adwlib.c revision 1.2 1 /* $NetBSD: adwlib.c,v 1.2 1998/09/26 19:54:22 dante Exp $ */
2
3 /*
4 * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 *
6 * Copyright (c) 1998 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * Author: Baldassare Dante Profeta <dante (at) mclink.it>
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39 /*
40 * Ported from:
41 */
42 /*
43 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44 *
45 * Copyright (c) 1995-1998 Advanced System Products, Inc.
46 * All Rights Reserved.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that redistributions of source
50 * code retain the above copyright notice and this comment without
51 * modification.
52 */
53
54 #include <sys/types.h>
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/malloc.h>
58 #include <sys/kernel.h>
59 #include <sys/queue.h>
60 #include <sys/device.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64
65 #include <dev/scsipi/scsi_all.h>
66 #include <dev/scsipi/scsipi_all.h>
67 #include <dev/scsipi/scsiconf.h>
68
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <vm/pmap.h>
72
73 #include <dev/ic/adwlib.h>
74 #include <dev/ic/adw.h>
75 #include <dev/ic/adwmcode.h>
76
77
78 /* Static Functions */
79
80 static u_int16_t AdvGetEEPConfig __P((bus_space_tag_t, bus_space_handle_t,
81 ADWEEP_CONFIG *));
82 static u_int16_t AdvReadEEPWord __P((bus_space_tag_t, bus_space_handle_t,
83 int));
84 static void AdvWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
85 static void AdvSetEEPConfig __P((bus_space_tag_t, bus_space_handle_t,
86 ADWEEP_CONFIG *));
87 static int AdvSendScsiCmd __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
88 static void AdvInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
89
90 static void DvcSleepMilliSecond __P((ulong));
91 static void DvcDelayMicroSecond __P((ulong));
92
93
94 /*
95 * EEPROM Configuration.
96 *
97 * All drivers should use this structure to set the default EEPROM
98 * configuration. The BIOS now uses this structure when it is built.
99 * Additional structure information can be found in advlib.h where
100 * the structure is defined.
101 */
102 static ADWEEP_CONFIG
103 Default_EEPROM_Config = {
104 ADW_EEPROM_BIOS_ENABLE, /* cfg_msw */
105 0x0000, /* cfg_lsw */
106 0xFFFF, /* disc_enable */
107 0xFFFF, /* wdtr_able */
108 0xFFFF, /* sdtr_able */
109 0xFFFF, /* start_motor */
110 0xFFFF, /* tagqng_able */
111 0xFFFF, /* bios_scan */
112 0, /* scam_tolerant */
113 7, /* adapter_scsi_id */
114 0, /* bios_boot_delay */
115 3, /* scsi_reset_delay */
116 0, /* bios_id_lun */
117 0, /* termination */
118 0, /* reserved1 */
119 0xFFEF, /* bios_ctrl */
120 0xFFFF, /* ultra_able */
121 0, /* reserved2 */
122 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
123 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
124 0, /* dvc_cntl */
125 0, /* bug_fix */
126 0, /* serial_number_word1 */
127 0, /* serial_number_word2 */
128 0, /* serial_number_word3 */
129 0, /* check_sum */
130 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* oem_name[16] */
131 0, /* dvc_err_code */
132 0, /* adv_err_code */
133 0, /* adv_err_addr */
134 0, /* saved_dvc_err_code */
135 0, /* saved_adv_err_code */
136 0, /* saved_adv_err_addr */
137 0 /* num_of_err */
138 };
139
140 /*
141 * Initialize the ASC3550.
142 *
143 * On failure set the ADW_SOFTC field 'err_code' and return ADW_ERROR.
144 *
145 * For a non-fatal error return a warning code. If there are no warnings
146 * then 0 is returned.
147 */
148 int
149 AdvInitAsc3550Driver(sc)
150 ADW_SOFTC *sc;
151 {
152 bus_space_tag_t iot = sc->sc_iot;
153 bus_space_handle_t ioh = sc->sc_ioh;
154 u_int16_t warn_code;
155 u_int32_t sum;
156 int begin_addr;
157 int end_addr;
158 int code_sum;
159 int word;
160 int rql_addr; /* RISC Queue List address */
161 int i;
162 u_int16_t scsi_cfg1;
163 u_int8_t biosmem[ASC_MC_BIOSLEN]; /* BIOS RISC Memory
164 * 0x40-0x8F */
165
166
167 warn_code = 0;
168
169 /*
170 * Save the RISC memory BIOS region before writing the microcode.
171 * The BIOS may already be loaded and using its RISC LRAM region
172 * so its region must be saved and restored.
173 *
174 * Note: This code makes the assumption, which is currently true,
175 * that a chip reset does not clear RISC LRAM.
176 */
177 for (i = 0; i < ASC_MC_BIOSLEN; i++) {
178 ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_BIOSMEM + i, biosmem[i]);
179 }
180
181 /*
182 * Load the Microcode
183 *
184 * Write the microcode image to RISC memory starting at address 0.
185 */
186 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
187 for (word = 0; word < adv_mcode_size; word += 2) {
188 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
189 *((u_int16_t *) (&adv_mcode[word])));
190 }
191
192 /*
193 * Clear the rest of Condor's Internal RAM (8KB).
194 */
195 for (; word < ADW_CONDOR_MEMSIZE; word += 2) {
196 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
197 }
198
199 /*
200 * Verify the microcode checksum.
201 */
202 sum = 0;
203 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
204 for (word = 0; word < adv_mcode_size; word += 2) {
205 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
206 }
207
208 if (sum != adv_mcode_chksum)
209 return ASC_IERR_MCODE_CHKSUM;
210
211 /*
212 * Restore the RISC memory BIOS region.
213 */
214 for (i = 0; i < ASC_MC_BIOSLEN; i++) {
215 ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_BIOSMEM + i, biosmem[i]);
216 }
217
218 /*
219 * Calculate and write the microcode code checksum to the microcode
220 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
221 */
222 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
223 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
224 code_sum = 0;
225 for (word = begin_addr; word < end_addr; word += 2) {
226 code_sum += *((u_int16_t *) (&adv_mcode[word]));
227 }
228 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
229
230 /*
231 * Read microcode version and date.
232 */
233 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE, sc->cfg.mcode_date);
234 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM, sc->cfg.mcode_version);
235
236 /*
237 * Initialize microcode operating variables
238 */
239 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_ADAPTER_SCSI_ID,
240 sc->chip_scsi_id);
241
242 /*
243 * If the PCI Configuration Command Register "Parity Error Response
244 * Control" Bit was clear (0), then set the microcode variable
245 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
246 * to ignore DMA parity errors.
247 */
248 if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
249 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
250 word |= CONTROL_FLAG_IGNORE_PERR;
251 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
252 }
253 /*
254 * Set default microcode operating variables for WDTR, SDTR, and
255 * command tag queuing based on the EEPROM configuration values.
256 *
257 * These ADW_DVC_VAR fields and the microcode variables will be
258 * changed in AdvInquiryHandling() if it is found a device is
259 * incapable of a particular feature.
260 */
261
262 /*
263 * Set the microcode ULTRA target mask from EEPROM value. The
264 * SDTR target mask overrides the ULTRA target mask in the
265 * microcode so it is safe to set this value without determining
266 * whether the device supports SDTR.
267 *
268 * Note: There is no way to know whether a device supports ULTRA
269 * speed without attempting a SDTR ULTRA speed negotiation with
270 * the device. The device will reject the speed if it does not
271 * support it by responding with an SDTR message containing a
272 * slower speed.
273 */
274 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_ULTRA_ABLE, sc->ultra_able);
275 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
276
277
278 /*
279 * Set SCSI_CFG0 Microcode Default Value.
280 *
281 * The microcode will set the SCSI_CFG0 register using this value
282 * after it is started below.
283 */
284 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
285 ADW_PARITY_EN | ADW_SEL_TMO_LONG | ADW_OUR_ID_EN | sc->chip_scsi_id);
286
287 /*
288 * Determine SCSI_CFG1 Microcode Default Value.
289 *
290 * The microcode will set the SCSI_CFG1 register using this value
291 * after it is started below.
292 */
293
294 /* Read current SCSI_CFG1 Register value. */
295 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
296
297 /*
298 * If all three connectors are in use, return an error.
299 */
300 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
301 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
302 return ASC_IERR_ILLEGAL_CONNECTION;
303 }
304 /*
305 * If the internal narrow cable is reversed all of the SCSI_CTRL
306 * register signals will be set. Check for and return an error if
307 * this condition is found.
308 */
309 if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
310 0x3F07) {
311
312 return ASC_IERR_REVERSED_CABLE;
313 }
314
315 /*
316 * If this is a differential board and a single-ended device
317 * is attached to one of the connectors, return an error.
318 */
319 if ((scsi_cfg1 & ADW_DIFF_MODE) && (scsi_cfg1 & ADW_DIFF_SENSE) == 0)
320 return ASC_IERR_SINGLE_END_DEVICE;
321
322 /*
323 * If automatic termination control is enabled, then set the
324 * termination value based on a table listed in advlib.h.
325 *
326 * If manual termination was specified with an EEPROM setting
327 * then 'termination' was set-up in AdvInitFromEEP() and
328 * is ready to be 'ored' into SCSI_CFG1.
329 */
330 if (sc->cfg.termination == 0) {
331 /*
332 * The software always controls termination by setting
333 * ADW_TERM_CTL_SEL.
334 * If ADW_TERM_CTL_SEL were set to 0, the hardware would
335 * set termination.
336 */
337 sc->cfg.termination |= ADW_TERM_CTL_SEL;
338
339 switch (scsi_cfg1 & ADW_CABLE_DETECT) {
340 /* ADW_TERM_CTL_H: on, ADW_TERM_CTL_L: on */
341 case 0x3:
342 case 0x7:
343 case 0xB:
344 case 0xD:
345 case 0xE:
346 case 0xF:
347 sc->cfg.termination |= (ADW_TERM_CTL_H |
348 ADW_TERM_CTL_L);
349 break;
350
351 /* ADW_TERM_CTL_H: on, ADW_TERM_CTL_L: off */
352 case 0x1:
353 case 0x5:
354 case 0x9:
355 case 0xA:
356 case 0xC:
357 sc->cfg.termination |= ADW_TERM_CTL_H;
358 break;
359
360 /* ADW_TERM_CTL_H: off, ADW_TERM_CTL_L: off */
361 case 0x2:
362 case 0x6:
363 break;
364 }
365 }
366 /*
367 * Clear any set ADW_TERM_CTL_H and ADW_TERM_CTL_L bits.
368 */
369 scsi_cfg1 &= ~ADW_TERM_CTL;
370
371 /*
372 * Invert the ADW_TERM_CTL_H and ADW_TERM_CTL_L bits and then
373 * set 'scsi_cfg1'. The ADW_TERM_POL bit does not need to be
374 * referenced, because the hardware internally inverts
375 * the Termination High and Low bits if ADW_TERM_POL is set.
376 */
377 scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~sc->cfg.termination & ADW_TERM_CTL));
378
379 /*
380 * Set SCSI_CFG1 Microcode Default Value
381 *
382 * Set filter value and possibly modified termination control
383 * bits in the Microcode SCSI_CFG1 Register Value.
384 *
385 * The microcode will set the SCSI_CFG1 register using this value
386 * after it is started below.
387 */
388 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1,
389 ADW_FLTR_11_TO_20NS | scsi_cfg1);
390
391 /*
392 * Set SEL_MASK Microcode Default Value
393 *
394 * The microcode will set the SEL_MASK register using this value
395 * after it is started below.
396 */
397 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
398 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
399
400 /*
401 * Link all the RISC Queue Lists together in a doubly-linked
402 * NULL terminated list.
403 *
404 * Skip the NULL (0) queue which is not used.
405 */
406 for (i = 1, rql_addr = ASC_MC_RISC_Q_LIST_BASE+ASC_MC_RISC_Q_LIST_SIZE;
407 i < ASC_MC_RISC_Q_TOTAL_CNT;
408 i++, rql_addr += ASC_MC_RISC_Q_LIST_SIZE) {
409 /*
410 * Set the current RISC Queue List's RQL_FWD and
411 * RQL_BWD pointers in a one word write and set
412 * the state (RQL_STATE) to free.
413 */
414 ADW_WRITE_WORD_LRAM(iot, ioh, rql_addr,
415 ((i + 1) + ((i - 1) << 8)));
416 ADW_WRITE_BYTE_LRAM(iot, ioh, rql_addr + RQL_STATE,
417 ASC_MC_QS_FREE);
418 }
419
420 /*
421 * Set the Host and RISC Queue List pointers.
422 *
423 * Both sets of pointers are initialized with the same values:
424 * ASC_MC_RISC_Q_FIRST(0x01) and ASC_MC_RISC_Q_LAST (0xFF).
425 */
426 ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_READY,
427 ASC_MC_RISC_Q_FIRST);
428 ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_DONE,
429 ASC_MC_RISC_Q_LAST);
430
431 ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_RISC_NEXT_READY,
432 ASC_MC_RISC_Q_FIRST);
433 ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_RISC_NEXT_DONE,
434 ASC_MC_RISC_Q_LAST);
435
436 /*
437 * Finally, set up the last RISC Queue List (255) with
438 * a NULL forward pointer.
439 */
440 ADW_WRITE_WORD_LRAM(iot, ioh, rql_addr,
441 (ASC_MC_NULL_Q + ((i - 1) << 8)));
442 ADW_WRITE_BYTE_LRAM(iot, ioh, rql_addr + RQL_STATE, ASC_MC_QS_FREE);
443
444 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
445 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
446
447 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
448 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
449
450 /* finally, finally, gentlemen, start your engine */
451 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
452
453 return warn_code;
454 }
455
456 /*
457 * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
458 * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
459 * all of this is done.
460 *
461 * On failure set the ADW_DVC_VAR field 'err_code' and return ADW_ERROR.
462 *
463 * For a non-fatal error return a warning code. If there are no warnings
464 * then 0 is returned.
465 *
466 * Note: Chip is stopped on entry.
467 */
468 int
469 AdvInitFromEEP(sc)
470 ADW_SOFTC *sc;
471 {
472 bus_space_tag_t iot = sc->sc_iot;
473 bus_space_handle_t ioh = sc->sc_ioh;
474 u_int16_t warn_code;
475 ADWEEP_CONFIG eep_config;
476 int eep_chksum, i;
477
478
479 warn_code = 0;
480
481 /*
482 * Read the board's EEPROM configuration.
483 *
484 * Set default values if a bad checksum is found.
485 */
486 eep_chksum = AdvGetEEPConfig(iot, ioh, &eep_config);
487
488 if (eep_chksum != eep_config.check_sum) {
489 warn_code |= ASC_WARN_EEPROM_CHKSUM;
490
491 /*
492 * Set EEPROM default values.
493 */
494 for (i = 0; i < sizeof(ADWEEP_CONFIG); i++) {
495 *((u_int8_t *) & eep_config + i) =
496 *((u_int8_t *) & Default_EEPROM_Config + i);
497 }
498
499 /*
500 * Assume the 6 byte board serial number that was read
501 * from EEPROM is correct even if the EEPROM checksum
502 * failed.
503 */
504 eep_config.serial_number_word3 =
505 AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
506 eep_config.serial_number_word2 =
507 AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
508 eep_config.serial_number_word1 =
509 AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
510 AdvSetEEPConfig(iot, ioh, &eep_config);
511 }
512 /*
513 * Set ADW_DVC_VAR and ADW_DVC_CFG variables from the
514 * EEPROM configuration that was read.
515 *
516 * This is the mapping of EEPROM fields to Adv Library fields.
517 */
518 sc->wdtr_able = eep_config.wdtr_able;
519 sc->sdtr_able = eep_config.sdtr_able;
520 sc->ultra_able = eep_config.ultra_able;
521 sc->tagqng_able = eep_config.tagqng_able;
522 sc->cfg.disc_enable = eep_config.disc_enable;
523 sc->max_host_qng = eep_config.max_host_qng;
524 sc->max_dvc_qng = eep_config.max_dvc_qng;
525 sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
526 sc->start_motor = eep_config.start_motor;
527 sc->scsi_reset_wait = eep_config.scsi_reset_delay;
528 sc->cfg.bios_boot_wait = eep_config.bios_boot_delay;
529 sc->bios_ctrl = eep_config.bios_ctrl;
530 sc->no_scam = eep_config.scam_tolerant;
531 sc->cfg.serial1 = eep_config.serial_number_word1;
532 sc->cfg.serial2 = eep_config.serial_number_word2;
533 sc->cfg.serial3 = eep_config.serial_number_word3;
534
535 /*
536 * Set the host maximum queuing (max. 253, min. 16) and the per device
537 * maximum queuing (max. 63, min. 4).
538 */
539 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
540 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
541 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
542 /* If the value is zero, assume it is uninitialized. */
543 if (eep_config.max_host_qng == 0) {
544 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
545 } else {
546 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
547 }
548 }
549 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
550 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
551 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
552 /* If the value is zero, assume it is uninitialized. */
553 if (eep_config.max_dvc_qng == 0) {
554 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
555 } else {
556 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
557 }
558 }
559 /*
560 * If 'max_dvc_qng' is greater than 'max_host_qng', then
561 * set 'max_dvc_qng' to 'max_host_qng'.
562 */
563 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
564 eep_config.max_dvc_qng = eep_config.max_host_qng;
565 }
566 /*
567 * Set ADW_DVC_VAR 'max_host_qng' and ADW_DVC_CFG 'max_dvc_qng'
568 * values based on possibly adjusted EEPROM values.
569 */
570 sc->max_host_qng = eep_config.max_host_qng;
571 sc->max_dvc_qng = eep_config.max_dvc_qng;
572
573
574 /*
575 * If the EEPROM 'termination' field is set to automatic (0), then set
576 * the ADW_DVC_CFG 'termination' field to automatic also.
577 *
578 * If the termination is specified with a non-zero 'termination'
579 * value check that a legal value is set and set the ADW_DVC_CFG
580 * 'termination' field appropriately.
581 */
582 if (eep_config.termination == 0) {
583 sc->cfg.termination = 0; /* auto termination */
584 } else {
585 /* Enable manual control with low off / high off. */
586 if (eep_config.termination == 1) {
587 sc->cfg.termination = ADW_TERM_CTL_SEL;
588
589 /* Enable manual control with low off / high on. */
590 } else if (eep_config.termination == 2) {
591 sc->cfg.termination = ADW_TERM_CTL_SEL | ADW_TERM_CTL_H;
592
593 /* Enable manual control with low on / high on. */
594 } else if (eep_config.termination == 3) {
595 sc->cfg.termination = ADW_TERM_CTL_SEL |
596 ADW_TERM_CTL_H | ADW_TERM_CTL_L;
597 } else {
598 /*
599 * The EEPROM 'termination' field contains a bad value.
600 * Use automatic termination instead.
601 */
602 sc->cfg.termination = 0;
603 warn_code |= ASC_WARN_EEPROM_TERMINATION;
604 }
605 }
606
607 return warn_code;
608 }
609
610 /*
611 * Read EEPROM configuration into the specified buffer.
612 *
613 * Return a checksum based on the EEPROM configuration read.
614 */
615 static u_int16_t
616 AdvGetEEPConfig(iot, ioh, cfg_buf)
617 bus_space_tag_t iot;
618 bus_space_handle_t ioh;
619 ADWEEP_CONFIG *cfg_buf;
620 {
621 u_int16_t wval, chksum;
622 u_int16_t *wbuf;
623 int eep_addr;
624
625 wbuf = (u_int16_t *) cfg_buf;
626 chksum = 0;
627
628 for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
629 eep_addr < ASC_EEP_DVC_CFG_END;
630 eep_addr++, wbuf++) {
631 wval = AdvReadEEPWord(iot, ioh, eep_addr);
632 chksum += wval;
633 *wbuf = wval;
634 }
635 *wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
636 wbuf++;
637 for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
638 eep_addr < ASC_EEP_MAX_WORD_ADDR;
639 eep_addr++, wbuf++) {
640 *wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
641 }
642 return chksum;
643 }
644
645 /*
646 * Read the EEPROM from specified location
647 */
648 static u_int16_t
649 AdvReadEEPWord(iot, ioh, eep_word_addr)
650 bus_space_tag_t iot;
651 bus_space_handle_t ioh;
652 int eep_word_addr;
653 {
654 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
655 ASC_EEP_CMD_READ | eep_word_addr);
656 AdvWaitEEPCmd(iot, iot);
657 return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
658 }
659
660 /*
661 * Wait for EEPROM command to complete
662 */
663 static void
664 AdvWaitEEPCmd(iot, ioh)
665 bus_space_tag_t iot;
666 bus_space_handle_t ioh;
667 {
668 DvcSleepMilliSecond(1);
669
670 for (;;) {
671 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
672 ASC_EEP_CMD_DONE) {
673 break;
674 }
675 DvcSleepMilliSecond(1);
676 }
677
678 return;
679 }
680
681 /*
682 * Write the EEPROM from 'cfg_buf'.
683 */
684 static void
685 AdvSetEEPConfig(iot, ioh, cfg_buf)
686 bus_space_tag_t iot;
687 bus_space_handle_t ioh;
688 ADWEEP_CONFIG *cfg_buf;
689 {
690 u_int16_t *wbuf;
691 u_int16_t addr, chksum;
692
693 wbuf = (u_int16_t *) cfg_buf;
694 chksum = 0;
695
696 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
697 AdvWaitEEPCmd(iot, ioh);
698
699 /*
700 * Write EEPROM from word 0 to word 15
701 */
702 for (addr = ASC_EEP_DVC_CFG_BEGIN;
703 addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
704 chksum += *wbuf;
705 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
706 ADW_WRITE_WORD_REGISTER(iot, ioh,
707 IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
708 AdvWaitEEPCmd(iot, ioh);
709 DvcSleepMilliSecond(ASC_EEP_DELAY_MS);
710 }
711
712 /*
713 * Write EEPROM checksum at word 18
714 */
715 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
716 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
717 ASC_EEP_CMD_WRITE | addr);
718 AdvWaitEEPCmd(iot, ioh);
719 wbuf++; /* skip over check_sum */
720
721 /*
722 * Write EEPROM OEM name at words 19 to 26
723 */
724 for (addr = ASC_EEP_DVC_CTL_BEGIN;
725 addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
726 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
727 ADW_WRITE_WORD_REGISTER(iot, ioh,
728 IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
729 AdvWaitEEPCmd(iot, ioh);
730 }
731 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
732 ASC_EEP_CMD_WRITE_DISABLE);
733 AdvWaitEEPCmd(iot, ioh);
734 return;
735 }
736
737 /*
738 * This function resets the chip and SCSI bus
739 *
740 * It is up to the caller to add a delay to let the bus settle after
741 * calling this function.
742 *
743 * The SCSI_CFG0, SCSI_CFG1, and MEM_CFG registers are set-up in
744 * AdvInitAsc3550Driver(). Here when doing a write to one of these
745 * registers read first and then write.
746 *
747 * Note: A SCSI Bus Reset can not be done until after the EEPROM
748 * configuration is read to determine whether SCSI Bus Resets
749 * should be performed.
750 */
751 void
752 AdvResetChip(iot, ioh)
753 bus_space_tag_t iot;
754 bus_space_handle_t ioh;
755 {
756 u_int16_t word;
757 u_int8_t byte;
758
759
760 /*
761 * Reset Chip.
762 */
763 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
764 ADW_CTRL_REG_CMD_RESET);
765 DvcSleepMilliSecond(100);
766 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
767 ADW_CTRL_REG_CMD_WR_IO_REG);
768
769 /*
770 * Initialize Chip registers.
771 *
772 * Note: Don't remove the use of a temporary variable in the following
773 * code, otherwise the Microsoft C compiler will turn the following
774 * lines into a no-op.
775 */
776 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_MEM_CFG);
777 byte |= RAM_SZ_8KB;
778 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_MEM_CFG, byte);
779
780 word = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
781 word &= ~BIG_ENDIAN;
782 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1, word);
783
784 /*
785 * Setting the START_CTL_EMFU 3:2 bits sets a FIFO threshold
786 * of 128 bytes. This register is only accessible to the host.
787 */
788 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
789 START_CTL_EMFU | READ_CMD_MRM);
790 }
791
792 /*
793 * Description:
794 * Send a SCSI request to the ASC3550 chip
795 *
796 * If there is no SG list for the request, set 'sg_entry_cnt' to 0.
797 *
798 * If 'sg_real_addr' is non-zero on entry, AscGetSGList() will not be
799 * called. It is assumed the caller has already initialized 'sg_real_addr'.
800 *
801 * Return:
802 * ADW_SUCCESS(1) - the request is in the mailbox
803 * ADW_BUSY(0) - total request count > 253, try later
804 * ADW_ERROR(-1) - invalid scsi request Q
805 */
806 int
807 AdvExeScsiQueue(sc, scsiq)
808 ADW_SOFTC *sc;
809 ADW_SCSI_REQ_Q *scsiq;
810 {
811 return AdvSendScsiCmd(sc, scsiq);
812 }
813
814 /*
815 * Reset SCSI Bus and purge all outstanding requests.
816 *
817 * Return Value:
818 * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
819 *
820 * Note: Should always return ADW_TRUE.
821 */
822 int
823 AdvResetCCB(sc)
824 ADW_SOFTC *sc;
825 {
826 int status;
827
828 status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET, 0L, 0);
829
830 AdvResetSCSIBus(sc);
831
832 return status;
833 }
834
835 /*
836 * Reset SCSI Bus and delay.
837 */
838 void
839 AdvResetSCSIBus(sc)
840 ADW_SOFTC *sc;
841 {
842 bus_space_tag_t iot = sc->sc_iot;
843 bus_space_handle_t ioh = sc->sc_ioh;
844 u_int16_t scsi_ctrl;
845
846
847
848 /*
849 * The microcode currently sets the SCSI Bus Reset signal while
850 * handling the AdvSendIdleCmd() IDLE_CMD_SCSI_RESET command above.
851 * But the SCSI Bus Reset Hold Time in the uCode is not deterministic
852 * (it may in fact be for less than the SCSI Spec. minimum of 25 us).
853 * Therefore on return the Adv Library sets the SCSI Bus Reset signal
854 * for ASC_SCSI_RESET_HOLD_TIME_US, which is defined to be greater
855 * than 25 us.
856 */
857 scsi_ctrl = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL);
858 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL,
859 scsi_ctrl | ADW_SCSI_CTRL_RSTOUT);
860 DvcDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
861 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL,
862 scsi_ctrl & ~ADW_SCSI_CTRL_RSTOUT);
863
864 DvcSleepMilliSecond((ulong) sc->scsi_reset_wait * 1000);
865 }
866
867
868 /*
869 * Adv Library Interrupt Service Routine
870 *
871 * This function is called by a driver's interrupt service routine.
872 * The function disables and re-enables interrupts.
873 *
874 * When a microcode idle command is completed, the ADW_DVC_VAR
875 * 'idle_cmd_done' field is set to ADW_TRUE.
876 *
877 * Note: AdvISR() can be called when interrupts are disabled or even
878 * when there is no hardware interrupt condition present. It will
879 * always check for completed idle commands and microcode requests.
880 * This is an important feature that shouldn't be changed because it
881 * allows commands to be completed from polling mode loops.
882 *
883 * Return:
884 * ADW_TRUE(1) - interrupt was pending
885 * ADW_FALSE(0) - no interrupt was pending
886 */
887 int
888 AdvISR(sc)
889 ADW_SOFTC *sc;
890 {
891 bus_space_tag_t iot = sc->sc_iot;
892 bus_space_handle_t ioh = sc->sc_ioh;
893 u_int8_t int_stat;
894 u_int16_t next_done_loc, target_bit;
895 int completed_q;
896 ADW_SCSI_REQ_Q *scsiq;
897 ASC_REQ_SENSE *sense_data;
898 int ret;
899
900
901 ret = (ADW_IS_INT_PENDING(iot, ioh)) ? ADW_TRUE : ADW_FALSE;
902
903 /* Reading the register clears the interrupt. */
904 int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
905
906 if (int_stat & ADW_INTR_STATUS_INTRB) {
907 sc->idle_cmd_done = ADW_TRUE;
908 }
909 /*
910 * Notify the driver of a hardware detected SCSI Bus Reset.
911 */
912 if (int_stat & ADW_INTR_STATUS_INTRC) {
913 if (sc->sbreset_callback) {
914 (*(ADW_SBRESET_CALLBACK) sc->sbreset_callback) (sc);
915 }
916 }
917 /*
918 * ASC_MC_HOST_NEXT_DONE (0x129) is actually the last completed RISC
919 * Queue List request. Its forward pointer (RQL_FWD) points to the
920 * current completed RISC Queue List request.
921 */
922 ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_DONE, next_done_loc);
923 next_done_loc = ASC_MC_RISC_Q_LIST_BASE +
924 (next_done_loc * ASC_MC_RISC_Q_LIST_SIZE) + RQL_FWD;
925
926 ADW_READ_BYTE_LRAM(iot, ioh, next_done_loc, completed_q);
927
928 /* Loop until all completed Q's are processed. */
929 while (completed_q != ASC_MC_NULL_Q) {
930 ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_DONE,
931 completed_q);
932
933 next_done_loc = ASC_MC_RISC_Q_LIST_BASE +
934 (completed_q * ASC_MC_RISC_Q_LIST_SIZE);
935
936 /*
937 * Read the ADW_SCSI_REQ_Q virtual address pointer from
938 * the RISC list entry. The microcode has changed the
939 * ADW_SCSI_REQ_Q physical address to its virtual address.
940 *
941 * Refer to comments at the end of AdvSendScsiCmd() for
942 * more information on the RISC list structure.
943 */
944 {
945 ushort lsw, msw;
946 ADW_READ_WORD_LRAM(iot, ioh,
947 next_done_loc + RQL_PHYADDR, lsw);
948 ADW_READ_WORD_LRAM(iot, ioh,
949 next_done_loc + RQL_PHYADDR + 2, msw);
950
951 scsiq = (ADW_SCSI_REQ_Q *)
952 (((u_int32_t) msw << 16) | lsw);
953 }
954
955 target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
956
957 /*
958 * Clear request microcode control flag.
959 */
960 scsiq->cntl = 0;
961
962 /*
963 * Check Condition handling
964 */
965 if ((scsiq->done_status == QD_WITH_ERROR) &&
966 (scsiq->scsi_status == SS_CHK_CONDITION) &&
967 (sense_data = (ASC_REQ_SENSE *) scsiq->vsense_addr) != 0 &&
968 (scsiq->orig_sense_len - scsiq->sense_len) >=
969 ASC_MIN_SENSE_LEN) {
970 /*
971 * Command returned with a check condition and valid
972 * sense data.
973 */
974 }
975 /*
976 * If the command that completed was a SCSI INQUIRY and
977 * LUN 0 was sent the command, then process the INQUIRY
978 * command information for the device.
979 */
980 else if (scsiq->done_status == QD_NO_ERROR &&
981 scsiq->cdb[0] == INQUIRY &&
982 scsiq->target_lun == 0) {
983 AdvInquiryHandling(sc, scsiq);
984 }
985 /* Change the RISC Queue List state to free. */
986 ADW_WRITE_BYTE_LRAM(iot, ioh,
987 next_done_loc + RQL_STATE, ASC_MC_QS_FREE);
988
989 /* Get the RISC Queue List forward pointer. */
990 ADW_READ_BYTE_LRAM(iot, ioh,
991 next_done_loc + RQL_FWD, completed_q);
992
993 /*
994 * Notify the driver of the completed request by passing
995 * the ADW_SCSI_REQ_Q pointer to its callback function.
996 */
997 sc->cur_host_qng--;
998 scsiq->a_flag |= ADW_SCSIQ_DONE;
999 (*(ADW_ISR_CALLBACK) sc->isr_callback) (sc, scsiq);
1000 /*
1001 * Note: After the driver callback function is called, 'scsiq'
1002 * can no longer be referenced.
1003 *
1004 * Fall through and continue processing other completed
1005 * requests...
1006 */
1007 }
1008 return ret;
1009 }
1010
1011 /*
1012 * Send an idle command to the chip and wait for completion.
1013 *
1014 * Interrupts do not have to be enabled on entry.
1015 *
1016 * Return Values:
1017 * ADW_TRUE - command completed successfully
1018 * ADW_FALSE - command failed
1019 */
1020 int
1021 AdvSendIdleCmd(sc, idle_cmd, idle_cmd_parameter, flags)
1022 ADW_SOFTC *sc;
1023 u_int16_t idle_cmd;
1024 u_int32_t idle_cmd_parameter;
1025 int flags;
1026 {
1027 bus_space_tag_t iot = sc->sc_iot;
1028 bus_space_handle_t ioh = sc->sc_ioh;
1029 u_int32_t i;
1030 int ret;
1031
1032 sc->idle_cmd_done = 0;
1033
1034 /*
1035 * Write the idle command value after the idle command parameter
1036 * has been written to avoid a race condition. If the order is not
1037 * followed, the microcode may process the idle command before the
1038 * parameters have been written to LRAM.
1039 */
1040 ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IDLE_PARA_STAT,
1041 idle_cmd_parameter);
1042 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD, idle_cmd);
1043
1044 /*
1045 * If the 'flags' argument contains the ADW_NOWAIT flag, then
1046 * return with success.
1047 */
1048 if (flags & ADW_NOWAIT)
1049 return ADW_TRUE;
1050
1051 for (i = 0; i < SCSI_WAIT_10_SEC * SCSI_MS_PER_SEC; i++) {
1052 /*
1053 * 'idle_cmd_done' is set by AdvISR().
1054 */
1055 if (sc->idle_cmd_done)
1056 break;
1057
1058 DvcSleepMilliSecond(1);
1059
1060 /*
1061 * If interrupts were disabled on entry to AdvSendIdleCmd(),
1062 * then they will still be disabled here. Call AdvISR() to
1063 * check for the idle command completion.
1064 */
1065 (void) AdvISR(sc);
1066 }
1067
1068 if (sc->idle_cmd_done == ADW_FALSE) {
1069 return ADW_FALSE;
1070 } else {
1071 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_IDLE_PARA_STAT, ret);
1072 return ret;
1073 }
1074 }
1075
1076 /*
1077 * Send the SCSI request block to the adapter
1078 *
1079 * Each of the 255 Adv Library/Microcode RISC Lists or mailboxes has the
1080 * following structure:
1081 *
1082 * 0: RQL_FWD - RISC list forward pointer (1 byte)
1083 * 1: RQL_BWD - RISC list backward pointer (1 byte)
1084 * 2: RQL_STATE - RISC list state byte - free, ready, done, aborted (1 byte)
1085 * 3: RQL_TID - request target id (1 byte)
1086 * 4: RQL_PHYADDR - ADW_SCSI_REQ_Q physical pointer (4 bytes)
1087 *
1088 * Return:
1089 * ADW_SUCCESS(1) - the request is in the mailbox
1090 * ADW_BUSY(0) - total request count > 253, try later
1091 */
1092 static int
1093 AdvSendScsiCmd(sc, scsiq)
1094 ADW_SOFTC *sc;
1095 ADW_SCSI_REQ_Q *scsiq;
1096 {
1097 bus_space_tag_t iot = sc->sc_iot;
1098 bus_space_handle_t ioh = sc->sc_ioh;
1099 ADW_CCB *ccb = (ADW_CCB *) scsiq->ccb_ptr;
1100 u_int16_t next_ready_loc;
1101 u_int8_t next_ready_loc_fwd;
1102 long req_size;
1103 u_int32_t q_phy_addr;
1104
1105
1106 if (sc->cur_host_qng >= sc->max_host_qng) {
1107 return ADW_BUSY;
1108 } else {
1109 sc->cur_host_qng++;
1110 }
1111
1112 /*
1113 * Clear the ADW_SCSI_REQ_Q done flag.
1114 */
1115 scsiq->a_flag &= ~ADW_SCSIQ_DONE;
1116
1117 /*
1118 * Save the original sense buffer length.
1119 *
1120 * After the request completes 'sense_len' will be set to the residual
1121 * byte count of the Auto-Request Sense if a command returns CHECK
1122 * CONDITION and the Sense Data is valid indicated by 'host_status' not
1123 * being set to QHSTA_M_AUTO_REQ_SENSE_FAIL. To determine the valid
1124 * Sense Data Length subtract 'sense_len' from 'orig_sense_len'.
1125 */
1126 scsiq->orig_sense_len = scsiq->sense_len;
1127
1128 ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_READY, next_ready_loc);
1129 next_ready_loc = ASC_MC_RISC_Q_LIST_BASE +
1130 (next_ready_loc * ASC_MC_RISC_Q_LIST_SIZE);
1131
1132 /*
1133 * Write the physical address of the Q to the mailbox.
1134 * We need to skip the first four bytes, because the microcode
1135 * uses them internally for linking Q's together.
1136 */
1137 req_size = sizeof(ADW_SCSI_REQ_Q);
1138 q_phy_addr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1139 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1140
1141 scsiq->scsiq_ptr = scsiq;
1142
1143 /*
1144 * The RISC list structure, which 'next_ready_loc' is a pointer
1145 * to in microcode LRAM, has the format detailed in the comment
1146 * header for this function.
1147 *
1148 * Write the ADW_SCSI_REQ_Q physical pointer to
1149 * 'next_ready_loc' request.
1150 */
1151 ADW_WRITE_DWORD_LRAM(iot, ioh, next_ready_loc + RQL_PHYADDR,
1152 q_phy_addr);
1153
1154 /* Write target_id to 'next_ready_loc' request. */
1155 ADW_WRITE_BYTE_LRAM(iot, ioh, next_ready_loc + RQL_TID,
1156 scsiq->target_id);
1157
1158 /*
1159 * Set the ASC_MC_HOST_NEXT_READY (0x128) microcode variable to
1160 * the 'next_ready_loc' request forward pointer.
1161 *
1162 * Do this *before* changing the 'next_ready_loc' queue to QS_READY.
1163 * After the state is changed to QS_READY 'RQL_FWD' will be changed
1164 * by the microcode.
1165 *
1166 * NOTE: The temporary variable 'next_ready_loc_fwd' is required to
1167 * prevent some compilers from optimizing out 'AdvReadByteLram()' if
1168 * it were used as the 3rd argument to 'AdvWriteByteLram()'.
1169 */
1170 ADW_READ_BYTE_LRAM(iot, ioh, next_ready_loc + RQL_FWD,
1171 next_ready_loc_fwd);
1172 ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_READY,
1173 next_ready_loc_fwd);
1174
1175 /*
1176 * Change the state of 'next_ready_loc' request from QS_FREE to
1177 * QS_READY which will cause the microcode to pick it up and
1178 * execute it.
1179 *
1180 * Can't reference 'next_ready_loc' after changing the request
1181 * state to QS_READY. The microcode now owns the request.
1182 */
1183 ADW_WRITE_BYTE_LRAM(iot, ioh, next_ready_loc + RQL_STATE,
1184 ASC_MC_QS_READY);
1185
1186 return ADW_SUCCESS;
1187 }
1188
1189 /*
1190 * Inquiry Information Byte 7 Handling
1191 *
1192 * Handle SCSI Inquiry Command information for a device by setting
1193 * microcode operating variables that affect WDTR, SDTR, and Tag
1194 * Queuing.
1195 */
1196 static void
1197 AdvInquiryHandling(sc, scsiq)
1198 ADW_SOFTC *sc;
1199 ADW_SCSI_REQ_Q *scsiq;
1200 {
1201 bus_space_tag_t iot = sc->sc_iot;
1202 bus_space_handle_t ioh = sc->sc_ioh;
1203 ASC_SCSI_INQUIRY *inq;
1204 u_int16_t cfg_word;
1205 u_int16_t tidmask;
1206 u_int8_t tid;
1207
1208 /*
1209 * AdvInquiryHandling() requires up to INQUIRY information Byte 7
1210 * to be available.
1211 *
1212 * If less than 8 bytes of INQUIRY information were requested or less
1213 * than 8 bytes were transferred, then return. cdb[4] is the request
1214 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
1215 * microcode to the transfer residual count.
1216 */
1217 if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
1218 return;
1219 }
1220 tid = scsiq->target_id;
1221 inq = (ASC_SCSI_INQUIRY *) scsiq->vdata_addr;
1222
1223 /*
1224 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
1225 */
1226 if (inq->byte3.rsp_data_fmt < 2 && inq->byte2.ansi_apr_ver < 2) {
1227 return;
1228 } else {
1229 /*
1230 * INQUIRY Byte 7 Handling
1231 *
1232 * Use a device's INQUIRY byte 7 to determine whether it
1233 * supports WDTR, SDTR, and Tag Queuing. If the feature
1234 * is enabled in the EEPROM and the device supports the
1235 * feature, then enable it in the microcode.
1236 */
1237
1238 tidmask = ADW_TID_TO_TIDMASK(tid);
1239 /*
1240 * Wide Transfers
1241 *
1242 * If the EEPROM enabled WDTR for the device and the device
1243 * supports wide bus (16 bit) transfers, then turn on the
1244 * device's 'wdtr_able' bit and write the new value to the
1245 * microcode.
1246 */
1247 if ((sc->wdtr_able & tidmask) && inq->byte7.WBus16) {
1248 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
1249 cfg_word);
1250 if ((cfg_word & tidmask) == 0) {
1251 cfg_word |= tidmask;
1252 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
1253 cfg_word);
1254
1255 /*
1256 * Clear the microcode "WDTR negotiation" done
1257 * indicator for the target to cause it
1258 * to negotiate with the new setting set above.
1259 */
1260 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
1261 cfg_word);
1262 cfg_word &= ~tidmask;
1263 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
1264 cfg_word);
1265 }
1266 }
1267 /*
1268 * Synchronous Transfers
1269 *
1270 * If the EEPROM enabled SDTR for the device and the device
1271 * supports synchronous transfers, then turn on the device's
1272 * 'sdtr_able' bit. Write the new value to the microcode.
1273 */
1274 if ((sc->sdtr_able & tidmask) && inq->byte7.Sync) {
1275 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
1276 cfg_word);
1277 if ((cfg_word & tidmask) == 0) {
1278 cfg_word |= tidmask;
1279 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
1280 cfg_word);
1281
1282 /*
1283 * Clear the microcode "SDTR negotiation" done
1284 * indicator for the target to cause it
1285 * to negotiate with the new setting set above.
1286 */
1287 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
1288 cfg_word);
1289 cfg_word &= ~tidmask;
1290 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
1291 cfg_word);
1292 }
1293 }
1294 /*
1295 * If the EEPROM enabled Tag Queuing for device and the
1296 * device supports Tag Queuing, then turn on the device's
1297 * 'tagqng_enable' bit in the microcode and set the microcode
1298 * maximum command count to the ADW_DVC_VAR 'max_dvc_qng'
1299 * value.
1300 *
1301 * Tag Queuing is disabled for the BIOS which runs in polled
1302 * mode and would see no benefit from Tag Queuing. Also by
1303 * disabling Tag Queuing in the BIOS devices with Tag Queuing
1304 * bugs will at least work with the BIOS.
1305 */
1306 if ((sc->tagqng_able & tidmask) && inq->byte7.CmdQue) {
1307 ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
1308 cfg_word);
1309 cfg_word |= tidmask;
1310 ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
1311 cfg_word);
1312 ADW_WRITE_BYTE_LRAM(iot, ioh,
1313 ASC_MC_NUMBER_OF_MAX_CMD + tid,
1314 sc->max_dvc_qng);
1315 }
1316 }
1317 }
1318
1319 static void
1320 DvcSleepMilliSecond(n)
1321 ulong n;
1322 {
1323
1324 DELAY(n * 1000);
1325 }
1326
1327 static void
1328 DvcDelayMicroSecond(n)
1329 ulong n;
1330 {
1331
1332 DELAY(n);
1333 }
1334