Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.25
      1 /* $NetBSD: adwlib.c,v 1.25 2003/02/21 17:14:06 tsutsui Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 /*
     40  * Ported from:
     41  */
     42 /*
     43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  *
     45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46  * All Rights Reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that redistributions of source
     50  * code retain the above copyright notice and this comment without
     51  * modification.
     52  */
     53 
     54 #include <sys/cdefs.h>
     55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.25 2003/02/21 17:14:06 tsutsui Exp $");
     56 
     57 #include <sys/param.h>
     58 #include <sys/systm.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/queue.h>
     62 #include <sys/device.h>
     63 
     64 #include <machine/bus.h>
     65 #include <machine/intr.h>
     66 
     67 #include <dev/scsipi/scsi_all.h>
     68 #include <dev/scsipi/scsipi_all.h>
     69 #include <dev/scsipi/scsiconf.h>
     70 
     71 #include <dev/pci/pcidevs.h>
     72 
     73 #include <uvm/uvm_extern.h>
     74 
     75 #include <dev/ic/adwlib.h>
     76 #include <dev/ic/adwmcode.h>
     77 #include <dev/ic/adw.h>
     78 
     79 
     80 /* Static Functions */
     81 
     82 int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
     83 int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
     84 								u_int8_t));
     85 int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
     86 int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
     87 								ADW_DVC_CFG *));
     88 int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
     89 								ADW_DVC_CFG *));
     90 
     91 static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     92      							ADW_EEPROM *));
     93 static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     94 					                 ADW_EEPROM *));
     95 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     96 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     97 
     98 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     99 
    100 static void AdwSleepMilliSecond __P((u_int32_t));
    101 static void AdwDelayMicroSecond __P((u_int32_t));
    102 
    103 
    104 /*
    105  * EEPROM Configuration.
    106  *
    107  * All drivers should use this structure to set the default EEPROM
    108  * configuration. The BIOS now uses this structure when it is built.
    109  * Additional structure information can be found in adwlib.h where
    110  * the structure is defined.
    111  */
    112 const static ADW_EEPROM adw_3550_Default_EEPROM = {
    113 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    114 	0x0000,			/* 01 cfg_msw */
    115 	0xFFFF,			/* 02 disc_enable */
    116 	0xFFFF,			/* 03 wdtr_able */
    117 	{ 0xFFFF },		/* 04 sdtr_able */
    118 	0xFFFF,			/* 05 start_motor */
    119 	0xFFFF,			/* 06 tagqng_able */
    120 	0xFFFF,			/* 07 bios_scan */
    121 	0,			/* 08 scam_tolerant */
    122 	7,			/* 09 adapter_scsi_id */
    123 	0,			/*    bios_boot_delay */
    124 	3,			/* 10 scsi_reset_delay */
    125 	0,			/*    bios_id_lun */
    126 	0,			/* 11 termination */
    127 	0,			/*    reserved1 */
    128 	0xFFE7,			/* 12 bios_ctrl */
    129 	{ 0xFFFF },		/* 13 ultra_able */
    130 	{ 0 },			/* 14 reserved2 */
    131 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    132 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    133 	0,			/* 16 dvc_cntl */
    134 	{ 0 },			/* 17 bug_fix */
    135 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    136 	0,			/* 21 check_sum */
    137 	{			/* 22-29 oem_name[16] */
    138 	  0,0,0,0,0,0,0,0,
    139 	  0,0,0,0,0,0,0,0
    140 	},
    141 	0,			/* 30 dvc_err_code */
    142 	0,			/* 31 adv_err_code */
    143 	0,			/* 32 adv_err_addr */
    144 	0,			/* 33 saved_dvc_err_code */
    145 	0,			/* 34 saved_adv_err_code */
    146 	0			/* 35 saved_adv_err_addr */
    147 };
    148 
    149 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
    150 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    151 	0x0000,			/* 01 cfg_msw */
    152 	0xFFFF,			/* 02 disc_enable */
    153 	0xFFFF,			/* 03 wdtr_able */
    154 	{ 0x4444 },		/* 04 sdtr_speed1 */
    155 	0xFFFF,			/* 05 start_motor */
    156 	0xFFFF,			/* 06 tagqng_able */
    157 	0xFFFF,			/* 07 bios_scan */
    158 	0,			/* 08 scam_tolerant */
    159 	7,			/* 09 adapter_scsi_id */
    160 	0,			/*    bios_boot_delay */
    161 	3,			/* 10 scsi_reset_delay */
    162 	0,			/*    bios_id_lun */
    163 	0,			/* 11 termination_se */
    164 	0,			/*    termination_lvd */
    165 	0xFFE7,			/* 12 bios_ctrl */
    166 	{ 0x4444 },		/* 13 sdtr_speed2 */
    167 	{ 0x4444 },		/* 14 sdtr_speed3 */
    168 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    169 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    170 	0,			/* 16 dvc_cntl */
    171 	{ 0x4444 },		/* 17 sdtr_speed4 */
    172 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    173 	0,			/* 21 check_sum */
    174 	{			/* 22-29 oem_name[16] */
    175 	  0,0,0,0,0,0,0,0,
    176 	  0,0,0,0,0,0,0,0
    177 	},
    178 	0,			/* 30 dvc_err_code */
    179 	0,			/* 31 adv_err_code */
    180 	0,			/* 32 adv_err_addr */
    181 	0,			/* 33 saved_dvc_err_code */
    182 	0,			/* 34 saved_adv_err_code */
    183 	0,			/* 35 saved_adv_err_addr */
    184 	{			/* 36-55 reserved1[16] */
    185 	  0,0,0,0,0,0,0,0,0,0,
    186 	  0,0,0,0,0,0,0,0,0,0
    187 	},
    188 	0,			/* 56 cisptr_lsw */
    189 	0,			/* 57 cisprt_msw */
    190 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    191 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    192 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    193 };
    194 
    195 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
    196 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    197 	0x0000,			/* 01 cfg_msw */
    198 	0xFFFF,			/* 02 disc_enable */
    199 	0xFFFF,			/* 03 wdtr_able */
    200 	{ 0x5555 },		/* 04 sdtr_speed1 */
    201 	0xFFFF,			/* 05 start_motor */
    202 	0xFFFF,			/* 06 tagqng_able */
    203 	0xFFFF,			/* 07 bios_scan */
    204 	0,			/* 08 scam_tolerant */
    205 	7,			/* 09 adapter_scsi_id */
    206 	0,			/*    bios_boot_delay */
    207 	3,			/* 10 scsi_reset_delay */
    208 	0,			/*    bios_id_lun */
    209 	0,			/* 11 termination_se */
    210 	0,			/*    termination_lvd */
    211 	0xFFE7,			/* 12 bios_ctrl */
    212 	{ 0x5555 },		/* 13 sdtr_speed2 */
    213 	{ 0x5555 },		/* 14 sdtr_speed3 */
    214 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    215 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    216 	0,			/* 16 dvc_cntl */
    217 	{ 0x5555 },		/* 17 sdtr_speed4 */
    218 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    219 	0,			/* 21 check_sum */
    220 	{			/* 22-29 oem_name[16] */
    221 	  0,0,0,0,0,0,0,0,
    222 	  0,0,0,0,0,0,0,0
    223 	},
    224 	0,			/* 30 dvc_err_code */
    225 	0,			/* 31 adv_err_code */
    226 	0,			/* 32 adv_err_addr */
    227 	0,			/* 33 saved_dvc_err_code */
    228 	0,			/* 34 saved_adv_err_code */
    229 	0,			/* 35 saved_adv_err_addr */
    230 	{			/* 36-55 reserved1[16] */
    231 	  0,0,0,0,0,0,0,0,0,0,
    232 	  0,0,0,0,0,0,0,0,0,0
    233 	},
    234 	0,			/* 56 cisptr_lsw */
    235 	0,			/* 57 cisprt_msw */
    236 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    237 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    238 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    239 };
    240 
    241 
    242 /*
    243  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    244  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    245  * all of this is done.
    246  *
    247  * For a non-fatal error return a warning code. If there are no warnings
    248  * then 0 is returned.
    249  *
    250  * Note: Chip is stopped on entry.
    251  */
    252 int
    253 AdwInitFromEEPROM(sc)
    254 ADW_SOFTC      *sc;
    255 {
    256 	bus_space_tag_t iot = sc->sc_iot;
    257 	bus_space_handle_t ioh = sc->sc_ioh;
    258 	ADW_EEPROM		eep_config;
    259 	u_int16_t		warn_code;
    260 	u_int16_t		sdtr_speed = 0;
    261 	u_int8_t		tid, termination;
    262 	int			i, j;
    263 
    264 
    265 	warn_code = 0;
    266 
    267 	/*
    268 	 * Read the board's EEPROM configuration.
    269 	 *
    270 	 * Set default values if a bad checksum is found.
    271 	 *
    272 	 * XXX - Don't handle big-endian access to EEPROM yet.
    273 	 */
    274 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    275 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    276 
    277 		/*
    278 		 * Set EEPROM default values.
    279 		 */
    280 		switch(sc->chip_type) {
    281 		case ADW_CHIP_ASC3550:
    282 			eep_config = adw_3550_Default_EEPROM;
    283 			break;
    284 		case ADW_CHIP_ASC38C0800:
    285 			eep_config = adw_38C0800_Default_EEPROM;
    286 			break;
    287 		case ADW_CHIP_ASC38C1600:
    288 			eep_config = adw_38C1600_Default_EEPROM;
    289 
    290 #if 0
    291 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    292 #endif
    293 			if (sc->cfg.pci_slot_info != 0) {
    294 				u_int8_t lsw_msb;
    295 
    296 				lsw_msb = eep_config.cfg_lsw >> 8;
    297 				/*
    298 				 * Set Function 1 EEPROM Word 0 MSB
    299 				 *
    300 				 * Clear the BIOS_ENABLE (bit 14) and
    301 				 * INTAB (bit 11) EEPROM bits.
    302 				 *
    303 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    304 				 * SPARC Ultra 60 and old Mac system booting
    305 				 * problem. The Expansion ROM must
    306 				 * be disabled in Function 1 for these systems.
    307 				 */
    308 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    309 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    310 				/*
    311 				 * Set the INTAB (bit 11) if the GPIO 0 input
    312 				 * indicates the Function 1 interrupt line is
    313 				 * wired to INTA.
    314 				 *
    315 				 * Set/Clear Bit 11 (INTAB) from
    316 				 * the GPIO bit 0 input:
    317 				 *   1 - Function 1 intr line wired to INT A.
    318 				 *   0 - Function 1 intr line wired to INT B.
    319 				 *
    320 				 * Note: Adapter boards always have Function 0
    321 				 * wired to INTA.
    322 				 * Put all 5 GPIO bits in input mode and then
    323 				 * read their input values.
    324 				 */
    325 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    326 							IOPB_GPIO_CNTL, 0);
    327 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    328 						IOPB_GPIO_DATA) & 0x01) {
    329 					/*
    330 					 * Function 1 interrupt wired to INTA;
    331 					 * Set EEPROM bit.
    332 					 */
    333 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    334 							 & 0xFF;
    335 				 }
    336 				 eep_config.cfg_lsw &= 0x00FF;
    337 				 eep_config.cfg_lsw |= lsw_msb << 8;
    338 			}
    339 			break;
    340 		}
    341 
    342 		/*
    343 		 * Assume the 6 byte board serial number that was read
    344 		 * from EEPROM is correct even if the EEPROM checksum
    345 		 * failed.
    346 		 */
    347 		for (i=2, j=1; i>=0; i--, j++) {
    348 		eep_config.serial_number[i] =
    349 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    350 		}
    351 
    352 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    353 	}
    354 	/*
    355 	 * Set sc and sc->cfg variables from the EEPROM configuration
    356 	 * that was read.
    357 	 *
    358 	 * This is the mapping of EEPROM fields to Adw Library fields.
    359 	 */
    360 	sc->wdtr_able = eep_config.wdtr_able;
    361 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    362 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    363 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    364 	} else {
    365 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    366 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    367 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    368 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    369 	}
    370 	sc->ppr_able = 0;
    371 	sc->tagqng_able = eep_config.tagqng_able;
    372 	sc->cfg.disc_enable = eep_config.disc_enable;
    373 	sc->max_host_qng = eep_config.max_host_qng;
    374 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    375 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    376 	sc->start_motor = eep_config.start_motor;
    377 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    378 	sc->bios_ctrl = eep_config.bios_ctrl;
    379 	sc->no_scam = eep_config.scam_tolerant;
    380 	sc->cfg.serial1 = eep_config.serial_number[0];
    381 	sc->cfg.serial2 = eep_config.serial_number[1];
    382 	sc->cfg.serial3 = eep_config.serial_number[2];
    383 
    384 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    385 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    386 		sc->sdtr_able = 0;
    387 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    388 			if (tid == 0) {
    389 				sdtr_speed = sc->sdtr_speed1;
    390 			} else if (tid == 4) {
    391 				sdtr_speed = sc->sdtr_speed2;
    392 			} else if (tid == 8) {
    393 				sdtr_speed = sc->sdtr_speed3;
    394 			} else if (tid == 12) {
    395 				sdtr_speed = sc->sdtr_speed4;
    396 			}
    397 			if (sdtr_speed & ADW_MAX_TID) {
    398 				sc->sdtr_able |= (1 << tid);
    399 			}
    400 			sdtr_speed >>= 4;
    401 		}
    402 	}
    403 
    404 	/*
    405 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    406 	 * maximum queuing (max. 63, min. 4).
    407 	 */
    408 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    409 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    410 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    411 	{
    412 		/* If the value is zero, assume it is uninitialized. */
    413 		if (eep_config.max_host_qng == 0) {
    414 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    415 		} else {
    416 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    417 		}
    418 	}
    419 
    420 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    421 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    422 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    423 		/* If the value is zero, assume it is uninitialized. */
    424 		if (eep_config.max_dvc_qng == 0) {
    425 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    426 		} else {
    427 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    428 		}
    429 	}
    430 
    431 	/*
    432 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    433 	 * set 'max_dvc_qng' to 'max_host_qng'.
    434 	 */
    435 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    436 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    437 	}
    438 
    439 	/*
    440 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    441 	 * values based on possibly adjusted EEPROM values.
    442 	 */
    443 	sc->max_host_qng = eep_config.max_host_qng;
    444 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    445 
    446 
    447 	/*
    448 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    449 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    450 	 *
    451 	 * If the termination is specified with a non-zero 'termination'
    452 	 * value check that a legal value is set and set the ADV_DVC_CFG
    453 	 * 'termination' field appropriately.
    454 	 */
    455 
    456 	switch(sc->chip_type) {
    457 	case ADW_CHIP_ASC3550:
    458 		sc->cfg.termination = 0;	/* auto termination */
    459 		switch(eep_config.termination_se) {
    460 		case 3:
    461 			/* Enable manual control with low on / high on. */
    462 			sc->cfg.termination |= ADW_TERM_CTL_L;
    463 		case 2:
    464 			/* Enable manual control with low off / high on. */
    465 			sc->cfg.termination |= ADW_TERM_CTL_H;
    466 		case 1:
    467 			/* Enable manual control with low off / high off. */
    468 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    469 		case 0:
    470 			break;
    471 		default:
    472 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    473 		}
    474 		break;
    475 
    476 	case ADW_CHIP_ASC38C0800:
    477 	case ADW_CHIP_ASC38C1600:
    478 		switch(eep_config.termination_se) {
    479 		case 0:
    480 			/* auto termination for SE */
    481 			termination = 0;
    482 			break;
    483 		case 1:
    484 			/* Enable manual control with low off / high off. */
    485 			termination = 0;
    486 			break;
    487 		case 2:
    488 			/* Enable manual control with low off / high on. */
    489 			termination = ADW_TERM_SE_HI;
    490 			break;
    491 		case 3:
    492 			/* Enable manual control with low on / high on. */
    493 			termination = ADW_TERM_SE;
    494 			break;
    495 		default:
    496 			/*
    497 			 * The EEPROM 'termination_se' field contains a
    498 			 * bad value. Use automatic termination instead.
    499 			 */
    500 			termination = 0;
    501 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    502 		}
    503 
    504 		switch(eep_config.termination_lvd) {
    505 		case 0:
    506 			/* auto termination for LVD */
    507 			sc->cfg.termination = termination;
    508 			break;
    509 		case 1:
    510 			/* Enable manual control with low off / high off. */
    511 			sc->cfg.termination = termination;
    512 			break;
    513 		case 2:
    514 			/* Enable manual control with low off / high on. */
    515 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    516 			break;
    517 		case 3:
    518 			/* Enable manual control with low on / high on. */
    519 			sc->cfg.termination = termination | ADW_TERM_LVD;
    520 			break;
    521 		default:
    522 			/*
    523 			 * The EEPROM 'termination_lvd' field contains a
    524 			 * bad value. Use automatic termination instead.
    525 			 */
    526 			sc->cfg.termination = termination;
    527 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    528 		}
    529 		break;
    530 	}
    531 
    532 	return warn_code;
    533 }
    534 
    535 
    536 /*
    537  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    538  *
    539  * On failure return the error code.
    540  */
    541 int
    542 AdwInitDriver(sc)
    543 ADW_SOFTC      *sc;
    544 {
    545 	bus_space_tag_t iot = sc->sc_iot;
    546 	bus_space_handle_t ioh = sc->sc_ioh;
    547 	u_int16_t	error_code;
    548 	int		word;
    549 	int		i;
    550 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    551 								0x40-0x8F. */
    552 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    553 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    554 	u_int8_t	tid;
    555 
    556 
    557 	error_code = 0;
    558 
    559 	/*
    560 	 * Save the RISC memory BIOS region before writing the microcode.
    561 	 * The BIOS may already be loaded and using its RISC LRAM region
    562 	 * so its region must be saved and restored.
    563 	 *
    564 	 * Note: This code makes the assumption, which is currently true,
    565 	 * that a chip reset does not clear RISC LRAM.
    566 	 */
    567 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    568 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    569 	}
    570 
    571 	/*
    572 	 * Save current per TID negotiated values.
    573 	 */
    574 	switch (sc->chip_type) {
    575 	case ADW_CHIP_ASC3550:
    576 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    577 
    578 			u_int16_t  bios_version, major, minor;
    579 
    580 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    581 					ADW_MC_BIOSMEM) / 2];
    582 			major = (bios_version  >> 12) & 0xF;
    583 			minor = (bios_version  >> 8) & 0xF;
    584 			if (major < 3 || (major == 3 && minor == 1)) {
    585 			    /*
    586 			     * BIOS 3.1 and earlier location of
    587 			     * 'wdtr_able' variable.
    588 			     */
    589 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    590 			} else {
    591 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    592 					    wdtr_able);
    593 			}
    594 		}
    595 		break;
    596 
    597 	case ADW_CHIP_ASC38C1600:
    598 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    599 		/* FALLTHROUGH */
    600 	case ADW_CHIP_ASC38C0800:
    601 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    602 		break;
    603 	}
    604 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    605 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    606 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    607 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    608 			max_cmd[tid]);
    609 	}
    610 
    611 	/*
    612 	 * Perform a RAM Built-In Self Test
    613 	 */
    614 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    615 		return error_code;
    616 	}
    617 
    618 	/*
    619 	 * Load the Microcode
    620 	 */
    621 	;
    622 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    623 		return error_code;
    624 	}
    625 
    626 	/*
    627 	 * Read microcode version and date.
    628 	 */
    629 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    630 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    631 
    632 	/*
    633 	 * If the PCI Configuration Command Register "Parity Error Response
    634 	 * Control" Bit was clear (0), then set the microcode variable
    635 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    636 	 * to ignore DMA parity errors.
    637 	 */
    638 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    639 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    640 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    641 					word | CONTROL_FLAG_IGNORE_PERR);
    642 	}
    643 
    644 	switch (sc->chip_type) {
    645 	case ADW_CHIP_ASC3550:
    646 		/*
    647 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    648 		 * FIFO threshold of 128 bytes.
    649 		 * This register is only accessible to the host.
    650 		 */
    651 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    652 				START_CTL_EMFU | READ_CMD_MRM);
    653 		break;
    654 
    655 	case ADW_CHIP_ASC38C0800:
    656 		/*
    657 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    658 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    659 		 * cable detection and then we are able to read C_DET[3:0].
    660 		 *
    661 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    662 		 * Microcode Default Value' section below.
    663 		 */
    664 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    665 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    666 				| ADW_DIS_TERM_DRV);
    667 
    668 		/*
    669 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    670 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    671 		 *
    672 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    673 		 * 256 bytes.
    674 		 *
    675 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    676 		 */
    677 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    678 						BC_THRESH_ENB | FIFO_THRESH_80B
    679 						| START_CTL_TH | READ_CMD_MRM);
    680 		break;
    681 
    682 	case ADW_CHIP_ASC38C1600:
    683 		/*
    684 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    685 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    686 		 * cable detection and then we are able to read C_DET[3:0].
    687 		 *
    688 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    689 		 * Microcode Default Value' section below.
    690 		 */
    691 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    692 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    693 				| ADW_DIS_TERM_DRV);
    694 
    695 		/*
    696 		 * If the BIOS control flag AIPP (Asynchronous Information
    697 		 * Phase Protection) disable bit is not set, then set the
    698 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    699 		 * enable AIPP checking and encoding.
    700 		 */
    701 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    702 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    703 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    704 					word | CONTROL_FLAG_ENABLE_AIPP);
    705 		}
    706 
    707 		/*
    708 		 * For ASC-38C1600 use DMA_CFG0 default values:
    709 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    710 		 */
    711 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    712 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    713 		break;
    714 	}
    715 
    716 	/*
    717 	 * Microcode operating variables for WDTR, SDTR, and command tag
    718 	 * queuing will be set in AdvInquiryHandling() based on what a
    719 	 * device reports it is capable of in Inquiry byte 7.
    720 	 *
    721 	 * If SCSI Bus Resets have been disabled, then directly set
    722 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    723 	 * the BIOS and warm boot to work without a SCSI bus hang on
    724 	 * the Inquiry caused by host and target mismatched DTR values.
    725 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    726 	 * be assumed to be in Asynchronous, Narrow mode.
    727 	 */
    728 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    729 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    730 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    731 	}
    732 
    733 	/*
    734 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    735 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    736 	 * bitmask. These values determine the maximum SDTR speed negotiated
    737 	 * with a device.
    738 	 *
    739 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    740 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    741 	 * without determining here whether the device supports SDTR.
    742 	 */
    743 	switch (sc->chip_type) {
    744 	case ADW_CHIP_ASC3550:
    745 		word = 0;
    746 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    747 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    748 				/* Set Ultra speed for TID 'tid'. */
    749 				word |= (0x3 << (4 * (tid % 4)));
    750 			} else {
    751 				/* Set Fast speed for TID 'tid'. */
    752 				word |= (0x2 << (4 * (tid % 4)));
    753 			}
    754 			/* Check if done with sdtr_speed1. */
    755 			if (tid == 3) {
    756 				ADW_WRITE_WORD_LRAM(iot, ioh,
    757 						ADW_MC_SDTR_SPEED1, word);
    758 				word = 0;
    759 			/* Check if done with sdtr_speed2. */
    760 			} else if (tid == 7) {
    761 				ADW_WRITE_WORD_LRAM(iot, ioh,
    762 						ADW_MC_SDTR_SPEED2, word);
    763 				word = 0;
    764 			/* Check if done with sdtr_speed3. */
    765 			} else if (tid == 11) {
    766 				ADW_WRITE_WORD_LRAM(iot, ioh,
    767 						ADW_MC_SDTR_SPEED3, word);
    768 				word = 0;
    769 			/* Check if done with sdtr_speed4. */
    770 			} else if (tid == 15) {
    771 				ADW_WRITE_WORD_LRAM(iot, ioh,
    772 						ADW_MC_SDTR_SPEED4, word);
    773 				/* End of loop. */
    774 			}
    775 		}
    776 
    777 		/*
    778 		 * Set microcode operating variable for the
    779 		 * disconnect per TID bitmask.
    780 		 */
    781 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    782 							sc->cfg.disc_enable);
    783 		break;
    784 
    785 	case ADW_CHIP_ASC38C0800:
    786 		/* FALLTHROUGH */
    787 	case ADW_CHIP_ASC38C1600:
    788 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    789 							sc->cfg.disc_enable);
    790 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    791 							sc->sdtr_speed1);
    792 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    793 							sc->sdtr_speed2);
    794 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    795 							sc->sdtr_speed3);
    796 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    797 							sc->sdtr_speed4);
    798 		break;
    799 	}
    800 
    801 
    802 	/*
    803 	 * Set SCSI_CFG0 Microcode Default Value.
    804 	 *
    805 	 * The microcode will set the SCSI_CFG0 register using this value
    806 	 * after it is started below.
    807 	 */
    808 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    809 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    810 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    811 
    812 
    813 	switch(sc->chip_type) {
    814 	case ADW_CHIP_ASC3550:
    815 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    816 		break;
    817 
    818 	case ADW_CHIP_ASC38C0800:
    819 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    820 		break;
    821 
    822 	case ADW_CHIP_ASC38C1600:
    823 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    824 		break;
    825 	}
    826 	if(error_code) {
    827 		return error_code;
    828 	}
    829 
    830 	/*
    831 	 * Set SEL_MASK Microcode Default Value
    832 	 *
    833 	 * The microcode will set the SEL_MASK register using this value
    834 	 * after it is started below.
    835 	 */
    836 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    837 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    838 
    839 	/*
    840 	 * Create and Initialize Host->RISC Carrier lists
    841 	 */
    842 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    843 						sc->sc_control->carriers);
    844 
    845 	/*
    846 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    847 	 */
    848 
    849 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    850 		return ADW_IERR_NO_CARRIER;
    851 	}
    852 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    853 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    854 
    855 	/*
    856 	 * The first command issued will be placed in the stopper carrier.
    857 	 */
    858 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    859 
    860 	/*
    861 	 * Set RISC ICQ physical address start value.
    862 	 */
    863 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    864 
    865 	/*
    866 	 * Initialize the COMMA register to the same value otherwise
    867 	 * the RISC will prematurely detect a command is available.
    868 	 */
    869 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    870 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    871 						le32toh(sc->icq_sp->carr_ba));
    872 	}
    873 
    874 	/*
    875 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    876 	 */
    877 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    878 		return ADW_IERR_NO_CARRIER;
    879 	}
    880 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    881 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    882 
    883 	/*
    884 	 * The first command completed by the RISC will be placed in
    885 	 * the stopper.
    886 	 *
    887 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    888 	 * completed the RISC will set the ASC_RQ_DONE bit.
    889 	 */
    890 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    891 
    892 	/*
    893 	 * Set RISC IRQ physical address start value.
    894 	 */
    895 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    896 	sc->carr_pending_cnt = 0;
    897 
    898 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    899 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    900 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    901 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    902 
    903 	/* finally, finally, gentlemen, start your engine */
    904 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    905 
    906 	/*
    907 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    908 	 * Resets should be performed. The RISC has to be running
    909 	 * to issue a SCSI Bus Reset.
    910 	 */
    911 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    912 	{
    913 		/*
    914 		 * If the BIOS Signature is present in memory, restore the
    915 		 * BIOS Handshake Configuration Table and do not perform
    916 		 * a SCSI Bus Reset.
    917 		 */
    918 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    919 				0x55AA) {
    920 			/*
    921 			 * Restore per TID negotiated values.
    922 			 */
    923 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    924 					wdtr_able);
    925 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    926 					sdtr_able);
    927 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    928 					tagqng_able);
    929 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    930 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    931 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    932 						max_cmd[tid]);
    933 			}
    934 		} else {
    935 			if (AdwResetCCB(sc) != ADW_TRUE) {
    936 				error_code = ADW_WARN_BUSRESET_ERROR;
    937 			}
    938 		}
    939 	}
    940 
    941 	return error_code;
    942 }
    943 
    944 
    945 int
    946 AdwRamSelfTest(iot, ioh, chip_type)
    947 	bus_space_tag_t iot;
    948 	bus_space_handle_t ioh;
    949 	u_int8_t chip_type;
    950 {
    951 	int		i;
    952 	u_int8_t	byte;
    953 
    954 
    955 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    956 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    957 		/*
    958 		 * RAM BIST (RAM Built-In Self Test)
    959 		 *
    960 		 * Address : I/O base + offset 0x38h register (byte).
    961 		 * Function: Bit 7-6(RW) : RAM mode
    962 		 *			    Normal Mode   : 0x00
    963 		 *			    Pre-test Mode : 0x40
    964 		 *			    RAM Test Mode : 0x80
    965 		 *	     Bit 5	 : unused
    966 		 *	     Bit 4(RO)   : Done bit
    967 		 *	     Bit 3-0(RO) : Status
    968 		 *			    Host Error    : 0x08
    969 		 *			    Int_RAM Error : 0x04
    970 		 *			    RISC Error    : 0x02
    971 		 *			    SCSI Error    : 0x01
    972 		 *			    No Error	  : 0x00
    973 		 *
    974 		 * Note: RAM BIST code should be put right here, before loading
    975 		 * the microcode and after saving the RISC memory BIOS region.
    976 		 */
    977 
    978 		/*
    979 		 * LRAM Pre-test
    980 		 *
    981 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    982 		 * 10 milliseconds.
    983 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    984 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    985 		 * If cannot reset to NORMAL_MODE, return an error too.
    986 		 */
    987 		for (i = 0; i < 2; i++) {
    988 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    989 					PRE_TEST_MODE);
    990 			 /* Wait for 10ms before reading back. */
    991 			AdwSleepMilliSecond(10);
    992 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    993 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    994 					PRE_TEST_VALUE) {
    995 				return ADW_IERR_BIST_PRE_TEST;
    996 			}
    997 
    998 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    999 								NORMAL_MODE);
   1000 			/* Wait for 10ms before reading back. */
   1001 			AdwSleepMilliSecond(10);
   1002 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1003 			    != NORMAL_VALUE) {
   1004 				return ADW_IERR_BIST_PRE_TEST;
   1005 			}
   1006 		}
   1007 
   1008 		/*
   1009 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1010 		 *
   1011 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1012 		 * 10 milliseconds.
   1013 		 * If Done bit not set or Status not 0, save register byte,
   1014 		 * set the err_code, and return an error.
   1015 		 */
   1016 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1017 		/* Wait for 10ms before checking status. */
   1018 		AdwSleepMilliSecond(10);
   1019 
   1020 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1021 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1022 			/* Get here if Done bit not set or Status not 0. */
   1023 			return ADW_IERR_BIST_RAM_TEST;
   1024 		}
   1025 
   1026 		/* We need to reset back to normal mode after LRAM test passes*/
   1027 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1028 	}
   1029 
   1030 	return 0;
   1031 }
   1032 
   1033 
   1034 int
   1035 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
   1036 	bus_space_tag_t iot;
   1037 	bus_space_handle_t ioh;
   1038 	u_int16_t *bios_mem;
   1039 	u_int8_t chip_type;
   1040 {
   1041 	u_int8_t	*mcode_data;
   1042 	u_int32_t	 mcode_chksum;
   1043 	u_int16_t	 mcode_size;
   1044 	u_int32_t	sum;
   1045 	u_int16_t	code_sum;
   1046 	int		begin_addr;
   1047 	int		end_addr;
   1048 	int		word;
   1049 	int		adw_memsize;
   1050 	int		adw_mcode_expanded_size;
   1051 	int		i, j;
   1052 
   1053 
   1054 	switch(chip_type) {
   1055 	case ADW_CHIP_ASC3550:
   1056 		mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1057 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1058 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1059 		adw_memsize = ADW_3550_MEMSIZE;
   1060 		break;
   1061 
   1062 	case ADW_CHIP_ASC38C0800:
   1063 		mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1064 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1065 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1066 		adw_memsize = ADW_38C0800_MEMSIZE;
   1067 		break;
   1068 
   1069 	case ADW_CHIP_ASC38C1600:
   1070 		mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1071 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1072 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1073 		adw_memsize = ADW_38C1600_MEMSIZE;
   1074 		break;
   1075 	}
   1076 
   1077 	/*
   1078 	 * Write the microcode image to RISC memory starting at address 0.
   1079 	 */
   1080 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1081 
   1082 	/* Assume the following compressed format of the microcode buffer:
   1083 	 *
   1084 	 *  254 word (508 byte) table indexed by byte code followed
   1085 	 *  by the following byte codes:
   1086 	 *
   1087 	 *    1-Byte Code:
   1088 	 *	00: Emit word 0 in table.
   1089 	 *	01: Emit word 1 in table.
   1090 	 *	.
   1091 	 *	FD: Emit word 253 in table.
   1092 	 *
   1093 	 *    Multi-Byte Code:
   1094 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1095 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1096 	 */
   1097 	word = 0;
   1098 	for (i = 253 * 2; i < mcode_size; i++) {
   1099 		if (mcode_data[i] == 0xff) {
   1100 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1101 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1102 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1103 				  mcode_data[i + 2]));
   1104 				word++;
   1105 			}
   1106 			i += 3;
   1107 		} else if (mcode_data[i] == 0xfe) {
   1108 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1109 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1110 			    mcode_data[i + 1]));
   1111 			i += 2;
   1112 			word++;
   1113 		} else {
   1114 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1115 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1116 			 mcode_data[mcode_data[i] * 2]));
   1117 			word++;
   1118 		}
   1119 	}
   1120 
   1121 	/*
   1122 	 * Set 'word' for later use to clear the rest of memory and save
   1123 	 * the expanded mcode size.
   1124 	 */
   1125 	word *= 2;
   1126 	adw_mcode_expanded_size = word;
   1127 
   1128 	/*
   1129 	 * Clear the rest of the Internal RAM.
   1130 	 */
   1131 	for (; word < adw_memsize; word += 2) {
   1132 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1133 	}
   1134 
   1135 	/*
   1136 	 * Verify the microcode checksum.
   1137 	 */
   1138 	sum = 0;
   1139 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1140 
   1141 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1142 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1143 	}
   1144 
   1145 	if (sum != mcode_chksum) {
   1146 		return ADW_IERR_MCODE_CHKSUM;
   1147 	}
   1148 
   1149 	/*
   1150 	 * Restore the RISC memory BIOS region.
   1151 	 */
   1152 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1153 		if(chip_type == ADW_CHIP_ASC3550) {
   1154 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1155 								bios_mem[i]);
   1156 		} else {
   1157 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1158 								bios_mem[i]);
   1159 		}
   1160 	}
   1161 
   1162 	/*
   1163 	 * Calculate and write the microcode code checksum to the microcode
   1164 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1165 	 */
   1166 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1167 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1168 	code_sum = 0;
   1169 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1170 	for (word = begin_addr; word < end_addr; word += 2) {
   1171 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1172 	}
   1173 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1174 
   1175 	/*
   1176 	 * Set the chip type.
   1177 	 */
   1178 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1179 
   1180 	return 0;
   1181 }
   1182 
   1183 
   1184 int
   1185 AdwASC3550Cabling(iot, ioh, cfg)
   1186 	bus_space_tag_t iot;
   1187 	bus_space_handle_t ioh;
   1188 	ADW_DVC_CFG *cfg;
   1189 {
   1190 	u_int16_t	scsi_cfg1;
   1191 
   1192 
   1193 	/*
   1194 	 * Determine SCSI_CFG1 Microcode Default Value.
   1195 	 *
   1196 	 * The microcode will set the SCSI_CFG1 register using this value
   1197 	 * after it is started below.
   1198 	 */
   1199 
   1200 	/* Read current SCSI_CFG1 Register value. */
   1201 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1202 
   1203 	/*
   1204 	 * If all three connectors are in use in ASC3550, return an error.
   1205 	 */
   1206 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1207 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1208 		return ADW_IERR_ILLEGAL_CONNECTION;
   1209 	}
   1210 
   1211 	/*
   1212 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1213 	 * will be set. Check for and return an error if this condition is
   1214 	 * found.
   1215 	 */
   1216 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1217 		return ADW_IERR_REVERSED_CABLE;
   1218 	}
   1219 
   1220 	/*
   1221 	 * If this is a differential board and a single-ended device
   1222 	 * is attached to one of the connectors, return an error.
   1223 	 */
   1224 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1225 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1226 		return ADW_IERR_SINGLE_END_DEVICE;
   1227 	}
   1228 
   1229 	/*
   1230 	 * If automatic termination control is enabled, then set the
   1231 	 * termination value based on a table listed in a_condor.h.
   1232 	 *
   1233 	 * If manual termination was specified with an EEPROM setting
   1234 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1235 	 * is ready to be 'ored' into SCSI_CFG1.
   1236 	 */
   1237 	if (cfg->termination == 0) {
   1238 		/*
   1239 		 * The software always controls termination by setting
   1240 		 * TERM_CTL_SEL.
   1241 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1242 		 * termination.
   1243 		 */
   1244 		cfg->termination |= ADW_TERM_CTL_SEL;
   1245 
   1246 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1247 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1248 			case 0x3: case 0x7: case 0xB:
   1249 			case 0xD: case 0xE: case 0xF:
   1250 				cfg->termination |=
   1251 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1252 				break;
   1253 
   1254 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1255 			case 0x1: case 0x5: case 0x9:
   1256 			case 0xA: case 0xC:
   1257 				cfg->termination |= ADW_TERM_CTL_H;
   1258 				break;
   1259 
   1260 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1261 			case 0x2: case 0x6:
   1262 				break;
   1263 		}
   1264 	}
   1265 
   1266 	/*
   1267 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1268 	 */
   1269 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1270 
   1271 	/*
   1272 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1273 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1274 	 * referenced, because the hardware internally inverts
   1275 	 * the Termination High and Low bits if TERM_POL is set.
   1276 	 */
   1277 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1278 
   1279 	/*
   1280 	 * Set SCSI_CFG1 Microcode Default Value
   1281 	 *
   1282 	 * Set filter value and possibly modified termination control
   1283 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1284 	 *
   1285 	 * The microcode will set the SCSI_CFG1 register using this value
   1286 	 * after it is started below.
   1287 	 */
   1288 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1289 						ADW_FLTR_DISABLE | scsi_cfg1);
   1290 
   1291 	/*
   1292 	 * Set MEM_CFG Microcode Default Value
   1293 	 *
   1294 	 * The microcode will set the MEM_CFG register using this value
   1295 	 * after it is started below.
   1296 	 *
   1297 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1298 	 * are defined.
   1299 	 *
   1300 	 * ASC-3550 has 8KB internal memory.
   1301 	 */
   1302 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1303 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1304 
   1305 	return 0;
   1306 }
   1307 
   1308 
   1309 int
   1310 AdwASC38C0800Cabling(iot, ioh, cfg)
   1311 	bus_space_tag_t iot;
   1312 	bus_space_handle_t ioh;
   1313 	ADW_DVC_CFG *cfg;
   1314 {
   1315 	u_int16_t	scsi_cfg1;
   1316 
   1317 
   1318 	/*
   1319 	 * Determine SCSI_CFG1 Microcode Default Value.
   1320 	 *
   1321 	 * The microcode will set the SCSI_CFG1 register using this value
   1322 	 * after it is started below.
   1323 	 */
   1324 
   1325 	/* Read current SCSI_CFG1 Register value. */
   1326 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1327 
   1328 	/*
   1329 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1330 	 * will be set. Check for and return an error if this condition is
   1331 	 * found.
   1332 	 */
   1333 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1334 		return ADW_IERR_REVERSED_CABLE;
   1335 	}
   1336 
   1337 	/*
   1338 	 * All kind of combinations of devices attached to one of four
   1339 	 * connectors are acceptable except HVD device attached.
   1340 	 * For example, LVD device can be attached to SE connector while
   1341 	 * SE device attached to LVD connector.
   1342 	 * If LVD device attached to SE connector, it only runs up to
   1343 	 * Ultra speed.
   1344 	 *
   1345 	 * If an HVD device is attached to one of LVD connectors, return
   1346 	 * an error.
   1347 	 * However, there is no way to detect HVD device attached to
   1348 	 * SE connectors.
   1349 	 */
   1350 	if (scsi_cfg1 & ADW_HVD) {
   1351 		return ADW_IERR_HVD_DEVICE;
   1352 	}
   1353 
   1354 	/*
   1355 	 * If either SE or LVD automatic termination control is enabled, then
   1356 	 * set the termination value based on a table listed in a_condor.h.
   1357 	 *
   1358 	 * If manual termination was specified with an EEPROM setting then
   1359 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1360 	 * to be 'ored' into SCSI_CFG1.
   1361 	 */
   1362 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1363 		/* SE automatic termination control is enabled. */
   1364 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1365 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1366 			case 0x1: case 0x2: case 0x3:
   1367 				cfg->termination |= ADW_TERM_SE;
   1368 				break;
   1369 
   1370 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1371 			case 0x0:
   1372 				cfg->termination |= ADW_TERM_SE_HI;
   1373 				break;
   1374 		}
   1375 	}
   1376 
   1377 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1378 		/* LVD automatic termination control is enabled. */
   1379 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1380 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1381 			case 0x4: case 0x8: case 0xC:
   1382 				cfg->termination |= ADW_TERM_LVD;
   1383 				break;
   1384 
   1385 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1386 			case 0x0:
   1387 				break;
   1388 		}
   1389 	}
   1390 
   1391 	/*
   1392 	 * Clear any set TERM_SE and TERM_LVD bits.
   1393 	 */
   1394 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1395 
   1396 	/*
   1397 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1398 	 */
   1399 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1400 
   1401 	/*
   1402 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1403 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1404 	 * in the Microcode SCSI_CFG1 Register Value.
   1405 	 */
   1406 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1407 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1408 
   1409 	/*
   1410 	 * Set SCSI_CFG1 Microcode Default Value
   1411 	 *
   1412 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1413 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1414 	 *
   1415 	 * The microcode will set the SCSI_CFG1 register using this value
   1416 	 * after it is started below.
   1417 	 */
   1418 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1419 
   1420 	/*
   1421 	 * Set MEM_CFG Microcode Default Value
   1422 	 *
   1423 	 * The microcode will set the MEM_CFG register using this value
   1424 	 * after it is started below.
   1425 	 *
   1426 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1427 	 * are defined.
   1428 	 *
   1429 	 * ASC-38C0800 has 16KB internal memory.
   1430 	 */
   1431 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1432 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1433 
   1434 	return 0;
   1435 }
   1436 
   1437 
   1438 int
   1439 AdwASC38C1600Cabling(iot, ioh, cfg)
   1440 	bus_space_tag_t iot;
   1441 	bus_space_handle_t ioh;
   1442 	ADW_DVC_CFG *cfg;
   1443 {
   1444 	u_int16_t	scsi_cfg1;
   1445 
   1446 
   1447 	/*
   1448 	 * Determine SCSI_CFG1 Microcode Default Value.
   1449 	 *
   1450 	 * The microcode will set the SCSI_CFG1 register using this value
   1451 	 * after it is started below.
   1452 	 * Each ASC-38C1600 function has only two cable detect bits.
   1453 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1454 	 */
   1455 
   1456 	/* Read current SCSI_CFG1 Register value. */
   1457 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1458 
   1459 	/*
   1460 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1461 	 * will be set. Check for and return an error if this condition is
   1462 	 * found.
   1463 	 */
   1464 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1465 		return ADW_IERR_REVERSED_CABLE;
   1466 	}
   1467 
   1468 	/*
   1469 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1470 	 * can not be connected to either connector. An LVD device or SE device
   1471 	 * may be connected to either connecor. If an SE device is connected,
   1472 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
   1473 	 *
   1474 	 * If an HVD device is attached, return an error.
   1475 	 */
   1476 	if (scsi_cfg1 & ADW_HVD) {
   1477 		return ADW_IERR_HVD_DEVICE;
   1478 	}
   1479 
   1480 	/*
   1481 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1482 	 * termination because there are two connectors for each function.
   1483 	 * Each function may use either LVD or SE mode.
   1484 	 * Corresponding the SE automatic termination control EEPROM bits are
   1485 	 * used for each function.
   1486 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1487 	 * for the function, then set the termination value based on a table
   1488 	 * listed in adwlib.h.
   1489 	 *
   1490 	 * If manual termination is specified in the EEPROM for the function,
   1491 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1492 	 * ready to be 'ored' into SCSI_CFG1.
   1493 	 */
   1494 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1495 		/* SE automatic termination control is enabled. */
   1496 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1497 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1498 			case 0x1: case 0x2: case 0x3:
   1499 				cfg->termination |= ADW_TERM_SE;
   1500 				break;
   1501 
   1502 			case 0x0:
   1503 #if 0
   1504 	/* !!!!TODO!!!! */
   1505 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1506 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1507 				}
   1508 				else
   1509 #endif
   1510 				{
   1511 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1512 					cfg->termination |= ADW_TERM_SE_HI;
   1513 				}
   1514 				break;
   1515 			}
   1516 	}
   1517 
   1518 	/*
   1519 	 * Clear any set TERM_SE bits.
   1520 	 */
   1521 	scsi_cfg1 &= ~ADW_TERM_SE;
   1522 
   1523 	/*
   1524 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1525 	 */
   1526 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1527 
   1528 	/*
   1529 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1530 	 * modified termination control bits in the Microcode SCSI_CFG1
   1531 	 * Register Value.
   1532 	 */
   1533 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1534 
   1535 	/*
   1536 	 * Set SCSI_CFG1 Microcode Default Value
   1537 	 *
   1538 	 * Set possibly modified termination control bits in the Microcode
   1539 	 * SCSI_CFG1 Register Value.
   1540 	 *
   1541 	 * The microcode will set the SCSI_CFG1 register using this value
   1542 	 * after it is started below.
   1543 	 */
   1544 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1545 
   1546 	/*
   1547 	 * Set MEM_CFG Microcode Default Value
   1548 	 *
   1549 	 * The microcode will set the MEM_CFG register using this value
   1550 	 * after it is started below.
   1551 	 *
   1552 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1553 	 * are defined.
   1554 	 *
   1555 	 * ASC-38C1600 has 32KB internal memory.
   1556 	 */
   1557 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1558 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1559 
   1560 	return 0;
   1561 }
   1562 
   1563 
   1564 /*
   1565  * Read EEPROM configuration into the specified buffer.
   1566  *
   1567  * Return a checksum based on the EEPROM configuration read.
   1568  */
   1569 static u_int16_t
   1570 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
   1571 	bus_space_tag_t		iot;
   1572 	bus_space_handle_t	ioh;
   1573 	ADW_EEPROM		*cfg_buf;
   1574 {
   1575 	u_int16_t	       wval, chksum;
   1576 	u_int16_t	       *wbuf;
   1577 	int		    eep_addr;
   1578 
   1579 
   1580 	wbuf = (u_int16_t *) cfg_buf;
   1581 	chksum = 0;
   1582 
   1583 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1584 		eep_addr < ASC_EEP_DVC_CFG_END;
   1585 		eep_addr++, wbuf++) {
   1586 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1587 		chksum += wval;
   1588 		*wbuf = wval;
   1589 	}
   1590 
   1591 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1592 	wbuf++;
   1593 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1594 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1595 			eep_addr++, wbuf++) {
   1596 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1597 	}
   1598 
   1599 	return chksum;
   1600 }
   1601 
   1602 
   1603 /*
   1604  * Read the EEPROM from specified location
   1605  */
   1606 static u_int16_t
   1607 AdwReadEEPWord(iot, ioh, eep_word_addr)
   1608 	bus_space_tag_t		iot;
   1609 	bus_space_handle_t	ioh;
   1610 	int			eep_word_addr;
   1611 {
   1612 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1613 		ASC_EEP_CMD_READ | eep_word_addr);
   1614 	AdwWaitEEPCmd(iot, ioh);
   1615 
   1616 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1617 }
   1618 
   1619 
   1620 /*
   1621  * Wait for EEPROM command to complete
   1622  */
   1623 static void
   1624 AdwWaitEEPCmd(iot, ioh)
   1625 	bus_space_tag_t		iot;
   1626 	bus_space_handle_t	ioh;
   1627 {
   1628 	int eep_delay_ms;
   1629 
   1630 
   1631 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1632 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1633 				ASC_EEP_CMD_DONE) {
   1634 			break;
   1635 		}
   1636 		AdwSleepMilliSecond(1);
   1637 	}
   1638 
   1639 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1640 }
   1641 
   1642 
   1643 /*
   1644  * Write the EEPROM from 'cfg_buf'.
   1645  */
   1646 static void
   1647 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
   1648 	bus_space_tag_t		iot;
   1649 	bus_space_handle_t	ioh;
   1650 	ADW_EEPROM		*cfg_buf;
   1651 {
   1652 	u_int16_t *wbuf;
   1653 	u_int16_t addr, chksum;
   1654 
   1655 
   1656 	wbuf = (u_int16_t *) cfg_buf;
   1657 	chksum = 0;
   1658 
   1659 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1660 	AdwWaitEEPCmd(iot, ioh);
   1661 
   1662 	/*
   1663 	 * Write EEPROM from word 0 to word 20
   1664 	 */
   1665 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1666 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1667 		chksum += *wbuf;
   1668 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1669 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1670 				ASC_EEP_CMD_WRITE | addr);
   1671 		AdwWaitEEPCmd(iot, ioh);
   1672 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1673 	}
   1674 
   1675 	/*
   1676 	 * Write EEPROM checksum at word 21
   1677 	 */
   1678 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1679 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1680 			ASC_EEP_CMD_WRITE | addr);
   1681 	AdwWaitEEPCmd(iot, ioh);
   1682 	wbuf++;        /* skip over check_sum */
   1683 
   1684 	/*
   1685 	 * Write EEPROM OEM name at words 22 to 29
   1686 	 */
   1687 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1688 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1689 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1690 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1691 				ASC_EEP_CMD_WRITE | addr);
   1692 		AdwWaitEEPCmd(iot, ioh);
   1693 	}
   1694 
   1695 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1696 			ASC_EEP_CMD_WRITE_DISABLE);
   1697 	AdwWaitEEPCmd(iot, ioh);
   1698 
   1699 	return;
   1700 }
   1701 
   1702 
   1703 /*
   1704  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1705  *
   1706  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1707  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1708  *   RISC to notify it a new command is ready to be executed.
   1709  *
   1710  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1711  * set to SCSI_MAX_RETRY.
   1712  *
   1713  * Return:
   1714  *      ADW_SUCCESS(1) - The request was successfully queued.
   1715  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1716  *                       request completes.
   1717  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1718  *                       host IC error.
   1719  */
   1720 int
   1721 AdwExeScsiQueue(sc, scsiq)
   1722 ADW_SOFTC	*sc;
   1723 ADW_SCSI_REQ_Q	*scsiq;
   1724 {
   1725 	bus_space_tag_t iot = sc->sc_iot;
   1726 	bus_space_handle_t ioh = sc->sc_ioh;
   1727 	ADW_CCB		*ccb;
   1728 	long		req_size;
   1729 	u_int32_t	req_paddr;
   1730 	ADW_CARRIER	*new_carrp;
   1731 
   1732 	/*
   1733 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1734 	 */
   1735 	if (scsiq->target_id > ADW_MAX_TID) {
   1736 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1737 		scsiq->done_status = QD_WITH_ERROR;
   1738 		return ADW_ERROR;
   1739 	}
   1740 
   1741 	/*
   1742 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1743 	 */
   1744 
   1745 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1746 
   1747 	/*
   1748 	 * Allocate a carrier and initialize fields.
   1749 	 */
   1750 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1751 		return ADW_BUSY;
   1752 	}
   1753 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1754 			ASC_GET_CARRP(new_carrp->next_ba));
   1755 	sc->carr_pending_cnt++;
   1756 
   1757 	/*
   1758 	 * Set the carrier to be a stopper by setting 'next_ba'
   1759 	 * to the stopper value. The current stopper will be changed
   1760 	 * below to point to the new stopper.
   1761 	 */
   1762 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1763 
   1764 	req_size = sizeof(ADW_SCSI_REQ_Q);
   1765 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1766 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1767 
   1768 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1769 	scsiq->scsiq_rptr = htole32(req_paddr);
   1770 
   1771 	/*
   1772 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1773 	 * order during initialization.
   1774 	 */
   1775 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1776 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1777 
   1778 	/*
   1779 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1780 	 * the microcode. The newly allocated stopper will become the new
   1781 	 * stopper.
   1782 	 */
   1783 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1784 
   1785 	/*
   1786 	 * Set the 'next_ba' pointer for the old stopper to be the
   1787 	 * physical address of the new stopper. The RISC can only
   1788 	 * follow physical addresses.
   1789 	 */
   1790 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1791 
   1792 #if ADW_DEBUG
   1793 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1794 			sc->icq_sp->carr_id,
   1795 			sc->icq_sp->carr_ba,
   1796 			sc->icq_sp->areq_ba,
   1797 			sc->icq_sp->next_ba);
   1798 #endif
   1799 	/*
   1800 	 * Set the host adapter stopper pointer to point to the new carrier.
   1801 	 */
   1802 	sc->icq_sp = new_carrp;
   1803 
   1804 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1805 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1806 		/*
   1807 		 * Tickle the RISC to tell it to read its Command Queue Head
   1808 		 * pointer.
   1809 		 */
   1810 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1811 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1812 			/*
   1813 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1814 			 * command 'clr_tickle_a' does not work unless the host
   1815 			 * value is cleared.
   1816 			 */
   1817 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1818 					ADW_TICKLE_NOP);
   1819 		}
   1820 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1821 		/*
   1822 		 * Notify the RISC a carrier is ready by writing the physical
   1823 		 * address of the new carrier stopper to the COMMA register.
   1824 		 */
   1825 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1826 				le32toh(new_carrp->carr_ba));
   1827 	}
   1828 
   1829 	/*
   1830 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1831 	 */
   1832 
   1833 	return ADW_SUCCESS;
   1834 }
   1835 
   1836 
   1837 void
   1838 AdwResetChip(iot, ioh)
   1839 	bus_space_tag_t iot;
   1840 	bus_space_handle_t ioh;
   1841 {
   1842 
   1843 	/*
   1844 	 * Reset Chip.
   1845 	 */
   1846 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1847 			ADW_CTRL_REG_CMD_RESET);
   1848 	AdwSleepMilliSecond(100);
   1849 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1850 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1851 }
   1852 
   1853 
   1854 /*
   1855  * Reset SCSI Bus and purge all outstanding requests.
   1856  *
   1857  * Return Value:
   1858  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1859  *      ADW_FALSE(0) -  Microcode command failed.
   1860  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1861  *                      may be hung which requires driver recovery.
   1862  */
   1863 int
   1864 AdwResetCCB(sc)
   1865 ADW_SOFTC	*sc;
   1866 {
   1867 	int	    status;
   1868 
   1869 	/*
   1870 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1871 	 * the SCSI Bus Reset signal.
   1872 	 */
   1873 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1874 	if (status != ADW_TRUE) {
   1875 		return status;
   1876 	}
   1877 
   1878 	/*
   1879 	 * Delay for the specified SCSI Bus Reset hold time.
   1880 	 *
   1881 	 * The hold time delay is done on the host because the RISC has no
   1882 	 * microsecond accurate timer.
   1883 	 */
   1884 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1885 
   1886 	/*
   1887 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1888 	 * the SCSI Bus Reset signal and purges any pending requests.
   1889 	 */
   1890 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1891 	if (status != ADW_TRUE) {
   1892 		return status;
   1893 	}
   1894 
   1895 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1896 
   1897 	return status;
   1898 }
   1899 
   1900 
   1901 /*
   1902  * Reset chip and SCSI Bus.
   1903  *
   1904  * Return Value:
   1905  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1906  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1907  */
   1908 int
   1909 AdwResetSCSIBus(sc)
   1910 ADW_SOFTC	*sc;
   1911 {
   1912 	bus_space_tag_t iot = sc->sc_iot;
   1913 	bus_space_handle_t ioh = sc->sc_ioh;
   1914 	int		status;
   1915 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   1916 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1917 	u_int16_t	bios_sig;
   1918 
   1919 
   1920 	/*
   1921 	 * Save current per TID negotiated values.
   1922 	 */
   1923 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1924 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1925 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1926 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1927 	}
   1928 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1929 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1930 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1931 			max_cmd[tid]);
   1932 	}
   1933 
   1934 	/*
   1935 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1936 	 * by clearing the BIOS signature word.
   1937 	 * The initialization functions assumes a SCSI Bus Reset is not
   1938 	 * needed if the BIOS signature word is present.
   1939 	 */
   1940 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1941 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1942 
   1943 	/*
   1944 	 * Stop chip and reset it.
   1945 	 */
   1946 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1947 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1948 			ADW_CTRL_REG_CMD_RESET);
   1949 	AdwSleepMilliSecond(100);
   1950 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1951 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1952 
   1953 	/*
   1954 	 * Reset Adv Library error code, if any, and try
   1955 	 * re-initializing the chip.
   1956 	 * Then translate initialization return value to status value.
   1957 	 */
   1958 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1959 
   1960 	/*
   1961 	 * Restore the BIOS signature word.
   1962 	 */
   1963 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1964 
   1965 	/*
   1966 	 * Restore per TID negotiated values.
   1967 	 */
   1968 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1969 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1970 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1971 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1972 	}
   1973 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1974 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1975 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1976 			max_cmd[tid]);
   1977 	}
   1978 
   1979 	return status;
   1980 }
   1981 
   1982 
   1983 /*
   1984  * Adv Library Interrupt Service Routine
   1985  *
   1986  *  This function is called by a driver's interrupt service routine.
   1987  *  The function disables and re-enables interrupts.
   1988  *
   1989  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1990  *  'idle_cmd_done' field is set to ADW_TRUE.
   1991  *
   1992  *  Note: AdwISR() can be called when interrupts are disabled or even
   1993  *  when there is no hardware interrupt condition present. It will
   1994  *  always check for completed idle commands and microcode requests.
   1995  *  This is an important feature that shouldn't be changed because it
   1996  *  allows commands to be completed from polling mode loops.
   1997  *
   1998  * Return:
   1999  *   ADW_TRUE(1) - interrupt was pending
   2000  *   ADW_FALSE(0) - no interrupt was pending
   2001  */
   2002 int
   2003 AdwISR(sc)
   2004 ADW_SOFTC	*sc;
   2005 {
   2006 	bus_space_tag_t iot = sc->sc_iot;
   2007 	bus_space_handle_t ioh = sc->sc_ioh;
   2008 	u_int8_t	int_stat;
   2009 	u_int16_t	target_bit;
   2010 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   2011 	u_int32_t	irq_next_pa;
   2012 	ADW_SCSI_REQ_Q	*scsiq;
   2013 	ADW_CCB		*ccb;
   2014 	int		s;
   2015 
   2016 
   2017 	s = splbio();
   2018 
   2019 	/* Reading the register clears the interrupt. */
   2020 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   2021 
   2022 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   2023 	     ADW_INTR_STATUS_INTRC)) == 0) {
   2024 		splx(s);
   2025 		return ADW_FALSE;
   2026 	}
   2027 
   2028 	/*
   2029 	 * Notify the driver of an asynchronous microcode condition by
   2030 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2031 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2032 	 */
   2033 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2034 		u_int8_t intrb_code;
   2035 
   2036 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2037 
   2038 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2039 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2040 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2041 				sc->carr_pending_cnt != 0) {
   2042 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2043 					IOPB_TICKLE, ADW_TICKLE_A);
   2044 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2045 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2046 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2047 				}
   2048 			}
   2049 		}
   2050 
   2051 		if (sc->async_callback != 0) {
   2052 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2053 		}
   2054 	}
   2055 
   2056 	/*
   2057 	 * Check if the IRQ stopper carrier contains a completed request.
   2058 	 */
   2059 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2060 	{
   2061 #if ADW_DEBUG
   2062 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2063 				sc->irq_sp->carr_id,
   2064 				sc->irq_sp->carr_ba,
   2065 				sc->irq_sp->areq_ba,
   2066 				sc->irq_sp->next_ba);
   2067 #endif
   2068 		/*
   2069 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2070 		 * structure.
   2071 		 * The RISC will have set 'areq_ba' to a virtual address.
   2072 		 *
   2073 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2074 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2075 		 * The conversion below complements the conversion of
   2076 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2077 		 */
   2078 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2079 		scsiq = &ccb->scsiq;
   2080 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2081 
   2082 		/*
   2083 		 * Request finished with good status and the queue was not
   2084 		 * DMAed to host memory by the firmware. Set all status fields
   2085 		 * to indicate good status.
   2086 		 */
   2087 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2088 			scsiq->done_status = QD_NO_ERROR;
   2089 			scsiq->host_status = scsiq->scsi_status = 0;
   2090 			scsiq->data_cnt = 0L;
   2091 		}
   2092 
   2093 		/*
   2094 		 * Advance the stopper pointer to the next carrier
   2095 		 * ignoring the lower four bits. Free the previous
   2096 		 * stopper carrier.
   2097 		 */
   2098 		free_carrp = sc->irq_sp;
   2099 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2100 
   2101 		free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
   2102 					: sc->carr_freelist->carr_ba;
   2103 		sc->carr_freelist = free_carrp;
   2104 		sc->carr_pending_cnt--;
   2105 
   2106 
   2107 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   2108 
   2109 		/*
   2110 		 * Clear request microcode control flag.
   2111 		 */
   2112 		scsiq->cntl = 0;
   2113 
   2114 		/*
   2115 		 * Check Condition handling
   2116 		 */
   2117 		/*
   2118 		 * If the command that completed was a SCSI INQUIRY and
   2119 		 * LUN 0 was sent the command, then process the INQUIRY
   2120 		 * command information for the device.
   2121 		 */
   2122 		if (scsiq->done_status == QD_NO_ERROR &&
   2123 		    scsiq->cdb[0] == INQUIRY &&
   2124 		    scsiq->target_lun == 0) {
   2125 			AdwInquiryHandling(sc, scsiq);
   2126 		}
   2127 
   2128 		/*
   2129 		 * Notify the driver of the completed request by passing
   2130 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2131 		 */
   2132 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2133 		/*
   2134 		 * Note: After the driver callback function is called, 'scsiq'
   2135 		 * can no longer be referenced.
   2136 		 *
   2137 		 * Fall through and continue processing other completed
   2138 		 * requests...
   2139 		 */
   2140 	}
   2141 
   2142 	splx(s);
   2143 
   2144 	return ADW_TRUE;
   2145 }
   2146 
   2147 
   2148 /*
   2149  * Send an idle command to the chip and wait for completion.
   2150  *
   2151  * Command completion is polled for once per microsecond.
   2152  *
   2153  * The function can be called from anywhere including an interrupt handler.
   2154  * But the function is not re-entrant, so it uses the splbio/splx()
   2155  * functions to prevent reentrancy.
   2156  *
   2157  * Return Values:
   2158  *   ADW_TRUE - command completed successfully
   2159  *   ADW_FALSE - command failed
   2160  *   ADW_ERROR - command timed out
   2161  */
   2162 int
   2163 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   2164 ADW_SOFTC      *sc;
   2165 u_int16_t       idle_cmd;
   2166 u_int32_t       idle_cmd_parameter;
   2167 {
   2168 	bus_space_tag_t iot = sc->sc_iot;
   2169 	bus_space_handle_t ioh = sc->sc_ioh;
   2170 	u_int16_t	result;
   2171 	u_int32_t	i, j, s;
   2172 
   2173 	s = splbio();
   2174 
   2175 	/*
   2176 	 * Clear the idle command status which is set by the microcode
   2177 	 * to a non-zero value to indicate when the command is completed.
   2178 	 */
   2179 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2180 
   2181 	/*
   2182 	 * Write the idle command value after the idle command parameter
   2183 	 * has been written to avoid a race condition. If the order is not
   2184 	 * followed, the microcode may process the idle command before the
   2185 	 * parameters have been written to LRAM.
   2186 	 */
   2187 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2188 			idle_cmd_parameter);
   2189 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2190 
   2191 	/*
   2192 	 * Tickle the RISC to tell it to process the idle command.
   2193 	 */
   2194 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2195 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2196 		/*
   2197 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2198 		 * command 'clr_tickle_b' does not work unless the host
   2199 		 * value is cleared.
   2200 		 */
   2201 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2202 	}
   2203 
   2204 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2205 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2206 		/* Poll once each microsecond for command completion. */
   2207 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2208 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2209 									result);
   2210 			if (result != 0) {
   2211 				splx(s);
   2212 				return result;
   2213 			}
   2214 			AdwDelayMicroSecond(1);
   2215 		}
   2216 	}
   2217 
   2218 	splx(s);
   2219 	return ADW_ERROR;
   2220 }
   2221 
   2222 
   2223 /*
   2224  * Inquiry Information Byte 7 Handling
   2225  *
   2226  * Handle SCSI Inquiry Command information for a device by setting
   2227  * microcode operating variables that affect WDTR, SDTR, and Tag
   2228  * Queuing.
   2229  */
   2230 static void
   2231 AdwInquiryHandling(sc, scsiq)
   2232 ADW_SOFTC	*sc;
   2233 ADW_SCSI_REQ_Q *scsiq;
   2234 {
   2235 #ifndef FAILSAFE
   2236 	bus_space_tag_t iot = sc->sc_iot;
   2237 	bus_space_handle_t ioh = sc->sc_ioh;
   2238 	u_int8_t		tid;
   2239 	struct scsipi_inquiry_data *inq;
   2240 	u_int16_t		tidmask;
   2241 	u_int16_t		cfg_word;
   2242 
   2243 
   2244 	/*
   2245 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2246 	 * to be available.
   2247 	 *
   2248 	 * If less than 8 bytes of INQUIRY information were requested or less
   2249 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2250 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2251 	 * microcode to the transfer residual count.
   2252 	 */
   2253 
   2254 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2255 		return;
   2256 	}
   2257 
   2258 	tid = scsiq->target_id;
   2259 
   2260 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2261 
   2262 	/*
   2263 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2264 	 */
   2265 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2266 	    ((inq->version & SID_ANSII) < 2)) {
   2267 		return;
   2268 	} else {
   2269 		/*
   2270 		 * INQUIRY Byte 7 Handling
   2271 		 *
   2272 		 * Use a device's INQUIRY byte 7 to determine whether it
   2273 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2274 		 * is enabled in the EEPROM and the device supports the
   2275 		 * feature, then enable it in the microcode.
   2276 		 */
   2277 
   2278 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2279 
   2280 		/*
   2281 		 * Wide Transfers
   2282 		 *
   2283 		 * If the EEPROM enabled WDTR for the device and the device
   2284 		 * supports wide bus (16 bit) transfers, then turn on the
   2285 		 * device's 'wdtr_able' bit and write the new value to the
   2286 		 * microcode.
   2287 		 */
   2288 #ifdef SCSI_ADW_WDTR_DISABLE
   2289 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2290 #endif /* SCSI_ADW_WDTR_DISABLE */
   2291 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2292 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2293 					cfg_word);
   2294 			if ((cfg_word & tidmask) == 0) {
   2295 				cfg_word |= tidmask;
   2296 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2297 						cfg_word);
   2298 
   2299 				/*
   2300 				 * Clear the microcode "SDTR negotiation" and
   2301 				 * "WDTR negotiation" done indicators for the
   2302 				 * target to cause it to negotiate with the new
   2303 				 * setting set above.
   2304 				 * WDTR when accepted causes the target to enter
   2305 				 * asynchronous mode, so SDTR must be negotiated
   2306 				 */
   2307 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2308 						cfg_word);
   2309 				cfg_word &= ~tidmask;
   2310 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2311 						cfg_word);
   2312 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2313 						cfg_word);
   2314 				cfg_word &= ~tidmask;
   2315 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2316 						cfg_word);
   2317 			}
   2318 		}
   2319 
   2320 		/*
   2321 		 * Synchronous Transfers
   2322 		 *
   2323 		 * If the EEPROM enabled SDTR for the device and the device
   2324 		 * supports synchronous transfers, then turn on the device's
   2325 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2326 		 */
   2327 #ifdef SCSI_ADW_SDTR_DISABLE
   2328 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2329 #endif /* SCSI_ADW_SDTR_DISABLE */
   2330 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2331 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2332 			if ((cfg_word & tidmask) == 0) {
   2333 				cfg_word |= tidmask;
   2334 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2335 						cfg_word);
   2336 
   2337 				/*
   2338 				 * Clear the microcode "SDTR negotiation"
   2339 				 * done indicator for the target to cause it
   2340 				 * to negotiate with the new setting set above.
   2341 				 */
   2342 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2343 						cfg_word);
   2344 				cfg_word &= ~tidmask;
   2345 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2346 						cfg_word);
   2347 			}
   2348 		}
   2349 		/*
   2350 		 * If the Inquiry data included enough space for the SPI-3
   2351 		 * Clocking field, then check if DT mode is supported.
   2352 		 */
   2353 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2354 		   (scsiq->cdb[4] >= 57 ||
   2355 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2356 			/*
   2357 			 * PPR (Parallel Protocol Request) Capable
   2358 			 *
   2359 			 * If the device supports DT mode, then it must be
   2360 			 * PPR capable.
   2361 			 * The PPR message will be used in place of the SDTR
   2362 			 * and WDTR messages to negotiate synchronous speed
   2363 			 * and offset, transfer width, and protocol options.
   2364 			 */
   2365 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2366 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2367 						sc->ppr_able);
   2368 				sc->ppr_able |= tidmask;
   2369 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2370 						sc->ppr_able);
   2371 			}
   2372 		}
   2373 
   2374 		/*
   2375 		 * If the EEPROM enabled Tag Queuing for the device and the
   2376 		 * device supports Tag Queueing, then turn on the device's
   2377 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2378 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2379 		 * value.
   2380 		 *
   2381 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2382 		 * mode and would see no benefit from Tag Queuing. Also by
   2383 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2384 		 * bugs will at least work with the BIOS.
   2385 		 */
   2386 #ifdef SCSI_ADW_TAGQ_DISABLE
   2387 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2388 #endif /* SCSI_ADW_TAGQ_DISABLE */
   2389 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2390 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2391 					cfg_word);
   2392 			cfg_word |= tidmask;
   2393 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2394 					cfg_word);
   2395 
   2396 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2397 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2398 					sc->max_dvc_qng);
   2399 		}
   2400 	}
   2401 #endif /* FAILSAFE */
   2402 }
   2403 
   2404 
   2405 static void
   2406 AdwSleepMilliSecond(n)
   2407 u_int32_t	n;
   2408 {
   2409 
   2410 	DELAY(n * 1000);
   2411 }
   2412 
   2413 
   2414 static void
   2415 AdwDelayMicroSecond(n)
   2416 u_int32_t	n;
   2417 {
   2418 
   2419 	DELAY(n);
   2420 }
   2421 
   2422