Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.38
      1 /* $NetBSD: adwlib.c,v 1.38 2007/10/19 11:59:45 ad Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 /*
     40  * Ported from:
     41  */
     42 /*
     43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  *
     45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46  * All Rights Reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that redistributions of source
     50  * code retain the above copyright notice and this comment without
     51  * modification.
     52  */
     53 
     54 #include <sys/cdefs.h>
     55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.38 2007/10/19 11:59:45 ad Exp $");
     56 
     57 #include <sys/param.h>
     58 #include <sys/systm.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/queue.h>
     62 #include <sys/device.h>
     63 
     64 #include <sys/bus.h>
     65 #include <sys/intr.h>
     66 
     67 #include <dev/scsipi/scsi_all.h>
     68 #include <dev/scsipi/scsipi_all.h>
     69 #include <dev/scsipi/scsiconf.h>
     70 
     71 #include <dev/pci/pcidevs.h>
     72 
     73 #include <uvm/uvm_extern.h>
     74 
     75 #include <dev/ic/adwlib.h>
     76 #include <dev/ic/adwmcode.h>
     77 #include <dev/ic/adw.h>
     78 
     79 
     80 /* Static Functions */
     81 
     82 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
     83 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
     84 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     85 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     86 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     87 
     88 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     89      							ADW_EEPROM *);
     90 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     91 					                 ADW_EEPROM *);
     92 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
     93 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
     94 
     95 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
     96 
     97 static void AdwSleepMilliSecond(u_int32_t);
     98 static void AdwDelayMicroSecond(u_int32_t);
     99 
    100 
    101 /*
    102  * EEPROM Configuration.
    103  *
    104  * All drivers should use this structure to set the default EEPROM
    105  * configuration. The BIOS now uses this structure when it is built.
    106  * Additional structure information can be found in adwlib.h where
    107  * the structure is defined.
    108  */
    109 static const ADW_EEPROM adw_3550_Default_EEPROM = {
    110 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    111 	0x0000,			/* 01 cfg_msw */
    112 	0xFFFF,			/* 02 disc_enable */
    113 	0xFFFF,			/* 03 wdtr_able */
    114 	{ 0xFFFF },		/* 04 sdtr_able */
    115 	0xFFFF,			/* 05 start_motor */
    116 	0xFFFF,			/* 06 tagqng_able */
    117 	0xFFFF,			/* 07 bios_scan */
    118 	0,			/* 08 scam_tolerant */
    119 	7,			/* 09 adapter_scsi_id */
    120 	0,			/*    bios_boot_delay */
    121 	3,			/* 10 scsi_reset_delay */
    122 	0,			/*    bios_id_lun */
    123 	0,			/* 11 termination */
    124 	0,			/*    reserved1 */
    125 	0xFFE7,			/* 12 bios_ctrl */
    126 	{ 0xFFFF },		/* 13 ultra_able */
    127 	{ 0 },			/* 14 reserved2 */
    128 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    129 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    130 	0,			/* 16 dvc_cntl */
    131 	{ 0 },			/* 17 bug_fix */
    132 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    133 	0,			/* 21 check_sum */
    134 	{			/* 22-29 oem_name[16] */
    135 	  0,0,0,0,0,0,0,0,
    136 	  0,0,0,0,0,0,0,0
    137 	},
    138 	0,			/* 30 dvc_err_code */
    139 	0,			/* 31 adv_err_code */
    140 	0,			/* 32 adv_err_addr */
    141 	0,			/* 33 saved_dvc_err_code */
    142 	0,			/* 34 saved_adv_err_code */
    143 	0,			/* 35 saved_adv_err_addr */
    144 	{			/* 36-55 reserved1[16] */
    145 	  0,0,0,0,0,0,0,0,0,0,
    146 	  0,0,0,0,0,0,0,0,0,0
    147 	},
    148 	0,			/* 56 cisptr_lsw */
    149 	0,			/* 57 cisprt_msw */
    150 	0,			/* 58 subsysvid */
    151 	0,			/* 59 subsysid */
    152 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    153 };
    154 
    155 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
    156 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    157 	0x0000,			/* 01 cfg_msw */
    158 	0xFFFF,			/* 02 disc_enable */
    159 	0xFFFF,			/* 03 wdtr_able */
    160 	{ 0x4444 },		/* 04 sdtr_speed1 */
    161 	0xFFFF,			/* 05 start_motor */
    162 	0xFFFF,			/* 06 tagqng_able */
    163 	0xFFFF,			/* 07 bios_scan */
    164 	0,			/* 08 scam_tolerant */
    165 	7,			/* 09 adapter_scsi_id */
    166 	0,			/*    bios_boot_delay */
    167 	3,			/* 10 scsi_reset_delay */
    168 	0,			/*    bios_id_lun */
    169 	0,			/* 11 termination_se */
    170 	0,			/*    termination_lvd */
    171 	0xFFE7,			/* 12 bios_ctrl */
    172 	{ 0x4444 },		/* 13 sdtr_speed2 */
    173 	{ 0x4444 },		/* 14 sdtr_speed3 */
    174 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    175 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    176 	0,			/* 16 dvc_cntl */
    177 	{ 0x4444 },		/* 17 sdtr_speed4 */
    178 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    179 	0,			/* 21 check_sum */
    180 	{			/* 22-29 oem_name[16] */
    181 	  0,0,0,0,0,0,0,0,
    182 	  0,0,0,0,0,0,0,0
    183 	},
    184 	0,			/* 30 dvc_err_code */
    185 	0,			/* 31 adv_err_code */
    186 	0,			/* 32 adv_err_addr */
    187 	0,			/* 33 saved_dvc_err_code */
    188 	0,			/* 34 saved_adv_err_code */
    189 	0,			/* 35 saved_adv_err_addr */
    190 	{			/* 36-55 reserved1[16] */
    191 	  0,0,0,0,0,0,0,0,0,0,
    192 	  0,0,0,0,0,0,0,0,0,0
    193 	},
    194 	0,			/* 56 cisptr_lsw */
    195 	0,			/* 57 cisprt_msw */
    196 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    197 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    198 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    199 };
    200 
    201 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
    202 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    203 	0x0000,			/* 01 cfg_msw */
    204 	0xFFFF,			/* 02 disc_enable */
    205 	0xFFFF,			/* 03 wdtr_able */
    206 	{ 0x5555 },		/* 04 sdtr_speed1 */
    207 	0xFFFF,			/* 05 start_motor */
    208 	0xFFFF,			/* 06 tagqng_able */
    209 	0xFFFF,			/* 07 bios_scan */
    210 	0,			/* 08 scam_tolerant */
    211 	7,			/* 09 adapter_scsi_id */
    212 	0,			/*    bios_boot_delay */
    213 	3,			/* 10 scsi_reset_delay */
    214 	0,			/*    bios_id_lun */
    215 	0,			/* 11 termination_se */
    216 	0,			/*    termination_lvd */
    217 	0xFFE7,			/* 12 bios_ctrl */
    218 	{ 0x5555 },		/* 13 sdtr_speed2 */
    219 	{ 0x5555 },		/* 14 sdtr_speed3 */
    220 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    221 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    222 	0,			/* 16 dvc_cntl */
    223 	{ 0x5555 },		/* 17 sdtr_speed4 */
    224 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    225 	0,			/* 21 check_sum */
    226 	{			/* 22-29 oem_name[16] */
    227 	  0,0,0,0,0,0,0,0,
    228 	  0,0,0,0,0,0,0,0
    229 	},
    230 	0,			/* 30 dvc_err_code */
    231 	0,			/* 31 adv_err_code */
    232 	0,			/* 32 adv_err_addr */
    233 	0,			/* 33 saved_dvc_err_code */
    234 	0,			/* 34 saved_adv_err_code */
    235 	0,			/* 35 saved_adv_err_addr */
    236 	{			/* 36-55 reserved1[16] */
    237 	  0,0,0,0,0,0,0,0,0,0,
    238 	  0,0,0,0,0,0,0,0,0,0
    239 	},
    240 	0,			/* 56 cisptr_lsw */
    241 	0,			/* 57 cisprt_msw */
    242 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    243 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    244 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    245 };
    246 
    247 
    248 /*
    249  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    250  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    251  * all of this is done.
    252  *
    253  * For a non-fatal error return a warning code. If there are no warnings
    254  * then 0 is returned.
    255  *
    256  * Note: Chip is stopped on entry.
    257  */
    258 int
    259 AdwInitFromEEPROM(sc)
    260 ADW_SOFTC      *sc;
    261 {
    262 	bus_space_tag_t iot = sc->sc_iot;
    263 	bus_space_handle_t ioh = sc->sc_ioh;
    264 	ADW_EEPROM		eep_config;
    265 	u_int16_t		warn_code;
    266 	u_int16_t		sdtr_speed = 0;
    267 	u_int8_t		tid, termination;
    268 	int			i, j;
    269 
    270 
    271 	warn_code = 0;
    272 
    273 	/*
    274 	 * Read the board's EEPROM configuration.
    275 	 *
    276 	 * Set default values if a bad checksum is found.
    277 	 *
    278 	 * XXX - Don't handle big-endian access to EEPROM yet.
    279 	 */
    280 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    281 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    282 
    283 		/*
    284 		 * Set EEPROM default values.
    285 		 */
    286 		switch(sc->chip_type) {
    287 		case ADW_CHIP_ASC3550:
    288 			eep_config = adw_3550_Default_EEPROM;
    289 			break;
    290 		case ADW_CHIP_ASC38C0800:
    291 			eep_config = adw_38C0800_Default_EEPROM;
    292 			break;
    293 		case ADW_CHIP_ASC38C1600:
    294 			eep_config = adw_38C1600_Default_EEPROM;
    295 
    296 #if 0
    297 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    298 #endif
    299 			if (sc->cfg.pci_slot_info != 0) {
    300 				u_int8_t lsw_msb;
    301 
    302 				lsw_msb = eep_config.cfg_lsw >> 8;
    303 				/*
    304 				 * Set Function 1 EEPROM Word 0 MSB
    305 				 *
    306 				 * Clear the BIOS_ENABLE (bit 14) and
    307 				 * INTAB (bit 11) EEPROM bits.
    308 				 *
    309 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    310 				 * SPARC Ultra 60 and old Mac system booting
    311 				 * problem. The Expansion ROM must
    312 				 * be disabled in Function 1 for these systems.
    313 				 */
    314 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    315 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    316 				/*
    317 				 * Set the INTAB (bit 11) if the GPIO 0 input
    318 				 * indicates the Function 1 interrupt line is
    319 				 * wired to INTA.
    320 				 *
    321 				 * Set/Clear Bit 11 (INTAB) from
    322 				 * the GPIO bit 0 input:
    323 				 *   1 - Function 1 intr line wired to INT A.
    324 				 *   0 - Function 1 intr line wired to INT B.
    325 				 *
    326 				 * Note: Adapter boards always have Function 0
    327 				 * wired to INTA.
    328 				 * Put all 5 GPIO bits in input mode and then
    329 				 * read their input values.
    330 				 */
    331 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    332 							IOPB_GPIO_CNTL, 0);
    333 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    334 						IOPB_GPIO_DATA) & 0x01) {
    335 					/*
    336 					 * Function 1 interrupt wired to INTA;
    337 					 * Set EEPROM bit.
    338 					 */
    339 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    340 							 & 0xFF;
    341 				 }
    342 				 eep_config.cfg_lsw &= 0x00FF;
    343 				 eep_config.cfg_lsw |= lsw_msb << 8;
    344 			}
    345 			break;
    346 		}
    347 
    348 		/*
    349 		 * Assume the 6 byte board serial number that was read
    350 		 * from EEPROM is correct even if the EEPROM checksum
    351 		 * failed.
    352 		 */
    353 		for (i=2, j=1; i>=0; i--, j++) {
    354 		eep_config.serial_number[i] =
    355 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    356 		}
    357 
    358 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    359 	}
    360 	/*
    361 	 * Set sc and sc->cfg variables from the EEPROM configuration
    362 	 * that was read.
    363 	 *
    364 	 * This is the mapping of EEPROM fields to Adw Library fields.
    365 	 */
    366 	sc->wdtr_able = eep_config.wdtr_able;
    367 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    368 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    369 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    370 	} else {
    371 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    372 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    373 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    374 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    375 	}
    376 	sc->ppr_able = 0;
    377 	sc->tagqng_able = eep_config.tagqng_able;
    378 	sc->cfg.disc_enable = eep_config.disc_enable;
    379 	sc->max_host_qng = eep_config.max_host_qng;
    380 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    381 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    382 	sc->start_motor = eep_config.start_motor;
    383 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    384 	sc->bios_ctrl = eep_config.bios_ctrl;
    385 	sc->no_scam = eep_config.scam_tolerant;
    386 	sc->cfg.serial1 = eep_config.serial_number[0];
    387 	sc->cfg.serial2 = eep_config.serial_number[1];
    388 	sc->cfg.serial3 = eep_config.serial_number[2];
    389 
    390 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    391 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    392 		sc->sdtr_able = 0;
    393 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    394 			if (tid == 0) {
    395 				sdtr_speed = sc->sdtr_speed1;
    396 			} else if (tid == 4) {
    397 				sdtr_speed = sc->sdtr_speed2;
    398 			} else if (tid == 8) {
    399 				sdtr_speed = sc->sdtr_speed3;
    400 			} else if (tid == 12) {
    401 				sdtr_speed = sc->sdtr_speed4;
    402 			}
    403 			if (sdtr_speed & ADW_MAX_TID) {
    404 				sc->sdtr_able |= (1 << tid);
    405 			}
    406 			sdtr_speed >>= 4;
    407 		}
    408 	}
    409 
    410 	/*
    411 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    412 	 * maximum queuing (max. 63, min. 4).
    413 	 */
    414 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    415 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    416 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    417 	{
    418 		/* If the value is zero, assume it is uninitialized. */
    419 		if (eep_config.max_host_qng == 0) {
    420 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    421 		} else {
    422 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    423 		}
    424 	}
    425 
    426 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    427 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    428 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    429 		/* If the value is zero, assume it is uninitialized. */
    430 		if (eep_config.max_dvc_qng == 0) {
    431 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    432 		} else {
    433 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    434 		}
    435 	}
    436 
    437 	/*
    438 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    439 	 * set 'max_dvc_qng' to 'max_host_qng'.
    440 	 */
    441 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    442 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    443 	}
    444 
    445 	/*
    446 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    447 	 * values based on possibly adjusted EEPROM values.
    448 	 */
    449 	sc->max_host_qng = eep_config.max_host_qng;
    450 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    451 
    452 
    453 	/*
    454 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    455 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    456 	 *
    457 	 * If the termination is specified with a non-zero 'termination'
    458 	 * value check that a legal value is set and set the ADV_DVC_CFG
    459 	 * 'termination' field appropriately.
    460 	 */
    461 
    462 	switch(sc->chip_type) {
    463 	case ADW_CHIP_ASC3550:
    464 		sc->cfg.termination = 0;	/* auto termination */
    465 		switch(eep_config.termination_se) {
    466 		case 3:
    467 			/* Enable manual control with low on / high on. */
    468 			sc->cfg.termination |= ADW_TERM_CTL_L;
    469 		case 2:
    470 			/* Enable manual control with low off / high on. */
    471 			sc->cfg.termination |= ADW_TERM_CTL_H;
    472 		case 1:
    473 			/* Enable manual control with low off / high off. */
    474 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    475 		case 0:
    476 			break;
    477 		default:
    478 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    479 		}
    480 		break;
    481 
    482 	case ADW_CHIP_ASC38C0800:
    483 	case ADW_CHIP_ASC38C1600:
    484 		switch(eep_config.termination_se) {
    485 		case 0:
    486 			/* auto termination for SE */
    487 			termination = 0;
    488 			break;
    489 		case 1:
    490 			/* Enable manual control with low off / high off. */
    491 			termination = 0;
    492 			break;
    493 		case 2:
    494 			/* Enable manual control with low off / high on. */
    495 			termination = ADW_TERM_SE_HI;
    496 			break;
    497 		case 3:
    498 			/* Enable manual control with low on / high on. */
    499 			termination = ADW_TERM_SE;
    500 			break;
    501 		default:
    502 			/*
    503 			 * The EEPROM 'termination_se' field contains a
    504 			 * bad value. Use automatic termination instead.
    505 			 */
    506 			termination = 0;
    507 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    508 		}
    509 
    510 		switch(eep_config.termination_lvd) {
    511 		case 0:
    512 			/* auto termination for LVD */
    513 			sc->cfg.termination = termination;
    514 			break;
    515 		case 1:
    516 			/* Enable manual control with low off / high off. */
    517 			sc->cfg.termination = termination;
    518 			break;
    519 		case 2:
    520 			/* Enable manual control with low off / high on. */
    521 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    522 			break;
    523 		case 3:
    524 			/* Enable manual control with low on / high on. */
    525 			sc->cfg.termination = termination | ADW_TERM_LVD;
    526 			break;
    527 		default:
    528 			/*
    529 			 * The EEPROM 'termination_lvd' field contains a
    530 			 * bad value. Use automatic termination instead.
    531 			 */
    532 			sc->cfg.termination = termination;
    533 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    534 		}
    535 		break;
    536 	}
    537 
    538 	return warn_code;
    539 }
    540 
    541 
    542 /*
    543  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    544  *
    545  * On failure return the error code.
    546  */
    547 int
    548 AdwInitDriver(sc)
    549 ADW_SOFTC      *sc;
    550 {
    551 	bus_space_tag_t iot = sc->sc_iot;
    552 	bus_space_handle_t ioh = sc->sc_ioh;
    553 	u_int16_t	error_code;
    554 	int		word;
    555 	int		i;
    556 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    557 								0x40-0x8F. */
    558 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    559 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    560 	u_int8_t	tid;
    561 
    562 
    563 	error_code = 0;
    564 
    565 	/*
    566 	 * Save the RISC memory BIOS region before writing the microcode.
    567 	 * The BIOS may already be loaded and using its RISC LRAM region
    568 	 * so its region must be saved and restored.
    569 	 *
    570 	 * Note: This code makes the assumption, which is currently true,
    571 	 * that a chip reset does not clear RISC LRAM.
    572 	 */
    573 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    574 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    575 	}
    576 
    577 	/*
    578 	 * Save current per TID negotiated values.
    579 	 */
    580 	switch (sc->chip_type) {
    581 	case ADW_CHIP_ASC3550:
    582 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    583 
    584 			u_int16_t  bios_version, major, minor;
    585 
    586 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    587 					ADW_MC_BIOSMEM) / 2];
    588 			major = (bios_version  >> 12) & 0xF;
    589 			minor = (bios_version  >> 8) & 0xF;
    590 			if (major < 3 || (major == 3 && minor == 1)) {
    591 			    /*
    592 			     * BIOS 3.1 and earlier location of
    593 			     * 'wdtr_able' variable.
    594 			     */
    595 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    596 			} else {
    597 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    598 					    wdtr_able);
    599 			}
    600 		}
    601 		break;
    602 
    603 	case ADW_CHIP_ASC38C1600:
    604 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    605 		/* FALLTHROUGH */
    606 	case ADW_CHIP_ASC38C0800:
    607 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    608 		break;
    609 	}
    610 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    611 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    612 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    613 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    614 			max_cmd[tid]);
    615 	}
    616 
    617 	/*
    618 	 * Perform a RAM Built-In Self Test
    619 	 */
    620 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    621 		return error_code;
    622 	}
    623 
    624 	/*
    625 	 * Load the Microcode
    626 	 */
    627 	;
    628 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    629 		return error_code;
    630 	}
    631 
    632 	/*
    633 	 * Read microcode version and date.
    634 	 */
    635 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    636 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    637 
    638 	/*
    639 	 * If the PCI Configuration Command Register "Parity Error Response
    640 	 * Control" Bit was clear (0), then set the microcode variable
    641 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    642 	 * to ignore DMA parity errors.
    643 	 */
    644 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    645 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    646 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    647 					word | CONTROL_FLAG_IGNORE_PERR);
    648 	}
    649 
    650 	switch (sc->chip_type) {
    651 	case ADW_CHIP_ASC3550:
    652 		/*
    653 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    654 		 * FIFO threshold of 128 bytes.
    655 		 * This register is only accessible to the host.
    656 		 */
    657 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    658 				START_CTL_EMFU | READ_CMD_MRM);
    659 		break;
    660 
    661 	case ADW_CHIP_ASC38C0800:
    662 		/*
    663 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    664 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    665 		 * cable detection and then we are able to read C_DET[3:0].
    666 		 *
    667 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    668 		 * Microcode Default Value' section below.
    669 		 */
    670 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    671 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    672 				| ADW_DIS_TERM_DRV);
    673 
    674 		/*
    675 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    676 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    677 		 *
    678 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    679 		 * 256 bytes.
    680 		 *
    681 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    682 		 */
    683 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    684 						BC_THRESH_ENB | FIFO_THRESH_80B
    685 						| START_CTL_TH | READ_CMD_MRM);
    686 		break;
    687 
    688 	case ADW_CHIP_ASC38C1600:
    689 		/*
    690 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    691 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    692 		 * cable detection and then we are able to read C_DET[3:0].
    693 		 *
    694 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    695 		 * Microcode Default Value' section below.
    696 		 */
    697 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    698 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    699 				| ADW_DIS_TERM_DRV);
    700 
    701 		/*
    702 		 * If the BIOS control flag AIPP (Asynchronous Information
    703 		 * Phase Protection) disable bit is not set, then set the
    704 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    705 		 * enable AIPP checking and encoding.
    706 		 */
    707 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    708 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    709 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    710 					word | CONTROL_FLAG_ENABLE_AIPP);
    711 		}
    712 
    713 		/*
    714 		 * For ASC-38C1600 use DMA_CFG0 default values:
    715 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    716 		 */
    717 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    718 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    719 		break;
    720 	}
    721 
    722 	/*
    723 	 * Microcode operating variables for WDTR, SDTR, and command tag
    724 	 * queuing will be set in AdvInquiryHandling() based on what a
    725 	 * device reports it is capable of in Inquiry byte 7.
    726 	 *
    727 	 * If SCSI Bus Resets have been disabled, then directly set
    728 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    729 	 * the BIOS and warm boot to work without a SCSI bus hang on
    730 	 * the Inquiry caused by host and target mismatched DTR values.
    731 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    732 	 * be assumed to be in Asynchronous, Narrow mode.
    733 	 */
    734 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    735 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    736 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    737 	}
    738 
    739 	/*
    740 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    741 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    742 	 * bitmask. These values determine the maximum SDTR speed negotiated
    743 	 * with a device.
    744 	 *
    745 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    746 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    747 	 * without determining here whether the device supports SDTR.
    748 	 */
    749 	switch (sc->chip_type) {
    750 	case ADW_CHIP_ASC3550:
    751 		word = 0;
    752 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    753 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    754 				/* Set Ultra speed for TID 'tid'. */
    755 				word |= (0x3 << (4 * (tid % 4)));
    756 			} else {
    757 				/* Set Fast speed for TID 'tid'. */
    758 				word |= (0x2 << (4 * (tid % 4)));
    759 			}
    760 			/* Check if done with sdtr_speed1. */
    761 			if (tid == 3) {
    762 				ADW_WRITE_WORD_LRAM(iot, ioh,
    763 						ADW_MC_SDTR_SPEED1, word);
    764 				word = 0;
    765 			/* Check if done with sdtr_speed2. */
    766 			} else if (tid == 7) {
    767 				ADW_WRITE_WORD_LRAM(iot, ioh,
    768 						ADW_MC_SDTR_SPEED2, word);
    769 				word = 0;
    770 			/* Check if done with sdtr_speed3. */
    771 			} else if (tid == 11) {
    772 				ADW_WRITE_WORD_LRAM(iot, ioh,
    773 						ADW_MC_SDTR_SPEED3, word);
    774 				word = 0;
    775 			/* Check if done with sdtr_speed4. */
    776 			} else if (tid == 15) {
    777 				ADW_WRITE_WORD_LRAM(iot, ioh,
    778 						ADW_MC_SDTR_SPEED4, word);
    779 				/* End of loop. */
    780 			}
    781 		}
    782 
    783 		/*
    784 		 * Set microcode operating variable for the
    785 		 * disconnect per TID bitmask.
    786 		 */
    787 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    788 							sc->cfg.disc_enable);
    789 		break;
    790 
    791 	case ADW_CHIP_ASC38C0800:
    792 		/* FALLTHROUGH */
    793 	case ADW_CHIP_ASC38C1600:
    794 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    795 							sc->cfg.disc_enable);
    796 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    797 							sc->sdtr_speed1);
    798 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    799 							sc->sdtr_speed2);
    800 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    801 							sc->sdtr_speed3);
    802 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    803 							sc->sdtr_speed4);
    804 		break;
    805 	}
    806 
    807 
    808 	/*
    809 	 * Set SCSI_CFG0 Microcode Default Value.
    810 	 *
    811 	 * The microcode will set the SCSI_CFG0 register using this value
    812 	 * after it is started below.
    813 	 */
    814 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    815 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    816 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    817 
    818 
    819 	switch(sc->chip_type) {
    820 	case ADW_CHIP_ASC3550:
    821 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    822 		break;
    823 
    824 	case ADW_CHIP_ASC38C0800:
    825 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    826 		break;
    827 
    828 	case ADW_CHIP_ASC38C1600:
    829 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    830 		break;
    831 	}
    832 	if(error_code) {
    833 		return error_code;
    834 	}
    835 
    836 	/*
    837 	 * Set SEL_MASK Microcode Default Value
    838 	 *
    839 	 * The microcode will set the SEL_MASK register using this value
    840 	 * after it is started below.
    841 	 */
    842 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    843 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    844 
    845 	/*
    846 	 * Create and Initialize Host->RISC Carrier lists
    847 	 */
    848 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    849 						sc->sc_control->carriers);
    850 
    851 	/*
    852 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    853 	 */
    854 
    855 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    856 		return ADW_IERR_NO_CARRIER;
    857 	}
    858 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    859 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    860 
    861 	/*
    862 	 * The first command issued will be placed in the stopper carrier.
    863 	 */
    864 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    865 
    866 	/*
    867 	 * Set RISC ICQ physical address start value.
    868 	 */
    869 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    870 
    871 	/*
    872 	 * Initialize the COMMA register to the same value otherwise
    873 	 * the RISC will prematurely detect a command is available.
    874 	 */
    875 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    876 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    877 						le32toh(sc->icq_sp->carr_ba));
    878 	}
    879 
    880 	/*
    881 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    882 	 */
    883 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    884 		return ADW_IERR_NO_CARRIER;
    885 	}
    886 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    887 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    888 
    889 	/*
    890 	 * The first command completed by the RISC will be placed in
    891 	 * the stopper.
    892 	 *
    893 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    894 	 * completed the RISC will set the ASC_RQ_DONE bit.
    895 	 */
    896 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    897 
    898 	/*
    899 	 * Set RISC IRQ physical address start value.
    900 	 */
    901 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    902 	sc->carr_pending_cnt = 0;
    903 
    904 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    905 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    906 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    907 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    908 
    909 	/* finally, finally, gentlemen, start your engine */
    910 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    911 
    912 	/*
    913 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    914 	 * Resets should be performed. The RISC has to be running
    915 	 * to issue a SCSI Bus Reset.
    916 	 */
    917 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    918 	{
    919 		/*
    920 		 * If the BIOS Signature is present in memory, restore the
    921 		 * BIOS Handshake Configuration Table and do not perform
    922 		 * a SCSI Bus Reset.
    923 		 */
    924 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    925 				0x55AA) {
    926 			/*
    927 			 * Restore per TID negotiated values.
    928 			 */
    929 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    930 					wdtr_able);
    931 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    932 					sdtr_able);
    933 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    934 					tagqng_able);
    935 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    936 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    937 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    938 						max_cmd[tid]);
    939 			}
    940 		} else {
    941 			if (AdwResetCCB(sc) != ADW_TRUE) {
    942 				error_code = ADW_WARN_BUSRESET_ERROR;
    943 			}
    944 		}
    945 	}
    946 
    947 	return error_code;
    948 }
    949 
    950 
    951 int
    952 AdwRamSelfTest(iot, ioh, chip_type)
    953 	bus_space_tag_t iot;
    954 	bus_space_handle_t ioh;
    955 	u_int8_t chip_type;
    956 {
    957 	int		i;
    958 	u_int8_t	byte;
    959 
    960 
    961 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    962 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    963 		/*
    964 		 * RAM BIST (RAM Built-In Self Test)
    965 		 *
    966 		 * Address : I/O base + offset 0x38h register (byte).
    967 		 * Function: Bit 7-6(RW) : RAM mode
    968 		 *			    Normal Mode   : 0x00
    969 		 *			    Pre-test Mode : 0x40
    970 		 *			    RAM Test Mode : 0x80
    971 		 *	     Bit 5	 : unused
    972 		 *	     Bit 4(RO)   : Done bit
    973 		 *	     Bit 3-0(RO) : Status
    974 		 *			    Host Error    : 0x08
    975 		 *			    Int_RAM Error : 0x04
    976 		 *			    RISC Error    : 0x02
    977 		 *			    SCSI Error    : 0x01
    978 		 *			    No Error	  : 0x00
    979 		 *
    980 		 * Note: RAM BIST code should be put right here, before loading
    981 		 * the microcode and after saving the RISC memory BIOS region.
    982 		 */
    983 
    984 		/*
    985 		 * LRAM Pre-test
    986 		 *
    987 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    988 		 * 10 milliseconds.
    989 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    990 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    991 		 * If cannot reset to NORMAL_MODE, return an error too.
    992 		 */
    993 		for (i = 0; i < 2; i++) {
    994 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    995 					PRE_TEST_MODE);
    996 			 /* Wait for 10ms before reading back. */
    997 			AdwSleepMilliSecond(10);
    998 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    999 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
   1000 					PRE_TEST_VALUE) {
   1001 				return ADW_IERR_BIST_PRE_TEST;
   1002 			}
   1003 
   1004 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
   1005 								NORMAL_MODE);
   1006 			/* Wait for 10ms before reading back. */
   1007 			AdwSleepMilliSecond(10);
   1008 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1009 			    != NORMAL_VALUE) {
   1010 				return ADW_IERR_BIST_PRE_TEST;
   1011 			}
   1012 		}
   1013 
   1014 		/*
   1015 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1016 		 *
   1017 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1018 		 * 10 milliseconds.
   1019 		 * If Done bit not set or Status not 0, save register byte,
   1020 		 * set the err_code, and return an error.
   1021 		 */
   1022 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1023 		/* Wait for 10ms before checking status. */
   1024 		AdwSleepMilliSecond(10);
   1025 
   1026 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1027 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1028 			/* Get here if Done bit not set or Status not 0. */
   1029 			return ADW_IERR_BIST_RAM_TEST;
   1030 		}
   1031 
   1032 		/* We need to reset back to normal mode after LRAM test passes*/
   1033 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1034 	}
   1035 
   1036 	return 0;
   1037 }
   1038 
   1039 
   1040 int
   1041 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
   1042 	bus_space_tag_t iot;
   1043 	bus_space_handle_t ioh;
   1044 	u_int16_t *bios_mem;
   1045 	u_int8_t chip_type;
   1046 {
   1047 	const u_int8_t	*mcode_data;
   1048 	u_int32_t	 mcode_chksum;
   1049 	u_int16_t	 mcode_size;
   1050 	u_int32_t	sum;
   1051 	u_int16_t	code_sum;
   1052 	int		begin_addr;
   1053 	int		end_addr;
   1054 	int		word;
   1055 	int		adw_memsize;
   1056 	int		adw_mcode_expanded_size;
   1057 	int		i, j;
   1058 
   1059 
   1060 	switch(chip_type) {
   1061 	case ADW_CHIP_ASC3550:
   1062 		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1063 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1064 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1065 		adw_memsize = ADW_3550_MEMSIZE;
   1066 		break;
   1067 
   1068 	case ADW_CHIP_ASC38C0800:
   1069 		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1070 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1071 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1072 		adw_memsize = ADW_38C0800_MEMSIZE;
   1073 		break;
   1074 
   1075 	case ADW_CHIP_ASC38C1600:
   1076 		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1077 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1078 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1079 		adw_memsize = ADW_38C1600_MEMSIZE;
   1080 		break;
   1081 
   1082 	default:
   1083 		return (EINVAL);
   1084 	}
   1085 
   1086 	/*
   1087 	 * Write the microcode image to RISC memory starting at address 0.
   1088 	 */
   1089 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1090 
   1091 	/* Assume the following compressed format of the microcode buffer:
   1092 	 *
   1093 	 *  254 word (508 byte) table indexed by byte code followed
   1094 	 *  by the following byte codes:
   1095 	 *
   1096 	 *    1-Byte Code:
   1097 	 *	00: Emit word 0 in table.
   1098 	 *	01: Emit word 1 in table.
   1099 	 *	.
   1100 	 *	FD: Emit word 253 in table.
   1101 	 *
   1102 	 *    Multi-Byte Code:
   1103 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1104 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1105 	 */
   1106 	word = 0;
   1107 	for (i = 253 * 2; i < mcode_size; i++) {
   1108 		if (mcode_data[i] == 0xff) {
   1109 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1110 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1111 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1112 				  mcode_data[i + 2]));
   1113 				word++;
   1114 			}
   1115 			i += 3;
   1116 		} else if (mcode_data[i] == 0xfe) {
   1117 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1118 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1119 			    mcode_data[i + 1]));
   1120 			i += 2;
   1121 			word++;
   1122 		} else {
   1123 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1124 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1125 			 mcode_data[mcode_data[i] * 2]));
   1126 			word++;
   1127 		}
   1128 	}
   1129 
   1130 	/*
   1131 	 * Set 'word' for later use to clear the rest of memory and save
   1132 	 * the expanded mcode size.
   1133 	 */
   1134 	word *= 2;
   1135 	adw_mcode_expanded_size = word;
   1136 
   1137 	/*
   1138 	 * Clear the rest of the Internal RAM.
   1139 	 */
   1140 	for (; word < adw_memsize; word += 2) {
   1141 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1142 	}
   1143 
   1144 	/*
   1145 	 * Verify the microcode checksum.
   1146 	 */
   1147 	sum = 0;
   1148 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1149 
   1150 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1151 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1152 	}
   1153 
   1154 	if (sum != mcode_chksum) {
   1155 		return ADW_IERR_MCODE_CHKSUM;
   1156 	}
   1157 
   1158 	/*
   1159 	 * Restore the RISC memory BIOS region.
   1160 	 */
   1161 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1162 		if(chip_type == ADW_CHIP_ASC3550) {
   1163 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1164 								bios_mem[i]);
   1165 		} else {
   1166 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1167 								bios_mem[i]);
   1168 		}
   1169 	}
   1170 
   1171 	/*
   1172 	 * Calculate and write the microcode code checksum to the microcode
   1173 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1174 	 */
   1175 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1176 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1177 	code_sum = 0;
   1178 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1179 	for (word = begin_addr; word < end_addr; word += 2) {
   1180 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1181 	}
   1182 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1183 
   1184 	/*
   1185 	 * Set the chip type.
   1186 	 */
   1187 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1188 
   1189 	return 0;
   1190 }
   1191 
   1192 
   1193 int
   1194 AdwASC3550Cabling(iot, ioh, cfg)
   1195 	bus_space_tag_t iot;
   1196 	bus_space_handle_t ioh;
   1197 	ADW_DVC_CFG *cfg;
   1198 {
   1199 	u_int16_t	scsi_cfg1;
   1200 
   1201 
   1202 	/*
   1203 	 * Determine SCSI_CFG1 Microcode Default Value.
   1204 	 *
   1205 	 * The microcode will set the SCSI_CFG1 register using this value
   1206 	 * after it is started below.
   1207 	 */
   1208 
   1209 	/* Read current SCSI_CFG1 Register value. */
   1210 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1211 
   1212 	/*
   1213 	 * If all three connectors are in use in ASC3550, return an error.
   1214 	 */
   1215 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1216 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1217 		return ADW_IERR_ILLEGAL_CONNECTION;
   1218 	}
   1219 
   1220 	/*
   1221 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1222 	 * will be set. Check for and return an error if this condition is
   1223 	 * found.
   1224 	 */
   1225 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1226 		return ADW_IERR_REVERSED_CABLE;
   1227 	}
   1228 
   1229 	/*
   1230 	 * If this is a differential board and a single-ended device
   1231 	 * is attached to one of the connectors, return an error.
   1232 	 */
   1233 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1234 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1235 		return ADW_IERR_SINGLE_END_DEVICE;
   1236 	}
   1237 
   1238 	/*
   1239 	 * If automatic termination control is enabled, then set the
   1240 	 * termination value based on a table listed in a_condor.h.
   1241 	 *
   1242 	 * If manual termination was specified with an EEPROM setting
   1243 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1244 	 * is ready to be 'ored' into SCSI_CFG1.
   1245 	 */
   1246 	if (cfg->termination == 0) {
   1247 		/*
   1248 		 * The software always controls termination by setting
   1249 		 * TERM_CTL_SEL.
   1250 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1251 		 * termination.
   1252 		 */
   1253 		cfg->termination |= ADW_TERM_CTL_SEL;
   1254 
   1255 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1256 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1257 			case 0x3: case 0x7: case 0xB:
   1258 			case 0xD: case 0xE: case 0xF:
   1259 				cfg->termination |=
   1260 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1261 				break;
   1262 
   1263 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1264 			case 0x1: case 0x5: case 0x9:
   1265 			case 0xA: case 0xC:
   1266 				cfg->termination |= ADW_TERM_CTL_H;
   1267 				break;
   1268 
   1269 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1270 			case 0x2: case 0x6:
   1271 				break;
   1272 		}
   1273 	}
   1274 
   1275 	/*
   1276 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1277 	 */
   1278 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1279 
   1280 	/*
   1281 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1282 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1283 	 * referenced, because the hardware internally inverts
   1284 	 * the Termination High and Low bits if TERM_POL is set.
   1285 	 */
   1286 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1287 
   1288 	/*
   1289 	 * Set SCSI_CFG1 Microcode Default Value
   1290 	 *
   1291 	 * Set filter value and possibly modified termination control
   1292 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1293 	 *
   1294 	 * The microcode will set the SCSI_CFG1 register using this value
   1295 	 * after it is started below.
   1296 	 */
   1297 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1298 						ADW_FLTR_DISABLE | scsi_cfg1);
   1299 
   1300 	/*
   1301 	 * Set MEM_CFG Microcode Default Value
   1302 	 *
   1303 	 * The microcode will set the MEM_CFG register using this value
   1304 	 * after it is started below.
   1305 	 *
   1306 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1307 	 * are defined.
   1308 	 *
   1309 	 * ASC-3550 has 8KB internal memory.
   1310 	 */
   1311 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1312 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1313 
   1314 	return 0;
   1315 }
   1316 
   1317 
   1318 int
   1319 AdwASC38C0800Cabling(iot, ioh, cfg)
   1320 	bus_space_tag_t iot;
   1321 	bus_space_handle_t ioh;
   1322 	ADW_DVC_CFG *cfg;
   1323 {
   1324 	u_int16_t	scsi_cfg1;
   1325 
   1326 
   1327 	/*
   1328 	 * Determine SCSI_CFG1 Microcode Default Value.
   1329 	 *
   1330 	 * The microcode will set the SCSI_CFG1 register using this value
   1331 	 * after it is started below.
   1332 	 */
   1333 
   1334 	/* Read current SCSI_CFG1 Register value. */
   1335 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1336 
   1337 	/*
   1338 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1339 	 * will be set. Check for and return an error if this condition is
   1340 	 * found.
   1341 	 */
   1342 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1343 		return ADW_IERR_REVERSED_CABLE;
   1344 	}
   1345 
   1346 	/*
   1347 	 * All kind of combinations of devices attached to one of four
   1348 	 * connectors are acceptable except HVD device attached.
   1349 	 * For example, LVD device can be attached to SE connector while
   1350 	 * SE device attached to LVD connector.
   1351 	 * If LVD device attached to SE connector, it only runs up to
   1352 	 * Ultra speed.
   1353 	 *
   1354 	 * If an HVD device is attached to one of LVD connectors, return
   1355 	 * an error.
   1356 	 * However, there is no way to detect HVD device attached to
   1357 	 * SE connectors.
   1358 	 */
   1359 	if (scsi_cfg1 & ADW_HVD) {
   1360 		return ADW_IERR_HVD_DEVICE;
   1361 	}
   1362 
   1363 	/*
   1364 	 * If either SE or LVD automatic termination control is enabled, then
   1365 	 * set the termination value based on a table listed in a_condor.h.
   1366 	 *
   1367 	 * If manual termination was specified with an EEPROM setting then
   1368 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1369 	 * to be 'ored' into SCSI_CFG1.
   1370 	 */
   1371 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1372 		/* SE automatic termination control is enabled. */
   1373 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1374 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1375 			case 0x1: case 0x2: case 0x3:
   1376 				cfg->termination |= ADW_TERM_SE;
   1377 				break;
   1378 
   1379 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1380 			case 0x0:
   1381 				cfg->termination |= ADW_TERM_SE_HI;
   1382 				break;
   1383 		}
   1384 	}
   1385 
   1386 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1387 		/* LVD automatic termination control is enabled. */
   1388 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1389 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1390 			case 0x4: case 0x8: case 0xC:
   1391 				cfg->termination |= ADW_TERM_LVD;
   1392 				break;
   1393 
   1394 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1395 			case 0x0:
   1396 				break;
   1397 		}
   1398 	}
   1399 
   1400 	/*
   1401 	 * Clear any set TERM_SE and TERM_LVD bits.
   1402 	 */
   1403 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1404 
   1405 	/*
   1406 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1407 	 */
   1408 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1409 
   1410 	/*
   1411 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1412 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1413 	 * in the Microcode SCSI_CFG1 Register Value.
   1414 	 */
   1415 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1416 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1417 
   1418 	/*
   1419 	 * Set SCSI_CFG1 Microcode Default Value
   1420 	 *
   1421 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1422 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1423 	 *
   1424 	 * The microcode will set the SCSI_CFG1 register using this value
   1425 	 * after it is started below.
   1426 	 */
   1427 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1428 
   1429 	/*
   1430 	 * Set MEM_CFG Microcode Default Value
   1431 	 *
   1432 	 * The microcode will set the MEM_CFG register using this value
   1433 	 * after it is started below.
   1434 	 *
   1435 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1436 	 * are defined.
   1437 	 *
   1438 	 * ASC-38C0800 has 16KB internal memory.
   1439 	 */
   1440 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1441 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1442 
   1443 	return 0;
   1444 }
   1445 
   1446 
   1447 int
   1448 AdwASC38C1600Cabling(iot, ioh, cfg)
   1449 	bus_space_tag_t iot;
   1450 	bus_space_handle_t ioh;
   1451 	ADW_DVC_CFG *cfg;
   1452 {
   1453 	u_int16_t	scsi_cfg1;
   1454 
   1455 
   1456 	/*
   1457 	 * Determine SCSI_CFG1 Microcode Default Value.
   1458 	 *
   1459 	 * The microcode will set the SCSI_CFG1 register using this value
   1460 	 * after it is started below.
   1461 	 * Each ASC-38C1600 function has only two cable detect bits.
   1462 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1463 	 */
   1464 
   1465 	/* Read current SCSI_CFG1 Register value. */
   1466 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1467 
   1468 	/*
   1469 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1470 	 * will be set. Check for and return an error if this condition is
   1471 	 * found.
   1472 	 */
   1473 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1474 		return ADW_IERR_REVERSED_CABLE;
   1475 	}
   1476 
   1477 	/*
   1478 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1479 	 * cannot be connected to either connector. An LVD device or SE device
   1480 	 * may be connected to either connector. If an SE device is connected,
   1481 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
   1482 	 *
   1483 	 * If an HVD device is attached, return an error.
   1484 	 */
   1485 	if (scsi_cfg1 & ADW_HVD) {
   1486 		return ADW_IERR_HVD_DEVICE;
   1487 	}
   1488 
   1489 	/*
   1490 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1491 	 * termination because there are two connectors for each function.
   1492 	 * Each function may use either LVD or SE mode.
   1493 	 * Corresponding the SE automatic termination control EEPROM bits are
   1494 	 * used for each function.
   1495 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1496 	 * for the function, then set the termination value based on a table
   1497 	 * listed in adwlib.h.
   1498 	 *
   1499 	 * If manual termination is specified in the EEPROM for the function,
   1500 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1501 	 * ready to be 'ored' into SCSI_CFG1.
   1502 	 */
   1503 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1504 		/* SE automatic termination control is enabled. */
   1505 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1506 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1507 			case 0x1: case 0x2: case 0x3:
   1508 				cfg->termination |= ADW_TERM_SE;
   1509 				break;
   1510 
   1511 			case 0x0:
   1512 #if 0
   1513 	/* !!!!TODO!!!! */
   1514 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1515 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1516 				}
   1517 				else
   1518 #endif
   1519 				{
   1520 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1521 					cfg->termination |= ADW_TERM_SE_HI;
   1522 				}
   1523 				break;
   1524 			}
   1525 	}
   1526 
   1527 	/*
   1528 	 * Clear any set TERM_SE bits.
   1529 	 */
   1530 	scsi_cfg1 &= ~ADW_TERM_SE;
   1531 
   1532 	/*
   1533 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1534 	 */
   1535 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1536 
   1537 	/*
   1538 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1539 	 * modified termination control bits in the Microcode SCSI_CFG1
   1540 	 * Register Value.
   1541 	 */
   1542 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1543 
   1544 	/*
   1545 	 * Set SCSI_CFG1 Microcode Default Value
   1546 	 *
   1547 	 * Set possibly modified termination control bits in the Microcode
   1548 	 * SCSI_CFG1 Register Value.
   1549 	 *
   1550 	 * The microcode will set the SCSI_CFG1 register using this value
   1551 	 * after it is started below.
   1552 	 */
   1553 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1554 
   1555 	/*
   1556 	 * Set MEM_CFG Microcode Default Value
   1557 	 *
   1558 	 * The microcode will set the MEM_CFG register using this value
   1559 	 * after it is started below.
   1560 	 *
   1561 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1562 	 * are defined.
   1563 	 *
   1564 	 * ASC-38C1600 has 32KB internal memory.
   1565 	 */
   1566 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1567 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1568 
   1569 	return 0;
   1570 }
   1571 
   1572 
   1573 /*
   1574  * Read EEPROM configuration into the specified buffer.
   1575  *
   1576  * Return a checksum based on the EEPROM configuration read.
   1577  */
   1578 static u_int16_t
   1579 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
   1580 	bus_space_tag_t		iot;
   1581 	bus_space_handle_t	ioh;
   1582 	ADW_EEPROM		*cfg_buf;
   1583 {
   1584 	u_int16_t	       wval, chksum;
   1585 	u_int16_t	       *wbuf;
   1586 	int		    eep_addr;
   1587 
   1588 
   1589 	wbuf = (u_int16_t *) cfg_buf;
   1590 	chksum = 0;
   1591 
   1592 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1593 		eep_addr < ASC_EEP_DVC_CFG_END;
   1594 		eep_addr++, wbuf++) {
   1595 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1596 		chksum += wval;
   1597 		*wbuf = wval;
   1598 	}
   1599 
   1600 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1601 	wbuf++;
   1602 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1603 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1604 			eep_addr++, wbuf++) {
   1605 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1606 	}
   1607 
   1608 	return chksum;
   1609 }
   1610 
   1611 
   1612 /*
   1613  * Read the EEPROM from specified location
   1614  */
   1615 static u_int16_t
   1616 AdwReadEEPWord(iot, ioh, eep_word_addr)
   1617 	bus_space_tag_t		iot;
   1618 	bus_space_handle_t	ioh;
   1619 	int			eep_word_addr;
   1620 {
   1621 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1622 		ASC_EEP_CMD_READ | eep_word_addr);
   1623 	AdwWaitEEPCmd(iot, ioh);
   1624 
   1625 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1626 }
   1627 
   1628 
   1629 /*
   1630  * Wait for EEPROM command to complete
   1631  */
   1632 static void
   1633 AdwWaitEEPCmd(iot, ioh)
   1634 	bus_space_tag_t		iot;
   1635 	bus_space_handle_t	ioh;
   1636 {
   1637 	int eep_delay_ms;
   1638 
   1639 
   1640 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1641 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1642 				ASC_EEP_CMD_DONE) {
   1643 			break;
   1644 		}
   1645 		AdwSleepMilliSecond(1);
   1646 	}
   1647 
   1648 	(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1649 }
   1650 
   1651 
   1652 /*
   1653  * Write the EEPROM from 'cfg_buf'.
   1654  */
   1655 static void
   1656 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
   1657 	bus_space_tag_t		iot;
   1658 	bus_space_handle_t	ioh;
   1659 	ADW_EEPROM		*cfg_buf;
   1660 {
   1661 	u_int16_t *wbuf;
   1662 	u_int16_t addr, chksum;
   1663 
   1664 
   1665 	wbuf = (u_int16_t *) cfg_buf;
   1666 	chksum = 0;
   1667 
   1668 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1669 	AdwWaitEEPCmd(iot, ioh);
   1670 
   1671 	/*
   1672 	 * Write EEPROM from word 0 to word 20
   1673 	 */
   1674 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1675 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1676 		chksum += *wbuf;
   1677 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1678 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1679 				ASC_EEP_CMD_WRITE | addr);
   1680 		AdwWaitEEPCmd(iot, ioh);
   1681 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1682 	}
   1683 
   1684 	/*
   1685 	 * Write EEPROM checksum at word 21
   1686 	 */
   1687 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1688 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1689 			ASC_EEP_CMD_WRITE | addr);
   1690 	AdwWaitEEPCmd(iot, ioh);
   1691 	wbuf++;        /* skip over check_sum */
   1692 
   1693 	/*
   1694 	 * Write EEPROM OEM name at words 22 to 29
   1695 	 */
   1696 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1697 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1698 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1699 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1700 				ASC_EEP_CMD_WRITE | addr);
   1701 		AdwWaitEEPCmd(iot, ioh);
   1702 	}
   1703 
   1704 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1705 			ASC_EEP_CMD_WRITE_DISABLE);
   1706 	AdwWaitEEPCmd(iot, ioh);
   1707 
   1708 	return;
   1709 }
   1710 
   1711 
   1712 /*
   1713  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1714  *
   1715  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1716  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1717  *   RISC to notify it a new command is ready to be executed.
   1718  *
   1719  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1720  * set to SCSI_MAX_RETRY.
   1721  *
   1722  * Return:
   1723  *      ADW_SUCCESS(1) - The request was successfully queued.
   1724  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1725  *                       request completes.
   1726  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1727  *                       host IC error.
   1728  */
   1729 int
   1730 AdwExeScsiQueue(sc, scsiq)
   1731 ADW_SOFTC	*sc;
   1732 ADW_SCSI_REQ_Q	*scsiq;
   1733 {
   1734 	bus_space_tag_t iot = sc->sc_iot;
   1735 	bus_space_handle_t ioh = sc->sc_ioh;
   1736 	ADW_CCB		*ccb;
   1737 	u_int32_t	req_paddr;
   1738 	ADW_CARRIER	*new_carrp;
   1739 
   1740 	/*
   1741 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1742 	 */
   1743 	if (scsiq->target_id > ADW_MAX_TID) {
   1744 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1745 		scsiq->done_status = QD_WITH_ERROR;
   1746 		return ADW_ERROR;
   1747 	}
   1748 
   1749 	/*
   1750 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1751 	 */
   1752 
   1753 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1754 
   1755 	/*
   1756 	 * Allocate a carrier and initialize fields.
   1757 	 */
   1758 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1759 		return ADW_BUSY;
   1760 	}
   1761 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1762 			ASC_GET_CARRP(new_carrp->next_ba));
   1763 	sc->carr_pending_cnt++;
   1764 
   1765 	/*
   1766 	 * Set the carrier to be a stopper by setting 'next_ba'
   1767 	 * to the stopper value. The current stopper will be changed
   1768 	 * below to point to the new stopper.
   1769 	 */
   1770 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1771 
   1772 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1773 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1774 
   1775 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1776 	scsiq->scsiq_rptr = htole32(req_paddr);
   1777 
   1778 	/*
   1779 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1780 	 * order during initialization.
   1781 	 */
   1782 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1783 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1784 
   1785 	/*
   1786 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1787 	 * the microcode. The newly allocated stopper will become the new
   1788 	 * stopper.
   1789 	 */
   1790 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1791 
   1792 	/*
   1793 	 * Set the 'next_ba' pointer for the old stopper to be the
   1794 	 * physical address of the new stopper. The RISC can only
   1795 	 * follow physical addresses.
   1796 	 */
   1797 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1798 
   1799 #if ADW_DEBUG
   1800 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1801 			sc->icq_sp->carr_id,
   1802 			sc->icq_sp->carr_ba,
   1803 			sc->icq_sp->areq_ba,
   1804 			sc->icq_sp->next_ba);
   1805 #endif
   1806 	/*
   1807 	 * Set the host adapter stopper pointer to point to the new carrier.
   1808 	 */
   1809 	sc->icq_sp = new_carrp;
   1810 
   1811 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1812 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1813 		/*
   1814 		 * Tickle the RISC to tell it to read its Command Queue Head
   1815 		 * pointer.
   1816 		 */
   1817 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1818 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1819 			/*
   1820 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1821 			 * command 'clr_tickle_a' does not work unless the host
   1822 			 * value is cleared.
   1823 			 */
   1824 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1825 					ADW_TICKLE_NOP);
   1826 		}
   1827 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1828 		/*
   1829 		 * Notify the RISC a carrier is ready by writing the physical
   1830 		 * address of the new carrier stopper to the COMMA register.
   1831 		 */
   1832 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1833 				le32toh(new_carrp->carr_ba));
   1834 	}
   1835 
   1836 	/*
   1837 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1838 	 */
   1839 
   1840 	return ADW_SUCCESS;
   1841 }
   1842 
   1843 
   1844 void
   1845 AdwResetChip(iot, ioh)
   1846 	bus_space_tag_t iot;
   1847 	bus_space_handle_t ioh;
   1848 {
   1849 
   1850 	/*
   1851 	 * Reset Chip.
   1852 	 */
   1853 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1854 			ADW_CTRL_REG_CMD_RESET);
   1855 	AdwSleepMilliSecond(100);
   1856 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1857 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1858 }
   1859 
   1860 
   1861 /*
   1862  * Reset SCSI Bus and purge all outstanding requests.
   1863  *
   1864  * Return Value:
   1865  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1866  *      ADW_FALSE(0) -  Microcode command failed.
   1867  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1868  *                      may be hung which requires driver recovery.
   1869  */
   1870 int
   1871 AdwResetCCB(sc)
   1872 ADW_SOFTC	*sc;
   1873 {
   1874 	int	    status;
   1875 
   1876 	/*
   1877 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1878 	 * the SCSI Bus Reset signal.
   1879 	 */
   1880 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1881 	if (status != ADW_TRUE) {
   1882 		return status;
   1883 	}
   1884 
   1885 	/*
   1886 	 * Delay for the specified SCSI Bus Reset hold time.
   1887 	 *
   1888 	 * The hold time delay is done on the host because the RISC has no
   1889 	 * microsecond accurate timer.
   1890 	 */
   1891 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1892 
   1893 	/*
   1894 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1895 	 * the SCSI Bus Reset signal and purges any pending requests.
   1896 	 */
   1897 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1898 	if (status != ADW_TRUE) {
   1899 		return status;
   1900 	}
   1901 
   1902 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1903 
   1904 	return status;
   1905 }
   1906 
   1907 
   1908 /*
   1909  * Reset chip and SCSI Bus.
   1910  *
   1911  * Return Value:
   1912  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1913  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1914  */
   1915 int
   1916 AdwResetSCSIBus(sc)
   1917 ADW_SOFTC	*sc;
   1918 {
   1919 	bus_space_tag_t iot = sc->sc_iot;
   1920 	bus_space_handle_t ioh = sc->sc_ioh;
   1921 	int		status;
   1922 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
   1923 	u_int16_t	ppr_able = 0; /* XXX: gcc */
   1924 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1925 	u_int16_t	bios_sig;
   1926 
   1927 
   1928 	/*
   1929 	 * Save current per TID negotiated values.
   1930 	 */
   1931 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1932 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1933 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1934 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1935 	}
   1936 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1937 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1938 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1939 			max_cmd[tid]);
   1940 	}
   1941 
   1942 	/*
   1943 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1944 	 * by clearing the BIOS signature word.
   1945 	 * The initialization functions assumes a SCSI Bus Reset is not
   1946 	 * needed if the BIOS signature word is present.
   1947 	 */
   1948 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1949 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1950 
   1951 	/*
   1952 	 * Stop chip and reset it.
   1953 	 */
   1954 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1955 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1956 			ADW_CTRL_REG_CMD_RESET);
   1957 	AdwSleepMilliSecond(100);
   1958 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1959 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1960 
   1961 	/*
   1962 	 * Reset Adv Library error code, if any, and try
   1963 	 * re-initializing the chip.
   1964 	 * Then translate initialization return value to status value.
   1965 	 */
   1966 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1967 
   1968 	/*
   1969 	 * Restore the BIOS signature word.
   1970 	 */
   1971 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1972 
   1973 	/*
   1974 	 * Restore per TID negotiated values.
   1975 	 */
   1976 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1977 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1978 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1979 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1980 	}
   1981 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1982 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1983 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1984 			max_cmd[tid]);
   1985 	}
   1986 
   1987 	return status;
   1988 }
   1989 
   1990 
   1991 /*
   1992  * Adv Library Interrupt Service Routine
   1993  *
   1994  *  This function is called by a driver's interrupt service routine.
   1995  *  The function disables and re-enables interrupts.
   1996  *
   1997  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1998  *  'idle_cmd_done' field is set to ADW_TRUE.
   1999  *
   2000  *  Note: AdwISR() can be called when interrupts are disabled or even
   2001  *  when there is no hardware interrupt condition present. It will
   2002  *  always check for completed idle commands and microcode requests.
   2003  *  This is an important feature that shouldn't be changed because it
   2004  *  allows commands to be completed from polling mode loops.
   2005  *
   2006  * Return:
   2007  *   ADW_TRUE(1) - interrupt was pending
   2008  *   ADW_FALSE(0) - no interrupt was pending
   2009  */
   2010 int
   2011 AdwISR(sc)
   2012 ADW_SOFTC	*sc;
   2013 {
   2014 	bus_space_tag_t iot = sc->sc_iot;
   2015 	bus_space_handle_t ioh = sc->sc_ioh;
   2016 	u_int8_t	int_stat;
   2017 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   2018 	u_int32_t	irq_next_pa;
   2019 	ADW_SCSI_REQ_Q	*scsiq;
   2020 	ADW_CCB		*ccb;
   2021 	int		s;
   2022 
   2023 
   2024 	s = splbio();
   2025 
   2026 	/* Reading the register clears the interrupt. */
   2027 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   2028 
   2029 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   2030 	     ADW_INTR_STATUS_INTRC)) == 0) {
   2031 		splx(s);
   2032 		return ADW_FALSE;
   2033 	}
   2034 
   2035 	/*
   2036 	 * Notify the driver of an asynchronous microcode condition by
   2037 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2038 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2039 	 */
   2040 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2041 		u_int8_t intrb_code;
   2042 
   2043 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2044 
   2045 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2046 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2047 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2048 				sc->carr_pending_cnt != 0) {
   2049 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2050 					IOPB_TICKLE, ADW_TICKLE_A);
   2051 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2052 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2053 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2054 				}
   2055 			}
   2056 		}
   2057 
   2058 		if (sc->async_callback != 0) {
   2059 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2060 		}
   2061 	}
   2062 
   2063 	/*
   2064 	 * Check if the IRQ stopper carrier contains a completed request.
   2065 	 */
   2066 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2067 	{
   2068 #if ADW_DEBUG
   2069 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2070 				sc->irq_sp->carr_id,
   2071 				sc->irq_sp->carr_ba,
   2072 				sc->irq_sp->areq_ba,
   2073 				sc->irq_sp->next_ba);
   2074 #endif
   2075 		/*
   2076 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2077 		 * structure.
   2078 		 * The RISC will have set 'areq_ba' to a virtual address.
   2079 		 *
   2080 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2081 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2082 		 * The conversion below complements the conversion of
   2083 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2084 		 */
   2085 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2086 		scsiq = &ccb->scsiq;
   2087 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2088 
   2089 		/*
   2090 		 * Request finished with good status and the queue was not
   2091 		 * DMAed to host memory by the firmware. Set all status fields
   2092 		 * to indicate good status.
   2093 		 */
   2094 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2095 			scsiq->done_status = QD_NO_ERROR;
   2096 			scsiq->host_status = scsiq->scsi_status = 0;
   2097 			scsiq->data_cnt = 0L;
   2098 		}
   2099 
   2100 		/*
   2101 		 * Advance the stopper pointer to the next carrier
   2102 		 * ignoring the lower four bits. Free the previous
   2103 		 * stopper carrier.
   2104 		 */
   2105 		free_carrp = sc->irq_sp;
   2106 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2107 
   2108 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
   2109 					: sc->carr_freelist->carr_ba;
   2110 		sc->carr_freelist = free_carrp;
   2111 		sc->carr_pending_cnt--;
   2112 
   2113 		/*
   2114 		 * Clear request microcode control flag.
   2115 		 */
   2116 		scsiq->cntl = 0;
   2117 
   2118 		/*
   2119 		 * Check Condition handling
   2120 		 */
   2121 		/*
   2122 		 * If the command that completed was a SCSI INQUIRY and
   2123 		 * LUN 0 was sent the command, then process the INQUIRY
   2124 		 * command information for the device.
   2125 		 */
   2126 		if (scsiq->done_status == QD_NO_ERROR &&
   2127 		    scsiq->cdb[0] == INQUIRY &&
   2128 		    scsiq->target_lun == 0) {
   2129 			AdwInquiryHandling(sc, scsiq);
   2130 		}
   2131 
   2132 		/*
   2133 		 * Notify the driver of the completed request by passing
   2134 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2135 		 */
   2136 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2137 		/*
   2138 		 * Note: After the driver callback function is called, 'scsiq'
   2139 		 * can no longer be referenced.
   2140 		 *
   2141 		 * Fall through and continue processing other completed
   2142 		 * requests...
   2143 		 */
   2144 	}
   2145 
   2146 	splx(s);
   2147 
   2148 	return ADW_TRUE;
   2149 }
   2150 
   2151 
   2152 /*
   2153  * Send an idle command to the chip and wait for completion.
   2154  *
   2155  * Command completion is polled for once per microsecond.
   2156  *
   2157  * The function can be called from anywhere including an interrupt handler.
   2158  * But the function is not re-entrant, so it uses the splbio/splx()
   2159  * functions to prevent reentrancy.
   2160  *
   2161  * Return Values:
   2162  *   ADW_TRUE - command completed successfully
   2163  *   ADW_FALSE - command failed
   2164  *   ADW_ERROR - command timed out
   2165  */
   2166 int
   2167 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   2168 ADW_SOFTC      *sc;
   2169 u_int16_t       idle_cmd;
   2170 u_int32_t       idle_cmd_parameter;
   2171 {
   2172 	bus_space_tag_t iot = sc->sc_iot;
   2173 	bus_space_handle_t ioh = sc->sc_ioh;
   2174 	u_int16_t	result;
   2175 	u_int32_t	i, j, s;
   2176 
   2177 	s = splbio();
   2178 
   2179 	/*
   2180 	 * Clear the idle command status which is set by the microcode
   2181 	 * to a non-zero value to indicate when the command is completed.
   2182 	 */
   2183 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2184 
   2185 	/*
   2186 	 * Write the idle command value after the idle command parameter
   2187 	 * has been written to avoid a race condition. If the order is not
   2188 	 * followed, the microcode may process the idle command before the
   2189 	 * parameters have been written to LRAM.
   2190 	 */
   2191 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2192 			idle_cmd_parameter);
   2193 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2194 
   2195 	/*
   2196 	 * Tickle the RISC to tell it to process the idle command.
   2197 	 */
   2198 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2199 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2200 		/*
   2201 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2202 		 * command 'clr_tickle_b' does not work unless the host
   2203 		 * value is cleared.
   2204 		 */
   2205 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2206 	}
   2207 
   2208 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2209 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2210 		/* Poll once each microsecond for command completion. */
   2211 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2212 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2213 									result);
   2214 			if (result != 0) {
   2215 				splx(s);
   2216 				return result;
   2217 			}
   2218 			AdwDelayMicroSecond(1);
   2219 		}
   2220 	}
   2221 
   2222 	splx(s);
   2223 	return ADW_ERROR;
   2224 }
   2225 
   2226 
   2227 /*
   2228  * Inquiry Information Byte 7 Handling
   2229  *
   2230  * Handle SCSI Inquiry Command information for a device by setting
   2231  * microcode operating variables that affect WDTR, SDTR, and Tag
   2232  * Queuing.
   2233  */
   2234 static void
   2235 AdwInquiryHandling(sc, scsiq)
   2236 ADW_SOFTC	*sc;
   2237 ADW_SCSI_REQ_Q *scsiq;
   2238 {
   2239 #ifndef FAILSAFE
   2240 	bus_space_tag_t iot = sc->sc_iot;
   2241 	bus_space_handle_t ioh = sc->sc_ioh;
   2242 	u_int8_t		tid;
   2243 	struct scsipi_inquiry_data *inq;
   2244 	u_int16_t		tidmask;
   2245 	u_int16_t		cfg_word;
   2246 
   2247 
   2248 	/*
   2249 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2250 	 * to be available.
   2251 	 *
   2252 	 * If less than 8 bytes of INQUIRY information were requested or less
   2253 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2254 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2255 	 * microcode to the transfer residual count.
   2256 	 */
   2257 
   2258 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2259 		return;
   2260 	}
   2261 
   2262 	tid = scsiq->target_id;
   2263 
   2264 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2265 
   2266 	/*
   2267 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2268 	 */
   2269 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2270 	    ((inq->version & SID_ANSII) < 2)) {
   2271 		return;
   2272 	} else {
   2273 		/*
   2274 		 * INQUIRY Byte 7 Handling
   2275 		 *
   2276 		 * Use a device's INQUIRY byte 7 to determine whether it
   2277 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2278 		 * is enabled in the EEPROM and the device supports the
   2279 		 * feature, then enable it in the microcode.
   2280 		 */
   2281 
   2282 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2283 
   2284 		/*
   2285 		 * Wide Transfers
   2286 		 *
   2287 		 * If the EEPROM enabled WDTR for the device and the device
   2288 		 * supports wide bus (16 bit) transfers, then turn on the
   2289 		 * device's 'wdtr_able' bit and write the new value to the
   2290 		 * microcode.
   2291 		 */
   2292 #ifdef SCSI_ADW_WDTR_DISABLE
   2293 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2294 #endif /* SCSI_ADW_WDTR_DISABLE */
   2295 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2296 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2297 					cfg_word);
   2298 			if ((cfg_word & tidmask) == 0) {
   2299 				cfg_word |= tidmask;
   2300 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2301 						cfg_word);
   2302 
   2303 				/*
   2304 				 * Clear the microcode "SDTR negotiation" and
   2305 				 * "WDTR negotiation" done indicators for the
   2306 				 * target to cause it to negotiate with the new
   2307 				 * setting set above.
   2308 				 * WDTR when accepted causes the target to enter
   2309 				 * asynchronous mode, so SDTR must be negotiated
   2310 				 */
   2311 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2312 						cfg_word);
   2313 				cfg_word &= ~tidmask;
   2314 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2315 						cfg_word);
   2316 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2317 						cfg_word);
   2318 				cfg_word &= ~tidmask;
   2319 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2320 						cfg_word);
   2321 			}
   2322 		}
   2323 
   2324 		/*
   2325 		 * Synchronous Transfers
   2326 		 *
   2327 		 * If the EEPROM enabled SDTR for the device and the device
   2328 		 * supports synchronous transfers, then turn on the device's
   2329 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2330 		 */
   2331 #ifdef SCSI_ADW_SDTR_DISABLE
   2332 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2333 #endif /* SCSI_ADW_SDTR_DISABLE */
   2334 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2335 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2336 			if ((cfg_word & tidmask) == 0) {
   2337 				cfg_word |= tidmask;
   2338 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2339 						cfg_word);
   2340 
   2341 				/*
   2342 				 * Clear the microcode "SDTR negotiation"
   2343 				 * done indicator for the target to cause it
   2344 				 * to negotiate with the new setting set above.
   2345 				 */
   2346 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2347 						cfg_word);
   2348 				cfg_word &= ~tidmask;
   2349 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2350 						cfg_word);
   2351 			}
   2352 		}
   2353 		/*
   2354 		 * If the Inquiry data included enough space for the SPI-3
   2355 		 * Clocking field, then check if DT mode is supported.
   2356 		 */
   2357 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2358 		   (scsiq->cdb[4] >= 57 ||
   2359 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2360 			/*
   2361 			 * PPR (Parallel Protocol Request) Capable
   2362 			 *
   2363 			 * If the device supports DT mode, then it must be
   2364 			 * PPR capable.
   2365 			 * The PPR message will be used in place of the SDTR
   2366 			 * and WDTR messages to negotiate synchronous speed
   2367 			 * and offset, transfer width, and protocol options.
   2368 			 */
   2369 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2370 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2371 						sc->ppr_able);
   2372 				sc->ppr_able |= tidmask;
   2373 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2374 						sc->ppr_able);
   2375 			}
   2376 		}
   2377 
   2378 		/*
   2379 		 * If the EEPROM enabled Tag Queuing for the device and the
   2380 		 * device supports Tag Queueing, then turn on the device's
   2381 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2382 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2383 		 * value.
   2384 		 *
   2385 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2386 		 * mode and would see no benefit from Tag Queuing. Also by
   2387 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2388 		 * bugs will at least work with the BIOS.
   2389 		 */
   2390 #ifdef SCSI_ADW_TAGQ_DISABLE
   2391 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2392 #endif /* SCSI_ADW_TAGQ_DISABLE */
   2393 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2394 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2395 					cfg_word);
   2396 			cfg_word |= tidmask;
   2397 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2398 					cfg_word);
   2399 
   2400 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2401 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2402 					sc->max_dvc_qng);
   2403 		}
   2404 	}
   2405 #endif /* FAILSAFE */
   2406 }
   2407 
   2408 
   2409 static void
   2410 AdwSleepMilliSecond(n)
   2411 u_int32_t	n;
   2412 {
   2413 
   2414 	DELAY(n * 1000);
   2415 }
   2416 
   2417 
   2418 static void
   2419 AdwDelayMicroSecond(n)
   2420 u_int32_t	n;
   2421 {
   2422 
   2423 	DELAY(n);
   2424 }
   2425 
   2426