3209 		sc->carr_pending_cnt--;
   3210 
   3211 
   3212 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   3213 
   3214 		/*
   3215 		 * Clear request microcode control flag.
   3216 		 */
   3217 		scsiq->cntl = 0;
   3218 
   3219 		/*
   3220 		 * Check Condition handling
   3221 		 */
   3222 		/*
   3223 		 * If the command that completed was a SCSI INQUIRY and
   3224 		 * LUN 0 was sent the command, then process the INQUIRY
   3225 		 * command information for the device.
   3226 		 */
   3227 		if (scsiq->done_status == QD_NO_ERROR &&
   3228 		    scsiq->cdb[0] == INQUIRY &&
   3229 		    scsiq->target_lun == 0) {
   3230 			AdwInquiryHandling(sc, scsiq);
   3231 		}
   3232 
   3233 		/*
   3234 		 * Notify the driver of the completed request by passing
   3235 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   3236 		 */
   3237 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   3238 		/*
   3239 		 * Note: After the driver callback function is called, 'scsiq'
   3240 		 * can no longer be referenced.
   3241 		 *
   3242 		 * Fall through and continue processing other completed
   3243 		 * requests...
   3244 		 */
   3245 	}
   3246 
   3247 	splx(s);
   3248 
   3249 	return ADW_TRUE;
   3250 }
   3251 
   3252 
   3253 /*
   3254  * Send an idle command to the chip and wait for completion.
   3255  *
   3256  * Command completion is polled for once per microsecond.
   3257  *
   3258  * The function can be called from anywhere including an interrupt handler.
   3259  * But the function is not re-entrant, so it uses the splbio/splx()
   3260  * functions to prevent reentrancy.
   3261  *
   3262  * Return Values:
   3263  *   ADW_TRUE - command completed successfully
   3264  *   ADW_FALSE - command failed
   3265  *   ADW_ERROR - command timed out
   3266  */
   3267 int
   3268 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   3269 ADW_SOFTC      *sc;
   3270 u_int16_t       idle_cmd;
   3271 u_int32_t       idle_cmd_parameter;
   3272 {
   3273 	bus_space_tag_t iot = sc->sc_iot;
   3274 	bus_space_handle_t ioh = sc->sc_ioh;
   3275 	u_int16_t	result;
   3276 	u_int32_t	i, j, s;
   3277 
   3278 	s = splbio();
   3279 
   3280 	/*
   3281 	 * Clear the idle command status which is set by the microcode
   3282 	 * to a non-zero value to indicate when the command is completed.
   3283 	 */
   3284 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   3285 
   3286 	/*
   3287 	 * Write the idle command value after the idle command parameter
   3288 	 * has been written to avoid a race condition. If the order is not
   3289 	 * followed, the microcode may process the idle command before the
   3290 	 * parameters have been written to LRAM.
   3291 	 */
   3292 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   3293 			idle_cmd_parameter);
   3294 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   3295 
   3296 	/*
   3297 	 * Tickle the RISC to tell it to process the idle command.
   3298 	 */
   3299 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_B);
   3300 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   3301 		/*
   3302 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   3303 		 * command 'clr_tickle_b' does not work unless the host
   3304 		 * value is cleared.
   3305 		 */
   3306 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_NOP);
   3307 	}
   3308 
   3309 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   3310 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   3311 		/* Poll once each microsecond for command completion. */
   3312 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   3313 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, result);
   3314 			if (result != 0) {
   3315 				splx(s);
   3316 				return result;
   3317 			}
   3318 			AdwDelayMicroSecond(1);
   3319 		}
   3320 	}
   3321 
   3322 	splx(s);
   3323 	return ADW_ERROR;
   3324 }
   3325 
   3326 
   3327 /*
   3328  * Inquiry Information Byte 7 Handling
   3329  *
   3330  * Handle SCSI Inquiry Command information for a device by setting
   3331  * microcode operating variables that affect WDTR, SDTR, and Tag
   3332  * Queuing.
   3333  */
   3334 static void
   3335 AdwInquiryHandling(sc, scsiq)
   3336 ADW_SOFTC	*sc;
   3337 ADW_SCSI_REQ_Q *scsiq;
   3338 {
   3339 #ifndef FAILSAFE
   3340 	bus_space_tag_t iot = sc->sc_iot;
   3341 	bus_space_handle_t ioh = sc->sc_ioh;
   3342 	u_int8_t		tid;
   3343 	struct scsipi_inquiry_data *inq;
   3344 	u_int16_t		tidmask;
   3345 	u_int16_t		cfg_word;
   3346 
   3347 
   3348 	/*
   3349 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   3350 	 * to be available.
   3351 	 *
   3352 	 * If less than 8 bytes of INQUIRY information were requested or less
   3353 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   3354 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   3355 	 * microcode to the transfer residual count.
   3356 	 */
   3357 
   3358 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   3359 		return;
   3360 	}
   3361 
   3362 	tid = scsiq->target_id;
   3363 
   3364 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   3365 
   3366 	/*
   3367 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   3368 	 */
   3369 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   3370 	    ((inq->version & SID_ANSII) < 2)) {
   3371 		return;
   3372 	} else {
   3373 		/*
   3374 		 * INQUIRY Byte 7 Handling
   3375 		 *
   3376 		 * Use a device's INQUIRY byte 7 to determine whether it
   3377 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   3378 		 * is enabled in the EEPROM and the device supports the
   3379 		 * feature, then enable it in the microcode.
   3380 		 */
   3381 
   3382 		tidmask = ADW_TID_TO_TIDMASK(tid);
   3383 
   3384 		/*
   3385 		 * Wide Transfers
   3386 		 *
   3387 		 * If the EEPROM enabled WDTR for the device and the device
   3388 		 * supports wide bus (16 bit) transfers, then turn on the
   3389 		 * device's 'wdtr_able' bit and write the new value to the
   3390 		 * microcode.
   3391 		 */
   3392 #ifdef SCSI_ADW_WDTR_DISABLE
   3393 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   3394 #endif /* SCSI_ADW_WDTR_DISABLE */
   3395 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   3396 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   3397 					cfg_word);
   3398 			if ((cfg_word & tidmask) == 0) {
   3399 				cfg_word |= tidmask;
   3400 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   3401 						cfg_word);
   3402 
   3403 				/*
   3404 				 * Clear the microcode "SDTR negotiation" and
   3405 				 * "WDTR negotiation" done indicators for the
   3406 				 * target to cause it to negotiate with the new
   3407 				 * setting set above.
   3408 				 * WDTR when accepted causes the target to enter
   3409 				 * asynchronous mode, so SDTR must be negotiated
   3410 				 */
   3411 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   3412 						cfg_word);
   3413 				cfg_word &= ~tidmask;
   3414 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   3415 						cfg_word);
   3416 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   3417 						cfg_word);
   3418 				cfg_word &= ~tidmask;
   3419 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   3420 						cfg_word);
   3421 			}
   3422 		}
   3423 
   3424 		/*
   3425 		 * Synchronous Transfers
   3426 		 *
   3427 		 * If the EEPROM enabled SDTR for the device and the device
   3428 		 * supports synchronous transfers, then turn on the device's
   3429 		 * 'sdtr_able' bit. Write the new value to the microcode.
   3430 		 */
   3431 #ifdef SCSI_ADW_SDTR_DISABLE
   3432 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   3433 #endif /* SCSI_ADW_SDTR_DISABLE */
   3434 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   3435 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, cfg_word);
   3436 			if ((cfg_word & tidmask) == 0) {
   3437 				cfg_word |= tidmask;
   3438 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   3439 						cfg_word);
   3440 
   3441 				/*
   3442 				 * Clear the microcode "SDTR negotiation"
   3443 				 * done indicator for the target to cause it
   3444 				 * to negotiate with the new setting set above.
   3445 				 */
   3446 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   3447 						cfg_word);
   3448 				cfg_word &= ~tidmask;
   3449 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   3450 						cfg_word);
   3451 			}
   3452 		}
   3453 		/*
   3454 		 * If the Inquiry data included enough space for the SPI-3
   3455 		 * Clocking field, then check if DT mode is supported.
   3456 		 */
   3457 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   3458 			(scsiq->cdb[4] >= 57 ||
   3459 				(scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   3460 			/*
   3461 			 * PPR (Parallel Protocol Request) Capable
   3462 			 *
   3463 			 * If the device supports DT mode, then it must be
   3464 			 * PPR capable.
   3465 			 * The PPR message will be used in place of the SDTR
   3466 			 * and WDTR messages to negotiate synchronous speed
   3467 			 * and offset, transfer width, and protocol options.
   3468 			 */
   3469 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   3470 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   3471 						sc->ppr_able);
   3472 				sc->ppr_able |= tidmask;
   3473 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   3474 						sc->ppr_able);
   3475 			}
   3476 		}
   3477 
   3478 		/*
   3479 		 * If the EEPROM enabled Tag Queuing for the device and the
   3480 		 * device supports Tag Queueing, then turn on the device's
   3481 		 * 'tagqng_enable' bit in the microcode and set the microcode
   3482 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   3483 		 * value.
   3484 		 *
   3485 		 * Tag Queuing is disabled for the BIOS which runs in polled
   3486 		 * mode and would see no benefit from Tag Queuing. Also by
   3487 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   3488 		 * bugs will at least work with the BIOS.
   3489 		 */
   3490 #ifdef SCSI_ADW_TAGQ_DISABLE
   3491 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   3492 #endif /* SCSI_ADW_TAGQ_DISABLE */
   3493 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   3494 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   3495 					cfg_word);
   3496 			cfg_word |= tidmask;
   3497 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   3498 					cfg_word);
   3499 
   3500 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   3501 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   3502 					sc->max_dvc_qng);
   3503 		}
   3504 	}
   3505 #endif /* FAILSAFE */
   3506 }
   3507 
   3508 
   3509 static void
   3510 AdwSleepMilliSecond(n)
   3511 u_int32_t	n;
   3512 {
   3513 
   3514 	DELAY(n * 1000);
   3515 }
   3516 
   3517 
   3518 static void
   3519 AdwDelayMicroSecond(n)
   3520 u_int32_t	n;
   3521 {
   3522 
   3523 	DELAY(n);
   3524 }
   3525 
   3526