Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.19
      1 /* $NetBSD: adwlib.c,v 1.19 2000/06/28 17:12:50 mrg Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 /*
     40  * Ported from:
     41  */
     42 /*
     43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  *
     45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46  * All Rights Reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that redistributions of source
     50  * code retain the above copyright notice and this comment without
     51  * modification.
     52  */
     53 
     54 #include <sys/types.h>
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/malloc.h>
     58 #include <sys/kernel.h>
     59 #include <sys/queue.h>
     60 #include <sys/device.h>
     61 
     62 #include <machine/bus.h>
     63 #include <machine/intr.h>
     64 
     65 #include <dev/scsipi/scsi_all.h>
     66 #include <dev/scsipi/scsipi_all.h>
     67 #include <dev/scsipi/scsiconf.h>
     68 
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <uvm/uvm_extern.h>
     72 
     73 #include <dev/ic/adwlib.h>
     74 #include <dev/ic/adwmcode.h>
     75 #include <dev/ic/adw.h>
     76 
     77 
     78 /* Static Functions */
     79 
     80 int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
     81 int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
     82 								u_int8_t));
     83 int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
     84 int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
     85 								ADW_DVC_CFG *));
     86 int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
     87 								ADW_DVC_CFG *));
     88 
     89 static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     90      							ADW_EEPROM *));
     91 static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     92 					                 ADW_EEPROM *));
     93 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     94 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     95 
     96 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     97 
     98 static void AdwSleepMilliSecond __P((u_int32_t));
     99 static void AdwDelayMicroSecond __P((u_int32_t));
    100 
    101 
    102 /*
    103  * EEPROM Configuration.
    104  *
    105  * All drivers should use this structure to set the default EEPROM
    106  * configuration. The BIOS now uses this structure when it is built.
    107  * Additional structure information can be found in adwlib.h where
    108  * the structure is defined.
    109  */
    110 const static ADW_EEPROM adw_3550_Default_EEPROM = {
    111 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    112 	0x0000,			/* 01 cfg_msw */
    113 	0xFFFF,			/* 02 disc_enable */
    114 	0xFFFF,			/* 03 wdtr_able */
    115 	{ 0xFFFF },		/* 04 sdtr_able */
    116 	0xFFFF,			/* 05 start_motor */
    117 	0xFFFF,			/* 06 tagqng_able */
    118 	0xFFFF,			/* 07 bios_scan */
    119 	0,			/* 08 scam_tolerant */
    120 	7,			/* 09 adapter_scsi_id */
    121 	0,			/*    bios_boot_delay */
    122 	3,			/* 10 scsi_reset_delay */
    123 	0,			/*    bios_id_lun */
    124 	0,			/* 11 termination */
    125 	0,			/*    reserved1 */
    126 	0xFFE7,			/* 12 bios_ctrl */
    127 	{ 0xFFFF },		/* 13 ultra_able */
    128 	{ 0 },			/* 14 reserved2 */
    129 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    130 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    131 	0,			/* 16 dvc_cntl */
    132 	{ 0 },			/* 17 bug_fix */
    133 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    134 	0,			/* 21 check_sum */
    135 	{			/* 22-29 oem_name[16] */
    136 	  0,0,0,0,0,0,0,0,
    137 	  0,0,0,0,0,0,0,0
    138 	},
    139 	0,			/* 30 dvc_err_code */
    140 	0,			/* 31 adv_err_code */
    141 	0,			/* 32 adv_err_addr */
    142 	0,			/* 33 saved_dvc_err_code */
    143 	0,			/* 34 saved_adv_err_code */
    144 	0			/* 35 saved_adv_err_addr */
    145 };
    146 
    147 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
    148 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    149 	0x0000,			/* 01 cfg_msw */
    150 	0xFFFF,			/* 02 disc_enable */
    151 	0xFFFF,			/* 03 wdtr_able */
    152 	{ 0x4444 },		/* 04 sdtr_speed1 */
    153 	0xFFFF,			/* 05 start_motor */
    154 	0xFFFF,			/* 06 tagqng_able */
    155 	0xFFFF,			/* 07 bios_scan */
    156 	0,			/* 08 scam_tolerant */
    157 	7,			/* 09 adapter_scsi_id */
    158 	0,			/*    bios_boot_delay */
    159 	3,			/* 10 scsi_reset_delay */
    160 	0,			/*    bios_id_lun */
    161 	0,			/* 11 termination_se */
    162 	0,			/*    termination_lvd */
    163 	0xFFE7,			/* 12 bios_ctrl */
    164 	{ 0x4444 },		/* 13 sdtr_speed2 */
    165 	{ 0x4444 },		/* 14 sdtr_speed3 */
    166 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    167 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    168 	0,			/* 16 dvc_cntl */
    169 	{ 0x4444 },		/* 17 sdtr_speed4 */
    170 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    171 	0,			/* 21 check_sum */
    172 	{			/* 22-29 oem_name[16] */
    173 	  0,0,0,0,0,0,0,0,
    174 	  0,0,0,0,0,0,0,0
    175 	},
    176 	0,			/* 30 dvc_err_code */
    177 	0,			/* 31 adv_err_code */
    178 	0,			/* 32 adv_err_addr */
    179 	0,			/* 33 saved_dvc_err_code */
    180 	0,			/* 34 saved_adv_err_code */
    181 	0,			/* 35 saved_adv_err_addr */
    182 	{			/* 36-55 reserved1[16] */
    183 	  0,0,0,0,0,0,0,0,0,0,
    184 	  0,0,0,0,0,0,0,0,0,0
    185 	},
    186 	0,			/* 56 cisptr_lsw */
    187 	0,			/* 57 cisprt_msw */
    188 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    189 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    190 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    191 };
    192 
    193 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
    194 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    195 	0x0000,			/* 01 cfg_msw */
    196 	0xFFFF,			/* 02 disc_enable */
    197 	0xFFFF,			/* 03 wdtr_able */
    198 	{ 0x5555 },		/* 04 sdtr_speed1 */
    199 	0xFFFF,			/* 05 start_motor */
    200 	0xFFFF,			/* 06 tagqng_able */
    201 	0xFFFF,			/* 07 bios_scan */
    202 	0,			/* 08 scam_tolerant */
    203 	7,			/* 09 adapter_scsi_id */
    204 	0,			/*    bios_boot_delay */
    205 	3,			/* 10 scsi_reset_delay */
    206 	0,			/*    bios_id_lun */
    207 	0,			/* 11 termination_se */
    208 	0,			/*    termination_lvd */
    209 	0xFFE7,			/* 12 bios_ctrl */
    210 	{ 0x5555 },		/* 13 sdtr_speed2 */
    211 	{ 0x5555 },		/* 14 sdtr_speed3 */
    212 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    213 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    214 	0,			/* 16 dvc_cntl */
    215 	{ 0x5555 },		/* 17 sdtr_speed4 */
    216 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    217 	0,			/* 21 check_sum */
    218 	{			/* 22-29 oem_name[16] */
    219 	  0,0,0,0,0,0,0,0,
    220 	  0,0,0,0,0,0,0,0
    221 	},
    222 	0,			/* 30 dvc_err_code */
    223 	0,			/* 31 adv_err_code */
    224 	0,			/* 32 adv_err_addr */
    225 	0,			/* 33 saved_dvc_err_code */
    226 	0,			/* 34 saved_adv_err_code */
    227 	0,			/* 35 saved_adv_err_addr */
    228 	{			/* 36-55 reserved1[16] */
    229 	  0,0,0,0,0,0,0,0,0,0,
    230 	  0,0,0,0,0,0,0,0,0,0
    231 	},
    232 	0,			/* 56 cisptr_lsw */
    233 	0,			/* 57 cisprt_msw */
    234 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    235 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    236 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    237 };
    238 
    239 
    240 /*
    241  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    242  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    243  * all of this is done.
    244  *
    245  * For a non-fatal error return a warning code. If there are no warnings
    246  * then 0 is returned.
    247  *
    248  * Note: Chip is stopped on entry.
    249  */
    250 int
    251 AdwInitFromEEPROM(sc)
    252 ADW_SOFTC      *sc;
    253 {
    254 	bus_space_tag_t iot = sc->sc_iot;
    255 	bus_space_handle_t ioh = sc->sc_ioh;
    256 	ADW_EEPROM		eep_config;
    257 	u_int16_t		warn_code;
    258 	u_int16_t		sdtr_speed = 0;
    259 	u_int8_t		tid, termination;
    260 	int			i, j;
    261 
    262 
    263 	warn_code = 0;
    264 
    265 	/*
    266 	 * Read the board's EEPROM configuration.
    267 	 *
    268 	 * Set default values if a bad checksum is found.
    269 	 *
    270 	 * XXX - Don't handle big-endian access to EEPROM yet.
    271 	 */
    272 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    273 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    274 
    275 		/*
    276 		 * Set EEPROM default values.
    277 		 */
    278 		switch(sc->chip_type) {
    279 		case ADW_CHIP_ASC3550:
    280 			eep_config = adw_3550_Default_EEPROM;
    281 			break;
    282 		case ADW_CHIP_ASC38C0800:
    283 			eep_config = adw_38C0800_Default_EEPROM;
    284 			break;
    285 		case ADW_CHIP_ASC38C1600:
    286 			eep_config = adw_38C1600_Default_EEPROM;
    287 
    288 // XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    289 			if (sc->cfg.pci_slot_info != 0) {
    290 				u_int8_t lsw_msb;
    291 
    292 				lsw_msb = eep_config.cfg_lsw >> 8;
    293 				/*
    294 				 * Set Function 1 EEPROM Word 0 MSB
    295 				 *
    296 				 * Clear the BIOS_ENABLE (bit 14) and
    297 				 * INTAB (bit 11) EEPROM bits.
    298 				 *
    299 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    300 				 * SPARC Ultra 60 and old Mac system booting
    301 				 * problem. The Expansion ROM must
    302 				 * be disabled in Function 1 for these systems.
    303 				 */
    304 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    305 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    306 				/*
    307 				 * Set the INTAB (bit 11) if the GPIO 0 input
    308 				 * indicates the Function 1 interrupt line is
    309 				 * wired to INTA.
    310 				 *
    311 				 * Set/Clear Bit 11 (INTAB) from
    312 				 * the GPIO bit 0 input:
    313 				 *   1 - Function 1 intr line wired to INT A.
    314 				 *   0 - Function 1 intr line wired to INT B.
    315 				 *
    316 				 * Note: Adapter boards always have Function 0
    317 				 * wired to INTA.
    318 				 * Put all 5 GPIO bits in input mode and then
    319 				 * read their input values.
    320 				 */
    321 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    322 							IOPB_GPIO_CNTL, 0);
    323 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    324 						IOPB_GPIO_DATA) & 0x01) {
    325 					/*
    326 					 * Function 1 interrupt wired to INTA;
    327 					 * Set EEPROM bit.
    328 					 */
    329 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    330 							 & 0xFF;
    331 				 }
    332 				 eep_config.cfg_lsw &= 0x00FF;
    333 				 eep_config.cfg_lsw |= lsw_msb << 8;
    334 			}
    335 			break;
    336 		}
    337 
    338 		/*
    339 		 * Assume the 6 byte board serial number that was read
    340 		 * from EEPROM is correct even if the EEPROM checksum
    341 		 * failed.
    342 		 */
    343 		for (i=2, j=1; i>=0; i--, j++) {
    344 		eep_config.serial_number[i] =
    345 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    346 		}
    347 
    348 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    349 	}
    350 	/*
    351 	 * Set sc and sc->cfg variables from the EEPROM configuration
    352 	 * that was read.
    353 	 *
    354 	 * This is the mapping of EEPROM fields to Adw Library fields.
    355 	 */
    356 	sc->wdtr_able = eep_config.wdtr_able;
    357 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    358 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    359 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    360 	} else {
    361 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    362 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    363 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    364 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    365 	}
    366 	sc->ppr_able = 0;
    367 	sc->tagqng_able = eep_config.tagqng_able;
    368 	sc->cfg.disc_enable = eep_config.disc_enable;
    369 	sc->max_host_qng = eep_config.max_host_qng;
    370 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    371 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    372 	sc->start_motor = eep_config.start_motor;
    373 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    374 	sc->bios_ctrl = eep_config.bios_ctrl;
    375 	sc->no_scam = eep_config.scam_tolerant;
    376 	sc->cfg.serial1 = eep_config.serial_number[0];
    377 	sc->cfg.serial2 = eep_config.serial_number[1];
    378 	sc->cfg.serial3 = eep_config.serial_number[2];
    379 
    380 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    381 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    382 		sc->sdtr_able = 0;
    383 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    384 			if (tid == 0) {
    385 				sdtr_speed = sc->sdtr_speed1;
    386 			} else if (tid == 4) {
    387 				sdtr_speed = sc->sdtr_speed2;
    388 			} else if (tid == 8) {
    389 				sdtr_speed = sc->sdtr_speed3;
    390 			} else if (tid == 12) {
    391 				sdtr_speed = sc->sdtr_speed4;
    392 			}
    393 			if (sdtr_speed & ADW_MAX_TID) {
    394 				sc->sdtr_able |= (1 << tid);
    395 			}
    396 			sdtr_speed >>= 4;
    397 		}
    398 	}
    399 
    400 	/*
    401 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    402 	 * maximum queuing (max. 63, min. 4).
    403 	 */
    404 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    405 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    406 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    407 	{
    408 		/* If the value is zero, assume it is uninitialized. */
    409 		if (eep_config.max_host_qng == 0) {
    410 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    411 		} else {
    412 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    413 		}
    414 	}
    415 
    416 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    417 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    418 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    419 		/* If the value is zero, assume it is uninitialized. */
    420 		if (eep_config.max_dvc_qng == 0) {
    421 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    422 		} else {
    423 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    424 		}
    425 	}
    426 
    427 	/*
    428 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    429 	 * set 'max_dvc_qng' to 'max_host_qng'.
    430 	 */
    431 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    432 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    433 	}
    434 
    435 	/*
    436 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    437 	 * values based on possibly adjusted EEPROM values.
    438 	 */
    439 	sc->max_host_qng = eep_config.max_host_qng;
    440 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    441 
    442 
    443 	/*
    444 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    445 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    446 	 *
    447 	 * If the termination is specified with a non-zero 'termination'
    448 	 * value check that a legal value is set and set the ADV_DVC_CFG
    449 	 * 'termination' field appropriately.
    450 	 */
    451 
    452 	switch(sc->chip_type) {
    453 	case ADW_CHIP_ASC3550:
    454 		sc->cfg.termination = 0;	/* auto termination */
    455 		switch(eep_config.termination_se) {
    456 		case 3:
    457 			/* Enable manual control with low on / high on. */
    458 			sc->cfg.termination |= ADW_TERM_CTL_L;
    459 		case 2:
    460 			/* Enable manual control with low off / high on. */
    461 			sc->cfg.termination |= ADW_TERM_CTL_H;
    462 		case 1:
    463 			/* Enable manual control with low off / high off. */
    464 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    465 		case 0:
    466 			break;
    467 		default:
    468 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    469 		}
    470 		break;
    471 
    472 	case ADW_CHIP_ASC38C0800:
    473 	case ADW_CHIP_ASC38C1600:
    474 		switch(eep_config.termination_se) {
    475 		case 0:
    476 			/* auto termination for SE */
    477 			termination = 0;
    478 			break;
    479 		case 1:
    480 			/* Enable manual control with low off / high off. */
    481 			termination = 0;
    482 			break;
    483 		case 2:
    484 			/* Enable manual control with low off / high on. */
    485 			termination = ADW_TERM_SE_HI;
    486 			break;
    487 		case 3:
    488 			/* Enable manual control with low on / high on. */
    489 			termination = ADW_TERM_SE;
    490 			break;
    491 		default:
    492 			/*
    493 			 * The EEPROM 'termination_se' field contains a
    494 			 * bad value. Use automatic termination instead.
    495 			 */
    496 			termination = 0;
    497 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    498 		}
    499 
    500 		switch(eep_config.termination_lvd) {
    501 		case 0:
    502 			/* auto termination for LVD */
    503 			sc->cfg.termination = termination;
    504 			break;
    505 		case 1:
    506 			/* Enable manual control with low off / high off. */
    507 			sc->cfg.termination = termination;
    508 			break;
    509 		case 2:
    510 			/* Enable manual control with low off / high on. */
    511 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    512 			break;
    513 		case 3:
    514 			/* Enable manual control with low on / high on. */
    515 			sc->cfg.termination = termination | ADW_TERM_LVD;
    516 			break;
    517 		default:
    518 			/*
    519 			 * The EEPROM 'termination_lvd' field contains a
    520 			 * bad value. Use automatic termination instead.
    521 			 */
    522 			sc->cfg.termination = termination;
    523 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    524 		}
    525 		break;
    526 	}
    527 
    528 	return warn_code;
    529 }
    530 
    531 
    532 /*
    533  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    534  *
    535  * On failure return the error code.
    536  */
    537 int
    538 AdwInitDriver(sc)
    539 ADW_SOFTC      *sc;
    540 {
    541 	bus_space_tag_t iot = sc->sc_iot;
    542 	bus_space_handle_t ioh = sc->sc_ioh;
    543 	u_int16_t	error_code;
    544 	int		word;
    545 	int		i;
    546 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    547 								0x40-0x8F. */
    548 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    549 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    550 	u_int8_t	tid;
    551 
    552 
    553 	error_code = 0;
    554 
    555 	/*
    556 	 * Save the RISC memory BIOS region before writing the microcode.
    557 	 * The BIOS may already be loaded and using its RISC LRAM region
    558 	 * so its region must be saved and restored.
    559 	 *
    560 	 * Note: This code makes the assumption, which is currently true,
    561 	 * that a chip reset does not clear RISC LRAM.
    562 	 */
    563 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    564 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    565 	}
    566 
    567 	/*
    568 	 * Save current per TID negotiated values.
    569 	 */
    570 	switch (sc->chip_type) {
    571 	case ADW_CHIP_ASC3550:
    572 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    573 
    574 			u_int16_t  bios_version, major, minor;
    575 
    576 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    577 					ADW_MC_BIOSMEM) / 2];
    578 			major = (bios_version  >> 12) & 0xF;
    579 			minor = (bios_version  >> 8) & 0xF;
    580 			if (major < 3 || (major == 3 && minor == 1)) {
    581 			    /*
    582 			     * BIOS 3.1 and earlier location of
    583 			     * 'wdtr_able' variable.
    584 			     */
    585 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    586 			} else {
    587 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    588 					    wdtr_able);
    589 			}
    590 		}
    591 		break;
    592 
    593 	case ADW_CHIP_ASC38C1600:
    594 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    595 		/* FALLTHROUGH */
    596 	case ADW_CHIP_ASC38C0800:
    597 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    598 		break;
    599 	}
    600 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    601 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    602 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    603 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    604 			max_cmd[tid]);
    605 	}
    606 
    607 	/*
    608 	 * Perform a RAM Built-In Self Test
    609 	 */
    610 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    611 		return error_code;
    612 	}
    613 
    614 	/*
    615 	 * Load the Microcode
    616 	 */
    617 	;
    618 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    619 		return error_code;
    620 	}
    621 
    622 	/*
    623 	 * Read microcode version and date.
    624 	 */
    625 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    626 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    627 
    628 	/*
    629 	 * If the PCI Configuration Command Register "Parity Error Response
    630 	 * Control" Bit was clear (0), then set the microcode variable
    631 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    632 	 * to ignore DMA parity errors.
    633 	 */
    634 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    635 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    636 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    637 					word | CONTROL_FLAG_IGNORE_PERR);
    638 	}
    639 
    640 	switch (sc->chip_type) {
    641 	case ADW_CHIP_ASC3550:
    642 		/*
    643 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    644 		 * FIFO threshold of 128 bytes.
    645 		 * This register is only accessible to the host.
    646 		 */
    647 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    648 				START_CTL_EMFU | READ_CMD_MRM);
    649 		break;
    650 
    651 	case ADW_CHIP_ASC38C0800:
    652 		/*
    653 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    654 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    655 		 * cable detection and then we are able to read C_DET[3:0].
    656 		 *
    657 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    658 		 * Microcode Default Value' section below.
    659 		 */
    660 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    661 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    662 				| ADW_DIS_TERM_DRV);
    663 
    664 		/*
    665 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    666 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    667 		 *
    668 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    669 		 * 256 bytes.
    670 		 *
    671 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    672 		 */
    673 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    674 						BC_THRESH_ENB | FIFO_THRESH_80B
    675 						| START_CTL_TH | READ_CMD_MRM);
    676 		break;
    677 
    678 	case ADW_CHIP_ASC38C1600:
    679 		/*
    680 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    681 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    682 		 * cable detection and then we are able to read C_DET[3:0].
    683 		 *
    684 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    685 		 * Microcode Default Value' section below.
    686 		 */
    687 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    688 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    689 				| ADW_DIS_TERM_DRV);
    690 
    691 		/*
    692 		 * If the BIOS control flag AIPP (Asynchronous Information
    693 		 * Phase Protection) disable bit is not set, then set the
    694 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    695 		 * enable AIPP checking and encoding.
    696 		 */
    697 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    698 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    699 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    700 					word | CONTROL_FLAG_ENABLE_AIPP);
    701 		}
    702 
    703 		/*
    704 		 * For ASC-38C1600 use DMA_CFG0 default values:
    705 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    706 		 */
    707 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    708 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    709 		break;
    710 	}
    711 
    712 	/*
    713 	 * Microcode operating variables for WDTR, SDTR, and command tag
    714 	 * queuing will be set in AdvInquiryHandling() based on what a
    715 	 * device reports it is capable of in Inquiry byte 7.
    716 	 *
    717 	 * If SCSI Bus Resets have been disabled, then directly set
    718 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    719 	 * the BIOS and warm boot to work without a SCSI bus hang on
    720 	 * the Inquiry caused by host and target mismatched DTR values.
    721 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    722 	 * be assumed to be in Asynchronous, Narrow mode.
    723 	 */
    724 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    725 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    726 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    727 	}
    728 
    729 	/*
    730 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    731 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    732 	 * bitmask. These values determine the maximum SDTR speed negotiated
    733 	 * with a device.
    734 	 *
    735 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    736 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    737 	 * without determining here whether the device supports SDTR.
    738 	 */
    739 	switch (sc->chip_type) {
    740 	case ADW_CHIP_ASC3550:
    741 		word = 0;
    742 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    743 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    744 				/* Set Ultra speed for TID 'tid'. */
    745 				word |= (0x3 << (4 * (tid % 4)));
    746 			} else {
    747 				/* Set Fast speed for TID 'tid'. */
    748 				word |= (0x2 << (4 * (tid % 4)));
    749 			}
    750 			/* Check if done with sdtr_speed1. */
    751 			if (tid == 3) {
    752 				ADW_WRITE_WORD_LRAM(iot, ioh,
    753 						ADW_MC_SDTR_SPEED1, word);
    754 				word = 0;
    755 			/* Check if done with sdtr_speed2. */
    756 			} else if (tid == 7) {
    757 				ADW_WRITE_WORD_LRAM(iot, ioh,
    758 						ADW_MC_SDTR_SPEED2, word);
    759 				word = 0;
    760 			/* Check if done with sdtr_speed3. */
    761 			} else if (tid == 11) {
    762 				ADW_WRITE_WORD_LRAM(iot, ioh,
    763 						ADW_MC_SDTR_SPEED3, word);
    764 				word = 0;
    765 			/* Check if done with sdtr_speed4. */
    766 			} else if (tid == 15) {
    767 				ADW_WRITE_WORD_LRAM(iot, ioh,
    768 						ADW_MC_SDTR_SPEED4, word);
    769 				/* End of loop. */
    770 			}
    771 		}
    772 
    773 		/*
    774 		 * Set microcode operating variable for the
    775 		 * disconnect per TID bitmask.
    776 		 */
    777 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    778 							sc->cfg.disc_enable);
    779 		break;
    780 
    781 	case ADW_CHIP_ASC38C0800:
    782 		/* FALLTHROUGH */
    783 	case ADW_CHIP_ASC38C1600:
    784 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    785 							sc->cfg.disc_enable);
    786 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    787 							sc->sdtr_speed1);
    788 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    789 							sc->sdtr_speed2);
    790 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    791 							sc->sdtr_speed3);
    792 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    793 							sc->sdtr_speed4);
    794 		break;
    795 	}
    796 
    797 
    798 	/*
    799 	 * Set SCSI_CFG0 Microcode Default Value.
    800 	 *
    801 	 * The microcode will set the SCSI_CFG0 register using this value
    802 	 * after it is started below.
    803 	 */
    804 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    805 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    806 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    807 
    808 
    809 	switch(sc->chip_type) {
    810 	case ADW_CHIP_ASC3550:
    811 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    812 		break;
    813 
    814 	case ADW_CHIP_ASC38C0800:
    815 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    816 		break;
    817 
    818 	case ADW_CHIP_ASC38C1600:
    819 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    820 		break;
    821 	}
    822 	if(error_code) {
    823 		return error_code;
    824 	}
    825 
    826 	/*
    827 	 * Set SEL_MASK Microcode Default Value
    828 	 *
    829 	 * The microcode will set the SEL_MASK register using this value
    830 	 * after it is started below.
    831 	 */
    832 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    833 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    834 
    835 	/*
    836 	 * Create and Initialize Host->RISC Carrier lists
    837 	 */
    838 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    839 						sc->sc_control->carriers);
    840 
    841 	/*
    842 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    843 	 */
    844 
    845 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    846 		return ADW_IERR_NO_CARRIER;
    847 	}
    848 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    849 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    850 
    851 	/*
    852 	 * The first command issued will be placed in the stopper carrier.
    853 	 */
    854 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
    855 
    856 	/*
    857 	 * Set RISC ICQ physical address start value.
    858 	 */
    859 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
    860 
    861 	/*
    862 	 * Initialize the COMMA register to the same value otherwise
    863 	 * the RISC will prematurely detect a command is available.
    864 	 */
    865 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    866 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    867 							sc->icq_sp->carr_ba);
    868 	}
    869 
    870 	/*
    871 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    872 	 */
    873 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    874 		return ADW_IERR_NO_CARRIER;
    875 	}
    876 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    877 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    878 
    879 	/*
    880 	 * The first command completed by the RISC will be placed in
    881 	 * the stopper.
    882 	 *
    883 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    884 	 * completed the RISC will set the ASC_RQ_DONE bit.
    885 	 */
    886 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
    887 
    888 	/*
    889 	 * Set RISC IRQ physical address start value.
    890 	 */
    891 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
    892 	sc->carr_pending_cnt = 0;
    893 
    894 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    895 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    896 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    897 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    898 
    899 	/* finally, finally, gentlemen, start your engine */
    900 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    901 
    902 	/*
    903 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    904 	 * Resets should be performed. The RISC has to be running
    905 	 * to issue a SCSI Bus Reset.
    906 	 */
    907 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    908 	{
    909 		/*
    910 		 * If the BIOS Signature is present in memory, restore the
    911 		 * BIOS Handshake Configuration Table and do not perform
    912 		 * a SCSI Bus Reset.
    913 		 */
    914 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    915 				0x55AA) {
    916 			/*
    917 			 * Restore per TID negotiated values.
    918 			 */
    919 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    920 					wdtr_able);
    921 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    922 					sdtr_able);
    923 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    924 					tagqng_able);
    925 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    926 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    927 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    928 						max_cmd[tid]);
    929 			}
    930 		} else {
    931 			if (AdwResetCCB(sc) != ADW_TRUE) {
    932 				error_code = ADW_WARN_BUSRESET_ERROR;
    933 			}
    934 		}
    935 	}
    936 
    937 	return error_code;
    938 }
    939 
    940 
    941 int
    942 AdwRamSelfTest(iot, ioh, chip_type)
    943 	bus_space_tag_t iot;
    944 	bus_space_handle_t ioh;
    945 	u_int8_t chip_type;
    946 {
    947 	int		i;
    948 	u_int8_t	byte;
    949 
    950 
    951 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    952 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    953 		/*
    954 		 * RAM BIST (RAM Built-In Self Test)
    955 		 *
    956 		 * Address : I/O base + offset 0x38h register (byte).
    957 		 * Function: Bit 7-6(RW) : RAM mode
    958 		 *			    Normal Mode   : 0x00
    959 		 *			    Pre-test Mode : 0x40
    960 		 *			    RAM Test Mode : 0x80
    961 		 *	     Bit 5	 : unused
    962 		 *	     Bit 4(RO)   : Done bit
    963 		 *	     Bit 3-0(RO) : Status
    964 		 *			    Host Error    : 0x08
    965 		 *			    Int_RAM Error : 0x04
    966 		 *			    RISC Error    : 0x02
    967 		 *			    SCSI Error    : 0x01
    968 		 *			    No Error	  : 0x00
    969 		 *
    970 		 * Note: RAM BIST code should be put right here, before loading
    971 		 * the microcode and after saving the RISC memory BIOS region.
    972 		 */
    973 
    974 		/*
    975 		 * LRAM Pre-test
    976 		 *
    977 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    978 		 * 10 milliseconds.
    979 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    980 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    981 		 * If cannot reset to NORMAL_MODE, return an error too.
    982 		 */
    983 		for (i = 0; i < 2; i++) {
    984 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    985 					PRE_TEST_MODE);
    986 			 /* Wait for 10ms before reading back. */
    987 			AdwSleepMilliSecond(10);
    988 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    989 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    990 					PRE_TEST_VALUE) {
    991 				return ADW_IERR_BIST_PRE_TEST;
    992 			}
    993 
    994 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    995 								NORMAL_MODE);
    996 			/* Wait for 10ms before reading back. */
    997 			AdwSleepMilliSecond(10);
    998 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
    999 			    != NORMAL_VALUE) {
   1000 				return ADW_IERR_BIST_PRE_TEST;
   1001 			}
   1002 		}
   1003 
   1004 		/*
   1005 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1006 		 *
   1007 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1008 		 * 10 milliseconds.
   1009 		 * If Done bit not set or Status not 0, save register byte,
   1010 		 * set the err_code, and return an error.
   1011 		 */
   1012 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1013 		/* Wait for 10ms before checking status. */
   1014 		AdwSleepMilliSecond(10);
   1015 
   1016 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1017 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1018 			/* Get here if Done bit not set or Status not 0. */
   1019 			return ADW_IERR_BIST_RAM_TEST;
   1020 		}
   1021 
   1022 		/* We need to reset back to normal mode after LRAM test passes*/
   1023 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1024 	}
   1025 
   1026 	return 0;
   1027 }
   1028 
   1029 
   1030 int
   1031 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
   1032 	bus_space_tag_t iot;
   1033 	bus_space_handle_t ioh;
   1034 	u_int16_t *bios_mem;
   1035 	u_int8_t chip_type;
   1036 {
   1037 	u_int8_t	*mcode_data;
   1038 	u_int32_t	 mcode_chksum;
   1039 	u_int16_t	 mcode_size;
   1040 	u_int32_t	sum;
   1041 	u_int16_t	code_sum;
   1042 	int		begin_addr;
   1043 	int		end_addr;
   1044 	int		word;
   1045 	int		adw_memsize;
   1046 	int		adw_mcode_expanded_size;
   1047 	int		i, j;
   1048 
   1049 
   1050 	switch(chip_type) {
   1051 	case ADW_CHIP_ASC3550:
   1052 		mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1053 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1054 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1055 		adw_memsize = ADW_3550_MEMSIZE;
   1056 		break;
   1057 
   1058 	case ADW_CHIP_ASC38C0800:
   1059 		mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1060 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1061 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1062 		adw_memsize = ADW_38C0800_MEMSIZE;
   1063 		break;
   1064 
   1065 	case ADW_CHIP_ASC38C1600:
   1066 		mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1067 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1068 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1069 		adw_memsize = ADW_38C1600_MEMSIZE;
   1070 		break;
   1071 	}
   1072 
   1073 	/*
   1074 	 * Write the microcode image to RISC memory starting at address 0.
   1075 	 */
   1076 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1077 
   1078 	/* Assume the following compressed format of the microcode buffer:
   1079 	 *
   1080 	 *  254 word (508 byte) table indexed by byte code followed
   1081 	 *  by the following byte codes:
   1082 	 *
   1083 	 *    1-Byte Code:
   1084 	 *	00: Emit word 0 in table.
   1085 	 *	01: Emit word 1 in table.
   1086 	 *	.
   1087 	 *	FD: Emit word 253 in table.
   1088 	 *
   1089 	 *    Multi-Byte Code:
   1090 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1091 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1092 	 */
   1093 	word = 0;
   1094 	for (i = 253 * 2; i < mcode_size; i++) {
   1095 		if (mcode_data[i] == 0xff) {
   1096 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1097 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1098 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1099 				  mcode_data[i + 2]));
   1100 				word++;
   1101 			}
   1102 			i += 3;
   1103 		} else if (mcode_data[i] == 0xfe) {
   1104 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1105 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1106 			    mcode_data[i + 1]));
   1107 			i += 2;
   1108 			word++;
   1109 		} else {
   1110 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1111 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1112 			 mcode_data[mcode_data[i] * 2]));
   1113 			word++;
   1114 		}
   1115 	}
   1116 
   1117 	/*
   1118 	 * Set 'word' for later use to clear the rest of memory and save
   1119 	 * the expanded mcode size.
   1120 	 */
   1121 	word *= 2;
   1122 	adw_mcode_expanded_size = word;
   1123 
   1124 	/*
   1125 	 * Clear the rest of the Internal RAM.
   1126 	 */
   1127 	for (; word < adw_memsize; word += 2) {
   1128 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1129 	}
   1130 
   1131 	/*
   1132 	 * Verify the microcode checksum.
   1133 	 */
   1134 	sum = 0;
   1135 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1136 
   1137 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1138 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1139 	}
   1140 
   1141 	if (sum != mcode_chksum) {
   1142 		return ADW_IERR_MCODE_CHKSUM;
   1143 	}
   1144 
   1145 	/*
   1146 	 * Restore the RISC memory BIOS region.
   1147 	 */
   1148 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1149 		if(chip_type == ADW_CHIP_ASC3550) {
   1150 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1151 								bios_mem[i]);
   1152 		} else {
   1153 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1154 								bios_mem[i]);
   1155 		}
   1156 	}
   1157 
   1158 	/*
   1159 	 * Calculate and write the microcode code checksum to the microcode
   1160 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1161 	 */
   1162 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1163 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1164 	code_sum = 0;
   1165 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1166 	for (word = begin_addr; word < end_addr; word += 2) {
   1167 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1168 	}
   1169 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1170 
   1171 	/*
   1172 	 * Set the chip type.
   1173 	 */
   1174 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1175 
   1176 	return 0;
   1177 }
   1178 
   1179 
   1180 int
   1181 AdwASC3550Cabling(iot, ioh, cfg)
   1182 	bus_space_tag_t iot;
   1183 	bus_space_handle_t ioh;
   1184 	ADW_DVC_CFG *cfg;
   1185 {
   1186 	u_int16_t	scsi_cfg1;
   1187 
   1188 
   1189 	/*
   1190 	 * Determine SCSI_CFG1 Microcode Default Value.
   1191 	 *
   1192 	 * The microcode will set the SCSI_CFG1 register using this value
   1193 	 * after it is started below.
   1194 	 */
   1195 
   1196 	/* Read current SCSI_CFG1 Register value. */
   1197 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1198 
   1199 	/*
   1200 	 * If all three connectors are in use in ASC3550, return an error.
   1201 	 */
   1202 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1203 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1204 		return ADW_IERR_ILLEGAL_CONNECTION;
   1205 	}
   1206 
   1207 	/*
   1208 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1209 	 * will be set. Check for and return an error if this condition is
   1210 	 * found.
   1211 	 */
   1212 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1213 		return ADW_IERR_REVERSED_CABLE;
   1214 	}
   1215 
   1216 	/*
   1217 	 * If this is a differential board and a single-ended device
   1218 	 * is attached to one of the connectors, return an error.
   1219 	 */
   1220 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1221 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1222 		return ADW_IERR_SINGLE_END_DEVICE;
   1223 	}
   1224 
   1225 	/*
   1226 	 * If automatic termination control is enabled, then set the
   1227 	 * termination value based on a table listed in a_condor.h.
   1228 	 *
   1229 	 * If manual termination was specified with an EEPROM setting
   1230 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1231 	 * is ready to be 'ored' into SCSI_CFG1.
   1232 	 */
   1233 	if (cfg->termination == 0) {
   1234 		/*
   1235 		 * The software always controls termination by setting
   1236 		 * TERM_CTL_SEL.
   1237 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1238 		 * termination.
   1239 		 */
   1240 		cfg->termination |= ADW_TERM_CTL_SEL;
   1241 
   1242 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1243 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1244 			case 0x3: case 0x7: case 0xB:
   1245 			case 0xD: case 0xE: case 0xF:
   1246 				cfg->termination |=
   1247 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1248 				break;
   1249 
   1250 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1251 			case 0x1: case 0x5: case 0x9:
   1252 			case 0xA: case 0xC:
   1253 				cfg->termination |= ADW_TERM_CTL_H;
   1254 				break;
   1255 
   1256 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1257 			case 0x2: case 0x6:
   1258 				break;
   1259 		}
   1260 	}
   1261 
   1262 	/*
   1263 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1264 	 */
   1265 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1266 
   1267 	/*
   1268 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1269 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1270 	 * referenced, because the hardware internally inverts
   1271 	 * the Termination High and Low bits if TERM_POL is set.
   1272 	 */
   1273 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1274 
   1275 	/*
   1276 	 * Set SCSI_CFG1 Microcode Default Value
   1277 	 *
   1278 	 * Set filter value and possibly modified termination control
   1279 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1280 	 *
   1281 	 * The microcode will set the SCSI_CFG1 register using this value
   1282 	 * after it is started below.
   1283 	 */
   1284 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1285 						ADW_FLTR_DISABLE | scsi_cfg1);
   1286 
   1287 	/*
   1288 	 * Set MEM_CFG Microcode Default Value
   1289 	 *
   1290 	 * The microcode will set the MEM_CFG register using this value
   1291 	 * after it is started below.
   1292 	 *
   1293 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1294 	 * are defined.
   1295 	 *
   1296 	 * ASC-3550 has 8KB internal memory.
   1297 	 */
   1298 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1299 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1300 
   1301 	return 0;
   1302 }
   1303 
   1304 
   1305 int
   1306 AdwASC38C0800Cabling(iot, ioh, cfg)
   1307 	bus_space_tag_t iot;
   1308 	bus_space_handle_t ioh;
   1309 	ADW_DVC_CFG *cfg;
   1310 {
   1311 	u_int16_t	scsi_cfg1;
   1312 
   1313 
   1314 	/*
   1315 	 * Determine SCSI_CFG1 Microcode Default Value.
   1316 	 *
   1317 	 * The microcode will set the SCSI_CFG1 register using this value
   1318 	 * after it is started below.
   1319 	 */
   1320 
   1321 	/* Read current SCSI_CFG1 Register value. */
   1322 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1323 
   1324 	/*
   1325 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1326 	 * will be set. Check for and return an error if this condition is
   1327 	 * found.
   1328 	 */
   1329 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1330 		return ADW_IERR_REVERSED_CABLE;
   1331 	}
   1332 
   1333 	/*
   1334 	 * All kind of combinations of devices attached to one of four
   1335 	 * connectors are acceptable except HVD device attached.
   1336 	 * For example, LVD device can be attached to SE connector while
   1337 	 * SE device attached to LVD connector.
   1338 	 * If LVD device attached to SE connector, it only runs up to
   1339 	 * Ultra speed.
   1340 	 *
   1341 	 * If an HVD device is attached to one of LVD connectors, return
   1342 	 * an error.
   1343 	 * However, there is no way to detect HVD device attached to
   1344 	 * SE connectors.
   1345 	 */
   1346 	if (scsi_cfg1 & ADW_HVD) {
   1347 		return ADW_IERR_HVD_DEVICE;
   1348 	}
   1349 
   1350 	/*
   1351 	 * If either SE or LVD automatic termination control is enabled, then
   1352 	 * set the termination value based on a table listed in a_condor.h.
   1353 	 *
   1354 	 * If manual termination was specified with an EEPROM setting then
   1355 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1356 	 * to be 'ored' into SCSI_CFG1.
   1357 	 */
   1358 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1359 		/* SE automatic termination control is enabled. */
   1360 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1361 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1362 			case 0x1: case 0x2: case 0x3:
   1363 				cfg->termination |= ADW_TERM_SE;
   1364 				break;
   1365 
   1366 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1367 			case 0x0:
   1368 				cfg->termination |= ADW_TERM_SE_HI;
   1369 				break;
   1370 		}
   1371 	}
   1372 
   1373 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1374 		/* LVD automatic termination control is enabled. */
   1375 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1376 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1377 			case 0x4: case 0x8: case 0xC:
   1378 				cfg->termination |= ADW_TERM_LVD;
   1379 				break;
   1380 
   1381 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1382 			case 0x0:
   1383 				break;
   1384 		}
   1385 	}
   1386 
   1387 	/*
   1388 	 * Clear any set TERM_SE and TERM_LVD bits.
   1389 	 */
   1390 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1391 
   1392 	/*
   1393 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1394 	 */
   1395 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1396 
   1397 	/*
   1398 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1399 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1400 	 * in the Microcode SCSI_CFG1 Register Value.
   1401 	 */
   1402 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1403 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1404 
   1405 	/*
   1406 	 * Set SCSI_CFG1 Microcode Default Value
   1407 	 *
   1408 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1409 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1410 	 *
   1411 	 * The microcode will set the SCSI_CFG1 register using this value
   1412 	 * after it is started below.
   1413 	 */
   1414 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1415 
   1416 	/*
   1417 	 * Set MEM_CFG Microcode Default Value
   1418 	 *
   1419 	 * The microcode will set the MEM_CFG register using this value
   1420 	 * after it is started below.
   1421 	 *
   1422 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1423 	 * are defined.
   1424 	 *
   1425 	 * ASC-38C0800 has 16KB internal memory.
   1426 	 */
   1427 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1428 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1429 
   1430 	return 0;
   1431 }
   1432 
   1433 
   1434 int
   1435 AdwASC38C1600Cabling(iot, ioh, cfg)
   1436 	bus_space_tag_t iot;
   1437 	bus_space_handle_t ioh;
   1438 	ADW_DVC_CFG *cfg;
   1439 {
   1440 	u_int16_t	scsi_cfg1;
   1441 
   1442 
   1443 	/*
   1444 	 * Determine SCSI_CFG1 Microcode Default Value.
   1445 	 *
   1446 	 * The microcode will set the SCSI_CFG1 register using this value
   1447 	 * after it is started below.
   1448 	 * Each ASC-38C1600 function has only two cable detect bits.
   1449 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1450 	 */
   1451 
   1452 	/* Read current SCSI_CFG1 Register value. */
   1453 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1454 
   1455 	/*
   1456 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1457 	 * will be set. Check for and return an error if this condition is
   1458 	 * found.
   1459 	 */
   1460 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1461 		return ADW_IERR_REVERSED_CABLE;
   1462 	}
   1463 
   1464 	/*
   1465 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1466 	 * can not be connected to either connector. An LVD device or SE device
   1467 	 * may be connected to either connecor. If an SE device is connected,
   1468 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
   1469 	 *
   1470 	 * If an HVD device is attached, return an error.
   1471 	 */
   1472 	if (scsi_cfg1 & ADW_HVD) {
   1473 		return ADW_IERR_HVD_DEVICE;
   1474 	}
   1475 
   1476 	/*
   1477 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1478 	 * termination because there are two connectors for each function.
   1479 	 * Each function may use either LVD or SE mode.
   1480 	 * Corresponding the SE automatic termination control EEPROM bits are
   1481 	 * used for each function.
   1482 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1483 	 * for the function, then set the termination value based on a table
   1484 	 * listed in adwlib.h.
   1485 	 *
   1486 	 * If manual termination is specified in the EEPROM for the function,
   1487 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1488 	 * ready to be 'ored' into SCSI_CFG1.
   1489 	 */
   1490 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1491 		/* SE automatic termination control is enabled. */
   1492 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1493 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1494 			case 0x1: case 0x2: case 0x3:
   1495 				cfg->termination |= ADW_TERM_SE;
   1496 				break;
   1497 
   1498 			case 0x0:
   1499 	/* !!!!TODO!!!! */
   1500 //				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1501 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1502 //				}
   1503 //				else
   1504 //				{
   1505 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1506 					cfg->termination |= ADW_TERM_SE_HI;
   1507 //				}
   1508 				break;
   1509 			}
   1510 	}
   1511 
   1512 	/*
   1513 	 * Clear any set TERM_SE bits.
   1514 	 */
   1515 	scsi_cfg1 &= ~ADW_TERM_SE;
   1516 
   1517 	/*
   1518 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1519 	 */
   1520 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1521 
   1522 	/*
   1523 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1524 	 * modified termination control bits in the Microcode SCSI_CFG1
   1525 	 * Register Value.
   1526 	 */
   1527 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1528 
   1529 	/*
   1530 	 * Set SCSI_CFG1 Microcode Default Value
   1531 	 *
   1532 	 * Set possibly modified termination control bits in the Microcode
   1533 	 * SCSI_CFG1 Register Value.
   1534 	 *
   1535 	 * The microcode will set the SCSI_CFG1 register using this value
   1536 	 * after it is started below.
   1537 	 */
   1538 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1539 
   1540 	/*
   1541 	 * Set MEM_CFG Microcode Default Value
   1542 	 *
   1543 	 * The microcode will set the MEM_CFG register using this value
   1544 	 * after it is started below.
   1545 	 *
   1546 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1547 	 * are defined.
   1548 	 *
   1549 	 * ASC-38C1600 has 32KB internal memory.
   1550 	 */
   1551 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1552 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1553 
   1554 	return 0;
   1555 }
   1556 
   1557 
   1558 /*
   1559  * Read EEPROM configuration into the specified buffer.
   1560  *
   1561  * Return a checksum based on the EEPROM configuration read.
   1562  */
   1563 static u_int16_t
   1564 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
   1565 	bus_space_tag_t		iot;
   1566 	bus_space_handle_t	ioh;
   1567 	ADW_EEPROM		*cfg_buf;
   1568 {
   1569 	u_int16_t	       wval, chksum;
   1570 	u_int16_t	       *wbuf;
   1571 	int		    eep_addr;
   1572 
   1573 
   1574 	wbuf = (u_int16_t *) cfg_buf;
   1575 	chksum = 0;
   1576 
   1577 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1578 		eep_addr < ASC_EEP_DVC_CFG_END;
   1579 		eep_addr++, wbuf++) {
   1580 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1581 		chksum += wval;
   1582 		*wbuf = wval;
   1583 	}
   1584 
   1585 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1586 	wbuf++;
   1587 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1588 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1589 			eep_addr++, wbuf++) {
   1590 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1591 	}
   1592 
   1593 	return chksum;
   1594 }
   1595 
   1596 
   1597 /*
   1598  * Read the EEPROM from specified location
   1599  */
   1600 static u_int16_t
   1601 AdwReadEEPWord(iot, ioh, eep_word_addr)
   1602 	bus_space_tag_t		iot;
   1603 	bus_space_handle_t	ioh;
   1604 	int			eep_word_addr;
   1605 {
   1606 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1607 		ASC_EEP_CMD_READ | eep_word_addr);
   1608 	AdwWaitEEPCmd(iot, ioh);
   1609 
   1610 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1611 }
   1612 
   1613 
   1614 /*
   1615  * Wait for EEPROM command to complete
   1616  */
   1617 static void
   1618 AdwWaitEEPCmd(iot, ioh)
   1619 	bus_space_tag_t		iot;
   1620 	bus_space_handle_t	ioh;
   1621 {
   1622 	int eep_delay_ms;
   1623 
   1624 
   1625 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1626 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1627 				ASC_EEP_CMD_DONE) {
   1628 			break;
   1629 		}
   1630 		AdwSleepMilliSecond(1);
   1631 	}
   1632 
   1633 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1634 }
   1635 
   1636 
   1637 /*
   1638  * Write the EEPROM from 'cfg_buf'.
   1639  */
   1640 static void
   1641 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
   1642 	bus_space_tag_t		iot;
   1643 	bus_space_handle_t	ioh;
   1644 	ADW_EEPROM		*cfg_buf;
   1645 {
   1646 	u_int16_t *wbuf;
   1647 	u_int16_t addr, chksum;
   1648 
   1649 
   1650 	wbuf = (u_int16_t *) cfg_buf;
   1651 	chksum = 0;
   1652 
   1653 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1654 	AdwWaitEEPCmd(iot, ioh);
   1655 
   1656 	/*
   1657 	 * Write EEPROM from word 0 to word 20
   1658 	 */
   1659 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1660 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1661 		chksum += *wbuf;
   1662 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1663 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1664 				ASC_EEP_CMD_WRITE | addr);
   1665 		AdwWaitEEPCmd(iot, ioh);
   1666 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1667 	}
   1668 
   1669 	/*
   1670 	 * Write EEPROM checksum at word 21
   1671 	 */
   1672 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1673 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1674 			ASC_EEP_CMD_WRITE | addr);
   1675 	AdwWaitEEPCmd(iot, ioh);
   1676 	wbuf++;        /* skip over check_sum */
   1677 
   1678 	/*
   1679 	 * Write EEPROM OEM name at words 22 to 29
   1680 	 */
   1681 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1682 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1683 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1684 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1685 				ASC_EEP_CMD_WRITE | addr);
   1686 		AdwWaitEEPCmd(iot, ioh);
   1687 	}
   1688 
   1689 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1690 			ASC_EEP_CMD_WRITE_DISABLE);
   1691 	AdwWaitEEPCmd(iot, ioh);
   1692 
   1693 	return;
   1694 }
   1695 
   1696 
   1697 /*
   1698  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1699  *
   1700  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1701  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1702  *   RISC to notify it a new command is ready to be executed.
   1703  *
   1704  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1705  * set to SCSI_MAX_RETRY.
   1706  *
   1707  * Return:
   1708  *      ADW_SUCCESS(1) - The request was successfully queued.
   1709  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1710  *                       request completes.
   1711  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1712  *                       host IC error.
   1713  */
   1714 int
   1715 AdwExeScsiQueue(sc, scsiq)
   1716 ADW_SOFTC	*sc;
   1717 ADW_SCSI_REQ_Q	*scsiq;
   1718 {
   1719 	bus_space_tag_t iot = sc->sc_iot;
   1720 	bus_space_handle_t ioh = sc->sc_ioh;
   1721 	ADW_CCB		*ccb;
   1722 	long		req_size;
   1723 	u_int32_t	req_paddr;
   1724 	ADW_CARRIER	*new_carrp;
   1725 
   1726 	/*
   1727 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1728 	 */
   1729 	if (scsiq->target_id > ADW_MAX_TID) {
   1730 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1731 		scsiq->done_status = QD_WITH_ERROR;
   1732 		return ADW_ERROR;
   1733 	}
   1734 
   1735 	/*
   1736 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1737 	 */
   1738 
   1739 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1740 
   1741 	/*
   1742 	 * Allocate a carrier and initialize fields.
   1743 	 */
   1744 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1745 		return ADW_BUSY;
   1746 	}
   1747 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1748 			ASC_GET_CARRP(new_carrp->next_ba));
   1749 	sc->carr_pending_cnt++;
   1750 
   1751 	/*
   1752 	 * Set the carrier to be a stopper by setting 'next_ba'
   1753 	 * to the stopper value. The current stopper will be changed
   1754 	 * below to point to the new stopper.
   1755 	 */
   1756 	new_carrp->next_ba = ASC_CQ_STOPPER;
   1757 
   1758 	req_size = sizeof(ADW_SCSI_REQ_Q);
   1759 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1760 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1761 
   1762 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1763 	scsiq->scsiq_rptr = req_paddr;
   1764 
   1765 	/*
   1766 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1767 	 * order during initialization.
   1768 	 */
   1769 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1770 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1771 
   1772 	/*
   1773 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1774 	 * the microcode. The newly allocated stopper will become the new
   1775 	 * stopper.
   1776 	 */
   1777 	sc->icq_sp->areq_ba = req_paddr;
   1778 
   1779 	/*
   1780 	 * Set the 'next_ba' pointer for the old stopper to be the
   1781 	 * physical address of the new stopper. The RISC can only
   1782 	 * follow physical addresses.
   1783 	 */
   1784 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1785 
   1786 #if ADW_DEBUG
   1787 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1788 			sc->icq_sp->carr_id,
   1789 			sc->icq_sp->carr_ba,
   1790 			sc->icq_sp->areq_ba,
   1791 			sc->icq_sp->next_ba);
   1792 #endif
   1793 	/*
   1794 	 * Set the host adapter stopper pointer to point to the new carrier.
   1795 	 */
   1796 	sc->icq_sp = new_carrp;
   1797 
   1798 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1799 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1800 		/*
   1801 		 * Tickle the RISC to tell it to read its Command Queue Head
   1802 		 * pointer.
   1803 		 */
   1804 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_A);
   1805 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1806 			/*
   1807 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1808 			 * command 'clr_tickle_a' does not work unless the host
   1809 			 * value is cleared.
   1810 			 */
   1811 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1812 					ADV_TICKLE_NOP);
   1813 		}
   1814 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1815 		/*
   1816 		 * Notify the RISC a carrier is ready by writing the physical
   1817 		 * address of the new carrier stopper to the COMMA register.
   1818 		 */
   1819 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1820 				new_carrp->carr_ba);
   1821 	}
   1822 
   1823 	/*
   1824 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1825 	 */
   1826 
   1827 	return ADW_SUCCESS;
   1828 }
   1829 
   1830 
   1831 void
   1832 AdwResetChip(iot, ioh)
   1833 	bus_space_tag_t iot;
   1834 	bus_space_handle_t ioh;
   1835 {
   1836 
   1837 	/*
   1838 	 * Reset Chip.
   1839 	 */
   1840 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1841 			ADW_CTRL_REG_CMD_RESET);
   1842 	AdwSleepMilliSecond(100);
   1843 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1844 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1845 }
   1846 
   1847 
   1848 /*
   1849  * Reset SCSI Bus and purge all outstanding requests.
   1850  *
   1851  * Return Value:
   1852  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1853  *      ADW_FALSE(0) -  Microcode command failed.
   1854  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1855  *                      may be hung which requires driver recovery.
   1856  */
   1857 int
   1858 AdwResetCCB(sc)
   1859 ADW_SOFTC	*sc;
   1860 {
   1861 	int	    status;
   1862 
   1863 	/*
   1864 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1865 	 * the SCSI Bus Reset signal.
   1866 	 */
   1867 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1868 	if (status != ADW_TRUE) {
   1869 		return status;
   1870 	}
   1871 
   1872 	/*
   1873 	 * Delay for the specified SCSI Bus Reset hold time.
   1874 	 *
   1875 	 * The hold time delay is done on the host because the RISC has no
   1876 	 * microsecond accurate timer.
   1877 	 */
   1878 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1879 
   1880 	/*
   1881 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1882 	 * the SCSI Bus Reset signal and purges any pending requests.
   1883 	 */
   1884 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1885 	if (status != ADW_TRUE) {
   1886 		return status;
   1887 	}
   1888 
   1889 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1890 
   1891 	return status;
   1892 }
   1893 
   1894 
   1895 /*
   1896  * Reset chip and SCSI Bus.
   1897  *
   1898  * Return Value:
   1899  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1900  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1901  */
   1902 int
   1903 AdwResetSCSIBus(sc)
   1904 ADW_SOFTC	*sc;
   1905 {
   1906 	bus_space_tag_t iot = sc->sc_iot;
   1907 	bus_space_handle_t ioh = sc->sc_ioh;
   1908 	int		status;
   1909 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   1910 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1911 	u_int16_t	bios_sig;
   1912 
   1913 
   1914 	/*
   1915 	 * Save current per TID negotiated values.
   1916 	 */
   1917 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1918 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1919 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1920 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1921 	}
   1922 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1923 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1924 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1925 			max_cmd[tid]);
   1926 	}
   1927 
   1928 	/*
   1929 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1930 	 * by clearing the BIOS signature word.
   1931 	 * The initialization functions assumes a SCSI Bus Reset is not
   1932 	 * needed if the BIOS signature word is present.
   1933 	 */
   1934 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1935 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1936 
   1937 	/*
   1938 	 * Stop chip and reset it.
   1939 	 */
   1940 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1941 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1942 			ADW_CTRL_REG_CMD_RESET);
   1943 	AdwSleepMilliSecond(100);
   1944 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1945 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1946 
   1947 	/*
   1948 	 * Reset Adv Library error code, if any, and try
   1949 	 * re-initializing the chip.
   1950 	 * Then translate initialization return value to status value.
   1951 	 */
   1952 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1953 
   1954 	/*
   1955 	 * Restore the BIOS signature word.
   1956 	 */
   1957 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1958 
   1959 	/*
   1960 	 * Restore per TID negotiated values.
   1961 	 */
   1962 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1963 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1964 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1965 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1966 	}
   1967 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1968 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1969 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1970 			max_cmd[tid]);
   1971 	}
   1972 
   1973 	return status;
   1974 }
   1975 
   1976 
   1977 /*
   1978  * Adv Library Interrupt Service Routine
   1979  *
   1980  *  This function is called by a driver's interrupt service routine.
   1981  *  The function disables and re-enables interrupts.
   1982  *
   1983  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1984  *  'idle_cmd_done' field is set to ADW_TRUE.
   1985  *
   1986  *  Note: AdwISR() can be called when interrupts are disabled or even
   1987  *  when there is no hardware interrupt condition present. It will
   1988  *  always check for completed idle commands and microcode requests.
   1989  *  This is an important feature that shouldn't be changed because it
   1990  *  allows commands to be completed from polling mode loops.
   1991  *
   1992  * Return:
   1993  *   ADW_TRUE(1) - interrupt was pending
   1994  *   ADW_FALSE(0) - no interrupt was pending
   1995  */
   1996 int
   1997 AdwISR(sc)
   1998 ADW_SOFTC	*sc;
   1999 {
   2000 	bus_space_tag_t iot = sc->sc_iot;
   2001 	bus_space_handle_t ioh = sc->sc_ioh;
   2002 	u_int8_t	int_stat;
   2003 	u_int16_t	target_bit;
   2004 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   2005 	u_int32_t	irq_next_pa;
   2006 	ADW_SCSI_REQ_Q	*scsiq;
   2007 	ADW_CCB		*ccb;
   2008 	int		s;
   2009 
   2010 
   2011 	s = splbio();
   2012 
   2013 	/* Reading the register clears the interrupt. */
   2014 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   2015 
   2016 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   2017 	     ADW_INTR_STATUS_INTRC)) == 0) {
   2018 		splx(s);
   2019 		return ADW_FALSE;
   2020 	}
   2021 
   2022 	/*
   2023 	 * Notify the driver of an asynchronous microcode condition by
   2024 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2025 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2026 	 */
   2027 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2028 		u_int8_t intrb_code;
   2029 
   2030 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2031 
   2032 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2033 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2034 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2035 				sc->carr_pending_cnt != 0) {
   2036 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2037 					IOPB_TICKLE, ADV_TICKLE_A);
   2038 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2039 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2040 						IOPB_TICKLE, ADV_TICKLE_NOP);
   2041 				}
   2042 			}
   2043 		}
   2044 
   2045 		if (sc->async_callback != 0) {
   2046 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2047 		}
   2048 	}
   2049 
   2050 	/*
   2051 	 * Check if the IRQ stopper carrier contains a completed request.
   2052 	 */
   2053 	while (((irq_next_pa = sc->irq_sp->next_ba) & ASC_RQ_DONE) != 0)
   2054 	{
   2055 #if ADW_DEBUG
   2056 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2057 				sc->irq_sp->carr_id,
   2058 				sc->irq_sp->carr_ba,
   2059 				sc->irq_sp->areq_ba,
   2060 				sc->irq_sp->next_ba);
   2061 #endif
   2062 		/*
   2063 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2064 		 * structure.
   2065 		 * The RISC will have set 'areq_ba' to a virtual address.
   2066 		 *
   2067 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2068 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2069 		 * The conversion below complements the conversion of
   2070 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2071 		 */
   2072 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2073 		scsiq = &ccb->scsiq;
   2074 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2075 
   2076 		/*
   2077 		 * Request finished with good status and the queue was not
   2078 		 * DMAed to host memory by the firmware. Set all status fields
   2079 		 * to indicate good status.
   2080 		 */
   2081 		if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
   2082 			scsiq->done_status = QD_NO_ERROR;
   2083 			scsiq->host_status = scsiq->scsi_status = 0;
   2084 			scsiq->data_cnt = 0L;
   2085 		}
   2086 
   2087 		/*
   2088 		 * Advance the stopper pointer to the next carrier
   2089 		 * ignoring the lower four bits. Free the previous
   2090 		 * stopper carrier.
   2091 		 */
   2092 		free_carrp = sc->irq_sp;
   2093 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2094 
   2095 		free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
   2096 					: sc->carr_freelist->carr_ba;
   2097 		sc->carr_freelist = free_carrp;
   2098 		sc->carr_pending_cnt--;
   2099 
   2100 
   2101 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   2102 
   2103 		/*
   2104 		 * Clear request microcode control flag.
   2105 		 */
   2106 		scsiq->cntl = 0;
   2107 
   2108 		/*
   2109 		 * Check Condition handling
   2110 		 */
   2111 		/*
   2112 		 * If the command that completed was a SCSI INQUIRY and
   2113 		 * LUN 0 was sent the command, then process the INQUIRY
   2114 		 * command information for the device.
   2115 		 */
   2116 		if (scsiq->done_status == QD_NO_ERROR &&
   2117 		    scsiq->cdb[0] == INQUIRY &&
   2118 		    scsiq->target_lun == 0) {
   2119 			AdwInquiryHandling(sc, scsiq);
   2120 		}
   2121 
   2122 		/*
   2123 		 * Notify the driver of the completed request by passing
   2124 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2125 		 */
   2126 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2127 		/*
   2128 		 * Note: After the driver callback function is called, 'scsiq'
   2129 		 * can no longer be referenced.
   2130 		 *
   2131 		 * Fall through and continue processing other completed
   2132 		 * requests...
   2133 		 */
   2134 	}
   2135 
   2136 	splx(s);
   2137 
   2138 	return ADW_TRUE;
   2139 }
   2140 
   2141 
   2142 /*
   2143  * Send an idle command to the chip and wait for completion.
   2144  *
   2145  * Command completion is polled for once per microsecond.
   2146  *
   2147  * The function can be called from anywhere including an interrupt handler.
   2148  * But the function is not re-entrant, so it uses the splbio/splx()
   2149  * functions to prevent reentrancy.
   2150  *
   2151  * Return Values:
   2152  *   ADW_TRUE - command completed successfully
   2153  *   ADW_FALSE - command failed
   2154  *   ADW_ERROR - command timed out
   2155  */
   2156 int
   2157 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   2158 ADW_SOFTC      *sc;
   2159 u_int16_t       idle_cmd;
   2160 u_int32_t       idle_cmd_parameter;
   2161 {
   2162 	bus_space_tag_t iot = sc->sc_iot;
   2163 	bus_space_handle_t ioh = sc->sc_ioh;
   2164 	u_int16_t	result;
   2165 	u_int32_t	i, j, s;
   2166 
   2167 	s = splbio();
   2168 
   2169 	/*
   2170 	 * Clear the idle command status which is set by the microcode
   2171 	 * to a non-zero value to indicate when the command is completed.
   2172 	 */
   2173 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2174 
   2175 	/*
   2176 	 * Write the idle command value after the idle command parameter
   2177 	 * has been written to avoid a race condition. If the order is not
   2178 	 * followed, the microcode may process the idle command before the
   2179 	 * parameters have been written to LRAM.
   2180 	 */
   2181 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2182 			idle_cmd_parameter);
   2183 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2184 
   2185 	/*
   2186 	 * Tickle the RISC to tell it to process the idle command.
   2187 	 */
   2188 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_B);
   2189 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2190 		/*
   2191 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2192 		 * command 'clr_tickle_b' does not work unless the host
   2193 		 * value is cleared.
   2194 		 */
   2195 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_NOP);
   2196 	}
   2197 
   2198 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2199 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2200 		/* Poll once each microsecond for command completion. */
   2201 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2202 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2203 									result);
   2204 			if (result != 0) {
   2205 				splx(s);
   2206 				return result;
   2207 			}
   2208 			AdwDelayMicroSecond(1);
   2209 		}
   2210 	}
   2211 
   2212 	splx(s);
   2213 	return ADW_ERROR;
   2214 }
   2215 
   2216 
   2217 /*
   2218  * Inquiry Information Byte 7 Handling
   2219  *
   2220  * Handle SCSI Inquiry Command information for a device by setting
   2221  * microcode operating variables that affect WDTR, SDTR, and Tag
   2222  * Queuing.
   2223  */
   2224 static void
   2225 AdwInquiryHandling(sc, scsiq)
   2226 ADW_SOFTC	*sc;
   2227 ADW_SCSI_REQ_Q *scsiq;
   2228 {
   2229 #ifndef FAILSAFE
   2230 	bus_space_tag_t iot = sc->sc_iot;
   2231 	bus_space_handle_t ioh = sc->sc_ioh;
   2232 	u_int8_t		tid;
   2233 	struct scsipi_inquiry_data *inq;
   2234 	u_int16_t		tidmask;
   2235 	u_int16_t		cfg_word;
   2236 
   2237 
   2238 	/*
   2239 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2240 	 * to be available.
   2241 	 *
   2242 	 * If less than 8 bytes of INQUIRY information were requested or less
   2243 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2244 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2245 	 * microcode to the transfer residual count.
   2246 	 */
   2247 
   2248 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2249 		return;
   2250 	}
   2251 
   2252 	tid = scsiq->target_id;
   2253 
   2254 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2255 
   2256 	/*
   2257 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2258 	 */
   2259 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2260 	    ((inq->version & SID_ANSII) < 2)) {
   2261 		return;
   2262 	} else {
   2263 		/*
   2264 		 * INQUIRY Byte 7 Handling
   2265 		 *
   2266 		 * Use a device's INQUIRY byte 7 to determine whether it
   2267 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2268 		 * is enabled in the EEPROM and the device supports the
   2269 		 * feature, then enable it in the microcode.
   2270 		 */
   2271 
   2272 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2273 
   2274 		/*
   2275 		 * Wide Transfers
   2276 		 *
   2277 		 * If the EEPROM enabled WDTR for the device and the device
   2278 		 * supports wide bus (16 bit) transfers, then turn on the
   2279 		 * device's 'wdtr_able' bit and write the new value to the
   2280 		 * microcode.
   2281 		 */
   2282 #ifdef SCSI_ADW_WDTR_DISABLE
   2283 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2284 #endif /* SCSI_ADW_WDTR_DISABLE */
   2285 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2286 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2287 					cfg_word);
   2288 			if ((cfg_word & tidmask) == 0) {
   2289 				cfg_word |= tidmask;
   2290 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2291 						cfg_word);
   2292 
   2293 				/*
   2294 				 * Clear the microcode "SDTR negotiation" and
   2295 				 * "WDTR negotiation" done indicators for the
   2296 				 * target to cause it to negotiate with the new
   2297 				 * setting set above.
   2298 				 * WDTR when accepted causes the target to enter
   2299 				 * asynchronous mode, so SDTR must be negotiated
   2300 				 */
   2301 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2302 						cfg_word);
   2303 				cfg_word &= ~tidmask;
   2304 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2305 						cfg_word);
   2306 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2307 						cfg_word);
   2308 				cfg_word &= ~tidmask;
   2309 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2310 						cfg_word);
   2311 			}
   2312 		}
   2313 
   2314 		/*
   2315 		 * Synchronous Transfers
   2316 		 *
   2317 		 * If the EEPROM enabled SDTR for the device and the device
   2318 		 * supports synchronous transfers, then turn on the device's
   2319 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2320 		 */
   2321 #ifdef SCSI_ADW_SDTR_DISABLE
   2322 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2323 #endif /* SCSI_ADW_SDTR_DISABLE */
   2324 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2325 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2326 			if ((cfg_word & tidmask) == 0) {
   2327 				cfg_word |= tidmask;
   2328 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2329 						cfg_word);
   2330 
   2331 				/*
   2332 				 * Clear the microcode "SDTR negotiation"
   2333 				 * done indicator for the target to cause it
   2334 				 * to negotiate with the new setting set above.
   2335 				 */
   2336 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2337 						cfg_word);
   2338 				cfg_word &= ~tidmask;
   2339 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2340 						cfg_word);
   2341 			}
   2342 		}
   2343 		/*
   2344 		 * If the Inquiry data included enough space for the SPI-3
   2345 		 * Clocking field, then check if DT mode is supported.
   2346 		 */
   2347 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2348 		   (scsiq->cdb[4] >= 57 ||
   2349 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2350 			/*
   2351 			 * PPR (Parallel Protocol Request) Capable
   2352 			 *
   2353 			 * If the device supports DT mode, then it must be
   2354 			 * PPR capable.
   2355 			 * The PPR message will be used in place of the SDTR
   2356 			 * and WDTR messages to negotiate synchronous speed
   2357 			 * and offset, transfer width, and protocol options.
   2358 			 */
   2359 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2360 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2361 						sc->ppr_able);
   2362 				sc->ppr_able |= tidmask;
   2363 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2364 						sc->ppr_able);
   2365 			}
   2366 		}
   2367 
   2368 		/*
   2369 		 * If the EEPROM enabled Tag Queuing for the device and the
   2370 		 * device supports Tag Queueing, then turn on the device's
   2371 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2372 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2373 		 * value.
   2374 		 *
   2375 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2376 		 * mode and would see no benefit from Tag Queuing. Also by
   2377 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2378 		 * bugs will at least work with the BIOS.
   2379 		 */
   2380 #ifdef SCSI_ADW_TAGQ_DISABLE
   2381 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2382 #endif /* SCSI_ADW_TAGQ_DISABLE */
   2383 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2384 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2385 					cfg_word);
   2386 			cfg_word |= tidmask;
   2387 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2388 					cfg_word);
   2389 
   2390 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2391 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2392 					sc->max_dvc_qng);
   2393 		}
   2394 	}
   2395 #endif /* FAILSAFE */
   2396 }
   2397 
   2398 
   2399 static void
   2400 AdwSleepMilliSecond(n)
   2401 u_int32_t	n;
   2402 {
   2403 
   2404 	DELAY(n * 1000);
   2405 }
   2406 
   2407 
   2408 static void
   2409 AdwDelayMicroSecond(n)
   2410 u_int32_t	n;
   2411 {
   2412 
   2413 	DELAY(n);
   2414 }
   2415 
   2416