adwlib.c revision 1.42 1 /* $NetBSD: adwlib.c,v 1.42 2019/02/03 03:19:27 mrg Exp $ */
2
3 /*
4 * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 *
6 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * Author: Baldassare Dante Profeta <dante (at) mclink.it>
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39 /*
40 * Ported from:
41 */
42 /*
43 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44 *
45 * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 * All Rights Reserved.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that redistributions of source
50 * code retain the above copyright notice and this comment without
51 * modification.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.42 2019/02/03 03:19:27 mrg Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/queue.h>
62 #include <sys/device.h>
63
64 #include <sys/bus.h>
65 #include <sys/intr.h>
66
67 #include <dev/scsipi/scsi_all.h>
68 #include <dev/scsipi/scsipi_all.h>
69 #include <dev/scsipi/scsiconf.h>
70
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/ic/adwlib.h>
74 #include <dev/ic/adwmcode.h>
75 #include <dev/ic/adw.h>
76
77
78 /* Static Functions */
79
80 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
81 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
82 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
83 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
84 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
85
86 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
87 ADW_EEPROM *);
88 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
89 ADW_EEPROM *);
90 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
91 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
92
93 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
94
95 static void AdwSleepMilliSecond(u_int32_t);
96 static void AdwDelayMicroSecond(u_int32_t);
97
98
99 /*
100 * EEPROM Configuration.
101 *
102 * All drivers should use this structure to set the default EEPROM
103 * configuration. The BIOS now uses this structure when it is built.
104 * Additional structure information can be found in adwlib.h where
105 * the structure is defined.
106 */
107 static const ADW_EEPROM adw_3550_Default_EEPROM = {
108 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
109 0x0000, /* 01 cfg_msw */
110 0xFFFF, /* 02 disc_enable */
111 0xFFFF, /* 03 wdtr_able */
112 { 0xFFFF }, /* 04 sdtr_able */
113 0xFFFF, /* 05 start_motor */
114 0xFFFF, /* 06 tagqng_able */
115 0xFFFF, /* 07 bios_scan */
116 0, /* 08 scam_tolerant */
117 7, /* 09 adapter_scsi_id */
118 0, /* bios_boot_delay */
119 3, /* 10 scsi_reset_delay */
120 0, /* bios_id_lun */
121 0, /* 11 termination */
122 0, /* reserved1 */
123 0xFFE7, /* 12 bios_ctrl */
124 { 0xFFFF }, /* 13 ultra_able */
125 { 0 }, /* 14 reserved2 */
126 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
127 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
128 0, /* 16 dvc_cntl */
129 { 0 }, /* 17 bug_fix */
130 { 0,0,0 }, /* 18-20 serial_number[3] */
131 0, /* 21 check_sum */
132 { /* 22-29 oem_name[16] */
133 0,0,0,0,0,0,0,0,
134 0,0,0,0,0,0,0,0
135 },
136 0, /* 30 dvc_err_code */
137 0, /* 31 adv_err_code */
138 0, /* 32 adv_err_addr */
139 0, /* 33 saved_dvc_err_code */
140 0, /* 34 saved_adv_err_code */
141 0, /* 35 saved_adv_err_addr */
142 { /* 36-55 reserved1[16] */
143 0,0,0,0,0,0,0,0,0,0,
144 0,0,0,0,0,0,0,0,0,0
145 },
146 0, /* 56 cisptr_lsw */
147 0, /* 57 cisprt_msw */
148 0, /* 58 subsysvid */
149 0, /* 59 subsysid */
150 { 0,0,0,0 } /* 60-63 reserved2[4] */
151 };
152
153 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
154 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
155 0x0000, /* 01 cfg_msw */
156 0xFFFF, /* 02 disc_enable */
157 0xFFFF, /* 03 wdtr_able */
158 { 0x4444 }, /* 04 sdtr_speed1 */
159 0xFFFF, /* 05 start_motor */
160 0xFFFF, /* 06 tagqng_able */
161 0xFFFF, /* 07 bios_scan */
162 0, /* 08 scam_tolerant */
163 7, /* 09 adapter_scsi_id */
164 0, /* bios_boot_delay */
165 3, /* 10 scsi_reset_delay */
166 0, /* bios_id_lun */
167 0, /* 11 termination_se */
168 0, /* termination_lvd */
169 0xFFE7, /* 12 bios_ctrl */
170 { 0x4444 }, /* 13 sdtr_speed2 */
171 { 0x4444 }, /* 14 sdtr_speed3 */
172 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
173 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
174 0, /* 16 dvc_cntl */
175 { 0x4444 }, /* 17 sdtr_speed4 */
176 { 0,0,0 }, /* 18-20 serial_number[3] */
177 0, /* 21 check_sum */
178 { /* 22-29 oem_name[16] */
179 0,0,0,0,0,0,0,0,
180 0,0,0,0,0,0,0,0
181 },
182 0, /* 30 dvc_err_code */
183 0, /* 31 adv_err_code */
184 0, /* 32 adv_err_addr */
185 0, /* 33 saved_dvc_err_code */
186 0, /* 34 saved_adv_err_code */
187 0, /* 35 saved_adv_err_addr */
188 { /* 36-55 reserved1[16] */
189 0,0,0,0,0,0,0,0,0,0,
190 0,0,0,0,0,0,0,0,0,0
191 },
192 0, /* 56 cisptr_lsw */
193 0, /* 57 cisprt_msw */
194 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
195 PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
196 { 0,0,0,0 } /* 60-63 reserved2[4] */
197 };
198
199 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
200 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
201 0x0000, /* 01 cfg_msw */
202 0xFFFF, /* 02 disc_enable */
203 0xFFFF, /* 03 wdtr_able */
204 { 0x5555 }, /* 04 sdtr_speed1 */
205 0xFFFF, /* 05 start_motor */
206 0xFFFF, /* 06 tagqng_able */
207 0xFFFF, /* 07 bios_scan */
208 0, /* 08 scam_tolerant */
209 7, /* 09 adapter_scsi_id */
210 0, /* bios_boot_delay */
211 3, /* 10 scsi_reset_delay */
212 0, /* bios_id_lun */
213 0, /* 11 termination_se */
214 0, /* termination_lvd */
215 0xFFE7, /* 12 bios_ctrl */
216 { 0x5555 }, /* 13 sdtr_speed2 */
217 { 0x5555 }, /* 14 sdtr_speed3 */
218 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
219 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
220 0, /* 16 dvc_cntl */
221 { 0x5555 }, /* 17 sdtr_speed4 */
222 { 0,0,0 }, /* 18-20 serial_number[3] */
223 0, /* 21 check_sum */
224 { /* 22-29 oem_name[16] */
225 0,0,0,0,0,0,0,0,
226 0,0,0,0,0,0,0,0
227 },
228 0, /* 30 dvc_err_code */
229 0, /* 31 adv_err_code */
230 0, /* 32 adv_err_addr */
231 0, /* 33 saved_dvc_err_code */
232 0, /* 34 saved_adv_err_code */
233 0, /* 35 saved_adv_err_addr */
234 { /* 36-55 reserved1[16] */
235 0,0,0,0,0,0,0,0,0,0,
236 0,0,0,0,0,0,0,0,0,0
237 },
238 0, /* 56 cisptr_lsw */
239 0, /* 57 cisprt_msw */
240 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
241 PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
242 { 0,0,0,0 } /* 60-63 reserved2[4] */
243 };
244
245
246 /*
247 * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
248 * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
249 * all of this is done.
250 *
251 * For a non-fatal error return a warning code. If there are no warnings
252 * then 0 is returned.
253 *
254 * Note: Chip is stopped on entry.
255 */
256 int
257 AdwInitFromEEPROM(ADW_SOFTC *sc)
258 {
259 bus_space_tag_t iot = sc->sc_iot;
260 bus_space_handle_t ioh = sc->sc_ioh;
261 ADW_EEPROM eep_config;
262 u_int16_t warn_code;
263 u_int16_t sdtr_speed = 0;
264 u_int8_t tid, termination;
265 int i, j;
266
267
268 warn_code = 0;
269
270 /*
271 * Read the board's EEPROM configuration.
272 *
273 * Set default values if a bad checksum is found.
274 *
275 * XXX - Don't handle big-endian access to EEPROM yet.
276 */
277 if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
278 warn_code |= ADW_WARN_EEPROM_CHKSUM;
279
280 /*
281 * Set EEPROM default values.
282 */
283 switch(sc->chip_type) {
284 case ADW_CHIP_ASC3550:
285 eep_config = adw_3550_Default_EEPROM;
286 break;
287 case ADW_CHIP_ASC38C0800:
288 eep_config = adw_38C0800_Default_EEPROM;
289 break;
290 case ADW_CHIP_ASC38C1600:
291 eep_config = adw_38C1600_Default_EEPROM;
292
293 #if 0
294 XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
295 #endif
296 if (sc->cfg.pci_slot_info != 0) {
297 u_int8_t lsw_msb;
298
299 lsw_msb = eep_config.cfg_lsw >> 8;
300 /*
301 * Set Function 1 EEPROM Word 0 MSB
302 *
303 * Clear the BIOS_ENABLE (bit 14) and
304 * INTAB (bit 11) EEPROM bits.
305 *
306 * Disable Bit 14 (BIOS_ENABLE) to fix
307 * SPARC Ultra 60 and old Mac system booting
308 * problem. The Expansion ROM must
309 * be disabled in Function 1 for these systems.
310 */
311 lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
312 ADW_EEPROM_INTAB) >> 8) & 0xFF);
313 /*
314 * Set the INTAB (bit 11) if the GPIO 0 input
315 * indicates the Function 1 interrupt line is
316 * wired to INTA.
317 *
318 * Set/Clear Bit 11 (INTAB) from
319 * the GPIO bit 0 input:
320 * 1 - Function 1 intr line wired to INT A.
321 * 0 - Function 1 intr line wired to INT B.
322 *
323 * Note: Adapter boards always have Function 0
324 * wired to INTA.
325 * Put all 5 GPIO bits in input mode and then
326 * read their input values.
327 */
328 ADW_WRITE_BYTE_REGISTER(iot, ioh,
329 IOPB_GPIO_CNTL, 0);
330 if (ADW_READ_BYTE_REGISTER(iot, ioh,
331 IOPB_GPIO_DATA) & 0x01) {
332 /*
333 * Function 1 interrupt wired to INTA;
334 * Set EEPROM bit.
335 */
336 lsw_msb |= (ADW_EEPROM_INTAB >> 8)
337 & 0xFF;
338 }
339 eep_config.cfg_lsw &= 0x00FF;
340 eep_config.cfg_lsw |= lsw_msb << 8;
341 }
342 break;
343 }
344
345 /*
346 * Assume the 6 byte board serial number that was read
347 * from EEPROM is correct even if the EEPROM checksum
348 * failed.
349 */
350 for (i=2, j=1; i>=0; i--, j++) {
351 eep_config.serial_number[i] =
352 AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
353 }
354
355 AdwSetEEPROMConfig(iot, ioh, &eep_config);
356 }
357 /*
358 * Set sc and sc->cfg variables from the EEPROM configuration
359 * that was read.
360 *
361 * This is the mapping of EEPROM fields to Adw Library fields.
362 */
363 sc->wdtr_able = eep_config.wdtr_able;
364 if (sc->chip_type == ADW_CHIP_ASC3550) {
365 sc->sdtr_able = eep_config.sdtr1.sdtr_able;
366 sc->ultra_able = eep_config.sdtr2.ultra_able;
367 } else {
368 sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
369 sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
370 sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
371 sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
372 }
373 sc->ppr_able = 0;
374 sc->tagqng_able = eep_config.tagqng_able;
375 sc->cfg.disc_enable = eep_config.disc_enable;
376 sc->max_host_qng = eep_config.max_host_qng;
377 sc->max_dvc_qng = eep_config.max_dvc_qng;
378 sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
379 sc->start_motor = eep_config.start_motor;
380 sc->scsi_reset_wait = eep_config.scsi_reset_delay;
381 sc->bios_ctrl = eep_config.bios_ctrl;
382 sc->no_scam = eep_config.scam_tolerant;
383 sc->cfg.serial1 = eep_config.serial_number[0];
384 sc->cfg.serial2 = eep_config.serial_number[1];
385 sc->cfg.serial3 = eep_config.serial_number[2];
386
387 if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
388 sc->chip_type == ADW_CHIP_ASC38C1600) {
389 sc->sdtr_able = 0;
390 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
391 if (tid == 0) {
392 sdtr_speed = sc->sdtr_speed1;
393 } else if (tid == 4) {
394 sdtr_speed = sc->sdtr_speed2;
395 } else if (tid == 8) {
396 sdtr_speed = sc->sdtr_speed3;
397 } else if (tid == 12) {
398 sdtr_speed = sc->sdtr_speed4;
399 }
400 if (sdtr_speed & ADW_MAX_TID) {
401 sc->sdtr_able |= (1 << tid);
402 }
403 sdtr_speed >>= 4;
404 }
405 }
406
407 /*
408 * Set the host maximum queuing (max. 253, min. 16) and the per device
409 * maximum queuing (max. 63, min. 4).
410 */
411 if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
412 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
413 } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
414 {
415 /* If the value is zero, assume it is uninitialized. */
416 if (eep_config.max_host_qng == 0) {
417 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
418 } else {
419 eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
420 }
421 }
422
423 if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
424 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
425 } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
426 /* If the value is zero, assume it is uninitialized. */
427 if (eep_config.max_dvc_qng == 0) {
428 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
429 } else {
430 eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
431 }
432 }
433
434 /*
435 * If 'max_dvc_qng' is greater than 'max_host_qng', then
436 * set 'max_dvc_qng' to 'max_host_qng'.
437 */
438 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
439 eep_config.max_dvc_qng = eep_config.max_host_qng;
440 }
441
442 /*
443 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
444 * values based on possibly adjusted EEPROM values.
445 */
446 sc->max_host_qng = eep_config.max_host_qng;
447 sc->max_dvc_qng = eep_config.max_dvc_qng;
448
449
450 /*
451 * If the EEPROM 'termination' field is set to automatic (0), then set
452 * the ADV_DVC_CFG 'termination' field to automatic also.
453 *
454 * If the termination is specified with a non-zero 'termination'
455 * value check that a legal value is set and set the ADV_DVC_CFG
456 * 'termination' field appropriately.
457 */
458
459 switch(sc->chip_type) {
460 case ADW_CHIP_ASC3550:
461 sc->cfg.termination = 0; /* auto termination */
462 switch(eep_config.termination_se) {
463 case 3:
464 /* Enable manual control with low on / high on. */
465 sc->cfg.termination |= ADW_TERM_CTL_L;
466 /* FALLTHROUGH */
467 case 2:
468 /* Enable manual control with low off / high on. */
469 sc->cfg.termination |= ADW_TERM_CTL_H;
470 /* FALLTHROUGH */
471 case 1:
472 /* Enable manual control with low off / high off. */
473 sc->cfg.termination |= ADW_TERM_CTL_SEL;
474 /* FALLTHROUGH */
475 case 0:
476 break;
477 default:
478 warn_code |= ADW_WARN_EEPROM_TERMINATION;
479 }
480 break;
481
482 case ADW_CHIP_ASC38C0800:
483 case ADW_CHIP_ASC38C1600:
484 switch(eep_config.termination_se) {
485 case 0:
486 /* auto termination for SE */
487 termination = 0;
488 break;
489 case 1:
490 /* Enable manual control with low off / high off. */
491 termination = 0;
492 break;
493 case 2:
494 /* Enable manual control with low off / high on. */
495 termination = ADW_TERM_SE_HI;
496 break;
497 case 3:
498 /* Enable manual control with low on / high on. */
499 termination = ADW_TERM_SE;
500 break;
501 default:
502 /*
503 * The EEPROM 'termination_se' field contains a
504 * bad value. Use automatic termination instead.
505 */
506 termination = 0;
507 warn_code |= ADW_WARN_EEPROM_TERMINATION;
508 }
509
510 switch(eep_config.termination_lvd) {
511 case 0:
512 /* auto termination for LVD */
513 sc->cfg.termination = termination;
514 break;
515 case 1:
516 /* Enable manual control with low off / high off. */
517 sc->cfg.termination = termination;
518 break;
519 case 2:
520 /* Enable manual control with low off / high on. */
521 sc->cfg.termination = termination | ADW_TERM_LVD_HI;
522 break;
523 case 3:
524 /* Enable manual control with low on / high on. */
525 sc->cfg.termination = termination | ADW_TERM_LVD;
526 break;
527 default:
528 /*
529 * The EEPROM 'termination_lvd' field contains a
530 * bad value. Use automatic termination instead.
531 */
532 sc->cfg.termination = termination;
533 warn_code |= ADW_WARN_EEPROM_TERMINATION;
534 }
535 break;
536 }
537
538 return warn_code;
539 }
540
541
542 /*
543 * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
544 *
545 * On failure return the error code.
546 */
547 int
548 AdwInitDriver(ADW_SOFTC *sc)
549 {
550 bus_space_tag_t iot = sc->sc_iot;
551 bus_space_handle_t ioh = sc->sc_ioh;
552 u_int16_t error_code;
553 int word;
554 int i;
555 u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
556 0x40-0x8F. */
557 u_int16_t wdtr_able = 0, sdtr_able, /* ppr_able, */ tagqng_able;
558 u_int8_t max_cmd[ADW_MAX_TID + 1];
559 u_int8_t tid;
560
561
562 error_code = 0;
563
564 /*
565 * Save the RISC memory BIOS region before writing the microcode.
566 * The BIOS may already be loaded and using its RISC LRAM region
567 * so its region must be saved and restored.
568 *
569 * Note: This code makes the assumption, which is currently true,
570 * that a chip reset does not clear RISC LRAM.
571 */
572 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
573 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
574 }
575
576 /*
577 * Save current per TID negotiated values.
578 */
579 switch (sc->chip_type) {
580 case ADW_CHIP_ASC3550:
581 if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
582
583 u_int16_t bios_version, major, minor;
584
585 bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
586 ADW_MC_BIOSMEM) / 2];
587 major = (bios_version >> 12) & 0xF;
588 minor = (bios_version >> 8) & 0xF;
589 if (major < 3 || (major == 3 && minor == 1)) {
590 /*
591 * BIOS 3.1 and earlier location of
592 * 'wdtr_able' variable.
593 */
594 ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
595 } else {
596 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
597 wdtr_able);
598 }
599 }
600 break;
601
602 case ADW_CHIP_ASC38C1600:
603 /* ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able); */
604 /* FALLTHROUGH */
605 case ADW_CHIP_ASC38C0800:
606 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
607 break;
608 }
609 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
610 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
611 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
612 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
613 max_cmd[tid]);
614 }
615
616 /*
617 * Perform a RAM Built-In Self Test
618 */
619 if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
620 return error_code;
621 }
622
623 /*
624 * Load the Microcode
625 */
626 ;
627 if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
628 return error_code;
629 }
630
631 /*
632 * Read microcode version and date.
633 */
634 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
635 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
636
637 /*
638 * If the PCI Configuration Command Register "Parity Error Response
639 * Control" Bit was clear (0), then set the microcode variable
640 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
641 * to ignore DMA parity errors.
642 */
643 if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
644 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
645 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
646 word | CONTROL_FLAG_IGNORE_PERR);
647 }
648
649 switch (sc->chip_type) {
650 case ADW_CHIP_ASC3550:
651 /*
652 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
653 * FIFO threshold of 128 bytes.
654 * This register is only accessible to the host.
655 */
656 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
657 START_CTL_EMFU | READ_CMD_MRM);
658 break;
659
660 case ADW_CHIP_ASC38C0800:
661 /*
662 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
663 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
664 * cable detection and then we are able to read C_DET[3:0].
665 *
666 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
667 * Microcode Default Value' section below.
668 */
669 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
670 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
671 | ADW_DIS_TERM_DRV);
672
673 /*
674 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
675 * START_CTL_TH [3:2] bits for the default FIFO threshold.
676 *
677 * Note: ASC-38C0800 FIFO threshold has been changed to
678 * 256 bytes.
679 *
680 * For DMA Errata #4 set the BC_THRESH_ENB bit.
681 */
682 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
683 BC_THRESH_ENB | FIFO_THRESH_80B
684 | START_CTL_TH | READ_CMD_MRM);
685 break;
686
687 case ADW_CHIP_ASC38C1600:
688 /*
689 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
690 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
691 * cable detection and then we are able to read C_DET[3:0].
692 *
693 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
694 * Microcode Default Value' section below.
695 */
696 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
697 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
698 | ADW_DIS_TERM_DRV);
699
700 /*
701 * If the BIOS control flag AIPP (Asynchronous Information
702 * Phase Protection) disable bit is not set, then set the
703 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
704 * enable AIPP checking and encoding.
705 */
706 if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
707 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
708 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
709 word | CONTROL_FLAG_ENABLE_AIPP);
710 }
711
712 /*
713 * For ASC-38C1600 use DMA_CFG0 default values:
714 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
715 */
716 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
717 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
718 break;
719 }
720
721 /*
722 * Microcode operating variables for WDTR, SDTR, and command tag
723 * queuing will be set in AdvInquiryHandling() based on what a
724 * device reports it is capable of in Inquiry byte 7.
725 *
726 * If SCSI Bus Resets have been disabled, then directly set
727 * SDTR and WDTR from the EEPROM configuration. This will allow
728 * the BIOS and warm boot to work without a SCSI bus hang on
729 * the Inquiry caused by host and target mismatched DTR values.
730 * Without the SCSI Bus Reset, before an Inquiry a device can't
731 * be assumed to be in Asynchronous, Narrow mode.
732 */
733 if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
734 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
735 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
736 }
737
738 /*
739 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
740 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
741 * bitmask. These values determine the maximum SDTR speed negotiated
742 * with a device.
743 *
744 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
745 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
746 * without determining here whether the device supports SDTR.
747 */
748 switch (sc->chip_type) {
749 case ADW_CHIP_ASC3550:
750 word = 0;
751 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
752 if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
753 /* Set Ultra speed for TID 'tid'. */
754 word |= (0x3 << (4 * (tid % 4)));
755 } else {
756 /* Set Fast speed for TID 'tid'. */
757 word |= (0x2 << (4 * (tid % 4)));
758 }
759 /* Check if done with sdtr_speed1. */
760 if (tid == 3) {
761 ADW_WRITE_WORD_LRAM(iot, ioh,
762 ADW_MC_SDTR_SPEED1, word);
763 word = 0;
764 /* Check if done with sdtr_speed2. */
765 } else if (tid == 7) {
766 ADW_WRITE_WORD_LRAM(iot, ioh,
767 ADW_MC_SDTR_SPEED2, word);
768 word = 0;
769 /* Check if done with sdtr_speed3. */
770 } else if (tid == 11) {
771 ADW_WRITE_WORD_LRAM(iot, ioh,
772 ADW_MC_SDTR_SPEED3, word);
773 word = 0;
774 /* Check if done with sdtr_speed4. */
775 } else if (tid == 15) {
776 ADW_WRITE_WORD_LRAM(iot, ioh,
777 ADW_MC_SDTR_SPEED4, word);
778 /* End of loop. */
779 }
780 }
781
782 /*
783 * Set microcode operating variable for the
784 * disconnect per TID bitmask.
785 */
786 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
787 sc->cfg.disc_enable);
788 break;
789
790 case ADW_CHIP_ASC38C0800:
791 /* FALLTHROUGH */
792 case ADW_CHIP_ASC38C1600:
793 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
794 sc->cfg.disc_enable);
795 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
796 sc->sdtr_speed1);
797 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
798 sc->sdtr_speed2);
799 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
800 sc->sdtr_speed3);
801 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
802 sc->sdtr_speed4);
803 break;
804 }
805
806
807 /*
808 * Set SCSI_CFG0 Microcode Default Value.
809 *
810 * The microcode will set the SCSI_CFG0 register using this value
811 * after it is started below.
812 */
813 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
814 ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
815 ADW_OUR_ID_EN | sc->chip_scsi_id);
816
817
818 switch(sc->chip_type) {
819 case ADW_CHIP_ASC3550:
820 error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
821 break;
822
823 case ADW_CHIP_ASC38C0800:
824 error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
825 break;
826
827 case ADW_CHIP_ASC38C1600:
828 error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
829 break;
830 }
831 if(error_code) {
832 return error_code;
833 }
834
835 /*
836 * Set SEL_MASK Microcode Default Value
837 *
838 * The microcode will set the SEL_MASK register using this value
839 * after it is started below.
840 */
841 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
842 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
843
844 /*
845 * Create and Initialize Host->RISC Carrier lists
846 */
847 sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
848 sc->sc_control->carriers);
849
850 /*
851 * Set-up the Host->RISC Initiator Command Queue (ICQ).
852 */
853
854 if ((sc->icq_sp = sc->carr_freelist) == NULL) {
855 return ADW_IERR_NO_CARRIER;
856 }
857 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
858 ASC_GET_CARRP(sc->icq_sp->next_ba));
859
860 /*
861 * The first command issued will be placed in the stopper carrier.
862 */
863 sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
864
865 /*
866 * Set RISC ICQ physical address start value.
867 */
868 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
869
870 /*
871 * Initialize the COMMA register to the same value otherwise
872 * the RISC will prematurely detect a command is available.
873 */
874 if(sc->chip_type == ADW_CHIP_ASC38C1600) {
875 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
876 le32toh(sc->icq_sp->carr_ba));
877 }
878
879 /*
880 * Set-up the RISC->Host Initiator Response Queue (IRQ).
881 */
882 if ((sc->irq_sp = sc->carr_freelist) == NULL) {
883 return ADW_IERR_NO_CARRIER;
884 }
885 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
886 ASC_GET_CARRP(sc->irq_sp->next_ba));
887
888 /*
889 * The first command completed by the RISC will be placed in
890 * the stopper.
891 *
892 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
893 * completed the RISC will set the ASC_RQ_DONE bit.
894 */
895 sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
896
897 /*
898 * Set RISC IRQ physical address start value.
899 */
900 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
901 sc->carr_pending_cnt = 0;
902
903 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
904 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
905 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
906 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
907
908 /* finally, finally, gentlemen, start your engine */
909 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
910
911 /*
912 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
913 * Resets should be performed. The RISC has to be running
914 * to issue a SCSI Bus Reset.
915 */
916 if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
917 {
918 /*
919 * If the BIOS Signature is present in memory, restore the
920 * BIOS Handshake Configuration Table and do not perform
921 * a SCSI Bus Reset.
922 */
923 if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
924 0x55AA) {
925 /*
926 * Restore per TID negotiated values.
927 */
928 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
929 wdtr_able);
930 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
931 sdtr_able);
932 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
933 tagqng_able);
934 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
935 ADW_WRITE_BYTE_LRAM(iot, ioh,
936 ADW_MC_NUMBER_OF_MAX_CMD + tid,
937 max_cmd[tid]);
938 }
939 } else {
940 if (AdwResetCCB(sc) != ADW_TRUE) {
941 error_code = ADW_WARN_BUSRESET_ERROR;
942 }
943 }
944 }
945
946 return error_code;
947 }
948
949
950 int
951 AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
952 {
953 int i;
954 u_int8_t byte;
955
956
957 if ((chip_type == ADW_CHIP_ASC38C0800) ||
958 (chip_type == ADW_CHIP_ASC38C1600)) {
959 /*
960 * RAM BIST (RAM Built-In Self Test)
961 *
962 * Address : I/O base + offset 0x38h register (byte).
963 * Function: Bit 7-6(RW) : RAM mode
964 * Normal Mode : 0x00
965 * Pre-test Mode : 0x40
966 * RAM Test Mode : 0x80
967 * Bit 5 : unused
968 * Bit 4(RO) : Done bit
969 * Bit 3-0(RO) : Status
970 * Host Error : 0x08
971 * Int_RAM Error : 0x04
972 * RISC Error : 0x02
973 * SCSI Error : 0x01
974 * No Error : 0x00
975 *
976 * Note: RAM BIST code should be put right here, before loading
977 * the microcode and after saving the RISC memory BIOS region.
978 */
979
980 /*
981 * LRAM Pre-test
982 *
983 * Write PRE_TEST_MODE (0x40) to register and wait for
984 * 10 milliseconds.
985 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
986 * return an error. Reset to NORMAL_MODE (0x00) and do again.
987 * If cannot reset to NORMAL_MODE, return an error too.
988 */
989 for (i = 0; i < 2; i++) {
990 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
991 PRE_TEST_MODE);
992 /* Wait for 10ms before reading back. */
993 AdwSleepMilliSecond(10);
994 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
995 if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
996 PRE_TEST_VALUE) {
997 return ADW_IERR_BIST_PRE_TEST;
998 }
999
1000 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
1001 NORMAL_MODE);
1002 /* Wait for 10ms before reading back. */
1003 AdwSleepMilliSecond(10);
1004 if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1005 != NORMAL_VALUE) {
1006 return ADW_IERR_BIST_PRE_TEST;
1007 }
1008 }
1009
1010 /*
1011 * LRAM Test - It takes about 1.5 ms to run through the test.
1012 *
1013 * Write RAM_TEST_MODE (0x80) to register and wait for
1014 * 10 milliseconds.
1015 * If Done bit not set or Status not 0, save register byte,
1016 * set the err_code, and return an error.
1017 */
1018 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1019 /* Wait for 10ms before checking status. */
1020 AdwSleepMilliSecond(10);
1021
1022 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1023 if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1024 /* Get here if Done bit not set or Status not 0. */
1025 return ADW_IERR_BIST_RAM_TEST;
1026 }
1027
1028 /* We need to reset back to normal mode after LRAM test passes*/
1029 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1030 }
1031
1032 return 0;
1033 }
1034
1035
1036 int
1037 AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
1038 {
1039 const u_int8_t *mcode_data;
1040 u_int32_t mcode_chksum;
1041 u_int16_t mcode_size;
1042 u_int32_t sum;
1043 u_int16_t code_sum;
1044 int begin_addr;
1045 int end_addr;
1046 int word;
1047 int adw_memsize;
1048 int adw_mcode_expanded_size;
1049 int i, j;
1050
1051
1052 switch(chip_type) {
1053 case ADW_CHIP_ASC3550:
1054 mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1055 mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1056 mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1057 adw_memsize = ADW_3550_MEMSIZE;
1058 break;
1059
1060 case ADW_CHIP_ASC38C0800:
1061 mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1062 mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1063 mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1064 adw_memsize = ADW_38C0800_MEMSIZE;
1065 break;
1066
1067 case ADW_CHIP_ASC38C1600:
1068 mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1069 mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1070 mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1071 adw_memsize = ADW_38C1600_MEMSIZE;
1072 break;
1073
1074 default:
1075 return (EINVAL);
1076 }
1077
1078 /*
1079 * Write the microcode image to RISC memory starting at address 0.
1080 */
1081 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1082
1083 /* Assume the following compressed format of the microcode buffer:
1084 *
1085 * 254 word (508 byte) table indexed by byte code followed
1086 * by the following byte codes:
1087 *
1088 * 1-Byte Code:
1089 * 00: Emit word 0 in table.
1090 * 01: Emit word 1 in table.
1091 * .
1092 * FD: Emit word 253 in table.
1093 *
1094 * Multi-Byte Code:
1095 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1096 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1097 */
1098 word = 0;
1099 for (i = 253 * 2; i < mcode_size; i++) {
1100 if (mcode_data[i] == 0xff) {
1101 for (j = 0; j < mcode_data[i + 1]; j++) {
1102 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1103 (((u_int16_t)mcode_data[i + 3] << 8) |
1104 mcode_data[i + 2]));
1105 word++;
1106 }
1107 i += 3;
1108 } else if (mcode_data[i] == 0xfe) {
1109 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1110 (((u_int16_t)mcode_data[i + 2] << 8) |
1111 mcode_data[i + 1]));
1112 i += 2;
1113 word++;
1114 } else {
1115 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1116 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1117 mcode_data[mcode_data[i] * 2]));
1118 word++;
1119 }
1120 }
1121
1122 /*
1123 * Set 'word' for later use to clear the rest of memory and save
1124 * the expanded mcode size.
1125 */
1126 word *= 2;
1127 adw_mcode_expanded_size = word;
1128
1129 /*
1130 * Clear the rest of the Internal RAM.
1131 */
1132 for (; word < adw_memsize; word += 2) {
1133 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1134 }
1135
1136 /*
1137 * Verify the microcode checksum.
1138 */
1139 sum = 0;
1140 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1141
1142 for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1143 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1144 }
1145
1146 if (sum != mcode_chksum) {
1147 return ADW_IERR_MCODE_CHKSUM;
1148 }
1149
1150 /*
1151 * Restore the RISC memory BIOS region.
1152 */
1153 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1154 if(chip_type == ADW_CHIP_ASC3550) {
1155 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1156 bios_mem[i]);
1157 } else {
1158 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1159 bios_mem[i]);
1160 }
1161 }
1162
1163 /*
1164 * Calculate and write the microcode code checksum to the microcode
1165 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1166 */
1167 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1168 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1169 code_sum = 0;
1170 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1171 for (word = begin_addr; word < end_addr; word += 2) {
1172 code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1173 }
1174 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1175
1176 /*
1177 * Set the chip type.
1178 */
1179 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1180
1181 return 0;
1182 }
1183
1184
1185 int
1186 AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1187 {
1188 u_int16_t scsi_cfg1;
1189
1190
1191 /*
1192 * Determine SCSI_CFG1 Microcode Default Value.
1193 *
1194 * The microcode will set the SCSI_CFG1 register using this value
1195 * after it is started below.
1196 */
1197
1198 /* Read current SCSI_CFG1 Register value. */
1199 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1200
1201 /*
1202 * If all three connectors are in use in ASC3550, return an error.
1203 */
1204 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1205 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1206 return ADW_IERR_ILLEGAL_CONNECTION;
1207 }
1208
1209 /*
1210 * If the cable is reversed all of the SCSI_CTRL register signals
1211 * will be set. Check for and return an error if this condition is
1212 * found.
1213 */
1214 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1215 return ADW_IERR_REVERSED_CABLE;
1216 }
1217
1218 /*
1219 * If this is a differential board and a single-ended device
1220 * is attached to one of the connectors, return an error.
1221 */
1222 if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1223 (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1224 return ADW_IERR_SINGLE_END_DEVICE;
1225 }
1226
1227 /*
1228 * If automatic termination control is enabled, then set the
1229 * termination value based on a table listed in a_condor.h.
1230 *
1231 * If manual termination was specified with an EEPROM setting
1232 * then 'termination' was set-up in AdwInitFromEEPROM() and
1233 * is ready to be 'ored' into SCSI_CFG1.
1234 */
1235 if (cfg->termination == 0) {
1236 /*
1237 * The software always controls termination by setting
1238 * TERM_CTL_SEL.
1239 * If TERM_CTL_SEL were set to 0, the hardware would set
1240 * termination.
1241 */
1242 cfg->termination |= ADW_TERM_CTL_SEL;
1243
1244 switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1245 /* TERM_CTL_H: on, TERM_CTL_L: on */
1246 case 0x3: case 0x7: case 0xB:
1247 case 0xD: case 0xE: case 0xF:
1248 cfg->termination |=
1249 (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1250 break;
1251
1252 /* TERM_CTL_H: on, TERM_CTL_L: off */
1253 case 0x1: case 0x5: case 0x9:
1254 case 0xA: case 0xC:
1255 cfg->termination |= ADW_TERM_CTL_H;
1256 break;
1257
1258 /* TERM_CTL_H: off, TERM_CTL_L: off */
1259 case 0x2: case 0x6:
1260 break;
1261 }
1262 }
1263
1264 /*
1265 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1266 */
1267 scsi_cfg1 &= ~ADW_TERM_CTL;
1268
1269 /*
1270 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1271 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1272 * referenced, because the hardware internally inverts
1273 * the Termination High and Low bits if TERM_POL is set.
1274 */
1275 scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1276
1277 /*
1278 * Set SCSI_CFG1 Microcode Default Value
1279 *
1280 * Set filter value and possibly modified termination control
1281 * bits in the Microcode SCSI_CFG1 Register Value.
1282 *
1283 * The microcode will set the SCSI_CFG1 register using this value
1284 * after it is started below.
1285 */
1286 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1287 ADW_FLTR_DISABLE | scsi_cfg1);
1288
1289 /*
1290 * Set MEM_CFG Microcode Default Value
1291 *
1292 * The microcode will set the MEM_CFG register using this value
1293 * after it is started below.
1294 *
1295 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1296 * are defined.
1297 *
1298 * ASC-3550 has 8KB internal memory.
1299 */
1300 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1301 ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1302
1303 return 0;
1304 }
1305
1306
1307 int
1308 AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1309 {
1310 u_int16_t scsi_cfg1;
1311
1312
1313 /*
1314 * Determine SCSI_CFG1 Microcode Default Value.
1315 *
1316 * The microcode will set the SCSI_CFG1 register using this value
1317 * after it is started below.
1318 */
1319
1320 /* Read current SCSI_CFG1 Register value. */
1321 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1322
1323 /*
1324 * If the cable is reversed all of the SCSI_CTRL register signals
1325 * will be set. Check for and return an error if this condition is
1326 * found.
1327 */
1328 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1329 return ADW_IERR_REVERSED_CABLE;
1330 }
1331
1332 /*
1333 * All kind of combinations of devices attached to one of four
1334 * connectors are acceptable except HVD device attached.
1335 * For example, LVD device can be attached to SE connector while
1336 * SE device attached to LVD connector.
1337 * If LVD device attached to SE connector, it only runs up to
1338 * Ultra speed.
1339 *
1340 * If an HVD device is attached to one of LVD connectors, return
1341 * an error.
1342 * However, there is no way to detect HVD device attached to
1343 * SE connectors.
1344 */
1345 if (scsi_cfg1 & ADW_HVD) {
1346 return ADW_IERR_HVD_DEVICE;
1347 }
1348
1349 /*
1350 * If either SE or LVD automatic termination control is enabled, then
1351 * set the termination value based on a table listed in a_condor.h.
1352 *
1353 * If manual termination was specified with an EEPROM setting then
1354 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1355 * to be 'ored' into SCSI_CFG1.
1356 */
1357 if ((cfg->termination & ADW_TERM_SE) == 0) {
1358 /* SE automatic termination control is enabled. */
1359 switch(scsi_cfg1 & ADW_C_DET_SE) {
1360 /* TERM_SE_HI: on, TERM_SE_LO: on */
1361 case 0x1: case 0x2: case 0x3:
1362 cfg->termination |= ADW_TERM_SE;
1363 break;
1364
1365 /* TERM_SE_HI: on, TERM_SE_LO: off */
1366 case 0x0:
1367 cfg->termination |= ADW_TERM_SE_HI;
1368 break;
1369 }
1370 }
1371
1372 if ((cfg->termination & ADW_TERM_LVD) == 0) {
1373 /* LVD automatic termination control is enabled. */
1374 switch(scsi_cfg1 & ADW_C_DET_LVD) {
1375 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1376 case 0x4: case 0x8: case 0xC:
1377 cfg->termination |= ADW_TERM_LVD;
1378 break;
1379
1380 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1381 case 0x0:
1382 break;
1383 }
1384 }
1385
1386 /*
1387 * Clear any set TERM_SE and TERM_LVD bits.
1388 */
1389 scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1390
1391 /*
1392 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1393 */
1394 scsi_cfg1 |= (~cfg->termination & 0xF0);
1395
1396 /*
1397 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1398 * HVD/LVD/SE bits and set possibly modified termination control bits
1399 * in the Microcode SCSI_CFG1 Register Value.
1400 */
1401 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1402 ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1403
1404 /*
1405 * Set SCSI_CFG1 Microcode Default Value
1406 *
1407 * Set possibly modified termination control and reset DIS_TERM_DRV
1408 * bits in the Microcode SCSI_CFG1 Register Value.
1409 *
1410 * The microcode will set the SCSI_CFG1 register using this value
1411 * after it is started below.
1412 */
1413 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1414
1415 /*
1416 * Set MEM_CFG Microcode Default Value
1417 *
1418 * The microcode will set the MEM_CFG register using this value
1419 * after it is started below.
1420 *
1421 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1422 * are defined.
1423 *
1424 * ASC-38C0800 has 16KB internal memory.
1425 */
1426 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1427 ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1428
1429 return 0;
1430 }
1431
1432
1433 int
1434 AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1435 {
1436 u_int16_t scsi_cfg1;
1437
1438
1439 /*
1440 * Determine SCSI_CFG1 Microcode Default Value.
1441 *
1442 * The microcode will set the SCSI_CFG1 register using this value
1443 * after it is started below.
1444 * Each ASC-38C1600 function has only two cable detect bits.
1445 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1446 */
1447
1448 /* Read current SCSI_CFG1 Register value. */
1449 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1450
1451 /*
1452 * If the cable is reversed all of the SCSI_CTRL register signals
1453 * will be set. Check for and return an error if this condition is
1454 * found.
1455 */
1456 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1457 return ADW_IERR_REVERSED_CABLE;
1458 }
1459
1460 /*
1461 * Each ASC-38C1600 function has two connectors. Only an HVD device
1462 * cannot be connected to either connector. An LVD device or SE device
1463 * may be connected to either connector. If an SE device is connected,
1464 * then at most Ultra speed (20 MHz) can be used on both connectors.
1465 *
1466 * If an HVD device is attached, return an error.
1467 */
1468 if (scsi_cfg1 & ADW_HVD) {
1469 return ADW_IERR_HVD_DEVICE;
1470 }
1471
1472 /*
1473 * Each function in the ASC-38C1600 uses only the SE cable detect and
1474 * termination because there are two connectors for each function.
1475 * Each function may use either LVD or SE mode.
1476 * Corresponding the SE automatic termination control EEPROM bits are
1477 * used for each function.
1478 * Each function has its own EEPROM. If SE automatic control is enabled
1479 * for the function, then set the termination value based on a table
1480 * listed in adwlib.h.
1481 *
1482 * If manual termination is specified in the EEPROM for the function,
1483 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1484 * ready to be 'ored' into SCSI_CFG1.
1485 */
1486 if ((cfg->termination & ADW_TERM_SE) == 0) {
1487 /* SE automatic termination control is enabled. */
1488 switch(scsi_cfg1 & ADW_C_DET_SE) {
1489 /* TERM_SE_HI: on, TERM_SE_LO: on */
1490 case 0x1: case 0x2: case 0x3:
1491 cfg->termination |= ADW_TERM_SE;
1492 break;
1493
1494 case 0x0:
1495 #if 0
1496 /* !!!!TODO!!!! */
1497 if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1498 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1499 }
1500 else
1501 #endif
1502 {
1503 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1504 cfg->termination |= ADW_TERM_SE_HI;
1505 }
1506 break;
1507 }
1508 }
1509
1510 /*
1511 * Clear any set TERM_SE bits.
1512 */
1513 scsi_cfg1 &= ~ADW_TERM_SE;
1514
1515 /*
1516 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1517 */
1518 scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1519
1520 /*
1521 * Clear Big Endian and Terminator Polarity bits and set possibly
1522 * modified termination control bits in the Microcode SCSI_CFG1
1523 * Register Value.
1524 */
1525 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1526
1527 /*
1528 * Set SCSI_CFG1 Microcode Default Value
1529 *
1530 * Set possibly modified termination control bits in the Microcode
1531 * SCSI_CFG1 Register Value.
1532 *
1533 * The microcode will set the SCSI_CFG1 register using this value
1534 * after it is started below.
1535 */
1536 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1537
1538 /*
1539 * Set MEM_CFG Microcode Default Value
1540 *
1541 * The microcode will set the MEM_CFG register using this value
1542 * after it is started below.
1543 *
1544 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1545 * are defined.
1546 *
1547 * ASC-38C1600 has 32KB internal memory.
1548 */
1549 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1550 ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1551
1552 return 0;
1553 }
1554
1555
1556 /*
1557 * Read EEPROM configuration into the specified buffer.
1558 *
1559 * Return a checksum based on the EEPROM configuration read.
1560 */
1561 static u_int16_t
1562 AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
1563 {
1564 u_int16_t wval, chksum;
1565 u_int16_t *wbuf;
1566 int eep_addr;
1567
1568
1569 wbuf = (u_int16_t *) cfg_buf;
1570 chksum = 0;
1571
1572 for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1573 eep_addr < ASC_EEP_DVC_CFG_END;
1574 eep_addr++, wbuf++) {
1575 wval = AdwReadEEPWord(iot, ioh, eep_addr);
1576 chksum += wval;
1577 *wbuf = wval;
1578 }
1579
1580 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1581 wbuf++;
1582 for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1583 eep_addr < ASC_EEP_MAX_WORD_ADDR;
1584 eep_addr++, wbuf++) {
1585 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1586 }
1587
1588 return chksum;
1589 }
1590
1591
1592 /*
1593 * Read the EEPROM from specified location
1594 */
1595 static u_int16_t
1596 AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
1597 {
1598 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1599 ASC_EEP_CMD_READ | eep_word_addr);
1600 AdwWaitEEPCmd(iot, ioh);
1601
1602 return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1603 }
1604
1605
1606 /*
1607 * Wait for EEPROM command to complete
1608 */
1609 static void
1610 AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
1611 {
1612 int eep_delay_ms;
1613
1614
1615 for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1616 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1617 ASC_EEP_CMD_DONE) {
1618 break;
1619 }
1620 AdwSleepMilliSecond(1);
1621 }
1622
1623 (void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1624 }
1625
1626
1627 /*
1628 * Write the EEPROM from 'cfg_buf'.
1629 */
1630 static void
1631 AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
1632 {
1633 u_int16_t *wbuf;
1634 u_int16_t addr, chksum;
1635
1636
1637 wbuf = (u_int16_t *) cfg_buf;
1638 chksum = 0;
1639
1640 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1641 AdwWaitEEPCmd(iot, ioh);
1642
1643 /*
1644 * Write EEPROM from word 0 to word 20
1645 */
1646 for (addr = ASC_EEP_DVC_CFG_BEGIN;
1647 addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1648 chksum += *wbuf;
1649 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1650 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1651 ASC_EEP_CMD_WRITE | addr);
1652 AdwWaitEEPCmd(iot, ioh);
1653 AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1654 }
1655
1656 /*
1657 * Write EEPROM checksum at word 21
1658 */
1659 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1660 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1661 ASC_EEP_CMD_WRITE | addr);
1662 AdwWaitEEPCmd(iot, ioh);
1663 wbuf++; /* skip over check_sum */
1664
1665 /*
1666 * Write EEPROM OEM name at words 22 to 29
1667 */
1668 for (addr = ASC_EEP_DVC_CTL_BEGIN;
1669 addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1670 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1671 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1672 ASC_EEP_CMD_WRITE | addr);
1673 AdwWaitEEPCmd(iot, ioh);
1674 }
1675
1676 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1677 ASC_EEP_CMD_WRITE_DISABLE);
1678 AdwWaitEEPCmd(iot, ioh);
1679
1680 return;
1681 }
1682
1683
1684 /*
1685 * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1686 *
1687 * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1688 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1689 * RISC to notify it a new command is ready to be executed.
1690 *
1691 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1692 * set to SCSI_MAX_RETRY.
1693 *
1694 * Return:
1695 * ADW_SUCCESS(1) - The request was successfully queued.
1696 * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1697 * request completes.
1698 * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1699 * host IC error.
1700 */
1701 int
1702 AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
1703 {
1704 bus_space_tag_t iot = sc->sc_iot;
1705 bus_space_handle_t ioh = sc->sc_ioh;
1706 ADW_CCB *ccb;
1707 u_int32_t req_paddr;
1708 ADW_CARRIER *new_carrp;
1709
1710 /*
1711 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1712 */
1713 if (scsiq->target_id > ADW_MAX_TID) {
1714 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1715 scsiq->done_status = QD_WITH_ERROR;
1716 return ADW_ERROR;
1717 }
1718
1719 /*
1720 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1721 */
1722
1723 ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1724
1725 /*
1726 * Allocate a carrier and initialize fields.
1727 */
1728 if ((new_carrp = sc->carr_freelist) == NULL) {
1729 return ADW_BUSY;
1730 }
1731 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1732 ASC_GET_CARRP(new_carrp->next_ba));
1733 sc->carr_pending_cnt++;
1734
1735 /*
1736 * Set the carrier to be a stopper by setting 'next_ba'
1737 * to the stopper value. The current stopper will be changed
1738 * below to point to the new stopper.
1739 */
1740 new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1741
1742 req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1743 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1744
1745 /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1746 scsiq->scsiq_rptr = htole32(req_paddr);
1747
1748 /*
1749 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1750 * order during initialization.
1751 */
1752 scsiq->carr_ba = sc->icq_sp->carr_ba;
1753 scsiq->carr_va = sc->icq_sp->carr_ba;
1754
1755 /*
1756 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1757 * the microcode. The newly allocated stopper will become the new
1758 * stopper.
1759 */
1760 sc->icq_sp->areq_ba = htole32(req_paddr);
1761
1762 /*
1763 * Set the 'next_ba' pointer for the old stopper to be the
1764 * physical address of the new stopper. The RISC can only
1765 * follow physical addresses.
1766 */
1767 sc->icq_sp->next_ba = new_carrp->carr_ba;
1768
1769 #if ADW_DEBUG
1770 printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1771 sc->icq_sp->carr_id,
1772 sc->icq_sp->carr_ba,
1773 sc->icq_sp->areq_ba,
1774 sc->icq_sp->next_ba);
1775 #endif
1776 /*
1777 * Set the host adapter stopper pointer to point to the new carrier.
1778 */
1779 sc->icq_sp = new_carrp;
1780
1781 if (sc->chip_type == ADW_CHIP_ASC3550 ||
1782 sc->chip_type == ADW_CHIP_ASC38C0800) {
1783 /*
1784 * Tickle the RISC to tell it to read its Command Queue Head
1785 * pointer.
1786 */
1787 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1788 if (sc->chip_type == ADW_CHIP_ASC3550) {
1789 /*
1790 * Clear the tickle value. In the ASC-3550 the RISC flag
1791 * command 'clr_tickle_a' does not work unless the host
1792 * value is cleared.
1793 */
1794 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1795 ADW_TICKLE_NOP);
1796 }
1797 } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1798 /*
1799 * Notify the RISC a carrier is ready by writing the physical
1800 * address of the new carrier stopper to the COMMA register.
1801 */
1802 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1803 le32toh(new_carrp->carr_ba));
1804 }
1805
1806 /*
1807 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1808 */
1809
1810 return ADW_SUCCESS;
1811 }
1812
1813
1814 void
1815 AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
1816 {
1817
1818 /*
1819 * Reset Chip.
1820 */
1821 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1822 ADW_CTRL_REG_CMD_RESET);
1823 AdwSleepMilliSecond(100);
1824 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1825 ADW_CTRL_REG_CMD_WR_IO_REG);
1826 }
1827
1828
1829 /*
1830 * Reset SCSI Bus and purge all outstanding requests.
1831 *
1832 * Return Value:
1833 * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1834 * ADW_FALSE(0) - Microcode command failed.
1835 * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1836 * may be hung which requires driver recovery.
1837 */
1838 int
1839 AdwResetCCB(ADW_SOFTC *sc)
1840 {
1841 int status;
1842
1843 /*
1844 * Send the SCSI Bus Reset idle start idle command which asserts
1845 * the SCSI Bus Reset signal.
1846 */
1847 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1848 if (status != ADW_TRUE) {
1849 return status;
1850 }
1851
1852 /*
1853 * Delay for the specified SCSI Bus Reset hold time.
1854 *
1855 * The hold time delay is done on the host because the RISC has no
1856 * microsecond accurate timer.
1857 */
1858 AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1859
1860 /*
1861 * Send the SCSI Bus Reset end idle command which de-asserts
1862 * the SCSI Bus Reset signal and purges any pending requests.
1863 */
1864 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1865 if (status != ADW_TRUE) {
1866 return status;
1867 }
1868
1869 AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1870
1871 return status;
1872 }
1873
1874
1875 /*
1876 * Reset chip and SCSI Bus.
1877 *
1878 * Return Value:
1879 * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1880 * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1881 */
1882 int
1883 AdwResetSCSIBus(ADW_SOFTC *sc)
1884 {
1885 bus_space_tag_t iot = sc->sc_iot;
1886 bus_space_handle_t ioh = sc->sc_ioh;
1887 int status;
1888 u_int16_t wdtr_able, sdtr_able, tagqng_able;
1889 u_int16_t ppr_able = 0; /* XXX: gcc */
1890 u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
1891 u_int16_t bios_sig;
1892
1893
1894 /*
1895 * Save current per TID negotiated values.
1896 */
1897 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1898 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1899 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1900 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1901 }
1902 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1903 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1904 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1905 max_cmd[tid]);
1906 }
1907
1908 /*
1909 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1910 * by clearing the BIOS signature word.
1911 * The initialization functions assumes a SCSI Bus Reset is not
1912 * needed if the BIOS signature word is present.
1913 */
1914 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1915 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1916
1917 /*
1918 * Stop chip and reset it.
1919 */
1920 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1921 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1922 ADW_CTRL_REG_CMD_RESET);
1923 AdwSleepMilliSecond(100);
1924 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1925 ADW_CTRL_REG_CMD_WR_IO_REG);
1926
1927 /*
1928 * Reset Adv Library error code, if any, and try
1929 * re-initializing the chip.
1930 * Then translate initialization return value to status value.
1931 */
1932 status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1933
1934 /*
1935 * Restore the BIOS signature word.
1936 */
1937 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1938
1939 /*
1940 * Restore per TID negotiated values.
1941 */
1942 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1943 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1944 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1945 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1946 }
1947 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1948 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1949 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1950 max_cmd[tid]);
1951 }
1952
1953 return status;
1954 }
1955
1956
1957 /*
1958 * Adv Library Interrupt Service Routine
1959 *
1960 * This function is called by a driver's interrupt service routine.
1961 * The function disables and re-enables interrupts.
1962 *
1963 * When a microcode idle command is completed, the ADV_DVC_VAR
1964 * 'idle_cmd_done' field is set to ADW_TRUE.
1965 *
1966 * Note: AdwISR() can be called when interrupts are disabled or even
1967 * when there is no hardware interrupt condition present. It will
1968 * always check for completed idle commands and microcode requests.
1969 * This is an important feature that shouldn't be changed because it
1970 * allows commands to be completed from polling mode loops.
1971 *
1972 * Return:
1973 * ADW_TRUE(1) - interrupt was pending
1974 * ADW_FALSE(0) - no interrupt was pending
1975 */
1976 int
1977 AdwISR(ADW_SOFTC *sc)
1978 {
1979 bus_space_tag_t iot = sc->sc_iot;
1980 bus_space_handle_t ioh = sc->sc_ioh;
1981 u_int8_t int_stat;
1982 ADW_CARRIER *free_carrp/*, *ccb_carr*/;
1983 u_int32_t irq_next_pa;
1984 ADW_SCSI_REQ_Q *scsiq;
1985 ADW_CCB *ccb;
1986 int s;
1987
1988
1989 s = splbio();
1990
1991 /* Reading the register clears the interrupt. */
1992 int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
1993
1994 if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
1995 ADW_INTR_STATUS_INTRC)) == 0) {
1996 splx(s);
1997 return ADW_FALSE;
1998 }
1999
2000 /*
2001 * Notify the driver of an asynchronous microcode condition by
2002 * calling the ADV_DVC_VAR.async_callback function. The function
2003 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2004 */
2005 if (int_stat & ADW_INTR_STATUS_INTRB) {
2006 u_int8_t intrb_code;
2007
2008 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2009
2010 if (sc->chip_type == ADW_CHIP_ASC3550 ||
2011 sc->chip_type == ADW_CHIP_ASC38C0800) {
2012 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2013 sc->carr_pending_cnt != 0) {
2014 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2015 IOPB_TICKLE, ADW_TICKLE_A);
2016 if (sc->chip_type == ADW_CHIP_ASC3550) {
2017 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2018 IOPB_TICKLE, ADW_TICKLE_NOP);
2019 }
2020 }
2021 }
2022
2023 if (sc->async_callback != 0) {
2024 (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2025 }
2026 }
2027
2028 /*
2029 * Check if the IRQ stopper carrier contains a completed request.
2030 */
2031 while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2032 {
2033 #if ADW_DEBUG
2034 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2035 sc->irq_sp->carr_id,
2036 sc->irq_sp->carr_ba,
2037 sc->irq_sp->areq_ba,
2038 sc->irq_sp->next_ba);
2039 #endif
2040 /*
2041 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2042 * structure.
2043 * The RISC will have set 'areq_ba' to a virtual address.
2044 *
2045 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2046 * field to the carrier ADV_CARR_T.areq_ba field.
2047 * The conversion below complements the conversion of
2048 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2049 */
2050 ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2051 scsiq = &ccb->scsiq;
2052 scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2053
2054 /*
2055 * Request finished with good status and the queue was not
2056 * DMAed to host memory by the firmware. Set all status fields
2057 * to indicate good status.
2058 */
2059 if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2060 scsiq->done_status = QD_NO_ERROR;
2061 scsiq->host_status = scsiq->scsi_status = 0;
2062 scsiq->data_cnt = 0L;
2063 }
2064
2065 /*
2066 * Advance the stopper pointer to the next carrier
2067 * ignoring the lower four bits. Free the previous
2068 * stopper carrier.
2069 */
2070 free_carrp = sc->irq_sp;
2071 sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2072
2073 free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
2074 : sc->carr_freelist->carr_ba;
2075 sc->carr_freelist = free_carrp;
2076 sc->carr_pending_cnt--;
2077
2078 /*
2079 * Clear request microcode control flag.
2080 */
2081 scsiq->cntl = 0;
2082
2083 /*
2084 * Check Condition handling
2085 */
2086 /*
2087 * If the command that completed was a SCSI INQUIRY and
2088 * LUN 0 was sent the command, then process the INQUIRY
2089 * command information for the device.
2090 */
2091 if (scsiq->done_status == QD_NO_ERROR &&
2092 scsiq->cdb[0] == INQUIRY &&
2093 scsiq->target_lun == 0) {
2094 AdwInquiryHandling(sc, scsiq);
2095 }
2096
2097 /*
2098 * Notify the driver of the completed request by passing
2099 * the ADW_SCSI_REQ_Q pointer to its callback function.
2100 */
2101 (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2102 /*
2103 * Note: After the driver callback function is called, 'scsiq'
2104 * can no longer be referenced.
2105 *
2106 * Fall through and continue processing other completed
2107 * requests...
2108 */
2109 }
2110
2111 splx(s);
2112
2113 return ADW_TRUE;
2114 }
2115
2116
2117 /*
2118 * Send an idle command to the chip and wait for completion.
2119 *
2120 * Command completion is polled for once per microsecond.
2121 *
2122 * The function can be called from anywhere including an interrupt handler.
2123 * But the function is not re-entrant, so it uses the splbio/splx()
2124 * functions to prevent reentrancy.
2125 *
2126 * Return Values:
2127 * ADW_TRUE - command completed successfully
2128 * ADW_FALSE - command failed
2129 * ADW_ERROR - command timed out
2130 */
2131 int
2132 AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
2133 {
2134 bus_space_tag_t iot = sc->sc_iot;
2135 bus_space_handle_t ioh = sc->sc_ioh;
2136 u_int16_t result;
2137 u_int32_t i, j, s;
2138
2139 s = splbio();
2140
2141 /*
2142 * Clear the idle command status which is set by the microcode
2143 * to a non-zero value to indicate when the command is completed.
2144 */
2145 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2146
2147 /*
2148 * Write the idle command value after the idle command parameter
2149 * has been written to avoid a race condition. If the order is not
2150 * followed, the microcode may process the idle command before the
2151 * parameters have been written to LRAM.
2152 */
2153 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2154 idle_cmd_parameter);
2155 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2156
2157 /*
2158 * Tickle the RISC to tell it to process the idle command.
2159 */
2160 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2161 if (sc->chip_type == ADW_CHIP_ASC3550) {
2162 /*
2163 * Clear the tickle value. In the ASC-3550 the RISC flag
2164 * command 'clr_tickle_b' does not work unless the host
2165 * value is cleared.
2166 */
2167 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2168 }
2169
2170 /* Wait for up to 100 millisecond for the idle command to timeout. */
2171 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2172 /* Poll once each microsecond for command completion. */
2173 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2174 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2175 result);
2176 if (result != 0) {
2177 splx(s);
2178 return result;
2179 }
2180 AdwDelayMicroSecond(1);
2181 }
2182 }
2183
2184 splx(s);
2185 return ADW_ERROR;
2186 }
2187
2188
2189 /*
2190 * Inquiry Information Byte 7 Handling
2191 *
2192 * Handle SCSI Inquiry Command information for a device by setting
2193 * microcode operating variables that affect WDTR, SDTR, and Tag
2194 * Queuing.
2195 */
2196 static void
2197 AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
2198 {
2199 #ifndef FAILSAFE
2200 bus_space_tag_t iot = sc->sc_iot;
2201 bus_space_handle_t ioh = sc->sc_ioh;
2202 u_int8_t tid;
2203 struct scsipi_inquiry_data *inq;
2204 u_int16_t tidmask;
2205 u_int16_t cfg_word;
2206
2207
2208 /*
2209 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2210 * to be available.
2211 *
2212 * If less than 8 bytes of INQUIRY information were requested or less
2213 * than 8 bytes were transferred, then return. cdb[4] is the request
2214 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2215 * microcode to the transfer residual count.
2216 */
2217
2218 if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2219 return;
2220 }
2221
2222 tid = scsiq->target_id;
2223
2224 inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2225
2226 /*
2227 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2228 */
2229 if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2230 ((inq->version & SID_ANSII) < 2)) {
2231 return;
2232 } else {
2233 /*
2234 * INQUIRY Byte 7 Handling
2235 *
2236 * Use a device's INQUIRY byte 7 to determine whether it
2237 * supports WDTR, SDTR, and Tag Queuing. If the feature
2238 * is enabled in the EEPROM and the device supports the
2239 * feature, then enable it in the microcode.
2240 */
2241
2242 tidmask = ADW_TID_TO_TIDMASK(tid);
2243
2244 /*
2245 * Wide Transfers
2246 *
2247 * If the EEPROM enabled WDTR for the device and the device
2248 * supports wide bus (16 bit) transfers, then turn on the
2249 * device's 'wdtr_able' bit and write the new value to the
2250 * microcode.
2251 */
2252 #ifdef SCSI_ADW_WDTR_DISABLE
2253 if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2254 #endif /* SCSI_ADW_WDTR_DISABLE */
2255 if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2256 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2257 cfg_word);
2258 if ((cfg_word & tidmask) == 0) {
2259 cfg_word |= tidmask;
2260 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2261 cfg_word);
2262
2263 /*
2264 * Clear the microcode "SDTR negotiation" and
2265 * "WDTR negotiation" done indicators for the
2266 * target to cause it to negotiate with the new
2267 * setting set above.
2268 * WDTR when accepted causes the target to enter
2269 * asynchronous mode, so SDTR must be negotiated
2270 */
2271 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2272 cfg_word);
2273 cfg_word &= ~tidmask;
2274 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2275 cfg_word);
2276 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2277 cfg_word);
2278 cfg_word &= ~tidmask;
2279 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2280 cfg_word);
2281 }
2282 }
2283
2284 /*
2285 * Synchronous Transfers
2286 *
2287 * If the EEPROM enabled SDTR for the device and the device
2288 * supports synchronous transfers, then turn on the device's
2289 * 'sdtr_able' bit. Write the new value to the microcode.
2290 */
2291 #ifdef SCSI_ADW_SDTR_DISABLE
2292 if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2293 #endif /* SCSI_ADW_SDTR_DISABLE */
2294 if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2295 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2296 if ((cfg_word & tidmask) == 0) {
2297 cfg_word |= tidmask;
2298 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2299 cfg_word);
2300
2301 /*
2302 * Clear the microcode "SDTR negotiation"
2303 * done indicator for the target to cause it
2304 * to negotiate with the new setting set above.
2305 */
2306 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2307 cfg_word);
2308 cfg_word &= ~tidmask;
2309 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2310 cfg_word);
2311 }
2312 }
2313 /*
2314 * If the Inquiry data included enough space for the SPI-3
2315 * Clocking field, then check if DT mode is supported.
2316 */
2317 if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2318 (scsiq->cdb[4] >= 57 ||
2319 (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2320 /*
2321 * PPR (Parallel Protocol Request) Capable
2322 *
2323 * If the device supports DT mode, then it must be
2324 * PPR capable.
2325 * The PPR message will be used in place of the SDTR
2326 * and WDTR messages to negotiate synchronous speed
2327 * and offset, transfer width, and protocol options.
2328 */
2329 if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2330 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2331 sc->ppr_able);
2332 sc->ppr_able |= tidmask;
2333 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2334 sc->ppr_able);
2335 }
2336 }
2337
2338 /*
2339 * If the EEPROM enabled Tag Queuing for the device and the
2340 * device supports Tag Queueing, then turn on the device's
2341 * 'tagqng_enable' bit in the microcode and set the microcode
2342 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2343 * value.
2344 *
2345 * Tag Queuing is disabled for the BIOS which runs in polled
2346 * mode and would see no benefit from Tag Queuing. Also by
2347 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2348 * bugs will at least work with the BIOS.
2349 */
2350 #ifdef SCSI_ADW_TAGQ_DISABLE
2351 if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2352 #endif /* SCSI_ADW_TAGQ_DISABLE */
2353 if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2354 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2355 cfg_word);
2356 cfg_word |= tidmask;
2357 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2358 cfg_word);
2359
2360 ADW_WRITE_BYTE_LRAM(iot, ioh,
2361 ADW_MC_NUMBER_OF_MAX_CMD + tid,
2362 sc->max_dvc_qng);
2363 }
2364 }
2365 #endif /* FAILSAFE */
2366 }
2367
2368
2369 static void
2370 AdwSleepMilliSecond(u_int32_t n)
2371 {
2372
2373 DELAY(n * 1000);
2374 }
2375
2376
2377 static void
2378 AdwDelayMicroSecond(u_int32_t n)
2379 {
2380
2381 DELAY(n);
2382 }
2383
2384