adwlib.c revision 1.17 1 /* $NetBSD: adwlib.c,v 1.17 2000/05/27 18:24:50 dante Exp $ */
2
3 /*
4 * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 *
6 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * Author: Baldassare Dante Profeta <dante (at) mclink.it>
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39 /*
40 * Ported from:
41 */
42 /*
43 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44 *
45 * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 * All Rights Reserved.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that redistributions of source
50 * code retain the above copyright notice and this comment without
51 * modification.
52 */
53
54 #include <sys/types.h>
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/malloc.h>
58 #include <sys/kernel.h>
59 #include <sys/queue.h>
60 #include <sys/device.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 #include <dev/scsipi/scsi_all.h>
66 #include <dev/scsipi/scsipi_all.h>
67 #include <dev/scsipi/scsiconf.h>
68
69 #include <dev/pci/pcidevs.h>
70
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <vm/pmap.h>
74
75 #include <dev/ic/adwlib.h>
76 #include <dev/ic/adwmcode.h>
77 #include <dev/ic/adw.h>
78
79
80 /* Static Functions */
81
82 int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
83 int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
84 u_int8_t));
85 int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
86 int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
87 ADW_DVC_CFG *));
88 int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
89 ADW_DVC_CFG *));
90
91 static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
92 ADW_EEPROM *));
93 static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
94 ADW_EEPROM *));
95 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
96 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
97
98 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
99
100 static void AdwSleepMilliSecond __P((u_int32_t));
101 static void AdwDelayMicroSecond __P((u_int32_t));
102
103
104 /*
105 * EEPROM Configuration.
106 *
107 * All drivers should use this structure to set the default EEPROM
108 * configuration. The BIOS now uses this structure when it is built.
109 * Additional structure information can be found in adwlib.h where
110 * the structure is defined.
111 */
112 const static ADW_EEPROM adw_3550_Default_EEPROM = {
113 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
114 0x0000, /* 01 cfg_msw */
115 0xFFFF, /* 02 disc_enable */
116 0xFFFF, /* 03 wdtr_able */
117 { 0xFFFF }, /* 04 sdtr_able */
118 0xFFFF, /* 05 start_motor */
119 0xFFFF, /* 06 tagqng_able */
120 0xFFFF, /* 07 bios_scan */
121 0, /* 08 scam_tolerant */
122 7, /* 09 adapter_scsi_id */
123 0, /* bios_boot_delay */
124 3, /* 10 scsi_reset_delay */
125 0, /* bios_id_lun */
126 0, /* 11 termination */
127 0, /* reserved1 */
128 0xFFE7, /* 12 bios_ctrl */
129 { 0xFFFF }, /* 13 ultra_able */
130 { 0 }, /* 14 reserved2 */
131 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
132 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
133 0, /* 16 dvc_cntl */
134 { 0 }, /* 17 bug_fix */
135 { 0,0,0 }, /* 18-20 serial_number[3] */
136 0, /* 21 check_sum */
137 { /* 22-29 oem_name[16] */
138 0,0,0,0,0,0,0,0,
139 0,0,0,0,0,0,0,0
140 },
141 0, /* 30 dvc_err_code */
142 0, /* 31 adv_err_code */
143 0, /* 32 adv_err_addr */
144 0, /* 33 saved_dvc_err_code */
145 0, /* 34 saved_adv_err_code */
146 0 /* 35 saved_adv_err_addr */
147 };
148
149 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
150 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
151 0x0000, /* 01 cfg_msw */
152 0xFFFF, /* 02 disc_enable */
153 0xFFFF, /* 03 wdtr_able */
154 { 0x4444 }, /* 04 sdtr_speed1 */
155 0xFFFF, /* 05 start_motor */
156 0xFFFF, /* 06 tagqng_able */
157 0xFFFF, /* 07 bios_scan */
158 0, /* 08 scam_tolerant */
159 7, /* 09 adapter_scsi_id */
160 0, /* bios_boot_delay */
161 3, /* 10 scsi_reset_delay */
162 0, /* bios_id_lun */
163 0, /* 11 termination_se */
164 0, /* termination_lvd */
165 0xFFE7, /* 12 bios_ctrl */
166 { 0x4444 }, /* 13 sdtr_speed2 */
167 { 0x4444 }, /* 14 sdtr_speed3 */
168 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
169 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
170 0, /* 16 dvc_cntl */
171 { 0x4444 }, /* 17 sdtr_speed4 */
172 { 0,0,0 }, /* 18-20 serial_number[3] */
173 0, /* 21 check_sum */
174 { /* 22-29 oem_name[16] */
175 0,0,0,0,0,0,0,0,
176 0,0,0,0,0,0,0,0
177 },
178 0, /* 30 dvc_err_code */
179 0, /* 31 adv_err_code */
180 0, /* 32 adv_err_addr */
181 0, /* 33 saved_dvc_err_code */
182 0, /* 34 saved_adv_err_code */
183 0, /* 35 saved_adv_err_addr */
184 { /* 36-55 reserved1[16] */
185 0,0,0,0,0,0,0,0,0,0,
186 0,0,0,0,0,0,0,0,0,0
187 },
188 0, /* 56 cisptr_lsw */
189 0, /* 57 cisprt_msw */
190 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
191 PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
192 { 0,0,0,0 } /* 60-63 reserved2[4] */
193 };
194
195 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
196 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
197 0x0000, /* 01 cfg_msw */
198 0xFFFF, /* 02 disc_enable */
199 0xFFFF, /* 03 wdtr_able */
200 { 0x5555 }, /* 04 sdtr_speed1 */
201 0xFFFF, /* 05 start_motor */
202 0xFFFF, /* 06 tagqng_able */
203 0xFFFF, /* 07 bios_scan */
204 0, /* 08 scam_tolerant */
205 7, /* 09 adapter_scsi_id */
206 0, /* bios_boot_delay */
207 3, /* 10 scsi_reset_delay */
208 0, /* bios_id_lun */
209 0, /* 11 termination_se */
210 0, /* termination_lvd */
211 0xFFE7, /* 12 bios_ctrl */
212 { 0x5555 }, /* 13 sdtr_speed2 */
213 { 0x5555 }, /* 14 sdtr_speed3 */
214 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
215 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
216 0, /* 16 dvc_cntl */
217 { 0x5555 }, /* 17 sdtr_speed4 */
218 { 0,0,0 }, /* 18-20 serial_number[3] */
219 0, /* 21 check_sum */
220 { /* 22-29 oem_name[16] */
221 0,0,0,0,0,0,0,0,
222 0,0,0,0,0,0,0,0
223 },
224 0, /* 30 dvc_err_code */
225 0, /* 31 adv_err_code */
226 0, /* 32 adv_err_addr */
227 0, /* 33 saved_dvc_err_code */
228 0, /* 34 saved_adv_err_code */
229 0, /* 35 saved_adv_err_addr */
230 { /* 36-55 reserved1[16] */
231 0,0,0,0,0,0,0,0,0,0,
232 0,0,0,0,0,0,0,0,0,0
233 },
234 0, /* 56 cisptr_lsw */
235 0, /* 57 cisprt_msw */
236 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
237 PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
238 { 0,0,0,0 } /* 60-63 reserved2[4] */
239 };
240
241
242 /*
243 * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
244 * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
245 * all of this is done.
246 *
247 * For a non-fatal error return a warning code. If there are no warnings
248 * then 0 is returned.
249 *
250 * Note: Chip is stopped on entry.
251 */
252 int
253 AdwInitFromEEPROM(sc)
254 ADW_SOFTC *sc;
255 {
256 bus_space_tag_t iot = sc->sc_iot;
257 bus_space_handle_t ioh = sc->sc_ioh;
258 ADW_EEPROM eep_config;
259 u_int16_t warn_code;
260 u_int16_t sdtr_speed = 0;
261 u_int8_t tid, termination;
262 int i, j;
263
264
265 warn_code = 0;
266
267 /*
268 * Read the board's EEPROM configuration.
269 *
270 * Set default values if a bad checksum is found.
271 *
272 * XXX - Don't handle big-endian access to EEPROM yet.
273 */
274 if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
275 warn_code |= ADW_WARN_EEPROM_CHKSUM;
276
277 /*
278 * Set EEPROM default values.
279 */
280 switch(sc->chip_type) {
281 case ADW_CHIP_ASC3550:
282 eep_config = adw_3550_Default_EEPROM;
283 break;
284 case ADW_CHIP_ASC38C0800:
285 eep_config = adw_38C0800_Default_EEPROM;
286 break;
287 case ADW_CHIP_ASC38C1600:
288 eep_config = adw_38C1600_Default_EEPROM;
289
290 // XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
291 if (sc->cfg.pci_slot_info != 0) {
292 u_int8_t lsw_msb;
293
294 lsw_msb = eep_config.cfg_lsw >> 8;
295 /*
296 * Set Function 1 EEPROM Word 0 MSB
297 *
298 * Clear the BIOS_ENABLE (bit 14) and
299 * INTAB (bit 11) EEPROM bits.
300 *
301 * Disable Bit 14 (BIOS_ENABLE) to fix
302 * SPARC Ultra 60 and old Mac system booting
303 * problem. The Expansion ROM must
304 * be disabled in Function 1 for these systems.
305 */
306 lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
307 ADW_EEPROM_INTAB) >> 8) & 0xFF);
308 /*
309 * Set the INTAB (bit 11) if the GPIO 0 input
310 * indicates the Function 1 interrupt line is
311 * wired to INTA.
312 *
313 * Set/Clear Bit 11 (INTAB) from
314 * the GPIO bit 0 input:
315 * 1 - Function 1 intr line wired to INT A.
316 * 0 - Function 1 intr line wired to INT B.
317 *
318 * Note: Adapter boards always have Function 0
319 * wired to INTA.
320 * Put all 5 GPIO bits in input mode and then
321 * read their input values.
322 */
323 ADW_WRITE_BYTE_REGISTER(iot, ioh,
324 IOPB_GPIO_CNTL, 0);
325 if (ADW_READ_BYTE_REGISTER(iot, ioh,
326 IOPB_GPIO_DATA) & 0x01) {
327 /*
328 * Function 1 interrupt wired to INTA;
329 * Set EEPROM bit.
330 */
331 lsw_msb |= (ADW_EEPROM_INTAB >> 8)
332 & 0xFF;
333 }
334 eep_config.cfg_lsw &= 0x00FF;
335 eep_config.cfg_lsw |= lsw_msb << 8;
336 }
337 break;
338 }
339
340 /*
341 * Assume the 6 byte board serial number that was read
342 * from EEPROM is correct even if the EEPROM checksum
343 * failed.
344 */
345 for (i=2, j=1; i>=0; i--, j++) {
346 eep_config.serial_number[i] =
347 AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
348 }
349
350 AdwSetEEPROMConfig(iot, ioh, &eep_config);
351 }
352 /*
353 * Set sc and sc->cfg variables from the EEPROM configuration
354 * that was read.
355 *
356 * This is the mapping of EEPROM fields to Adw Library fields.
357 */
358 sc->wdtr_able = eep_config.wdtr_able;
359 if (sc->chip_type == ADW_CHIP_ASC3550) {
360 sc->sdtr_able = eep_config.sdtr1.sdtr_able;
361 sc->ultra_able = eep_config.sdtr2.ultra_able;
362 } else {
363 sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
364 sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
365 sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
366 sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
367 }
368 sc->ppr_able = 0;
369 sc->tagqng_able = eep_config.tagqng_able;
370 sc->cfg.disc_enable = eep_config.disc_enable;
371 sc->max_host_qng = eep_config.max_host_qng;
372 sc->max_dvc_qng = eep_config.max_dvc_qng;
373 sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
374 sc->start_motor = eep_config.start_motor;
375 sc->scsi_reset_wait = eep_config.scsi_reset_delay;
376 sc->bios_ctrl = eep_config.bios_ctrl;
377 sc->no_scam = eep_config.scam_tolerant;
378 sc->cfg.serial1 = eep_config.serial_number[0];
379 sc->cfg.serial2 = eep_config.serial_number[1];
380 sc->cfg.serial3 = eep_config.serial_number[2];
381
382 if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
383 sc->chip_type == ADW_CHIP_ASC38C1600) {
384 sc->sdtr_able = 0;
385 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
386 if (tid == 0) {
387 sdtr_speed = sc->sdtr_speed1;
388 } else if (tid == 4) {
389 sdtr_speed = sc->sdtr_speed2;
390 } else if (tid == 8) {
391 sdtr_speed = sc->sdtr_speed3;
392 } else if (tid == 12) {
393 sdtr_speed = sc->sdtr_speed4;
394 }
395 if (sdtr_speed & ADW_MAX_TID) {
396 sc->sdtr_able |= (1 << tid);
397 }
398 sdtr_speed >>= 4;
399 }
400 }
401
402 /*
403 * Set the host maximum queuing (max. 253, min. 16) and the per device
404 * maximum queuing (max. 63, min. 4).
405 */
406 if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
407 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
408 } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
409 {
410 /* If the value is zero, assume it is uninitialized. */
411 if (eep_config.max_host_qng == 0) {
412 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
413 } else {
414 eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
415 }
416 }
417
418 if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
419 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
420 } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
421 /* If the value is zero, assume it is uninitialized. */
422 if (eep_config.max_dvc_qng == 0) {
423 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
424 } else {
425 eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
426 }
427 }
428
429 /*
430 * If 'max_dvc_qng' is greater than 'max_host_qng', then
431 * set 'max_dvc_qng' to 'max_host_qng'.
432 */
433 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
434 eep_config.max_dvc_qng = eep_config.max_host_qng;
435 }
436
437 /*
438 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
439 * values based on possibly adjusted EEPROM values.
440 */
441 sc->max_host_qng = eep_config.max_host_qng;
442 sc->max_dvc_qng = eep_config.max_dvc_qng;
443
444
445 /*
446 * If the EEPROM 'termination' field is set to automatic (0), then set
447 * the ADV_DVC_CFG 'termination' field to automatic also.
448 *
449 * If the termination is specified with a non-zero 'termination'
450 * value check that a legal value is set and set the ADV_DVC_CFG
451 * 'termination' field appropriately.
452 */
453
454 switch(sc->chip_type) {
455 case ADW_CHIP_ASC3550:
456 sc->cfg.termination = 0; /* auto termination */
457 switch(eep_config.termination_se) {
458 case 3:
459 /* Enable manual control with low on / high on. */
460 sc->cfg.termination |= ADW_TERM_CTL_L;
461 case 2:
462 /* Enable manual control with low off / high on. */
463 sc->cfg.termination |= ADW_TERM_CTL_H;
464 case 1:
465 /* Enable manual control with low off / high off. */
466 sc->cfg.termination |= ADW_TERM_CTL_SEL;
467 case 0:
468 break;
469 default:
470 warn_code |= ADW_WARN_EEPROM_TERMINATION;
471 }
472 break;
473
474 case ADW_CHIP_ASC38C0800:
475 case ADW_CHIP_ASC38C1600:
476 switch(eep_config.termination_se) {
477 case 0:
478 /* auto termination for SE */
479 termination = 0;
480 break;
481 case 1:
482 /* Enable manual control with low off / high off. */
483 termination = 0;
484 break;
485 case 2:
486 /* Enable manual control with low off / high on. */
487 termination = ADW_TERM_SE_HI;
488 break;
489 case 3:
490 /* Enable manual control with low on / high on. */
491 termination = ADW_TERM_SE;
492 break;
493 default:
494 /*
495 * The EEPROM 'termination_se' field contains a
496 * bad value. Use automatic termination instead.
497 */
498 termination = 0;
499 warn_code |= ADW_WARN_EEPROM_TERMINATION;
500 }
501
502 switch(eep_config.termination_lvd) {
503 case 0:
504 /* auto termination for LVD */
505 sc->cfg.termination = termination;
506 break;
507 case 1:
508 /* Enable manual control with low off / high off. */
509 sc->cfg.termination = termination;
510 break;
511 case 2:
512 /* Enable manual control with low off / high on. */
513 sc->cfg.termination = termination | ADW_TERM_LVD_HI;
514 break;
515 case 3:
516 /* Enable manual control with low on / high on. */
517 sc->cfg.termination = termination | ADW_TERM_LVD;
518 break;
519 default:
520 /*
521 * The EEPROM 'termination_lvd' field contains a
522 * bad value. Use automatic termination instead.
523 */
524 sc->cfg.termination = termination;
525 warn_code |= ADW_WARN_EEPROM_TERMINATION;
526 }
527 break;
528 }
529
530 return warn_code;
531 }
532
533
534 /*
535 * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
536 *
537 * On failure return the error code.
538 */
539 int
540 AdwInitDriver(sc)
541 ADW_SOFTC *sc;
542 {
543 bus_space_tag_t iot = sc->sc_iot;
544 bus_space_handle_t ioh = sc->sc_ioh;
545 u_int16_t error_code;
546 int word;
547 int i;
548 u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
549 0x40-0x8F. */
550 u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
551 u_int8_t max_cmd[ADW_MAX_TID + 1];
552 u_int8_t tid;
553
554
555 error_code = 0;
556
557 /*
558 * Save the RISC memory BIOS region before writing the microcode.
559 * The BIOS may already be loaded and using its RISC LRAM region
560 * so its region must be saved and restored.
561 *
562 * Note: This code makes the assumption, which is currently true,
563 * that a chip reset does not clear RISC LRAM.
564 */
565 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
566 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
567 }
568
569 /*
570 * Save current per TID negotiated values.
571 */
572 switch (sc->chip_type) {
573 case ADW_CHIP_ASC3550:
574 if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
575
576 u_int16_t bios_version, major, minor;
577
578 bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
579 ADW_MC_BIOSMEM) / 2];
580 major = (bios_version >> 12) & 0xF;
581 minor = (bios_version >> 8) & 0xF;
582 if (major < 3 || (major == 3 && minor == 1)) {
583 /*
584 * BIOS 3.1 and earlier location of
585 * 'wdtr_able' variable.
586 */
587 ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
588 } else {
589 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
590 wdtr_able);
591 }
592 }
593 break;
594
595 case ADW_CHIP_ASC38C1600:
596 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
597 /* FALLTHROUGH */
598 case ADW_CHIP_ASC38C0800:
599 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
600 break;
601 }
602 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
603 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
604 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
605 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
606 max_cmd[tid]);
607 }
608
609 /*
610 * Perform a RAM Built-In Self Test
611 */
612 if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
613 return error_code;
614 }
615
616 /*
617 * Load the Microcode
618 */
619 ;
620 if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
621 return error_code;
622 }
623
624 /*
625 * Read microcode version and date.
626 */
627 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
628 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
629
630 /*
631 * If the PCI Configuration Command Register "Parity Error Response
632 * Control" Bit was clear (0), then set the microcode variable
633 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
634 * to ignore DMA parity errors.
635 */
636 if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
637 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
638 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
639 word | CONTROL_FLAG_IGNORE_PERR);
640 }
641
642 switch (sc->chip_type) {
643 case ADW_CHIP_ASC3550:
644 /*
645 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
646 * FIFO threshold of 128 bytes.
647 * This register is only accessible to the host.
648 */
649 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
650 START_CTL_EMFU | READ_CMD_MRM);
651 break;
652
653 case ADW_CHIP_ASC38C0800:
654 /*
655 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
656 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
657 * cable detection and then we are able to read C_DET[3:0].
658 *
659 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
660 * Microcode Default Value' section below.
661 */
662 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
663 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
664 | ADW_DIS_TERM_DRV);
665
666 /*
667 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
668 * START_CTL_TH [3:2] bits for the default FIFO threshold.
669 *
670 * Note: ASC-38C0800 FIFO threshold has been changed to
671 * 256 bytes.
672 *
673 * For DMA Errata #4 set the BC_THRESH_ENB bit.
674 */
675 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
676 BC_THRESH_ENB | FIFO_THRESH_80B
677 | START_CTL_TH | READ_CMD_MRM);
678 break;
679
680 case ADW_CHIP_ASC38C1600:
681 /*
682 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
683 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
684 * cable detection and then we are able to read C_DET[3:0].
685 *
686 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
687 * Microcode Default Value' section below.
688 */
689 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
690 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
691 | ADW_DIS_TERM_DRV);
692
693 /*
694 * If the BIOS control flag AIPP (Asynchronous Information
695 * Phase Protection) disable bit is not set, then set the
696 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
697 * enable AIPP checking and encoding.
698 */
699 if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
700 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
701 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
702 word | CONTROL_FLAG_ENABLE_AIPP);
703 }
704
705 /*
706 * For ASC-38C1600 use DMA_CFG0 default values:
707 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
708 */
709 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
710 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
711 break;
712 }
713
714 /*
715 * Microcode operating variables for WDTR, SDTR, and command tag
716 * queuing will be set in AdvInquiryHandling() based on what a
717 * device reports it is capable of in Inquiry byte 7.
718 *
719 * If SCSI Bus Resets have been disabled, then directly set
720 * SDTR and WDTR from the EEPROM configuration. This will allow
721 * the BIOS and warm boot to work without a SCSI bus hang on
722 * the Inquiry caused by host and target mismatched DTR values.
723 * Without the SCSI Bus Reset, before an Inquiry a device can't
724 * be assumed to be in Asynchronous, Narrow mode.
725 */
726 if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
727 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
728 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
729 }
730
731 /*
732 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
733 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
734 * bitmask. These values determine the maximum SDTR speed negotiated
735 * with a device.
736 *
737 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
738 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
739 * without determining here whether the device supports SDTR.
740 */
741 switch (sc->chip_type) {
742 case ADW_CHIP_ASC3550:
743 word = 0;
744 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
745 if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
746 /* Set Ultra speed for TID 'tid'. */
747 word |= (0x3 << (4 * (tid % 4)));
748 } else {
749 /* Set Fast speed for TID 'tid'. */
750 word |= (0x2 << (4 * (tid % 4)));
751 }
752 /* Check if done with sdtr_speed1. */
753 if (tid == 3) {
754 ADW_WRITE_WORD_LRAM(iot, ioh,
755 ADW_MC_SDTR_SPEED1, word);
756 word = 0;
757 /* Check if done with sdtr_speed2. */
758 } else if (tid == 7) {
759 ADW_WRITE_WORD_LRAM(iot, ioh,
760 ADW_MC_SDTR_SPEED2, word);
761 word = 0;
762 /* Check if done with sdtr_speed3. */
763 } else if (tid == 11) {
764 ADW_WRITE_WORD_LRAM(iot, ioh,
765 ADW_MC_SDTR_SPEED3, word);
766 word = 0;
767 /* Check if done with sdtr_speed4. */
768 } else if (tid == 15) {
769 ADW_WRITE_WORD_LRAM(iot, ioh,
770 ADW_MC_SDTR_SPEED4, word);
771 /* End of loop. */
772 }
773 }
774
775 /*
776 * Set microcode operating variable for the
777 * disconnect per TID bitmask.
778 */
779 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
780 sc->cfg.disc_enable);
781 break;
782
783 case ADW_CHIP_ASC38C0800:
784 /* FALLTHROUGH */
785 case ADW_CHIP_ASC38C1600:
786 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
787 sc->cfg.disc_enable);
788 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
789 sc->sdtr_speed1);
790 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
791 sc->sdtr_speed2);
792 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
793 sc->sdtr_speed3);
794 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
795 sc->sdtr_speed4);
796 break;
797 }
798
799
800 /*
801 * Set SCSI_CFG0 Microcode Default Value.
802 *
803 * The microcode will set the SCSI_CFG0 register using this value
804 * after it is started below.
805 */
806 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
807 ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
808 ADW_OUR_ID_EN | sc->chip_scsi_id);
809
810
811 switch(sc->chip_type) {
812 case ADW_CHIP_ASC3550:
813 error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
814 break;
815
816 case ADW_CHIP_ASC38C0800:
817 error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
818 break;
819
820 case ADW_CHIP_ASC38C1600:
821 error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
822 break;
823 }
824 if(error_code) {
825 return error_code;
826 }
827
828 /*
829 * Set SEL_MASK Microcode Default Value
830 *
831 * The microcode will set the SEL_MASK register using this value
832 * after it is started below.
833 */
834 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
835 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
836
837 /*
838 * Create and Initialize Host->RISC Carrier lists
839 */
840 sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
841 sc->sc_control->carriers);
842
843 /*
844 * Set-up the Host->RISC Initiator Command Queue (ICQ).
845 */
846
847 if ((sc->icq_sp = sc->carr_freelist) == NULL) {
848 return ADW_IERR_NO_CARRIER;
849 }
850 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
851 ASC_GET_CARRP(sc->icq_sp->next_ba));
852
853 /*
854 * The first command issued will be placed in the stopper carrier.
855 */
856 sc->icq_sp->next_ba = ASC_CQ_STOPPER;
857
858 /*
859 * Set RISC ICQ physical address start value.
860 */
861 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
862
863 /*
864 * Initialize the COMMA register to the same value otherwise
865 * the RISC will prematurely detect a command is available.
866 */
867 if(sc->chip_type == ADW_CHIP_ASC38C1600) {
868 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
869 sc->icq_sp->carr_ba);
870 }
871
872 /*
873 * Set-up the RISC->Host Initiator Response Queue (IRQ).
874 */
875 if ((sc->irq_sp = sc->carr_freelist) == NULL) {
876 return ADW_IERR_NO_CARRIER;
877 }
878 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
879 ASC_GET_CARRP(sc->irq_sp->next_ba));
880
881 /*
882 * The first command completed by the RISC will be placed in
883 * the stopper.
884 *
885 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
886 * completed the RISC will set the ASC_RQ_DONE bit.
887 */
888 sc->irq_sp->next_ba = ASC_CQ_STOPPER;
889
890 /*
891 * Set RISC IRQ physical address start value.
892 */
893 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
894 sc->carr_pending_cnt = 0;
895
896 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
897 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
898 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
899 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
900
901 /* finally, finally, gentlemen, start your engine */
902 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
903
904 /*
905 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
906 * Resets should be performed. The RISC has to be running
907 * to issue a SCSI Bus Reset.
908 */
909 if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
910 {
911 /*
912 * If the BIOS Signature is present in memory, restore the
913 * BIOS Handshake Configuration Table and do not perform
914 * a SCSI Bus Reset.
915 */
916 if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
917 0x55AA) {
918 /*
919 * Restore per TID negotiated values.
920 */
921 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
922 wdtr_able);
923 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
924 sdtr_able);
925 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
926 tagqng_able);
927 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
928 ADW_WRITE_BYTE_LRAM(iot, ioh,
929 ADW_MC_NUMBER_OF_MAX_CMD + tid,
930 max_cmd[tid]);
931 }
932 } else {
933 if (AdwResetCCB(sc) != ADW_TRUE) {
934 error_code = ADW_WARN_BUSRESET_ERROR;
935 }
936 }
937 }
938
939 return error_code;
940 }
941
942
943 int
944 AdwRamSelfTest(iot, ioh, chip_type)
945 bus_space_tag_t iot;
946 bus_space_handle_t ioh;
947 u_int8_t chip_type;
948 {
949 int i;
950 u_int8_t byte;
951
952
953 if ((chip_type == ADW_CHIP_ASC38C0800) ||
954 (chip_type == ADW_CHIP_ASC38C1600)) {
955 /*
956 * RAM BIST (RAM Built-In Self Test)
957 *
958 * Address : I/O base + offset 0x38h register (byte).
959 * Function: Bit 7-6(RW) : RAM mode
960 * Normal Mode : 0x00
961 * Pre-test Mode : 0x40
962 * RAM Test Mode : 0x80
963 * Bit 5 : unused
964 * Bit 4(RO) : Done bit
965 * Bit 3-0(RO) : Status
966 * Host Error : 0x08
967 * Int_RAM Error : 0x04
968 * RISC Error : 0x02
969 * SCSI Error : 0x01
970 * No Error : 0x00
971 *
972 * Note: RAM BIST code should be put right here, before loading
973 * the microcode and after saving the RISC memory BIOS region.
974 */
975
976 /*
977 * LRAM Pre-test
978 *
979 * Write PRE_TEST_MODE (0x40) to register and wait for
980 * 10 milliseconds.
981 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
982 * return an error. Reset to NORMAL_MODE (0x00) and do again.
983 * If cannot reset to NORMAL_MODE, return an error too.
984 */
985 for (i = 0; i < 2; i++) {
986 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
987 PRE_TEST_MODE);
988 /* Wait for 10ms before reading back. */
989 AdwSleepMilliSecond(10);
990 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
991 if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
992 PRE_TEST_VALUE) {
993 return ADW_IERR_BIST_PRE_TEST;
994 }
995
996 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
997 NORMAL_MODE);
998 /* Wait for 10ms before reading back. */
999 AdwSleepMilliSecond(10);
1000 if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1001 != NORMAL_VALUE) {
1002 return ADW_IERR_BIST_PRE_TEST;
1003 }
1004 }
1005
1006 /*
1007 * LRAM Test - It takes about 1.5 ms to run through the test.
1008 *
1009 * Write RAM_TEST_MODE (0x80) to register and wait for
1010 * 10 milliseconds.
1011 * If Done bit not set or Status not 0, save register byte,
1012 * set the err_code, and return an error.
1013 */
1014 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1015 /* Wait for 10ms before checking status. */
1016 AdwSleepMilliSecond(10);
1017
1018 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1019 if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1020 /* Get here if Done bit not set or Status not 0. */
1021 return ADW_IERR_BIST_RAM_TEST;
1022 }
1023
1024 /* We need to reset back to normal mode after LRAM test passes*/
1025 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1026 }
1027
1028 return 0;
1029 }
1030
1031
1032 int
1033 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1034 bus_space_tag_t iot;
1035 bus_space_handle_t ioh;
1036 u_int16_t *bios_mem;
1037 u_int8_t chip_type;
1038 {
1039 u_int8_t *mcode_data;
1040 u_int32_t mcode_chksum;
1041 u_int16_t mcode_size;
1042 u_int32_t sum;
1043 u_int16_t code_sum;
1044 int begin_addr;
1045 int end_addr;
1046 int word;
1047 int adw_memsize;
1048 int adw_mcode_expanded_size;
1049 int i, j;
1050
1051
1052 switch(chip_type) {
1053 case ADW_CHIP_ASC3550:
1054 mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1055 mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1056 mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1057 adw_memsize = ADW_3550_MEMSIZE;
1058 break;
1059
1060 case ADW_CHIP_ASC38C0800:
1061 mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1062 mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1063 mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1064 adw_memsize = ADW_38C0800_MEMSIZE;
1065 break;
1066
1067 case ADW_CHIP_ASC38C1600:
1068 mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1069 mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1070 mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1071 adw_memsize = ADW_38C1600_MEMSIZE;
1072 break;
1073 }
1074
1075 /*
1076 * Write the microcode image to RISC memory starting at address 0.
1077 */
1078 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1079
1080 /* Assume the following compressed format of the microcode buffer:
1081 *
1082 * 254 word (508 byte) table indexed by byte code followed
1083 * by the following byte codes:
1084 *
1085 * 1-Byte Code:
1086 * 00: Emit word 0 in table.
1087 * 01: Emit word 1 in table.
1088 * .
1089 * FD: Emit word 253 in table.
1090 *
1091 * Multi-Byte Code:
1092 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1093 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1094 */
1095 word = 0;
1096 for (i = 253 * 2; i < mcode_size; i++) {
1097 if (mcode_data[i] == 0xff) {
1098 for (j = 0; j < mcode_data[i + 1]; j++) {
1099 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1100 (((u_int16_t)mcode_data[i + 3] << 8) |
1101 mcode_data[i + 2]));
1102 word++;
1103 }
1104 i += 3;
1105 } else if (mcode_data[i] == 0xfe) {
1106 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1107 (((u_int16_t)mcode_data[i + 2] << 8) |
1108 mcode_data[i + 1]));
1109 i += 2;
1110 word++;
1111 } else {
1112 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1113 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1114 mcode_data[mcode_data[i] * 2]));
1115 word++;
1116 }
1117 }
1118
1119 /*
1120 * Set 'word' for later use to clear the rest of memory and save
1121 * the expanded mcode size.
1122 */
1123 word *= 2;
1124 adw_mcode_expanded_size = word;
1125
1126 /*
1127 * Clear the rest of the Internal RAM.
1128 */
1129 for (; word < adw_memsize; word += 2) {
1130 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1131 }
1132
1133 /*
1134 * Verify the microcode checksum.
1135 */
1136 sum = 0;
1137 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1138
1139 for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1140 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1141 }
1142
1143 if (sum != mcode_chksum) {
1144 return ADW_IERR_MCODE_CHKSUM;
1145 }
1146
1147 /*
1148 * Restore the RISC memory BIOS region.
1149 */
1150 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1151 if(chip_type == ADW_CHIP_ASC3550) {
1152 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1153 bios_mem[i]);
1154 } else {
1155 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1156 bios_mem[i]);
1157 }
1158 }
1159
1160 /*
1161 * Calculate and write the microcode code checksum to the microcode
1162 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1163 */
1164 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1165 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1166 code_sum = 0;
1167 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1168 for (word = begin_addr; word < end_addr; word += 2) {
1169 code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1170 }
1171 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1172
1173 /*
1174 * Set the chip type.
1175 */
1176 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1177
1178 return 0;
1179 }
1180
1181
1182 int
1183 AdwASC3550Cabling(iot, ioh, cfg)
1184 bus_space_tag_t iot;
1185 bus_space_handle_t ioh;
1186 ADW_DVC_CFG *cfg;
1187 {
1188 u_int16_t scsi_cfg1;
1189
1190
1191 /*
1192 * Determine SCSI_CFG1 Microcode Default Value.
1193 *
1194 * The microcode will set the SCSI_CFG1 register using this value
1195 * after it is started below.
1196 */
1197
1198 /* Read current SCSI_CFG1 Register value. */
1199 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1200
1201 /*
1202 * If all three connectors are in use in ASC3550, return an error.
1203 */
1204 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1205 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1206 return ADW_IERR_ILLEGAL_CONNECTION;
1207 }
1208
1209 /*
1210 * If the cable is reversed all of the SCSI_CTRL register signals
1211 * will be set. Check for and return an error if this condition is
1212 * found.
1213 */
1214 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1215 return ADW_IERR_REVERSED_CABLE;
1216 }
1217
1218 /*
1219 * If this is a differential board and a single-ended device
1220 * is attached to one of the connectors, return an error.
1221 */
1222 if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1223 (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1224 return ADW_IERR_SINGLE_END_DEVICE;
1225 }
1226
1227 /*
1228 * If automatic termination control is enabled, then set the
1229 * termination value based on a table listed in a_condor.h.
1230 *
1231 * If manual termination was specified with an EEPROM setting
1232 * then 'termination' was set-up in AdwInitFromEEPROM() and
1233 * is ready to be 'ored' into SCSI_CFG1.
1234 */
1235 if (cfg->termination == 0) {
1236 /*
1237 * The software always controls termination by setting
1238 * TERM_CTL_SEL.
1239 * If TERM_CTL_SEL were set to 0, the hardware would set
1240 * termination.
1241 */
1242 cfg->termination |= ADW_TERM_CTL_SEL;
1243
1244 switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1245 /* TERM_CTL_H: on, TERM_CTL_L: on */
1246 case 0x3: case 0x7: case 0xB:
1247 case 0xD: case 0xE: case 0xF:
1248 cfg->termination |=
1249 (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1250 break;
1251
1252 /* TERM_CTL_H: on, TERM_CTL_L: off */
1253 case 0x1: case 0x5: case 0x9:
1254 case 0xA: case 0xC:
1255 cfg->termination |= ADW_TERM_CTL_H;
1256 break;
1257
1258 /* TERM_CTL_H: off, TERM_CTL_L: off */
1259 case 0x2: case 0x6:
1260 break;
1261 }
1262 }
1263
1264 /*
1265 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1266 */
1267 scsi_cfg1 &= ~ADW_TERM_CTL;
1268
1269 /*
1270 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1271 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1272 * referenced, because the hardware internally inverts
1273 * the Termination High and Low bits if TERM_POL is set.
1274 */
1275 scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1276
1277 /*
1278 * Set SCSI_CFG1 Microcode Default Value
1279 *
1280 * Set filter value and possibly modified termination control
1281 * bits in the Microcode SCSI_CFG1 Register Value.
1282 *
1283 * The microcode will set the SCSI_CFG1 register using this value
1284 * after it is started below.
1285 */
1286 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1287 ADW_FLTR_DISABLE | scsi_cfg1);
1288
1289 /*
1290 * Set MEM_CFG Microcode Default Value
1291 *
1292 * The microcode will set the MEM_CFG register using this value
1293 * after it is started below.
1294 *
1295 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1296 * are defined.
1297 *
1298 * ASC-3550 has 8KB internal memory.
1299 */
1300 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1301 ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1302
1303 return 0;
1304 }
1305
1306
1307 int
1308 AdwASC38C0800Cabling(iot, ioh, cfg)
1309 bus_space_tag_t iot;
1310 bus_space_handle_t ioh;
1311 ADW_DVC_CFG *cfg;
1312 {
1313 u_int16_t scsi_cfg1;
1314
1315
1316 /*
1317 * Determine SCSI_CFG1 Microcode Default Value.
1318 *
1319 * The microcode will set the SCSI_CFG1 register using this value
1320 * after it is started below.
1321 */
1322
1323 /* Read current SCSI_CFG1 Register value. */
1324 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1325
1326 /*
1327 * If the cable is reversed all of the SCSI_CTRL register signals
1328 * will be set. Check for and return an error if this condition is
1329 * found.
1330 */
1331 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1332 return ADW_IERR_REVERSED_CABLE;
1333 }
1334
1335 /*
1336 * All kind of combinations of devices attached to one of four
1337 * connectors are acceptable except HVD device attached.
1338 * For example, LVD device can be attached to SE connector while
1339 * SE device attached to LVD connector.
1340 * If LVD device attached to SE connector, it only runs up to
1341 * Ultra speed.
1342 *
1343 * If an HVD device is attached to one of LVD connectors, return
1344 * an error.
1345 * However, there is no way to detect HVD device attached to
1346 * SE connectors.
1347 */
1348 if (scsi_cfg1 & ADW_HVD) {
1349 return ADW_IERR_HVD_DEVICE;
1350 }
1351
1352 /*
1353 * If either SE or LVD automatic termination control is enabled, then
1354 * set the termination value based on a table listed in a_condor.h.
1355 *
1356 * If manual termination was specified with an EEPROM setting then
1357 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1358 * to be 'ored' into SCSI_CFG1.
1359 */
1360 if ((cfg->termination & ADW_TERM_SE) == 0) {
1361 /* SE automatic termination control is enabled. */
1362 switch(scsi_cfg1 & ADW_C_DET_SE) {
1363 /* TERM_SE_HI: on, TERM_SE_LO: on */
1364 case 0x1: case 0x2: case 0x3:
1365 cfg->termination |= ADW_TERM_SE;
1366 break;
1367
1368 /* TERM_SE_HI: on, TERM_SE_LO: off */
1369 case 0x0:
1370 cfg->termination |= ADW_TERM_SE_HI;
1371 break;
1372 }
1373 }
1374
1375 if ((cfg->termination & ADW_TERM_LVD) == 0) {
1376 /* LVD automatic termination control is enabled. */
1377 switch(scsi_cfg1 & ADW_C_DET_LVD) {
1378 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1379 case 0x4: case 0x8: case 0xC:
1380 cfg->termination |= ADW_TERM_LVD;
1381 break;
1382
1383 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1384 case 0x0:
1385 break;
1386 }
1387 }
1388
1389 /*
1390 * Clear any set TERM_SE and TERM_LVD bits.
1391 */
1392 scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1393
1394 /*
1395 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1396 */
1397 scsi_cfg1 |= (~cfg->termination & 0xF0);
1398
1399 /*
1400 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1401 * HVD/LVD/SE bits and set possibly modified termination control bits
1402 * in the Microcode SCSI_CFG1 Register Value.
1403 */
1404 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1405 ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1406
1407 /*
1408 * Set SCSI_CFG1 Microcode Default Value
1409 *
1410 * Set possibly modified termination control and reset DIS_TERM_DRV
1411 * bits in the Microcode SCSI_CFG1 Register Value.
1412 *
1413 * The microcode will set the SCSI_CFG1 register using this value
1414 * after it is started below.
1415 */
1416 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1417
1418 /*
1419 * Set MEM_CFG Microcode Default Value
1420 *
1421 * The microcode will set the MEM_CFG register using this value
1422 * after it is started below.
1423 *
1424 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1425 * are defined.
1426 *
1427 * ASC-38C0800 has 16KB internal memory.
1428 */
1429 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1430 ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1431
1432 return 0;
1433 }
1434
1435
1436 int
1437 AdwASC38C1600Cabling(iot, ioh, cfg)
1438 bus_space_tag_t iot;
1439 bus_space_handle_t ioh;
1440 ADW_DVC_CFG *cfg;
1441 {
1442 u_int16_t scsi_cfg1;
1443
1444
1445 /*
1446 * Determine SCSI_CFG1 Microcode Default Value.
1447 *
1448 * The microcode will set the SCSI_CFG1 register using this value
1449 * after it is started below.
1450 * Each ASC-38C1600 function has only two cable detect bits.
1451 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1452 */
1453
1454 /* Read current SCSI_CFG1 Register value. */
1455 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1456
1457 /*
1458 * If the cable is reversed all of the SCSI_CTRL register signals
1459 * will be set. Check for and return an error if this condition is
1460 * found.
1461 */
1462 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1463 return ADW_IERR_REVERSED_CABLE;
1464 }
1465
1466 /*
1467 * Each ASC-38C1600 function has two connectors. Only an HVD device
1468 * can not be connected to either connector. An LVD device or SE device
1469 * may be connected to either connecor. If an SE device is connected,
1470 * then at most Ultra speed (20 Mhz) can be used on both connectors.
1471 *
1472 * If an HVD device is attached, return an error.
1473 */
1474 if (scsi_cfg1 & ADW_HVD) {
1475 return ADW_IERR_HVD_DEVICE;
1476 }
1477
1478 /*
1479 * Each function in the ASC-38C1600 uses only the SE cable detect and
1480 * termination because there are two connectors for each function.
1481 * Each function may use either LVD or SE mode.
1482 * Corresponding the SE automatic termination control EEPROM bits are
1483 * used for each function.
1484 * Each function has its own EEPROM. If SE automatic control is enabled
1485 * for the function, then set the termination value based on a table
1486 * listed in adwlib.h.
1487 *
1488 * If manual termination is specified in the EEPROM for the function,
1489 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1490 * ready to be 'ored' into SCSI_CFG1.
1491 */
1492 if ((cfg->termination & ADW_TERM_SE) == 0) {
1493 /* SE automatic termination control is enabled. */
1494 switch(scsi_cfg1 & ADW_C_DET_SE) {
1495 /* TERM_SE_HI: on, TERM_SE_LO: on */
1496 case 0x1: case 0x2: case 0x3:
1497 cfg->termination |= ADW_TERM_SE;
1498 break;
1499
1500 case 0x0:
1501 /* !!!!TODO!!!! */
1502 // if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1503 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1504 // }
1505 // else
1506 // {
1507 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1508 cfg->termination |= ADW_TERM_SE_HI;
1509 // }
1510 break;
1511 }
1512 }
1513
1514 /*
1515 * Clear any set TERM_SE bits.
1516 */
1517 scsi_cfg1 &= ~ADW_TERM_SE;
1518
1519 /*
1520 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1521 */
1522 scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1523
1524 /*
1525 * Clear Big Endian and Terminator Polarity bits and set possibly
1526 * modified termination control bits in the Microcode SCSI_CFG1
1527 * Register Value.
1528 */
1529 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1530
1531 /*
1532 * Set SCSI_CFG1 Microcode Default Value
1533 *
1534 * Set possibly modified termination control bits in the Microcode
1535 * SCSI_CFG1 Register Value.
1536 *
1537 * The microcode will set the SCSI_CFG1 register using this value
1538 * after it is started below.
1539 */
1540 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1541
1542 /*
1543 * Set MEM_CFG Microcode Default Value
1544 *
1545 * The microcode will set the MEM_CFG register using this value
1546 * after it is started below.
1547 *
1548 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1549 * are defined.
1550 *
1551 * ASC-38C1600 has 32KB internal memory.
1552 */
1553 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1554 ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1555
1556 return 0;
1557 }
1558
1559
1560 /*
1561 * Read EEPROM configuration into the specified buffer.
1562 *
1563 * Return a checksum based on the EEPROM configuration read.
1564 */
1565 static u_int16_t
1566 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1567 bus_space_tag_t iot;
1568 bus_space_handle_t ioh;
1569 ADW_EEPROM *cfg_buf;
1570 {
1571 u_int16_t wval, chksum;
1572 u_int16_t *wbuf;
1573 int eep_addr;
1574
1575
1576 wbuf = (u_int16_t *) cfg_buf;
1577 chksum = 0;
1578
1579 for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1580 eep_addr < ASC_EEP_DVC_CFG_END;
1581 eep_addr++, wbuf++) {
1582 wval = AdwReadEEPWord(iot, ioh, eep_addr);
1583 chksum += wval;
1584 *wbuf = wval;
1585 }
1586
1587 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1588 wbuf++;
1589 for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1590 eep_addr < ASC_EEP_MAX_WORD_ADDR;
1591 eep_addr++, wbuf++) {
1592 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1593 }
1594
1595 return chksum;
1596 }
1597
1598
1599 /*
1600 * Read the EEPROM from specified location
1601 */
1602 static u_int16_t
1603 AdwReadEEPWord(iot, ioh, eep_word_addr)
1604 bus_space_tag_t iot;
1605 bus_space_handle_t ioh;
1606 int eep_word_addr;
1607 {
1608 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1609 ASC_EEP_CMD_READ | eep_word_addr);
1610 AdwWaitEEPCmd(iot, ioh);
1611
1612 return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1613 }
1614
1615
1616 /*
1617 * Wait for EEPROM command to complete
1618 */
1619 static void
1620 AdwWaitEEPCmd(iot, ioh)
1621 bus_space_tag_t iot;
1622 bus_space_handle_t ioh;
1623 {
1624 int eep_delay_ms;
1625
1626
1627 for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1628 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1629 ASC_EEP_CMD_DONE) {
1630 break;
1631 }
1632 AdwSleepMilliSecond(1);
1633 }
1634
1635 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1636 }
1637
1638
1639 /*
1640 * Write the EEPROM from 'cfg_buf'.
1641 */
1642 static void
1643 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1644 bus_space_tag_t iot;
1645 bus_space_handle_t ioh;
1646 ADW_EEPROM *cfg_buf;
1647 {
1648 u_int16_t *wbuf;
1649 u_int16_t addr, chksum;
1650
1651
1652 wbuf = (u_int16_t *) cfg_buf;
1653 chksum = 0;
1654
1655 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1656 AdwWaitEEPCmd(iot, ioh);
1657
1658 /*
1659 * Write EEPROM from word 0 to word 20
1660 */
1661 for (addr = ASC_EEP_DVC_CFG_BEGIN;
1662 addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1663 chksum += *wbuf;
1664 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1665 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1666 ASC_EEP_CMD_WRITE | addr);
1667 AdwWaitEEPCmd(iot, ioh);
1668 AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1669 }
1670
1671 /*
1672 * Write EEPROM checksum at word 21
1673 */
1674 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1675 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1676 ASC_EEP_CMD_WRITE | addr);
1677 AdwWaitEEPCmd(iot, ioh);
1678 wbuf++; /* skip over check_sum */
1679
1680 /*
1681 * Write EEPROM OEM name at words 22 to 29
1682 */
1683 for (addr = ASC_EEP_DVC_CTL_BEGIN;
1684 addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1685 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1686 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1687 ASC_EEP_CMD_WRITE | addr);
1688 AdwWaitEEPCmd(iot, ioh);
1689 }
1690
1691 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1692 ASC_EEP_CMD_WRITE_DISABLE);
1693 AdwWaitEEPCmd(iot, ioh);
1694
1695 return;
1696 }
1697
1698
1699 /*
1700 * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1701 *
1702 * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1703 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1704 * RISC to notify it a new command is ready to be executed.
1705 *
1706 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1707 * set to SCSI_MAX_RETRY.
1708 *
1709 * Return:
1710 * ADW_SUCCESS(1) - The request was successfully queued.
1711 * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1712 * request completes.
1713 * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1714 * host IC error.
1715 */
1716 int
1717 AdwExeScsiQueue(sc, scsiq)
1718 ADW_SOFTC *sc;
1719 ADW_SCSI_REQ_Q *scsiq;
1720 {
1721 bus_space_tag_t iot = sc->sc_iot;
1722 bus_space_handle_t ioh = sc->sc_ioh;
1723 ADW_CCB *ccb;
1724 long req_size;
1725 u_int32_t req_paddr;
1726 ADW_CARRIER *new_carrp;
1727
1728 /*
1729 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1730 */
1731 if (scsiq->target_id > ADW_MAX_TID) {
1732 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1733 scsiq->done_status = QD_WITH_ERROR;
1734 return ADW_ERROR;
1735 }
1736
1737 /*
1738 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1739 */
1740
1741 ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1742
1743 /*
1744 * Allocate a carrier and initialize fields.
1745 */
1746 if ((new_carrp = sc->carr_freelist) == NULL) {
1747 return ADW_BUSY;
1748 }
1749 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1750 ASC_GET_CARRP(new_carrp->next_ba));
1751 sc->carr_pending_cnt++;
1752
1753 /*
1754 * Set the carrier to be a stopper by setting 'next_ba'
1755 * to the stopper value. The current stopper will be changed
1756 * below to point to the new stopper.
1757 */
1758 new_carrp->next_ba = ASC_CQ_STOPPER;
1759
1760 req_size = sizeof(ADW_SCSI_REQ_Q);
1761 req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1762 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1763
1764 /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1765 scsiq->scsiq_rptr = req_paddr;
1766
1767 /*
1768 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1769 * order during initialization.
1770 */
1771 scsiq->carr_ba = sc->icq_sp->carr_ba;
1772 scsiq->carr_va = sc->icq_sp->carr_ba;
1773
1774 /*
1775 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1776 * the microcode. The newly allocated stopper will become the new
1777 * stopper.
1778 */
1779 sc->icq_sp->areq_ba = req_paddr;
1780
1781 /*
1782 * Set the 'next_ba' pointer for the old stopper to be the
1783 * physical address of the new stopper. The RISC can only
1784 * follow physical addresses.
1785 */
1786 sc->icq_sp->next_ba = new_carrp->carr_ba;
1787
1788 #if ADW_DEBUG
1789 printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1790 sc->icq_sp->carr_id,
1791 sc->icq_sp->carr_ba,
1792 sc->icq_sp->areq_ba,
1793 sc->icq_sp->next_ba);
1794 #endif
1795 /*
1796 * Set the host adapter stopper pointer to point to the new carrier.
1797 */
1798 sc->icq_sp = new_carrp;
1799
1800 if (sc->chip_type == ADW_CHIP_ASC3550 ||
1801 sc->chip_type == ADW_CHIP_ASC38C0800) {
1802 /*
1803 * Tickle the RISC to tell it to read its Command Queue Head
1804 * pointer.
1805 */
1806 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_A);
1807 if (sc->chip_type == ADW_CHIP_ASC3550) {
1808 /*
1809 * Clear the tickle value. In the ASC-3550 the RISC flag
1810 * command 'clr_tickle_a' does not work unless the host
1811 * value is cleared.
1812 */
1813 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1814 ADV_TICKLE_NOP);
1815 }
1816 } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1817 /*
1818 * Notify the RISC a carrier is ready by writing the physical
1819 * address of the new carrier stopper to the COMMA register.
1820 */
1821 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1822 new_carrp->carr_ba);
1823 }
1824
1825 /*
1826 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1827 */
1828
1829 return ADW_SUCCESS;
1830 }
1831
1832
1833 void
1834 AdwResetChip(iot, ioh)
1835 bus_space_tag_t iot;
1836 bus_space_handle_t ioh;
1837 {
1838
1839 /*
1840 * Reset Chip.
1841 */
1842 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1843 ADW_CTRL_REG_CMD_RESET);
1844 AdwSleepMilliSecond(100);
1845 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1846 ADW_CTRL_REG_CMD_WR_IO_REG);
1847 }
1848
1849
1850 /*
1851 * Reset SCSI Bus and purge all outstanding requests.
1852 *
1853 * Return Value:
1854 * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1855 * ADW_FALSE(0) - Microcode command failed.
1856 * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1857 * may be hung which requires driver recovery.
1858 */
1859 int
1860 AdwResetCCB(sc)
1861 ADW_SOFTC *sc;
1862 {
1863 int status;
1864
1865 /*
1866 * Send the SCSI Bus Reset idle start idle command which asserts
1867 * the SCSI Bus Reset signal.
1868 */
1869 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1870 if (status != ADW_TRUE) {
1871 return status;
1872 }
1873
1874 /*
1875 * Delay for the specified SCSI Bus Reset hold time.
1876 *
1877 * The hold time delay is done on the host because the RISC has no
1878 * microsecond accurate timer.
1879 */
1880 AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1881
1882 /*
1883 * Send the SCSI Bus Reset end idle command which de-asserts
1884 * the SCSI Bus Reset signal and purges any pending requests.
1885 */
1886 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1887 if (status != ADW_TRUE) {
1888 return status;
1889 }
1890
1891 AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1892
1893 return status;
1894 }
1895
1896
1897 /*
1898 * Reset chip and SCSI Bus.
1899 *
1900 * Return Value:
1901 * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1902 * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1903 */
1904 int
1905 AdwResetSCSIBus(sc)
1906 ADW_SOFTC *sc;
1907 {
1908 bus_space_tag_t iot = sc->sc_iot;
1909 bus_space_handle_t ioh = sc->sc_ioh;
1910 int status;
1911 u_int16_t wdtr_able, sdtr_able, ppr_able, tagqng_able;
1912 u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
1913 u_int16_t bios_sig;
1914
1915
1916 /*
1917 * Save current per TID negotiated values.
1918 */
1919 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1920 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1921 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1922 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1923 }
1924 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1925 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1926 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1927 max_cmd[tid]);
1928 }
1929
1930 /*
1931 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1932 * by clearing the BIOS signature word.
1933 * The initialization functions assumes a SCSI Bus Reset is not
1934 * needed if the BIOS signature word is present.
1935 */
1936 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1937 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1938
1939 /*
1940 * Stop chip and reset it.
1941 */
1942 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1943 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1944 ADW_CTRL_REG_CMD_RESET);
1945 AdwSleepMilliSecond(100);
1946 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1947 ADW_CTRL_REG_CMD_WR_IO_REG);
1948
1949 /*
1950 * Reset Adv Library error code, if any, and try
1951 * re-initializing the chip.
1952 * Then translate initialization return value to status value.
1953 */
1954 status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1955
1956 /*
1957 * Restore the BIOS signature word.
1958 */
1959 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1960
1961 /*
1962 * Restore per TID negotiated values.
1963 */
1964 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1965 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1966 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1967 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1968 }
1969 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1970 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1971 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1972 max_cmd[tid]);
1973 }
1974
1975 return status;
1976 }
1977
1978
1979 /*
1980 * Adv Library Interrupt Service Routine
1981 *
1982 * This function is called by a driver's interrupt service routine.
1983 * The function disables and re-enables interrupts.
1984 *
1985 * When a microcode idle command is completed, the ADV_DVC_VAR
1986 * 'idle_cmd_done' field is set to ADW_TRUE.
1987 *
1988 * Note: AdwISR() can be called when interrupts are disabled or even
1989 * when there is no hardware interrupt condition present. It will
1990 * always check for completed idle commands and microcode requests.
1991 * This is an important feature that shouldn't be changed because it
1992 * allows commands to be completed from polling mode loops.
1993 *
1994 * Return:
1995 * ADW_TRUE(1) - interrupt was pending
1996 * ADW_FALSE(0) - no interrupt was pending
1997 */
1998 int
1999 AdwISR(sc)
2000 ADW_SOFTC *sc;
2001 {
2002 bus_space_tag_t iot = sc->sc_iot;
2003 bus_space_handle_t ioh = sc->sc_ioh;
2004 u_int8_t int_stat;
2005 u_int16_t target_bit;
2006 ADW_CARRIER *free_carrp/*, *ccb_carr*/;
2007 u_int32_t irq_next_pa;
2008 ADW_SCSI_REQ_Q *scsiq;
2009 ADW_CCB *ccb;
2010 int s;
2011
2012
2013 s = splbio();
2014
2015 /* Reading the register clears the interrupt. */
2016 int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2017
2018 if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2019 ADW_INTR_STATUS_INTRC)) == 0) {
2020 splx(s);
2021 return ADW_FALSE;
2022 }
2023
2024 /*
2025 * Notify the driver of an asynchronous microcode condition by
2026 * calling the ADV_DVC_VAR.async_callback function. The function
2027 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2028 */
2029 if (int_stat & ADW_INTR_STATUS_INTRB) {
2030 u_int8_t intrb_code;
2031
2032 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2033
2034 if (sc->chip_type == ADW_CHIP_ASC3550 ||
2035 sc->chip_type == ADW_CHIP_ASC38C0800) {
2036 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2037 sc->carr_pending_cnt != 0) {
2038 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2039 IOPB_TICKLE, ADV_TICKLE_A);
2040 if (sc->chip_type == ADW_CHIP_ASC3550) {
2041 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2042 IOPB_TICKLE, ADV_TICKLE_NOP);
2043 }
2044 }
2045 }
2046
2047 if (sc->async_callback != 0) {
2048 (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2049 }
2050 }
2051
2052 /*
2053 * Check if the IRQ stopper carrier contains a completed request.
2054 */
2055 while (((irq_next_pa = sc->irq_sp->next_ba) & ASC_RQ_DONE) != 0)
2056 {
2057 #if ADW_DEBUG
2058 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2059 sc->irq_sp->carr_id,
2060 sc->irq_sp->carr_ba,
2061 sc->irq_sp->areq_ba,
2062 sc->irq_sp->next_ba);
2063 #endif
2064 /*
2065 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2066 * structure.
2067 * The RISC will have set 'areq_ba' to a virtual address.
2068 *
2069 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2070 * field to the carrier ADV_CARR_T.areq_ba field.
2071 * The conversion below complements the conversion of
2072 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2073 */
2074 ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2075 scsiq = &ccb->scsiq;
2076 scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2077
2078 /*
2079 * Request finished with good status and the queue was not
2080 * DMAed to host memory by the firmware. Set all status fields
2081 * to indicate good status.
2082 */
2083 if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
2084 scsiq->done_status = QD_NO_ERROR;
2085 scsiq->host_status = scsiq->scsi_status = 0;
2086 scsiq->data_cnt = 0L;
2087 }
2088
2089 /*
2090 * Advance the stopper pointer to the next carrier
2091 * ignoring the lower four bits. Free the previous
2092 * stopper carrier.
2093 */
2094 free_carrp = sc->irq_sp;
2095 sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2096
2097 free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
2098 : sc->carr_freelist->carr_ba;
2099 sc->carr_freelist = free_carrp;
2100 sc->carr_pending_cnt--;
2101
2102
2103 target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
2104
2105 /*
2106 * Clear request microcode control flag.
2107 */
2108 scsiq->cntl = 0;
2109
2110 /*
2111 * Check Condition handling
2112 */
2113 /*
2114 * If the command that completed was a SCSI INQUIRY and
2115 * LUN 0 was sent the command, then process the INQUIRY
2116 * command information for the device.
2117 */
2118 if (scsiq->done_status == QD_NO_ERROR &&
2119 scsiq->cdb[0] == INQUIRY &&
2120 scsiq->target_lun == 0) {
2121 AdwInquiryHandling(sc, scsiq);
2122 }
2123
2124 /*
2125 * Notify the driver of the completed request by passing
2126 * the ADW_SCSI_REQ_Q pointer to its callback function.
2127 */
2128 (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2129 /*
2130 * Note: After the driver callback function is called, 'scsiq'
2131 * can no longer be referenced.
2132 *
2133 * Fall through and continue processing other completed
2134 * requests...
2135 */
2136 }
2137
2138 splx(s);
2139
2140 return ADW_TRUE;
2141 }
2142
2143
2144 /*
2145 * Send an idle command to the chip and wait for completion.
2146 *
2147 * Command completion is polled for once per microsecond.
2148 *
2149 * The function can be called from anywhere including an interrupt handler.
2150 * But the function is not re-entrant, so it uses the splbio/splx()
2151 * functions to prevent reentrancy.
2152 *
2153 * Return Values:
2154 * ADW_TRUE - command completed successfully
2155 * ADW_FALSE - command failed
2156 * ADW_ERROR - command timed out
2157 */
2158 int
2159 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2160 ADW_SOFTC *sc;
2161 u_int16_t idle_cmd;
2162 u_int32_t idle_cmd_parameter;
2163 {
2164 bus_space_tag_t iot = sc->sc_iot;
2165 bus_space_handle_t ioh = sc->sc_ioh;
2166 u_int16_t result;
2167 u_int32_t i, j, s;
2168
2169 s = splbio();
2170
2171 /*
2172 * Clear the idle command status which is set by the microcode
2173 * to a non-zero value to indicate when the command is completed.
2174 */
2175 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2176
2177 /*
2178 * Write the idle command value after the idle command parameter
2179 * has been written to avoid a race condition. If the order is not
2180 * followed, the microcode may process the idle command before the
2181 * parameters have been written to LRAM.
2182 */
2183 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2184 idle_cmd_parameter);
2185 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2186
2187 /*
2188 * Tickle the RISC to tell it to process the idle command.
2189 */
2190 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_B);
2191 if (sc->chip_type == ADW_CHIP_ASC3550) {
2192 /*
2193 * Clear the tickle value. In the ASC-3550 the RISC flag
2194 * command 'clr_tickle_b' does not work unless the host
2195 * value is cleared.
2196 */
2197 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_NOP);
2198 }
2199
2200 /* Wait for up to 100 millisecond for the idle command to timeout. */
2201 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2202 /* Poll once each microsecond for command completion. */
2203 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2204 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2205 result);
2206 if (result != 0) {
2207 splx(s);
2208 return result;
2209 }
2210 AdwDelayMicroSecond(1);
2211 }
2212 }
2213
2214 splx(s);
2215 return ADW_ERROR;
2216 }
2217
2218
2219 /*
2220 * Inquiry Information Byte 7 Handling
2221 *
2222 * Handle SCSI Inquiry Command information for a device by setting
2223 * microcode operating variables that affect WDTR, SDTR, and Tag
2224 * Queuing.
2225 */
2226 static void
2227 AdwInquiryHandling(sc, scsiq)
2228 ADW_SOFTC *sc;
2229 ADW_SCSI_REQ_Q *scsiq;
2230 {
2231 #ifndef FAILSAFE
2232 bus_space_tag_t iot = sc->sc_iot;
2233 bus_space_handle_t ioh = sc->sc_ioh;
2234 u_int8_t tid;
2235 struct scsipi_inquiry_data *inq;
2236 u_int16_t tidmask;
2237 u_int16_t cfg_word;
2238
2239
2240 /*
2241 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2242 * to be available.
2243 *
2244 * If less than 8 bytes of INQUIRY information were requested or less
2245 * than 8 bytes were transferred, then return. cdb[4] is the request
2246 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2247 * microcode to the transfer residual count.
2248 */
2249
2250 if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2251 return;
2252 }
2253
2254 tid = scsiq->target_id;
2255
2256 inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2257
2258 /*
2259 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2260 */
2261 if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2262 ((inq->version & SID_ANSII) < 2)) {
2263 return;
2264 } else {
2265 /*
2266 * INQUIRY Byte 7 Handling
2267 *
2268 * Use a device's INQUIRY byte 7 to determine whether it
2269 * supports WDTR, SDTR, and Tag Queuing. If the feature
2270 * is enabled in the EEPROM and the device supports the
2271 * feature, then enable it in the microcode.
2272 */
2273
2274 tidmask = ADW_TID_TO_TIDMASK(tid);
2275
2276 /*
2277 * Wide Transfers
2278 *
2279 * If the EEPROM enabled WDTR for the device and the device
2280 * supports wide bus (16 bit) transfers, then turn on the
2281 * device's 'wdtr_able' bit and write the new value to the
2282 * microcode.
2283 */
2284 #ifdef SCSI_ADW_WDTR_DISABLE
2285 if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2286 #endif /* SCSI_ADW_WDTR_DISABLE */
2287 if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2288 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2289 cfg_word);
2290 if ((cfg_word & tidmask) == 0) {
2291 cfg_word |= tidmask;
2292 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2293 cfg_word);
2294
2295 /*
2296 * Clear the microcode "SDTR negotiation" and
2297 * "WDTR negotiation" done indicators for the
2298 * target to cause it to negotiate with the new
2299 * setting set above.
2300 * WDTR when accepted causes the target to enter
2301 * asynchronous mode, so SDTR must be negotiated
2302 */
2303 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2304 cfg_word);
2305 cfg_word &= ~tidmask;
2306 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2307 cfg_word);
2308 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2309 cfg_word);
2310 cfg_word &= ~tidmask;
2311 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2312 cfg_word);
2313 }
2314 }
2315
2316 /*
2317 * Synchronous Transfers
2318 *
2319 * If the EEPROM enabled SDTR for the device and the device
2320 * supports synchronous transfers, then turn on the device's
2321 * 'sdtr_able' bit. Write the new value to the microcode.
2322 */
2323 #ifdef SCSI_ADW_SDTR_DISABLE
2324 if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2325 #endif /* SCSI_ADW_SDTR_DISABLE */
2326 if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2327 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2328 if ((cfg_word & tidmask) == 0) {
2329 cfg_word |= tidmask;
2330 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2331 cfg_word);
2332
2333 /*
2334 * Clear the microcode "SDTR negotiation"
2335 * done indicator for the target to cause it
2336 * to negotiate with the new setting set above.
2337 */
2338 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2339 cfg_word);
2340 cfg_word &= ~tidmask;
2341 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2342 cfg_word);
2343 }
2344 }
2345 /*
2346 * If the Inquiry data included enough space for the SPI-3
2347 * Clocking field, then check if DT mode is supported.
2348 */
2349 if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2350 (scsiq->cdb[4] >= 57 ||
2351 (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2352 /*
2353 * PPR (Parallel Protocol Request) Capable
2354 *
2355 * If the device supports DT mode, then it must be
2356 * PPR capable.
2357 * The PPR message will be used in place of the SDTR
2358 * and WDTR messages to negotiate synchronous speed
2359 * and offset, transfer width, and protocol options.
2360 */
2361 if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2362 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2363 sc->ppr_able);
2364 sc->ppr_able |= tidmask;
2365 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2366 sc->ppr_able);
2367 }
2368 }
2369
2370 /*
2371 * If the EEPROM enabled Tag Queuing for the device and the
2372 * device supports Tag Queueing, then turn on the device's
2373 * 'tagqng_enable' bit in the microcode and set the microcode
2374 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2375 * value.
2376 *
2377 * Tag Queuing is disabled for the BIOS which runs in polled
2378 * mode and would see no benefit from Tag Queuing. Also by
2379 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2380 * bugs will at least work with the BIOS.
2381 */
2382 #ifdef SCSI_ADW_TAGQ_DISABLE
2383 if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2384 #endif /* SCSI_ADW_TAGQ_DISABLE */
2385 if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2386 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2387 cfg_word);
2388 cfg_word |= tidmask;
2389 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2390 cfg_word);
2391
2392 ADW_WRITE_BYTE_LRAM(iot, ioh,
2393 ADW_MC_NUMBER_OF_MAX_CMD + tid,
2394 sc->max_dvc_qng);
2395 }
2396 }
2397 #endif /* FAILSAFE */
2398 }
2399
2400
2401 static void
2402 AdwSleepMilliSecond(n)
2403 u_int32_t n;
2404 {
2405
2406 DELAY(n * 1000);
2407 }
2408
2409
2410 static void
2411 AdwDelayMicroSecond(n)
2412 u_int32_t n;
2413 {
2414
2415 DELAY(n);
2416 }
2417
2418