Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.22
      1 /* $NetBSD: adwlib.c,v 1.22 2001/08/29 17:25:03 briggs Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 /*
     40  * Ported from:
     41  */
     42 /*
     43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  *
     45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46  * All Rights Reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that redistributions of source
     50  * code retain the above copyright notice and this comment without
     51  * modification.
     52  */
     53 
     54 #include <sys/types.h>
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/malloc.h>
     58 #include <sys/kernel.h>
     59 #include <sys/queue.h>
     60 #include <sys/device.h>
     61 
     62 #include <machine/bus.h>
     63 #include <machine/intr.h>
     64 
     65 #include <dev/scsipi/scsi_all.h>
     66 #include <dev/scsipi/scsipi_all.h>
     67 #include <dev/scsipi/scsiconf.h>
     68 
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <uvm/uvm_extern.h>
     72 
     73 #include <dev/ic/adwlib.h>
     74 #include <dev/ic/adwmcode.h>
     75 #include <dev/ic/adw.h>
     76 
     77 
     78 /* Static Functions */
     79 
     80 int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
     81 int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
     82 								u_int8_t));
     83 int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
     84 int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
     85 								ADW_DVC_CFG *));
     86 int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
     87 								ADW_DVC_CFG *));
     88 
     89 static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     90      							ADW_EEPROM *));
     91 static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     92 					                 ADW_EEPROM *));
     93 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     94 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     95 
     96 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     97 
     98 static void AdwSleepMilliSecond __P((u_int32_t));
     99 static void AdwDelayMicroSecond __P((u_int32_t));
    100 
    101 
    102 /*
    103  * EEPROM Configuration.
    104  *
    105  * All drivers should use this structure to set the default EEPROM
    106  * configuration. The BIOS now uses this structure when it is built.
    107  * Additional structure information can be found in adwlib.h where
    108  * the structure is defined.
    109  */
    110 const static ADW_EEPROM adw_3550_Default_EEPROM = {
    111 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    112 	0x0000,			/* 01 cfg_msw */
    113 	0xFFFF,			/* 02 disc_enable */
    114 	0xFFFF,			/* 03 wdtr_able */
    115 	{ 0xFFFF },		/* 04 sdtr_able */
    116 	0xFFFF,			/* 05 start_motor */
    117 	0xFFFF,			/* 06 tagqng_able */
    118 	0xFFFF,			/* 07 bios_scan */
    119 	0,			/* 08 scam_tolerant */
    120 	7,			/* 09 adapter_scsi_id */
    121 	0,			/*    bios_boot_delay */
    122 	3,			/* 10 scsi_reset_delay */
    123 	0,			/*    bios_id_lun */
    124 	0,			/* 11 termination */
    125 	0,			/*    reserved1 */
    126 	0xFFE7,			/* 12 bios_ctrl */
    127 	{ 0xFFFF },		/* 13 ultra_able */
    128 	{ 0 },			/* 14 reserved2 */
    129 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    130 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    131 	0,			/* 16 dvc_cntl */
    132 	{ 0 },			/* 17 bug_fix */
    133 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    134 	0,			/* 21 check_sum */
    135 	{			/* 22-29 oem_name[16] */
    136 	  0,0,0,0,0,0,0,0,
    137 	  0,0,0,0,0,0,0,0
    138 	},
    139 	0,			/* 30 dvc_err_code */
    140 	0,			/* 31 adv_err_code */
    141 	0,			/* 32 adv_err_addr */
    142 	0,			/* 33 saved_dvc_err_code */
    143 	0,			/* 34 saved_adv_err_code */
    144 	0			/* 35 saved_adv_err_addr */
    145 };
    146 
    147 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
    148 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    149 	0x0000,			/* 01 cfg_msw */
    150 	0xFFFF,			/* 02 disc_enable */
    151 	0xFFFF,			/* 03 wdtr_able */
    152 	{ 0x4444 },		/* 04 sdtr_speed1 */
    153 	0xFFFF,			/* 05 start_motor */
    154 	0xFFFF,			/* 06 tagqng_able */
    155 	0xFFFF,			/* 07 bios_scan */
    156 	0,			/* 08 scam_tolerant */
    157 	7,			/* 09 adapter_scsi_id */
    158 	0,			/*    bios_boot_delay */
    159 	3,			/* 10 scsi_reset_delay */
    160 	0,			/*    bios_id_lun */
    161 	0,			/* 11 termination_se */
    162 	0,			/*    termination_lvd */
    163 	0xFFE7,			/* 12 bios_ctrl */
    164 	{ 0x4444 },		/* 13 sdtr_speed2 */
    165 	{ 0x4444 },		/* 14 sdtr_speed3 */
    166 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    167 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    168 	0,			/* 16 dvc_cntl */
    169 	{ 0x4444 },		/* 17 sdtr_speed4 */
    170 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    171 	0,			/* 21 check_sum */
    172 	{			/* 22-29 oem_name[16] */
    173 	  0,0,0,0,0,0,0,0,
    174 	  0,0,0,0,0,0,0,0
    175 	},
    176 	0,			/* 30 dvc_err_code */
    177 	0,			/* 31 adv_err_code */
    178 	0,			/* 32 adv_err_addr */
    179 	0,			/* 33 saved_dvc_err_code */
    180 	0,			/* 34 saved_adv_err_code */
    181 	0,			/* 35 saved_adv_err_addr */
    182 	{			/* 36-55 reserved1[16] */
    183 	  0,0,0,0,0,0,0,0,0,0,
    184 	  0,0,0,0,0,0,0,0,0,0
    185 	},
    186 	0,			/* 56 cisptr_lsw */
    187 	0,			/* 57 cisprt_msw */
    188 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    189 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    190 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    191 };
    192 
    193 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
    194 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    195 	0x0000,			/* 01 cfg_msw */
    196 	0xFFFF,			/* 02 disc_enable */
    197 	0xFFFF,			/* 03 wdtr_able */
    198 	{ 0x5555 },		/* 04 sdtr_speed1 */
    199 	0xFFFF,			/* 05 start_motor */
    200 	0xFFFF,			/* 06 tagqng_able */
    201 	0xFFFF,			/* 07 bios_scan */
    202 	0,			/* 08 scam_tolerant */
    203 	7,			/* 09 adapter_scsi_id */
    204 	0,			/*    bios_boot_delay */
    205 	3,			/* 10 scsi_reset_delay */
    206 	0,			/*    bios_id_lun */
    207 	0,			/* 11 termination_se */
    208 	0,			/*    termination_lvd */
    209 	0xFFE7,			/* 12 bios_ctrl */
    210 	{ 0x5555 },		/* 13 sdtr_speed2 */
    211 	{ 0x5555 },		/* 14 sdtr_speed3 */
    212 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    213 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    214 	0,			/* 16 dvc_cntl */
    215 	{ 0x5555 },		/* 17 sdtr_speed4 */
    216 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    217 	0,			/* 21 check_sum */
    218 	{			/* 22-29 oem_name[16] */
    219 	  0,0,0,0,0,0,0,0,
    220 	  0,0,0,0,0,0,0,0
    221 	},
    222 	0,			/* 30 dvc_err_code */
    223 	0,			/* 31 adv_err_code */
    224 	0,			/* 32 adv_err_addr */
    225 	0,			/* 33 saved_dvc_err_code */
    226 	0,			/* 34 saved_adv_err_code */
    227 	0,			/* 35 saved_adv_err_addr */
    228 	{			/* 36-55 reserved1[16] */
    229 	  0,0,0,0,0,0,0,0,0,0,
    230 	  0,0,0,0,0,0,0,0,0,0
    231 	},
    232 	0,			/* 56 cisptr_lsw */
    233 	0,			/* 57 cisprt_msw */
    234 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    235 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    236 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    237 };
    238 
    239 
    240 /*
    241  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    242  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    243  * all of this is done.
    244  *
    245  * For a non-fatal error return a warning code. If there are no warnings
    246  * then 0 is returned.
    247  *
    248  * Note: Chip is stopped on entry.
    249  */
    250 int
    251 AdwInitFromEEPROM(sc)
    252 ADW_SOFTC      *sc;
    253 {
    254 	bus_space_tag_t iot = sc->sc_iot;
    255 	bus_space_handle_t ioh = sc->sc_ioh;
    256 	ADW_EEPROM		eep_config;
    257 	u_int16_t		warn_code;
    258 	u_int16_t		sdtr_speed = 0;
    259 	u_int8_t		tid, termination;
    260 	int			i, j;
    261 
    262 
    263 	warn_code = 0;
    264 
    265 	/*
    266 	 * Read the board's EEPROM configuration.
    267 	 *
    268 	 * Set default values if a bad checksum is found.
    269 	 *
    270 	 * XXX - Don't handle big-endian access to EEPROM yet.
    271 	 */
    272 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    273 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    274 
    275 		/*
    276 		 * Set EEPROM default values.
    277 		 */
    278 		switch(sc->chip_type) {
    279 		case ADW_CHIP_ASC3550:
    280 			eep_config = adw_3550_Default_EEPROM;
    281 			break;
    282 		case ADW_CHIP_ASC38C0800:
    283 			eep_config = adw_38C0800_Default_EEPROM;
    284 			break;
    285 		case ADW_CHIP_ASC38C1600:
    286 			eep_config = adw_38C1600_Default_EEPROM;
    287 
    288 #if 0
    289 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    290 #endif
    291 			if (sc->cfg.pci_slot_info != 0) {
    292 				u_int8_t lsw_msb;
    293 
    294 				lsw_msb = eep_config.cfg_lsw >> 8;
    295 				/*
    296 				 * Set Function 1 EEPROM Word 0 MSB
    297 				 *
    298 				 * Clear the BIOS_ENABLE (bit 14) and
    299 				 * INTAB (bit 11) EEPROM bits.
    300 				 *
    301 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    302 				 * SPARC Ultra 60 and old Mac system booting
    303 				 * problem. The Expansion ROM must
    304 				 * be disabled in Function 1 for these systems.
    305 				 */
    306 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    307 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    308 				/*
    309 				 * Set the INTAB (bit 11) if the GPIO 0 input
    310 				 * indicates the Function 1 interrupt line is
    311 				 * wired to INTA.
    312 				 *
    313 				 * Set/Clear Bit 11 (INTAB) from
    314 				 * the GPIO bit 0 input:
    315 				 *   1 - Function 1 intr line wired to INT A.
    316 				 *   0 - Function 1 intr line wired to INT B.
    317 				 *
    318 				 * Note: Adapter boards always have Function 0
    319 				 * wired to INTA.
    320 				 * Put all 5 GPIO bits in input mode and then
    321 				 * read their input values.
    322 				 */
    323 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    324 							IOPB_GPIO_CNTL, 0);
    325 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    326 						IOPB_GPIO_DATA) & 0x01) {
    327 					/*
    328 					 * Function 1 interrupt wired to INTA;
    329 					 * Set EEPROM bit.
    330 					 */
    331 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    332 							 & 0xFF;
    333 				 }
    334 				 eep_config.cfg_lsw &= 0x00FF;
    335 				 eep_config.cfg_lsw |= lsw_msb << 8;
    336 			}
    337 			break;
    338 		}
    339 
    340 		/*
    341 		 * Assume the 6 byte board serial number that was read
    342 		 * from EEPROM is correct even if the EEPROM checksum
    343 		 * failed.
    344 		 */
    345 		for (i=2, j=1; i>=0; i--, j++) {
    346 		eep_config.serial_number[i] =
    347 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    348 		}
    349 
    350 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    351 	}
    352 	/*
    353 	 * Set sc and sc->cfg variables from the EEPROM configuration
    354 	 * that was read.
    355 	 *
    356 	 * This is the mapping of EEPROM fields to Adw Library fields.
    357 	 */
    358 	sc->wdtr_able = eep_config.wdtr_able;
    359 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    360 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    361 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    362 	} else {
    363 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    364 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    365 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    366 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    367 	}
    368 	sc->ppr_able = 0;
    369 	sc->tagqng_able = eep_config.tagqng_able;
    370 	sc->cfg.disc_enable = eep_config.disc_enable;
    371 	sc->max_host_qng = eep_config.max_host_qng;
    372 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    373 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    374 	sc->start_motor = eep_config.start_motor;
    375 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    376 	sc->bios_ctrl = eep_config.bios_ctrl;
    377 	sc->no_scam = eep_config.scam_tolerant;
    378 	sc->cfg.serial1 = eep_config.serial_number[0];
    379 	sc->cfg.serial2 = eep_config.serial_number[1];
    380 	sc->cfg.serial3 = eep_config.serial_number[2];
    381 
    382 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    383 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    384 		sc->sdtr_able = 0;
    385 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    386 			if (tid == 0) {
    387 				sdtr_speed = sc->sdtr_speed1;
    388 			} else if (tid == 4) {
    389 				sdtr_speed = sc->sdtr_speed2;
    390 			} else if (tid == 8) {
    391 				sdtr_speed = sc->sdtr_speed3;
    392 			} else if (tid == 12) {
    393 				sdtr_speed = sc->sdtr_speed4;
    394 			}
    395 			if (sdtr_speed & ADW_MAX_TID) {
    396 				sc->sdtr_able |= (1 << tid);
    397 			}
    398 			sdtr_speed >>= 4;
    399 		}
    400 	}
    401 
    402 	/*
    403 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    404 	 * maximum queuing (max. 63, min. 4).
    405 	 */
    406 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    407 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    408 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    409 	{
    410 		/* If the value is zero, assume it is uninitialized. */
    411 		if (eep_config.max_host_qng == 0) {
    412 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    413 		} else {
    414 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    415 		}
    416 	}
    417 
    418 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    419 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    420 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    421 		/* If the value is zero, assume it is uninitialized. */
    422 		if (eep_config.max_dvc_qng == 0) {
    423 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    424 		} else {
    425 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    426 		}
    427 	}
    428 
    429 	/*
    430 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    431 	 * set 'max_dvc_qng' to 'max_host_qng'.
    432 	 */
    433 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    434 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    435 	}
    436 
    437 	/*
    438 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    439 	 * values based on possibly adjusted EEPROM values.
    440 	 */
    441 	sc->max_host_qng = eep_config.max_host_qng;
    442 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    443 
    444 
    445 	/*
    446 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    447 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    448 	 *
    449 	 * If the termination is specified with a non-zero 'termination'
    450 	 * value check that a legal value is set and set the ADV_DVC_CFG
    451 	 * 'termination' field appropriately.
    452 	 */
    453 
    454 	switch(sc->chip_type) {
    455 	case ADW_CHIP_ASC3550:
    456 		sc->cfg.termination = 0;	/* auto termination */
    457 		switch(eep_config.termination_se) {
    458 		case 3:
    459 			/* Enable manual control with low on / high on. */
    460 			sc->cfg.termination |= ADW_TERM_CTL_L;
    461 		case 2:
    462 			/* Enable manual control with low off / high on. */
    463 			sc->cfg.termination |= ADW_TERM_CTL_H;
    464 		case 1:
    465 			/* Enable manual control with low off / high off. */
    466 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    467 		case 0:
    468 			break;
    469 		default:
    470 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    471 		}
    472 		break;
    473 
    474 	case ADW_CHIP_ASC38C0800:
    475 	case ADW_CHIP_ASC38C1600:
    476 		switch(eep_config.termination_se) {
    477 		case 0:
    478 			/* auto termination for SE */
    479 			termination = 0;
    480 			break;
    481 		case 1:
    482 			/* Enable manual control with low off / high off. */
    483 			termination = 0;
    484 			break;
    485 		case 2:
    486 			/* Enable manual control with low off / high on. */
    487 			termination = ADW_TERM_SE_HI;
    488 			break;
    489 		case 3:
    490 			/* Enable manual control with low on / high on. */
    491 			termination = ADW_TERM_SE;
    492 			break;
    493 		default:
    494 			/*
    495 			 * The EEPROM 'termination_se' field contains a
    496 			 * bad value. Use automatic termination instead.
    497 			 */
    498 			termination = 0;
    499 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    500 		}
    501 
    502 		switch(eep_config.termination_lvd) {
    503 		case 0:
    504 			/* auto termination for LVD */
    505 			sc->cfg.termination = termination;
    506 			break;
    507 		case 1:
    508 			/* Enable manual control with low off / high off. */
    509 			sc->cfg.termination = termination;
    510 			break;
    511 		case 2:
    512 			/* Enable manual control with low off / high on. */
    513 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    514 			break;
    515 		case 3:
    516 			/* Enable manual control with low on / high on. */
    517 			sc->cfg.termination = termination | ADW_TERM_LVD;
    518 			break;
    519 		default:
    520 			/*
    521 			 * The EEPROM 'termination_lvd' field contains a
    522 			 * bad value. Use automatic termination instead.
    523 			 */
    524 			sc->cfg.termination = termination;
    525 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    526 		}
    527 		break;
    528 	}
    529 
    530 	return warn_code;
    531 }
    532 
    533 
    534 /*
    535  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    536  *
    537  * On failure return the error code.
    538  */
    539 int
    540 AdwInitDriver(sc)
    541 ADW_SOFTC      *sc;
    542 {
    543 	bus_space_tag_t iot = sc->sc_iot;
    544 	bus_space_handle_t ioh = sc->sc_ioh;
    545 	u_int16_t	error_code;
    546 	int		word;
    547 	int		i;
    548 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    549 								0x40-0x8F. */
    550 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    551 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    552 	u_int8_t	tid;
    553 
    554 
    555 	error_code = 0;
    556 
    557 	/*
    558 	 * Save the RISC memory BIOS region before writing the microcode.
    559 	 * The BIOS may already be loaded and using its RISC LRAM region
    560 	 * so its region must be saved and restored.
    561 	 *
    562 	 * Note: This code makes the assumption, which is currently true,
    563 	 * that a chip reset does not clear RISC LRAM.
    564 	 */
    565 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    566 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    567 	}
    568 
    569 	/*
    570 	 * Save current per TID negotiated values.
    571 	 */
    572 	switch (sc->chip_type) {
    573 	case ADW_CHIP_ASC3550:
    574 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    575 
    576 			u_int16_t  bios_version, major, minor;
    577 
    578 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    579 					ADW_MC_BIOSMEM) / 2];
    580 			major = (bios_version  >> 12) & 0xF;
    581 			minor = (bios_version  >> 8) & 0xF;
    582 			if (major < 3 || (major == 3 && minor == 1)) {
    583 			    /*
    584 			     * BIOS 3.1 and earlier location of
    585 			     * 'wdtr_able' variable.
    586 			     */
    587 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    588 			} else {
    589 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    590 					    wdtr_able);
    591 			}
    592 		}
    593 		break;
    594 
    595 	case ADW_CHIP_ASC38C1600:
    596 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    597 		/* FALLTHROUGH */
    598 	case ADW_CHIP_ASC38C0800:
    599 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    600 		break;
    601 	}
    602 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    603 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    604 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    605 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    606 			max_cmd[tid]);
    607 	}
    608 
    609 	/*
    610 	 * Perform a RAM Built-In Self Test
    611 	 */
    612 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    613 		return error_code;
    614 	}
    615 
    616 	/*
    617 	 * Load the Microcode
    618 	 */
    619 	;
    620 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    621 		return error_code;
    622 	}
    623 
    624 	/*
    625 	 * Read microcode version and date.
    626 	 */
    627 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    628 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    629 
    630 	/*
    631 	 * If the PCI Configuration Command Register "Parity Error Response
    632 	 * Control" Bit was clear (0), then set the microcode variable
    633 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    634 	 * to ignore DMA parity errors.
    635 	 */
    636 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    637 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    638 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    639 					word | CONTROL_FLAG_IGNORE_PERR);
    640 	}
    641 
    642 	switch (sc->chip_type) {
    643 	case ADW_CHIP_ASC3550:
    644 		/*
    645 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    646 		 * FIFO threshold of 128 bytes.
    647 		 * This register is only accessible to the host.
    648 		 */
    649 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    650 				START_CTL_EMFU | READ_CMD_MRM);
    651 		break;
    652 
    653 	case ADW_CHIP_ASC38C0800:
    654 		/*
    655 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    656 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    657 		 * cable detection and then we are able to read C_DET[3:0].
    658 		 *
    659 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    660 		 * Microcode Default Value' section below.
    661 		 */
    662 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    663 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    664 				| ADW_DIS_TERM_DRV);
    665 
    666 		/*
    667 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    668 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    669 		 *
    670 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    671 		 * 256 bytes.
    672 		 *
    673 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    674 		 */
    675 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    676 						BC_THRESH_ENB | FIFO_THRESH_80B
    677 						| START_CTL_TH | READ_CMD_MRM);
    678 		break;
    679 
    680 	case ADW_CHIP_ASC38C1600:
    681 		/*
    682 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    683 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    684 		 * cable detection and then we are able to read C_DET[3:0].
    685 		 *
    686 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    687 		 * Microcode Default Value' section below.
    688 		 */
    689 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    690 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    691 				| ADW_DIS_TERM_DRV);
    692 
    693 		/*
    694 		 * If the BIOS control flag AIPP (Asynchronous Information
    695 		 * Phase Protection) disable bit is not set, then set the
    696 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    697 		 * enable AIPP checking and encoding.
    698 		 */
    699 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    700 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    701 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    702 					word | CONTROL_FLAG_ENABLE_AIPP);
    703 		}
    704 
    705 		/*
    706 		 * For ASC-38C1600 use DMA_CFG0 default values:
    707 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    708 		 */
    709 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    710 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    711 		break;
    712 	}
    713 
    714 	/*
    715 	 * Microcode operating variables for WDTR, SDTR, and command tag
    716 	 * queuing will be set in AdvInquiryHandling() based on what a
    717 	 * device reports it is capable of in Inquiry byte 7.
    718 	 *
    719 	 * If SCSI Bus Resets have been disabled, then directly set
    720 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    721 	 * the BIOS and warm boot to work without a SCSI bus hang on
    722 	 * the Inquiry caused by host and target mismatched DTR values.
    723 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    724 	 * be assumed to be in Asynchronous, Narrow mode.
    725 	 */
    726 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    727 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    728 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    729 	}
    730 
    731 	/*
    732 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    733 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    734 	 * bitmask. These values determine the maximum SDTR speed negotiated
    735 	 * with a device.
    736 	 *
    737 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    738 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    739 	 * without determining here whether the device supports SDTR.
    740 	 */
    741 	switch (sc->chip_type) {
    742 	case ADW_CHIP_ASC3550:
    743 		word = 0;
    744 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    745 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    746 				/* Set Ultra speed for TID 'tid'. */
    747 				word |= (0x3 << (4 * (tid % 4)));
    748 			} else {
    749 				/* Set Fast speed for TID 'tid'. */
    750 				word |= (0x2 << (4 * (tid % 4)));
    751 			}
    752 			/* Check if done with sdtr_speed1. */
    753 			if (tid == 3) {
    754 				ADW_WRITE_WORD_LRAM(iot, ioh,
    755 						ADW_MC_SDTR_SPEED1, word);
    756 				word = 0;
    757 			/* Check if done with sdtr_speed2. */
    758 			} else if (tid == 7) {
    759 				ADW_WRITE_WORD_LRAM(iot, ioh,
    760 						ADW_MC_SDTR_SPEED2, word);
    761 				word = 0;
    762 			/* Check if done with sdtr_speed3. */
    763 			} else if (tid == 11) {
    764 				ADW_WRITE_WORD_LRAM(iot, ioh,
    765 						ADW_MC_SDTR_SPEED3, word);
    766 				word = 0;
    767 			/* Check if done with sdtr_speed4. */
    768 			} else if (tid == 15) {
    769 				ADW_WRITE_WORD_LRAM(iot, ioh,
    770 						ADW_MC_SDTR_SPEED4, word);
    771 				/* End of loop. */
    772 			}
    773 		}
    774 
    775 		/*
    776 		 * Set microcode operating variable for the
    777 		 * disconnect per TID bitmask.
    778 		 */
    779 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    780 							sc->cfg.disc_enable);
    781 		break;
    782 
    783 	case ADW_CHIP_ASC38C0800:
    784 		/* FALLTHROUGH */
    785 	case ADW_CHIP_ASC38C1600:
    786 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    787 							sc->cfg.disc_enable);
    788 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    789 							sc->sdtr_speed1);
    790 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    791 							sc->sdtr_speed2);
    792 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    793 							sc->sdtr_speed3);
    794 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    795 							sc->sdtr_speed4);
    796 		break;
    797 	}
    798 
    799 
    800 	/*
    801 	 * Set SCSI_CFG0 Microcode Default Value.
    802 	 *
    803 	 * The microcode will set the SCSI_CFG0 register using this value
    804 	 * after it is started below.
    805 	 */
    806 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    807 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    808 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    809 
    810 
    811 	switch(sc->chip_type) {
    812 	case ADW_CHIP_ASC3550:
    813 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    814 		break;
    815 
    816 	case ADW_CHIP_ASC38C0800:
    817 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    818 		break;
    819 
    820 	case ADW_CHIP_ASC38C1600:
    821 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    822 		break;
    823 	}
    824 	if(error_code) {
    825 		return error_code;
    826 	}
    827 
    828 	/*
    829 	 * Set SEL_MASK Microcode Default Value
    830 	 *
    831 	 * The microcode will set the SEL_MASK register using this value
    832 	 * after it is started below.
    833 	 */
    834 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    835 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    836 
    837 	/*
    838 	 * Create and Initialize Host->RISC Carrier lists
    839 	 */
    840 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    841 						sc->sc_control->carriers);
    842 
    843 	/*
    844 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    845 	 */
    846 
    847 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    848 		return ADW_IERR_NO_CARRIER;
    849 	}
    850 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    851 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    852 
    853 	/*
    854 	 * The first command issued will be placed in the stopper carrier.
    855 	 */
    856 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    857 
    858 	/*
    859 	 * Set RISC ICQ physical address start value.
    860 	 */
    861 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    862 
    863 	/*
    864 	 * Initialize the COMMA register to the same value otherwise
    865 	 * the RISC will prematurely detect a command is available.
    866 	 */
    867 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    868 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    869 						le32toh(sc->icq_sp->carr_ba));
    870 	}
    871 
    872 	/*
    873 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    874 	 */
    875 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    876 		return ADW_IERR_NO_CARRIER;
    877 	}
    878 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    879 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    880 
    881 	/*
    882 	 * The first command completed by the RISC will be placed in
    883 	 * the stopper.
    884 	 *
    885 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    886 	 * completed the RISC will set the ASC_RQ_DONE bit.
    887 	 */
    888 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    889 
    890 	/*
    891 	 * Set RISC IRQ physical address start value.
    892 	 */
    893 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    894 	sc->carr_pending_cnt = 0;
    895 
    896 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    897 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    898 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    899 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    900 
    901 	/* finally, finally, gentlemen, start your engine */
    902 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    903 
    904 	/*
    905 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    906 	 * Resets should be performed. The RISC has to be running
    907 	 * to issue a SCSI Bus Reset.
    908 	 */
    909 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    910 	{
    911 		/*
    912 		 * If the BIOS Signature is present in memory, restore the
    913 		 * BIOS Handshake Configuration Table and do not perform
    914 		 * a SCSI Bus Reset.
    915 		 */
    916 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    917 				0x55AA) {
    918 			/*
    919 			 * Restore per TID negotiated values.
    920 			 */
    921 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    922 					wdtr_able);
    923 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    924 					sdtr_able);
    925 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    926 					tagqng_able);
    927 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    928 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    929 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    930 						max_cmd[tid]);
    931 			}
    932 		} else {
    933 			if (AdwResetCCB(sc) != ADW_TRUE) {
    934 				error_code = ADW_WARN_BUSRESET_ERROR;
    935 			}
    936 		}
    937 	}
    938 
    939 	return error_code;
    940 }
    941 
    942 
    943 int
    944 AdwRamSelfTest(iot, ioh, chip_type)
    945 	bus_space_tag_t iot;
    946 	bus_space_handle_t ioh;
    947 	u_int8_t chip_type;
    948 {
    949 	int		i;
    950 	u_int8_t	byte;
    951 
    952 
    953 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    954 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    955 		/*
    956 		 * RAM BIST (RAM Built-In Self Test)
    957 		 *
    958 		 * Address : I/O base + offset 0x38h register (byte).
    959 		 * Function: Bit 7-6(RW) : RAM mode
    960 		 *			    Normal Mode   : 0x00
    961 		 *			    Pre-test Mode : 0x40
    962 		 *			    RAM Test Mode : 0x80
    963 		 *	     Bit 5	 : unused
    964 		 *	     Bit 4(RO)   : Done bit
    965 		 *	     Bit 3-0(RO) : Status
    966 		 *			    Host Error    : 0x08
    967 		 *			    Int_RAM Error : 0x04
    968 		 *			    RISC Error    : 0x02
    969 		 *			    SCSI Error    : 0x01
    970 		 *			    No Error	  : 0x00
    971 		 *
    972 		 * Note: RAM BIST code should be put right here, before loading
    973 		 * the microcode and after saving the RISC memory BIOS region.
    974 		 */
    975 
    976 		/*
    977 		 * LRAM Pre-test
    978 		 *
    979 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    980 		 * 10 milliseconds.
    981 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    982 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    983 		 * If cannot reset to NORMAL_MODE, return an error too.
    984 		 */
    985 		for (i = 0; i < 2; i++) {
    986 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    987 					PRE_TEST_MODE);
    988 			 /* Wait for 10ms before reading back. */
    989 			AdwSleepMilliSecond(10);
    990 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    991 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    992 					PRE_TEST_VALUE) {
    993 				return ADW_IERR_BIST_PRE_TEST;
    994 			}
    995 
    996 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    997 								NORMAL_MODE);
    998 			/* Wait for 10ms before reading back. */
    999 			AdwSleepMilliSecond(10);
   1000 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1001 			    != NORMAL_VALUE) {
   1002 				return ADW_IERR_BIST_PRE_TEST;
   1003 			}
   1004 		}
   1005 
   1006 		/*
   1007 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1008 		 *
   1009 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1010 		 * 10 milliseconds.
   1011 		 * If Done bit not set or Status not 0, save register byte,
   1012 		 * set the err_code, and return an error.
   1013 		 */
   1014 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1015 		/* Wait for 10ms before checking status. */
   1016 		AdwSleepMilliSecond(10);
   1017 
   1018 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1019 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1020 			/* Get here if Done bit not set or Status not 0. */
   1021 			return ADW_IERR_BIST_RAM_TEST;
   1022 		}
   1023 
   1024 		/* We need to reset back to normal mode after LRAM test passes*/
   1025 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1026 	}
   1027 
   1028 	return 0;
   1029 }
   1030 
   1031 
   1032 int
   1033 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
   1034 	bus_space_tag_t iot;
   1035 	bus_space_handle_t ioh;
   1036 	u_int16_t *bios_mem;
   1037 	u_int8_t chip_type;
   1038 {
   1039 	u_int8_t	*mcode_data;
   1040 	u_int32_t	 mcode_chksum;
   1041 	u_int16_t	 mcode_size;
   1042 	u_int32_t	sum;
   1043 	u_int16_t	code_sum;
   1044 	int		begin_addr;
   1045 	int		end_addr;
   1046 	int		word;
   1047 	int		adw_memsize;
   1048 	int		adw_mcode_expanded_size;
   1049 	int		i, j;
   1050 
   1051 
   1052 	switch(chip_type) {
   1053 	case ADW_CHIP_ASC3550:
   1054 		mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1055 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1056 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1057 		adw_memsize = ADW_3550_MEMSIZE;
   1058 		break;
   1059 
   1060 	case ADW_CHIP_ASC38C0800:
   1061 		mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1062 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1063 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1064 		adw_memsize = ADW_38C0800_MEMSIZE;
   1065 		break;
   1066 
   1067 	case ADW_CHIP_ASC38C1600:
   1068 		mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1069 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1070 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1071 		adw_memsize = ADW_38C1600_MEMSIZE;
   1072 		break;
   1073 	}
   1074 
   1075 	/*
   1076 	 * Write the microcode image to RISC memory starting at address 0.
   1077 	 */
   1078 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1079 
   1080 	/* Assume the following compressed format of the microcode buffer:
   1081 	 *
   1082 	 *  254 word (508 byte) table indexed by byte code followed
   1083 	 *  by the following byte codes:
   1084 	 *
   1085 	 *    1-Byte Code:
   1086 	 *	00: Emit word 0 in table.
   1087 	 *	01: Emit word 1 in table.
   1088 	 *	.
   1089 	 *	FD: Emit word 253 in table.
   1090 	 *
   1091 	 *    Multi-Byte Code:
   1092 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1093 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1094 	 */
   1095 	word = 0;
   1096 	for (i = 253 * 2; i < mcode_size; i++) {
   1097 		if (mcode_data[i] == 0xff) {
   1098 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1099 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1100 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1101 				  mcode_data[i + 2]));
   1102 				word++;
   1103 			}
   1104 			i += 3;
   1105 		} else if (mcode_data[i] == 0xfe) {
   1106 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1107 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1108 			    mcode_data[i + 1]));
   1109 			i += 2;
   1110 			word++;
   1111 		} else {
   1112 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1113 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1114 			 mcode_data[mcode_data[i] * 2]));
   1115 			word++;
   1116 		}
   1117 	}
   1118 
   1119 	/*
   1120 	 * Set 'word' for later use to clear the rest of memory and save
   1121 	 * the expanded mcode size.
   1122 	 */
   1123 	word *= 2;
   1124 	adw_mcode_expanded_size = word;
   1125 
   1126 	/*
   1127 	 * Clear the rest of the Internal RAM.
   1128 	 */
   1129 	for (; word < adw_memsize; word += 2) {
   1130 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1131 	}
   1132 
   1133 	/*
   1134 	 * Verify the microcode checksum.
   1135 	 */
   1136 	sum = 0;
   1137 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1138 
   1139 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1140 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1141 	}
   1142 
   1143 	if (sum != mcode_chksum) {
   1144 		return ADW_IERR_MCODE_CHKSUM;
   1145 	}
   1146 
   1147 	/*
   1148 	 * Restore the RISC memory BIOS region.
   1149 	 */
   1150 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1151 		if(chip_type == ADW_CHIP_ASC3550) {
   1152 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1153 								bios_mem[i]);
   1154 		} else {
   1155 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1156 								bios_mem[i]);
   1157 		}
   1158 	}
   1159 
   1160 	/*
   1161 	 * Calculate and write the microcode code checksum to the microcode
   1162 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1163 	 */
   1164 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1165 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1166 	code_sum = 0;
   1167 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1168 	for (word = begin_addr; word < end_addr; word += 2) {
   1169 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1170 	}
   1171 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1172 
   1173 	/*
   1174 	 * Set the chip type.
   1175 	 */
   1176 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1177 
   1178 	return 0;
   1179 }
   1180 
   1181 
   1182 int
   1183 AdwASC3550Cabling(iot, ioh, cfg)
   1184 	bus_space_tag_t iot;
   1185 	bus_space_handle_t ioh;
   1186 	ADW_DVC_CFG *cfg;
   1187 {
   1188 	u_int16_t	scsi_cfg1;
   1189 
   1190 
   1191 	/*
   1192 	 * Determine SCSI_CFG1 Microcode Default Value.
   1193 	 *
   1194 	 * The microcode will set the SCSI_CFG1 register using this value
   1195 	 * after it is started below.
   1196 	 */
   1197 
   1198 	/* Read current SCSI_CFG1 Register value. */
   1199 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1200 
   1201 	/*
   1202 	 * If all three connectors are in use in ASC3550, return an error.
   1203 	 */
   1204 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1205 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1206 		return ADW_IERR_ILLEGAL_CONNECTION;
   1207 	}
   1208 
   1209 	/*
   1210 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1211 	 * will be set. Check for and return an error if this condition is
   1212 	 * found.
   1213 	 */
   1214 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1215 		return ADW_IERR_REVERSED_CABLE;
   1216 	}
   1217 
   1218 	/*
   1219 	 * If this is a differential board and a single-ended device
   1220 	 * is attached to one of the connectors, return an error.
   1221 	 */
   1222 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1223 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1224 		return ADW_IERR_SINGLE_END_DEVICE;
   1225 	}
   1226 
   1227 	/*
   1228 	 * If automatic termination control is enabled, then set the
   1229 	 * termination value based on a table listed in a_condor.h.
   1230 	 *
   1231 	 * If manual termination was specified with an EEPROM setting
   1232 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1233 	 * is ready to be 'ored' into SCSI_CFG1.
   1234 	 */
   1235 	if (cfg->termination == 0) {
   1236 		/*
   1237 		 * The software always controls termination by setting
   1238 		 * TERM_CTL_SEL.
   1239 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1240 		 * termination.
   1241 		 */
   1242 		cfg->termination |= ADW_TERM_CTL_SEL;
   1243 
   1244 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1245 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1246 			case 0x3: case 0x7: case 0xB:
   1247 			case 0xD: case 0xE: case 0xF:
   1248 				cfg->termination |=
   1249 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1250 				break;
   1251 
   1252 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1253 			case 0x1: case 0x5: case 0x9:
   1254 			case 0xA: case 0xC:
   1255 				cfg->termination |= ADW_TERM_CTL_H;
   1256 				break;
   1257 
   1258 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1259 			case 0x2: case 0x6:
   1260 				break;
   1261 		}
   1262 	}
   1263 
   1264 	/*
   1265 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1266 	 */
   1267 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1268 
   1269 	/*
   1270 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1271 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1272 	 * referenced, because the hardware internally inverts
   1273 	 * the Termination High and Low bits if TERM_POL is set.
   1274 	 */
   1275 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1276 
   1277 	/*
   1278 	 * Set SCSI_CFG1 Microcode Default Value
   1279 	 *
   1280 	 * Set filter value and possibly modified termination control
   1281 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1282 	 *
   1283 	 * The microcode will set the SCSI_CFG1 register using this value
   1284 	 * after it is started below.
   1285 	 */
   1286 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1287 						ADW_FLTR_DISABLE | scsi_cfg1);
   1288 
   1289 	/*
   1290 	 * Set MEM_CFG Microcode Default Value
   1291 	 *
   1292 	 * The microcode will set the MEM_CFG register using this value
   1293 	 * after it is started below.
   1294 	 *
   1295 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1296 	 * are defined.
   1297 	 *
   1298 	 * ASC-3550 has 8KB internal memory.
   1299 	 */
   1300 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1301 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1302 
   1303 	return 0;
   1304 }
   1305 
   1306 
   1307 int
   1308 AdwASC38C0800Cabling(iot, ioh, cfg)
   1309 	bus_space_tag_t iot;
   1310 	bus_space_handle_t ioh;
   1311 	ADW_DVC_CFG *cfg;
   1312 {
   1313 	u_int16_t	scsi_cfg1;
   1314 
   1315 
   1316 	/*
   1317 	 * Determine SCSI_CFG1 Microcode Default Value.
   1318 	 *
   1319 	 * The microcode will set the SCSI_CFG1 register using this value
   1320 	 * after it is started below.
   1321 	 */
   1322 
   1323 	/* Read current SCSI_CFG1 Register value. */
   1324 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1325 
   1326 	/*
   1327 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1328 	 * will be set. Check for and return an error if this condition is
   1329 	 * found.
   1330 	 */
   1331 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1332 		return ADW_IERR_REVERSED_CABLE;
   1333 	}
   1334 
   1335 	/*
   1336 	 * All kind of combinations of devices attached to one of four
   1337 	 * connectors are acceptable except HVD device attached.
   1338 	 * For example, LVD device can be attached to SE connector while
   1339 	 * SE device attached to LVD connector.
   1340 	 * If LVD device attached to SE connector, it only runs up to
   1341 	 * Ultra speed.
   1342 	 *
   1343 	 * If an HVD device is attached to one of LVD connectors, return
   1344 	 * an error.
   1345 	 * However, there is no way to detect HVD device attached to
   1346 	 * SE connectors.
   1347 	 */
   1348 	if (scsi_cfg1 & ADW_HVD) {
   1349 		return ADW_IERR_HVD_DEVICE;
   1350 	}
   1351 
   1352 	/*
   1353 	 * If either SE or LVD automatic termination control is enabled, then
   1354 	 * set the termination value based on a table listed in a_condor.h.
   1355 	 *
   1356 	 * If manual termination was specified with an EEPROM setting then
   1357 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1358 	 * to be 'ored' into SCSI_CFG1.
   1359 	 */
   1360 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1361 		/* SE automatic termination control is enabled. */
   1362 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1363 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1364 			case 0x1: case 0x2: case 0x3:
   1365 				cfg->termination |= ADW_TERM_SE;
   1366 				break;
   1367 
   1368 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1369 			case 0x0:
   1370 				cfg->termination |= ADW_TERM_SE_HI;
   1371 				break;
   1372 		}
   1373 	}
   1374 
   1375 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1376 		/* LVD automatic termination control is enabled. */
   1377 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1378 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1379 			case 0x4: case 0x8: case 0xC:
   1380 				cfg->termination |= ADW_TERM_LVD;
   1381 				break;
   1382 
   1383 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1384 			case 0x0:
   1385 				break;
   1386 		}
   1387 	}
   1388 
   1389 	/*
   1390 	 * Clear any set TERM_SE and TERM_LVD bits.
   1391 	 */
   1392 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1393 
   1394 	/*
   1395 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1396 	 */
   1397 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1398 
   1399 	/*
   1400 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1401 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1402 	 * in the Microcode SCSI_CFG1 Register Value.
   1403 	 */
   1404 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1405 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1406 
   1407 	/*
   1408 	 * Set SCSI_CFG1 Microcode Default Value
   1409 	 *
   1410 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1411 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1412 	 *
   1413 	 * The microcode will set the SCSI_CFG1 register using this value
   1414 	 * after it is started below.
   1415 	 */
   1416 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1417 
   1418 	/*
   1419 	 * Set MEM_CFG Microcode Default Value
   1420 	 *
   1421 	 * The microcode will set the MEM_CFG register using this value
   1422 	 * after it is started below.
   1423 	 *
   1424 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1425 	 * are defined.
   1426 	 *
   1427 	 * ASC-38C0800 has 16KB internal memory.
   1428 	 */
   1429 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1430 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1431 
   1432 	return 0;
   1433 }
   1434 
   1435 
   1436 int
   1437 AdwASC38C1600Cabling(iot, ioh, cfg)
   1438 	bus_space_tag_t iot;
   1439 	bus_space_handle_t ioh;
   1440 	ADW_DVC_CFG *cfg;
   1441 {
   1442 	u_int16_t	scsi_cfg1;
   1443 
   1444 
   1445 	/*
   1446 	 * Determine SCSI_CFG1 Microcode Default Value.
   1447 	 *
   1448 	 * The microcode will set the SCSI_CFG1 register using this value
   1449 	 * after it is started below.
   1450 	 * Each ASC-38C1600 function has only two cable detect bits.
   1451 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1452 	 */
   1453 
   1454 	/* Read current SCSI_CFG1 Register value. */
   1455 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1456 
   1457 	/*
   1458 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1459 	 * will be set. Check for and return an error if this condition is
   1460 	 * found.
   1461 	 */
   1462 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1463 		return ADW_IERR_REVERSED_CABLE;
   1464 	}
   1465 
   1466 	/*
   1467 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1468 	 * can not be connected to either connector. An LVD device or SE device
   1469 	 * may be connected to either connecor. If an SE device is connected,
   1470 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
   1471 	 *
   1472 	 * If an HVD device is attached, return an error.
   1473 	 */
   1474 	if (scsi_cfg1 & ADW_HVD) {
   1475 		return ADW_IERR_HVD_DEVICE;
   1476 	}
   1477 
   1478 	/*
   1479 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1480 	 * termination because there are two connectors for each function.
   1481 	 * Each function may use either LVD or SE mode.
   1482 	 * Corresponding the SE automatic termination control EEPROM bits are
   1483 	 * used for each function.
   1484 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1485 	 * for the function, then set the termination value based on a table
   1486 	 * listed in adwlib.h.
   1487 	 *
   1488 	 * If manual termination is specified in the EEPROM for the function,
   1489 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1490 	 * ready to be 'ored' into SCSI_CFG1.
   1491 	 */
   1492 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1493 		/* SE automatic termination control is enabled. */
   1494 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1495 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1496 			case 0x1: case 0x2: case 0x3:
   1497 				cfg->termination |= ADW_TERM_SE;
   1498 				break;
   1499 
   1500 			case 0x0:
   1501 #if 0
   1502 	/* !!!!TODO!!!! */
   1503 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1504 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1505 				}
   1506 				else
   1507 #endif
   1508 				{
   1509 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1510 					cfg->termination |= ADW_TERM_SE_HI;
   1511 				}
   1512 				break;
   1513 			}
   1514 	}
   1515 
   1516 	/*
   1517 	 * Clear any set TERM_SE bits.
   1518 	 */
   1519 	scsi_cfg1 &= ~ADW_TERM_SE;
   1520 
   1521 	/*
   1522 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1523 	 */
   1524 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1525 
   1526 	/*
   1527 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1528 	 * modified termination control bits in the Microcode SCSI_CFG1
   1529 	 * Register Value.
   1530 	 */
   1531 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1532 
   1533 	/*
   1534 	 * Set SCSI_CFG1 Microcode Default Value
   1535 	 *
   1536 	 * Set possibly modified termination control bits in the Microcode
   1537 	 * SCSI_CFG1 Register Value.
   1538 	 *
   1539 	 * The microcode will set the SCSI_CFG1 register using this value
   1540 	 * after it is started below.
   1541 	 */
   1542 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1543 
   1544 	/*
   1545 	 * Set MEM_CFG Microcode Default Value
   1546 	 *
   1547 	 * The microcode will set the MEM_CFG register using this value
   1548 	 * after it is started below.
   1549 	 *
   1550 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1551 	 * are defined.
   1552 	 *
   1553 	 * ASC-38C1600 has 32KB internal memory.
   1554 	 */
   1555 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1556 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1557 
   1558 	return 0;
   1559 }
   1560 
   1561 
   1562 /*
   1563  * Read EEPROM configuration into the specified buffer.
   1564  *
   1565  * Return a checksum based on the EEPROM configuration read.
   1566  */
   1567 static u_int16_t
   1568 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
   1569 	bus_space_tag_t		iot;
   1570 	bus_space_handle_t	ioh;
   1571 	ADW_EEPROM		*cfg_buf;
   1572 {
   1573 	u_int16_t	       wval, chksum;
   1574 	u_int16_t	       *wbuf;
   1575 	int		    eep_addr;
   1576 
   1577 
   1578 	wbuf = (u_int16_t *) cfg_buf;
   1579 	chksum = 0;
   1580 
   1581 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1582 		eep_addr < ASC_EEP_DVC_CFG_END;
   1583 		eep_addr++, wbuf++) {
   1584 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1585 		chksum += wval;
   1586 		*wbuf = wval;
   1587 	}
   1588 
   1589 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1590 	wbuf++;
   1591 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1592 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1593 			eep_addr++, wbuf++) {
   1594 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1595 	}
   1596 
   1597 	return chksum;
   1598 }
   1599 
   1600 
   1601 /*
   1602  * Read the EEPROM from specified location
   1603  */
   1604 static u_int16_t
   1605 AdwReadEEPWord(iot, ioh, eep_word_addr)
   1606 	bus_space_tag_t		iot;
   1607 	bus_space_handle_t	ioh;
   1608 	int			eep_word_addr;
   1609 {
   1610 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1611 		ASC_EEP_CMD_READ | eep_word_addr);
   1612 	AdwWaitEEPCmd(iot, ioh);
   1613 
   1614 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1615 }
   1616 
   1617 
   1618 /*
   1619  * Wait for EEPROM command to complete
   1620  */
   1621 static void
   1622 AdwWaitEEPCmd(iot, ioh)
   1623 	bus_space_tag_t		iot;
   1624 	bus_space_handle_t	ioh;
   1625 {
   1626 	int eep_delay_ms;
   1627 
   1628 
   1629 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1630 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1631 				ASC_EEP_CMD_DONE) {
   1632 			break;
   1633 		}
   1634 		AdwSleepMilliSecond(1);
   1635 	}
   1636 
   1637 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1638 }
   1639 
   1640 
   1641 /*
   1642  * Write the EEPROM from 'cfg_buf'.
   1643  */
   1644 static void
   1645 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
   1646 	bus_space_tag_t		iot;
   1647 	bus_space_handle_t	ioh;
   1648 	ADW_EEPROM		*cfg_buf;
   1649 {
   1650 	u_int16_t *wbuf;
   1651 	u_int16_t addr, chksum;
   1652 
   1653 
   1654 	wbuf = (u_int16_t *) cfg_buf;
   1655 	chksum = 0;
   1656 
   1657 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1658 	AdwWaitEEPCmd(iot, ioh);
   1659 
   1660 	/*
   1661 	 * Write EEPROM from word 0 to word 20
   1662 	 */
   1663 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1664 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1665 		chksum += *wbuf;
   1666 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1667 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1668 				ASC_EEP_CMD_WRITE | addr);
   1669 		AdwWaitEEPCmd(iot, ioh);
   1670 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1671 	}
   1672 
   1673 	/*
   1674 	 * Write EEPROM checksum at word 21
   1675 	 */
   1676 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1677 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1678 			ASC_EEP_CMD_WRITE | addr);
   1679 	AdwWaitEEPCmd(iot, ioh);
   1680 	wbuf++;        /* skip over check_sum */
   1681 
   1682 	/*
   1683 	 * Write EEPROM OEM name at words 22 to 29
   1684 	 */
   1685 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1686 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1687 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1688 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1689 				ASC_EEP_CMD_WRITE | addr);
   1690 		AdwWaitEEPCmd(iot, ioh);
   1691 	}
   1692 
   1693 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1694 			ASC_EEP_CMD_WRITE_DISABLE);
   1695 	AdwWaitEEPCmd(iot, ioh);
   1696 
   1697 	return;
   1698 }
   1699 
   1700 
   1701 /*
   1702  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1703  *
   1704  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1705  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1706  *   RISC to notify it a new command is ready to be executed.
   1707  *
   1708  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1709  * set to SCSI_MAX_RETRY.
   1710  *
   1711  * Return:
   1712  *      ADW_SUCCESS(1) - The request was successfully queued.
   1713  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1714  *                       request completes.
   1715  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1716  *                       host IC error.
   1717  */
   1718 int
   1719 AdwExeScsiQueue(sc, scsiq)
   1720 ADW_SOFTC	*sc;
   1721 ADW_SCSI_REQ_Q	*scsiq;
   1722 {
   1723 	bus_space_tag_t iot = sc->sc_iot;
   1724 	bus_space_handle_t ioh = sc->sc_ioh;
   1725 	ADW_CCB		*ccb;
   1726 	long		req_size;
   1727 	u_int32_t	req_paddr;
   1728 	ADW_CARRIER	*new_carrp;
   1729 
   1730 	/*
   1731 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1732 	 */
   1733 	if (scsiq->target_id > ADW_MAX_TID) {
   1734 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1735 		scsiq->done_status = QD_WITH_ERROR;
   1736 		return ADW_ERROR;
   1737 	}
   1738 
   1739 	/*
   1740 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1741 	 */
   1742 
   1743 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1744 
   1745 	/*
   1746 	 * Allocate a carrier and initialize fields.
   1747 	 */
   1748 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1749 		return ADW_BUSY;
   1750 	}
   1751 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1752 			ASC_GET_CARRP(new_carrp->next_ba));
   1753 	sc->carr_pending_cnt++;
   1754 
   1755 	/*
   1756 	 * Set the carrier to be a stopper by setting 'next_ba'
   1757 	 * to the stopper value. The current stopper will be changed
   1758 	 * below to point to the new stopper.
   1759 	 */
   1760 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1761 
   1762 	req_size = sizeof(ADW_SCSI_REQ_Q);
   1763 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1764 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1765 
   1766 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1767 	scsiq->scsiq_rptr = htole32(req_paddr);
   1768 
   1769 	/*
   1770 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1771 	 * order during initialization.
   1772 	 */
   1773 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1774 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1775 
   1776 	/*
   1777 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1778 	 * the microcode. The newly allocated stopper will become the new
   1779 	 * stopper.
   1780 	 */
   1781 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1782 
   1783 	/*
   1784 	 * Set the 'next_ba' pointer for the old stopper to be the
   1785 	 * physical address of the new stopper. The RISC can only
   1786 	 * follow physical addresses.
   1787 	 */
   1788 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1789 
   1790 #if ADW_DEBUG
   1791 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1792 			sc->icq_sp->carr_id,
   1793 			sc->icq_sp->carr_ba,
   1794 			sc->icq_sp->areq_ba,
   1795 			sc->icq_sp->next_ba);
   1796 #endif
   1797 	/*
   1798 	 * Set the host adapter stopper pointer to point to the new carrier.
   1799 	 */
   1800 	sc->icq_sp = new_carrp;
   1801 
   1802 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1803 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1804 		/*
   1805 		 * Tickle the RISC to tell it to read its Command Queue Head
   1806 		 * pointer.
   1807 		 */
   1808 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1809 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1810 			/*
   1811 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1812 			 * command 'clr_tickle_a' does not work unless the host
   1813 			 * value is cleared.
   1814 			 */
   1815 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1816 					ADW_TICKLE_NOP);
   1817 		}
   1818 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1819 		/*
   1820 		 * Notify the RISC a carrier is ready by writing the physical
   1821 		 * address of the new carrier stopper to the COMMA register.
   1822 		 */
   1823 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1824 				le32toh(new_carrp->carr_ba));
   1825 	}
   1826 
   1827 	/*
   1828 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1829 	 */
   1830 
   1831 	return ADW_SUCCESS;
   1832 }
   1833 
   1834 
   1835 void
   1836 AdwResetChip(iot, ioh)
   1837 	bus_space_tag_t iot;
   1838 	bus_space_handle_t ioh;
   1839 {
   1840 
   1841 	/*
   1842 	 * Reset Chip.
   1843 	 */
   1844 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1845 			ADW_CTRL_REG_CMD_RESET);
   1846 	AdwSleepMilliSecond(100);
   1847 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1848 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1849 }
   1850 
   1851 
   1852 /*
   1853  * Reset SCSI Bus and purge all outstanding requests.
   1854  *
   1855  * Return Value:
   1856  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1857  *      ADW_FALSE(0) -  Microcode command failed.
   1858  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1859  *                      may be hung which requires driver recovery.
   1860  */
   1861 int
   1862 AdwResetCCB(sc)
   1863 ADW_SOFTC	*sc;
   1864 {
   1865 	int	    status;
   1866 
   1867 	/*
   1868 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1869 	 * the SCSI Bus Reset signal.
   1870 	 */
   1871 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1872 	if (status != ADW_TRUE) {
   1873 		return status;
   1874 	}
   1875 
   1876 	/*
   1877 	 * Delay for the specified SCSI Bus Reset hold time.
   1878 	 *
   1879 	 * The hold time delay is done on the host because the RISC has no
   1880 	 * microsecond accurate timer.
   1881 	 */
   1882 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1883 
   1884 	/*
   1885 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1886 	 * the SCSI Bus Reset signal and purges any pending requests.
   1887 	 */
   1888 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1889 	if (status != ADW_TRUE) {
   1890 		return status;
   1891 	}
   1892 
   1893 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1894 
   1895 	return status;
   1896 }
   1897 
   1898 
   1899 /*
   1900  * Reset chip and SCSI Bus.
   1901  *
   1902  * Return Value:
   1903  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1904  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1905  */
   1906 int
   1907 AdwResetSCSIBus(sc)
   1908 ADW_SOFTC	*sc;
   1909 {
   1910 	bus_space_tag_t iot = sc->sc_iot;
   1911 	bus_space_handle_t ioh = sc->sc_ioh;
   1912 	int		status;
   1913 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   1914 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1915 	u_int16_t	bios_sig;
   1916 
   1917 
   1918 	/*
   1919 	 * Save current per TID negotiated values.
   1920 	 */
   1921 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1922 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1923 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1924 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1925 	}
   1926 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1927 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1928 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1929 			max_cmd[tid]);
   1930 	}
   1931 
   1932 	/*
   1933 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1934 	 * by clearing the BIOS signature word.
   1935 	 * The initialization functions assumes a SCSI Bus Reset is not
   1936 	 * needed if the BIOS signature word is present.
   1937 	 */
   1938 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1939 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1940 
   1941 	/*
   1942 	 * Stop chip and reset it.
   1943 	 */
   1944 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1945 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1946 			ADW_CTRL_REG_CMD_RESET);
   1947 	AdwSleepMilliSecond(100);
   1948 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1949 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1950 
   1951 	/*
   1952 	 * Reset Adv Library error code, if any, and try
   1953 	 * re-initializing the chip.
   1954 	 * Then translate initialization return value to status value.
   1955 	 */
   1956 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1957 
   1958 	/*
   1959 	 * Restore the BIOS signature word.
   1960 	 */
   1961 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1962 
   1963 	/*
   1964 	 * Restore per TID negotiated values.
   1965 	 */
   1966 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1967 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1968 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1969 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1970 	}
   1971 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1972 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1973 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1974 			max_cmd[tid]);
   1975 	}
   1976 
   1977 	return status;
   1978 }
   1979 
   1980 
   1981 /*
   1982  * Adv Library Interrupt Service Routine
   1983  *
   1984  *  This function is called by a driver's interrupt service routine.
   1985  *  The function disables and re-enables interrupts.
   1986  *
   1987  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1988  *  'idle_cmd_done' field is set to ADW_TRUE.
   1989  *
   1990  *  Note: AdwISR() can be called when interrupts are disabled or even
   1991  *  when there is no hardware interrupt condition present. It will
   1992  *  always check for completed idle commands and microcode requests.
   1993  *  This is an important feature that shouldn't be changed because it
   1994  *  allows commands to be completed from polling mode loops.
   1995  *
   1996  * Return:
   1997  *   ADW_TRUE(1) - interrupt was pending
   1998  *   ADW_FALSE(0) - no interrupt was pending
   1999  */
   2000 int
   2001 AdwISR(sc)
   2002 ADW_SOFTC	*sc;
   2003 {
   2004 	bus_space_tag_t iot = sc->sc_iot;
   2005 	bus_space_handle_t ioh = sc->sc_ioh;
   2006 	u_int8_t	int_stat;
   2007 	u_int16_t	target_bit;
   2008 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   2009 	u_int32_t	irq_next_pa;
   2010 	ADW_SCSI_REQ_Q	*scsiq;
   2011 	ADW_CCB		*ccb;
   2012 	int		s;
   2013 
   2014 
   2015 	s = splbio();
   2016 
   2017 	/* Reading the register clears the interrupt. */
   2018 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   2019 
   2020 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   2021 	     ADW_INTR_STATUS_INTRC)) == 0) {
   2022 		splx(s);
   2023 		return ADW_FALSE;
   2024 	}
   2025 
   2026 	/*
   2027 	 * Notify the driver of an asynchronous microcode condition by
   2028 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2029 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2030 	 */
   2031 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2032 		u_int8_t intrb_code;
   2033 
   2034 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2035 
   2036 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2037 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2038 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2039 				sc->carr_pending_cnt != 0) {
   2040 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2041 					IOPB_TICKLE, ADW_TICKLE_A);
   2042 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2043 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2044 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2045 				}
   2046 			}
   2047 		}
   2048 
   2049 		if (sc->async_callback != 0) {
   2050 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2051 		}
   2052 	}
   2053 
   2054 	/*
   2055 	 * Check if the IRQ stopper carrier contains a completed request.
   2056 	 */
   2057 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2058 	{
   2059 #if ADW_DEBUG
   2060 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2061 				sc->irq_sp->carr_id,
   2062 				sc->irq_sp->carr_ba,
   2063 				sc->irq_sp->areq_ba,
   2064 				sc->irq_sp->next_ba);
   2065 #endif
   2066 		/*
   2067 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2068 		 * structure.
   2069 		 * The RISC will have set 'areq_ba' to a virtual address.
   2070 		 *
   2071 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2072 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2073 		 * The conversion below complements the conversion of
   2074 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2075 		 */
   2076 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2077 		scsiq = &ccb->scsiq;
   2078 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2079 
   2080 		/*
   2081 		 * Request finished with good status and the queue was not
   2082 		 * DMAed to host memory by the firmware. Set all status fields
   2083 		 * to indicate good status.
   2084 		 */
   2085 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2086 			scsiq->done_status = QD_NO_ERROR;
   2087 			scsiq->host_status = scsiq->scsi_status = 0;
   2088 			scsiq->data_cnt = 0L;
   2089 		}
   2090 
   2091 		/*
   2092 		 * Advance the stopper pointer to the next carrier
   2093 		 * ignoring the lower four bits. Free the previous
   2094 		 * stopper carrier.
   2095 		 */
   2096 		free_carrp = sc->irq_sp;
   2097 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2098 
   2099 		free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
   2100 					: sc->carr_freelist->carr_ba;
   2101 		sc->carr_freelist = free_carrp;
   2102 		sc->carr_pending_cnt--;
   2103 
   2104 
   2105 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   2106 
   2107 		/*
   2108 		 * Clear request microcode control flag.
   2109 		 */
   2110 		scsiq->cntl = 0;
   2111 
   2112 		/*
   2113 		 * Check Condition handling
   2114 		 */
   2115 		/*
   2116 		 * If the command that completed was a SCSI INQUIRY and
   2117 		 * LUN 0 was sent the command, then process the INQUIRY
   2118 		 * command information for the device.
   2119 		 */
   2120 		if (scsiq->done_status == QD_NO_ERROR &&
   2121 		    scsiq->cdb[0] == INQUIRY &&
   2122 		    scsiq->target_lun == 0) {
   2123 			AdwInquiryHandling(sc, scsiq);
   2124 		}
   2125 
   2126 		/*
   2127 		 * Notify the driver of the completed request by passing
   2128 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2129 		 */
   2130 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2131 		/*
   2132 		 * Note: After the driver callback function is called, 'scsiq'
   2133 		 * can no longer be referenced.
   2134 		 *
   2135 		 * Fall through and continue processing other completed
   2136 		 * requests...
   2137 		 */
   2138 	}
   2139 
   2140 	splx(s);
   2141 
   2142 	return ADW_TRUE;
   2143 }
   2144 
   2145 
   2146 /*
   2147  * Send an idle command to the chip and wait for completion.
   2148  *
   2149  * Command completion is polled for once per microsecond.
   2150  *
   2151  * The function can be called from anywhere including an interrupt handler.
   2152  * But the function is not re-entrant, so it uses the splbio/splx()
   2153  * functions to prevent reentrancy.
   2154  *
   2155  * Return Values:
   2156  *   ADW_TRUE - command completed successfully
   2157  *   ADW_FALSE - command failed
   2158  *   ADW_ERROR - command timed out
   2159  */
   2160 int
   2161 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   2162 ADW_SOFTC      *sc;
   2163 u_int16_t       idle_cmd;
   2164 u_int32_t       idle_cmd_parameter;
   2165 {
   2166 	bus_space_tag_t iot = sc->sc_iot;
   2167 	bus_space_handle_t ioh = sc->sc_ioh;
   2168 	u_int16_t	result;
   2169 	u_int32_t	i, j, s;
   2170 
   2171 	s = splbio();
   2172 
   2173 	/*
   2174 	 * Clear the idle command status which is set by the microcode
   2175 	 * to a non-zero value to indicate when the command is completed.
   2176 	 */
   2177 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2178 
   2179 	/*
   2180 	 * Write the idle command value after the idle command parameter
   2181 	 * has been written to avoid a race condition. If the order is not
   2182 	 * followed, the microcode may process the idle command before the
   2183 	 * parameters have been written to LRAM.
   2184 	 */
   2185 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2186 			idle_cmd_parameter);
   2187 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2188 
   2189 	/*
   2190 	 * Tickle the RISC to tell it to process the idle command.
   2191 	 */
   2192 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2193 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2194 		/*
   2195 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2196 		 * command 'clr_tickle_b' does not work unless the host
   2197 		 * value is cleared.
   2198 		 */
   2199 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2200 	}
   2201 
   2202 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2203 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2204 		/* Poll once each microsecond for command completion. */
   2205 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2206 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2207 									result);
   2208 			if (result != 0) {
   2209 				splx(s);
   2210 				return result;
   2211 			}
   2212 			AdwDelayMicroSecond(1);
   2213 		}
   2214 	}
   2215 
   2216 	splx(s);
   2217 	return ADW_ERROR;
   2218 }
   2219 
   2220 
   2221 /*
   2222  * Inquiry Information Byte 7 Handling
   2223  *
   2224  * Handle SCSI Inquiry Command information for a device by setting
   2225  * microcode operating variables that affect WDTR, SDTR, and Tag
   2226  * Queuing.
   2227  */
   2228 static void
   2229 AdwInquiryHandling(sc, scsiq)
   2230 ADW_SOFTC	*sc;
   2231 ADW_SCSI_REQ_Q *scsiq;
   2232 {
   2233 #ifndef FAILSAFE
   2234 	bus_space_tag_t iot = sc->sc_iot;
   2235 	bus_space_handle_t ioh = sc->sc_ioh;
   2236 	u_int8_t		tid;
   2237 	struct scsipi_inquiry_data *inq;
   2238 	u_int16_t		tidmask;
   2239 	u_int16_t		cfg_word;
   2240 
   2241 
   2242 	/*
   2243 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2244 	 * to be available.
   2245 	 *
   2246 	 * If less than 8 bytes of INQUIRY information were requested or less
   2247 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2248 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2249 	 * microcode to the transfer residual count.
   2250 	 */
   2251 
   2252 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2253 		return;
   2254 	}
   2255 
   2256 	tid = scsiq->target_id;
   2257 
   2258 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2259 
   2260 	/*
   2261 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2262 	 */
   2263 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2264 	    ((inq->version & SID_ANSII) < 2)) {
   2265 		return;
   2266 	} else {
   2267 		/*
   2268 		 * INQUIRY Byte 7 Handling
   2269 		 *
   2270 		 * Use a device's INQUIRY byte 7 to determine whether it
   2271 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2272 		 * is enabled in the EEPROM and the device supports the
   2273 		 * feature, then enable it in the microcode.
   2274 		 */
   2275 
   2276 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2277 
   2278 		/*
   2279 		 * Wide Transfers
   2280 		 *
   2281 		 * If the EEPROM enabled WDTR for the device and the device
   2282 		 * supports wide bus (16 bit) transfers, then turn on the
   2283 		 * device's 'wdtr_able' bit and write the new value to the
   2284 		 * microcode.
   2285 		 */
   2286 #ifdef SCSI_ADW_WDTR_DISABLE
   2287 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2288 #endif /* SCSI_ADW_WDTR_DISABLE */
   2289 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2290 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2291 					cfg_word);
   2292 			if ((cfg_word & tidmask) == 0) {
   2293 				cfg_word |= tidmask;
   2294 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2295 						cfg_word);
   2296 
   2297 				/*
   2298 				 * Clear the microcode "SDTR negotiation" and
   2299 				 * "WDTR negotiation" done indicators for the
   2300 				 * target to cause it to negotiate with the new
   2301 				 * setting set above.
   2302 				 * WDTR when accepted causes the target to enter
   2303 				 * asynchronous mode, so SDTR must be negotiated
   2304 				 */
   2305 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2306 						cfg_word);
   2307 				cfg_word &= ~tidmask;
   2308 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2309 						cfg_word);
   2310 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2311 						cfg_word);
   2312 				cfg_word &= ~tidmask;
   2313 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2314 						cfg_word);
   2315 			}
   2316 		}
   2317 
   2318 		/*
   2319 		 * Synchronous Transfers
   2320 		 *
   2321 		 * If the EEPROM enabled SDTR for the device and the device
   2322 		 * supports synchronous transfers, then turn on the device's
   2323 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2324 		 */
   2325 #ifdef SCSI_ADW_SDTR_DISABLE
   2326 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2327 #endif /* SCSI_ADW_SDTR_DISABLE */
   2328 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2329 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2330 			if ((cfg_word & tidmask) == 0) {
   2331 				cfg_word |= tidmask;
   2332 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2333 						cfg_word);
   2334 
   2335 				/*
   2336 				 * Clear the microcode "SDTR negotiation"
   2337 				 * done indicator for the target to cause it
   2338 				 * to negotiate with the new setting set above.
   2339 				 */
   2340 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2341 						cfg_word);
   2342 				cfg_word &= ~tidmask;
   2343 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2344 						cfg_word);
   2345 			}
   2346 		}
   2347 		/*
   2348 		 * If the Inquiry data included enough space for the SPI-3
   2349 		 * Clocking field, then check if DT mode is supported.
   2350 		 */
   2351 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2352 		   (scsiq->cdb[4] >= 57 ||
   2353 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2354 			/*
   2355 			 * PPR (Parallel Protocol Request) Capable
   2356 			 *
   2357 			 * If the device supports DT mode, then it must be
   2358 			 * PPR capable.
   2359 			 * The PPR message will be used in place of the SDTR
   2360 			 * and WDTR messages to negotiate synchronous speed
   2361 			 * and offset, transfer width, and protocol options.
   2362 			 */
   2363 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2364 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2365 						sc->ppr_able);
   2366 				sc->ppr_able |= tidmask;
   2367 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2368 						sc->ppr_able);
   2369 			}
   2370 		}
   2371 
   2372 		/*
   2373 		 * If the EEPROM enabled Tag Queuing for the device and the
   2374 		 * device supports Tag Queueing, then turn on the device's
   2375 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2376 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2377 		 * value.
   2378 		 *
   2379 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2380 		 * mode and would see no benefit from Tag Queuing. Also by
   2381 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2382 		 * bugs will at least work with the BIOS.
   2383 		 */
   2384 #ifdef SCSI_ADW_TAGQ_DISABLE
   2385 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2386 #endif /* SCSI_ADW_TAGQ_DISABLE */
   2387 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2388 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2389 					cfg_word);
   2390 			cfg_word |= tidmask;
   2391 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2392 					cfg_word);
   2393 
   2394 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2395 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2396 					sc->max_dvc_qng);
   2397 		}
   2398 	}
   2399 #endif /* FAILSAFE */
   2400 }
   2401 
   2402 
   2403 static void
   2404 AdwSleepMilliSecond(n)
   2405 u_int32_t	n;
   2406 {
   2407 
   2408 	DELAY(n * 1000);
   2409 }
   2410 
   2411 
   2412 static void
   2413 AdwDelayMicroSecond(n)
   2414 u_int32_t	n;
   2415 {
   2416 
   2417 	DELAY(n);
   2418 }
   2419 
   2420