Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.39
      1 /* $NetBSD: adwlib.c,v 1.39 2009/03/14 15:36:17 dsl Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 /*
     40  * Ported from:
     41  */
     42 /*
     43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  *
     45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46  * All Rights Reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that redistributions of source
     50  * code retain the above copyright notice and this comment without
     51  * modification.
     52  */
     53 
     54 #include <sys/cdefs.h>
     55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.39 2009/03/14 15:36:17 dsl Exp $");
     56 
     57 #include <sys/param.h>
     58 #include <sys/systm.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/queue.h>
     62 #include <sys/device.h>
     63 
     64 #include <sys/bus.h>
     65 #include <sys/intr.h>
     66 
     67 #include <dev/scsipi/scsi_all.h>
     68 #include <dev/scsipi/scsipi_all.h>
     69 #include <dev/scsipi/scsiconf.h>
     70 
     71 #include <dev/pci/pcidevs.h>
     72 
     73 #include <uvm/uvm_extern.h>
     74 
     75 #include <dev/ic/adwlib.h>
     76 #include <dev/ic/adwmcode.h>
     77 #include <dev/ic/adw.h>
     78 
     79 
     80 /* Static Functions */
     81 
     82 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
     83 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
     84 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     85 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     86 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     87 
     88 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     89      							ADW_EEPROM *);
     90 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     91 					                 ADW_EEPROM *);
     92 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
     93 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
     94 
     95 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
     96 
     97 static void AdwSleepMilliSecond(u_int32_t);
     98 static void AdwDelayMicroSecond(u_int32_t);
     99 
    100 
    101 /*
    102  * EEPROM Configuration.
    103  *
    104  * All drivers should use this structure to set the default EEPROM
    105  * configuration. The BIOS now uses this structure when it is built.
    106  * Additional structure information can be found in adwlib.h where
    107  * the structure is defined.
    108  */
    109 static const ADW_EEPROM adw_3550_Default_EEPROM = {
    110 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    111 	0x0000,			/* 01 cfg_msw */
    112 	0xFFFF,			/* 02 disc_enable */
    113 	0xFFFF,			/* 03 wdtr_able */
    114 	{ 0xFFFF },		/* 04 sdtr_able */
    115 	0xFFFF,			/* 05 start_motor */
    116 	0xFFFF,			/* 06 tagqng_able */
    117 	0xFFFF,			/* 07 bios_scan */
    118 	0,			/* 08 scam_tolerant */
    119 	7,			/* 09 adapter_scsi_id */
    120 	0,			/*    bios_boot_delay */
    121 	3,			/* 10 scsi_reset_delay */
    122 	0,			/*    bios_id_lun */
    123 	0,			/* 11 termination */
    124 	0,			/*    reserved1 */
    125 	0xFFE7,			/* 12 bios_ctrl */
    126 	{ 0xFFFF },		/* 13 ultra_able */
    127 	{ 0 },			/* 14 reserved2 */
    128 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    129 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    130 	0,			/* 16 dvc_cntl */
    131 	{ 0 },			/* 17 bug_fix */
    132 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    133 	0,			/* 21 check_sum */
    134 	{			/* 22-29 oem_name[16] */
    135 	  0,0,0,0,0,0,0,0,
    136 	  0,0,0,0,0,0,0,0
    137 	},
    138 	0,			/* 30 dvc_err_code */
    139 	0,			/* 31 adv_err_code */
    140 	0,			/* 32 adv_err_addr */
    141 	0,			/* 33 saved_dvc_err_code */
    142 	0,			/* 34 saved_adv_err_code */
    143 	0,			/* 35 saved_adv_err_addr */
    144 	{			/* 36-55 reserved1[16] */
    145 	  0,0,0,0,0,0,0,0,0,0,
    146 	  0,0,0,0,0,0,0,0,0,0
    147 	},
    148 	0,			/* 56 cisptr_lsw */
    149 	0,			/* 57 cisprt_msw */
    150 	0,			/* 58 subsysvid */
    151 	0,			/* 59 subsysid */
    152 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    153 };
    154 
    155 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
    156 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    157 	0x0000,			/* 01 cfg_msw */
    158 	0xFFFF,			/* 02 disc_enable */
    159 	0xFFFF,			/* 03 wdtr_able */
    160 	{ 0x4444 },		/* 04 sdtr_speed1 */
    161 	0xFFFF,			/* 05 start_motor */
    162 	0xFFFF,			/* 06 tagqng_able */
    163 	0xFFFF,			/* 07 bios_scan */
    164 	0,			/* 08 scam_tolerant */
    165 	7,			/* 09 adapter_scsi_id */
    166 	0,			/*    bios_boot_delay */
    167 	3,			/* 10 scsi_reset_delay */
    168 	0,			/*    bios_id_lun */
    169 	0,			/* 11 termination_se */
    170 	0,			/*    termination_lvd */
    171 	0xFFE7,			/* 12 bios_ctrl */
    172 	{ 0x4444 },		/* 13 sdtr_speed2 */
    173 	{ 0x4444 },		/* 14 sdtr_speed3 */
    174 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    175 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    176 	0,			/* 16 dvc_cntl */
    177 	{ 0x4444 },		/* 17 sdtr_speed4 */
    178 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    179 	0,			/* 21 check_sum */
    180 	{			/* 22-29 oem_name[16] */
    181 	  0,0,0,0,0,0,0,0,
    182 	  0,0,0,0,0,0,0,0
    183 	},
    184 	0,			/* 30 dvc_err_code */
    185 	0,			/* 31 adv_err_code */
    186 	0,			/* 32 adv_err_addr */
    187 	0,			/* 33 saved_dvc_err_code */
    188 	0,			/* 34 saved_adv_err_code */
    189 	0,			/* 35 saved_adv_err_addr */
    190 	{			/* 36-55 reserved1[16] */
    191 	  0,0,0,0,0,0,0,0,0,0,
    192 	  0,0,0,0,0,0,0,0,0,0
    193 	},
    194 	0,			/* 56 cisptr_lsw */
    195 	0,			/* 57 cisprt_msw */
    196 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    197 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    198 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    199 };
    200 
    201 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
    202 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    203 	0x0000,			/* 01 cfg_msw */
    204 	0xFFFF,			/* 02 disc_enable */
    205 	0xFFFF,			/* 03 wdtr_able */
    206 	{ 0x5555 },		/* 04 sdtr_speed1 */
    207 	0xFFFF,			/* 05 start_motor */
    208 	0xFFFF,			/* 06 tagqng_able */
    209 	0xFFFF,			/* 07 bios_scan */
    210 	0,			/* 08 scam_tolerant */
    211 	7,			/* 09 adapter_scsi_id */
    212 	0,			/*    bios_boot_delay */
    213 	3,			/* 10 scsi_reset_delay */
    214 	0,			/*    bios_id_lun */
    215 	0,			/* 11 termination_se */
    216 	0,			/*    termination_lvd */
    217 	0xFFE7,			/* 12 bios_ctrl */
    218 	{ 0x5555 },		/* 13 sdtr_speed2 */
    219 	{ 0x5555 },		/* 14 sdtr_speed3 */
    220 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    221 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    222 	0,			/* 16 dvc_cntl */
    223 	{ 0x5555 },		/* 17 sdtr_speed4 */
    224 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    225 	0,			/* 21 check_sum */
    226 	{			/* 22-29 oem_name[16] */
    227 	  0,0,0,0,0,0,0,0,
    228 	  0,0,0,0,0,0,0,0
    229 	},
    230 	0,			/* 30 dvc_err_code */
    231 	0,			/* 31 adv_err_code */
    232 	0,			/* 32 adv_err_addr */
    233 	0,			/* 33 saved_dvc_err_code */
    234 	0,			/* 34 saved_adv_err_code */
    235 	0,			/* 35 saved_adv_err_addr */
    236 	{			/* 36-55 reserved1[16] */
    237 	  0,0,0,0,0,0,0,0,0,0,
    238 	  0,0,0,0,0,0,0,0,0,0
    239 	},
    240 	0,			/* 56 cisptr_lsw */
    241 	0,			/* 57 cisprt_msw */
    242 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    243 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    244 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    245 };
    246 
    247 
    248 /*
    249  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    250  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    251  * all of this is done.
    252  *
    253  * For a non-fatal error return a warning code. If there are no warnings
    254  * then 0 is returned.
    255  *
    256  * Note: Chip is stopped on entry.
    257  */
    258 int
    259 AdwInitFromEEPROM(ADW_SOFTC *sc)
    260 {
    261 	bus_space_tag_t iot = sc->sc_iot;
    262 	bus_space_handle_t ioh = sc->sc_ioh;
    263 	ADW_EEPROM		eep_config;
    264 	u_int16_t		warn_code;
    265 	u_int16_t		sdtr_speed = 0;
    266 	u_int8_t		tid, termination;
    267 	int			i, j;
    268 
    269 
    270 	warn_code = 0;
    271 
    272 	/*
    273 	 * Read the board's EEPROM configuration.
    274 	 *
    275 	 * Set default values if a bad checksum is found.
    276 	 *
    277 	 * XXX - Don't handle big-endian access to EEPROM yet.
    278 	 */
    279 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    280 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    281 
    282 		/*
    283 		 * Set EEPROM default values.
    284 		 */
    285 		switch(sc->chip_type) {
    286 		case ADW_CHIP_ASC3550:
    287 			eep_config = adw_3550_Default_EEPROM;
    288 			break;
    289 		case ADW_CHIP_ASC38C0800:
    290 			eep_config = adw_38C0800_Default_EEPROM;
    291 			break;
    292 		case ADW_CHIP_ASC38C1600:
    293 			eep_config = adw_38C1600_Default_EEPROM;
    294 
    295 #if 0
    296 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    297 #endif
    298 			if (sc->cfg.pci_slot_info != 0) {
    299 				u_int8_t lsw_msb;
    300 
    301 				lsw_msb = eep_config.cfg_lsw >> 8;
    302 				/*
    303 				 * Set Function 1 EEPROM Word 0 MSB
    304 				 *
    305 				 * Clear the BIOS_ENABLE (bit 14) and
    306 				 * INTAB (bit 11) EEPROM bits.
    307 				 *
    308 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    309 				 * SPARC Ultra 60 and old Mac system booting
    310 				 * problem. The Expansion ROM must
    311 				 * be disabled in Function 1 for these systems.
    312 				 */
    313 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    314 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    315 				/*
    316 				 * Set the INTAB (bit 11) if the GPIO 0 input
    317 				 * indicates the Function 1 interrupt line is
    318 				 * wired to INTA.
    319 				 *
    320 				 * Set/Clear Bit 11 (INTAB) from
    321 				 * the GPIO bit 0 input:
    322 				 *   1 - Function 1 intr line wired to INT A.
    323 				 *   0 - Function 1 intr line wired to INT B.
    324 				 *
    325 				 * Note: Adapter boards always have Function 0
    326 				 * wired to INTA.
    327 				 * Put all 5 GPIO bits in input mode and then
    328 				 * read their input values.
    329 				 */
    330 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    331 							IOPB_GPIO_CNTL, 0);
    332 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    333 						IOPB_GPIO_DATA) & 0x01) {
    334 					/*
    335 					 * Function 1 interrupt wired to INTA;
    336 					 * Set EEPROM bit.
    337 					 */
    338 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    339 							 & 0xFF;
    340 				 }
    341 				 eep_config.cfg_lsw &= 0x00FF;
    342 				 eep_config.cfg_lsw |= lsw_msb << 8;
    343 			}
    344 			break;
    345 		}
    346 
    347 		/*
    348 		 * Assume the 6 byte board serial number that was read
    349 		 * from EEPROM is correct even if the EEPROM checksum
    350 		 * failed.
    351 		 */
    352 		for (i=2, j=1; i>=0; i--, j++) {
    353 		eep_config.serial_number[i] =
    354 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    355 		}
    356 
    357 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    358 	}
    359 	/*
    360 	 * Set sc and sc->cfg variables from the EEPROM configuration
    361 	 * that was read.
    362 	 *
    363 	 * This is the mapping of EEPROM fields to Adw Library fields.
    364 	 */
    365 	sc->wdtr_able = eep_config.wdtr_able;
    366 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    367 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    368 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    369 	} else {
    370 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    371 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    372 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    373 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    374 	}
    375 	sc->ppr_able = 0;
    376 	sc->tagqng_able = eep_config.tagqng_able;
    377 	sc->cfg.disc_enable = eep_config.disc_enable;
    378 	sc->max_host_qng = eep_config.max_host_qng;
    379 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    380 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    381 	sc->start_motor = eep_config.start_motor;
    382 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    383 	sc->bios_ctrl = eep_config.bios_ctrl;
    384 	sc->no_scam = eep_config.scam_tolerant;
    385 	sc->cfg.serial1 = eep_config.serial_number[0];
    386 	sc->cfg.serial2 = eep_config.serial_number[1];
    387 	sc->cfg.serial3 = eep_config.serial_number[2];
    388 
    389 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    390 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    391 		sc->sdtr_able = 0;
    392 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    393 			if (tid == 0) {
    394 				sdtr_speed = sc->sdtr_speed1;
    395 			} else if (tid == 4) {
    396 				sdtr_speed = sc->sdtr_speed2;
    397 			} else if (tid == 8) {
    398 				sdtr_speed = sc->sdtr_speed3;
    399 			} else if (tid == 12) {
    400 				sdtr_speed = sc->sdtr_speed4;
    401 			}
    402 			if (sdtr_speed & ADW_MAX_TID) {
    403 				sc->sdtr_able |= (1 << tid);
    404 			}
    405 			sdtr_speed >>= 4;
    406 		}
    407 	}
    408 
    409 	/*
    410 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    411 	 * maximum queuing (max. 63, min. 4).
    412 	 */
    413 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    414 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    415 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    416 	{
    417 		/* If the value is zero, assume it is uninitialized. */
    418 		if (eep_config.max_host_qng == 0) {
    419 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    420 		} else {
    421 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    422 		}
    423 	}
    424 
    425 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    426 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    427 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    428 		/* If the value is zero, assume it is uninitialized. */
    429 		if (eep_config.max_dvc_qng == 0) {
    430 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    431 		} else {
    432 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    433 		}
    434 	}
    435 
    436 	/*
    437 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    438 	 * set 'max_dvc_qng' to 'max_host_qng'.
    439 	 */
    440 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    441 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    442 	}
    443 
    444 	/*
    445 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    446 	 * values based on possibly adjusted EEPROM values.
    447 	 */
    448 	sc->max_host_qng = eep_config.max_host_qng;
    449 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    450 
    451 
    452 	/*
    453 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    454 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    455 	 *
    456 	 * If the termination is specified with a non-zero 'termination'
    457 	 * value check that a legal value is set and set the ADV_DVC_CFG
    458 	 * 'termination' field appropriately.
    459 	 */
    460 
    461 	switch(sc->chip_type) {
    462 	case ADW_CHIP_ASC3550:
    463 		sc->cfg.termination = 0;	/* auto termination */
    464 		switch(eep_config.termination_se) {
    465 		case 3:
    466 			/* Enable manual control with low on / high on. */
    467 			sc->cfg.termination |= ADW_TERM_CTL_L;
    468 		case 2:
    469 			/* Enable manual control with low off / high on. */
    470 			sc->cfg.termination |= ADW_TERM_CTL_H;
    471 		case 1:
    472 			/* Enable manual control with low off / high off. */
    473 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    474 		case 0:
    475 			break;
    476 		default:
    477 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    478 		}
    479 		break;
    480 
    481 	case ADW_CHIP_ASC38C0800:
    482 	case ADW_CHIP_ASC38C1600:
    483 		switch(eep_config.termination_se) {
    484 		case 0:
    485 			/* auto termination for SE */
    486 			termination = 0;
    487 			break;
    488 		case 1:
    489 			/* Enable manual control with low off / high off. */
    490 			termination = 0;
    491 			break;
    492 		case 2:
    493 			/* Enable manual control with low off / high on. */
    494 			termination = ADW_TERM_SE_HI;
    495 			break;
    496 		case 3:
    497 			/* Enable manual control with low on / high on. */
    498 			termination = ADW_TERM_SE;
    499 			break;
    500 		default:
    501 			/*
    502 			 * The EEPROM 'termination_se' field contains a
    503 			 * bad value. Use automatic termination instead.
    504 			 */
    505 			termination = 0;
    506 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    507 		}
    508 
    509 		switch(eep_config.termination_lvd) {
    510 		case 0:
    511 			/* auto termination for LVD */
    512 			sc->cfg.termination = termination;
    513 			break;
    514 		case 1:
    515 			/* Enable manual control with low off / high off. */
    516 			sc->cfg.termination = termination;
    517 			break;
    518 		case 2:
    519 			/* Enable manual control with low off / high on. */
    520 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    521 			break;
    522 		case 3:
    523 			/* Enable manual control with low on / high on. */
    524 			sc->cfg.termination = termination | ADW_TERM_LVD;
    525 			break;
    526 		default:
    527 			/*
    528 			 * The EEPROM 'termination_lvd' field contains a
    529 			 * bad value. Use automatic termination instead.
    530 			 */
    531 			sc->cfg.termination = termination;
    532 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    533 		}
    534 		break;
    535 	}
    536 
    537 	return warn_code;
    538 }
    539 
    540 
    541 /*
    542  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    543  *
    544  * On failure return the error code.
    545  */
    546 int
    547 AdwInitDriver(ADW_SOFTC *sc)
    548 {
    549 	bus_space_tag_t iot = sc->sc_iot;
    550 	bus_space_handle_t ioh = sc->sc_ioh;
    551 	u_int16_t	error_code;
    552 	int		word;
    553 	int		i;
    554 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    555 								0x40-0x8F. */
    556 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    557 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    558 	u_int8_t	tid;
    559 
    560 
    561 	error_code = 0;
    562 
    563 	/*
    564 	 * Save the RISC memory BIOS region before writing the microcode.
    565 	 * The BIOS may already be loaded and using its RISC LRAM region
    566 	 * so its region must be saved and restored.
    567 	 *
    568 	 * Note: This code makes the assumption, which is currently true,
    569 	 * that a chip reset does not clear RISC LRAM.
    570 	 */
    571 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    572 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    573 	}
    574 
    575 	/*
    576 	 * Save current per TID negotiated values.
    577 	 */
    578 	switch (sc->chip_type) {
    579 	case ADW_CHIP_ASC3550:
    580 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    581 
    582 			u_int16_t  bios_version, major, minor;
    583 
    584 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    585 					ADW_MC_BIOSMEM) / 2];
    586 			major = (bios_version  >> 12) & 0xF;
    587 			minor = (bios_version  >> 8) & 0xF;
    588 			if (major < 3 || (major == 3 && minor == 1)) {
    589 			    /*
    590 			     * BIOS 3.1 and earlier location of
    591 			     * 'wdtr_able' variable.
    592 			     */
    593 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    594 			} else {
    595 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    596 					    wdtr_able);
    597 			}
    598 		}
    599 		break;
    600 
    601 	case ADW_CHIP_ASC38C1600:
    602 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    603 		/* FALLTHROUGH */
    604 	case ADW_CHIP_ASC38C0800:
    605 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    606 		break;
    607 	}
    608 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    609 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    610 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    611 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    612 			max_cmd[tid]);
    613 	}
    614 
    615 	/*
    616 	 * Perform a RAM Built-In Self Test
    617 	 */
    618 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    619 		return error_code;
    620 	}
    621 
    622 	/*
    623 	 * Load the Microcode
    624 	 */
    625 	;
    626 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    627 		return error_code;
    628 	}
    629 
    630 	/*
    631 	 * Read microcode version and date.
    632 	 */
    633 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    634 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    635 
    636 	/*
    637 	 * If the PCI Configuration Command Register "Parity Error Response
    638 	 * Control" Bit was clear (0), then set the microcode variable
    639 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    640 	 * to ignore DMA parity errors.
    641 	 */
    642 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    643 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    644 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    645 					word | CONTROL_FLAG_IGNORE_PERR);
    646 	}
    647 
    648 	switch (sc->chip_type) {
    649 	case ADW_CHIP_ASC3550:
    650 		/*
    651 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    652 		 * FIFO threshold of 128 bytes.
    653 		 * This register is only accessible to the host.
    654 		 */
    655 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    656 				START_CTL_EMFU | READ_CMD_MRM);
    657 		break;
    658 
    659 	case ADW_CHIP_ASC38C0800:
    660 		/*
    661 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    662 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    663 		 * cable detection and then we are able to read C_DET[3:0].
    664 		 *
    665 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    666 		 * Microcode Default Value' section below.
    667 		 */
    668 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    669 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    670 				| ADW_DIS_TERM_DRV);
    671 
    672 		/*
    673 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    674 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    675 		 *
    676 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    677 		 * 256 bytes.
    678 		 *
    679 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    680 		 */
    681 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    682 						BC_THRESH_ENB | FIFO_THRESH_80B
    683 						| START_CTL_TH | READ_CMD_MRM);
    684 		break;
    685 
    686 	case ADW_CHIP_ASC38C1600:
    687 		/*
    688 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    689 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    690 		 * cable detection and then we are able to read C_DET[3:0].
    691 		 *
    692 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    693 		 * Microcode Default Value' section below.
    694 		 */
    695 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    696 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    697 				| ADW_DIS_TERM_DRV);
    698 
    699 		/*
    700 		 * If the BIOS control flag AIPP (Asynchronous Information
    701 		 * Phase Protection) disable bit is not set, then set the
    702 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    703 		 * enable AIPP checking and encoding.
    704 		 */
    705 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    706 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    707 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    708 					word | CONTROL_FLAG_ENABLE_AIPP);
    709 		}
    710 
    711 		/*
    712 		 * For ASC-38C1600 use DMA_CFG0 default values:
    713 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    714 		 */
    715 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    716 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    717 		break;
    718 	}
    719 
    720 	/*
    721 	 * Microcode operating variables for WDTR, SDTR, and command tag
    722 	 * queuing will be set in AdvInquiryHandling() based on what a
    723 	 * device reports it is capable of in Inquiry byte 7.
    724 	 *
    725 	 * If SCSI Bus Resets have been disabled, then directly set
    726 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    727 	 * the BIOS and warm boot to work without a SCSI bus hang on
    728 	 * the Inquiry caused by host and target mismatched DTR values.
    729 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    730 	 * be assumed to be in Asynchronous, Narrow mode.
    731 	 */
    732 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    733 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    734 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    735 	}
    736 
    737 	/*
    738 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    739 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    740 	 * bitmask. These values determine the maximum SDTR speed negotiated
    741 	 * with a device.
    742 	 *
    743 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    744 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    745 	 * without determining here whether the device supports SDTR.
    746 	 */
    747 	switch (sc->chip_type) {
    748 	case ADW_CHIP_ASC3550:
    749 		word = 0;
    750 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    751 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    752 				/* Set Ultra speed for TID 'tid'. */
    753 				word |= (0x3 << (4 * (tid % 4)));
    754 			} else {
    755 				/* Set Fast speed for TID 'tid'. */
    756 				word |= (0x2 << (4 * (tid % 4)));
    757 			}
    758 			/* Check if done with sdtr_speed1. */
    759 			if (tid == 3) {
    760 				ADW_WRITE_WORD_LRAM(iot, ioh,
    761 						ADW_MC_SDTR_SPEED1, word);
    762 				word = 0;
    763 			/* Check if done with sdtr_speed2. */
    764 			} else if (tid == 7) {
    765 				ADW_WRITE_WORD_LRAM(iot, ioh,
    766 						ADW_MC_SDTR_SPEED2, word);
    767 				word = 0;
    768 			/* Check if done with sdtr_speed3. */
    769 			} else if (tid == 11) {
    770 				ADW_WRITE_WORD_LRAM(iot, ioh,
    771 						ADW_MC_SDTR_SPEED3, word);
    772 				word = 0;
    773 			/* Check if done with sdtr_speed4. */
    774 			} else if (tid == 15) {
    775 				ADW_WRITE_WORD_LRAM(iot, ioh,
    776 						ADW_MC_SDTR_SPEED4, word);
    777 				/* End of loop. */
    778 			}
    779 		}
    780 
    781 		/*
    782 		 * Set microcode operating variable for the
    783 		 * disconnect per TID bitmask.
    784 		 */
    785 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    786 							sc->cfg.disc_enable);
    787 		break;
    788 
    789 	case ADW_CHIP_ASC38C0800:
    790 		/* FALLTHROUGH */
    791 	case ADW_CHIP_ASC38C1600:
    792 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    793 							sc->cfg.disc_enable);
    794 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    795 							sc->sdtr_speed1);
    796 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    797 							sc->sdtr_speed2);
    798 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    799 							sc->sdtr_speed3);
    800 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    801 							sc->sdtr_speed4);
    802 		break;
    803 	}
    804 
    805 
    806 	/*
    807 	 * Set SCSI_CFG0 Microcode Default Value.
    808 	 *
    809 	 * The microcode will set the SCSI_CFG0 register using this value
    810 	 * after it is started below.
    811 	 */
    812 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    813 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    814 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    815 
    816 
    817 	switch(sc->chip_type) {
    818 	case ADW_CHIP_ASC3550:
    819 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    820 		break;
    821 
    822 	case ADW_CHIP_ASC38C0800:
    823 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    824 		break;
    825 
    826 	case ADW_CHIP_ASC38C1600:
    827 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    828 		break;
    829 	}
    830 	if(error_code) {
    831 		return error_code;
    832 	}
    833 
    834 	/*
    835 	 * Set SEL_MASK Microcode Default Value
    836 	 *
    837 	 * The microcode will set the SEL_MASK register using this value
    838 	 * after it is started below.
    839 	 */
    840 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    841 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    842 
    843 	/*
    844 	 * Create and Initialize Host->RISC Carrier lists
    845 	 */
    846 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    847 						sc->sc_control->carriers);
    848 
    849 	/*
    850 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    851 	 */
    852 
    853 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    854 		return ADW_IERR_NO_CARRIER;
    855 	}
    856 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    857 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    858 
    859 	/*
    860 	 * The first command issued will be placed in the stopper carrier.
    861 	 */
    862 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    863 
    864 	/*
    865 	 * Set RISC ICQ physical address start value.
    866 	 */
    867 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    868 
    869 	/*
    870 	 * Initialize the COMMA register to the same value otherwise
    871 	 * the RISC will prematurely detect a command is available.
    872 	 */
    873 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    874 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    875 						le32toh(sc->icq_sp->carr_ba));
    876 	}
    877 
    878 	/*
    879 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    880 	 */
    881 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    882 		return ADW_IERR_NO_CARRIER;
    883 	}
    884 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    885 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    886 
    887 	/*
    888 	 * The first command completed by the RISC will be placed in
    889 	 * the stopper.
    890 	 *
    891 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    892 	 * completed the RISC will set the ASC_RQ_DONE bit.
    893 	 */
    894 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    895 
    896 	/*
    897 	 * Set RISC IRQ physical address start value.
    898 	 */
    899 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    900 	sc->carr_pending_cnt = 0;
    901 
    902 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    903 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    904 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    905 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    906 
    907 	/* finally, finally, gentlemen, start your engine */
    908 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    909 
    910 	/*
    911 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    912 	 * Resets should be performed. The RISC has to be running
    913 	 * to issue a SCSI Bus Reset.
    914 	 */
    915 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    916 	{
    917 		/*
    918 		 * If the BIOS Signature is present in memory, restore the
    919 		 * BIOS Handshake Configuration Table and do not perform
    920 		 * a SCSI Bus Reset.
    921 		 */
    922 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    923 				0x55AA) {
    924 			/*
    925 			 * Restore per TID negotiated values.
    926 			 */
    927 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    928 					wdtr_able);
    929 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    930 					sdtr_able);
    931 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    932 					tagqng_able);
    933 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    934 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    935 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    936 						max_cmd[tid]);
    937 			}
    938 		} else {
    939 			if (AdwResetCCB(sc) != ADW_TRUE) {
    940 				error_code = ADW_WARN_BUSRESET_ERROR;
    941 			}
    942 		}
    943 	}
    944 
    945 	return error_code;
    946 }
    947 
    948 
    949 int
    950 AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
    951 {
    952 	int		i;
    953 	u_int8_t	byte;
    954 
    955 
    956 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    957 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    958 		/*
    959 		 * RAM BIST (RAM Built-In Self Test)
    960 		 *
    961 		 * Address : I/O base + offset 0x38h register (byte).
    962 		 * Function: Bit 7-6(RW) : RAM mode
    963 		 *			    Normal Mode   : 0x00
    964 		 *			    Pre-test Mode : 0x40
    965 		 *			    RAM Test Mode : 0x80
    966 		 *	     Bit 5	 : unused
    967 		 *	     Bit 4(RO)   : Done bit
    968 		 *	     Bit 3-0(RO) : Status
    969 		 *			    Host Error    : 0x08
    970 		 *			    Int_RAM Error : 0x04
    971 		 *			    RISC Error    : 0x02
    972 		 *			    SCSI Error    : 0x01
    973 		 *			    No Error	  : 0x00
    974 		 *
    975 		 * Note: RAM BIST code should be put right here, before loading
    976 		 * the microcode and after saving the RISC memory BIOS region.
    977 		 */
    978 
    979 		/*
    980 		 * LRAM Pre-test
    981 		 *
    982 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    983 		 * 10 milliseconds.
    984 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    985 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    986 		 * If cannot reset to NORMAL_MODE, return an error too.
    987 		 */
    988 		for (i = 0; i < 2; i++) {
    989 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    990 					PRE_TEST_MODE);
    991 			 /* Wait for 10ms before reading back. */
    992 			AdwSleepMilliSecond(10);
    993 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    994 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    995 					PRE_TEST_VALUE) {
    996 				return ADW_IERR_BIST_PRE_TEST;
    997 			}
    998 
    999 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
   1000 								NORMAL_MODE);
   1001 			/* Wait for 10ms before reading back. */
   1002 			AdwSleepMilliSecond(10);
   1003 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1004 			    != NORMAL_VALUE) {
   1005 				return ADW_IERR_BIST_PRE_TEST;
   1006 			}
   1007 		}
   1008 
   1009 		/*
   1010 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1011 		 *
   1012 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1013 		 * 10 milliseconds.
   1014 		 * If Done bit not set or Status not 0, save register byte,
   1015 		 * set the err_code, and return an error.
   1016 		 */
   1017 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1018 		/* Wait for 10ms before checking status. */
   1019 		AdwSleepMilliSecond(10);
   1020 
   1021 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1022 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1023 			/* Get here if Done bit not set or Status not 0. */
   1024 			return ADW_IERR_BIST_RAM_TEST;
   1025 		}
   1026 
   1027 		/* We need to reset back to normal mode after LRAM test passes*/
   1028 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1029 	}
   1030 
   1031 	return 0;
   1032 }
   1033 
   1034 
   1035 int
   1036 AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
   1037 {
   1038 	const u_int8_t	*mcode_data;
   1039 	u_int32_t	 mcode_chksum;
   1040 	u_int16_t	 mcode_size;
   1041 	u_int32_t	sum;
   1042 	u_int16_t	code_sum;
   1043 	int		begin_addr;
   1044 	int		end_addr;
   1045 	int		word;
   1046 	int		adw_memsize;
   1047 	int		adw_mcode_expanded_size;
   1048 	int		i, j;
   1049 
   1050 
   1051 	switch(chip_type) {
   1052 	case ADW_CHIP_ASC3550:
   1053 		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1054 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1055 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1056 		adw_memsize = ADW_3550_MEMSIZE;
   1057 		break;
   1058 
   1059 	case ADW_CHIP_ASC38C0800:
   1060 		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1061 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1062 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1063 		adw_memsize = ADW_38C0800_MEMSIZE;
   1064 		break;
   1065 
   1066 	case ADW_CHIP_ASC38C1600:
   1067 		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1068 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1069 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1070 		adw_memsize = ADW_38C1600_MEMSIZE;
   1071 		break;
   1072 
   1073 	default:
   1074 		return (EINVAL);
   1075 	}
   1076 
   1077 	/*
   1078 	 * Write the microcode image to RISC memory starting at address 0.
   1079 	 */
   1080 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1081 
   1082 	/* Assume the following compressed format of the microcode buffer:
   1083 	 *
   1084 	 *  254 word (508 byte) table indexed by byte code followed
   1085 	 *  by the following byte codes:
   1086 	 *
   1087 	 *    1-Byte Code:
   1088 	 *	00: Emit word 0 in table.
   1089 	 *	01: Emit word 1 in table.
   1090 	 *	.
   1091 	 *	FD: Emit word 253 in table.
   1092 	 *
   1093 	 *    Multi-Byte Code:
   1094 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1095 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1096 	 */
   1097 	word = 0;
   1098 	for (i = 253 * 2; i < mcode_size; i++) {
   1099 		if (mcode_data[i] == 0xff) {
   1100 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1101 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1102 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1103 				  mcode_data[i + 2]));
   1104 				word++;
   1105 			}
   1106 			i += 3;
   1107 		} else if (mcode_data[i] == 0xfe) {
   1108 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1109 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1110 			    mcode_data[i + 1]));
   1111 			i += 2;
   1112 			word++;
   1113 		} else {
   1114 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1115 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1116 			 mcode_data[mcode_data[i] * 2]));
   1117 			word++;
   1118 		}
   1119 	}
   1120 
   1121 	/*
   1122 	 * Set 'word' for later use to clear the rest of memory and save
   1123 	 * the expanded mcode size.
   1124 	 */
   1125 	word *= 2;
   1126 	adw_mcode_expanded_size = word;
   1127 
   1128 	/*
   1129 	 * Clear the rest of the Internal RAM.
   1130 	 */
   1131 	for (; word < adw_memsize; word += 2) {
   1132 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1133 	}
   1134 
   1135 	/*
   1136 	 * Verify the microcode checksum.
   1137 	 */
   1138 	sum = 0;
   1139 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1140 
   1141 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1142 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1143 	}
   1144 
   1145 	if (sum != mcode_chksum) {
   1146 		return ADW_IERR_MCODE_CHKSUM;
   1147 	}
   1148 
   1149 	/*
   1150 	 * Restore the RISC memory BIOS region.
   1151 	 */
   1152 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1153 		if(chip_type == ADW_CHIP_ASC3550) {
   1154 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1155 								bios_mem[i]);
   1156 		} else {
   1157 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1158 								bios_mem[i]);
   1159 		}
   1160 	}
   1161 
   1162 	/*
   1163 	 * Calculate and write the microcode code checksum to the microcode
   1164 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1165 	 */
   1166 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1167 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1168 	code_sum = 0;
   1169 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1170 	for (word = begin_addr; word < end_addr; word += 2) {
   1171 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1172 	}
   1173 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1174 
   1175 	/*
   1176 	 * Set the chip type.
   1177 	 */
   1178 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1179 
   1180 	return 0;
   1181 }
   1182 
   1183 
   1184 int
   1185 AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1186 {
   1187 	u_int16_t	scsi_cfg1;
   1188 
   1189 
   1190 	/*
   1191 	 * Determine SCSI_CFG1 Microcode Default Value.
   1192 	 *
   1193 	 * The microcode will set the SCSI_CFG1 register using this value
   1194 	 * after it is started below.
   1195 	 */
   1196 
   1197 	/* Read current SCSI_CFG1 Register value. */
   1198 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1199 
   1200 	/*
   1201 	 * If all three connectors are in use in ASC3550, return an error.
   1202 	 */
   1203 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1204 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1205 		return ADW_IERR_ILLEGAL_CONNECTION;
   1206 	}
   1207 
   1208 	/*
   1209 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1210 	 * will be set. Check for and return an error if this condition is
   1211 	 * found.
   1212 	 */
   1213 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1214 		return ADW_IERR_REVERSED_CABLE;
   1215 	}
   1216 
   1217 	/*
   1218 	 * If this is a differential board and a single-ended device
   1219 	 * is attached to one of the connectors, return an error.
   1220 	 */
   1221 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1222 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1223 		return ADW_IERR_SINGLE_END_DEVICE;
   1224 	}
   1225 
   1226 	/*
   1227 	 * If automatic termination control is enabled, then set the
   1228 	 * termination value based on a table listed in a_condor.h.
   1229 	 *
   1230 	 * If manual termination was specified with an EEPROM setting
   1231 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1232 	 * is ready to be 'ored' into SCSI_CFG1.
   1233 	 */
   1234 	if (cfg->termination == 0) {
   1235 		/*
   1236 		 * The software always controls termination by setting
   1237 		 * TERM_CTL_SEL.
   1238 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1239 		 * termination.
   1240 		 */
   1241 		cfg->termination |= ADW_TERM_CTL_SEL;
   1242 
   1243 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1244 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1245 			case 0x3: case 0x7: case 0xB:
   1246 			case 0xD: case 0xE: case 0xF:
   1247 				cfg->termination |=
   1248 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1249 				break;
   1250 
   1251 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1252 			case 0x1: case 0x5: case 0x9:
   1253 			case 0xA: case 0xC:
   1254 				cfg->termination |= ADW_TERM_CTL_H;
   1255 				break;
   1256 
   1257 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1258 			case 0x2: case 0x6:
   1259 				break;
   1260 		}
   1261 	}
   1262 
   1263 	/*
   1264 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1265 	 */
   1266 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1267 
   1268 	/*
   1269 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1270 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1271 	 * referenced, because the hardware internally inverts
   1272 	 * the Termination High and Low bits if TERM_POL is set.
   1273 	 */
   1274 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1275 
   1276 	/*
   1277 	 * Set SCSI_CFG1 Microcode Default Value
   1278 	 *
   1279 	 * Set filter value and possibly modified termination control
   1280 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1281 	 *
   1282 	 * The microcode will set the SCSI_CFG1 register using this value
   1283 	 * after it is started below.
   1284 	 */
   1285 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1286 						ADW_FLTR_DISABLE | scsi_cfg1);
   1287 
   1288 	/*
   1289 	 * Set MEM_CFG Microcode Default Value
   1290 	 *
   1291 	 * The microcode will set the MEM_CFG register using this value
   1292 	 * after it is started below.
   1293 	 *
   1294 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1295 	 * are defined.
   1296 	 *
   1297 	 * ASC-3550 has 8KB internal memory.
   1298 	 */
   1299 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1300 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1301 
   1302 	return 0;
   1303 }
   1304 
   1305 
   1306 int
   1307 AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1308 {
   1309 	u_int16_t	scsi_cfg1;
   1310 
   1311 
   1312 	/*
   1313 	 * Determine SCSI_CFG1 Microcode Default Value.
   1314 	 *
   1315 	 * The microcode will set the SCSI_CFG1 register using this value
   1316 	 * after it is started below.
   1317 	 */
   1318 
   1319 	/* Read current SCSI_CFG1 Register value. */
   1320 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1321 
   1322 	/*
   1323 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1324 	 * will be set. Check for and return an error if this condition is
   1325 	 * found.
   1326 	 */
   1327 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1328 		return ADW_IERR_REVERSED_CABLE;
   1329 	}
   1330 
   1331 	/*
   1332 	 * All kind of combinations of devices attached to one of four
   1333 	 * connectors are acceptable except HVD device attached.
   1334 	 * For example, LVD device can be attached to SE connector while
   1335 	 * SE device attached to LVD connector.
   1336 	 * If LVD device attached to SE connector, it only runs up to
   1337 	 * Ultra speed.
   1338 	 *
   1339 	 * If an HVD device is attached to one of LVD connectors, return
   1340 	 * an error.
   1341 	 * However, there is no way to detect HVD device attached to
   1342 	 * SE connectors.
   1343 	 */
   1344 	if (scsi_cfg1 & ADW_HVD) {
   1345 		return ADW_IERR_HVD_DEVICE;
   1346 	}
   1347 
   1348 	/*
   1349 	 * If either SE or LVD automatic termination control is enabled, then
   1350 	 * set the termination value based on a table listed in a_condor.h.
   1351 	 *
   1352 	 * If manual termination was specified with an EEPROM setting then
   1353 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1354 	 * to be 'ored' into SCSI_CFG1.
   1355 	 */
   1356 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1357 		/* SE automatic termination control is enabled. */
   1358 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1359 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1360 			case 0x1: case 0x2: case 0x3:
   1361 				cfg->termination |= ADW_TERM_SE;
   1362 				break;
   1363 
   1364 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1365 			case 0x0:
   1366 				cfg->termination |= ADW_TERM_SE_HI;
   1367 				break;
   1368 		}
   1369 	}
   1370 
   1371 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1372 		/* LVD automatic termination control is enabled. */
   1373 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1374 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1375 			case 0x4: case 0x8: case 0xC:
   1376 				cfg->termination |= ADW_TERM_LVD;
   1377 				break;
   1378 
   1379 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1380 			case 0x0:
   1381 				break;
   1382 		}
   1383 	}
   1384 
   1385 	/*
   1386 	 * Clear any set TERM_SE and TERM_LVD bits.
   1387 	 */
   1388 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1389 
   1390 	/*
   1391 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1392 	 */
   1393 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1394 
   1395 	/*
   1396 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1397 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1398 	 * in the Microcode SCSI_CFG1 Register Value.
   1399 	 */
   1400 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1401 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1402 
   1403 	/*
   1404 	 * Set SCSI_CFG1 Microcode Default Value
   1405 	 *
   1406 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1407 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1408 	 *
   1409 	 * The microcode will set the SCSI_CFG1 register using this value
   1410 	 * after it is started below.
   1411 	 */
   1412 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1413 
   1414 	/*
   1415 	 * Set MEM_CFG Microcode Default Value
   1416 	 *
   1417 	 * The microcode will set the MEM_CFG register using this value
   1418 	 * after it is started below.
   1419 	 *
   1420 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1421 	 * are defined.
   1422 	 *
   1423 	 * ASC-38C0800 has 16KB internal memory.
   1424 	 */
   1425 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1426 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1427 
   1428 	return 0;
   1429 }
   1430 
   1431 
   1432 int
   1433 AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1434 {
   1435 	u_int16_t	scsi_cfg1;
   1436 
   1437 
   1438 	/*
   1439 	 * Determine SCSI_CFG1 Microcode Default Value.
   1440 	 *
   1441 	 * The microcode will set the SCSI_CFG1 register using this value
   1442 	 * after it is started below.
   1443 	 * Each ASC-38C1600 function has only two cable detect bits.
   1444 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1445 	 */
   1446 
   1447 	/* Read current SCSI_CFG1 Register value. */
   1448 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1449 
   1450 	/*
   1451 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1452 	 * will be set. Check for and return an error if this condition is
   1453 	 * found.
   1454 	 */
   1455 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1456 		return ADW_IERR_REVERSED_CABLE;
   1457 	}
   1458 
   1459 	/*
   1460 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1461 	 * cannot be connected to either connector. An LVD device or SE device
   1462 	 * may be connected to either connector. If an SE device is connected,
   1463 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
   1464 	 *
   1465 	 * If an HVD device is attached, return an error.
   1466 	 */
   1467 	if (scsi_cfg1 & ADW_HVD) {
   1468 		return ADW_IERR_HVD_DEVICE;
   1469 	}
   1470 
   1471 	/*
   1472 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1473 	 * termination because there are two connectors for each function.
   1474 	 * Each function may use either LVD or SE mode.
   1475 	 * Corresponding the SE automatic termination control EEPROM bits are
   1476 	 * used for each function.
   1477 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1478 	 * for the function, then set the termination value based on a table
   1479 	 * listed in adwlib.h.
   1480 	 *
   1481 	 * If manual termination is specified in the EEPROM for the function,
   1482 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1483 	 * ready to be 'ored' into SCSI_CFG1.
   1484 	 */
   1485 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1486 		/* SE automatic termination control is enabled. */
   1487 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1488 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1489 			case 0x1: case 0x2: case 0x3:
   1490 				cfg->termination |= ADW_TERM_SE;
   1491 				break;
   1492 
   1493 			case 0x0:
   1494 #if 0
   1495 	/* !!!!TODO!!!! */
   1496 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1497 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1498 				}
   1499 				else
   1500 #endif
   1501 				{
   1502 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1503 					cfg->termination |= ADW_TERM_SE_HI;
   1504 				}
   1505 				break;
   1506 			}
   1507 	}
   1508 
   1509 	/*
   1510 	 * Clear any set TERM_SE bits.
   1511 	 */
   1512 	scsi_cfg1 &= ~ADW_TERM_SE;
   1513 
   1514 	/*
   1515 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1516 	 */
   1517 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1518 
   1519 	/*
   1520 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1521 	 * modified termination control bits in the Microcode SCSI_CFG1
   1522 	 * Register Value.
   1523 	 */
   1524 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1525 
   1526 	/*
   1527 	 * Set SCSI_CFG1 Microcode Default Value
   1528 	 *
   1529 	 * Set possibly modified termination control bits in the Microcode
   1530 	 * SCSI_CFG1 Register Value.
   1531 	 *
   1532 	 * The microcode will set the SCSI_CFG1 register using this value
   1533 	 * after it is started below.
   1534 	 */
   1535 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1536 
   1537 	/*
   1538 	 * Set MEM_CFG Microcode Default Value
   1539 	 *
   1540 	 * The microcode will set the MEM_CFG register using this value
   1541 	 * after it is started below.
   1542 	 *
   1543 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1544 	 * are defined.
   1545 	 *
   1546 	 * ASC-38C1600 has 32KB internal memory.
   1547 	 */
   1548 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1549 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1550 
   1551 	return 0;
   1552 }
   1553 
   1554 
   1555 /*
   1556  * Read EEPROM configuration into the specified buffer.
   1557  *
   1558  * Return a checksum based on the EEPROM configuration read.
   1559  */
   1560 static u_int16_t
   1561 AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1562 {
   1563 	u_int16_t	       wval, chksum;
   1564 	u_int16_t	       *wbuf;
   1565 	int		    eep_addr;
   1566 
   1567 
   1568 	wbuf = (u_int16_t *) cfg_buf;
   1569 	chksum = 0;
   1570 
   1571 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1572 		eep_addr < ASC_EEP_DVC_CFG_END;
   1573 		eep_addr++, wbuf++) {
   1574 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1575 		chksum += wval;
   1576 		*wbuf = wval;
   1577 	}
   1578 
   1579 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1580 	wbuf++;
   1581 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1582 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1583 			eep_addr++, wbuf++) {
   1584 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1585 	}
   1586 
   1587 	return chksum;
   1588 }
   1589 
   1590 
   1591 /*
   1592  * Read the EEPROM from specified location
   1593  */
   1594 static u_int16_t
   1595 AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
   1596 {
   1597 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1598 		ASC_EEP_CMD_READ | eep_word_addr);
   1599 	AdwWaitEEPCmd(iot, ioh);
   1600 
   1601 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1602 }
   1603 
   1604 
   1605 /*
   1606  * Wait for EEPROM command to complete
   1607  */
   1608 static void
   1609 AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
   1610 {
   1611 	int eep_delay_ms;
   1612 
   1613 
   1614 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1615 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1616 				ASC_EEP_CMD_DONE) {
   1617 			break;
   1618 		}
   1619 		AdwSleepMilliSecond(1);
   1620 	}
   1621 
   1622 	(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1623 }
   1624 
   1625 
   1626 /*
   1627  * Write the EEPROM from 'cfg_buf'.
   1628  */
   1629 static void
   1630 AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1631 {
   1632 	u_int16_t *wbuf;
   1633 	u_int16_t addr, chksum;
   1634 
   1635 
   1636 	wbuf = (u_int16_t *) cfg_buf;
   1637 	chksum = 0;
   1638 
   1639 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1640 	AdwWaitEEPCmd(iot, ioh);
   1641 
   1642 	/*
   1643 	 * Write EEPROM from word 0 to word 20
   1644 	 */
   1645 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1646 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1647 		chksum += *wbuf;
   1648 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1649 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1650 				ASC_EEP_CMD_WRITE | addr);
   1651 		AdwWaitEEPCmd(iot, ioh);
   1652 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1653 	}
   1654 
   1655 	/*
   1656 	 * Write EEPROM checksum at word 21
   1657 	 */
   1658 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1659 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1660 			ASC_EEP_CMD_WRITE | addr);
   1661 	AdwWaitEEPCmd(iot, ioh);
   1662 	wbuf++;        /* skip over check_sum */
   1663 
   1664 	/*
   1665 	 * Write EEPROM OEM name at words 22 to 29
   1666 	 */
   1667 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1668 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1669 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1670 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1671 				ASC_EEP_CMD_WRITE | addr);
   1672 		AdwWaitEEPCmd(iot, ioh);
   1673 	}
   1674 
   1675 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1676 			ASC_EEP_CMD_WRITE_DISABLE);
   1677 	AdwWaitEEPCmd(iot, ioh);
   1678 
   1679 	return;
   1680 }
   1681 
   1682 
   1683 /*
   1684  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1685  *
   1686  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1687  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1688  *   RISC to notify it a new command is ready to be executed.
   1689  *
   1690  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1691  * set to SCSI_MAX_RETRY.
   1692  *
   1693  * Return:
   1694  *      ADW_SUCCESS(1) - The request was successfully queued.
   1695  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1696  *                       request completes.
   1697  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1698  *                       host IC error.
   1699  */
   1700 int
   1701 AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   1702 {
   1703 	bus_space_tag_t iot = sc->sc_iot;
   1704 	bus_space_handle_t ioh = sc->sc_ioh;
   1705 	ADW_CCB		*ccb;
   1706 	u_int32_t	req_paddr;
   1707 	ADW_CARRIER	*new_carrp;
   1708 
   1709 	/*
   1710 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1711 	 */
   1712 	if (scsiq->target_id > ADW_MAX_TID) {
   1713 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1714 		scsiq->done_status = QD_WITH_ERROR;
   1715 		return ADW_ERROR;
   1716 	}
   1717 
   1718 	/*
   1719 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1720 	 */
   1721 
   1722 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1723 
   1724 	/*
   1725 	 * Allocate a carrier and initialize fields.
   1726 	 */
   1727 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1728 		return ADW_BUSY;
   1729 	}
   1730 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1731 			ASC_GET_CARRP(new_carrp->next_ba));
   1732 	sc->carr_pending_cnt++;
   1733 
   1734 	/*
   1735 	 * Set the carrier to be a stopper by setting 'next_ba'
   1736 	 * to the stopper value. The current stopper will be changed
   1737 	 * below to point to the new stopper.
   1738 	 */
   1739 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1740 
   1741 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1742 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1743 
   1744 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1745 	scsiq->scsiq_rptr = htole32(req_paddr);
   1746 
   1747 	/*
   1748 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1749 	 * order during initialization.
   1750 	 */
   1751 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1752 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1753 
   1754 	/*
   1755 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1756 	 * the microcode. The newly allocated stopper will become the new
   1757 	 * stopper.
   1758 	 */
   1759 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1760 
   1761 	/*
   1762 	 * Set the 'next_ba' pointer for the old stopper to be the
   1763 	 * physical address of the new stopper. The RISC can only
   1764 	 * follow physical addresses.
   1765 	 */
   1766 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1767 
   1768 #if ADW_DEBUG
   1769 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1770 			sc->icq_sp->carr_id,
   1771 			sc->icq_sp->carr_ba,
   1772 			sc->icq_sp->areq_ba,
   1773 			sc->icq_sp->next_ba);
   1774 #endif
   1775 	/*
   1776 	 * Set the host adapter stopper pointer to point to the new carrier.
   1777 	 */
   1778 	sc->icq_sp = new_carrp;
   1779 
   1780 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1781 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1782 		/*
   1783 		 * Tickle the RISC to tell it to read its Command Queue Head
   1784 		 * pointer.
   1785 		 */
   1786 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1787 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1788 			/*
   1789 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1790 			 * command 'clr_tickle_a' does not work unless the host
   1791 			 * value is cleared.
   1792 			 */
   1793 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1794 					ADW_TICKLE_NOP);
   1795 		}
   1796 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1797 		/*
   1798 		 * Notify the RISC a carrier is ready by writing the physical
   1799 		 * address of the new carrier stopper to the COMMA register.
   1800 		 */
   1801 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1802 				le32toh(new_carrp->carr_ba));
   1803 	}
   1804 
   1805 	/*
   1806 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1807 	 */
   1808 
   1809 	return ADW_SUCCESS;
   1810 }
   1811 
   1812 
   1813 void
   1814 AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
   1815 {
   1816 
   1817 	/*
   1818 	 * Reset Chip.
   1819 	 */
   1820 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1821 			ADW_CTRL_REG_CMD_RESET);
   1822 	AdwSleepMilliSecond(100);
   1823 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1824 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1825 }
   1826 
   1827 
   1828 /*
   1829  * Reset SCSI Bus and purge all outstanding requests.
   1830  *
   1831  * Return Value:
   1832  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1833  *      ADW_FALSE(0) -  Microcode command failed.
   1834  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1835  *                      may be hung which requires driver recovery.
   1836  */
   1837 int
   1838 AdwResetCCB(ADW_SOFTC *sc)
   1839 {
   1840 	int	    status;
   1841 
   1842 	/*
   1843 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1844 	 * the SCSI Bus Reset signal.
   1845 	 */
   1846 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1847 	if (status != ADW_TRUE) {
   1848 		return status;
   1849 	}
   1850 
   1851 	/*
   1852 	 * Delay for the specified SCSI Bus Reset hold time.
   1853 	 *
   1854 	 * The hold time delay is done on the host because the RISC has no
   1855 	 * microsecond accurate timer.
   1856 	 */
   1857 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1858 
   1859 	/*
   1860 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1861 	 * the SCSI Bus Reset signal and purges any pending requests.
   1862 	 */
   1863 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1864 	if (status != ADW_TRUE) {
   1865 		return status;
   1866 	}
   1867 
   1868 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1869 
   1870 	return status;
   1871 }
   1872 
   1873 
   1874 /*
   1875  * Reset chip and SCSI Bus.
   1876  *
   1877  * Return Value:
   1878  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1879  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1880  */
   1881 int
   1882 AdwResetSCSIBus(ADW_SOFTC *sc)
   1883 {
   1884 	bus_space_tag_t iot = sc->sc_iot;
   1885 	bus_space_handle_t ioh = sc->sc_ioh;
   1886 	int		status;
   1887 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
   1888 	u_int16_t	ppr_able = 0; /* XXX: gcc */
   1889 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1890 	u_int16_t	bios_sig;
   1891 
   1892 
   1893 	/*
   1894 	 * Save current per TID negotiated values.
   1895 	 */
   1896 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1897 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1898 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1899 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1900 	}
   1901 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1902 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1903 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1904 			max_cmd[tid]);
   1905 	}
   1906 
   1907 	/*
   1908 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1909 	 * by clearing the BIOS signature word.
   1910 	 * The initialization functions assumes a SCSI Bus Reset is not
   1911 	 * needed if the BIOS signature word is present.
   1912 	 */
   1913 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1914 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1915 
   1916 	/*
   1917 	 * Stop chip and reset it.
   1918 	 */
   1919 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1920 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1921 			ADW_CTRL_REG_CMD_RESET);
   1922 	AdwSleepMilliSecond(100);
   1923 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1924 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1925 
   1926 	/*
   1927 	 * Reset Adv Library error code, if any, and try
   1928 	 * re-initializing the chip.
   1929 	 * Then translate initialization return value to status value.
   1930 	 */
   1931 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1932 
   1933 	/*
   1934 	 * Restore the BIOS signature word.
   1935 	 */
   1936 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1937 
   1938 	/*
   1939 	 * Restore per TID negotiated values.
   1940 	 */
   1941 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1942 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1943 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1944 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1945 	}
   1946 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1947 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1948 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1949 			max_cmd[tid]);
   1950 	}
   1951 
   1952 	return status;
   1953 }
   1954 
   1955 
   1956 /*
   1957  * Adv Library Interrupt Service Routine
   1958  *
   1959  *  This function is called by a driver's interrupt service routine.
   1960  *  The function disables and re-enables interrupts.
   1961  *
   1962  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1963  *  'idle_cmd_done' field is set to ADW_TRUE.
   1964  *
   1965  *  Note: AdwISR() can be called when interrupts are disabled or even
   1966  *  when there is no hardware interrupt condition present. It will
   1967  *  always check for completed idle commands and microcode requests.
   1968  *  This is an important feature that shouldn't be changed because it
   1969  *  allows commands to be completed from polling mode loops.
   1970  *
   1971  * Return:
   1972  *   ADW_TRUE(1) - interrupt was pending
   1973  *   ADW_FALSE(0) - no interrupt was pending
   1974  */
   1975 int
   1976 AdwISR(ADW_SOFTC *sc)
   1977 {
   1978 	bus_space_tag_t iot = sc->sc_iot;
   1979 	bus_space_handle_t ioh = sc->sc_ioh;
   1980 	u_int8_t	int_stat;
   1981 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   1982 	u_int32_t	irq_next_pa;
   1983 	ADW_SCSI_REQ_Q	*scsiq;
   1984 	ADW_CCB		*ccb;
   1985 	int		s;
   1986 
   1987 
   1988 	s = splbio();
   1989 
   1990 	/* Reading the register clears the interrupt. */
   1991 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   1992 
   1993 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   1994 	     ADW_INTR_STATUS_INTRC)) == 0) {
   1995 		splx(s);
   1996 		return ADW_FALSE;
   1997 	}
   1998 
   1999 	/*
   2000 	 * Notify the driver of an asynchronous microcode condition by
   2001 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2002 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2003 	 */
   2004 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2005 		u_int8_t intrb_code;
   2006 
   2007 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2008 
   2009 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2010 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2011 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2012 				sc->carr_pending_cnt != 0) {
   2013 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2014 					IOPB_TICKLE, ADW_TICKLE_A);
   2015 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2016 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2017 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2018 				}
   2019 			}
   2020 		}
   2021 
   2022 		if (sc->async_callback != 0) {
   2023 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2024 		}
   2025 	}
   2026 
   2027 	/*
   2028 	 * Check if the IRQ stopper carrier contains a completed request.
   2029 	 */
   2030 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2031 	{
   2032 #if ADW_DEBUG
   2033 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2034 				sc->irq_sp->carr_id,
   2035 				sc->irq_sp->carr_ba,
   2036 				sc->irq_sp->areq_ba,
   2037 				sc->irq_sp->next_ba);
   2038 #endif
   2039 		/*
   2040 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2041 		 * structure.
   2042 		 * The RISC will have set 'areq_ba' to a virtual address.
   2043 		 *
   2044 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2045 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2046 		 * The conversion below complements the conversion of
   2047 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2048 		 */
   2049 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2050 		scsiq = &ccb->scsiq;
   2051 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2052 
   2053 		/*
   2054 		 * Request finished with good status and the queue was not
   2055 		 * DMAed to host memory by the firmware. Set all status fields
   2056 		 * to indicate good status.
   2057 		 */
   2058 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2059 			scsiq->done_status = QD_NO_ERROR;
   2060 			scsiq->host_status = scsiq->scsi_status = 0;
   2061 			scsiq->data_cnt = 0L;
   2062 		}
   2063 
   2064 		/*
   2065 		 * Advance the stopper pointer to the next carrier
   2066 		 * ignoring the lower four bits. Free the previous
   2067 		 * stopper carrier.
   2068 		 */
   2069 		free_carrp = sc->irq_sp;
   2070 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2071 
   2072 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
   2073 					: sc->carr_freelist->carr_ba;
   2074 		sc->carr_freelist = free_carrp;
   2075 		sc->carr_pending_cnt--;
   2076 
   2077 		/*
   2078 		 * Clear request microcode control flag.
   2079 		 */
   2080 		scsiq->cntl = 0;
   2081 
   2082 		/*
   2083 		 * Check Condition handling
   2084 		 */
   2085 		/*
   2086 		 * If the command that completed was a SCSI INQUIRY and
   2087 		 * LUN 0 was sent the command, then process the INQUIRY
   2088 		 * command information for the device.
   2089 		 */
   2090 		if (scsiq->done_status == QD_NO_ERROR &&
   2091 		    scsiq->cdb[0] == INQUIRY &&
   2092 		    scsiq->target_lun == 0) {
   2093 			AdwInquiryHandling(sc, scsiq);
   2094 		}
   2095 
   2096 		/*
   2097 		 * Notify the driver of the completed request by passing
   2098 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2099 		 */
   2100 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2101 		/*
   2102 		 * Note: After the driver callback function is called, 'scsiq'
   2103 		 * can no longer be referenced.
   2104 		 *
   2105 		 * Fall through and continue processing other completed
   2106 		 * requests...
   2107 		 */
   2108 	}
   2109 
   2110 	splx(s);
   2111 
   2112 	return ADW_TRUE;
   2113 }
   2114 
   2115 
   2116 /*
   2117  * Send an idle command to the chip and wait for completion.
   2118  *
   2119  * Command completion is polled for once per microsecond.
   2120  *
   2121  * The function can be called from anywhere including an interrupt handler.
   2122  * But the function is not re-entrant, so it uses the splbio/splx()
   2123  * functions to prevent reentrancy.
   2124  *
   2125  * Return Values:
   2126  *   ADW_TRUE - command completed successfully
   2127  *   ADW_FALSE - command failed
   2128  *   ADW_ERROR - command timed out
   2129  */
   2130 int
   2131 AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
   2132 {
   2133 	bus_space_tag_t iot = sc->sc_iot;
   2134 	bus_space_handle_t ioh = sc->sc_ioh;
   2135 	u_int16_t	result;
   2136 	u_int32_t	i, j, s;
   2137 
   2138 	s = splbio();
   2139 
   2140 	/*
   2141 	 * Clear the idle command status which is set by the microcode
   2142 	 * to a non-zero value to indicate when the command is completed.
   2143 	 */
   2144 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2145 
   2146 	/*
   2147 	 * Write the idle command value after the idle command parameter
   2148 	 * has been written to avoid a race condition. If the order is not
   2149 	 * followed, the microcode may process the idle command before the
   2150 	 * parameters have been written to LRAM.
   2151 	 */
   2152 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2153 			idle_cmd_parameter);
   2154 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2155 
   2156 	/*
   2157 	 * Tickle the RISC to tell it to process the idle command.
   2158 	 */
   2159 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2160 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2161 		/*
   2162 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2163 		 * command 'clr_tickle_b' does not work unless the host
   2164 		 * value is cleared.
   2165 		 */
   2166 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2167 	}
   2168 
   2169 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2170 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2171 		/* Poll once each microsecond for command completion. */
   2172 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2173 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2174 									result);
   2175 			if (result != 0) {
   2176 				splx(s);
   2177 				return result;
   2178 			}
   2179 			AdwDelayMicroSecond(1);
   2180 		}
   2181 	}
   2182 
   2183 	splx(s);
   2184 	return ADW_ERROR;
   2185 }
   2186 
   2187 
   2188 /*
   2189  * Inquiry Information Byte 7 Handling
   2190  *
   2191  * Handle SCSI Inquiry Command information for a device by setting
   2192  * microcode operating variables that affect WDTR, SDTR, and Tag
   2193  * Queuing.
   2194  */
   2195 static void
   2196 AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   2197 {
   2198 #ifndef FAILSAFE
   2199 	bus_space_tag_t iot = sc->sc_iot;
   2200 	bus_space_handle_t ioh = sc->sc_ioh;
   2201 	u_int8_t		tid;
   2202 	struct scsipi_inquiry_data *inq;
   2203 	u_int16_t		tidmask;
   2204 	u_int16_t		cfg_word;
   2205 
   2206 
   2207 	/*
   2208 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2209 	 * to be available.
   2210 	 *
   2211 	 * If less than 8 bytes of INQUIRY information were requested or less
   2212 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2213 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2214 	 * microcode to the transfer residual count.
   2215 	 */
   2216 
   2217 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2218 		return;
   2219 	}
   2220 
   2221 	tid = scsiq->target_id;
   2222 
   2223 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2224 
   2225 	/*
   2226 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2227 	 */
   2228 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2229 	    ((inq->version & SID_ANSII) < 2)) {
   2230 		return;
   2231 	} else {
   2232 		/*
   2233 		 * INQUIRY Byte 7 Handling
   2234 		 *
   2235 		 * Use a device's INQUIRY byte 7 to determine whether it
   2236 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2237 		 * is enabled in the EEPROM and the device supports the
   2238 		 * feature, then enable it in the microcode.
   2239 		 */
   2240 
   2241 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2242 
   2243 		/*
   2244 		 * Wide Transfers
   2245 		 *
   2246 		 * If the EEPROM enabled WDTR for the device and the device
   2247 		 * supports wide bus (16 bit) transfers, then turn on the
   2248 		 * device's 'wdtr_able' bit and write the new value to the
   2249 		 * microcode.
   2250 		 */
   2251 #ifdef SCSI_ADW_WDTR_DISABLE
   2252 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2253 #endif /* SCSI_ADW_WDTR_DISABLE */
   2254 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2255 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2256 					cfg_word);
   2257 			if ((cfg_word & tidmask) == 0) {
   2258 				cfg_word |= tidmask;
   2259 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2260 						cfg_word);
   2261 
   2262 				/*
   2263 				 * Clear the microcode "SDTR negotiation" and
   2264 				 * "WDTR negotiation" done indicators for the
   2265 				 * target to cause it to negotiate with the new
   2266 				 * setting set above.
   2267 				 * WDTR when accepted causes the target to enter
   2268 				 * asynchronous mode, so SDTR must be negotiated
   2269 				 */
   2270 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2271 						cfg_word);
   2272 				cfg_word &= ~tidmask;
   2273 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2274 						cfg_word);
   2275 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2276 						cfg_word);
   2277 				cfg_word &= ~tidmask;
   2278 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2279 						cfg_word);
   2280 			}
   2281 		}
   2282 
   2283 		/*
   2284 		 * Synchronous Transfers
   2285 		 *
   2286 		 * If the EEPROM enabled SDTR for the device and the device
   2287 		 * supports synchronous transfers, then turn on the device's
   2288 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2289 		 */
   2290 #ifdef SCSI_ADW_SDTR_DISABLE
   2291 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2292 #endif /* SCSI_ADW_SDTR_DISABLE */
   2293 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2294 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2295 			if ((cfg_word & tidmask) == 0) {
   2296 				cfg_word |= tidmask;
   2297 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2298 						cfg_word);
   2299 
   2300 				/*
   2301 				 * Clear the microcode "SDTR negotiation"
   2302 				 * done indicator for the target to cause it
   2303 				 * to negotiate with the new setting set above.
   2304 				 */
   2305 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2306 						cfg_word);
   2307 				cfg_word &= ~tidmask;
   2308 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2309 						cfg_word);
   2310 			}
   2311 		}
   2312 		/*
   2313 		 * If the Inquiry data included enough space for the SPI-3
   2314 		 * Clocking field, then check if DT mode is supported.
   2315 		 */
   2316 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2317 		   (scsiq->cdb[4] >= 57 ||
   2318 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2319 			/*
   2320 			 * PPR (Parallel Protocol Request) Capable
   2321 			 *
   2322 			 * If the device supports DT mode, then it must be
   2323 			 * PPR capable.
   2324 			 * The PPR message will be used in place of the SDTR
   2325 			 * and WDTR messages to negotiate synchronous speed
   2326 			 * and offset, transfer width, and protocol options.
   2327 			 */
   2328 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2329 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2330 						sc->ppr_able);
   2331 				sc->ppr_able |= tidmask;
   2332 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2333 						sc->ppr_able);
   2334 			}
   2335 		}
   2336 
   2337 		/*
   2338 		 * If the EEPROM enabled Tag Queuing for the device and the
   2339 		 * device supports Tag Queueing, then turn on the device's
   2340 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2341 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2342 		 * value.
   2343 		 *
   2344 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2345 		 * mode and would see no benefit from Tag Queuing. Also by
   2346 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2347 		 * bugs will at least work with the BIOS.
   2348 		 */
   2349 #ifdef SCSI_ADW_TAGQ_DISABLE
   2350 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2351 #endif /* SCSI_ADW_TAGQ_DISABLE */
   2352 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2353 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2354 					cfg_word);
   2355 			cfg_word |= tidmask;
   2356 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2357 					cfg_word);
   2358 
   2359 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2360 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2361 					sc->max_dvc_qng);
   2362 		}
   2363 	}
   2364 #endif /* FAILSAFE */
   2365 }
   2366 
   2367 
   2368 static void
   2369 AdwSleepMilliSecond(u_int32_t n)
   2370 {
   2371 
   2372 	DELAY(n * 1000);
   2373 }
   2374 
   2375 
   2376 static void
   2377 AdwDelayMicroSecond(u_int32_t n)
   2378 {
   2379 
   2380 	DELAY(n);
   2381 }
   2382 
   2383