adwlib.c revision 1.25 1 /* $NetBSD: adwlib.c,v 1.25 2003/02/21 17:14:06 tsutsui Exp $ */
2
3 /*
4 * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 *
6 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * Author: Baldassare Dante Profeta <dante (at) mclink.it>
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39 /*
40 * Ported from:
41 */
42 /*
43 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44 *
45 * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 * All Rights Reserved.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that redistributions of source
50 * code retain the above copyright notice and this comment without
51 * modification.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.25 2003/02/21 17:14:06 tsutsui Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/queue.h>
62 #include <sys/device.h>
63
64 #include <machine/bus.h>
65 #include <machine/intr.h>
66
67 #include <dev/scsipi/scsi_all.h>
68 #include <dev/scsipi/scsipi_all.h>
69 #include <dev/scsipi/scsiconf.h>
70
71 #include <dev/pci/pcidevs.h>
72
73 #include <uvm/uvm_extern.h>
74
75 #include <dev/ic/adwlib.h>
76 #include <dev/ic/adwmcode.h>
77 #include <dev/ic/adw.h>
78
79
80 /* Static Functions */
81
82 int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
83 int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
84 u_int8_t));
85 int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
86 int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
87 ADW_DVC_CFG *));
88 int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
89 ADW_DVC_CFG *));
90
91 static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
92 ADW_EEPROM *));
93 static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
94 ADW_EEPROM *));
95 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
96 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
97
98 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
99
100 static void AdwSleepMilliSecond __P((u_int32_t));
101 static void AdwDelayMicroSecond __P((u_int32_t));
102
103
104 /*
105 * EEPROM Configuration.
106 *
107 * All drivers should use this structure to set the default EEPROM
108 * configuration. The BIOS now uses this structure when it is built.
109 * Additional structure information can be found in adwlib.h where
110 * the structure is defined.
111 */
112 const static ADW_EEPROM adw_3550_Default_EEPROM = {
113 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
114 0x0000, /* 01 cfg_msw */
115 0xFFFF, /* 02 disc_enable */
116 0xFFFF, /* 03 wdtr_able */
117 { 0xFFFF }, /* 04 sdtr_able */
118 0xFFFF, /* 05 start_motor */
119 0xFFFF, /* 06 tagqng_able */
120 0xFFFF, /* 07 bios_scan */
121 0, /* 08 scam_tolerant */
122 7, /* 09 adapter_scsi_id */
123 0, /* bios_boot_delay */
124 3, /* 10 scsi_reset_delay */
125 0, /* bios_id_lun */
126 0, /* 11 termination */
127 0, /* reserved1 */
128 0xFFE7, /* 12 bios_ctrl */
129 { 0xFFFF }, /* 13 ultra_able */
130 { 0 }, /* 14 reserved2 */
131 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
132 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
133 0, /* 16 dvc_cntl */
134 { 0 }, /* 17 bug_fix */
135 { 0,0,0 }, /* 18-20 serial_number[3] */
136 0, /* 21 check_sum */
137 { /* 22-29 oem_name[16] */
138 0,0,0,0,0,0,0,0,
139 0,0,0,0,0,0,0,0
140 },
141 0, /* 30 dvc_err_code */
142 0, /* 31 adv_err_code */
143 0, /* 32 adv_err_addr */
144 0, /* 33 saved_dvc_err_code */
145 0, /* 34 saved_adv_err_code */
146 0 /* 35 saved_adv_err_addr */
147 };
148
149 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
150 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
151 0x0000, /* 01 cfg_msw */
152 0xFFFF, /* 02 disc_enable */
153 0xFFFF, /* 03 wdtr_able */
154 { 0x4444 }, /* 04 sdtr_speed1 */
155 0xFFFF, /* 05 start_motor */
156 0xFFFF, /* 06 tagqng_able */
157 0xFFFF, /* 07 bios_scan */
158 0, /* 08 scam_tolerant */
159 7, /* 09 adapter_scsi_id */
160 0, /* bios_boot_delay */
161 3, /* 10 scsi_reset_delay */
162 0, /* bios_id_lun */
163 0, /* 11 termination_se */
164 0, /* termination_lvd */
165 0xFFE7, /* 12 bios_ctrl */
166 { 0x4444 }, /* 13 sdtr_speed2 */
167 { 0x4444 }, /* 14 sdtr_speed3 */
168 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
169 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
170 0, /* 16 dvc_cntl */
171 { 0x4444 }, /* 17 sdtr_speed4 */
172 { 0,0,0 }, /* 18-20 serial_number[3] */
173 0, /* 21 check_sum */
174 { /* 22-29 oem_name[16] */
175 0,0,0,0,0,0,0,0,
176 0,0,0,0,0,0,0,0
177 },
178 0, /* 30 dvc_err_code */
179 0, /* 31 adv_err_code */
180 0, /* 32 adv_err_addr */
181 0, /* 33 saved_dvc_err_code */
182 0, /* 34 saved_adv_err_code */
183 0, /* 35 saved_adv_err_addr */
184 { /* 36-55 reserved1[16] */
185 0,0,0,0,0,0,0,0,0,0,
186 0,0,0,0,0,0,0,0,0,0
187 },
188 0, /* 56 cisptr_lsw */
189 0, /* 57 cisprt_msw */
190 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
191 PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
192 { 0,0,0,0 } /* 60-63 reserved2[4] */
193 };
194
195 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
196 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
197 0x0000, /* 01 cfg_msw */
198 0xFFFF, /* 02 disc_enable */
199 0xFFFF, /* 03 wdtr_able */
200 { 0x5555 }, /* 04 sdtr_speed1 */
201 0xFFFF, /* 05 start_motor */
202 0xFFFF, /* 06 tagqng_able */
203 0xFFFF, /* 07 bios_scan */
204 0, /* 08 scam_tolerant */
205 7, /* 09 adapter_scsi_id */
206 0, /* bios_boot_delay */
207 3, /* 10 scsi_reset_delay */
208 0, /* bios_id_lun */
209 0, /* 11 termination_se */
210 0, /* termination_lvd */
211 0xFFE7, /* 12 bios_ctrl */
212 { 0x5555 }, /* 13 sdtr_speed2 */
213 { 0x5555 }, /* 14 sdtr_speed3 */
214 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
215 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
216 0, /* 16 dvc_cntl */
217 { 0x5555 }, /* 17 sdtr_speed4 */
218 { 0,0,0 }, /* 18-20 serial_number[3] */
219 0, /* 21 check_sum */
220 { /* 22-29 oem_name[16] */
221 0,0,0,0,0,0,0,0,
222 0,0,0,0,0,0,0,0
223 },
224 0, /* 30 dvc_err_code */
225 0, /* 31 adv_err_code */
226 0, /* 32 adv_err_addr */
227 0, /* 33 saved_dvc_err_code */
228 0, /* 34 saved_adv_err_code */
229 0, /* 35 saved_adv_err_addr */
230 { /* 36-55 reserved1[16] */
231 0,0,0,0,0,0,0,0,0,0,
232 0,0,0,0,0,0,0,0,0,0
233 },
234 0, /* 56 cisptr_lsw */
235 0, /* 57 cisprt_msw */
236 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
237 PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
238 { 0,0,0,0 } /* 60-63 reserved2[4] */
239 };
240
241
242 /*
243 * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
244 * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
245 * all of this is done.
246 *
247 * For a non-fatal error return a warning code. If there are no warnings
248 * then 0 is returned.
249 *
250 * Note: Chip is stopped on entry.
251 */
252 int
253 AdwInitFromEEPROM(sc)
254 ADW_SOFTC *sc;
255 {
256 bus_space_tag_t iot = sc->sc_iot;
257 bus_space_handle_t ioh = sc->sc_ioh;
258 ADW_EEPROM eep_config;
259 u_int16_t warn_code;
260 u_int16_t sdtr_speed = 0;
261 u_int8_t tid, termination;
262 int i, j;
263
264
265 warn_code = 0;
266
267 /*
268 * Read the board's EEPROM configuration.
269 *
270 * Set default values if a bad checksum is found.
271 *
272 * XXX - Don't handle big-endian access to EEPROM yet.
273 */
274 if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
275 warn_code |= ADW_WARN_EEPROM_CHKSUM;
276
277 /*
278 * Set EEPROM default values.
279 */
280 switch(sc->chip_type) {
281 case ADW_CHIP_ASC3550:
282 eep_config = adw_3550_Default_EEPROM;
283 break;
284 case ADW_CHIP_ASC38C0800:
285 eep_config = adw_38C0800_Default_EEPROM;
286 break;
287 case ADW_CHIP_ASC38C1600:
288 eep_config = adw_38C1600_Default_EEPROM;
289
290 #if 0
291 XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
292 #endif
293 if (sc->cfg.pci_slot_info != 0) {
294 u_int8_t lsw_msb;
295
296 lsw_msb = eep_config.cfg_lsw >> 8;
297 /*
298 * Set Function 1 EEPROM Word 0 MSB
299 *
300 * Clear the BIOS_ENABLE (bit 14) and
301 * INTAB (bit 11) EEPROM bits.
302 *
303 * Disable Bit 14 (BIOS_ENABLE) to fix
304 * SPARC Ultra 60 and old Mac system booting
305 * problem. The Expansion ROM must
306 * be disabled in Function 1 for these systems.
307 */
308 lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
309 ADW_EEPROM_INTAB) >> 8) & 0xFF);
310 /*
311 * Set the INTAB (bit 11) if the GPIO 0 input
312 * indicates the Function 1 interrupt line is
313 * wired to INTA.
314 *
315 * Set/Clear Bit 11 (INTAB) from
316 * the GPIO bit 0 input:
317 * 1 - Function 1 intr line wired to INT A.
318 * 0 - Function 1 intr line wired to INT B.
319 *
320 * Note: Adapter boards always have Function 0
321 * wired to INTA.
322 * Put all 5 GPIO bits in input mode and then
323 * read their input values.
324 */
325 ADW_WRITE_BYTE_REGISTER(iot, ioh,
326 IOPB_GPIO_CNTL, 0);
327 if (ADW_READ_BYTE_REGISTER(iot, ioh,
328 IOPB_GPIO_DATA) & 0x01) {
329 /*
330 * Function 1 interrupt wired to INTA;
331 * Set EEPROM bit.
332 */
333 lsw_msb |= (ADW_EEPROM_INTAB >> 8)
334 & 0xFF;
335 }
336 eep_config.cfg_lsw &= 0x00FF;
337 eep_config.cfg_lsw |= lsw_msb << 8;
338 }
339 break;
340 }
341
342 /*
343 * Assume the 6 byte board serial number that was read
344 * from EEPROM is correct even if the EEPROM checksum
345 * failed.
346 */
347 for (i=2, j=1; i>=0; i--, j++) {
348 eep_config.serial_number[i] =
349 AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
350 }
351
352 AdwSetEEPROMConfig(iot, ioh, &eep_config);
353 }
354 /*
355 * Set sc and sc->cfg variables from the EEPROM configuration
356 * that was read.
357 *
358 * This is the mapping of EEPROM fields to Adw Library fields.
359 */
360 sc->wdtr_able = eep_config.wdtr_able;
361 if (sc->chip_type == ADW_CHIP_ASC3550) {
362 sc->sdtr_able = eep_config.sdtr1.sdtr_able;
363 sc->ultra_able = eep_config.sdtr2.ultra_able;
364 } else {
365 sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
366 sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
367 sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
368 sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
369 }
370 sc->ppr_able = 0;
371 sc->tagqng_able = eep_config.tagqng_able;
372 sc->cfg.disc_enable = eep_config.disc_enable;
373 sc->max_host_qng = eep_config.max_host_qng;
374 sc->max_dvc_qng = eep_config.max_dvc_qng;
375 sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
376 sc->start_motor = eep_config.start_motor;
377 sc->scsi_reset_wait = eep_config.scsi_reset_delay;
378 sc->bios_ctrl = eep_config.bios_ctrl;
379 sc->no_scam = eep_config.scam_tolerant;
380 sc->cfg.serial1 = eep_config.serial_number[0];
381 sc->cfg.serial2 = eep_config.serial_number[1];
382 sc->cfg.serial3 = eep_config.serial_number[2];
383
384 if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
385 sc->chip_type == ADW_CHIP_ASC38C1600) {
386 sc->sdtr_able = 0;
387 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
388 if (tid == 0) {
389 sdtr_speed = sc->sdtr_speed1;
390 } else if (tid == 4) {
391 sdtr_speed = sc->sdtr_speed2;
392 } else if (tid == 8) {
393 sdtr_speed = sc->sdtr_speed3;
394 } else if (tid == 12) {
395 sdtr_speed = sc->sdtr_speed4;
396 }
397 if (sdtr_speed & ADW_MAX_TID) {
398 sc->sdtr_able |= (1 << tid);
399 }
400 sdtr_speed >>= 4;
401 }
402 }
403
404 /*
405 * Set the host maximum queuing (max. 253, min. 16) and the per device
406 * maximum queuing (max. 63, min. 4).
407 */
408 if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
409 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
410 } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
411 {
412 /* If the value is zero, assume it is uninitialized. */
413 if (eep_config.max_host_qng == 0) {
414 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
415 } else {
416 eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
417 }
418 }
419
420 if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
421 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
422 } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
423 /* If the value is zero, assume it is uninitialized. */
424 if (eep_config.max_dvc_qng == 0) {
425 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
426 } else {
427 eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
428 }
429 }
430
431 /*
432 * If 'max_dvc_qng' is greater than 'max_host_qng', then
433 * set 'max_dvc_qng' to 'max_host_qng'.
434 */
435 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
436 eep_config.max_dvc_qng = eep_config.max_host_qng;
437 }
438
439 /*
440 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
441 * values based on possibly adjusted EEPROM values.
442 */
443 sc->max_host_qng = eep_config.max_host_qng;
444 sc->max_dvc_qng = eep_config.max_dvc_qng;
445
446
447 /*
448 * If the EEPROM 'termination' field is set to automatic (0), then set
449 * the ADV_DVC_CFG 'termination' field to automatic also.
450 *
451 * If the termination is specified with a non-zero 'termination'
452 * value check that a legal value is set and set the ADV_DVC_CFG
453 * 'termination' field appropriately.
454 */
455
456 switch(sc->chip_type) {
457 case ADW_CHIP_ASC3550:
458 sc->cfg.termination = 0; /* auto termination */
459 switch(eep_config.termination_se) {
460 case 3:
461 /* Enable manual control with low on / high on. */
462 sc->cfg.termination |= ADW_TERM_CTL_L;
463 case 2:
464 /* Enable manual control with low off / high on. */
465 sc->cfg.termination |= ADW_TERM_CTL_H;
466 case 1:
467 /* Enable manual control with low off / high off. */
468 sc->cfg.termination |= ADW_TERM_CTL_SEL;
469 case 0:
470 break;
471 default:
472 warn_code |= ADW_WARN_EEPROM_TERMINATION;
473 }
474 break;
475
476 case ADW_CHIP_ASC38C0800:
477 case ADW_CHIP_ASC38C1600:
478 switch(eep_config.termination_se) {
479 case 0:
480 /* auto termination for SE */
481 termination = 0;
482 break;
483 case 1:
484 /* Enable manual control with low off / high off. */
485 termination = 0;
486 break;
487 case 2:
488 /* Enable manual control with low off / high on. */
489 termination = ADW_TERM_SE_HI;
490 break;
491 case 3:
492 /* Enable manual control with low on / high on. */
493 termination = ADW_TERM_SE;
494 break;
495 default:
496 /*
497 * The EEPROM 'termination_se' field contains a
498 * bad value. Use automatic termination instead.
499 */
500 termination = 0;
501 warn_code |= ADW_WARN_EEPROM_TERMINATION;
502 }
503
504 switch(eep_config.termination_lvd) {
505 case 0:
506 /* auto termination for LVD */
507 sc->cfg.termination = termination;
508 break;
509 case 1:
510 /* Enable manual control with low off / high off. */
511 sc->cfg.termination = termination;
512 break;
513 case 2:
514 /* Enable manual control with low off / high on. */
515 sc->cfg.termination = termination | ADW_TERM_LVD_HI;
516 break;
517 case 3:
518 /* Enable manual control with low on / high on. */
519 sc->cfg.termination = termination | ADW_TERM_LVD;
520 break;
521 default:
522 /*
523 * The EEPROM 'termination_lvd' field contains a
524 * bad value. Use automatic termination instead.
525 */
526 sc->cfg.termination = termination;
527 warn_code |= ADW_WARN_EEPROM_TERMINATION;
528 }
529 break;
530 }
531
532 return warn_code;
533 }
534
535
536 /*
537 * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
538 *
539 * On failure return the error code.
540 */
541 int
542 AdwInitDriver(sc)
543 ADW_SOFTC *sc;
544 {
545 bus_space_tag_t iot = sc->sc_iot;
546 bus_space_handle_t ioh = sc->sc_ioh;
547 u_int16_t error_code;
548 int word;
549 int i;
550 u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
551 0x40-0x8F. */
552 u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
553 u_int8_t max_cmd[ADW_MAX_TID + 1];
554 u_int8_t tid;
555
556
557 error_code = 0;
558
559 /*
560 * Save the RISC memory BIOS region before writing the microcode.
561 * The BIOS may already be loaded and using its RISC LRAM region
562 * so its region must be saved and restored.
563 *
564 * Note: This code makes the assumption, which is currently true,
565 * that a chip reset does not clear RISC LRAM.
566 */
567 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
568 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
569 }
570
571 /*
572 * Save current per TID negotiated values.
573 */
574 switch (sc->chip_type) {
575 case ADW_CHIP_ASC3550:
576 if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
577
578 u_int16_t bios_version, major, minor;
579
580 bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
581 ADW_MC_BIOSMEM) / 2];
582 major = (bios_version >> 12) & 0xF;
583 minor = (bios_version >> 8) & 0xF;
584 if (major < 3 || (major == 3 && minor == 1)) {
585 /*
586 * BIOS 3.1 and earlier location of
587 * 'wdtr_able' variable.
588 */
589 ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
590 } else {
591 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
592 wdtr_able);
593 }
594 }
595 break;
596
597 case ADW_CHIP_ASC38C1600:
598 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
599 /* FALLTHROUGH */
600 case ADW_CHIP_ASC38C0800:
601 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
602 break;
603 }
604 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
605 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
606 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
607 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
608 max_cmd[tid]);
609 }
610
611 /*
612 * Perform a RAM Built-In Self Test
613 */
614 if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
615 return error_code;
616 }
617
618 /*
619 * Load the Microcode
620 */
621 ;
622 if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
623 return error_code;
624 }
625
626 /*
627 * Read microcode version and date.
628 */
629 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
630 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
631
632 /*
633 * If the PCI Configuration Command Register "Parity Error Response
634 * Control" Bit was clear (0), then set the microcode variable
635 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
636 * to ignore DMA parity errors.
637 */
638 if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
639 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
640 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
641 word | CONTROL_FLAG_IGNORE_PERR);
642 }
643
644 switch (sc->chip_type) {
645 case ADW_CHIP_ASC3550:
646 /*
647 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
648 * FIFO threshold of 128 bytes.
649 * This register is only accessible to the host.
650 */
651 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
652 START_CTL_EMFU | READ_CMD_MRM);
653 break;
654
655 case ADW_CHIP_ASC38C0800:
656 /*
657 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
658 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
659 * cable detection and then we are able to read C_DET[3:0].
660 *
661 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
662 * Microcode Default Value' section below.
663 */
664 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
665 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
666 | ADW_DIS_TERM_DRV);
667
668 /*
669 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
670 * START_CTL_TH [3:2] bits for the default FIFO threshold.
671 *
672 * Note: ASC-38C0800 FIFO threshold has been changed to
673 * 256 bytes.
674 *
675 * For DMA Errata #4 set the BC_THRESH_ENB bit.
676 */
677 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
678 BC_THRESH_ENB | FIFO_THRESH_80B
679 | START_CTL_TH | READ_CMD_MRM);
680 break;
681
682 case ADW_CHIP_ASC38C1600:
683 /*
684 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
685 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
686 * cable detection and then we are able to read C_DET[3:0].
687 *
688 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
689 * Microcode Default Value' section below.
690 */
691 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
692 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
693 | ADW_DIS_TERM_DRV);
694
695 /*
696 * If the BIOS control flag AIPP (Asynchronous Information
697 * Phase Protection) disable bit is not set, then set the
698 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
699 * enable AIPP checking and encoding.
700 */
701 if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
702 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
703 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
704 word | CONTROL_FLAG_ENABLE_AIPP);
705 }
706
707 /*
708 * For ASC-38C1600 use DMA_CFG0 default values:
709 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
710 */
711 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
712 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
713 break;
714 }
715
716 /*
717 * Microcode operating variables for WDTR, SDTR, and command tag
718 * queuing will be set in AdvInquiryHandling() based on what a
719 * device reports it is capable of in Inquiry byte 7.
720 *
721 * If SCSI Bus Resets have been disabled, then directly set
722 * SDTR and WDTR from the EEPROM configuration. This will allow
723 * the BIOS and warm boot to work without a SCSI bus hang on
724 * the Inquiry caused by host and target mismatched DTR values.
725 * Without the SCSI Bus Reset, before an Inquiry a device can't
726 * be assumed to be in Asynchronous, Narrow mode.
727 */
728 if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
729 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
730 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
731 }
732
733 /*
734 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
735 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
736 * bitmask. These values determine the maximum SDTR speed negotiated
737 * with a device.
738 *
739 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
740 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
741 * without determining here whether the device supports SDTR.
742 */
743 switch (sc->chip_type) {
744 case ADW_CHIP_ASC3550:
745 word = 0;
746 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
747 if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
748 /* Set Ultra speed for TID 'tid'. */
749 word |= (0x3 << (4 * (tid % 4)));
750 } else {
751 /* Set Fast speed for TID 'tid'. */
752 word |= (0x2 << (4 * (tid % 4)));
753 }
754 /* Check if done with sdtr_speed1. */
755 if (tid == 3) {
756 ADW_WRITE_WORD_LRAM(iot, ioh,
757 ADW_MC_SDTR_SPEED1, word);
758 word = 0;
759 /* Check if done with sdtr_speed2. */
760 } else if (tid == 7) {
761 ADW_WRITE_WORD_LRAM(iot, ioh,
762 ADW_MC_SDTR_SPEED2, word);
763 word = 0;
764 /* Check if done with sdtr_speed3. */
765 } else if (tid == 11) {
766 ADW_WRITE_WORD_LRAM(iot, ioh,
767 ADW_MC_SDTR_SPEED3, word);
768 word = 0;
769 /* Check if done with sdtr_speed4. */
770 } else if (tid == 15) {
771 ADW_WRITE_WORD_LRAM(iot, ioh,
772 ADW_MC_SDTR_SPEED4, word);
773 /* End of loop. */
774 }
775 }
776
777 /*
778 * Set microcode operating variable for the
779 * disconnect per TID bitmask.
780 */
781 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
782 sc->cfg.disc_enable);
783 break;
784
785 case ADW_CHIP_ASC38C0800:
786 /* FALLTHROUGH */
787 case ADW_CHIP_ASC38C1600:
788 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
789 sc->cfg.disc_enable);
790 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
791 sc->sdtr_speed1);
792 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
793 sc->sdtr_speed2);
794 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
795 sc->sdtr_speed3);
796 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
797 sc->sdtr_speed4);
798 break;
799 }
800
801
802 /*
803 * Set SCSI_CFG0 Microcode Default Value.
804 *
805 * The microcode will set the SCSI_CFG0 register using this value
806 * after it is started below.
807 */
808 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
809 ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
810 ADW_OUR_ID_EN | sc->chip_scsi_id);
811
812
813 switch(sc->chip_type) {
814 case ADW_CHIP_ASC3550:
815 error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
816 break;
817
818 case ADW_CHIP_ASC38C0800:
819 error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
820 break;
821
822 case ADW_CHIP_ASC38C1600:
823 error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
824 break;
825 }
826 if(error_code) {
827 return error_code;
828 }
829
830 /*
831 * Set SEL_MASK Microcode Default Value
832 *
833 * The microcode will set the SEL_MASK register using this value
834 * after it is started below.
835 */
836 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
837 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
838
839 /*
840 * Create and Initialize Host->RISC Carrier lists
841 */
842 sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
843 sc->sc_control->carriers);
844
845 /*
846 * Set-up the Host->RISC Initiator Command Queue (ICQ).
847 */
848
849 if ((sc->icq_sp = sc->carr_freelist) == NULL) {
850 return ADW_IERR_NO_CARRIER;
851 }
852 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
853 ASC_GET_CARRP(sc->icq_sp->next_ba));
854
855 /*
856 * The first command issued will be placed in the stopper carrier.
857 */
858 sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
859
860 /*
861 * Set RISC ICQ physical address start value.
862 */
863 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
864
865 /*
866 * Initialize the COMMA register to the same value otherwise
867 * the RISC will prematurely detect a command is available.
868 */
869 if(sc->chip_type == ADW_CHIP_ASC38C1600) {
870 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
871 le32toh(sc->icq_sp->carr_ba));
872 }
873
874 /*
875 * Set-up the RISC->Host Initiator Response Queue (IRQ).
876 */
877 if ((sc->irq_sp = sc->carr_freelist) == NULL) {
878 return ADW_IERR_NO_CARRIER;
879 }
880 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
881 ASC_GET_CARRP(sc->irq_sp->next_ba));
882
883 /*
884 * The first command completed by the RISC will be placed in
885 * the stopper.
886 *
887 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
888 * completed the RISC will set the ASC_RQ_DONE bit.
889 */
890 sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
891
892 /*
893 * Set RISC IRQ physical address start value.
894 */
895 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
896 sc->carr_pending_cnt = 0;
897
898 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
899 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
900 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
901 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
902
903 /* finally, finally, gentlemen, start your engine */
904 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
905
906 /*
907 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
908 * Resets should be performed. The RISC has to be running
909 * to issue a SCSI Bus Reset.
910 */
911 if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
912 {
913 /*
914 * If the BIOS Signature is present in memory, restore the
915 * BIOS Handshake Configuration Table and do not perform
916 * a SCSI Bus Reset.
917 */
918 if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
919 0x55AA) {
920 /*
921 * Restore per TID negotiated values.
922 */
923 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
924 wdtr_able);
925 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
926 sdtr_able);
927 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
928 tagqng_able);
929 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
930 ADW_WRITE_BYTE_LRAM(iot, ioh,
931 ADW_MC_NUMBER_OF_MAX_CMD + tid,
932 max_cmd[tid]);
933 }
934 } else {
935 if (AdwResetCCB(sc) != ADW_TRUE) {
936 error_code = ADW_WARN_BUSRESET_ERROR;
937 }
938 }
939 }
940
941 return error_code;
942 }
943
944
945 int
946 AdwRamSelfTest(iot, ioh, chip_type)
947 bus_space_tag_t iot;
948 bus_space_handle_t ioh;
949 u_int8_t chip_type;
950 {
951 int i;
952 u_int8_t byte;
953
954
955 if ((chip_type == ADW_CHIP_ASC38C0800) ||
956 (chip_type == ADW_CHIP_ASC38C1600)) {
957 /*
958 * RAM BIST (RAM Built-In Self Test)
959 *
960 * Address : I/O base + offset 0x38h register (byte).
961 * Function: Bit 7-6(RW) : RAM mode
962 * Normal Mode : 0x00
963 * Pre-test Mode : 0x40
964 * RAM Test Mode : 0x80
965 * Bit 5 : unused
966 * Bit 4(RO) : Done bit
967 * Bit 3-0(RO) : Status
968 * Host Error : 0x08
969 * Int_RAM Error : 0x04
970 * RISC Error : 0x02
971 * SCSI Error : 0x01
972 * No Error : 0x00
973 *
974 * Note: RAM BIST code should be put right here, before loading
975 * the microcode and after saving the RISC memory BIOS region.
976 */
977
978 /*
979 * LRAM Pre-test
980 *
981 * Write PRE_TEST_MODE (0x40) to register and wait for
982 * 10 milliseconds.
983 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
984 * return an error. Reset to NORMAL_MODE (0x00) and do again.
985 * If cannot reset to NORMAL_MODE, return an error too.
986 */
987 for (i = 0; i < 2; i++) {
988 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
989 PRE_TEST_MODE);
990 /* Wait for 10ms before reading back. */
991 AdwSleepMilliSecond(10);
992 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
993 if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
994 PRE_TEST_VALUE) {
995 return ADW_IERR_BIST_PRE_TEST;
996 }
997
998 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
999 NORMAL_MODE);
1000 /* Wait for 10ms before reading back. */
1001 AdwSleepMilliSecond(10);
1002 if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1003 != NORMAL_VALUE) {
1004 return ADW_IERR_BIST_PRE_TEST;
1005 }
1006 }
1007
1008 /*
1009 * LRAM Test - It takes about 1.5 ms to run through the test.
1010 *
1011 * Write RAM_TEST_MODE (0x80) to register and wait for
1012 * 10 milliseconds.
1013 * If Done bit not set or Status not 0, save register byte,
1014 * set the err_code, and return an error.
1015 */
1016 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1017 /* Wait for 10ms before checking status. */
1018 AdwSleepMilliSecond(10);
1019
1020 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1021 if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1022 /* Get here if Done bit not set or Status not 0. */
1023 return ADW_IERR_BIST_RAM_TEST;
1024 }
1025
1026 /* We need to reset back to normal mode after LRAM test passes*/
1027 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1028 }
1029
1030 return 0;
1031 }
1032
1033
1034 int
1035 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1036 bus_space_tag_t iot;
1037 bus_space_handle_t ioh;
1038 u_int16_t *bios_mem;
1039 u_int8_t chip_type;
1040 {
1041 u_int8_t *mcode_data;
1042 u_int32_t mcode_chksum;
1043 u_int16_t mcode_size;
1044 u_int32_t sum;
1045 u_int16_t code_sum;
1046 int begin_addr;
1047 int end_addr;
1048 int word;
1049 int adw_memsize;
1050 int adw_mcode_expanded_size;
1051 int i, j;
1052
1053
1054 switch(chip_type) {
1055 case ADW_CHIP_ASC3550:
1056 mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1057 mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1058 mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1059 adw_memsize = ADW_3550_MEMSIZE;
1060 break;
1061
1062 case ADW_CHIP_ASC38C0800:
1063 mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1064 mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1065 mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1066 adw_memsize = ADW_38C0800_MEMSIZE;
1067 break;
1068
1069 case ADW_CHIP_ASC38C1600:
1070 mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1071 mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1072 mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1073 adw_memsize = ADW_38C1600_MEMSIZE;
1074 break;
1075 }
1076
1077 /*
1078 * Write the microcode image to RISC memory starting at address 0.
1079 */
1080 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1081
1082 /* Assume the following compressed format of the microcode buffer:
1083 *
1084 * 254 word (508 byte) table indexed by byte code followed
1085 * by the following byte codes:
1086 *
1087 * 1-Byte Code:
1088 * 00: Emit word 0 in table.
1089 * 01: Emit word 1 in table.
1090 * .
1091 * FD: Emit word 253 in table.
1092 *
1093 * Multi-Byte Code:
1094 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1095 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1096 */
1097 word = 0;
1098 for (i = 253 * 2; i < mcode_size; i++) {
1099 if (mcode_data[i] == 0xff) {
1100 for (j = 0; j < mcode_data[i + 1]; j++) {
1101 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1102 (((u_int16_t)mcode_data[i + 3] << 8) |
1103 mcode_data[i + 2]));
1104 word++;
1105 }
1106 i += 3;
1107 } else if (mcode_data[i] == 0xfe) {
1108 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1109 (((u_int16_t)mcode_data[i + 2] << 8) |
1110 mcode_data[i + 1]));
1111 i += 2;
1112 word++;
1113 } else {
1114 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1115 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1116 mcode_data[mcode_data[i] * 2]));
1117 word++;
1118 }
1119 }
1120
1121 /*
1122 * Set 'word' for later use to clear the rest of memory and save
1123 * the expanded mcode size.
1124 */
1125 word *= 2;
1126 adw_mcode_expanded_size = word;
1127
1128 /*
1129 * Clear the rest of the Internal RAM.
1130 */
1131 for (; word < adw_memsize; word += 2) {
1132 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1133 }
1134
1135 /*
1136 * Verify the microcode checksum.
1137 */
1138 sum = 0;
1139 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1140
1141 for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1142 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1143 }
1144
1145 if (sum != mcode_chksum) {
1146 return ADW_IERR_MCODE_CHKSUM;
1147 }
1148
1149 /*
1150 * Restore the RISC memory BIOS region.
1151 */
1152 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1153 if(chip_type == ADW_CHIP_ASC3550) {
1154 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1155 bios_mem[i]);
1156 } else {
1157 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1158 bios_mem[i]);
1159 }
1160 }
1161
1162 /*
1163 * Calculate and write the microcode code checksum to the microcode
1164 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1165 */
1166 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1167 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1168 code_sum = 0;
1169 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1170 for (word = begin_addr; word < end_addr; word += 2) {
1171 code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1172 }
1173 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1174
1175 /*
1176 * Set the chip type.
1177 */
1178 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1179
1180 return 0;
1181 }
1182
1183
1184 int
1185 AdwASC3550Cabling(iot, ioh, cfg)
1186 bus_space_tag_t iot;
1187 bus_space_handle_t ioh;
1188 ADW_DVC_CFG *cfg;
1189 {
1190 u_int16_t scsi_cfg1;
1191
1192
1193 /*
1194 * Determine SCSI_CFG1 Microcode Default Value.
1195 *
1196 * The microcode will set the SCSI_CFG1 register using this value
1197 * after it is started below.
1198 */
1199
1200 /* Read current SCSI_CFG1 Register value. */
1201 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1202
1203 /*
1204 * If all three connectors are in use in ASC3550, return an error.
1205 */
1206 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1207 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1208 return ADW_IERR_ILLEGAL_CONNECTION;
1209 }
1210
1211 /*
1212 * If the cable is reversed all of the SCSI_CTRL register signals
1213 * will be set. Check for and return an error if this condition is
1214 * found.
1215 */
1216 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1217 return ADW_IERR_REVERSED_CABLE;
1218 }
1219
1220 /*
1221 * If this is a differential board and a single-ended device
1222 * is attached to one of the connectors, return an error.
1223 */
1224 if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1225 (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1226 return ADW_IERR_SINGLE_END_DEVICE;
1227 }
1228
1229 /*
1230 * If automatic termination control is enabled, then set the
1231 * termination value based on a table listed in a_condor.h.
1232 *
1233 * If manual termination was specified with an EEPROM setting
1234 * then 'termination' was set-up in AdwInitFromEEPROM() and
1235 * is ready to be 'ored' into SCSI_CFG1.
1236 */
1237 if (cfg->termination == 0) {
1238 /*
1239 * The software always controls termination by setting
1240 * TERM_CTL_SEL.
1241 * If TERM_CTL_SEL were set to 0, the hardware would set
1242 * termination.
1243 */
1244 cfg->termination |= ADW_TERM_CTL_SEL;
1245
1246 switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1247 /* TERM_CTL_H: on, TERM_CTL_L: on */
1248 case 0x3: case 0x7: case 0xB:
1249 case 0xD: case 0xE: case 0xF:
1250 cfg->termination |=
1251 (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1252 break;
1253
1254 /* TERM_CTL_H: on, TERM_CTL_L: off */
1255 case 0x1: case 0x5: case 0x9:
1256 case 0xA: case 0xC:
1257 cfg->termination |= ADW_TERM_CTL_H;
1258 break;
1259
1260 /* TERM_CTL_H: off, TERM_CTL_L: off */
1261 case 0x2: case 0x6:
1262 break;
1263 }
1264 }
1265
1266 /*
1267 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1268 */
1269 scsi_cfg1 &= ~ADW_TERM_CTL;
1270
1271 /*
1272 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1273 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1274 * referenced, because the hardware internally inverts
1275 * the Termination High and Low bits if TERM_POL is set.
1276 */
1277 scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1278
1279 /*
1280 * Set SCSI_CFG1 Microcode Default Value
1281 *
1282 * Set filter value and possibly modified termination control
1283 * bits in the Microcode SCSI_CFG1 Register Value.
1284 *
1285 * The microcode will set the SCSI_CFG1 register using this value
1286 * after it is started below.
1287 */
1288 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1289 ADW_FLTR_DISABLE | scsi_cfg1);
1290
1291 /*
1292 * Set MEM_CFG Microcode Default Value
1293 *
1294 * The microcode will set the MEM_CFG register using this value
1295 * after it is started below.
1296 *
1297 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1298 * are defined.
1299 *
1300 * ASC-3550 has 8KB internal memory.
1301 */
1302 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1303 ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1304
1305 return 0;
1306 }
1307
1308
1309 int
1310 AdwASC38C0800Cabling(iot, ioh, cfg)
1311 bus_space_tag_t iot;
1312 bus_space_handle_t ioh;
1313 ADW_DVC_CFG *cfg;
1314 {
1315 u_int16_t scsi_cfg1;
1316
1317
1318 /*
1319 * Determine SCSI_CFG1 Microcode Default Value.
1320 *
1321 * The microcode will set the SCSI_CFG1 register using this value
1322 * after it is started below.
1323 */
1324
1325 /* Read current SCSI_CFG1 Register value. */
1326 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1327
1328 /*
1329 * If the cable is reversed all of the SCSI_CTRL register signals
1330 * will be set. Check for and return an error if this condition is
1331 * found.
1332 */
1333 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1334 return ADW_IERR_REVERSED_CABLE;
1335 }
1336
1337 /*
1338 * All kind of combinations of devices attached to one of four
1339 * connectors are acceptable except HVD device attached.
1340 * For example, LVD device can be attached to SE connector while
1341 * SE device attached to LVD connector.
1342 * If LVD device attached to SE connector, it only runs up to
1343 * Ultra speed.
1344 *
1345 * If an HVD device is attached to one of LVD connectors, return
1346 * an error.
1347 * However, there is no way to detect HVD device attached to
1348 * SE connectors.
1349 */
1350 if (scsi_cfg1 & ADW_HVD) {
1351 return ADW_IERR_HVD_DEVICE;
1352 }
1353
1354 /*
1355 * If either SE or LVD automatic termination control is enabled, then
1356 * set the termination value based on a table listed in a_condor.h.
1357 *
1358 * If manual termination was specified with an EEPROM setting then
1359 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1360 * to be 'ored' into SCSI_CFG1.
1361 */
1362 if ((cfg->termination & ADW_TERM_SE) == 0) {
1363 /* SE automatic termination control is enabled. */
1364 switch(scsi_cfg1 & ADW_C_DET_SE) {
1365 /* TERM_SE_HI: on, TERM_SE_LO: on */
1366 case 0x1: case 0x2: case 0x3:
1367 cfg->termination |= ADW_TERM_SE;
1368 break;
1369
1370 /* TERM_SE_HI: on, TERM_SE_LO: off */
1371 case 0x0:
1372 cfg->termination |= ADW_TERM_SE_HI;
1373 break;
1374 }
1375 }
1376
1377 if ((cfg->termination & ADW_TERM_LVD) == 0) {
1378 /* LVD automatic termination control is enabled. */
1379 switch(scsi_cfg1 & ADW_C_DET_LVD) {
1380 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1381 case 0x4: case 0x8: case 0xC:
1382 cfg->termination |= ADW_TERM_LVD;
1383 break;
1384
1385 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1386 case 0x0:
1387 break;
1388 }
1389 }
1390
1391 /*
1392 * Clear any set TERM_SE and TERM_LVD bits.
1393 */
1394 scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1395
1396 /*
1397 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1398 */
1399 scsi_cfg1 |= (~cfg->termination & 0xF0);
1400
1401 /*
1402 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1403 * HVD/LVD/SE bits and set possibly modified termination control bits
1404 * in the Microcode SCSI_CFG1 Register Value.
1405 */
1406 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1407 ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1408
1409 /*
1410 * Set SCSI_CFG1 Microcode Default Value
1411 *
1412 * Set possibly modified termination control and reset DIS_TERM_DRV
1413 * bits in the Microcode SCSI_CFG1 Register Value.
1414 *
1415 * The microcode will set the SCSI_CFG1 register using this value
1416 * after it is started below.
1417 */
1418 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1419
1420 /*
1421 * Set MEM_CFG Microcode Default Value
1422 *
1423 * The microcode will set the MEM_CFG register using this value
1424 * after it is started below.
1425 *
1426 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1427 * are defined.
1428 *
1429 * ASC-38C0800 has 16KB internal memory.
1430 */
1431 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1432 ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1433
1434 return 0;
1435 }
1436
1437
1438 int
1439 AdwASC38C1600Cabling(iot, ioh, cfg)
1440 bus_space_tag_t iot;
1441 bus_space_handle_t ioh;
1442 ADW_DVC_CFG *cfg;
1443 {
1444 u_int16_t scsi_cfg1;
1445
1446
1447 /*
1448 * Determine SCSI_CFG1 Microcode Default Value.
1449 *
1450 * The microcode will set the SCSI_CFG1 register using this value
1451 * after it is started below.
1452 * Each ASC-38C1600 function has only two cable detect bits.
1453 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1454 */
1455
1456 /* Read current SCSI_CFG1 Register value. */
1457 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1458
1459 /*
1460 * If the cable is reversed all of the SCSI_CTRL register signals
1461 * will be set. Check for and return an error if this condition is
1462 * found.
1463 */
1464 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1465 return ADW_IERR_REVERSED_CABLE;
1466 }
1467
1468 /*
1469 * Each ASC-38C1600 function has two connectors. Only an HVD device
1470 * can not be connected to either connector. An LVD device or SE device
1471 * may be connected to either connecor. If an SE device is connected,
1472 * then at most Ultra speed (20 MHz) can be used on both connectors.
1473 *
1474 * If an HVD device is attached, return an error.
1475 */
1476 if (scsi_cfg1 & ADW_HVD) {
1477 return ADW_IERR_HVD_DEVICE;
1478 }
1479
1480 /*
1481 * Each function in the ASC-38C1600 uses only the SE cable detect and
1482 * termination because there are two connectors for each function.
1483 * Each function may use either LVD or SE mode.
1484 * Corresponding the SE automatic termination control EEPROM bits are
1485 * used for each function.
1486 * Each function has its own EEPROM. If SE automatic control is enabled
1487 * for the function, then set the termination value based on a table
1488 * listed in adwlib.h.
1489 *
1490 * If manual termination is specified in the EEPROM for the function,
1491 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1492 * ready to be 'ored' into SCSI_CFG1.
1493 */
1494 if ((cfg->termination & ADW_TERM_SE) == 0) {
1495 /* SE automatic termination control is enabled. */
1496 switch(scsi_cfg1 & ADW_C_DET_SE) {
1497 /* TERM_SE_HI: on, TERM_SE_LO: on */
1498 case 0x1: case 0x2: case 0x3:
1499 cfg->termination |= ADW_TERM_SE;
1500 break;
1501
1502 case 0x0:
1503 #if 0
1504 /* !!!!TODO!!!! */
1505 if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1506 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1507 }
1508 else
1509 #endif
1510 {
1511 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1512 cfg->termination |= ADW_TERM_SE_HI;
1513 }
1514 break;
1515 }
1516 }
1517
1518 /*
1519 * Clear any set TERM_SE bits.
1520 */
1521 scsi_cfg1 &= ~ADW_TERM_SE;
1522
1523 /*
1524 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1525 */
1526 scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1527
1528 /*
1529 * Clear Big Endian and Terminator Polarity bits and set possibly
1530 * modified termination control bits in the Microcode SCSI_CFG1
1531 * Register Value.
1532 */
1533 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1534
1535 /*
1536 * Set SCSI_CFG1 Microcode Default Value
1537 *
1538 * Set possibly modified termination control bits in the Microcode
1539 * SCSI_CFG1 Register Value.
1540 *
1541 * The microcode will set the SCSI_CFG1 register using this value
1542 * after it is started below.
1543 */
1544 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1545
1546 /*
1547 * Set MEM_CFG Microcode Default Value
1548 *
1549 * The microcode will set the MEM_CFG register using this value
1550 * after it is started below.
1551 *
1552 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1553 * are defined.
1554 *
1555 * ASC-38C1600 has 32KB internal memory.
1556 */
1557 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1558 ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1559
1560 return 0;
1561 }
1562
1563
1564 /*
1565 * Read EEPROM configuration into the specified buffer.
1566 *
1567 * Return a checksum based on the EEPROM configuration read.
1568 */
1569 static u_int16_t
1570 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1571 bus_space_tag_t iot;
1572 bus_space_handle_t ioh;
1573 ADW_EEPROM *cfg_buf;
1574 {
1575 u_int16_t wval, chksum;
1576 u_int16_t *wbuf;
1577 int eep_addr;
1578
1579
1580 wbuf = (u_int16_t *) cfg_buf;
1581 chksum = 0;
1582
1583 for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1584 eep_addr < ASC_EEP_DVC_CFG_END;
1585 eep_addr++, wbuf++) {
1586 wval = AdwReadEEPWord(iot, ioh, eep_addr);
1587 chksum += wval;
1588 *wbuf = wval;
1589 }
1590
1591 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1592 wbuf++;
1593 for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1594 eep_addr < ASC_EEP_MAX_WORD_ADDR;
1595 eep_addr++, wbuf++) {
1596 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1597 }
1598
1599 return chksum;
1600 }
1601
1602
1603 /*
1604 * Read the EEPROM from specified location
1605 */
1606 static u_int16_t
1607 AdwReadEEPWord(iot, ioh, eep_word_addr)
1608 bus_space_tag_t iot;
1609 bus_space_handle_t ioh;
1610 int eep_word_addr;
1611 {
1612 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1613 ASC_EEP_CMD_READ | eep_word_addr);
1614 AdwWaitEEPCmd(iot, ioh);
1615
1616 return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1617 }
1618
1619
1620 /*
1621 * Wait for EEPROM command to complete
1622 */
1623 static void
1624 AdwWaitEEPCmd(iot, ioh)
1625 bus_space_tag_t iot;
1626 bus_space_handle_t ioh;
1627 {
1628 int eep_delay_ms;
1629
1630
1631 for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1632 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1633 ASC_EEP_CMD_DONE) {
1634 break;
1635 }
1636 AdwSleepMilliSecond(1);
1637 }
1638
1639 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1640 }
1641
1642
1643 /*
1644 * Write the EEPROM from 'cfg_buf'.
1645 */
1646 static void
1647 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1648 bus_space_tag_t iot;
1649 bus_space_handle_t ioh;
1650 ADW_EEPROM *cfg_buf;
1651 {
1652 u_int16_t *wbuf;
1653 u_int16_t addr, chksum;
1654
1655
1656 wbuf = (u_int16_t *) cfg_buf;
1657 chksum = 0;
1658
1659 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1660 AdwWaitEEPCmd(iot, ioh);
1661
1662 /*
1663 * Write EEPROM from word 0 to word 20
1664 */
1665 for (addr = ASC_EEP_DVC_CFG_BEGIN;
1666 addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1667 chksum += *wbuf;
1668 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1669 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1670 ASC_EEP_CMD_WRITE | addr);
1671 AdwWaitEEPCmd(iot, ioh);
1672 AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1673 }
1674
1675 /*
1676 * Write EEPROM checksum at word 21
1677 */
1678 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1679 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1680 ASC_EEP_CMD_WRITE | addr);
1681 AdwWaitEEPCmd(iot, ioh);
1682 wbuf++; /* skip over check_sum */
1683
1684 /*
1685 * Write EEPROM OEM name at words 22 to 29
1686 */
1687 for (addr = ASC_EEP_DVC_CTL_BEGIN;
1688 addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1689 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1690 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1691 ASC_EEP_CMD_WRITE | addr);
1692 AdwWaitEEPCmd(iot, ioh);
1693 }
1694
1695 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1696 ASC_EEP_CMD_WRITE_DISABLE);
1697 AdwWaitEEPCmd(iot, ioh);
1698
1699 return;
1700 }
1701
1702
1703 /*
1704 * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1705 *
1706 * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1707 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1708 * RISC to notify it a new command is ready to be executed.
1709 *
1710 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1711 * set to SCSI_MAX_RETRY.
1712 *
1713 * Return:
1714 * ADW_SUCCESS(1) - The request was successfully queued.
1715 * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1716 * request completes.
1717 * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1718 * host IC error.
1719 */
1720 int
1721 AdwExeScsiQueue(sc, scsiq)
1722 ADW_SOFTC *sc;
1723 ADW_SCSI_REQ_Q *scsiq;
1724 {
1725 bus_space_tag_t iot = sc->sc_iot;
1726 bus_space_handle_t ioh = sc->sc_ioh;
1727 ADW_CCB *ccb;
1728 long req_size;
1729 u_int32_t req_paddr;
1730 ADW_CARRIER *new_carrp;
1731
1732 /*
1733 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1734 */
1735 if (scsiq->target_id > ADW_MAX_TID) {
1736 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1737 scsiq->done_status = QD_WITH_ERROR;
1738 return ADW_ERROR;
1739 }
1740
1741 /*
1742 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1743 */
1744
1745 ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1746
1747 /*
1748 * Allocate a carrier and initialize fields.
1749 */
1750 if ((new_carrp = sc->carr_freelist) == NULL) {
1751 return ADW_BUSY;
1752 }
1753 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1754 ASC_GET_CARRP(new_carrp->next_ba));
1755 sc->carr_pending_cnt++;
1756
1757 /*
1758 * Set the carrier to be a stopper by setting 'next_ba'
1759 * to the stopper value. The current stopper will be changed
1760 * below to point to the new stopper.
1761 */
1762 new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1763
1764 req_size = sizeof(ADW_SCSI_REQ_Q);
1765 req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1766 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1767
1768 /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1769 scsiq->scsiq_rptr = htole32(req_paddr);
1770
1771 /*
1772 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1773 * order during initialization.
1774 */
1775 scsiq->carr_ba = sc->icq_sp->carr_ba;
1776 scsiq->carr_va = sc->icq_sp->carr_ba;
1777
1778 /*
1779 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1780 * the microcode. The newly allocated stopper will become the new
1781 * stopper.
1782 */
1783 sc->icq_sp->areq_ba = htole32(req_paddr);
1784
1785 /*
1786 * Set the 'next_ba' pointer for the old stopper to be the
1787 * physical address of the new stopper. The RISC can only
1788 * follow physical addresses.
1789 */
1790 sc->icq_sp->next_ba = new_carrp->carr_ba;
1791
1792 #if ADW_DEBUG
1793 printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1794 sc->icq_sp->carr_id,
1795 sc->icq_sp->carr_ba,
1796 sc->icq_sp->areq_ba,
1797 sc->icq_sp->next_ba);
1798 #endif
1799 /*
1800 * Set the host adapter stopper pointer to point to the new carrier.
1801 */
1802 sc->icq_sp = new_carrp;
1803
1804 if (sc->chip_type == ADW_CHIP_ASC3550 ||
1805 sc->chip_type == ADW_CHIP_ASC38C0800) {
1806 /*
1807 * Tickle the RISC to tell it to read its Command Queue Head
1808 * pointer.
1809 */
1810 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1811 if (sc->chip_type == ADW_CHIP_ASC3550) {
1812 /*
1813 * Clear the tickle value. In the ASC-3550 the RISC flag
1814 * command 'clr_tickle_a' does not work unless the host
1815 * value is cleared.
1816 */
1817 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1818 ADW_TICKLE_NOP);
1819 }
1820 } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1821 /*
1822 * Notify the RISC a carrier is ready by writing the physical
1823 * address of the new carrier stopper to the COMMA register.
1824 */
1825 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1826 le32toh(new_carrp->carr_ba));
1827 }
1828
1829 /*
1830 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1831 */
1832
1833 return ADW_SUCCESS;
1834 }
1835
1836
1837 void
1838 AdwResetChip(iot, ioh)
1839 bus_space_tag_t iot;
1840 bus_space_handle_t ioh;
1841 {
1842
1843 /*
1844 * Reset Chip.
1845 */
1846 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1847 ADW_CTRL_REG_CMD_RESET);
1848 AdwSleepMilliSecond(100);
1849 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1850 ADW_CTRL_REG_CMD_WR_IO_REG);
1851 }
1852
1853
1854 /*
1855 * Reset SCSI Bus and purge all outstanding requests.
1856 *
1857 * Return Value:
1858 * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1859 * ADW_FALSE(0) - Microcode command failed.
1860 * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1861 * may be hung which requires driver recovery.
1862 */
1863 int
1864 AdwResetCCB(sc)
1865 ADW_SOFTC *sc;
1866 {
1867 int status;
1868
1869 /*
1870 * Send the SCSI Bus Reset idle start idle command which asserts
1871 * the SCSI Bus Reset signal.
1872 */
1873 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1874 if (status != ADW_TRUE) {
1875 return status;
1876 }
1877
1878 /*
1879 * Delay for the specified SCSI Bus Reset hold time.
1880 *
1881 * The hold time delay is done on the host because the RISC has no
1882 * microsecond accurate timer.
1883 */
1884 AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1885
1886 /*
1887 * Send the SCSI Bus Reset end idle command which de-asserts
1888 * the SCSI Bus Reset signal and purges any pending requests.
1889 */
1890 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1891 if (status != ADW_TRUE) {
1892 return status;
1893 }
1894
1895 AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1896
1897 return status;
1898 }
1899
1900
1901 /*
1902 * Reset chip and SCSI Bus.
1903 *
1904 * Return Value:
1905 * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1906 * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1907 */
1908 int
1909 AdwResetSCSIBus(sc)
1910 ADW_SOFTC *sc;
1911 {
1912 bus_space_tag_t iot = sc->sc_iot;
1913 bus_space_handle_t ioh = sc->sc_ioh;
1914 int status;
1915 u_int16_t wdtr_able, sdtr_able, ppr_able, tagqng_able;
1916 u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
1917 u_int16_t bios_sig;
1918
1919
1920 /*
1921 * Save current per TID negotiated values.
1922 */
1923 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1924 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1925 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1926 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1927 }
1928 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1929 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1930 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1931 max_cmd[tid]);
1932 }
1933
1934 /*
1935 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1936 * by clearing the BIOS signature word.
1937 * The initialization functions assumes a SCSI Bus Reset is not
1938 * needed if the BIOS signature word is present.
1939 */
1940 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1941 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1942
1943 /*
1944 * Stop chip and reset it.
1945 */
1946 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1947 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1948 ADW_CTRL_REG_CMD_RESET);
1949 AdwSleepMilliSecond(100);
1950 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1951 ADW_CTRL_REG_CMD_WR_IO_REG);
1952
1953 /*
1954 * Reset Adv Library error code, if any, and try
1955 * re-initializing the chip.
1956 * Then translate initialization return value to status value.
1957 */
1958 status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1959
1960 /*
1961 * Restore the BIOS signature word.
1962 */
1963 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1964
1965 /*
1966 * Restore per TID negotiated values.
1967 */
1968 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1969 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1970 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1971 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1972 }
1973 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1974 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1975 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1976 max_cmd[tid]);
1977 }
1978
1979 return status;
1980 }
1981
1982
1983 /*
1984 * Adv Library Interrupt Service Routine
1985 *
1986 * This function is called by a driver's interrupt service routine.
1987 * The function disables and re-enables interrupts.
1988 *
1989 * When a microcode idle command is completed, the ADV_DVC_VAR
1990 * 'idle_cmd_done' field is set to ADW_TRUE.
1991 *
1992 * Note: AdwISR() can be called when interrupts are disabled or even
1993 * when there is no hardware interrupt condition present. It will
1994 * always check for completed idle commands and microcode requests.
1995 * This is an important feature that shouldn't be changed because it
1996 * allows commands to be completed from polling mode loops.
1997 *
1998 * Return:
1999 * ADW_TRUE(1) - interrupt was pending
2000 * ADW_FALSE(0) - no interrupt was pending
2001 */
2002 int
2003 AdwISR(sc)
2004 ADW_SOFTC *sc;
2005 {
2006 bus_space_tag_t iot = sc->sc_iot;
2007 bus_space_handle_t ioh = sc->sc_ioh;
2008 u_int8_t int_stat;
2009 u_int16_t target_bit;
2010 ADW_CARRIER *free_carrp/*, *ccb_carr*/;
2011 u_int32_t irq_next_pa;
2012 ADW_SCSI_REQ_Q *scsiq;
2013 ADW_CCB *ccb;
2014 int s;
2015
2016
2017 s = splbio();
2018
2019 /* Reading the register clears the interrupt. */
2020 int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2021
2022 if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2023 ADW_INTR_STATUS_INTRC)) == 0) {
2024 splx(s);
2025 return ADW_FALSE;
2026 }
2027
2028 /*
2029 * Notify the driver of an asynchronous microcode condition by
2030 * calling the ADV_DVC_VAR.async_callback function. The function
2031 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2032 */
2033 if (int_stat & ADW_INTR_STATUS_INTRB) {
2034 u_int8_t intrb_code;
2035
2036 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2037
2038 if (sc->chip_type == ADW_CHIP_ASC3550 ||
2039 sc->chip_type == ADW_CHIP_ASC38C0800) {
2040 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2041 sc->carr_pending_cnt != 0) {
2042 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2043 IOPB_TICKLE, ADW_TICKLE_A);
2044 if (sc->chip_type == ADW_CHIP_ASC3550) {
2045 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2046 IOPB_TICKLE, ADW_TICKLE_NOP);
2047 }
2048 }
2049 }
2050
2051 if (sc->async_callback != 0) {
2052 (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2053 }
2054 }
2055
2056 /*
2057 * Check if the IRQ stopper carrier contains a completed request.
2058 */
2059 while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2060 {
2061 #if ADW_DEBUG
2062 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2063 sc->irq_sp->carr_id,
2064 sc->irq_sp->carr_ba,
2065 sc->irq_sp->areq_ba,
2066 sc->irq_sp->next_ba);
2067 #endif
2068 /*
2069 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2070 * structure.
2071 * The RISC will have set 'areq_ba' to a virtual address.
2072 *
2073 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2074 * field to the carrier ADV_CARR_T.areq_ba field.
2075 * The conversion below complements the conversion of
2076 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2077 */
2078 ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2079 scsiq = &ccb->scsiq;
2080 scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2081
2082 /*
2083 * Request finished with good status and the queue was not
2084 * DMAed to host memory by the firmware. Set all status fields
2085 * to indicate good status.
2086 */
2087 if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2088 scsiq->done_status = QD_NO_ERROR;
2089 scsiq->host_status = scsiq->scsi_status = 0;
2090 scsiq->data_cnt = 0L;
2091 }
2092
2093 /*
2094 * Advance the stopper pointer to the next carrier
2095 * ignoring the lower four bits. Free the previous
2096 * stopper carrier.
2097 */
2098 free_carrp = sc->irq_sp;
2099 sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2100
2101 free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
2102 : sc->carr_freelist->carr_ba;
2103 sc->carr_freelist = free_carrp;
2104 sc->carr_pending_cnt--;
2105
2106
2107 target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
2108
2109 /*
2110 * Clear request microcode control flag.
2111 */
2112 scsiq->cntl = 0;
2113
2114 /*
2115 * Check Condition handling
2116 */
2117 /*
2118 * If the command that completed was a SCSI INQUIRY and
2119 * LUN 0 was sent the command, then process the INQUIRY
2120 * command information for the device.
2121 */
2122 if (scsiq->done_status == QD_NO_ERROR &&
2123 scsiq->cdb[0] == INQUIRY &&
2124 scsiq->target_lun == 0) {
2125 AdwInquiryHandling(sc, scsiq);
2126 }
2127
2128 /*
2129 * Notify the driver of the completed request by passing
2130 * the ADW_SCSI_REQ_Q pointer to its callback function.
2131 */
2132 (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2133 /*
2134 * Note: After the driver callback function is called, 'scsiq'
2135 * can no longer be referenced.
2136 *
2137 * Fall through and continue processing other completed
2138 * requests...
2139 */
2140 }
2141
2142 splx(s);
2143
2144 return ADW_TRUE;
2145 }
2146
2147
2148 /*
2149 * Send an idle command to the chip and wait for completion.
2150 *
2151 * Command completion is polled for once per microsecond.
2152 *
2153 * The function can be called from anywhere including an interrupt handler.
2154 * But the function is not re-entrant, so it uses the splbio/splx()
2155 * functions to prevent reentrancy.
2156 *
2157 * Return Values:
2158 * ADW_TRUE - command completed successfully
2159 * ADW_FALSE - command failed
2160 * ADW_ERROR - command timed out
2161 */
2162 int
2163 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2164 ADW_SOFTC *sc;
2165 u_int16_t idle_cmd;
2166 u_int32_t idle_cmd_parameter;
2167 {
2168 bus_space_tag_t iot = sc->sc_iot;
2169 bus_space_handle_t ioh = sc->sc_ioh;
2170 u_int16_t result;
2171 u_int32_t i, j, s;
2172
2173 s = splbio();
2174
2175 /*
2176 * Clear the idle command status which is set by the microcode
2177 * to a non-zero value to indicate when the command is completed.
2178 */
2179 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2180
2181 /*
2182 * Write the idle command value after the idle command parameter
2183 * has been written to avoid a race condition. If the order is not
2184 * followed, the microcode may process the idle command before the
2185 * parameters have been written to LRAM.
2186 */
2187 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2188 idle_cmd_parameter);
2189 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2190
2191 /*
2192 * Tickle the RISC to tell it to process the idle command.
2193 */
2194 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2195 if (sc->chip_type == ADW_CHIP_ASC3550) {
2196 /*
2197 * Clear the tickle value. In the ASC-3550 the RISC flag
2198 * command 'clr_tickle_b' does not work unless the host
2199 * value is cleared.
2200 */
2201 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2202 }
2203
2204 /* Wait for up to 100 millisecond for the idle command to timeout. */
2205 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2206 /* Poll once each microsecond for command completion. */
2207 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2208 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2209 result);
2210 if (result != 0) {
2211 splx(s);
2212 return result;
2213 }
2214 AdwDelayMicroSecond(1);
2215 }
2216 }
2217
2218 splx(s);
2219 return ADW_ERROR;
2220 }
2221
2222
2223 /*
2224 * Inquiry Information Byte 7 Handling
2225 *
2226 * Handle SCSI Inquiry Command information for a device by setting
2227 * microcode operating variables that affect WDTR, SDTR, and Tag
2228 * Queuing.
2229 */
2230 static void
2231 AdwInquiryHandling(sc, scsiq)
2232 ADW_SOFTC *sc;
2233 ADW_SCSI_REQ_Q *scsiq;
2234 {
2235 #ifndef FAILSAFE
2236 bus_space_tag_t iot = sc->sc_iot;
2237 bus_space_handle_t ioh = sc->sc_ioh;
2238 u_int8_t tid;
2239 struct scsipi_inquiry_data *inq;
2240 u_int16_t tidmask;
2241 u_int16_t cfg_word;
2242
2243
2244 /*
2245 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2246 * to be available.
2247 *
2248 * If less than 8 bytes of INQUIRY information were requested or less
2249 * than 8 bytes were transferred, then return. cdb[4] is the request
2250 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2251 * microcode to the transfer residual count.
2252 */
2253
2254 if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2255 return;
2256 }
2257
2258 tid = scsiq->target_id;
2259
2260 inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2261
2262 /*
2263 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2264 */
2265 if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2266 ((inq->version & SID_ANSII) < 2)) {
2267 return;
2268 } else {
2269 /*
2270 * INQUIRY Byte 7 Handling
2271 *
2272 * Use a device's INQUIRY byte 7 to determine whether it
2273 * supports WDTR, SDTR, and Tag Queuing. If the feature
2274 * is enabled in the EEPROM and the device supports the
2275 * feature, then enable it in the microcode.
2276 */
2277
2278 tidmask = ADW_TID_TO_TIDMASK(tid);
2279
2280 /*
2281 * Wide Transfers
2282 *
2283 * If the EEPROM enabled WDTR for the device and the device
2284 * supports wide bus (16 bit) transfers, then turn on the
2285 * device's 'wdtr_able' bit and write the new value to the
2286 * microcode.
2287 */
2288 #ifdef SCSI_ADW_WDTR_DISABLE
2289 if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2290 #endif /* SCSI_ADW_WDTR_DISABLE */
2291 if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2292 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2293 cfg_word);
2294 if ((cfg_word & tidmask) == 0) {
2295 cfg_word |= tidmask;
2296 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2297 cfg_word);
2298
2299 /*
2300 * Clear the microcode "SDTR negotiation" and
2301 * "WDTR negotiation" done indicators for the
2302 * target to cause it to negotiate with the new
2303 * setting set above.
2304 * WDTR when accepted causes the target to enter
2305 * asynchronous mode, so SDTR must be negotiated
2306 */
2307 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2308 cfg_word);
2309 cfg_word &= ~tidmask;
2310 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2311 cfg_word);
2312 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2313 cfg_word);
2314 cfg_word &= ~tidmask;
2315 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2316 cfg_word);
2317 }
2318 }
2319
2320 /*
2321 * Synchronous Transfers
2322 *
2323 * If the EEPROM enabled SDTR for the device and the device
2324 * supports synchronous transfers, then turn on the device's
2325 * 'sdtr_able' bit. Write the new value to the microcode.
2326 */
2327 #ifdef SCSI_ADW_SDTR_DISABLE
2328 if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2329 #endif /* SCSI_ADW_SDTR_DISABLE */
2330 if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2331 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2332 if ((cfg_word & tidmask) == 0) {
2333 cfg_word |= tidmask;
2334 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2335 cfg_word);
2336
2337 /*
2338 * Clear the microcode "SDTR negotiation"
2339 * done indicator for the target to cause it
2340 * to negotiate with the new setting set above.
2341 */
2342 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2343 cfg_word);
2344 cfg_word &= ~tidmask;
2345 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2346 cfg_word);
2347 }
2348 }
2349 /*
2350 * If the Inquiry data included enough space for the SPI-3
2351 * Clocking field, then check if DT mode is supported.
2352 */
2353 if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2354 (scsiq->cdb[4] >= 57 ||
2355 (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2356 /*
2357 * PPR (Parallel Protocol Request) Capable
2358 *
2359 * If the device supports DT mode, then it must be
2360 * PPR capable.
2361 * The PPR message will be used in place of the SDTR
2362 * and WDTR messages to negotiate synchronous speed
2363 * and offset, transfer width, and protocol options.
2364 */
2365 if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2366 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2367 sc->ppr_able);
2368 sc->ppr_able |= tidmask;
2369 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2370 sc->ppr_able);
2371 }
2372 }
2373
2374 /*
2375 * If the EEPROM enabled Tag Queuing for the device and the
2376 * device supports Tag Queueing, then turn on the device's
2377 * 'tagqng_enable' bit in the microcode and set the microcode
2378 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2379 * value.
2380 *
2381 * Tag Queuing is disabled for the BIOS which runs in polled
2382 * mode and would see no benefit from Tag Queuing. Also by
2383 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2384 * bugs will at least work with the BIOS.
2385 */
2386 #ifdef SCSI_ADW_TAGQ_DISABLE
2387 if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2388 #endif /* SCSI_ADW_TAGQ_DISABLE */
2389 if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2390 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2391 cfg_word);
2392 cfg_word |= tidmask;
2393 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2394 cfg_word);
2395
2396 ADW_WRITE_BYTE_LRAM(iot, ioh,
2397 ADW_MC_NUMBER_OF_MAX_CMD + tid,
2398 sc->max_dvc_qng);
2399 }
2400 }
2401 #endif /* FAILSAFE */
2402 }
2403
2404
2405 static void
2406 AdwSleepMilliSecond(n)
2407 u_int32_t n;
2408 {
2409
2410 DELAY(n * 1000);
2411 }
2412
2413
2414 static void
2415 AdwDelayMicroSecond(n)
2416 u_int32_t n;
2417 {
2418
2419 DELAY(n);
2420 }
2421
2422