Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.39.4.1
      1 /* $NetBSD: adwlib.c,v 1.39.4.1 2011/03/05 20:53:11 rmind Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 /*
     40  * Ported from:
     41  */
     42 /*
     43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  *
     45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46  * All Rights Reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that redistributions of source
     50  * code retain the above copyright notice and this comment without
     51  * modification.
     52  */
     53 
     54 #include <sys/cdefs.h>
     55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.39.4.1 2011/03/05 20:53:11 rmind Exp $");
     56 
     57 #include <sys/param.h>
     58 #include <sys/systm.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/queue.h>
     62 #include <sys/device.h>
     63 
     64 #include <sys/bus.h>
     65 #include <sys/intr.h>
     66 
     67 #include <dev/scsipi/scsi_all.h>
     68 #include <dev/scsipi/scsipi_all.h>
     69 #include <dev/scsipi/scsiconf.h>
     70 
     71 #include <dev/pci/pcidevs.h>
     72 
     73 #include <dev/ic/adwlib.h>
     74 #include <dev/ic/adwmcode.h>
     75 #include <dev/ic/adw.h>
     76 
     77 
     78 /* Static Functions */
     79 
     80 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
     81 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
     82 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     83 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     84 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     85 
     86 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     87      							ADW_EEPROM *);
     88 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     89 					                 ADW_EEPROM *);
     90 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
     91 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
     92 
     93 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
     94 
     95 static void AdwSleepMilliSecond(u_int32_t);
     96 static void AdwDelayMicroSecond(u_int32_t);
     97 
     98 
     99 /*
    100  * EEPROM Configuration.
    101  *
    102  * All drivers should use this structure to set the default EEPROM
    103  * configuration. The BIOS now uses this structure when it is built.
    104  * Additional structure information can be found in adwlib.h where
    105  * the structure is defined.
    106  */
    107 static const ADW_EEPROM adw_3550_Default_EEPROM = {
    108 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    109 	0x0000,			/* 01 cfg_msw */
    110 	0xFFFF,			/* 02 disc_enable */
    111 	0xFFFF,			/* 03 wdtr_able */
    112 	{ 0xFFFF },		/* 04 sdtr_able */
    113 	0xFFFF,			/* 05 start_motor */
    114 	0xFFFF,			/* 06 tagqng_able */
    115 	0xFFFF,			/* 07 bios_scan */
    116 	0,			/* 08 scam_tolerant */
    117 	7,			/* 09 adapter_scsi_id */
    118 	0,			/*    bios_boot_delay */
    119 	3,			/* 10 scsi_reset_delay */
    120 	0,			/*    bios_id_lun */
    121 	0,			/* 11 termination */
    122 	0,			/*    reserved1 */
    123 	0xFFE7,			/* 12 bios_ctrl */
    124 	{ 0xFFFF },		/* 13 ultra_able */
    125 	{ 0 },			/* 14 reserved2 */
    126 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    127 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    128 	0,			/* 16 dvc_cntl */
    129 	{ 0 },			/* 17 bug_fix */
    130 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    131 	0,			/* 21 check_sum */
    132 	{			/* 22-29 oem_name[16] */
    133 	  0,0,0,0,0,0,0,0,
    134 	  0,0,0,0,0,0,0,0
    135 	},
    136 	0,			/* 30 dvc_err_code */
    137 	0,			/* 31 adv_err_code */
    138 	0,			/* 32 adv_err_addr */
    139 	0,			/* 33 saved_dvc_err_code */
    140 	0,			/* 34 saved_adv_err_code */
    141 	0,			/* 35 saved_adv_err_addr */
    142 	{			/* 36-55 reserved1[16] */
    143 	  0,0,0,0,0,0,0,0,0,0,
    144 	  0,0,0,0,0,0,0,0,0,0
    145 	},
    146 	0,			/* 56 cisptr_lsw */
    147 	0,			/* 57 cisprt_msw */
    148 	0,			/* 58 subsysvid */
    149 	0,			/* 59 subsysid */
    150 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    151 };
    152 
    153 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
    154 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    155 	0x0000,			/* 01 cfg_msw */
    156 	0xFFFF,			/* 02 disc_enable */
    157 	0xFFFF,			/* 03 wdtr_able */
    158 	{ 0x4444 },		/* 04 sdtr_speed1 */
    159 	0xFFFF,			/* 05 start_motor */
    160 	0xFFFF,			/* 06 tagqng_able */
    161 	0xFFFF,			/* 07 bios_scan */
    162 	0,			/* 08 scam_tolerant */
    163 	7,			/* 09 adapter_scsi_id */
    164 	0,			/*    bios_boot_delay */
    165 	3,			/* 10 scsi_reset_delay */
    166 	0,			/*    bios_id_lun */
    167 	0,			/* 11 termination_se */
    168 	0,			/*    termination_lvd */
    169 	0xFFE7,			/* 12 bios_ctrl */
    170 	{ 0x4444 },		/* 13 sdtr_speed2 */
    171 	{ 0x4444 },		/* 14 sdtr_speed3 */
    172 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    173 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    174 	0,			/* 16 dvc_cntl */
    175 	{ 0x4444 },		/* 17 sdtr_speed4 */
    176 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    177 	0,			/* 21 check_sum */
    178 	{			/* 22-29 oem_name[16] */
    179 	  0,0,0,0,0,0,0,0,
    180 	  0,0,0,0,0,0,0,0
    181 	},
    182 	0,			/* 30 dvc_err_code */
    183 	0,			/* 31 adv_err_code */
    184 	0,			/* 32 adv_err_addr */
    185 	0,			/* 33 saved_dvc_err_code */
    186 	0,			/* 34 saved_adv_err_code */
    187 	0,			/* 35 saved_adv_err_addr */
    188 	{			/* 36-55 reserved1[16] */
    189 	  0,0,0,0,0,0,0,0,0,0,
    190 	  0,0,0,0,0,0,0,0,0,0
    191 	},
    192 	0,			/* 56 cisptr_lsw */
    193 	0,			/* 57 cisprt_msw */
    194 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    195 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    196 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    197 };
    198 
    199 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
    200 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    201 	0x0000,			/* 01 cfg_msw */
    202 	0xFFFF,			/* 02 disc_enable */
    203 	0xFFFF,			/* 03 wdtr_able */
    204 	{ 0x5555 },		/* 04 sdtr_speed1 */
    205 	0xFFFF,			/* 05 start_motor */
    206 	0xFFFF,			/* 06 tagqng_able */
    207 	0xFFFF,			/* 07 bios_scan */
    208 	0,			/* 08 scam_tolerant */
    209 	7,			/* 09 adapter_scsi_id */
    210 	0,			/*    bios_boot_delay */
    211 	3,			/* 10 scsi_reset_delay */
    212 	0,			/*    bios_id_lun */
    213 	0,			/* 11 termination_se */
    214 	0,			/*    termination_lvd */
    215 	0xFFE7,			/* 12 bios_ctrl */
    216 	{ 0x5555 },		/* 13 sdtr_speed2 */
    217 	{ 0x5555 },		/* 14 sdtr_speed3 */
    218 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    219 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    220 	0,			/* 16 dvc_cntl */
    221 	{ 0x5555 },		/* 17 sdtr_speed4 */
    222 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    223 	0,			/* 21 check_sum */
    224 	{			/* 22-29 oem_name[16] */
    225 	  0,0,0,0,0,0,0,0,
    226 	  0,0,0,0,0,0,0,0
    227 	},
    228 	0,			/* 30 dvc_err_code */
    229 	0,			/* 31 adv_err_code */
    230 	0,			/* 32 adv_err_addr */
    231 	0,			/* 33 saved_dvc_err_code */
    232 	0,			/* 34 saved_adv_err_code */
    233 	0,			/* 35 saved_adv_err_addr */
    234 	{			/* 36-55 reserved1[16] */
    235 	  0,0,0,0,0,0,0,0,0,0,
    236 	  0,0,0,0,0,0,0,0,0,0
    237 	},
    238 	0,			/* 56 cisptr_lsw */
    239 	0,			/* 57 cisprt_msw */
    240 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    241 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    242 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    243 };
    244 
    245 
    246 /*
    247  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    248  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    249  * all of this is done.
    250  *
    251  * For a non-fatal error return a warning code. If there are no warnings
    252  * then 0 is returned.
    253  *
    254  * Note: Chip is stopped on entry.
    255  */
    256 int
    257 AdwInitFromEEPROM(ADW_SOFTC *sc)
    258 {
    259 	bus_space_tag_t iot = sc->sc_iot;
    260 	bus_space_handle_t ioh = sc->sc_ioh;
    261 	ADW_EEPROM		eep_config;
    262 	u_int16_t		warn_code;
    263 	u_int16_t		sdtr_speed = 0;
    264 	u_int8_t		tid, termination;
    265 	int			i, j;
    266 
    267 
    268 	warn_code = 0;
    269 
    270 	/*
    271 	 * Read the board's EEPROM configuration.
    272 	 *
    273 	 * Set default values if a bad checksum is found.
    274 	 *
    275 	 * XXX - Don't handle big-endian access to EEPROM yet.
    276 	 */
    277 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    278 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    279 
    280 		/*
    281 		 * Set EEPROM default values.
    282 		 */
    283 		switch(sc->chip_type) {
    284 		case ADW_CHIP_ASC3550:
    285 			eep_config = adw_3550_Default_EEPROM;
    286 			break;
    287 		case ADW_CHIP_ASC38C0800:
    288 			eep_config = adw_38C0800_Default_EEPROM;
    289 			break;
    290 		case ADW_CHIP_ASC38C1600:
    291 			eep_config = adw_38C1600_Default_EEPROM;
    292 
    293 #if 0
    294 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    295 #endif
    296 			if (sc->cfg.pci_slot_info != 0) {
    297 				u_int8_t lsw_msb;
    298 
    299 				lsw_msb = eep_config.cfg_lsw >> 8;
    300 				/*
    301 				 * Set Function 1 EEPROM Word 0 MSB
    302 				 *
    303 				 * Clear the BIOS_ENABLE (bit 14) and
    304 				 * INTAB (bit 11) EEPROM bits.
    305 				 *
    306 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    307 				 * SPARC Ultra 60 and old Mac system booting
    308 				 * problem. The Expansion ROM must
    309 				 * be disabled in Function 1 for these systems.
    310 				 */
    311 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    312 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    313 				/*
    314 				 * Set the INTAB (bit 11) if the GPIO 0 input
    315 				 * indicates the Function 1 interrupt line is
    316 				 * wired to INTA.
    317 				 *
    318 				 * Set/Clear Bit 11 (INTAB) from
    319 				 * the GPIO bit 0 input:
    320 				 *   1 - Function 1 intr line wired to INT A.
    321 				 *   0 - Function 1 intr line wired to INT B.
    322 				 *
    323 				 * Note: Adapter boards always have Function 0
    324 				 * wired to INTA.
    325 				 * Put all 5 GPIO bits in input mode and then
    326 				 * read their input values.
    327 				 */
    328 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    329 							IOPB_GPIO_CNTL, 0);
    330 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    331 						IOPB_GPIO_DATA) & 0x01) {
    332 					/*
    333 					 * Function 1 interrupt wired to INTA;
    334 					 * Set EEPROM bit.
    335 					 */
    336 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    337 							 & 0xFF;
    338 				 }
    339 				 eep_config.cfg_lsw &= 0x00FF;
    340 				 eep_config.cfg_lsw |= lsw_msb << 8;
    341 			}
    342 			break;
    343 		}
    344 
    345 		/*
    346 		 * Assume the 6 byte board serial number that was read
    347 		 * from EEPROM is correct even if the EEPROM checksum
    348 		 * failed.
    349 		 */
    350 		for (i=2, j=1; i>=0; i--, j++) {
    351 		eep_config.serial_number[i] =
    352 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    353 		}
    354 
    355 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    356 	}
    357 	/*
    358 	 * Set sc and sc->cfg variables from the EEPROM configuration
    359 	 * that was read.
    360 	 *
    361 	 * This is the mapping of EEPROM fields to Adw Library fields.
    362 	 */
    363 	sc->wdtr_able = eep_config.wdtr_able;
    364 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    365 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    366 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    367 	} else {
    368 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    369 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    370 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    371 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    372 	}
    373 	sc->ppr_able = 0;
    374 	sc->tagqng_able = eep_config.tagqng_able;
    375 	sc->cfg.disc_enable = eep_config.disc_enable;
    376 	sc->max_host_qng = eep_config.max_host_qng;
    377 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    378 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    379 	sc->start_motor = eep_config.start_motor;
    380 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    381 	sc->bios_ctrl = eep_config.bios_ctrl;
    382 	sc->no_scam = eep_config.scam_tolerant;
    383 	sc->cfg.serial1 = eep_config.serial_number[0];
    384 	sc->cfg.serial2 = eep_config.serial_number[1];
    385 	sc->cfg.serial3 = eep_config.serial_number[2];
    386 
    387 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    388 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    389 		sc->sdtr_able = 0;
    390 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    391 			if (tid == 0) {
    392 				sdtr_speed = sc->sdtr_speed1;
    393 			} else if (tid == 4) {
    394 				sdtr_speed = sc->sdtr_speed2;
    395 			} else if (tid == 8) {
    396 				sdtr_speed = sc->sdtr_speed3;
    397 			} else if (tid == 12) {
    398 				sdtr_speed = sc->sdtr_speed4;
    399 			}
    400 			if (sdtr_speed & ADW_MAX_TID) {
    401 				sc->sdtr_able |= (1 << tid);
    402 			}
    403 			sdtr_speed >>= 4;
    404 		}
    405 	}
    406 
    407 	/*
    408 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    409 	 * maximum queuing (max. 63, min. 4).
    410 	 */
    411 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    412 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    413 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    414 	{
    415 		/* If the value is zero, assume it is uninitialized. */
    416 		if (eep_config.max_host_qng == 0) {
    417 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    418 		} else {
    419 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    420 		}
    421 	}
    422 
    423 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    424 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    425 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    426 		/* If the value is zero, assume it is uninitialized. */
    427 		if (eep_config.max_dvc_qng == 0) {
    428 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    429 		} else {
    430 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    431 		}
    432 	}
    433 
    434 	/*
    435 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    436 	 * set 'max_dvc_qng' to 'max_host_qng'.
    437 	 */
    438 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    439 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    440 	}
    441 
    442 	/*
    443 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    444 	 * values based on possibly adjusted EEPROM values.
    445 	 */
    446 	sc->max_host_qng = eep_config.max_host_qng;
    447 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    448 
    449 
    450 	/*
    451 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    452 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    453 	 *
    454 	 * If the termination is specified with a non-zero 'termination'
    455 	 * value check that a legal value is set and set the ADV_DVC_CFG
    456 	 * 'termination' field appropriately.
    457 	 */
    458 
    459 	switch(sc->chip_type) {
    460 	case ADW_CHIP_ASC3550:
    461 		sc->cfg.termination = 0;	/* auto termination */
    462 		switch(eep_config.termination_se) {
    463 		case 3:
    464 			/* Enable manual control with low on / high on. */
    465 			sc->cfg.termination |= ADW_TERM_CTL_L;
    466 		case 2:
    467 			/* Enable manual control with low off / high on. */
    468 			sc->cfg.termination |= ADW_TERM_CTL_H;
    469 		case 1:
    470 			/* Enable manual control with low off / high off. */
    471 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    472 		case 0:
    473 			break;
    474 		default:
    475 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    476 		}
    477 		break;
    478 
    479 	case ADW_CHIP_ASC38C0800:
    480 	case ADW_CHIP_ASC38C1600:
    481 		switch(eep_config.termination_se) {
    482 		case 0:
    483 			/* auto termination for SE */
    484 			termination = 0;
    485 			break;
    486 		case 1:
    487 			/* Enable manual control with low off / high off. */
    488 			termination = 0;
    489 			break;
    490 		case 2:
    491 			/* Enable manual control with low off / high on. */
    492 			termination = ADW_TERM_SE_HI;
    493 			break;
    494 		case 3:
    495 			/* Enable manual control with low on / high on. */
    496 			termination = ADW_TERM_SE;
    497 			break;
    498 		default:
    499 			/*
    500 			 * The EEPROM 'termination_se' field contains a
    501 			 * bad value. Use automatic termination instead.
    502 			 */
    503 			termination = 0;
    504 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    505 		}
    506 
    507 		switch(eep_config.termination_lvd) {
    508 		case 0:
    509 			/* auto termination for LVD */
    510 			sc->cfg.termination = termination;
    511 			break;
    512 		case 1:
    513 			/* Enable manual control with low off / high off. */
    514 			sc->cfg.termination = termination;
    515 			break;
    516 		case 2:
    517 			/* Enable manual control with low off / high on. */
    518 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    519 			break;
    520 		case 3:
    521 			/* Enable manual control with low on / high on. */
    522 			sc->cfg.termination = termination | ADW_TERM_LVD;
    523 			break;
    524 		default:
    525 			/*
    526 			 * The EEPROM 'termination_lvd' field contains a
    527 			 * bad value. Use automatic termination instead.
    528 			 */
    529 			sc->cfg.termination = termination;
    530 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    531 		}
    532 		break;
    533 	}
    534 
    535 	return warn_code;
    536 }
    537 
    538 
    539 /*
    540  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    541  *
    542  * On failure return the error code.
    543  */
    544 int
    545 AdwInitDriver(ADW_SOFTC *sc)
    546 {
    547 	bus_space_tag_t iot = sc->sc_iot;
    548 	bus_space_handle_t ioh = sc->sc_ioh;
    549 	u_int16_t	error_code;
    550 	int		word;
    551 	int		i;
    552 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    553 								0x40-0x8F. */
    554 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    555 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    556 	u_int8_t	tid;
    557 
    558 
    559 	error_code = 0;
    560 
    561 	/*
    562 	 * Save the RISC memory BIOS region before writing the microcode.
    563 	 * The BIOS may already be loaded and using its RISC LRAM region
    564 	 * so its region must be saved and restored.
    565 	 *
    566 	 * Note: This code makes the assumption, which is currently true,
    567 	 * that a chip reset does not clear RISC LRAM.
    568 	 */
    569 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    570 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    571 	}
    572 
    573 	/*
    574 	 * Save current per TID negotiated values.
    575 	 */
    576 	switch (sc->chip_type) {
    577 	case ADW_CHIP_ASC3550:
    578 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    579 
    580 			u_int16_t  bios_version, major, minor;
    581 
    582 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    583 					ADW_MC_BIOSMEM) / 2];
    584 			major = (bios_version  >> 12) & 0xF;
    585 			minor = (bios_version  >> 8) & 0xF;
    586 			if (major < 3 || (major == 3 && minor == 1)) {
    587 			    /*
    588 			     * BIOS 3.1 and earlier location of
    589 			     * 'wdtr_able' variable.
    590 			     */
    591 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    592 			} else {
    593 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    594 					    wdtr_able);
    595 			}
    596 		}
    597 		break;
    598 
    599 	case ADW_CHIP_ASC38C1600:
    600 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    601 		/* FALLTHROUGH */
    602 	case ADW_CHIP_ASC38C0800:
    603 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    604 		break;
    605 	}
    606 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    607 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    608 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    609 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    610 			max_cmd[tid]);
    611 	}
    612 
    613 	/*
    614 	 * Perform a RAM Built-In Self Test
    615 	 */
    616 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    617 		return error_code;
    618 	}
    619 
    620 	/*
    621 	 * Load the Microcode
    622 	 */
    623 	;
    624 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    625 		return error_code;
    626 	}
    627 
    628 	/*
    629 	 * Read microcode version and date.
    630 	 */
    631 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    632 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    633 
    634 	/*
    635 	 * If the PCI Configuration Command Register "Parity Error Response
    636 	 * Control" Bit was clear (0), then set the microcode variable
    637 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    638 	 * to ignore DMA parity errors.
    639 	 */
    640 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    641 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    642 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    643 					word | CONTROL_FLAG_IGNORE_PERR);
    644 	}
    645 
    646 	switch (sc->chip_type) {
    647 	case ADW_CHIP_ASC3550:
    648 		/*
    649 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    650 		 * FIFO threshold of 128 bytes.
    651 		 * This register is only accessible to the host.
    652 		 */
    653 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    654 				START_CTL_EMFU | READ_CMD_MRM);
    655 		break;
    656 
    657 	case ADW_CHIP_ASC38C0800:
    658 		/*
    659 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    660 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    661 		 * cable detection and then we are able to read C_DET[3:0].
    662 		 *
    663 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    664 		 * Microcode Default Value' section below.
    665 		 */
    666 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    667 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    668 				| ADW_DIS_TERM_DRV);
    669 
    670 		/*
    671 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    672 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    673 		 *
    674 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    675 		 * 256 bytes.
    676 		 *
    677 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    678 		 */
    679 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    680 						BC_THRESH_ENB | FIFO_THRESH_80B
    681 						| START_CTL_TH | READ_CMD_MRM);
    682 		break;
    683 
    684 	case ADW_CHIP_ASC38C1600:
    685 		/*
    686 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    687 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    688 		 * cable detection and then we are able to read C_DET[3:0].
    689 		 *
    690 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    691 		 * Microcode Default Value' section below.
    692 		 */
    693 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    694 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    695 				| ADW_DIS_TERM_DRV);
    696 
    697 		/*
    698 		 * If the BIOS control flag AIPP (Asynchronous Information
    699 		 * Phase Protection) disable bit is not set, then set the
    700 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    701 		 * enable AIPP checking and encoding.
    702 		 */
    703 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    704 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    705 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    706 					word | CONTROL_FLAG_ENABLE_AIPP);
    707 		}
    708 
    709 		/*
    710 		 * For ASC-38C1600 use DMA_CFG0 default values:
    711 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    712 		 */
    713 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    714 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    715 		break;
    716 	}
    717 
    718 	/*
    719 	 * Microcode operating variables for WDTR, SDTR, and command tag
    720 	 * queuing will be set in AdvInquiryHandling() based on what a
    721 	 * device reports it is capable of in Inquiry byte 7.
    722 	 *
    723 	 * If SCSI Bus Resets have been disabled, then directly set
    724 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    725 	 * the BIOS and warm boot to work without a SCSI bus hang on
    726 	 * the Inquiry caused by host and target mismatched DTR values.
    727 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    728 	 * be assumed to be in Asynchronous, Narrow mode.
    729 	 */
    730 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    731 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    732 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    733 	}
    734 
    735 	/*
    736 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    737 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    738 	 * bitmask. These values determine the maximum SDTR speed negotiated
    739 	 * with a device.
    740 	 *
    741 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    742 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    743 	 * without determining here whether the device supports SDTR.
    744 	 */
    745 	switch (sc->chip_type) {
    746 	case ADW_CHIP_ASC3550:
    747 		word = 0;
    748 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    749 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    750 				/* Set Ultra speed for TID 'tid'. */
    751 				word |= (0x3 << (4 * (tid % 4)));
    752 			} else {
    753 				/* Set Fast speed for TID 'tid'. */
    754 				word |= (0x2 << (4 * (tid % 4)));
    755 			}
    756 			/* Check if done with sdtr_speed1. */
    757 			if (tid == 3) {
    758 				ADW_WRITE_WORD_LRAM(iot, ioh,
    759 						ADW_MC_SDTR_SPEED1, word);
    760 				word = 0;
    761 			/* Check if done with sdtr_speed2. */
    762 			} else if (tid == 7) {
    763 				ADW_WRITE_WORD_LRAM(iot, ioh,
    764 						ADW_MC_SDTR_SPEED2, word);
    765 				word = 0;
    766 			/* Check if done with sdtr_speed3. */
    767 			} else if (tid == 11) {
    768 				ADW_WRITE_WORD_LRAM(iot, ioh,
    769 						ADW_MC_SDTR_SPEED3, word);
    770 				word = 0;
    771 			/* Check if done with sdtr_speed4. */
    772 			} else if (tid == 15) {
    773 				ADW_WRITE_WORD_LRAM(iot, ioh,
    774 						ADW_MC_SDTR_SPEED4, word);
    775 				/* End of loop. */
    776 			}
    777 		}
    778 
    779 		/*
    780 		 * Set microcode operating variable for the
    781 		 * disconnect per TID bitmask.
    782 		 */
    783 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    784 							sc->cfg.disc_enable);
    785 		break;
    786 
    787 	case ADW_CHIP_ASC38C0800:
    788 		/* FALLTHROUGH */
    789 	case ADW_CHIP_ASC38C1600:
    790 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    791 							sc->cfg.disc_enable);
    792 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    793 							sc->sdtr_speed1);
    794 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    795 							sc->sdtr_speed2);
    796 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    797 							sc->sdtr_speed3);
    798 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    799 							sc->sdtr_speed4);
    800 		break;
    801 	}
    802 
    803 
    804 	/*
    805 	 * Set SCSI_CFG0 Microcode Default Value.
    806 	 *
    807 	 * The microcode will set the SCSI_CFG0 register using this value
    808 	 * after it is started below.
    809 	 */
    810 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    811 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    812 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    813 
    814 
    815 	switch(sc->chip_type) {
    816 	case ADW_CHIP_ASC3550:
    817 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    818 		break;
    819 
    820 	case ADW_CHIP_ASC38C0800:
    821 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    822 		break;
    823 
    824 	case ADW_CHIP_ASC38C1600:
    825 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    826 		break;
    827 	}
    828 	if(error_code) {
    829 		return error_code;
    830 	}
    831 
    832 	/*
    833 	 * Set SEL_MASK Microcode Default Value
    834 	 *
    835 	 * The microcode will set the SEL_MASK register using this value
    836 	 * after it is started below.
    837 	 */
    838 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    839 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    840 
    841 	/*
    842 	 * Create and Initialize Host->RISC Carrier lists
    843 	 */
    844 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    845 						sc->sc_control->carriers);
    846 
    847 	/*
    848 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    849 	 */
    850 
    851 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    852 		return ADW_IERR_NO_CARRIER;
    853 	}
    854 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    855 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    856 
    857 	/*
    858 	 * The first command issued will be placed in the stopper carrier.
    859 	 */
    860 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    861 
    862 	/*
    863 	 * Set RISC ICQ physical address start value.
    864 	 */
    865 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    866 
    867 	/*
    868 	 * Initialize the COMMA register to the same value otherwise
    869 	 * the RISC will prematurely detect a command is available.
    870 	 */
    871 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    872 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    873 						le32toh(sc->icq_sp->carr_ba));
    874 	}
    875 
    876 	/*
    877 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    878 	 */
    879 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    880 		return ADW_IERR_NO_CARRIER;
    881 	}
    882 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    883 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    884 
    885 	/*
    886 	 * The first command completed by the RISC will be placed in
    887 	 * the stopper.
    888 	 *
    889 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    890 	 * completed the RISC will set the ASC_RQ_DONE bit.
    891 	 */
    892 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    893 
    894 	/*
    895 	 * Set RISC IRQ physical address start value.
    896 	 */
    897 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    898 	sc->carr_pending_cnt = 0;
    899 
    900 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    901 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    902 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    903 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    904 
    905 	/* finally, finally, gentlemen, start your engine */
    906 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    907 
    908 	/*
    909 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    910 	 * Resets should be performed. The RISC has to be running
    911 	 * to issue a SCSI Bus Reset.
    912 	 */
    913 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    914 	{
    915 		/*
    916 		 * If the BIOS Signature is present in memory, restore the
    917 		 * BIOS Handshake Configuration Table and do not perform
    918 		 * a SCSI Bus Reset.
    919 		 */
    920 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    921 				0x55AA) {
    922 			/*
    923 			 * Restore per TID negotiated values.
    924 			 */
    925 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    926 					wdtr_able);
    927 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    928 					sdtr_able);
    929 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    930 					tagqng_able);
    931 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    932 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    933 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    934 						max_cmd[tid]);
    935 			}
    936 		} else {
    937 			if (AdwResetCCB(sc) != ADW_TRUE) {
    938 				error_code = ADW_WARN_BUSRESET_ERROR;
    939 			}
    940 		}
    941 	}
    942 
    943 	return error_code;
    944 }
    945 
    946 
    947 int
    948 AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
    949 {
    950 	int		i;
    951 	u_int8_t	byte;
    952 
    953 
    954 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    955 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    956 		/*
    957 		 * RAM BIST (RAM Built-In Self Test)
    958 		 *
    959 		 * Address : I/O base + offset 0x38h register (byte).
    960 		 * Function: Bit 7-6(RW) : RAM mode
    961 		 *			    Normal Mode   : 0x00
    962 		 *			    Pre-test Mode : 0x40
    963 		 *			    RAM Test Mode : 0x80
    964 		 *	     Bit 5	 : unused
    965 		 *	     Bit 4(RO)   : Done bit
    966 		 *	     Bit 3-0(RO) : Status
    967 		 *			    Host Error    : 0x08
    968 		 *			    Int_RAM Error : 0x04
    969 		 *			    RISC Error    : 0x02
    970 		 *			    SCSI Error    : 0x01
    971 		 *			    No Error	  : 0x00
    972 		 *
    973 		 * Note: RAM BIST code should be put right here, before loading
    974 		 * the microcode and after saving the RISC memory BIOS region.
    975 		 */
    976 
    977 		/*
    978 		 * LRAM Pre-test
    979 		 *
    980 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    981 		 * 10 milliseconds.
    982 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    983 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    984 		 * If cannot reset to NORMAL_MODE, return an error too.
    985 		 */
    986 		for (i = 0; i < 2; i++) {
    987 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    988 					PRE_TEST_MODE);
    989 			 /* Wait for 10ms before reading back. */
    990 			AdwSleepMilliSecond(10);
    991 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    992 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    993 					PRE_TEST_VALUE) {
    994 				return ADW_IERR_BIST_PRE_TEST;
    995 			}
    996 
    997 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    998 								NORMAL_MODE);
    999 			/* Wait for 10ms before reading back. */
   1000 			AdwSleepMilliSecond(10);
   1001 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1002 			    != NORMAL_VALUE) {
   1003 				return ADW_IERR_BIST_PRE_TEST;
   1004 			}
   1005 		}
   1006 
   1007 		/*
   1008 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1009 		 *
   1010 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1011 		 * 10 milliseconds.
   1012 		 * If Done bit not set or Status not 0, save register byte,
   1013 		 * set the err_code, and return an error.
   1014 		 */
   1015 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1016 		/* Wait for 10ms before checking status. */
   1017 		AdwSleepMilliSecond(10);
   1018 
   1019 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1020 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1021 			/* Get here if Done bit not set or Status not 0. */
   1022 			return ADW_IERR_BIST_RAM_TEST;
   1023 		}
   1024 
   1025 		/* We need to reset back to normal mode after LRAM test passes*/
   1026 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1027 	}
   1028 
   1029 	return 0;
   1030 }
   1031 
   1032 
   1033 int
   1034 AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
   1035 {
   1036 	const u_int8_t	*mcode_data;
   1037 	u_int32_t	 mcode_chksum;
   1038 	u_int16_t	 mcode_size;
   1039 	u_int32_t	sum;
   1040 	u_int16_t	code_sum;
   1041 	int		begin_addr;
   1042 	int		end_addr;
   1043 	int		word;
   1044 	int		adw_memsize;
   1045 	int		adw_mcode_expanded_size;
   1046 	int		i, j;
   1047 
   1048 
   1049 	switch(chip_type) {
   1050 	case ADW_CHIP_ASC3550:
   1051 		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1052 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1053 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1054 		adw_memsize = ADW_3550_MEMSIZE;
   1055 		break;
   1056 
   1057 	case ADW_CHIP_ASC38C0800:
   1058 		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1059 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1060 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1061 		adw_memsize = ADW_38C0800_MEMSIZE;
   1062 		break;
   1063 
   1064 	case ADW_CHIP_ASC38C1600:
   1065 		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1066 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1067 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1068 		adw_memsize = ADW_38C1600_MEMSIZE;
   1069 		break;
   1070 
   1071 	default:
   1072 		return (EINVAL);
   1073 	}
   1074 
   1075 	/*
   1076 	 * Write the microcode image to RISC memory starting at address 0.
   1077 	 */
   1078 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1079 
   1080 	/* Assume the following compressed format of the microcode buffer:
   1081 	 *
   1082 	 *  254 word (508 byte) table indexed by byte code followed
   1083 	 *  by the following byte codes:
   1084 	 *
   1085 	 *    1-Byte Code:
   1086 	 *	00: Emit word 0 in table.
   1087 	 *	01: Emit word 1 in table.
   1088 	 *	.
   1089 	 *	FD: Emit word 253 in table.
   1090 	 *
   1091 	 *    Multi-Byte Code:
   1092 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1093 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1094 	 */
   1095 	word = 0;
   1096 	for (i = 253 * 2; i < mcode_size; i++) {
   1097 		if (mcode_data[i] == 0xff) {
   1098 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1099 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1100 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1101 				  mcode_data[i + 2]));
   1102 				word++;
   1103 			}
   1104 			i += 3;
   1105 		} else if (mcode_data[i] == 0xfe) {
   1106 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1107 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1108 			    mcode_data[i + 1]));
   1109 			i += 2;
   1110 			word++;
   1111 		} else {
   1112 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1113 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1114 			 mcode_data[mcode_data[i] * 2]));
   1115 			word++;
   1116 		}
   1117 	}
   1118 
   1119 	/*
   1120 	 * Set 'word' for later use to clear the rest of memory and save
   1121 	 * the expanded mcode size.
   1122 	 */
   1123 	word *= 2;
   1124 	adw_mcode_expanded_size = word;
   1125 
   1126 	/*
   1127 	 * Clear the rest of the Internal RAM.
   1128 	 */
   1129 	for (; word < adw_memsize; word += 2) {
   1130 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1131 	}
   1132 
   1133 	/*
   1134 	 * Verify the microcode checksum.
   1135 	 */
   1136 	sum = 0;
   1137 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1138 
   1139 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1140 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1141 	}
   1142 
   1143 	if (sum != mcode_chksum) {
   1144 		return ADW_IERR_MCODE_CHKSUM;
   1145 	}
   1146 
   1147 	/*
   1148 	 * Restore the RISC memory BIOS region.
   1149 	 */
   1150 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1151 		if(chip_type == ADW_CHIP_ASC3550) {
   1152 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1153 								bios_mem[i]);
   1154 		} else {
   1155 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1156 								bios_mem[i]);
   1157 		}
   1158 	}
   1159 
   1160 	/*
   1161 	 * Calculate and write the microcode code checksum to the microcode
   1162 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1163 	 */
   1164 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1165 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1166 	code_sum = 0;
   1167 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1168 	for (word = begin_addr; word < end_addr; word += 2) {
   1169 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1170 	}
   1171 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1172 
   1173 	/*
   1174 	 * Set the chip type.
   1175 	 */
   1176 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1177 
   1178 	return 0;
   1179 }
   1180 
   1181 
   1182 int
   1183 AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1184 {
   1185 	u_int16_t	scsi_cfg1;
   1186 
   1187 
   1188 	/*
   1189 	 * Determine SCSI_CFG1 Microcode Default Value.
   1190 	 *
   1191 	 * The microcode will set the SCSI_CFG1 register using this value
   1192 	 * after it is started below.
   1193 	 */
   1194 
   1195 	/* Read current SCSI_CFG1 Register value. */
   1196 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1197 
   1198 	/*
   1199 	 * If all three connectors are in use in ASC3550, return an error.
   1200 	 */
   1201 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1202 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1203 		return ADW_IERR_ILLEGAL_CONNECTION;
   1204 	}
   1205 
   1206 	/*
   1207 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1208 	 * will be set. Check for and return an error if this condition is
   1209 	 * found.
   1210 	 */
   1211 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1212 		return ADW_IERR_REVERSED_CABLE;
   1213 	}
   1214 
   1215 	/*
   1216 	 * If this is a differential board and a single-ended device
   1217 	 * is attached to one of the connectors, return an error.
   1218 	 */
   1219 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1220 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1221 		return ADW_IERR_SINGLE_END_DEVICE;
   1222 	}
   1223 
   1224 	/*
   1225 	 * If automatic termination control is enabled, then set the
   1226 	 * termination value based on a table listed in a_condor.h.
   1227 	 *
   1228 	 * If manual termination was specified with an EEPROM setting
   1229 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1230 	 * is ready to be 'ored' into SCSI_CFG1.
   1231 	 */
   1232 	if (cfg->termination == 0) {
   1233 		/*
   1234 		 * The software always controls termination by setting
   1235 		 * TERM_CTL_SEL.
   1236 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1237 		 * termination.
   1238 		 */
   1239 		cfg->termination |= ADW_TERM_CTL_SEL;
   1240 
   1241 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1242 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1243 			case 0x3: case 0x7: case 0xB:
   1244 			case 0xD: case 0xE: case 0xF:
   1245 				cfg->termination |=
   1246 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1247 				break;
   1248 
   1249 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1250 			case 0x1: case 0x5: case 0x9:
   1251 			case 0xA: case 0xC:
   1252 				cfg->termination |= ADW_TERM_CTL_H;
   1253 				break;
   1254 
   1255 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1256 			case 0x2: case 0x6:
   1257 				break;
   1258 		}
   1259 	}
   1260 
   1261 	/*
   1262 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1263 	 */
   1264 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1265 
   1266 	/*
   1267 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1268 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1269 	 * referenced, because the hardware internally inverts
   1270 	 * the Termination High and Low bits if TERM_POL is set.
   1271 	 */
   1272 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1273 
   1274 	/*
   1275 	 * Set SCSI_CFG1 Microcode Default Value
   1276 	 *
   1277 	 * Set filter value and possibly modified termination control
   1278 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1279 	 *
   1280 	 * The microcode will set the SCSI_CFG1 register using this value
   1281 	 * after it is started below.
   1282 	 */
   1283 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1284 						ADW_FLTR_DISABLE | scsi_cfg1);
   1285 
   1286 	/*
   1287 	 * Set MEM_CFG Microcode Default Value
   1288 	 *
   1289 	 * The microcode will set the MEM_CFG register using this value
   1290 	 * after it is started below.
   1291 	 *
   1292 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1293 	 * are defined.
   1294 	 *
   1295 	 * ASC-3550 has 8KB internal memory.
   1296 	 */
   1297 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1298 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1299 
   1300 	return 0;
   1301 }
   1302 
   1303 
   1304 int
   1305 AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1306 {
   1307 	u_int16_t	scsi_cfg1;
   1308 
   1309 
   1310 	/*
   1311 	 * Determine SCSI_CFG1 Microcode Default Value.
   1312 	 *
   1313 	 * The microcode will set the SCSI_CFG1 register using this value
   1314 	 * after it is started below.
   1315 	 */
   1316 
   1317 	/* Read current SCSI_CFG1 Register value. */
   1318 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1319 
   1320 	/*
   1321 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1322 	 * will be set. Check for and return an error if this condition is
   1323 	 * found.
   1324 	 */
   1325 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1326 		return ADW_IERR_REVERSED_CABLE;
   1327 	}
   1328 
   1329 	/*
   1330 	 * All kind of combinations of devices attached to one of four
   1331 	 * connectors are acceptable except HVD device attached.
   1332 	 * For example, LVD device can be attached to SE connector while
   1333 	 * SE device attached to LVD connector.
   1334 	 * If LVD device attached to SE connector, it only runs up to
   1335 	 * Ultra speed.
   1336 	 *
   1337 	 * If an HVD device is attached to one of LVD connectors, return
   1338 	 * an error.
   1339 	 * However, there is no way to detect HVD device attached to
   1340 	 * SE connectors.
   1341 	 */
   1342 	if (scsi_cfg1 & ADW_HVD) {
   1343 		return ADW_IERR_HVD_DEVICE;
   1344 	}
   1345 
   1346 	/*
   1347 	 * If either SE or LVD automatic termination control is enabled, then
   1348 	 * set the termination value based on a table listed in a_condor.h.
   1349 	 *
   1350 	 * If manual termination was specified with an EEPROM setting then
   1351 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1352 	 * to be 'ored' into SCSI_CFG1.
   1353 	 */
   1354 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1355 		/* SE automatic termination control is enabled. */
   1356 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1357 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1358 			case 0x1: case 0x2: case 0x3:
   1359 				cfg->termination |= ADW_TERM_SE;
   1360 				break;
   1361 
   1362 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1363 			case 0x0:
   1364 				cfg->termination |= ADW_TERM_SE_HI;
   1365 				break;
   1366 		}
   1367 	}
   1368 
   1369 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1370 		/* LVD automatic termination control is enabled. */
   1371 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1372 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1373 			case 0x4: case 0x8: case 0xC:
   1374 				cfg->termination |= ADW_TERM_LVD;
   1375 				break;
   1376 
   1377 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1378 			case 0x0:
   1379 				break;
   1380 		}
   1381 	}
   1382 
   1383 	/*
   1384 	 * Clear any set TERM_SE and TERM_LVD bits.
   1385 	 */
   1386 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1387 
   1388 	/*
   1389 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1390 	 */
   1391 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1392 
   1393 	/*
   1394 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1395 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1396 	 * in the Microcode SCSI_CFG1 Register Value.
   1397 	 */
   1398 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1399 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1400 
   1401 	/*
   1402 	 * Set SCSI_CFG1 Microcode Default Value
   1403 	 *
   1404 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1405 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1406 	 *
   1407 	 * The microcode will set the SCSI_CFG1 register using this value
   1408 	 * after it is started below.
   1409 	 */
   1410 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1411 
   1412 	/*
   1413 	 * Set MEM_CFG Microcode Default Value
   1414 	 *
   1415 	 * The microcode will set the MEM_CFG register using this value
   1416 	 * after it is started below.
   1417 	 *
   1418 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1419 	 * are defined.
   1420 	 *
   1421 	 * ASC-38C0800 has 16KB internal memory.
   1422 	 */
   1423 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1424 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1425 
   1426 	return 0;
   1427 }
   1428 
   1429 
   1430 int
   1431 AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1432 {
   1433 	u_int16_t	scsi_cfg1;
   1434 
   1435 
   1436 	/*
   1437 	 * Determine SCSI_CFG1 Microcode Default Value.
   1438 	 *
   1439 	 * The microcode will set the SCSI_CFG1 register using this value
   1440 	 * after it is started below.
   1441 	 * Each ASC-38C1600 function has only two cable detect bits.
   1442 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1443 	 */
   1444 
   1445 	/* Read current SCSI_CFG1 Register value. */
   1446 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1447 
   1448 	/*
   1449 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1450 	 * will be set. Check for and return an error if this condition is
   1451 	 * found.
   1452 	 */
   1453 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1454 		return ADW_IERR_REVERSED_CABLE;
   1455 	}
   1456 
   1457 	/*
   1458 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1459 	 * cannot be connected to either connector. An LVD device or SE device
   1460 	 * may be connected to either connector. If an SE device is connected,
   1461 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
   1462 	 *
   1463 	 * If an HVD device is attached, return an error.
   1464 	 */
   1465 	if (scsi_cfg1 & ADW_HVD) {
   1466 		return ADW_IERR_HVD_DEVICE;
   1467 	}
   1468 
   1469 	/*
   1470 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1471 	 * termination because there are two connectors for each function.
   1472 	 * Each function may use either LVD or SE mode.
   1473 	 * Corresponding the SE automatic termination control EEPROM bits are
   1474 	 * used for each function.
   1475 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1476 	 * for the function, then set the termination value based on a table
   1477 	 * listed in adwlib.h.
   1478 	 *
   1479 	 * If manual termination is specified in the EEPROM for the function,
   1480 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1481 	 * ready to be 'ored' into SCSI_CFG1.
   1482 	 */
   1483 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1484 		/* SE automatic termination control is enabled. */
   1485 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1486 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1487 			case 0x1: case 0x2: case 0x3:
   1488 				cfg->termination |= ADW_TERM_SE;
   1489 				break;
   1490 
   1491 			case 0x0:
   1492 #if 0
   1493 	/* !!!!TODO!!!! */
   1494 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1495 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1496 				}
   1497 				else
   1498 #endif
   1499 				{
   1500 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1501 					cfg->termination |= ADW_TERM_SE_HI;
   1502 				}
   1503 				break;
   1504 			}
   1505 	}
   1506 
   1507 	/*
   1508 	 * Clear any set TERM_SE bits.
   1509 	 */
   1510 	scsi_cfg1 &= ~ADW_TERM_SE;
   1511 
   1512 	/*
   1513 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1514 	 */
   1515 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1516 
   1517 	/*
   1518 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1519 	 * modified termination control bits in the Microcode SCSI_CFG1
   1520 	 * Register Value.
   1521 	 */
   1522 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1523 
   1524 	/*
   1525 	 * Set SCSI_CFG1 Microcode Default Value
   1526 	 *
   1527 	 * Set possibly modified termination control bits in the Microcode
   1528 	 * SCSI_CFG1 Register Value.
   1529 	 *
   1530 	 * The microcode will set the SCSI_CFG1 register using this value
   1531 	 * after it is started below.
   1532 	 */
   1533 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1534 
   1535 	/*
   1536 	 * Set MEM_CFG Microcode Default Value
   1537 	 *
   1538 	 * The microcode will set the MEM_CFG register using this value
   1539 	 * after it is started below.
   1540 	 *
   1541 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1542 	 * are defined.
   1543 	 *
   1544 	 * ASC-38C1600 has 32KB internal memory.
   1545 	 */
   1546 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1547 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1548 
   1549 	return 0;
   1550 }
   1551 
   1552 
   1553 /*
   1554  * Read EEPROM configuration into the specified buffer.
   1555  *
   1556  * Return a checksum based on the EEPROM configuration read.
   1557  */
   1558 static u_int16_t
   1559 AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1560 {
   1561 	u_int16_t	       wval, chksum;
   1562 	u_int16_t	       *wbuf;
   1563 	int		    eep_addr;
   1564 
   1565 
   1566 	wbuf = (u_int16_t *) cfg_buf;
   1567 	chksum = 0;
   1568 
   1569 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1570 		eep_addr < ASC_EEP_DVC_CFG_END;
   1571 		eep_addr++, wbuf++) {
   1572 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1573 		chksum += wval;
   1574 		*wbuf = wval;
   1575 	}
   1576 
   1577 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1578 	wbuf++;
   1579 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1580 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1581 			eep_addr++, wbuf++) {
   1582 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1583 	}
   1584 
   1585 	return chksum;
   1586 }
   1587 
   1588 
   1589 /*
   1590  * Read the EEPROM from specified location
   1591  */
   1592 static u_int16_t
   1593 AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
   1594 {
   1595 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1596 		ASC_EEP_CMD_READ | eep_word_addr);
   1597 	AdwWaitEEPCmd(iot, ioh);
   1598 
   1599 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1600 }
   1601 
   1602 
   1603 /*
   1604  * Wait for EEPROM command to complete
   1605  */
   1606 static void
   1607 AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
   1608 {
   1609 	int eep_delay_ms;
   1610 
   1611 
   1612 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1613 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1614 				ASC_EEP_CMD_DONE) {
   1615 			break;
   1616 		}
   1617 		AdwSleepMilliSecond(1);
   1618 	}
   1619 
   1620 	(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1621 }
   1622 
   1623 
   1624 /*
   1625  * Write the EEPROM from 'cfg_buf'.
   1626  */
   1627 static void
   1628 AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1629 {
   1630 	u_int16_t *wbuf;
   1631 	u_int16_t addr, chksum;
   1632 
   1633 
   1634 	wbuf = (u_int16_t *) cfg_buf;
   1635 	chksum = 0;
   1636 
   1637 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1638 	AdwWaitEEPCmd(iot, ioh);
   1639 
   1640 	/*
   1641 	 * Write EEPROM from word 0 to word 20
   1642 	 */
   1643 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1644 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1645 		chksum += *wbuf;
   1646 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1647 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1648 				ASC_EEP_CMD_WRITE | addr);
   1649 		AdwWaitEEPCmd(iot, ioh);
   1650 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1651 	}
   1652 
   1653 	/*
   1654 	 * Write EEPROM checksum at word 21
   1655 	 */
   1656 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1657 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1658 			ASC_EEP_CMD_WRITE | addr);
   1659 	AdwWaitEEPCmd(iot, ioh);
   1660 	wbuf++;        /* skip over check_sum */
   1661 
   1662 	/*
   1663 	 * Write EEPROM OEM name at words 22 to 29
   1664 	 */
   1665 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1666 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1667 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1668 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1669 				ASC_EEP_CMD_WRITE | addr);
   1670 		AdwWaitEEPCmd(iot, ioh);
   1671 	}
   1672 
   1673 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1674 			ASC_EEP_CMD_WRITE_DISABLE);
   1675 	AdwWaitEEPCmd(iot, ioh);
   1676 
   1677 	return;
   1678 }
   1679 
   1680 
   1681 /*
   1682  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1683  *
   1684  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1685  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1686  *   RISC to notify it a new command is ready to be executed.
   1687  *
   1688  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1689  * set to SCSI_MAX_RETRY.
   1690  *
   1691  * Return:
   1692  *      ADW_SUCCESS(1) - The request was successfully queued.
   1693  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1694  *                       request completes.
   1695  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1696  *                       host IC error.
   1697  */
   1698 int
   1699 AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   1700 {
   1701 	bus_space_tag_t iot = sc->sc_iot;
   1702 	bus_space_handle_t ioh = sc->sc_ioh;
   1703 	ADW_CCB		*ccb;
   1704 	u_int32_t	req_paddr;
   1705 	ADW_CARRIER	*new_carrp;
   1706 
   1707 	/*
   1708 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1709 	 */
   1710 	if (scsiq->target_id > ADW_MAX_TID) {
   1711 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1712 		scsiq->done_status = QD_WITH_ERROR;
   1713 		return ADW_ERROR;
   1714 	}
   1715 
   1716 	/*
   1717 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1718 	 */
   1719 
   1720 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1721 
   1722 	/*
   1723 	 * Allocate a carrier and initialize fields.
   1724 	 */
   1725 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1726 		return ADW_BUSY;
   1727 	}
   1728 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1729 			ASC_GET_CARRP(new_carrp->next_ba));
   1730 	sc->carr_pending_cnt++;
   1731 
   1732 	/*
   1733 	 * Set the carrier to be a stopper by setting 'next_ba'
   1734 	 * to the stopper value. The current stopper will be changed
   1735 	 * below to point to the new stopper.
   1736 	 */
   1737 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1738 
   1739 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1740 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1741 
   1742 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1743 	scsiq->scsiq_rptr = htole32(req_paddr);
   1744 
   1745 	/*
   1746 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1747 	 * order during initialization.
   1748 	 */
   1749 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1750 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1751 
   1752 	/*
   1753 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1754 	 * the microcode. The newly allocated stopper will become the new
   1755 	 * stopper.
   1756 	 */
   1757 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1758 
   1759 	/*
   1760 	 * Set the 'next_ba' pointer for the old stopper to be the
   1761 	 * physical address of the new stopper. The RISC can only
   1762 	 * follow physical addresses.
   1763 	 */
   1764 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1765 
   1766 #if ADW_DEBUG
   1767 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1768 			sc->icq_sp->carr_id,
   1769 			sc->icq_sp->carr_ba,
   1770 			sc->icq_sp->areq_ba,
   1771 			sc->icq_sp->next_ba);
   1772 #endif
   1773 	/*
   1774 	 * Set the host adapter stopper pointer to point to the new carrier.
   1775 	 */
   1776 	sc->icq_sp = new_carrp;
   1777 
   1778 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1779 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1780 		/*
   1781 		 * Tickle the RISC to tell it to read its Command Queue Head
   1782 		 * pointer.
   1783 		 */
   1784 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1785 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1786 			/*
   1787 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1788 			 * command 'clr_tickle_a' does not work unless the host
   1789 			 * value is cleared.
   1790 			 */
   1791 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1792 					ADW_TICKLE_NOP);
   1793 		}
   1794 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1795 		/*
   1796 		 * Notify the RISC a carrier is ready by writing the physical
   1797 		 * address of the new carrier stopper to the COMMA register.
   1798 		 */
   1799 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1800 				le32toh(new_carrp->carr_ba));
   1801 	}
   1802 
   1803 	/*
   1804 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1805 	 */
   1806 
   1807 	return ADW_SUCCESS;
   1808 }
   1809 
   1810 
   1811 void
   1812 AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
   1813 {
   1814 
   1815 	/*
   1816 	 * Reset Chip.
   1817 	 */
   1818 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1819 			ADW_CTRL_REG_CMD_RESET);
   1820 	AdwSleepMilliSecond(100);
   1821 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1822 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1823 }
   1824 
   1825 
   1826 /*
   1827  * Reset SCSI Bus and purge all outstanding requests.
   1828  *
   1829  * Return Value:
   1830  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1831  *      ADW_FALSE(0) -  Microcode command failed.
   1832  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1833  *                      may be hung which requires driver recovery.
   1834  */
   1835 int
   1836 AdwResetCCB(ADW_SOFTC *sc)
   1837 {
   1838 	int	    status;
   1839 
   1840 	/*
   1841 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1842 	 * the SCSI Bus Reset signal.
   1843 	 */
   1844 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1845 	if (status != ADW_TRUE) {
   1846 		return status;
   1847 	}
   1848 
   1849 	/*
   1850 	 * Delay for the specified SCSI Bus Reset hold time.
   1851 	 *
   1852 	 * The hold time delay is done on the host because the RISC has no
   1853 	 * microsecond accurate timer.
   1854 	 */
   1855 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1856 
   1857 	/*
   1858 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1859 	 * the SCSI Bus Reset signal and purges any pending requests.
   1860 	 */
   1861 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1862 	if (status != ADW_TRUE) {
   1863 		return status;
   1864 	}
   1865 
   1866 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1867 
   1868 	return status;
   1869 }
   1870 
   1871 
   1872 /*
   1873  * Reset chip and SCSI Bus.
   1874  *
   1875  * Return Value:
   1876  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1877  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1878  */
   1879 int
   1880 AdwResetSCSIBus(ADW_SOFTC *sc)
   1881 {
   1882 	bus_space_tag_t iot = sc->sc_iot;
   1883 	bus_space_handle_t ioh = sc->sc_ioh;
   1884 	int		status;
   1885 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
   1886 	u_int16_t	ppr_able = 0; /* XXX: gcc */
   1887 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1888 	u_int16_t	bios_sig;
   1889 
   1890 
   1891 	/*
   1892 	 * Save current per TID negotiated values.
   1893 	 */
   1894 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1895 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1896 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1897 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1898 	}
   1899 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1900 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1901 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1902 			max_cmd[tid]);
   1903 	}
   1904 
   1905 	/*
   1906 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1907 	 * by clearing the BIOS signature word.
   1908 	 * The initialization functions assumes a SCSI Bus Reset is not
   1909 	 * needed if the BIOS signature word is present.
   1910 	 */
   1911 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1912 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1913 
   1914 	/*
   1915 	 * Stop chip and reset it.
   1916 	 */
   1917 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1918 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1919 			ADW_CTRL_REG_CMD_RESET);
   1920 	AdwSleepMilliSecond(100);
   1921 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1922 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1923 
   1924 	/*
   1925 	 * Reset Adv Library error code, if any, and try
   1926 	 * re-initializing the chip.
   1927 	 * Then translate initialization return value to status value.
   1928 	 */
   1929 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1930 
   1931 	/*
   1932 	 * Restore the BIOS signature word.
   1933 	 */
   1934 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1935 
   1936 	/*
   1937 	 * Restore per TID negotiated values.
   1938 	 */
   1939 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1940 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1941 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1942 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1943 	}
   1944 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1945 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1946 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1947 			max_cmd[tid]);
   1948 	}
   1949 
   1950 	return status;
   1951 }
   1952 
   1953 
   1954 /*
   1955  * Adv Library Interrupt Service Routine
   1956  *
   1957  *  This function is called by a driver's interrupt service routine.
   1958  *  The function disables and re-enables interrupts.
   1959  *
   1960  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1961  *  'idle_cmd_done' field is set to ADW_TRUE.
   1962  *
   1963  *  Note: AdwISR() can be called when interrupts are disabled or even
   1964  *  when there is no hardware interrupt condition present. It will
   1965  *  always check for completed idle commands and microcode requests.
   1966  *  This is an important feature that shouldn't be changed because it
   1967  *  allows commands to be completed from polling mode loops.
   1968  *
   1969  * Return:
   1970  *   ADW_TRUE(1) - interrupt was pending
   1971  *   ADW_FALSE(0) - no interrupt was pending
   1972  */
   1973 int
   1974 AdwISR(ADW_SOFTC *sc)
   1975 {
   1976 	bus_space_tag_t iot = sc->sc_iot;
   1977 	bus_space_handle_t ioh = sc->sc_ioh;
   1978 	u_int8_t	int_stat;
   1979 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   1980 	u_int32_t	irq_next_pa;
   1981 	ADW_SCSI_REQ_Q	*scsiq;
   1982 	ADW_CCB		*ccb;
   1983 	int		s;
   1984 
   1985 
   1986 	s = splbio();
   1987 
   1988 	/* Reading the register clears the interrupt. */
   1989 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   1990 
   1991 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   1992 	     ADW_INTR_STATUS_INTRC)) == 0) {
   1993 		splx(s);
   1994 		return ADW_FALSE;
   1995 	}
   1996 
   1997 	/*
   1998 	 * Notify the driver of an asynchronous microcode condition by
   1999 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2000 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2001 	 */
   2002 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2003 		u_int8_t intrb_code;
   2004 
   2005 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2006 
   2007 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2008 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2009 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2010 				sc->carr_pending_cnt != 0) {
   2011 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2012 					IOPB_TICKLE, ADW_TICKLE_A);
   2013 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2014 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2015 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2016 				}
   2017 			}
   2018 		}
   2019 
   2020 		if (sc->async_callback != 0) {
   2021 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2022 		}
   2023 	}
   2024 
   2025 	/*
   2026 	 * Check if the IRQ stopper carrier contains a completed request.
   2027 	 */
   2028 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2029 	{
   2030 #if ADW_DEBUG
   2031 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2032 				sc->irq_sp->carr_id,
   2033 				sc->irq_sp->carr_ba,
   2034 				sc->irq_sp->areq_ba,
   2035 				sc->irq_sp->next_ba);
   2036 #endif
   2037 		/*
   2038 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2039 		 * structure.
   2040 		 * The RISC will have set 'areq_ba' to a virtual address.
   2041 		 *
   2042 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2043 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2044 		 * The conversion below complements the conversion of
   2045 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2046 		 */
   2047 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2048 		scsiq = &ccb->scsiq;
   2049 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2050 
   2051 		/*
   2052 		 * Request finished with good status and the queue was not
   2053 		 * DMAed to host memory by the firmware. Set all status fields
   2054 		 * to indicate good status.
   2055 		 */
   2056 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2057 			scsiq->done_status = QD_NO_ERROR;
   2058 			scsiq->host_status = scsiq->scsi_status = 0;
   2059 			scsiq->data_cnt = 0L;
   2060 		}
   2061 
   2062 		/*
   2063 		 * Advance the stopper pointer to the next carrier
   2064 		 * ignoring the lower four bits. Free the previous
   2065 		 * stopper carrier.
   2066 		 */
   2067 		free_carrp = sc->irq_sp;
   2068 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2069 
   2070 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
   2071 					: sc->carr_freelist->carr_ba;
   2072 		sc->carr_freelist = free_carrp;
   2073 		sc->carr_pending_cnt--;
   2074 
   2075 		/*
   2076 		 * Clear request microcode control flag.
   2077 		 */
   2078 		scsiq->cntl = 0;
   2079 
   2080 		/*
   2081 		 * Check Condition handling
   2082 		 */
   2083 		/*
   2084 		 * If the command that completed was a SCSI INQUIRY and
   2085 		 * LUN 0 was sent the command, then process the INQUIRY
   2086 		 * command information for the device.
   2087 		 */
   2088 		if (scsiq->done_status == QD_NO_ERROR &&
   2089 		    scsiq->cdb[0] == INQUIRY &&
   2090 		    scsiq->target_lun == 0) {
   2091 			AdwInquiryHandling(sc, scsiq);
   2092 		}
   2093 
   2094 		/*
   2095 		 * Notify the driver of the completed request by passing
   2096 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2097 		 */
   2098 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2099 		/*
   2100 		 * Note: After the driver callback function is called, 'scsiq'
   2101 		 * can no longer be referenced.
   2102 		 *
   2103 		 * Fall through and continue processing other completed
   2104 		 * requests...
   2105 		 */
   2106 	}
   2107 
   2108 	splx(s);
   2109 
   2110 	return ADW_TRUE;
   2111 }
   2112 
   2113 
   2114 /*
   2115  * Send an idle command to the chip and wait for completion.
   2116  *
   2117  * Command completion is polled for once per microsecond.
   2118  *
   2119  * The function can be called from anywhere including an interrupt handler.
   2120  * But the function is not re-entrant, so it uses the splbio/splx()
   2121  * functions to prevent reentrancy.
   2122  *
   2123  * Return Values:
   2124  *   ADW_TRUE - command completed successfully
   2125  *   ADW_FALSE - command failed
   2126  *   ADW_ERROR - command timed out
   2127  */
   2128 int
   2129 AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
   2130 {
   2131 	bus_space_tag_t iot = sc->sc_iot;
   2132 	bus_space_handle_t ioh = sc->sc_ioh;
   2133 	u_int16_t	result;
   2134 	u_int32_t	i, j, s;
   2135 
   2136 	s = splbio();
   2137 
   2138 	/*
   2139 	 * Clear the idle command status which is set by the microcode
   2140 	 * to a non-zero value to indicate when the command is completed.
   2141 	 */
   2142 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2143 
   2144 	/*
   2145 	 * Write the idle command value after the idle command parameter
   2146 	 * has been written to avoid a race condition. If the order is not
   2147 	 * followed, the microcode may process the idle command before the
   2148 	 * parameters have been written to LRAM.
   2149 	 */
   2150 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2151 			idle_cmd_parameter);
   2152 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2153 
   2154 	/*
   2155 	 * Tickle the RISC to tell it to process the idle command.
   2156 	 */
   2157 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2158 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2159 		/*
   2160 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2161 		 * command 'clr_tickle_b' does not work unless the host
   2162 		 * value is cleared.
   2163 		 */
   2164 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2165 	}
   2166 
   2167 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2168 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2169 		/* Poll once each microsecond for command completion. */
   2170 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2171 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2172 									result);
   2173 			if (result != 0) {
   2174 				splx(s);
   2175 				return result;
   2176 			}
   2177 			AdwDelayMicroSecond(1);
   2178 		}
   2179 	}
   2180 
   2181 	splx(s);
   2182 	return ADW_ERROR;
   2183 }
   2184 
   2185 
   2186 /*
   2187  * Inquiry Information Byte 7 Handling
   2188  *
   2189  * Handle SCSI Inquiry Command information for a device by setting
   2190  * microcode operating variables that affect WDTR, SDTR, and Tag
   2191  * Queuing.
   2192  */
   2193 static void
   2194 AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   2195 {
   2196 #ifndef FAILSAFE
   2197 	bus_space_tag_t iot = sc->sc_iot;
   2198 	bus_space_handle_t ioh = sc->sc_ioh;
   2199 	u_int8_t		tid;
   2200 	struct scsipi_inquiry_data *inq;
   2201 	u_int16_t		tidmask;
   2202 	u_int16_t		cfg_word;
   2203 
   2204 
   2205 	/*
   2206 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2207 	 * to be available.
   2208 	 *
   2209 	 * If less than 8 bytes of INQUIRY information were requested or less
   2210 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2211 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2212 	 * microcode to the transfer residual count.
   2213 	 */
   2214 
   2215 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2216 		return;
   2217 	}
   2218 
   2219 	tid = scsiq->target_id;
   2220 
   2221 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2222 
   2223 	/*
   2224 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2225 	 */
   2226 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2227 	    ((inq->version & SID_ANSII) < 2)) {
   2228 		return;
   2229 	} else {
   2230 		/*
   2231 		 * INQUIRY Byte 7 Handling
   2232 		 *
   2233 		 * Use a device's INQUIRY byte 7 to determine whether it
   2234 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2235 		 * is enabled in the EEPROM and the device supports the
   2236 		 * feature, then enable it in the microcode.
   2237 		 */
   2238 
   2239 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2240 
   2241 		/*
   2242 		 * Wide Transfers
   2243 		 *
   2244 		 * If the EEPROM enabled WDTR for the device and the device
   2245 		 * supports wide bus (16 bit) transfers, then turn on the
   2246 		 * device's 'wdtr_able' bit and write the new value to the
   2247 		 * microcode.
   2248 		 */
   2249 #ifdef SCSI_ADW_WDTR_DISABLE
   2250 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2251 #endif /* SCSI_ADW_WDTR_DISABLE */
   2252 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2253 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2254 					cfg_word);
   2255 			if ((cfg_word & tidmask) == 0) {
   2256 				cfg_word |= tidmask;
   2257 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2258 						cfg_word);
   2259 
   2260 				/*
   2261 				 * Clear the microcode "SDTR negotiation" and
   2262 				 * "WDTR negotiation" done indicators for the
   2263 				 * target to cause it to negotiate with the new
   2264 				 * setting set above.
   2265 				 * WDTR when accepted causes the target to enter
   2266 				 * asynchronous mode, so SDTR must be negotiated
   2267 				 */
   2268 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2269 						cfg_word);
   2270 				cfg_word &= ~tidmask;
   2271 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2272 						cfg_word);
   2273 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2274 						cfg_word);
   2275 				cfg_word &= ~tidmask;
   2276 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2277 						cfg_word);
   2278 			}
   2279 		}
   2280 
   2281 		/*
   2282 		 * Synchronous Transfers
   2283 		 *
   2284 		 * If the EEPROM enabled SDTR for the device and the device
   2285 		 * supports synchronous transfers, then turn on the device's
   2286 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2287 		 */
   2288 #ifdef SCSI_ADW_SDTR_DISABLE
   2289 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2290 #endif /* SCSI_ADW_SDTR_DISABLE */
   2291 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2292 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2293 			if ((cfg_word & tidmask) == 0) {
   2294 				cfg_word |= tidmask;
   2295 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2296 						cfg_word);
   2297 
   2298 				/*
   2299 				 * Clear the microcode "SDTR negotiation"
   2300 				 * done indicator for the target to cause it
   2301 				 * to negotiate with the new setting set above.
   2302 				 */
   2303 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2304 						cfg_word);
   2305 				cfg_word &= ~tidmask;
   2306 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2307 						cfg_word);
   2308 			}
   2309 		}
   2310 		/*
   2311 		 * If the Inquiry data included enough space for the SPI-3
   2312 		 * Clocking field, then check if DT mode is supported.
   2313 		 */
   2314 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2315 		   (scsiq->cdb[4] >= 57 ||
   2316 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2317 			/*
   2318 			 * PPR (Parallel Protocol Request) Capable
   2319 			 *
   2320 			 * If the device supports DT mode, then it must be
   2321 			 * PPR capable.
   2322 			 * The PPR message will be used in place of the SDTR
   2323 			 * and WDTR messages to negotiate synchronous speed
   2324 			 * and offset, transfer width, and protocol options.
   2325 			 */
   2326 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2327 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2328 						sc->ppr_able);
   2329 				sc->ppr_able |= tidmask;
   2330 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2331 						sc->ppr_able);
   2332 			}
   2333 		}
   2334 
   2335 		/*
   2336 		 * If the EEPROM enabled Tag Queuing for the device and the
   2337 		 * device supports Tag Queueing, then turn on the device's
   2338 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2339 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2340 		 * value.
   2341 		 *
   2342 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2343 		 * mode and would see no benefit from Tag Queuing. Also by
   2344 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2345 		 * bugs will at least work with the BIOS.
   2346 		 */
   2347 #ifdef SCSI_ADW_TAGQ_DISABLE
   2348 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2349 #endif /* SCSI_ADW_TAGQ_DISABLE */
   2350 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2351 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2352 					cfg_word);
   2353 			cfg_word |= tidmask;
   2354 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2355 					cfg_word);
   2356 
   2357 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2358 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2359 					sc->max_dvc_qng);
   2360 		}
   2361 	}
   2362 #endif /* FAILSAFE */
   2363 }
   2364 
   2365 
   2366 static void
   2367 AdwSleepMilliSecond(u_int32_t n)
   2368 {
   2369 
   2370 	DELAY(n * 1000);
   2371 }
   2372 
   2373 
   2374 static void
   2375 AdwDelayMicroSecond(u_int32_t n)
   2376 {
   2377 
   2378 	DELAY(n);
   2379 }
   2380 
   2381