adwlib.c revision 1.28 1 /* $NetBSD: adwlib.c,v 1.28 2003/10/25 21:33:04 christos Exp $ */
2
3 /*
4 * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 *
6 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * Author: Baldassare Dante Profeta <dante (at) mclink.it>
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39 /*
40 * Ported from:
41 */
42 /*
43 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44 *
45 * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 * All Rights Reserved.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that redistributions of source
50 * code retain the above copyright notice and this comment without
51 * modification.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.28 2003/10/25 21:33:04 christos Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/queue.h>
62 #include <sys/device.h>
63
64 #include <machine/bus.h>
65 #include <machine/intr.h>
66
67 #include <dev/scsipi/scsi_all.h>
68 #include <dev/scsipi/scsipi_all.h>
69 #include <dev/scsipi/scsiconf.h>
70
71 #include <dev/pci/pcidevs.h>
72
73 #include <uvm/uvm_extern.h>
74
75 #include <dev/ic/adwlib.h>
76 #include <dev/ic/adwmcode.h>
77 #include <dev/ic/adw.h>
78
79
80 /* Static Functions */
81
82 int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
83 int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
84 u_int8_t));
85 int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
86 int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
87 ADW_DVC_CFG *));
88 int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
89 ADW_DVC_CFG *));
90
91 static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
92 ADW_EEPROM *));
93 static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
94 ADW_EEPROM *));
95 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
96 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
97
98 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
99
100 static void AdwSleepMilliSecond __P((u_int32_t));
101 static void AdwDelayMicroSecond __P((u_int32_t));
102
103
104 /*
105 * EEPROM Configuration.
106 *
107 * All drivers should use this structure to set the default EEPROM
108 * configuration. The BIOS now uses this structure when it is built.
109 * Additional structure information can be found in adwlib.h where
110 * the structure is defined.
111 */
112 const static ADW_EEPROM adw_3550_Default_EEPROM = {
113 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
114 0x0000, /* 01 cfg_msw */
115 0xFFFF, /* 02 disc_enable */
116 0xFFFF, /* 03 wdtr_able */
117 { 0xFFFF }, /* 04 sdtr_able */
118 0xFFFF, /* 05 start_motor */
119 0xFFFF, /* 06 tagqng_able */
120 0xFFFF, /* 07 bios_scan */
121 0, /* 08 scam_tolerant */
122 7, /* 09 adapter_scsi_id */
123 0, /* bios_boot_delay */
124 3, /* 10 scsi_reset_delay */
125 0, /* bios_id_lun */
126 0, /* 11 termination */
127 0, /* reserved1 */
128 0xFFE7, /* 12 bios_ctrl */
129 { 0xFFFF }, /* 13 ultra_able */
130 { 0 }, /* 14 reserved2 */
131 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
132 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
133 0, /* 16 dvc_cntl */
134 { 0 }, /* 17 bug_fix */
135 { 0,0,0 }, /* 18-20 serial_number[3] */
136 0, /* 21 check_sum */
137 { /* 22-29 oem_name[16] */
138 0,0,0,0,0,0,0,0,
139 0,0,0,0,0,0,0,0
140 },
141 0, /* 30 dvc_err_code */
142 0, /* 31 adv_err_code */
143 0, /* 32 adv_err_addr */
144 0, /* 33 saved_dvc_err_code */
145 0, /* 34 saved_adv_err_code */
146 0 /* 35 saved_adv_err_addr */
147 };
148
149 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
150 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
151 0x0000, /* 01 cfg_msw */
152 0xFFFF, /* 02 disc_enable */
153 0xFFFF, /* 03 wdtr_able */
154 { 0x4444 }, /* 04 sdtr_speed1 */
155 0xFFFF, /* 05 start_motor */
156 0xFFFF, /* 06 tagqng_able */
157 0xFFFF, /* 07 bios_scan */
158 0, /* 08 scam_tolerant */
159 7, /* 09 adapter_scsi_id */
160 0, /* bios_boot_delay */
161 3, /* 10 scsi_reset_delay */
162 0, /* bios_id_lun */
163 0, /* 11 termination_se */
164 0, /* termination_lvd */
165 0xFFE7, /* 12 bios_ctrl */
166 { 0x4444 }, /* 13 sdtr_speed2 */
167 { 0x4444 }, /* 14 sdtr_speed3 */
168 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
169 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
170 0, /* 16 dvc_cntl */
171 { 0x4444 }, /* 17 sdtr_speed4 */
172 { 0,0,0 }, /* 18-20 serial_number[3] */
173 0, /* 21 check_sum */
174 { /* 22-29 oem_name[16] */
175 0,0,0,0,0,0,0,0,
176 0,0,0,0,0,0,0,0
177 },
178 0, /* 30 dvc_err_code */
179 0, /* 31 adv_err_code */
180 0, /* 32 adv_err_addr */
181 0, /* 33 saved_dvc_err_code */
182 0, /* 34 saved_adv_err_code */
183 0, /* 35 saved_adv_err_addr */
184 { /* 36-55 reserved1[16] */
185 0,0,0,0,0,0,0,0,0,0,
186 0,0,0,0,0,0,0,0,0,0
187 },
188 0, /* 56 cisptr_lsw */
189 0, /* 57 cisprt_msw */
190 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
191 PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
192 { 0,0,0,0 } /* 60-63 reserved2[4] */
193 };
194
195 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
196 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
197 0x0000, /* 01 cfg_msw */
198 0xFFFF, /* 02 disc_enable */
199 0xFFFF, /* 03 wdtr_able */
200 { 0x5555 }, /* 04 sdtr_speed1 */
201 0xFFFF, /* 05 start_motor */
202 0xFFFF, /* 06 tagqng_able */
203 0xFFFF, /* 07 bios_scan */
204 0, /* 08 scam_tolerant */
205 7, /* 09 adapter_scsi_id */
206 0, /* bios_boot_delay */
207 3, /* 10 scsi_reset_delay */
208 0, /* bios_id_lun */
209 0, /* 11 termination_se */
210 0, /* termination_lvd */
211 0xFFE7, /* 12 bios_ctrl */
212 { 0x5555 }, /* 13 sdtr_speed2 */
213 { 0x5555 }, /* 14 sdtr_speed3 */
214 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
215 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
216 0, /* 16 dvc_cntl */
217 { 0x5555 }, /* 17 sdtr_speed4 */
218 { 0,0,0 }, /* 18-20 serial_number[3] */
219 0, /* 21 check_sum */
220 { /* 22-29 oem_name[16] */
221 0,0,0,0,0,0,0,0,
222 0,0,0,0,0,0,0,0
223 },
224 0, /* 30 dvc_err_code */
225 0, /* 31 adv_err_code */
226 0, /* 32 adv_err_addr */
227 0, /* 33 saved_dvc_err_code */
228 0, /* 34 saved_adv_err_code */
229 0, /* 35 saved_adv_err_addr */
230 { /* 36-55 reserved1[16] */
231 0,0,0,0,0,0,0,0,0,0,
232 0,0,0,0,0,0,0,0,0,0
233 },
234 0, /* 56 cisptr_lsw */
235 0, /* 57 cisprt_msw */
236 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
237 PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
238 { 0,0,0,0 } /* 60-63 reserved2[4] */
239 };
240
241
242 /*
243 * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
244 * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
245 * all of this is done.
246 *
247 * For a non-fatal error return a warning code. If there are no warnings
248 * then 0 is returned.
249 *
250 * Note: Chip is stopped on entry.
251 */
252 int
253 AdwInitFromEEPROM(sc)
254 ADW_SOFTC *sc;
255 {
256 bus_space_tag_t iot = sc->sc_iot;
257 bus_space_handle_t ioh = sc->sc_ioh;
258 ADW_EEPROM eep_config;
259 u_int16_t warn_code;
260 u_int16_t sdtr_speed = 0;
261 u_int8_t tid, termination;
262 int i, j;
263
264
265 warn_code = 0;
266
267 /*
268 * Read the board's EEPROM configuration.
269 *
270 * Set default values if a bad checksum is found.
271 *
272 * XXX - Don't handle big-endian access to EEPROM yet.
273 */
274 if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
275 warn_code |= ADW_WARN_EEPROM_CHKSUM;
276
277 /*
278 * Set EEPROM default values.
279 */
280 switch(sc->chip_type) {
281 case ADW_CHIP_ASC3550:
282 eep_config = adw_3550_Default_EEPROM;
283 break;
284 case ADW_CHIP_ASC38C0800:
285 eep_config = adw_38C0800_Default_EEPROM;
286 break;
287 case ADW_CHIP_ASC38C1600:
288 eep_config = adw_38C1600_Default_EEPROM;
289
290 #if 0
291 XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
292 #endif
293 if (sc->cfg.pci_slot_info != 0) {
294 u_int8_t lsw_msb;
295
296 lsw_msb = eep_config.cfg_lsw >> 8;
297 /*
298 * Set Function 1 EEPROM Word 0 MSB
299 *
300 * Clear the BIOS_ENABLE (bit 14) and
301 * INTAB (bit 11) EEPROM bits.
302 *
303 * Disable Bit 14 (BIOS_ENABLE) to fix
304 * SPARC Ultra 60 and old Mac system booting
305 * problem. The Expansion ROM must
306 * be disabled in Function 1 for these systems.
307 */
308 lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
309 ADW_EEPROM_INTAB) >> 8) & 0xFF);
310 /*
311 * Set the INTAB (bit 11) if the GPIO 0 input
312 * indicates the Function 1 interrupt line is
313 * wired to INTA.
314 *
315 * Set/Clear Bit 11 (INTAB) from
316 * the GPIO bit 0 input:
317 * 1 - Function 1 intr line wired to INT A.
318 * 0 - Function 1 intr line wired to INT B.
319 *
320 * Note: Adapter boards always have Function 0
321 * wired to INTA.
322 * Put all 5 GPIO bits in input mode and then
323 * read their input values.
324 */
325 ADW_WRITE_BYTE_REGISTER(iot, ioh,
326 IOPB_GPIO_CNTL, 0);
327 if (ADW_READ_BYTE_REGISTER(iot, ioh,
328 IOPB_GPIO_DATA) & 0x01) {
329 /*
330 * Function 1 interrupt wired to INTA;
331 * Set EEPROM bit.
332 */
333 lsw_msb |= (ADW_EEPROM_INTAB >> 8)
334 & 0xFF;
335 }
336 eep_config.cfg_lsw &= 0x00FF;
337 eep_config.cfg_lsw |= lsw_msb << 8;
338 }
339 break;
340 }
341
342 /*
343 * Assume the 6 byte board serial number that was read
344 * from EEPROM is correct even if the EEPROM checksum
345 * failed.
346 */
347 for (i=2, j=1; i>=0; i--, j++) {
348 eep_config.serial_number[i] =
349 AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
350 }
351
352 AdwSetEEPROMConfig(iot, ioh, &eep_config);
353 }
354 /*
355 * Set sc and sc->cfg variables from the EEPROM configuration
356 * that was read.
357 *
358 * This is the mapping of EEPROM fields to Adw Library fields.
359 */
360 sc->wdtr_able = eep_config.wdtr_able;
361 if (sc->chip_type == ADW_CHIP_ASC3550) {
362 sc->sdtr_able = eep_config.sdtr1.sdtr_able;
363 sc->ultra_able = eep_config.sdtr2.ultra_able;
364 } else {
365 sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
366 sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
367 sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
368 sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
369 }
370 sc->ppr_able = 0;
371 sc->tagqng_able = eep_config.tagqng_able;
372 sc->cfg.disc_enable = eep_config.disc_enable;
373 sc->max_host_qng = eep_config.max_host_qng;
374 sc->max_dvc_qng = eep_config.max_dvc_qng;
375 sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
376 sc->start_motor = eep_config.start_motor;
377 sc->scsi_reset_wait = eep_config.scsi_reset_delay;
378 sc->bios_ctrl = eep_config.bios_ctrl;
379 sc->no_scam = eep_config.scam_tolerant;
380 sc->cfg.serial1 = eep_config.serial_number[0];
381 sc->cfg.serial2 = eep_config.serial_number[1];
382 sc->cfg.serial3 = eep_config.serial_number[2];
383
384 if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
385 sc->chip_type == ADW_CHIP_ASC38C1600) {
386 sc->sdtr_able = 0;
387 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
388 if (tid == 0) {
389 sdtr_speed = sc->sdtr_speed1;
390 } else if (tid == 4) {
391 sdtr_speed = sc->sdtr_speed2;
392 } else if (tid == 8) {
393 sdtr_speed = sc->sdtr_speed3;
394 } else if (tid == 12) {
395 sdtr_speed = sc->sdtr_speed4;
396 }
397 if (sdtr_speed & ADW_MAX_TID) {
398 sc->sdtr_able |= (1 << tid);
399 }
400 sdtr_speed >>= 4;
401 }
402 }
403
404 /*
405 * Set the host maximum queuing (max. 253, min. 16) and the per device
406 * maximum queuing (max. 63, min. 4).
407 */
408 if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
409 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
410 } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
411 {
412 /* If the value is zero, assume it is uninitialized. */
413 if (eep_config.max_host_qng == 0) {
414 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
415 } else {
416 eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
417 }
418 }
419
420 if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
421 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
422 } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
423 /* If the value is zero, assume it is uninitialized. */
424 if (eep_config.max_dvc_qng == 0) {
425 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
426 } else {
427 eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
428 }
429 }
430
431 /*
432 * If 'max_dvc_qng' is greater than 'max_host_qng', then
433 * set 'max_dvc_qng' to 'max_host_qng'.
434 */
435 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
436 eep_config.max_dvc_qng = eep_config.max_host_qng;
437 }
438
439 /*
440 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
441 * values based on possibly adjusted EEPROM values.
442 */
443 sc->max_host_qng = eep_config.max_host_qng;
444 sc->max_dvc_qng = eep_config.max_dvc_qng;
445
446
447 /*
448 * If the EEPROM 'termination' field is set to automatic (0), then set
449 * the ADV_DVC_CFG 'termination' field to automatic also.
450 *
451 * If the termination is specified with a non-zero 'termination'
452 * value check that a legal value is set and set the ADV_DVC_CFG
453 * 'termination' field appropriately.
454 */
455
456 switch(sc->chip_type) {
457 case ADW_CHIP_ASC3550:
458 sc->cfg.termination = 0; /* auto termination */
459 switch(eep_config.termination_se) {
460 case 3:
461 /* Enable manual control with low on / high on. */
462 sc->cfg.termination |= ADW_TERM_CTL_L;
463 case 2:
464 /* Enable manual control with low off / high on. */
465 sc->cfg.termination |= ADW_TERM_CTL_H;
466 case 1:
467 /* Enable manual control with low off / high off. */
468 sc->cfg.termination |= ADW_TERM_CTL_SEL;
469 case 0:
470 break;
471 default:
472 warn_code |= ADW_WARN_EEPROM_TERMINATION;
473 }
474 break;
475
476 case ADW_CHIP_ASC38C0800:
477 case ADW_CHIP_ASC38C1600:
478 switch(eep_config.termination_se) {
479 case 0:
480 /* auto termination for SE */
481 termination = 0;
482 break;
483 case 1:
484 /* Enable manual control with low off / high off. */
485 termination = 0;
486 break;
487 case 2:
488 /* Enable manual control with low off / high on. */
489 termination = ADW_TERM_SE_HI;
490 break;
491 case 3:
492 /* Enable manual control with low on / high on. */
493 termination = ADW_TERM_SE;
494 break;
495 default:
496 /*
497 * The EEPROM 'termination_se' field contains a
498 * bad value. Use automatic termination instead.
499 */
500 termination = 0;
501 warn_code |= ADW_WARN_EEPROM_TERMINATION;
502 }
503
504 switch(eep_config.termination_lvd) {
505 case 0:
506 /* auto termination for LVD */
507 sc->cfg.termination = termination;
508 break;
509 case 1:
510 /* Enable manual control with low off / high off. */
511 sc->cfg.termination = termination;
512 break;
513 case 2:
514 /* Enable manual control with low off / high on. */
515 sc->cfg.termination = termination | ADW_TERM_LVD_HI;
516 break;
517 case 3:
518 /* Enable manual control with low on / high on. */
519 sc->cfg.termination = termination | ADW_TERM_LVD;
520 break;
521 default:
522 /*
523 * The EEPROM 'termination_lvd' field contains a
524 * bad value. Use automatic termination instead.
525 */
526 sc->cfg.termination = termination;
527 warn_code |= ADW_WARN_EEPROM_TERMINATION;
528 }
529 break;
530 }
531
532 return warn_code;
533 }
534
535
536 /*
537 * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
538 *
539 * On failure return the error code.
540 */
541 int
542 AdwInitDriver(sc)
543 ADW_SOFTC *sc;
544 {
545 bus_space_tag_t iot = sc->sc_iot;
546 bus_space_handle_t ioh = sc->sc_ioh;
547 u_int16_t error_code;
548 int word;
549 int i;
550 u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
551 0x40-0x8F. */
552 u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
553 u_int8_t max_cmd[ADW_MAX_TID + 1];
554 u_int8_t tid;
555
556
557 error_code = 0;
558
559 /*
560 * Save the RISC memory BIOS region before writing the microcode.
561 * The BIOS may already be loaded and using its RISC LRAM region
562 * so its region must be saved and restored.
563 *
564 * Note: This code makes the assumption, which is currently true,
565 * that a chip reset does not clear RISC LRAM.
566 */
567 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
568 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
569 }
570
571 /*
572 * Save current per TID negotiated values.
573 */
574 switch (sc->chip_type) {
575 case ADW_CHIP_ASC3550:
576 if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
577
578 u_int16_t bios_version, major, minor;
579
580 bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
581 ADW_MC_BIOSMEM) / 2];
582 major = (bios_version >> 12) & 0xF;
583 minor = (bios_version >> 8) & 0xF;
584 if (major < 3 || (major == 3 && minor == 1)) {
585 /*
586 * BIOS 3.1 and earlier location of
587 * 'wdtr_able' variable.
588 */
589 ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
590 } else {
591 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
592 wdtr_able);
593 }
594 }
595 break;
596
597 case ADW_CHIP_ASC38C1600:
598 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
599 /* FALLTHROUGH */
600 case ADW_CHIP_ASC38C0800:
601 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
602 break;
603 }
604 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
605 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
606 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
607 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
608 max_cmd[tid]);
609 }
610
611 /*
612 * Perform a RAM Built-In Self Test
613 */
614 if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
615 return error_code;
616 }
617
618 /*
619 * Load the Microcode
620 */
621 ;
622 if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
623 return error_code;
624 }
625
626 /*
627 * Read microcode version and date.
628 */
629 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
630 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
631
632 /*
633 * If the PCI Configuration Command Register "Parity Error Response
634 * Control" Bit was clear (0), then set the microcode variable
635 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
636 * to ignore DMA parity errors.
637 */
638 if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
639 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
640 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
641 word | CONTROL_FLAG_IGNORE_PERR);
642 }
643
644 switch (sc->chip_type) {
645 case ADW_CHIP_ASC3550:
646 /*
647 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
648 * FIFO threshold of 128 bytes.
649 * This register is only accessible to the host.
650 */
651 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
652 START_CTL_EMFU | READ_CMD_MRM);
653 break;
654
655 case ADW_CHIP_ASC38C0800:
656 /*
657 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
658 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
659 * cable detection and then we are able to read C_DET[3:0].
660 *
661 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
662 * Microcode Default Value' section below.
663 */
664 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
665 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
666 | ADW_DIS_TERM_DRV);
667
668 /*
669 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
670 * START_CTL_TH [3:2] bits for the default FIFO threshold.
671 *
672 * Note: ASC-38C0800 FIFO threshold has been changed to
673 * 256 bytes.
674 *
675 * For DMA Errata #4 set the BC_THRESH_ENB bit.
676 */
677 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
678 BC_THRESH_ENB | FIFO_THRESH_80B
679 | START_CTL_TH | READ_CMD_MRM);
680 break;
681
682 case ADW_CHIP_ASC38C1600:
683 /*
684 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
685 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
686 * cable detection and then we are able to read C_DET[3:0].
687 *
688 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
689 * Microcode Default Value' section below.
690 */
691 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
692 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
693 | ADW_DIS_TERM_DRV);
694
695 /*
696 * If the BIOS control flag AIPP (Asynchronous Information
697 * Phase Protection) disable bit is not set, then set the
698 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
699 * enable AIPP checking and encoding.
700 */
701 if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
702 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
703 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
704 word | CONTROL_FLAG_ENABLE_AIPP);
705 }
706
707 /*
708 * For ASC-38C1600 use DMA_CFG0 default values:
709 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
710 */
711 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
712 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
713 break;
714 }
715
716 /*
717 * Microcode operating variables for WDTR, SDTR, and command tag
718 * queuing will be set in AdvInquiryHandling() based on what a
719 * device reports it is capable of in Inquiry byte 7.
720 *
721 * If SCSI Bus Resets have been disabled, then directly set
722 * SDTR and WDTR from the EEPROM configuration. This will allow
723 * the BIOS and warm boot to work without a SCSI bus hang on
724 * the Inquiry caused by host and target mismatched DTR values.
725 * Without the SCSI Bus Reset, before an Inquiry a device can't
726 * be assumed to be in Asynchronous, Narrow mode.
727 */
728 if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
729 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
730 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
731 }
732
733 /*
734 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
735 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
736 * bitmask. These values determine the maximum SDTR speed negotiated
737 * with a device.
738 *
739 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
740 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
741 * without determining here whether the device supports SDTR.
742 */
743 switch (sc->chip_type) {
744 case ADW_CHIP_ASC3550:
745 word = 0;
746 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
747 if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
748 /* Set Ultra speed for TID 'tid'. */
749 word |= (0x3 << (4 * (tid % 4)));
750 } else {
751 /* Set Fast speed for TID 'tid'. */
752 word |= (0x2 << (4 * (tid % 4)));
753 }
754 /* Check if done with sdtr_speed1. */
755 if (tid == 3) {
756 ADW_WRITE_WORD_LRAM(iot, ioh,
757 ADW_MC_SDTR_SPEED1, word);
758 word = 0;
759 /* Check if done with sdtr_speed2. */
760 } else if (tid == 7) {
761 ADW_WRITE_WORD_LRAM(iot, ioh,
762 ADW_MC_SDTR_SPEED2, word);
763 word = 0;
764 /* Check if done with sdtr_speed3. */
765 } else if (tid == 11) {
766 ADW_WRITE_WORD_LRAM(iot, ioh,
767 ADW_MC_SDTR_SPEED3, word);
768 word = 0;
769 /* Check if done with sdtr_speed4. */
770 } else if (tid == 15) {
771 ADW_WRITE_WORD_LRAM(iot, ioh,
772 ADW_MC_SDTR_SPEED4, word);
773 /* End of loop. */
774 }
775 }
776
777 /*
778 * Set microcode operating variable for the
779 * disconnect per TID bitmask.
780 */
781 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
782 sc->cfg.disc_enable);
783 break;
784
785 case ADW_CHIP_ASC38C0800:
786 /* FALLTHROUGH */
787 case ADW_CHIP_ASC38C1600:
788 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
789 sc->cfg.disc_enable);
790 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
791 sc->sdtr_speed1);
792 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
793 sc->sdtr_speed2);
794 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
795 sc->sdtr_speed3);
796 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
797 sc->sdtr_speed4);
798 break;
799 }
800
801
802 /*
803 * Set SCSI_CFG0 Microcode Default Value.
804 *
805 * The microcode will set the SCSI_CFG0 register using this value
806 * after it is started below.
807 */
808 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
809 ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
810 ADW_OUR_ID_EN | sc->chip_scsi_id);
811
812
813 switch(sc->chip_type) {
814 case ADW_CHIP_ASC3550:
815 error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
816 break;
817
818 case ADW_CHIP_ASC38C0800:
819 error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
820 break;
821
822 case ADW_CHIP_ASC38C1600:
823 error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
824 break;
825 }
826 if(error_code) {
827 return error_code;
828 }
829
830 /*
831 * Set SEL_MASK Microcode Default Value
832 *
833 * The microcode will set the SEL_MASK register using this value
834 * after it is started below.
835 */
836 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
837 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
838
839 /*
840 * Create and Initialize Host->RISC Carrier lists
841 */
842 sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
843 sc->sc_control->carriers);
844
845 /*
846 * Set-up the Host->RISC Initiator Command Queue (ICQ).
847 */
848
849 if ((sc->icq_sp = sc->carr_freelist) == NULL) {
850 return ADW_IERR_NO_CARRIER;
851 }
852 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
853 ASC_GET_CARRP(sc->icq_sp->next_ba));
854
855 /*
856 * The first command issued will be placed in the stopper carrier.
857 */
858 sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
859
860 /*
861 * Set RISC ICQ physical address start value.
862 */
863 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
864
865 /*
866 * Initialize the COMMA register to the same value otherwise
867 * the RISC will prematurely detect a command is available.
868 */
869 if(sc->chip_type == ADW_CHIP_ASC38C1600) {
870 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
871 le32toh(sc->icq_sp->carr_ba));
872 }
873
874 /*
875 * Set-up the RISC->Host Initiator Response Queue (IRQ).
876 */
877 if ((sc->irq_sp = sc->carr_freelist) == NULL) {
878 return ADW_IERR_NO_CARRIER;
879 }
880 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
881 ASC_GET_CARRP(sc->irq_sp->next_ba));
882
883 /*
884 * The first command completed by the RISC will be placed in
885 * the stopper.
886 *
887 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
888 * completed the RISC will set the ASC_RQ_DONE bit.
889 */
890 sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
891
892 /*
893 * Set RISC IRQ physical address start value.
894 */
895 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
896 sc->carr_pending_cnt = 0;
897
898 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
899 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
900 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
901 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
902
903 /* finally, finally, gentlemen, start your engine */
904 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
905
906 /*
907 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
908 * Resets should be performed. The RISC has to be running
909 * to issue a SCSI Bus Reset.
910 */
911 if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
912 {
913 /*
914 * If the BIOS Signature is present in memory, restore the
915 * BIOS Handshake Configuration Table and do not perform
916 * a SCSI Bus Reset.
917 */
918 if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
919 0x55AA) {
920 /*
921 * Restore per TID negotiated values.
922 */
923 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
924 wdtr_able);
925 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
926 sdtr_able);
927 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
928 tagqng_able);
929 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
930 ADW_WRITE_BYTE_LRAM(iot, ioh,
931 ADW_MC_NUMBER_OF_MAX_CMD + tid,
932 max_cmd[tid]);
933 }
934 } else {
935 if (AdwResetCCB(sc) != ADW_TRUE) {
936 error_code = ADW_WARN_BUSRESET_ERROR;
937 }
938 }
939 }
940
941 return error_code;
942 }
943
944
945 int
946 AdwRamSelfTest(iot, ioh, chip_type)
947 bus_space_tag_t iot;
948 bus_space_handle_t ioh;
949 u_int8_t chip_type;
950 {
951 int i;
952 u_int8_t byte;
953
954
955 if ((chip_type == ADW_CHIP_ASC38C0800) ||
956 (chip_type == ADW_CHIP_ASC38C1600)) {
957 /*
958 * RAM BIST (RAM Built-In Self Test)
959 *
960 * Address : I/O base + offset 0x38h register (byte).
961 * Function: Bit 7-6(RW) : RAM mode
962 * Normal Mode : 0x00
963 * Pre-test Mode : 0x40
964 * RAM Test Mode : 0x80
965 * Bit 5 : unused
966 * Bit 4(RO) : Done bit
967 * Bit 3-0(RO) : Status
968 * Host Error : 0x08
969 * Int_RAM Error : 0x04
970 * RISC Error : 0x02
971 * SCSI Error : 0x01
972 * No Error : 0x00
973 *
974 * Note: RAM BIST code should be put right here, before loading
975 * the microcode and after saving the RISC memory BIOS region.
976 */
977
978 /*
979 * LRAM Pre-test
980 *
981 * Write PRE_TEST_MODE (0x40) to register and wait for
982 * 10 milliseconds.
983 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
984 * return an error. Reset to NORMAL_MODE (0x00) and do again.
985 * If cannot reset to NORMAL_MODE, return an error too.
986 */
987 for (i = 0; i < 2; i++) {
988 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
989 PRE_TEST_MODE);
990 /* Wait for 10ms before reading back. */
991 AdwSleepMilliSecond(10);
992 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
993 if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
994 PRE_TEST_VALUE) {
995 return ADW_IERR_BIST_PRE_TEST;
996 }
997
998 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
999 NORMAL_MODE);
1000 /* Wait for 10ms before reading back. */
1001 AdwSleepMilliSecond(10);
1002 if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1003 != NORMAL_VALUE) {
1004 return ADW_IERR_BIST_PRE_TEST;
1005 }
1006 }
1007
1008 /*
1009 * LRAM Test - It takes about 1.5 ms to run through the test.
1010 *
1011 * Write RAM_TEST_MODE (0x80) to register and wait for
1012 * 10 milliseconds.
1013 * If Done bit not set or Status not 0, save register byte,
1014 * set the err_code, and return an error.
1015 */
1016 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1017 /* Wait for 10ms before checking status. */
1018 AdwSleepMilliSecond(10);
1019
1020 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1021 if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1022 /* Get here if Done bit not set or Status not 0. */
1023 return ADW_IERR_BIST_RAM_TEST;
1024 }
1025
1026 /* We need to reset back to normal mode after LRAM test passes*/
1027 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1028 }
1029
1030 return 0;
1031 }
1032
1033
1034 int
1035 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1036 bus_space_tag_t iot;
1037 bus_space_handle_t ioh;
1038 u_int16_t *bios_mem;
1039 u_int8_t chip_type;
1040 {
1041 u_int8_t *mcode_data;
1042 u_int32_t mcode_chksum;
1043 u_int16_t mcode_size;
1044 u_int32_t sum;
1045 u_int16_t code_sum;
1046 int begin_addr;
1047 int end_addr;
1048 int word;
1049 int adw_memsize;
1050 int adw_mcode_expanded_size;
1051 int i, j;
1052
1053
1054 switch(chip_type) {
1055 case ADW_CHIP_ASC3550:
1056 mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1057 mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1058 mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1059 adw_memsize = ADW_3550_MEMSIZE;
1060 break;
1061
1062 case ADW_CHIP_ASC38C0800:
1063 mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1064 mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1065 mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1066 adw_memsize = ADW_38C0800_MEMSIZE;
1067 break;
1068
1069 case ADW_CHIP_ASC38C1600:
1070 mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1071 mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1072 mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1073 adw_memsize = ADW_38C1600_MEMSIZE;
1074 break;
1075 default:
1076 mcode_data = NULL;
1077 mcode_chksum = 0;
1078 mcode_size = 0;
1079 adw_memsize = 0;
1080 }
1081
1082 /*
1083 * Write the microcode image to RISC memory starting at address 0.
1084 */
1085 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1086
1087 /* Assume the following compressed format of the microcode buffer:
1088 *
1089 * 254 word (508 byte) table indexed by byte code followed
1090 * by the following byte codes:
1091 *
1092 * 1-Byte Code:
1093 * 00: Emit word 0 in table.
1094 * 01: Emit word 1 in table.
1095 * .
1096 * FD: Emit word 253 in table.
1097 *
1098 * Multi-Byte Code:
1099 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1100 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1101 */
1102 word = 0;
1103 for (i = 253 * 2; i < mcode_size; i++) {
1104 if (mcode_data[i] == 0xff) {
1105 for (j = 0; j < mcode_data[i + 1]; j++) {
1106 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1107 (((u_int16_t)mcode_data[i + 3] << 8) |
1108 mcode_data[i + 2]));
1109 word++;
1110 }
1111 i += 3;
1112 } else if (mcode_data[i] == 0xfe) {
1113 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1114 (((u_int16_t)mcode_data[i + 2] << 8) |
1115 mcode_data[i + 1]));
1116 i += 2;
1117 word++;
1118 } else {
1119 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1120 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1121 mcode_data[mcode_data[i] * 2]));
1122 word++;
1123 }
1124 }
1125
1126 /*
1127 * Set 'word' for later use to clear the rest of memory and save
1128 * the expanded mcode size.
1129 */
1130 word *= 2;
1131 adw_mcode_expanded_size = word;
1132
1133 /*
1134 * Clear the rest of the Internal RAM.
1135 */
1136 for (; word < adw_memsize; word += 2) {
1137 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1138 }
1139
1140 /*
1141 * Verify the microcode checksum.
1142 */
1143 sum = 0;
1144 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1145
1146 for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1147 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1148 }
1149
1150 if (sum != mcode_chksum) {
1151 return ADW_IERR_MCODE_CHKSUM;
1152 }
1153
1154 /*
1155 * Restore the RISC memory BIOS region.
1156 */
1157 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1158 if(chip_type == ADW_CHIP_ASC3550) {
1159 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1160 bios_mem[i]);
1161 } else {
1162 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1163 bios_mem[i]);
1164 }
1165 }
1166
1167 /*
1168 * Calculate and write the microcode code checksum to the microcode
1169 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1170 */
1171 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1172 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1173 code_sum = 0;
1174 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1175 for (word = begin_addr; word < end_addr; word += 2) {
1176 code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1177 }
1178 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1179
1180 /*
1181 * Set the chip type.
1182 */
1183 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1184
1185 return 0;
1186 }
1187
1188
1189 int
1190 AdwASC3550Cabling(iot, ioh, cfg)
1191 bus_space_tag_t iot;
1192 bus_space_handle_t ioh;
1193 ADW_DVC_CFG *cfg;
1194 {
1195 u_int16_t scsi_cfg1;
1196
1197
1198 /*
1199 * Determine SCSI_CFG1 Microcode Default Value.
1200 *
1201 * The microcode will set the SCSI_CFG1 register using this value
1202 * after it is started below.
1203 */
1204
1205 /* Read current SCSI_CFG1 Register value. */
1206 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1207
1208 /*
1209 * If all three connectors are in use in ASC3550, return an error.
1210 */
1211 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1212 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1213 return ADW_IERR_ILLEGAL_CONNECTION;
1214 }
1215
1216 /*
1217 * If the cable is reversed all of the SCSI_CTRL register signals
1218 * will be set. Check for and return an error if this condition is
1219 * found.
1220 */
1221 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1222 return ADW_IERR_REVERSED_CABLE;
1223 }
1224
1225 /*
1226 * If this is a differential board and a single-ended device
1227 * is attached to one of the connectors, return an error.
1228 */
1229 if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1230 (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1231 return ADW_IERR_SINGLE_END_DEVICE;
1232 }
1233
1234 /*
1235 * If automatic termination control is enabled, then set the
1236 * termination value based on a table listed in a_condor.h.
1237 *
1238 * If manual termination was specified with an EEPROM setting
1239 * then 'termination' was set-up in AdwInitFromEEPROM() and
1240 * is ready to be 'ored' into SCSI_CFG1.
1241 */
1242 if (cfg->termination == 0) {
1243 /*
1244 * The software always controls termination by setting
1245 * TERM_CTL_SEL.
1246 * If TERM_CTL_SEL were set to 0, the hardware would set
1247 * termination.
1248 */
1249 cfg->termination |= ADW_TERM_CTL_SEL;
1250
1251 switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1252 /* TERM_CTL_H: on, TERM_CTL_L: on */
1253 case 0x3: case 0x7: case 0xB:
1254 case 0xD: case 0xE: case 0xF:
1255 cfg->termination |=
1256 (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1257 break;
1258
1259 /* TERM_CTL_H: on, TERM_CTL_L: off */
1260 case 0x1: case 0x5: case 0x9:
1261 case 0xA: case 0xC:
1262 cfg->termination |= ADW_TERM_CTL_H;
1263 break;
1264
1265 /* TERM_CTL_H: off, TERM_CTL_L: off */
1266 case 0x2: case 0x6:
1267 break;
1268 }
1269 }
1270
1271 /*
1272 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1273 */
1274 scsi_cfg1 &= ~ADW_TERM_CTL;
1275
1276 /*
1277 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1278 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1279 * referenced, because the hardware internally inverts
1280 * the Termination High and Low bits if TERM_POL is set.
1281 */
1282 scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1283
1284 /*
1285 * Set SCSI_CFG1 Microcode Default Value
1286 *
1287 * Set filter value and possibly modified termination control
1288 * bits in the Microcode SCSI_CFG1 Register Value.
1289 *
1290 * The microcode will set the SCSI_CFG1 register using this value
1291 * after it is started below.
1292 */
1293 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1294 ADW_FLTR_DISABLE | scsi_cfg1);
1295
1296 /*
1297 * Set MEM_CFG Microcode Default Value
1298 *
1299 * The microcode will set the MEM_CFG register using this value
1300 * after it is started below.
1301 *
1302 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1303 * are defined.
1304 *
1305 * ASC-3550 has 8KB internal memory.
1306 */
1307 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1308 ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1309
1310 return 0;
1311 }
1312
1313
1314 int
1315 AdwASC38C0800Cabling(iot, ioh, cfg)
1316 bus_space_tag_t iot;
1317 bus_space_handle_t ioh;
1318 ADW_DVC_CFG *cfg;
1319 {
1320 u_int16_t scsi_cfg1;
1321
1322
1323 /*
1324 * Determine SCSI_CFG1 Microcode Default Value.
1325 *
1326 * The microcode will set the SCSI_CFG1 register using this value
1327 * after it is started below.
1328 */
1329
1330 /* Read current SCSI_CFG1 Register value. */
1331 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1332
1333 /*
1334 * If the cable is reversed all of the SCSI_CTRL register signals
1335 * will be set. Check for and return an error if this condition is
1336 * found.
1337 */
1338 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1339 return ADW_IERR_REVERSED_CABLE;
1340 }
1341
1342 /*
1343 * All kind of combinations of devices attached to one of four
1344 * connectors are acceptable except HVD device attached.
1345 * For example, LVD device can be attached to SE connector while
1346 * SE device attached to LVD connector.
1347 * If LVD device attached to SE connector, it only runs up to
1348 * Ultra speed.
1349 *
1350 * If an HVD device is attached to one of LVD connectors, return
1351 * an error.
1352 * However, there is no way to detect HVD device attached to
1353 * SE connectors.
1354 */
1355 if (scsi_cfg1 & ADW_HVD) {
1356 return ADW_IERR_HVD_DEVICE;
1357 }
1358
1359 /*
1360 * If either SE or LVD automatic termination control is enabled, then
1361 * set the termination value based on a table listed in a_condor.h.
1362 *
1363 * If manual termination was specified with an EEPROM setting then
1364 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1365 * to be 'ored' into SCSI_CFG1.
1366 */
1367 if ((cfg->termination & ADW_TERM_SE) == 0) {
1368 /* SE automatic termination control is enabled. */
1369 switch(scsi_cfg1 & ADW_C_DET_SE) {
1370 /* TERM_SE_HI: on, TERM_SE_LO: on */
1371 case 0x1: case 0x2: case 0x3:
1372 cfg->termination |= ADW_TERM_SE;
1373 break;
1374
1375 /* TERM_SE_HI: on, TERM_SE_LO: off */
1376 case 0x0:
1377 cfg->termination |= ADW_TERM_SE_HI;
1378 break;
1379 }
1380 }
1381
1382 if ((cfg->termination & ADW_TERM_LVD) == 0) {
1383 /* LVD automatic termination control is enabled. */
1384 switch(scsi_cfg1 & ADW_C_DET_LVD) {
1385 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1386 case 0x4: case 0x8: case 0xC:
1387 cfg->termination |= ADW_TERM_LVD;
1388 break;
1389
1390 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1391 case 0x0:
1392 break;
1393 }
1394 }
1395
1396 /*
1397 * Clear any set TERM_SE and TERM_LVD bits.
1398 */
1399 scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1400
1401 /*
1402 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1403 */
1404 scsi_cfg1 |= (~cfg->termination & 0xF0);
1405
1406 /*
1407 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1408 * HVD/LVD/SE bits and set possibly modified termination control bits
1409 * in the Microcode SCSI_CFG1 Register Value.
1410 */
1411 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1412 ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1413
1414 /*
1415 * Set SCSI_CFG1 Microcode Default Value
1416 *
1417 * Set possibly modified termination control and reset DIS_TERM_DRV
1418 * bits in the Microcode SCSI_CFG1 Register Value.
1419 *
1420 * The microcode will set the SCSI_CFG1 register using this value
1421 * after it is started below.
1422 */
1423 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1424
1425 /*
1426 * Set MEM_CFG Microcode Default Value
1427 *
1428 * The microcode will set the MEM_CFG register using this value
1429 * after it is started below.
1430 *
1431 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1432 * are defined.
1433 *
1434 * ASC-38C0800 has 16KB internal memory.
1435 */
1436 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1437 ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1438
1439 return 0;
1440 }
1441
1442
1443 int
1444 AdwASC38C1600Cabling(iot, ioh, cfg)
1445 bus_space_tag_t iot;
1446 bus_space_handle_t ioh;
1447 ADW_DVC_CFG *cfg;
1448 {
1449 u_int16_t scsi_cfg1;
1450
1451
1452 /*
1453 * Determine SCSI_CFG1 Microcode Default Value.
1454 *
1455 * The microcode will set the SCSI_CFG1 register using this value
1456 * after it is started below.
1457 * Each ASC-38C1600 function has only two cable detect bits.
1458 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1459 */
1460
1461 /* Read current SCSI_CFG1 Register value. */
1462 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1463
1464 /*
1465 * If the cable is reversed all of the SCSI_CTRL register signals
1466 * will be set. Check for and return an error if this condition is
1467 * found.
1468 */
1469 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1470 return ADW_IERR_REVERSED_CABLE;
1471 }
1472
1473 /*
1474 * Each ASC-38C1600 function has two connectors. Only an HVD device
1475 * can not be connected to either connector. An LVD device or SE device
1476 * may be connected to either connecor. If an SE device is connected,
1477 * then at most Ultra speed (20 MHz) can be used on both connectors.
1478 *
1479 * If an HVD device is attached, return an error.
1480 */
1481 if (scsi_cfg1 & ADW_HVD) {
1482 return ADW_IERR_HVD_DEVICE;
1483 }
1484
1485 /*
1486 * Each function in the ASC-38C1600 uses only the SE cable detect and
1487 * termination because there are two connectors for each function.
1488 * Each function may use either LVD or SE mode.
1489 * Corresponding the SE automatic termination control EEPROM bits are
1490 * used for each function.
1491 * Each function has its own EEPROM. If SE automatic control is enabled
1492 * for the function, then set the termination value based on a table
1493 * listed in adwlib.h.
1494 *
1495 * If manual termination is specified in the EEPROM for the function,
1496 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1497 * ready to be 'ored' into SCSI_CFG1.
1498 */
1499 if ((cfg->termination & ADW_TERM_SE) == 0) {
1500 /* SE automatic termination control is enabled. */
1501 switch(scsi_cfg1 & ADW_C_DET_SE) {
1502 /* TERM_SE_HI: on, TERM_SE_LO: on */
1503 case 0x1: case 0x2: case 0x3:
1504 cfg->termination |= ADW_TERM_SE;
1505 break;
1506
1507 case 0x0:
1508 #if 0
1509 /* !!!!TODO!!!! */
1510 if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1511 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1512 }
1513 else
1514 #endif
1515 {
1516 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1517 cfg->termination |= ADW_TERM_SE_HI;
1518 }
1519 break;
1520 }
1521 }
1522
1523 /*
1524 * Clear any set TERM_SE bits.
1525 */
1526 scsi_cfg1 &= ~ADW_TERM_SE;
1527
1528 /*
1529 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1530 */
1531 scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1532
1533 /*
1534 * Clear Big Endian and Terminator Polarity bits and set possibly
1535 * modified termination control bits in the Microcode SCSI_CFG1
1536 * Register Value.
1537 */
1538 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1539
1540 /*
1541 * Set SCSI_CFG1 Microcode Default Value
1542 *
1543 * Set possibly modified termination control bits in the Microcode
1544 * SCSI_CFG1 Register Value.
1545 *
1546 * The microcode will set the SCSI_CFG1 register using this value
1547 * after it is started below.
1548 */
1549 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1550
1551 /*
1552 * Set MEM_CFG Microcode Default Value
1553 *
1554 * The microcode will set the MEM_CFG register using this value
1555 * after it is started below.
1556 *
1557 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1558 * are defined.
1559 *
1560 * ASC-38C1600 has 32KB internal memory.
1561 */
1562 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1563 ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1564
1565 return 0;
1566 }
1567
1568
1569 /*
1570 * Read EEPROM configuration into the specified buffer.
1571 *
1572 * Return a checksum based on the EEPROM configuration read.
1573 */
1574 static u_int16_t
1575 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1576 bus_space_tag_t iot;
1577 bus_space_handle_t ioh;
1578 ADW_EEPROM *cfg_buf;
1579 {
1580 u_int16_t wval, chksum;
1581 u_int16_t *wbuf;
1582 int eep_addr;
1583
1584
1585 wbuf = (u_int16_t *) cfg_buf;
1586 chksum = 0;
1587
1588 for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1589 eep_addr < ASC_EEP_DVC_CFG_END;
1590 eep_addr++, wbuf++) {
1591 wval = AdwReadEEPWord(iot, ioh, eep_addr);
1592 chksum += wval;
1593 *wbuf = wval;
1594 }
1595
1596 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1597 wbuf++;
1598 for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1599 eep_addr < ASC_EEP_MAX_WORD_ADDR;
1600 eep_addr++, wbuf++) {
1601 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1602 }
1603
1604 return chksum;
1605 }
1606
1607
1608 /*
1609 * Read the EEPROM from specified location
1610 */
1611 static u_int16_t
1612 AdwReadEEPWord(iot, ioh, eep_word_addr)
1613 bus_space_tag_t iot;
1614 bus_space_handle_t ioh;
1615 int eep_word_addr;
1616 {
1617 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1618 ASC_EEP_CMD_READ | eep_word_addr);
1619 AdwWaitEEPCmd(iot, ioh);
1620
1621 return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1622 }
1623
1624
1625 /*
1626 * Wait for EEPROM command to complete
1627 */
1628 static void
1629 AdwWaitEEPCmd(iot, ioh)
1630 bus_space_tag_t iot;
1631 bus_space_handle_t ioh;
1632 {
1633 int eep_delay_ms;
1634
1635
1636 for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1637 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1638 ASC_EEP_CMD_DONE) {
1639 break;
1640 }
1641 AdwSleepMilliSecond(1);
1642 }
1643
1644 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1645 }
1646
1647
1648 /*
1649 * Write the EEPROM from 'cfg_buf'.
1650 */
1651 static void
1652 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1653 bus_space_tag_t iot;
1654 bus_space_handle_t ioh;
1655 ADW_EEPROM *cfg_buf;
1656 {
1657 u_int16_t *wbuf;
1658 u_int16_t addr, chksum;
1659
1660
1661 wbuf = (u_int16_t *) cfg_buf;
1662 chksum = 0;
1663
1664 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1665 AdwWaitEEPCmd(iot, ioh);
1666
1667 /*
1668 * Write EEPROM from word 0 to word 20
1669 */
1670 for (addr = ASC_EEP_DVC_CFG_BEGIN;
1671 addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1672 chksum += *wbuf;
1673 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1674 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1675 ASC_EEP_CMD_WRITE | addr);
1676 AdwWaitEEPCmd(iot, ioh);
1677 AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1678 }
1679
1680 /*
1681 * Write EEPROM checksum at word 21
1682 */
1683 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1684 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1685 ASC_EEP_CMD_WRITE | addr);
1686 AdwWaitEEPCmd(iot, ioh);
1687 wbuf++; /* skip over check_sum */
1688
1689 /*
1690 * Write EEPROM OEM name at words 22 to 29
1691 */
1692 for (addr = ASC_EEP_DVC_CTL_BEGIN;
1693 addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1694 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1695 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1696 ASC_EEP_CMD_WRITE | addr);
1697 AdwWaitEEPCmd(iot, ioh);
1698 }
1699
1700 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1701 ASC_EEP_CMD_WRITE_DISABLE);
1702 AdwWaitEEPCmd(iot, ioh);
1703
1704 return;
1705 }
1706
1707
1708 /*
1709 * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1710 *
1711 * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1712 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1713 * RISC to notify it a new command is ready to be executed.
1714 *
1715 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1716 * set to SCSI_MAX_RETRY.
1717 *
1718 * Return:
1719 * ADW_SUCCESS(1) - The request was successfully queued.
1720 * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1721 * request completes.
1722 * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1723 * host IC error.
1724 */
1725 int
1726 AdwExeScsiQueue(sc, scsiq)
1727 ADW_SOFTC *sc;
1728 ADW_SCSI_REQ_Q *scsiq;
1729 {
1730 bus_space_tag_t iot = sc->sc_iot;
1731 bus_space_handle_t ioh = sc->sc_ioh;
1732 ADW_CCB *ccb;
1733 long req_size;
1734 u_int32_t req_paddr;
1735 ADW_CARRIER *new_carrp;
1736
1737 /*
1738 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1739 */
1740 if (scsiq->target_id > ADW_MAX_TID) {
1741 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1742 scsiq->done_status = QD_WITH_ERROR;
1743 return ADW_ERROR;
1744 }
1745
1746 /*
1747 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1748 */
1749
1750 ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1751
1752 /*
1753 * Allocate a carrier and initialize fields.
1754 */
1755 if ((new_carrp = sc->carr_freelist) == NULL) {
1756 return ADW_BUSY;
1757 }
1758 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1759 ASC_GET_CARRP(new_carrp->next_ba));
1760 sc->carr_pending_cnt++;
1761
1762 /*
1763 * Set the carrier to be a stopper by setting 'next_ba'
1764 * to the stopper value. The current stopper will be changed
1765 * below to point to the new stopper.
1766 */
1767 new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1768
1769 req_size = sizeof(ADW_SCSI_REQ_Q);
1770 req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1771 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1772
1773 /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1774 scsiq->scsiq_rptr = htole32(req_paddr);
1775
1776 /*
1777 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1778 * order during initialization.
1779 */
1780 scsiq->carr_ba = sc->icq_sp->carr_ba;
1781 scsiq->carr_va = sc->icq_sp->carr_ba;
1782
1783 /*
1784 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1785 * the microcode. The newly allocated stopper will become the new
1786 * stopper.
1787 */
1788 sc->icq_sp->areq_ba = htole32(req_paddr);
1789
1790 /*
1791 * Set the 'next_ba' pointer for the old stopper to be the
1792 * physical address of the new stopper. The RISC can only
1793 * follow physical addresses.
1794 */
1795 sc->icq_sp->next_ba = new_carrp->carr_ba;
1796
1797 #if ADW_DEBUG
1798 printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1799 sc->icq_sp->carr_id,
1800 sc->icq_sp->carr_ba,
1801 sc->icq_sp->areq_ba,
1802 sc->icq_sp->next_ba);
1803 #endif
1804 /*
1805 * Set the host adapter stopper pointer to point to the new carrier.
1806 */
1807 sc->icq_sp = new_carrp;
1808
1809 if (sc->chip_type == ADW_CHIP_ASC3550 ||
1810 sc->chip_type == ADW_CHIP_ASC38C0800) {
1811 /*
1812 * Tickle the RISC to tell it to read its Command Queue Head
1813 * pointer.
1814 */
1815 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1816 if (sc->chip_type == ADW_CHIP_ASC3550) {
1817 /*
1818 * Clear the tickle value. In the ASC-3550 the RISC flag
1819 * command 'clr_tickle_a' does not work unless the host
1820 * value is cleared.
1821 */
1822 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1823 ADW_TICKLE_NOP);
1824 }
1825 } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1826 /*
1827 * Notify the RISC a carrier is ready by writing the physical
1828 * address of the new carrier stopper to the COMMA register.
1829 */
1830 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1831 le32toh(new_carrp->carr_ba));
1832 }
1833
1834 /*
1835 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1836 */
1837
1838 return ADW_SUCCESS;
1839 }
1840
1841
1842 void
1843 AdwResetChip(iot, ioh)
1844 bus_space_tag_t iot;
1845 bus_space_handle_t ioh;
1846 {
1847
1848 /*
1849 * Reset Chip.
1850 */
1851 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1852 ADW_CTRL_REG_CMD_RESET);
1853 AdwSleepMilliSecond(100);
1854 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1855 ADW_CTRL_REG_CMD_WR_IO_REG);
1856 }
1857
1858
1859 /*
1860 * Reset SCSI Bus and purge all outstanding requests.
1861 *
1862 * Return Value:
1863 * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1864 * ADW_FALSE(0) - Microcode command failed.
1865 * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1866 * may be hung which requires driver recovery.
1867 */
1868 int
1869 AdwResetCCB(sc)
1870 ADW_SOFTC *sc;
1871 {
1872 int status;
1873
1874 /*
1875 * Send the SCSI Bus Reset idle start idle command which asserts
1876 * the SCSI Bus Reset signal.
1877 */
1878 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1879 if (status != ADW_TRUE) {
1880 return status;
1881 }
1882
1883 /*
1884 * Delay for the specified SCSI Bus Reset hold time.
1885 *
1886 * The hold time delay is done on the host because the RISC has no
1887 * microsecond accurate timer.
1888 */
1889 AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1890
1891 /*
1892 * Send the SCSI Bus Reset end idle command which de-asserts
1893 * the SCSI Bus Reset signal and purges any pending requests.
1894 */
1895 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1896 if (status != ADW_TRUE) {
1897 return status;
1898 }
1899
1900 AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1901
1902 return status;
1903 }
1904
1905
1906 /*
1907 * Reset chip and SCSI Bus.
1908 *
1909 * Return Value:
1910 * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1911 * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1912 */
1913 int
1914 AdwResetSCSIBus(sc)
1915 ADW_SOFTC *sc;
1916 {
1917 bus_space_tag_t iot = sc->sc_iot;
1918 bus_space_handle_t ioh = sc->sc_ioh;
1919 int status;
1920 u_int16_t wdtr_able, sdtr_able, tagqng_able;
1921 u_int16_t ppr_able = 0; /* XXX: gcc */
1922 u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
1923 u_int16_t bios_sig;
1924
1925
1926 /*
1927 * Save current per TID negotiated values.
1928 */
1929 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1930 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1931 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1932 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1933 }
1934 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1935 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1936 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1937 max_cmd[tid]);
1938 }
1939
1940 /*
1941 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1942 * by clearing the BIOS signature word.
1943 * The initialization functions assumes a SCSI Bus Reset is not
1944 * needed if the BIOS signature word is present.
1945 */
1946 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1947 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1948
1949 /*
1950 * Stop chip and reset it.
1951 */
1952 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1953 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1954 ADW_CTRL_REG_CMD_RESET);
1955 AdwSleepMilliSecond(100);
1956 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1957 ADW_CTRL_REG_CMD_WR_IO_REG);
1958
1959 /*
1960 * Reset Adv Library error code, if any, and try
1961 * re-initializing the chip.
1962 * Then translate initialization return value to status value.
1963 */
1964 status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1965
1966 /*
1967 * Restore the BIOS signature word.
1968 */
1969 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1970
1971 /*
1972 * Restore per TID negotiated values.
1973 */
1974 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1975 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1976 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1977 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1978 }
1979 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1980 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1981 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1982 max_cmd[tid]);
1983 }
1984
1985 return status;
1986 }
1987
1988
1989 /*
1990 * Adv Library Interrupt Service Routine
1991 *
1992 * This function is called by a driver's interrupt service routine.
1993 * The function disables and re-enables interrupts.
1994 *
1995 * When a microcode idle command is completed, the ADV_DVC_VAR
1996 * 'idle_cmd_done' field is set to ADW_TRUE.
1997 *
1998 * Note: AdwISR() can be called when interrupts are disabled or even
1999 * when there is no hardware interrupt condition present. It will
2000 * always check for completed idle commands and microcode requests.
2001 * This is an important feature that shouldn't be changed because it
2002 * allows commands to be completed from polling mode loops.
2003 *
2004 * Return:
2005 * ADW_TRUE(1) - interrupt was pending
2006 * ADW_FALSE(0) - no interrupt was pending
2007 */
2008 int
2009 AdwISR(sc)
2010 ADW_SOFTC *sc;
2011 {
2012 bus_space_tag_t iot = sc->sc_iot;
2013 bus_space_handle_t ioh = sc->sc_ioh;
2014 u_int8_t int_stat;
2015 u_int16_t target_bit;
2016 ADW_CARRIER *free_carrp/*, *ccb_carr*/;
2017 u_int32_t irq_next_pa;
2018 ADW_SCSI_REQ_Q *scsiq;
2019 ADW_CCB *ccb;
2020 int s;
2021
2022
2023 s = splbio();
2024
2025 /* Reading the register clears the interrupt. */
2026 int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2027
2028 if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2029 ADW_INTR_STATUS_INTRC)) == 0) {
2030 splx(s);
2031 return ADW_FALSE;
2032 }
2033
2034 /*
2035 * Notify the driver of an asynchronous microcode condition by
2036 * calling the ADV_DVC_VAR.async_callback function. The function
2037 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2038 */
2039 if (int_stat & ADW_INTR_STATUS_INTRB) {
2040 u_int8_t intrb_code;
2041
2042 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2043
2044 if (sc->chip_type == ADW_CHIP_ASC3550 ||
2045 sc->chip_type == ADW_CHIP_ASC38C0800) {
2046 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2047 sc->carr_pending_cnt != 0) {
2048 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2049 IOPB_TICKLE, ADW_TICKLE_A);
2050 if (sc->chip_type == ADW_CHIP_ASC3550) {
2051 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2052 IOPB_TICKLE, ADW_TICKLE_NOP);
2053 }
2054 }
2055 }
2056
2057 if (sc->async_callback != 0) {
2058 (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2059 }
2060 }
2061
2062 /*
2063 * Check if the IRQ stopper carrier contains a completed request.
2064 */
2065 while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2066 {
2067 #if ADW_DEBUG
2068 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2069 sc->irq_sp->carr_id,
2070 sc->irq_sp->carr_ba,
2071 sc->irq_sp->areq_ba,
2072 sc->irq_sp->next_ba);
2073 #endif
2074 /*
2075 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2076 * structure.
2077 * The RISC will have set 'areq_ba' to a virtual address.
2078 *
2079 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2080 * field to the carrier ADV_CARR_T.areq_ba field.
2081 * The conversion below complements the conversion of
2082 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2083 */
2084 ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2085 scsiq = &ccb->scsiq;
2086 scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2087
2088 /*
2089 * Request finished with good status and the queue was not
2090 * DMAed to host memory by the firmware. Set all status fields
2091 * to indicate good status.
2092 */
2093 if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2094 scsiq->done_status = QD_NO_ERROR;
2095 scsiq->host_status = scsiq->scsi_status = 0;
2096 scsiq->data_cnt = 0L;
2097 }
2098
2099 /*
2100 * Advance the stopper pointer to the next carrier
2101 * ignoring the lower four bits. Free the previous
2102 * stopper carrier.
2103 */
2104 free_carrp = sc->irq_sp;
2105 sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2106
2107 free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
2108 : sc->carr_freelist->carr_ba;
2109 sc->carr_freelist = free_carrp;
2110 sc->carr_pending_cnt--;
2111
2112
2113 target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
2114
2115 /*
2116 * Clear request microcode control flag.
2117 */
2118 scsiq->cntl = 0;
2119
2120 /*
2121 * Check Condition handling
2122 */
2123 /*
2124 * If the command that completed was a SCSI INQUIRY and
2125 * LUN 0 was sent the command, then process the INQUIRY
2126 * command information for the device.
2127 */
2128 if (scsiq->done_status == QD_NO_ERROR &&
2129 scsiq->cdb[0] == INQUIRY &&
2130 scsiq->target_lun == 0) {
2131 AdwInquiryHandling(sc, scsiq);
2132 }
2133
2134 /*
2135 * Notify the driver of the completed request by passing
2136 * the ADW_SCSI_REQ_Q pointer to its callback function.
2137 */
2138 (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2139 /*
2140 * Note: After the driver callback function is called, 'scsiq'
2141 * can no longer be referenced.
2142 *
2143 * Fall through and continue processing other completed
2144 * requests...
2145 */
2146 }
2147
2148 splx(s);
2149
2150 return ADW_TRUE;
2151 }
2152
2153
2154 /*
2155 * Send an idle command to the chip and wait for completion.
2156 *
2157 * Command completion is polled for once per microsecond.
2158 *
2159 * The function can be called from anywhere including an interrupt handler.
2160 * But the function is not re-entrant, so it uses the splbio/splx()
2161 * functions to prevent reentrancy.
2162 *
2163 * Return Values:
2164 * ADW_TRUE - command completed successfully
2165 * ADW_FALSE - command failed
2166 * ADW_ERROR - command timed out
2167 */
2168 int
2169 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2170 ADW_SOFTC *sc;
2171 u_int16_t idle_cmd;
2172 u_int32_t idle_cmd_parameter;
2173 {
2174 bus_space_tag_t iot = sc->sc_iot;
2175 bus_space_handle_t ioh = sc->sc_ioh;
2176 u_int16_t result;
2177 u_int32_t i, j, s;
2178
2179 s = splbio();
2180
2181 /*
2182 * Clear the idle command status which is set by the microcode
2183 * to a non-zero value to indicate when the command is completed.
2184 */
2185 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2186
2187 /*
2188 * Write the idle command value after the idle command parameter
2189 * has been written to avoid a race condition. If the order is not
2190 * followed, the microcode may process the idle command before the
2191 * parameters have been written to LRAM.
2192 */
2193 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2194 idle_cmd_parameter);
2195 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2196
2197 /*
2198 * Tickle the RISC to tell it to process the idle command.
2199 */
2200 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2201 if (sc->chip_type == ADW_CHIP_ASC3550) {
2202 /*
2203 * Clear the tickle value. In the ASC-3550 the RISC flag
2204 * command 'clr_tickle_b' does not work unless the host
2205 * value is cleared.
2206 */
2207 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2208 }
2209
2210 /* Wait for up to 100 millisecond for the idle command to timeout. */
2211 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2212 /* Poll once each microsecond for command completion. */
2213 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2214 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2215 result);
2216 if (result != 0) {
2217 splx(s);
2218 return result;
2219 }
2220 AdwDelayMicroSecond(1);
2221 }
2222 }
2223
2224 splx(s);
2225 return ADW_ERROR;
2226 }
2227
2228
2229 /*
2230 * Inquiry Information Byte 7 Handling
2231 *
2232 * Handle SCSI Inquiry Command information for a device by setting
2233 * microcode operating variables that affect WDTR, SDTR, and Tag
2234 * Queuing.
2235 */
2236 static void
2237 AdwInquiryHandling(sc, scsiq)
2238 ADW_SOFTC *sc;
2239 ADW_SCSI_REQ_Q *scsiq;
2240 {
2241 #ifndef FAILSAFE
2242 bus_space_tag_t iot = sc->sc_iot;
2243 bus_space_handle_t ioh = sc->sc_ioh;
2244 u_int8_t tid;
2245 struct scsipi_inquiry_data *inq;
2246 u_int16_t tidmask;
2247 u_int16_t cfg_word;
2248
2249
2250 /*
2251 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2252 * to be available.
2253 *
2254 * If less than 8 bytes of INQUIRY information were requested or less
2255 * than 8 bytes were transferred, then return. cdb[4] is the request
2256 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2257 * microcode to the transfer residual count.
2258 */
2259
2260 if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2261 return;
2262 }
2263
2264 tid = scsiq->target_id;
2265
2266 inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2267
2268 /*
2269 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2270 */
2271 if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2272 ((inq->version & SID_ANSII) < 2)) {
2273 return;
2274 } else {
2275 /*
2276 * INQUIRY Byte 7 Handling
2277 *
2278 * Use a device's INQUIRY byte 7 to determine whether it
2279 * supports WDTR, SDTR, and Tag Queuing. If the feature
2280 * is enabled in the EEPROM and the device supports the
2281 * feature, then enable it in the microcode.
2282 */
2283
2284 tidmask = ADW_TID_TO_TIDMASK(tid);
2285
2286 /*
2287 * Wide Transfers
2288 *
2289 * If the EEPROM enabled WDTR for the device and the device
2290 * supports wide bus (16 bit) transfers, then turn on the
2291 * device's 'wdtr_able' bit and write the new value to the
2292 * microcode.
2293 */
2294 #ifdef SCSI_ADW_WDTR_DISABLE
2295 if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2296 #endif /* SCSI_ADW_WDTR_DISABLE */
2297 if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2298 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2299 cfg_word);
2300 if ((cfg_word & tidmask) == 0) {
2301 cfg_word |= tidmask;
2302 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2303 cfg_word);
2304
2305 /*
2306 * Clear the microcode "SDTR negotiation" and
2307 * "WDTR negotiation" done indicators for the
2308 * target to cause it to negotiate with the new
2309 * setting set above.
2310 * WDTR when accepted causes the target to enter
2311 * asynchronous mode, so SDTR must be negotiated
2312 */
2313 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2314 cfg_word);
2315 cfg_word &= ~tidmask;
2316 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2317 cfg_word);
2318 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2319 cfg_word);
2320 cfg_word &= ~tidmask;
2321 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2322 cfg_word);
2323 }
2324 }
2325
2326 /*
2327 * Synchronous Transfers
2328 *
2329 * If the EEPROM enabled SDTR for the device and the device
2330 * supports synchronous transfers, then turn on the device's
2331 * 'sdtr_able' bit. Write the new value to the microcode.
2332 */
2333 #ifdef SCSI_ADW_SDTR_DISABLE
2334 if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2335 #endif /* SCSI_ADW_SDTR_DISABLE */
2336 if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2337 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2338 if ((cfg_word & tidmask) == 0) {
2339 cfg_word |= tidmask;
2340 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2341 cfg_word);
2342
2343 /*
2344 * Clear the microcode "SDTR negotiation"
2345 * done indicator for the target to cause it
2346 * to negotiate with the new setting set above.
2347 */
2348 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2349 cfg_word);
2350 cfg_word &= ~tidmask;
2351 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2352 cfg_word);
2353 }
2354 }
2355 /*
2356 * If the Inquiry data included enough space for the SPI-3
2357 * Clocking field, then check if DT mode is supported.
2358 */
2359 if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2360 (scsiq->cdb[4] >= 57 ||
2361 (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2362 /*
2363 * PPR (Parallel Protocol Request) Capable
2364 *
2365 * If the device supports DT mode, then it must be
2366 * PPR capable.
2367 * The PPR message will be used in place of the SDTR
2368 * and WDTR messages to negotiate synchronous speed
2369 * and offset, transfer width, and protocol options.
2370 */
2371 if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2372 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2373 sc->ppr_able);
2374 sc->ppr_able |= tidmask;
2375 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2376 sc->ppr_able);
2377 }
2378 }
2379
2380 /*
2381 * If the EEPROM enabled Tag Queuing for the device and the
2382 * device supports Tag Queueing, then turn on the device's
2383 * 'tagqng_enable' bit in the microcode and set the microcode
2384 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2385 * value.
2386 *
2387 * Tag Queuing is disabled for the BIOS which runs in polled
2388 * mode and would see no benefit from Tag Queuing. Also by
2389 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2390 * bugs will at least work with the BIOS.
2391 */
2392 #ifdef SCSI_ADW_TAGQ_DISABLE
2393 if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2394 #endif /* SCSI_ADW_TAGQ_DISABLE */
2395 if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2396 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2397 cfg_word);
2398 cfg_word |= tidmask;
2399 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2400 cfg_word);
2401
2402 ADW_WRITE_BYTE_LRAM(iot, ioh,
2403 ADW_MC_NUMBER_OF_MAX_CMD + tid,
2404 sc->max_dvc_qng);
2405 }
2406 }
2407 #endif /* FAILSAFE */
2408 }
2409
2410
2411 static void
2412 AdwSleepMilliSecond(n)
2413 u_int32_t n;
2414 {
2415
2416 DELAY(n * 1000);
2417 }
2418
2419
2420 static void
2421 AdwDelayMicroSecond(n)
2422 u_int32_t n;
2423 {
2424
2425 DELAY(n);
2426 }
2427
2428