Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.42
      1 /* $NetBSD: adwlib.c,v 1.42 2019/02/03 03:19:27 mrg Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 /*
     40  * Ported from:
     41  */
     42 /*
     43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  *
     45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46  * All Rights Reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that redistributions of source
     50  * code retain the above copyright notice and this comment without
     51  * modification.
     52  */
     53 
     54 #include <sys/cdefs.h>
     55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.42 2019/02/03 03:19:27 mrg Exp $");
     56 
     57 #include <sys/param.h>
     58 #include <sys/systm.h>
     59 #include <sys/malloc.h>
     60 #include <sys/kernel.h>
     61 #include <sys/queue.h>
     62 #include <sys/device.h>
     63 
     64 #include <sys/bus.h>
     65 #include <sys/intr.h>
     66 
     67 #include <dev/scsipi/scsi_all.h>
     68 #include <dev/scsipi/scsipi_all.h>
     69 #include <dev/scsipi/scsiconf.h>
     70 
     71 #include <dev/pci/pcidevs.h>
     72 
     73 #include <dev/ic/adwlib.h>
     74 #include <dev/ic/adwmcode.h>
     75 #include <dev/ic/adw.h>
     76 
     77 
     78 /* Static Functions */
     79 
     80 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
     81 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
     82 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     83 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     84 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     85 
     86 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     87      							ADW_EEPROM *);
     88 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     89 					                 ADW_EEPROM *);
     90 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
     91 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
     92 
     93 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
     94 
     95 static void AdwSleepMilliSecond(u_int32_t);
     96 static void AdwDelayMicroSecond(u_int32_t);
     97 
     98 
     99 /*
    100  * EEPROM Configuration.
    101  *
    102  * All drivers should use this structure to set the default EEPROM
    103  * configuration. The BIOS now uses this structure when it is built.
    104  * Additional structure information can be found in adwlib.h where
    105  * the structure is defined.
    106  */
    107 static const ADW_EEPROM adw_3550_Default_EEPROM = {
    108 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    109 	0x0000,			/* 01 cfg_msw */
    110 	0xFFFF,			/* 02 disc_enable */
    111 	0xFFFF,			/* 03 wdtr_able */
    112 	{ 0xFFFF },		/* 04 sdtr_able */
    113 	0xFFFF,			/* 05 start_motor */
    114 	0xFFFF,			/* 06 tagqng_able */
    115 	0xFFFF,			/* 07 bios_scan */
    116 	0,			/* 08 scam_tolerant */
    117 	7,			/* 09 adapter_scsi_id */
    118 	0,			/*    bios_boot_delay */
    119 	3,			/* 10 scsi_reset_delay */
    120 	0,			/*    bios_id_lun */
    121 	0,			/* 11 termination */
    122 	0,			/*    reserved1 */
    123 	0xFFE7,			/* 12 bios_ctrl */
    124 	{ 0xFFFF },		/* 13 ultra_able */
    125 	{ 0 },			/* 14 reserved2 */
    126 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    127 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    128 	0,			/* 16 dvc_cntl */
    129 	{ 0 },			/* 17 bug_fix */
    130 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    131 	0,			/* 21 check_sum */
    132 	{			/* 22-29 oem_name[16] */
    133 	  0,0,0,0,0,0,0,0,
    134 	  0,0,0,0,0,0,0,0
    135 	},
    136 	0,			/* 30 dvc_err_code */
    137 	0,			/* 31 adv_err_code */
    138 	0,			/* 32 adv_err_addr */
    139 	0,			/* 33 saved_dvc_err_code */
    140 	0,			/* 34 saved_adv_err_code */
    141 	0,			/* 35 saved_adv_err_addr */
    142 	{			/* 36-55 reserved1[16] */
    143 	  0,0,0,0,0,0,0,0,0,0,
    144 	  0,0,0,0,0,0,0,0,0,0
    145 	},
    146 	0,			/* 56 cisptr_lsw */
    147 	0,			/* 57 cisprt_msw */
    148 	0,			/* 58 subsysvid */
    149 	0,			/* 59 subsysid */
    150 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    151 };
    152 
    153 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
    154 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    155 	0x0000,			/* 01 cfg_msw */
    156 	0xFFFF,			/* 02 disc_enable */
    157 	0xFFFF,			/* 03 wdtr_able */
    158 	{ 0x4444 },		/* 04 sdtr_speed1 */
    159 	0xFFFF,			/* 05 start_motor */
    160 	0xFFFF,			/* 06 tagqng_able */
    161 	0xFFFF,			/* 07 bios_scan */
    162 	0,			/* 08 scam_tolerant */
    163 	7,			/* 09 adapter_scsi_id */
    164 	0,			/*    bios_boot_delay */
    165 	3,			/* 10 scsi_reset_delay */
    166 	0,			/*    bios_id_lun */
    167 	0,			/* 11 termination_se */
    168 	0,			/*    termination_lvd */
    169 	0xFFE7,			/* 12 bios_ctrl */
    170 	{ 0x4444 },		/* 13 sdtr_speed2 */
    171 	{ 0x4444 },		/* 14 sdtr_speed3 */
    172 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    173 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    174 	0,			/* 16 dvc_cntl */
    175 	{ 0x4444 },		/* 17 sdtr_speed4 */
    176 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    177 	0,			/* 21 check_sum */
    178 	{			/* 22-29 oem_name[16] */
    179 	  0,0,0,0,0,0,0,0,
    180 	  0,0,0,0,0,0,0,0
    181 	},
    182 	0,			/* 30 dvc_err_code */
    183 	0,			/* 31 adv_err_code */
    184 	0,			/* 32 adv_err_addr */
    185 	0,			/* 33 saved_dvc_err_code */
    186 	0,			/* 34 saved_adv_err_code */
    187 	0,			/* 35 saved_adv_err_addr */
    188 	{			/* 36-55 reserved1[16] */
    189 	  0,0,0,0,0,0,0,0,0,0,
    190 	  0,0,0,0,0,0,0,0,0,0
    191 	},
    192 	0,			/* 56 cisptr_lsw */
    193 	0,			/* 57 cisprt_msw */
    194 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    195 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    196 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    197 };
    198 
    199 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
    200 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    201 	0x0000,			/* 01 cfg_msw */
    202 	0xFFFF,			/* 02 disc_enable */
    203 	0xFFFF,			/* 03 wdtr_able */
    204 	{ 0x5555 },		/* 04 sdtr_speed1 */
    205 	0xFFFF,			/* 05 start_motor */
    206 	0xFFFF,			/* 06 tagqng_able */
    207 	0xFFFF,			/* 07 bios_scan */
    208 	0,			/* 08 scam_tolerant */
    209 	7,			/* 09 adapter_scsi_id */
    210 	0,			/*    bios_boot_delay */
    211 	3,			/* 10 scsi_reset_delay */
    212 	0,			/*    bios_id_lun */
    213 	0,			/* 11 termination_se */
    214 	0,			/*    termination_lvd */
    215 	0xFFE7,			/* 12 bios_ctrl */
    216 	{ 0x5555 },		/* 13 sdtr_speed2 */
    217 	{ 0x5555 },		/* 14 sdtr_speed3 */
    218 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    219 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    220 	0,			/* 16 dvc_cntl */
    221 	{ 0x5555 },		/* 17 sdtr_speed4 */
    222 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    223 	0,			/* 21 check_sum */
    224 	{			/* 22-29 oem_name[16] */
    225 	  0,0,0,0,0,0,0,0,
    226 	  0,0,0,0,0,0,0,0
    227 	},
    228 	0,			/* 30 dvc_err_code */
    229 	0,			/* 31 adv_err_code */
    230 	0,			/* 32 adv_err_addr */
    231 	0,			/* 33 saved_dvc_err_code */
    232 	0,			/* 34 saved_adv_err_code */
    233 	0,			/* 35 saved_adv_err_addr */
    234 	{			/* 36-55 reserved1[16] */
    235 	  0,0,0,0,0,0,0,0,0,0,
    236 	  0,0,0,0,0,0,0,0,0,0
    237 	},
    238 	0,			/* 56 cisptr_lsw */
    239 	0,			/* 57 cisprt_msw */
    240 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    241 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    242 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    243 };
    244 
    245 
    246 /*
    247  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    248  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    249  * all of this is done.
    250  *
    251  * For a non-fatal error return a warning code. If there are no warnings
    252  * then 0 is returned.
    253  *
    254  * Note: Chip is stopped on entry.
    255  */
    256 int
    257 AdwInitFromEEPROM(ADW_SOFTC *sc)
    258 {
    259 	bus_space_tag_t iot = sc->sc_iot;
    260 	bus_space_handle_t ioh = sc->sc_ioh;
    261 	ADW_EEPROM		eep_config;
    262 	u_int16_t		warn_code;
    263 	u_int16_t		sdtr_speed = 0;
    264 	u_int8_t		tid, termination;
    265 	int			i, j;
    266 
    267 
    268 	warn_code = 0;
    269 
    270 	/*
    271 	 * Read the board's EEPROM configuration.
    272 	 *
    273 	 * Set default values if a bad checksum is found.
    274 	 *
    275 	 * XXX - Don't handle big-endian access to EEPROM yet.
    276 	 */
    277 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    278 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    279 
    280 		/*
    281 		 * Set EEPROM default values.
    282 		 */
    283 		switch(sc->chip_type) {
    284 		case ADW_CHIP_ASC3550:
    285 			eep_config = adw_3550_Default_EEPROM;
    286 			break;
    287 		case ADW_CHIP_ASC38C0800:
    288 			eep_config = adw_38C0800_Default_EEPROM;
    289 			break;
    290 		case ADW_CHIP_ASC38C1600:
    291 			eep_config = adw_38C1600_Default_EEPROM;
    292 
    293 #if 0
    294 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    295 #endif
    296 			if (sc->cfg.pci_slot_info != 0) {
    297 				u_int8_t lsw_msb;
    298 
    299 				lsw_msb = eep_config.cfg_lsw >> 8;
    300 				/*
    301 				 * Set Function 1 EEPROM Word 0 MSB
    302 				 *
    303 				 * Clear the BIOS_ENABLE (bit 14) and
    304 				 * INTAB (bit 11) EEPROM bits.
    305 				 *
    306 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    307 				 * SPARC Ultra 60 and old Mac system booting
    308 				 * problem. The Expansion ROM must
    309 				 * be disabled in Function 1 for these systems.
    310 				 */
    311 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    312 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    313 				/*
    314 				 * Set the INTAB (bit 11) if the GPIO 0 input
    315 				 * indicates the Function 1 interrupt line is
    316 				 * wired to INTA.
    317 				 *
    318 				 * Set/Clear Bit 11 (INTAB) from
    319 				 * the GPIO bit 0 input:
    320 				 *   1 - Function 1 intr line wired to INT A.
    321 				 *   0 - Function 1 intr line wired to INT B.
    322 				 *
    323 				 * Note: Adapter boards always have Function 0
    324 				 * wired to INTA.
    325 				 * Put all 5 GPIO bits in input mode and then
    326 				 * read their input values.
    327 				 */
    328 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    329 							IOPB_GPIO_CNTL, 0);
    330 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    331 						IOPB_GPIO_DATA) & 0x01) {
    332 					/*
    333 					 * Function 1 interrupt wired to INTA;
    334 					 * Set EEPROM bit.
    335 					 */
    336 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    337 							 & 0xFF;
    338 				 }
    339 				 eep_config.cfg_lsw &= 0x00FF;
    340 				 eep_config.cfg_lsw |= lsw_msb << 8;
    341 			}
    342 			break;
    343 		}
    344 
    345 		/*
    346 		 * Assume the 6 byte board serial number that was read
    347 		 * from EEPROM is correct even if the EEPROM checksum
    348 		 * failed.
    349 		 */
    350 		for (i=2, j=1; i>=0; i--, j++) {
    351 		eep_config.serial_number[i] =
    352 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    353 		}
    354 
    355 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    356 	}
    357 	/*
    358 	 * Set sc and sc->cfg variables from the EEPROM configuration
    359 	 * that was read.
    360 	 *
    361 	 * This is the mapping of EEPROM fields to Adw Library fields.
    362 	 */
    363 	sc->wdtr_able = eep_config.wdtr_able;
    364 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    365 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    366 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    367 	} else {
    368 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    369 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    370 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    371 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    372 	}
    373 	sc->ppr_able = 0;
    374 	sc->tagqng_able = eep_config.tagqng_able;
    375 	sc->cfg.disc_enable = eep_config.disc_enable;
    376 	sc->max_host_qng = eep_config.max_host_qng;
    377 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    378 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    379 	sc->start_motor = eep_config.start_motor;
    380 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    381 	sc->bios_ctrl = eep_config.bios_ctrl;
    382 	sc->no_scam = eep_config.scam_tolerant;
    383 	sc->cfg.serial1 = eep_config.serial_number[0];
    384 	sc->cfg.serial2 = eep_config.serial_number[1];
    385 	sc->cfg.serial3 = eep_config.serial_number[2];
    386 
    387 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    388 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    389 		sc->sdtr_able = 0;
    390 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    391 			if (tid == 0) {
    392 				sdtr_speed = sc->sdtr_speed1;
    393 			} else if (tid == 4) {
    394 				sdtr_speed = sc->sdtr_speed2;
    395 			} else if (tid == 8) {
    396 				sdtr_speed = sc->sdtr_speed3;
    397 			} else if (tid == 12) {
    398 				sdtr_speed = sc->sdtr_speed4;
    399 			}
    400 			if (sdtr_speed & ADW_MAX_TID) {
    401 				sc->sdtr_able |= (1 << tid);
    402 			}
    403 			sdtr_speed >>= 4;
    404 		}
    405 	}
    406 
    407 	/*
    408 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    409 	 * maximum queuing (max. 63, min. 4).
    410 	 */
    411 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    412 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    413 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    414 	{
    415 		/* If the value is zero, assume it is uninitialized. */
    416 		if (eep_config.max_host_qng == 0) {
    417 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    418 		} else {
    419 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    420 		}
    421 	}
    422 
    423 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    424 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    425 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    426 		/* If the value is zero, assume it is uninitialized. */
    427 		if (eep_config.max_dvc_qng == 0) {
    428 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    429 		} else {
    430 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    431 		}
    432 	}
    433 
    434 	/*
    435 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    436 	 * set 'max_dvc_qng' to 'max_host_qng'.
    437 	 */
    438 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    439 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    440 	}
    441 
    442 	/*
    443 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    444 	 * values based on possibly adjusted EEPROM values.
    445 	 */
    446 	sc->max_host_qng = eep_config.max_host_qng;
    447 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    448 
    449 
    450 	/*
    451 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    452 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    453 	 *
    454 	 * If the termination is specified with a non-zero 'termination'
    455 	 * value check that a legal value is set and set the ADV_DVC_CFG
    456 	 * 'termination' field appropriately.
    457 	 */
    458 
    459 	switch(sc->chip_type) {
    460 	case ADW_CHIP_ASC3550:
    461 		sc->cfg.termination = 0;	/* auto termination */
    462 		switch(eep_config.termination_se) {
    463 		case 3:
    464 			/* Enable manual control with low on / high on. */
    465 			sc->cfg.termination |= ADW_TERM_CTL_L;
    466 			/* FALLTHROUGH */
    467 		case 2:
    468 			/* Enable manual control with low off / high on. */
    469 			sc->cfg.termination |= ADW_TERM_CTL_H;
    470 			/* FALLTHROUGH */
    471 		case 1:
    472 			/* Enable manual control with low off / high off. */
    473 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    474 			/* FALLTHROUGH */
    475 		case 0:
    476 			break;
    477 		default:
    478 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    479 		}
    480 		break;
    481 
    482 	case ADW_CHIP_ASC38C0800:
    483 	case ADW_CHIP_ASC38C1600:
    484 		switch(eep_config.termination_se) {
    485 		case 0:
    486 			/* auto termination for SE */
    487 			termination = 0;
    488 			break;
    489 		case 1:
    490 			/* Enable manual control with low off / high off. */
    491 			termination = 0;
    492 			break;
    493 		case 2:
    494 			/* Enable manual control with low off / high on. */
    495 			termination = ADW_TERM_SE_HI;
    496 			break;
    497 		case 3:
    498 			/* Enable manual control with low on / high on. */
    499 			termination = ADW_TERM_SE;
    500 			break;
    501 		default:
    502 			/*
    503 			 * The EEPROM 'termination_se' field contains a
    504 			 * bad value. Use automatic termination instead.
    505 			 */
    506 			termination = 0;
    507 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    508 		}
    509 
    510 		switch(eep_config.termination_lvd) {
    511 		case 0:
    512 			/* auto termination for LVD */
    513 			sc->cfg.termination = termination;
    514 			break;
    515 		case 1:
    516 			/* Enable manual control with low off / high off. */
    517 			sc->cfg.termination = termination;
    518 			break;
    519 		case 2:
    520 			/* Enable manual control with low off / high on. */
    521 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    522 			break;
    523 		case 3:
    524 			/* Enable manual control with low on / high on. */
    525 			sc->cfg.termination = termination | ADW_TERM_LVD;
    526 			break;
    527 		default:
    528 			/*
    529 			 * The EEPROM 'termination_lvd' field contains a
    530 			 * bad value. Use automatic termination instead.
    531 			 */
    532 			sc->cfg.termination = termination;
    533 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    534 		}
    535 		break;
    536 	}
    537 
    538 	return warn_code;
    539 }
    540 
    541 
    542 /*
    543  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    544  *
    545  * On failure return the error code.
    546  */
    547 int
    548 AdwInitDriver(ADW_SOFTC *sc)
    549 {
    550 	bus_space_tag_t iot = sc->sc_iot;
    551 	bus_space_handle_t ioh = sc->sc_ioh;
    552 	u_int16_t	error_code;
    553 	int		word;
    554 	int		i;
    555 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    556 								0x40-0x8F. */
    557 	u_int16_t	wdtr_able = 0, sdtr_able, /* ppr_able, */ tagqng_able;
    558 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    559 	u_int8_t	tid;
    560 
    561 
    562 	error_code = 0;
    563 
    564 	/*
    565 	 * Save the RISC memory BIOS region before writing the microcode.
    566 	 * The BIOS may already be loaded and using its RISC LRAM region
    567 	 * so its region must be saved and restored.
    568 	 *
    569 	 * Note: This code makes the assumption, which is currently true,
    570 	 * that a chip reset does not clear RISC LRAM.
    571 	 */
    572 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    573 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    574 	}
    575 
    576 	/*
    577 	 * Save current per TID negotiated values.
    578 	 */
    579 	switch (sc->chip_type) {
    580 	case ADW_CHIP_ASC3550:
    581 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    582 
    583 			u_int16_t  bios_version, major, minor;
    584 
    585 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    586 					ADW_MC_BIOSMEM) / 2];
    587 			major = (bios_version  >> 12) & 0xF;
    588 			minor = (bios_version  >> 8) & 0xF;
    589 			if (major < 3 || (major == 3 && minor == 1)) {
    590 			    /*
    591 			     * BIOS 3.1 and earlier location of
    592 			     * 'wdtr_able' variable.
    593 			     */
    594 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    595 			} else {
    596 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    597 					    wdtr_able);
    598 			}
    599 		}
    600 		break;
    601 
    602 	case ADW_CHIP_ASC38C1600:
    603 		/* ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able); */
    604 		/* FALLTHROUGH */
    605 	case ADW_CHIP_ASC38C0800:
    606 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    607 		break;
    608 	}
    609 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    610 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    611 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    612 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    613 			max_cmd[tid]);
    614 	}
    615 
    616 	/*
    617 	 * Perform a RAM Built-In Self Test
    618 	 */
    619 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    620 		return error_code;
    621 	}
    622 
    623 	/*
    624 	 * Load the Microcode
    625 	 */
    626 	;
    627 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    628 		return error_code;
    629 	}
    630 
    631 	/*
    632 	 * Read microcode version and date.
    633 	 */
    634 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    635 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    636 
    637 	/*
    638 	 * If the PCI Configuration Command Register "Parity Error Response
    639 	 * Control" Bit was clear (0), then set the microcode variable
    640 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    641 	 * to ignore DMA parity errors.
    642 	 */
    643 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    644 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    645 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    646 					word | CONTROL_FLAG_IGNORE_PERR);
    647 	}
    648 
    649 	switch (sc->chip_type) {
    650 	case ADW_CHIP_ASC3550:
    651 		/*
    652 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    653 		 * FIFO threshold of 128 bytes.
    654 		 * This register is only accessible to the host.
    655 		 */
    656 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    657 				START_CTL_EMFU | READ_CMD_MRM);
    658 		break;
    659 
    660 	case ADW_CHIP_ASC38C0800:
    661 		/*
    662 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    663 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    664 		 * cable detection and then we are able to read C_DET[3:0].
    665 		 *
    666 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    667 		 * Microcode Default Value' section below.
    668 		 */
    669 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    670 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    671 				| ADW_DIS_TERM_DRV);
    672 
    673 		/*
    674 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    675 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    676 		 *
    677 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    678 		 * 256 bytes.
    679 		 *
    680 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    681 		 */
    682 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    683 						BC_THRESH_ENB | FIFO_THRESH_80B
    684 						| START_CTL_TH | READ_CMD_MRM);
    685 		break;
    686 
    687 	case ADW_CHIP_ASC38C1600:
    688 		/*
    689 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    690 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    691 		 * cable detection and then we are able to read C_DET[3:0].
    692 		 *
    693 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    694 		 * Microcode Default Value' section below.
    695 		 */
    696 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    697 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    698 				| ADW_DIS_TERM_DRV);
    699 
    700 		/*
    701 		 * If the BIOS control flag AIPP (Asynchronous Information
    702 		 * Phase Protection) disable bit is not set, then set the
    703 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    704 		 * enable AIPP checking and encoding.
    705 		 */
    706 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    707 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    708 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    709 					word | CONTROL_FLAG_ENABLE_AIPP);
    710 		}
    711 
    712 		/*
    713 		 * For ASC-38C1600 use DMA_CFG0 default values:
    714 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    715 		 */
    716 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    717 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    718 		break;
    719 	}
    720 
    721 	/*
    722 	 * Microcode operating variables for WDTR, SDTR, and command tag
    723 	 * queuing will be set in AdvInquiryHandling() based on what a
    724 	 * device reports it is capable of in Inquiry byte 7.
    725 	 *
    726 	 * If SCSI Bus Resets have been disabled, then directly set
    727 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    728 	 * the BIOS and warm boot to work without a SCSI bus hang on
    729 	 * the Inquiry caused by host and target mismatched DTR values.
    730 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    731 	 * be assumed to be in Asynchronous, Narrow mode.
    732 	 */
    733 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    734 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    735 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    736 	}
    737 
    738 	/*
    739 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    740 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    741 	 * bitmask. These values determine the maximum SDTR speed negotiated
    742 	 * with a device.
    743 	 *
    744 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    745 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    746 	 * without determining here whether the device supports SDTR.
    747 	 */
    748 	switch (sc->chip_type) {
    749 	case ADW_CHIP_ASC3550:
    750 		word = 0;
    751 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    752 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    753 				/* Set Ultra speed for TID 'tid'. */
    754 				word |= (0x3 << (4 * (tid % 4)));
    755 			} else {
    756 				/* Set Fast speed for TID 'tid'. */
    757 				word |= (0x2 << (4 * (tid % 4)));
    758 			}
    759 			/* Check if done with sdtr_speed1. */
    760 			if (tid == 3) {
    761 				ADW_WRITE_WORD_LRAM(iot, ioh,
    762 						ADW_MC_SDTR_SPEED1, word);
    763 				word = 0;
    764 			/* Check if done with sdtr_speed2. */
    765 			} else if (tid == 7) {
    766 				ADW_WRITE_WORD_LRAM(iot, ioh,
    767 						ADW_MC_SDTR_SPEED2, word);
    768 				word = 0;
    769 			/* Check if done with sdtr_speed3. */
    770 			} else if (tid == 11) {
    771 				ADW_WRITE_WORD_LRAM(iot, ioh,
    772 						ADW_MC_SDTR_SPEED3, word);
    773 				word = 0;
    774 			/* Check if done with sdtr_speed4. */
    775 			} else if (tid == 15) {
    776 				ADW_WRITE_WORD_LRAM(iot, ioh,
    777 						ADW_MC_SDTR_SPEED4, word);
    778 				/* End of loop. */
    779 			}
    780 		}
    781 
    782 		/*
    783 		 * Set microcode operating variable for the
    784 		 * disconnect per TID bitmask.
    785 		 */
    786 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    787 							sc->cfg.disc_enable);
    788 		break;
    789 
    790 	case ADW_CHIP_ASC38C0800:
    791 		/* FALLTHROUGH */
    792 	case ADW_CHIP_ASC38C1600:
    793 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    794 							sc->cfg.disc_enable);
    795 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    796 							sc->sdtr_speed1);
    797 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    798 							sc->sdtr_speed2);
    799 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    800 							sc->sdtr_speed3);
    801 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    802 							sc->sdtr_speed4);
    803 		break;
    804 	}
    805 
    806 
    807 	/*
    808 	 * Set SCSI_CFG0 Microcode Default Value.
    809 	 *
    810 	 * The microcode will set the SCSI_CFG0 register using this value
    811 	 * after it is started below.
    812 	 */
    813 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    814 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    815 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    816 
    817 
    818 	switch(sc->chip_type) {
    819 	case ADW_CHIP_ASC3550:
    820 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    821 		break;
    822 
    823 	case ADW_CHIP_ASC38C0800:
    824 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    825 		break;
    826 
    827 	case ADW_CHIP_ASC38C1600:
    828 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    829 		break;
    830 	}
    831 	if(error_code) {
    832 		return error_code;
    833 	}
    834 
    835 	/*
    836 	 * Set SEL_MASK Microcode Default Value
    837 	 *
    838 	 * The microcode will set the SEL_MASK register using this value
    839 	 * after it is started below.
    840 	 */
    841 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    842 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    843 
    844 	/*
    845 	 * Create and Initialize Host->RISC Carrier lists
    846 	 */
    847 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    848 						sc->sc_control->carriers);
    849 
    850 	/*
    851 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    852 	 */
    853 
    854 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    855 		return ADW_IERR_NO_CARRIER;
    856 	}
    857 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    858 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    859 
    860 	/*
    861 	 * The first command issued will be placed in the stopper carrier.
    862 	 */
    863 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    864 
    865 	/*
    866 	 * Set RISC ICQ physical address start value.
    867 	 */
    868 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    869 
    870 	/*
    871 	 * Initialize the COMMA register to the same value otherwise
    872 	 * the RISC will prematurely detect a command is available.
    873 	 */
    874 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    875 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    876 						le32toh(sc->icq_sp->carr_ba));
    877 	}
    878 
    879 	/*
    880 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    881 	 */
    882 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    883 		return ADW_IERR_NO_CARRIER;
    884 	}
    885 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    886 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    887 
    888 	/*
    889 	 * The first command completed by the RISC will be placed in
    890 	 * the stopper.
    891 	 *
    892 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    893 	 * completed the RISC will set the ASC_RQ_DONE bit.
    894 	 */
    895 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    896 
    897 	/*
    898 	 * Set RISC IRQ physical address start value.
    899 	 */
    900 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    901 	sc->carr_pending_cnt = 0;
    902 
    903 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    904 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    905 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    906 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    907 
    908 	/* finally, finally, gentlemen, start your engine */
    909 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    910 
    911 	/*
    912 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    913 	 * Resets should be performed. The RISC has to be running
    914 	 * to issue a SCSI Bus Reset.
    915 	 */
    916 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    917 	{
    918 		/*
    919 		 * If the BIOS Signature is present in memory, restore the
    920 		 * BIOS Handshake Configuration Table and do not perform
    921 		 * a SCSI Bus Reset.
    922 		 */
    923 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    924 				0x55AA) {
    925 			/*
    926 			 * Restore per TID negotiated values.
    927 			 */
    928 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    929 					wdtr_able);
    930 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    931 					sdtr_able);
    932 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    933 					tagqng_able);
    934 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    935 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    936 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    937 						max_cmd[tid]);
    938 			}
    939 		} else {
    940 			if (AdwResetCCB(sc) != ADW_TRUE) {
    941 				error_code = ADW_WARN_BUSRESET_ERROR;
    942 			}
    943 		}
    944 	}
    945 
    946 	return error_code;
    947 }
    948 
    949 
    950 int
    951 AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
    952 {
    953 	int		i;
    954 	u_int8_t	byte;
    955 
    956 
    957 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    958 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    959 		/*
    960 		 * RAM BIST (RAM Built-In Self Test)
    961 		 *
    962 		 * Address : I/O base + offset 0x38h register (byte).
    963 		 * Function: Bit 7-6(RW) : RAM mode
    964 		 *			    Normal Mode   : 0x00
    965 		 *			    Pre-test Mode : 0x40
    966 		 *			    RAM Test Mode : 0x80
    967 		 *	     Bit 5	 : unused
    968 		 *	     Bit 4(RO)   : Done bit
    969 		 *	     Bit 3-0(RO) : Status
    970 		 *			    Host Error    : 0x08
    971 		 *			    Int_RAM Error : 0x04
    972 		 *			    RISC Error    : 0x02
    973 		 *			    SCSI Error    : 0x01
    974 		 *			    No Error	  : 0x00
    975 		 *
    976 		 * Note: RAM BIST code should be put right here, before loading
    977 		 * the microcode and after saving the RISC memory BIOS region.
    978 		 */
    979 
    980 		/*
    981 		 * LRAM Pre-test
    982 		 *
    983 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    984 		 * 10 milliseconds.
    985 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    986 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    987 		 * If cannot reset to NORMAL_MODE, return an error too.
    988 		 */
    989 		for (i = 0; i < 2; i++) {
    990 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    991 					PRE_TEST_MODE);
    992 			 /* Wait for 10ms before reading back. */
    993 			AdwSleepMilliSecond(10);
    994 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    995 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    996 					PRE_TEST_VALUE) {
    997 				return ADW_IERR_BIST_PRE_TEST;
    998 			}
    999 
   1000 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
   1001 								NORMAL_MODE);
   1002 			/* Wait for 10ms before reading back. */
   1003 			AdwSleepMilliSecond(10);
   1004 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1005 			    != NORMAL_VALUE) {
   1006 				return ADW_IERR_BIST_PRE_TEST;
   1007 			}
   1008 		}
   1009 
   1010 		/*
   1011 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1012 		 *
   1013 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1014 		 * 10 milliseconds.
   1015 		 * If Done bit not set or Status not 0, save register byte,
   1016 		 * set the err_code, and return an error.
   1017 		 */
   1018 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1019 		/* Wait for 10ms before checking status. */
   1020 		AdwSleepMilliSecond(10);
   1021 
   1022 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1023 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1024 			/* Get here if Done bit not set or Status not 0. */
   1025 			return ADW_IERR_BIST_RAM_TEST;
   1026 		}
   1027 
   1028 		/* We need to reset back to normal mode after LRAM test passes*/
   1029 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1030 	}
   1031 
   1032 	return 0;
   1033 }
   1034 
   1035 
   1036 int
   1037 AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
   1038 {
   1039 	const u_int8_t	*mcode_data;
   1040 	u_int32_t	 mcode_chksum;
   1041 	u_int16_t	 mcode_size;
   1042 	u_int32_t	sum;
   1043 	u_int16_t	code_sum;
   1044 	int		begin_addr;
   1045 	int		end_addr;
   1046 	int		word;
   1047 	int		adw_memsize;
   1048 	int		adw_mcode_expanded_size;
   1049 	int		i, j;
   1050 
   1051 
   1052 	switch(chip_type) {
   1053 	case ADW_CHIP_ASC3550:
   1054 		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1055 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1056 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1057 		adw_memsize = ADW_3550_MEMSIZE;
   1058 		break;
   1059 
   1060 	case ADW_CHIP_ASC38C0800:
   1061 		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1062 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1063 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1064 		adw_memsize = ADW_38C0800_MEMSIZE;
   1065 		break;
   1066 
   1067 	case ADW_CHIP_ASC38C1600:
   1068 		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1069 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1070 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1071 		adw_memsize = ADW_38C1600_MEMSIZE;
   1072 		break;
   1073 
   1074 	default:
   1075 		return (EINVAL);
   1076 	}
   1077 
   1078 	/*
   1079 	 * Write the microcode image to RISC memory starting at address 0.
   1080 	 */
   1081 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1082 
   1083 	/* Assume the following compressed format of the microcode buffer:
   1084 	 *
   1085 	 *  254 word (508 byte) table indexed by byte code followed
   1086 	 *  by the following byte codes:
   1087 	 *
   1088 	 *    1-Byte Code:
   1089 	 *	00: Emit word 0 in table.
   1090 	 *	01: Emit word 1 in table.
   1091 	 *	.
   1092 	 *	FD: Emit word 253 in table.
   1093 	 *
   1094 	 *    Multi-Byte Code:
   1095 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1096 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1097 	 */
   1098 	word = 0;
   1099 	for (i = 253 * 2; i < mcode_size; i++) {
   1100 		if (mcode_data[i] == 0xff) {
   1101 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1102 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1103 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1104 				  mcode_data[i + 2]));
   1105 				word++;
   1106 			}
   1107 			i += 3;
   1108 		} else if (mcode_data[i] == 0xfe) {
   1109 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1110 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1111 			    mcode_data[i + 1]));
   1112 			i += 2;
   1113 			word++;
   1114 		} else {
   1115 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1116 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1117 			 mcode_data[mcode_data[i] * 2]));
   1118 			word++;
   1119 		}
   1120 	}
   1121 
   1122 	/*
   1123 	 * Set 'word' for later use to clear the rest of memory and save
   1124 	 * the expanded mcode size.
   1125 	 */
   1126 	word *= 2;
   1127 	adw_mcode_expanded_size = word;
   1128 
   1129 	/*
   1130 	 * Clear the rest of the Internal RAM.
   1131 	 */
   1132 	for (; word < adw_memsize; word += 2) {
   1133 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1134 	}
   1135 
   1136 	/*
   1137 	 * Verify the microcode checksum.
   1138 	 */
   1139 	sum = 0;
   1140 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1141 
   1142 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1143 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1144 	}
   1145 
   1146 	if (sum != mcode_chksum) {
   1147 		return ADW_IERR_MCODE_CHKSUM;
   1148 	}
   1149 
   1150 	/*
   1151 	 * Restore the RISC memory BIOS region.
   1152 	 */
   1153 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1154 		if(chip_type == ADW_CHIP_ASC3550) {
   1155 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1156 								bios_mem[i]);
   1157 		} else {
   1158 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1159 								bios_mem[i]);
   1160 		}
   1161 	}
   1162 
   1163 	/*
   1164 	 * Calculate and write the microcode code checksum to the microcode
   1165 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1166 	 */
   1167 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1168 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1169 	code_sum = 0;
   1170 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1171 	for (word = begin_addr; word < end_addr; word += 2) {
   1172 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1173 	}
   1174 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1175 
   1176 	/*
   1177 	 * Set the chip type.
   1178 	 */
   1179 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1180 
   1181 	return 0;
   1182 }
   1183 
   1184 
   1185 int
   1186 AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1187 {
   1188 	u_int16_t	scsi_cfg1;
   1189 
   1190 
   1191 	/*
   1192 	 * Determine SCSI_CFG1 Microcode Default Value.
   1193 	 *
   1194 	 * The microcode will set the SCSI_CFG1 register using this value
   1195 	 * after it is started below.
   1196 	 */
   1197 
   1198 	/* Read current SCSI_CFG1 Register value. */
   1199 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1200 
   1201 	/*
   1202 	 * If all three connectors are in use in ASC3550, return an error.
   1203 	 */
   1204 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1205 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1206 		return ADW_IERR_ILLEGAL_CONNECTION;
   1207 	}
   1208 
   1209 	/*
   1210 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1211 	 * will be set. Check for and return an error if this condition is
   1212 	 * found.
   1213 	 */
   1214 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1215 		return ADW_IERR_REVERSED_CABLE;
   1216 	}
   1217 
   1218 	/*
   1219 	 * If this is a differential board and a single-ended device
   1220 	 * is attached to one of the connectors, return an error.
   1221 	 */
   1222 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1223 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1224 		return ADW_IERR_SINGLE_END_DEVICE;
   1225 	}
   1226 
   1227 	/*
   1228 	 * If automatic termination control is enabled, then set the
   1229 	 * termination value based on a table listed in a_condor.h.
   1230 	 *
   1231 	 * If manual termination was specified with an EEPROM setting
   1232 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1233 	 * is ready to be 'ored' into SCSI_CFG1.
   1234 	 */
   1235 	if (cfg->termination == 0) {
   1236 		/*
   1237 		 * The software always controls termination by setting
   1238 		 * TERM_CTL_SEL.
   1239 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1240 		 * termination.
   1241 		 */
   1242 		cfg->termination |= ADW_TERM_CTL_SEL;
   1243 
   1244 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1245 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1246 			case 0x3: case 0x7: case 0xB:
   1247 			case 0xD: case 0xE: case 0xF:
   1248 				cfg->termination |=
   1249 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1250 				break;
   1251 
   1252 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1253 			case 0x1: case 0x5: case 0x9:
   1254 			case 0xA: case 0xC:
   1255 				cfg->termination |= ADW_TERM_CTL_H;
   1256 				break;
   1257 
   1258 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1259 			case 0x2: case 0x6:
   1260 				break;
   1261 		}
   1262 	}
   1263 
   1264 	/*
   1265 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1266 	 */
   1267 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1268 
   1269 	/*
   1270 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1271 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1272 	 * referenced, because the hardware internally inverts
   1273 	 * the Termination High and Low bits if TERM_POL is set.
   1274 	 */
   1275 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1276 
   1277 	/*
   1278 	 * Set SCSI_CFG1 Microcode Default Value
   1279 	 *
   1280 	 * Set filter value and possibly modified termination control
   1281 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1282 	 *
   1283 	 * The microcode will set the SCSI_CFG1 register using this value
   1284 	 * after it is started below.
   1285 	 */
   1286 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1287 						ADW_FLTR_DISABLE | scsi_cfg1);
   1288 
   1289 	/*
   1290 	 * Set MEM_CFG Microcode Default Value
   1291 	 *
   1292 	 * The microcode will set the MEM_CFG register using this value
   1293 	 * after it is started below.
   1294 	 *
   1295 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1296 	 * are defined.
   1297 	 *
   1298 	 * ASC-3550 has 8KB internal memory.
   1299 	 */
   1300 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1301 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1302 
   1303 	return 0;
   1304 }
   1305 
   1306 
   1307 int
   1308 AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1309 {
   1310 	u_int16_t	scsi_cfg1;
   1311 
   1312 
   1313 	/*
   1314 	 * Determine SCSI_CFG1 Microcode Default Value.
   1315 	 *
   1316 	 * The microcode will set the SCSI_CFG1 register using this value
   1317 	 * after it is started below.
   1318 	 */
   1319 
   1320 	/* Read current SCSI_CFG1 Register value. */
   1321 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1322 
   1323 	/*
   1324 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1325 	 * will be set. Check for and return an error if this condition is
   1326 	 * found.
   1327 	 */
   1328 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1329 		return ADW_IERR_REVERSED_CABLE;
   1330 	}
   1331 
   1332 	/*
   1333 	 * All kind of combinations of devices attached to one of four
   1334 	 * connectors are acceptable except HVD device attached.
   1335 	 * For example, LVD device can be attached to SE connector while
   1336 	 * SE device attached to LVD connector.
   1337 	 * If LVD device attached to SE connector, it only runs up to
   1338 	 * Ultra speed.
   1339 	 *
   1340 	 * If an HVD device is attached to one of LVD connectors, return
   1341 	 * an error.
   1342 	 * However, there is no way to detect HVD device attached to
   1343 	 * SE connectors.
   1344 	 */
   1345 	if (scsi_cfg1 & ADW_HVD) {
   1346 		return ADW_IERR_HVD_DEVICE;
   1347 	}
   1348 
   1349 	/*
   1350 	 * If either SE or LVD automatic termination control is enabled, then
   1351 	 * set the termination value based on a table listed in a_condor.h.
   1352 	 *
   1353 	 * If manual termination was specified with an EEPROM setting then
   1354 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1355 	 * to be 'ored' into SCSI_CFG1.
   1356 	 */
   1357 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1358 		/* SE automatic termination control is enabled. */
   1359 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1360 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1361 			case 0x1: case 0x2: case 0x3:
   1362 				cfg->termination |= ADW_TERM_SE;
   1363 				break;
   1364 
   1365 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1366 			case 0x0:
   1367 				cfg->termination |= ADW_TERM_SE_HI;
   1368 				break;
   1369 		}
   1370 	}
   1371 
   1372 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1373 		/* LVD automatic termination control is enabled. */
   1374 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1375 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1376 			case 0x4: case 0x8: case 0xC:
   1377 				cfg->termination |= ADW_TERM_LVD;
   1378 				break;
   1379 
   1380 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1381 			case 0x0:
   1382 				break;
   1383 		}
   1384 	}
   1385 
   1386 	/*
   1387 	 * Clear any set TERM_SE and TERM_LVD bits.
   1388 	 */
   1389 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1390 
   1391 	/*
   1392 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1393 	 */
   1394 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1395 
   1396 	/*
   1397 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1398 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1399 	 * in the Microcode SCSI_CFG1 Register Value.
   1400 	 */
   1401 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1402 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1403 
   1404 	/*
   1405 	 * Set SCSI_CFG1 Microcode Default Value
   1406 	 *
   1407 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1408 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1409 	 *
   1410 	 * The microcode will set the SCSI_CFG1 register using this value
   1411 	 * after it is started below.
   1412 	 */
   1413 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1414 
   1415 	/*
   1416 	 * Set MEM_CFG Microcode Default Value
   1417 	 *
   1418 	 * The microcode will set the MEM_CFG register using this value
   1419 	 * after it is started below.
   1420 	 *
   1421 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1422 	 * are defined.
   1423 	 *
   1424 	 * ASC-38C0800 has 16KB internal memory.
   1425 	 */
   1426 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1427 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1428 
   1429 	return 0;
   1430 }
   1431 
   1432 
   1433 int
   1434 AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1435 {
   1436 	u_int16_t	scsi_cfg1;
   1437 
   1438 
   1439 	/*
   1440 	 * Determine SCSI_CFG1 Microcode Default Value.
   1441 	 *
   1442 	 * The microcode will set the SCSI_CFG1 register using this value
   1443 	 * after it is started below.
   1444 	 * Each ASC-38C1600 function has only two cable detect bits.
   1445 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1446 	 */
   1447 
   1448 	/* Read current SCSI_CFG1 Register value. */
   1449 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1450 
   1451 	/*
   1452 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1453 	 * will be set. Check for and return an error if this condition is
   1454 	 * found.
   1455 	 */
   1456 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1457 		return ADW_IERR_REVERSED_CABLE;
   1458 	}
   1459 
   1460 	/*
   1461 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1462 	 * cannot be connected to either connector. An LVD device or SE device
   1463 	 * may be connected to either connector. If an SE device is connected,
   1464 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
   1465 	 *
   1466 	 * If an HVD device is attached, return an error.
   1467 	 */
   1468 	if (scsi_cfg1 & ADW_HVD) {
   1469 		return ADW_IERR_HVD_DEVICE;
   1470 	}
   1471 
   1472 	/*
   1473 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1474 	 * termination because there are two connectors for each function.
   1475 	 * Each function may use either LVD or SE mode.
   1476 	 * Corresponding the SE automatic termination control EEPROM bits are
   1477 	 * used for each function.
   1478 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1479 	 * for the function, then set the termination value based on a table
   1480 	 * listed in adwlib.h.
   1481 	 *
   1482 	 * If manual termination is specified in the EEPROM for the function,
   1483 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1484 	 * ready to be 'ored' into SCSI_CFG1.
   1485 	 */
   1486 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1487 		/* SE automatic termination control is enabled. */
   1488 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1489 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1490 			case 0x1: case 0x2: case 0x3:
   1491 				cfg->termination |= ADW_TERM_SE;
   1492 				break;
   1493 
   1494 			case 0x0:
   1495 #if 0
   1496 	/* !!!!TODO!!!! */
   1497 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1498 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1499 				}
   1500 				else
   1501 #endif
   1502 				{
   1503 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1504 					cfg->termination |= ADW_TERM_SE_HI;
   1505 				}
   1506 				break;
   1507 			}
   1508 	}
   1509 
   1510 	/*
   1511 	 * Clear any set TERM_SE bits.
   1512 	 */
   1513 	scsi_cfg1 &= ~ADW_TERM_SE;
   1514 
   1515 	/*
   1516 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1517 	 */
   1518 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1519 
   1520 	/*
   1521 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1522 	 * modified termination control bits in the Microcode SCSI_CFG1
   1523 	 * Register Value.
   1524 	 */
   1525 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1526 
   1527 	/*
   1528 	 * Set SCSI_CFG1 Microcode Default Value
   1529 	 *
   1530 	 * Set possibly modified termination control bits in the Microcode
   1531 	 * SCSI_CFG1 Register Value.
   1532 	 *
   1533 	 * The microcode will set the SCSI_CFG1 register using this value
   1534 	 * after it is started below.
   1535 	 */
   1536 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1537 
   1538 	/*
   1539 	 * Set MEM_CFG Microcode Default Value
   1540 	 *
   1541 	 * The microcode will set the MEM_CFG register using this value
   1542 	 * after it is started below.
   1543 	 *
   1544 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1545 	 * are defined.
   1546 	 *
   1547 	 * ASC-38C1600 has 32KB internal memory.
   1548 	 */
   1549 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1550 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1551 
   1552 	return 0;
   1553 }
   1554 
   1555 
   1556 /*
   1557  * Read EEPROM configuration into the specified buffer.
   1558  *
   1559  * Return a checksum based on the EEPROM configuration read.
   1560  */
   1561 static u_int16_t
   1562 AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1563 {
   1564 	u_int16_t	       wval, chksum;
   1565 	u_int16_t	       *wbuf;
   1566 	int		    eep_addr;
   1567 
   1568 
   1569 	wbuf = (u_int16_t *) cfg_buf;
   1570 	chksum = 0;
   1571 
   1572 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1573 		eep_addr < ASC_EEP_DVC_CFG_END;
   1574 		eep_addr++, wbuf++) {
   1575 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1576 		chksum += wval;
   1577 		*wbuf = wval;
   1578 	}
   1579 
   1580 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1581 	wbuf++;
   1582 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1583 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1584 			eep_addr++, wbuf++) {
   1585 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1586 	}
   1587 
   1588 	return chksum;
   1589 }
   1590 
   1591 
   1592 /*
   1593  * Read the EEPROM from specified location
   1594  */
   1595 static u_int16_t
   1596 AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
   1597 {
   1598 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1599 		ASC_EEP_CMD_READ | eep_word_addr);
   1600 	AdwWaitEEPCmd(iot, ioh);
   1601 
   1602 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1603 }
   1604 
   1605 
   1606 /*
   1607  * Wait for EEPROM command to complete
   1608  */
   1609 static void
   1610 AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
   1611 {
   1612 	int eep_delay_ms;
   1613 
   1614 
   1615 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1616 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1617 				ASC_EEP_CMD_DONE) {
   1618 			break;
   1619 		}
   1620 		AdwSleepMilliSecond(1);
   1621 	}
   1622 
   1623 	(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1624 }
   1625 
   1626 
   1627 /*
   1628  * Write the EEPROM from 'cfg_buf'.
   1629  */
   1630 static void
   1631 AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1632 {
   1633 	u_int16_t *wbuf;
   1634 	u_int16_t addr, chksum;
   1635 
   1636 
   1637 	wbuf = (u_int16_t *) cfg_buf;
   1638 	chksum = 0;
   1639 
   1640 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1641 	AdwWaitEEPCmd(iot, ioh);
   1642 
   1643 	/*
   1644 	 * Write EEPROM from word 0 to word 20
   1645 	 */
   1646 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1647 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1648 		chksum += *wbuf;
   1649 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1650 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1651 				ASC_EEP_CMD_WRITE | addr);
   1652 		AdwWaitEEPCmd(iot, ioh);
   1653 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1654 	}
   1655 
   1656 	/*
   1657 	 * Write EEPROM checksum at word 21
   1658 	 */
   1659 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1660 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1661 			ASC_EEP_CMD_WRITE | addr);
   1662 	AdwWaitEEPCmd(iot, ioh);
   1663 	wbuf++;        /* skip over check_sum */
   1664 
   1665 	/*
   1666 	 * Write EEPROM OEM name at words 22 to 29
   1667 	 */
   1668 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1669 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1670 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1671 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1672 				ASC_EEP_CMD_WRITE | addr);
   1673 		AdwWaitEEPCmd(iot, ioh);
   1674 	}
   1675 
   1676 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1677 			ASC_EEP_CMD_WRITE_DISABLE);
   1678 	AdwWaitEEPCmd(iot, ioh);
   1679 
   1680 	return;
   1681 }
   1682 
   1683 
   1684 /*
   1685  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1686  *
   1687  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1688  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1689  *   RISC to notify it a new command is ready to be executed.
   1690  *
   1691  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1692  * set to SCSI_MAX_RETRY.
   1693  *
   1694  * Return:
   1695  *      ADW_SUCCESS(1) - The request was successfully queued.
   1696  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1697  *                       request completes.
   1698  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1699  *                       host IC error.
   1700  */
   1701 int
   1702 AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   1703 {
   1704 	bus_space_tag_t iot = sc->sc_iot;
   1705 	bus_space_handle_t ioh = sc->sc_ioh;
   1706 	ADW_CCB		*ccb;
   1707 	u_int32_t	req_paddr;
   1708 	ADW_CARRIER	*new_carrp;
   1709 
   1710 	/*
   1711 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1712 	 */
   1713 	if (scsiq->target_id > ADW_MAX_TID) {
   1714 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1715 		scsiq->done_status = QD_WITH_ERROR;
   1716 		return ADW_ERROR;
   1717 	}
   1718 
   1719 	/*
   1720 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1721 	 */
   1722 
   1723 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1724 
   1725 	/*
   1726 	 * Allocate a carrier and initialize fields.
   1727 	 */
   1728 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1729 		return ADW_BUSY;
   1730 	}
   1731 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1732 			ASC_GET_CARRP(new_carrp->next_ba));
   1733 	sc->carr_pending_cnt++;
   1734 
   1735 	/*
   1736 	 * Set the carrier to be a stopper by setting 'next_ba'
   1737 	 * to the stopper value. The current stopper will be changed
   1738 	 * below to point to the new stopper.
   1739 	 */
   1740 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1741 
   1742 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1743 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1744 
   1745 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1746 	scsiq->scsiq_rptr = htole32(req_paddr);
   1747 
   1748 	/*
   1749 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1750 	 * order during initialization.
   1751 	 */
   1752 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1753 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1754 
   1755 	/*
   1756 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1757 	 * the microcode. The newly allocated stopper will become the new
   1758 	 * stopper.
   1759 	 */
   1760 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1761 
   1762 	/*
   1763 	 * Set the 'next_ba' pointer for the old stopper to be the
   1764 	 * physical address of the new stopper. The RISC can only
   1765 	 * follow physical addresses.
   1766 	 */
   1767 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1768 
   1769 #if ADW_DEBUG
   1770 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1771 			sc->icq_sp->carr_id,
   1772 			sc->icq_sp->carr_ba,
   1773 			sc->icq_sp->areq_ba,
   1774 			sc->icq_sp->next_ba);
   1775 #endif
   1776 	/*
   1777 	 * Set the host adapter stopper pointer to point to the new carrier.
   1778 	 */
   1779 	sc->icq_sp = new_carrp;
   1780 
   1781 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1782 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1783 		/*
   1784 		 * Tickle the RISC to tell it to read its Command Queue Head
   1785 		 * pointer.
   1786 		 */
   1787 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1788 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1789 			/*
   1790 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1791 			 * command 'clr_tickle_a' does not work unless the host
   1792 			 * value is cleared.
   1793 			 */
   1794 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1795 					ADW_TICKLE_NOP);
   1796 		}
   1797 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1798 		/*
   1799 		 * Notify the RISC a carrier is ready by writing the physical
   1800 		 * address of the new carrier stopper to the COMMA register.
   1801 		 */
   1802 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1803 				le32toh(new_carrp->carr_ba));
   1804 	}
   1805 
   1806 	/*
   1807 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1808 	 */
   1809 
   1810 	return ADW_SUCCESS;
   1811 }
   1812 
   1813 
   1814 void
   1815 AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
   1816 {
   1817 
   1818 	/*
   1819 	 * Reset Chip.
   1820 	 */
   1821 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1822 			ADW_CTRL_REG_CMD_RESET);
   1823 	AdwSleepMilliSecond(100);
   1824 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1825 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1826 }
   1827 
   1828 
   1829 /*
   1830  * Reset SCSI Bus and purge all outstanding requests.
   1831  *
   1832  * Return Value:
   1833  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1834  *      ADW_FALSE(0) -  Microcode command failed.
   1835  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1836  *                      may be hung which requires driver recovery.
   1837  */
   1838 int
   1839 AdwResetCCB(ADW_SOFTC *sc)
   1840 {
   1841 	int	    status;
   1842 
   1843 	/*
   1844 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1845 	 * the SCSI Bus Reset signal.
   1846 	 */
   1847 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1848 	if (status != ADW_TRUE) {
   1849 		return status;
   1850 	}
   1851 
   1852 	/*
   1853 	 * Delay for the specified SCSI Bus Reset hold time.
   1854 	 *
   1855 	 * The hold time delay is done on the host because the RISC has no
   1856 	 * microsecond accurate timer.
   1857 	 */
   1858 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1859 
   1860 	/*
   1861 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1862 	 * the SCSI Bus Reset signal and purges any pending requests.
   1863 	 */
   1864 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1865 	if (status != ADW_TRUE) {
   1866 		return status;
   1867 	}
   1868 
   1869 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1870 
   1871 	return status;
   1872 }
   1873 
   1874 
   1875 /*
   1876  * Reset chip and SCSI Bus.
   1877  *
   1878  * Return Value:
   1879  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1880  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1881  */
   1882 int
   1883 AdwResetSCSIBus(ADW_SOFTC *sc)
   1884 {
   1885 	bus_space_tag_t iot = sc->sc_iot;
   1886 	bus_space_handle_t ioh = sc->sc_ioh;
   1887 	int		status;
   1888 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
   1889 	u_int16_t	ppr_able = 0; /* XXX: gcc */
   1890 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1891 	u_int16_t	bios_sig;
   1892 
   1893 
   1894 	/*
   1895 	 * Save current per TID negotiated values.
   1896 	 */
   1897 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1898 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1899 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1900 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1901 	}
   1902 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1903 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1904 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1905 			max_cmd[tid]);
   1906 	}
   1907 
   1908 	/*
   1909 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1910 	 * by clearing the BIOS signature word.
   1911 	 * The initialization functions assumes a SCSI Bus Reset is not
   1912 	 * needed if the BIOS signature word is present.
   1913 	 */
   1914 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1915 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1916 
   1917 	/*
   1918 	 * Stop chip and reset it.
   1919 	 */
   1920 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1921 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1922 			ADW_CTRL_REG_CMD_RESET);
   1923 	AdwSleepMilliSecond(100);
   1924 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1925 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1926 
   1927 	/*
   1928 	 * Reset Adv Library error code, if any, and try
   1929 	 * re-initializing the chip.
   1930 	 * Then translate initialization return value to status value.
   1931 	 */
   1932 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1933 
   1934 	/*
   1935 	 * Restore the BIOS signature word.
   1936 	 */
   1937 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1938 
   1939 	/*
   1940 	 * Restore per TID negotiated values.
   1941 	 */
   1942 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1943 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1944 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1945 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1946 	}
   1947 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1948 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1949 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1950 			max_cmd[tid]);
   1951 	}
   1952 
   1953 	return status;
   1954 }
   1955 
   1956 
   1957 /*
   1958  * Adv Library Interrupt Service Routine
   1959  *
   1960  *  This function is called by a driver's interrupt service routine.
   1961  *  The function disables and re-enables interrupts.
   1962  *
   1963  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1964  *  'idle_cmd_done' field is set to ADW_TRUE.
   1965  *
   1966  *  Note: AdwISR() can be called when interrupts are disabled or even
   1967  *  when there is no hardware interrupt condition present. It will
   1968  *  always check for completed idle commands and microcode requests.
   1969  *  This is an important feature that shouldn't be changed because it
   1970  *  allows commands to be completed from polling mode loops.
   1971  *
   1972  * Return:
   1973  *   ADW_TRUE(1) - interrupt was pending
   1974  *   ADW_FALSE(0) - no interrupt was pending
   1975  */
   1976 int
   1977 AdwISR(ADW_SOFTC *sc)
   1978 {
   1979 	bus_space_tag_t iot = sc->sc_iot;
   1980 	bus_space_handle_t ioh = sc->sc_ioh;
   1981 	u_int8_t	int_stat;
   1982 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   1983 	u_int32_t	irq_next_pa;
   1984 	ADW_SCSI_REQ_Q	*scsiq;
   1985 	ADW_CCB		*ccb;
   1986 	int		s;
   1987 
   1988 
   1989 	s = splbio();
   1990 
   1991 	/* Reading the register clears the interrupt. */
   1992 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   1993 
   1994 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   1995 	     ADW_INTR_STATUS_INTRC)) == 0) {
   1996 		splx(s);
   1997 		return ADW_FALSE;
   1998 	}
   1999 
   2000 	/*
   2001 	 * Notify the driver of an asynchronous microcode condition by
   2002 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2003 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2004 	 */
   2005 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2006 		u_int8_t intrb_code;
   2007 
   2008 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2009 
   2010 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2011 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2012 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2013 				sc->carr_pending_cnt != 0) {
   2014 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2015 					IOPB_TICKLE, ADW_TICKLE_A);
   2016 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2017 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2018 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2019 				}
   2020 			}
   2021 		}
   2022 
   2023 		if (sc->async_callback != 0) {
   2024 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2025 		}
   2026 	}
   2027 
   2028 	/*
   2029 	 * Check if the IRQ stopper carrier contains a completed request.
   2030 	 */
   2031 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2032 	{
   2033 #if ADW_DEBUG
   2034 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2035 				sc->irq_sp->carr_id,
   2036 				sc->irq_sp->carr_ba,
   2037 				sc->irq_sp->areq_ba,
   2038 				sc->irq_sp->next_ba);
   2039 #endif
   2040 		/*
   2041 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2042 		 * structure.
   2043 		 * The RISC will have set 'areq_ba' to a virtual address.
   2044 		 *
   2045 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2046 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2047 		 * The conversion below complements the conversion of
   2048 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2049 		 */
   2050 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2051 		scsiq = &ccb->scsiq;
   2052 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2053 
   2054 		/*
   2055 		 * Request finished with good status and the queue was not
   2056 		 * DMAed to host memory by the firmware. Set all status fields
   2057 		 * to indicate good status.
   2058 		 */
   2059 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2060 			scsiq->done_status = QD_NO_ERROR;
   2061 			scsiq->host_status = scsiq->scsi_status = 0;
   2062 			scsiq->data_cnt = 0L;
   2063 		}
   2064 
   2065 		/*
   2066 		 * Advance the stopper pointer to the next carrier
   2067 		 * ignoring the lower four bits. Free the previous
   2068 		 * stopper carrier.
   2069 		 */
   2070 		free_carrp = sc->irq_sp;
   2071 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2072 
   2073 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
   2074 					: sc->carr_freelist->carr_ba;
   2075 		sc->carr_freelist = free_carrp;
   2076 		sc->carr_pending_cnt--;
   2077 
   2078 		/*
   2079 		 * Clear request microcode control flag.
   2080 		 */
   2081 		scsiq->cntl = 0;
   2082 
   2083 		/*
   2084 		 * Check Condition handling
   2085 		 */
   2086 		/*
   2087 		 * If the command that completed was a SCSI INQUIRY and
   2088 		 * LUN 0 was sent the command, then process the INQUIRY
   2089 		 * command information for the device.
   2090 		 */
   2091 		if (scsiq->done_status == QD_NO_ERROR &&
   2092 		    scsiq->cdb[0] == INQUIRY &&
   2093 		    scsiq->target_lun == 0) {
   2094 			AdwInquiryHandling(sc, scsiq);
   2095 		}
   2096 
   2097 		/*
   2098 		 * Notify the driver of the completed request by passing
   2099 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2100 		 */
   2101 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2102 		/*
   2103 		 * Note: After the driver callback function is called, 'scsiq'
   2104 		 * can no longer be referenced.
   2105 		 *
   2106 		 * Fall through and continue processing other completed
   2107 		 * requests...
   2108 		 */
   2109 	}
   2110 
   2111 	splx(s);
   2112 
   2113 	return ADW_TRUE;
   2114 }
   2115 
   2116 
   2117 /*
   2118  * Send an idle command to the chip and wait for completion.
   2119  *
   2120  * Command completion is polled for once per microsecond.
   2121  *
   2122  * The function can be called from anywhere including an interrupt handler.
   2123  * But the function is not re-entrant, so it uses the splbio/splx()
   2124  * functions to prevent reentrancy.
   2125  *
   2126  * Return Values:
   2127  *   ADW_TRUE - command completed successfully
   2128  *   ADW_FALSE - command failed
   2129  *   ADW_ERROR - command timed out
   2130  */
   2131 int
   2132 AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
   2133 {
   2134 	bus_space_tag_t iot = sc->sc_iot;
   2135 	bus_space_handle_t ioh = sc->sc_ioh;
   2136 	u_int16_t	result;
   2137 	u_int32_t	i, j, s;
   2138 
   2139 	s = splbio();
   2140 
   2141 	/*
   2142 	 * Clear the idle command status which is set by the microcode
   2143 	 * to a non-zero value to indicate when the command is completed.
   2144 	 */
   2145 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2146 
   2147 	/*
   2148 	 * Write the idle command value after the idle command parameter
   2149 	 * has been written to avoid a race condition. If the order is not
   2150 	 * followed, the microcode may process the idle command before the
   2151 	 * parameters have been written to LRAM.
   2152 	 */
   2153 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2154 			idle_cmd_parameter);
   2155 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2156 
   2157 	/*
   2158 	 * Tickle the RISC to tell it to process the idle command.
   2159 	 */
   2160 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2161 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2162 		/*
   2163 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2164 		 * command 'clr_tickle_b' does not work unless the host
   2165 		 * value is cleared.
   2166 		 */
   2167 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2168 	}
   2169 
   2170 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2171 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2172 		/* Poll once each microsecond for command completion. */
   2173 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2174 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2175 									result);
   2176 			if (result != 0) {
   2177 				splx(s);
   2178 				return result;
   2179 			}
   2180 			AdwDelayMicroSecond(1);
   2181 		}
   2182 	}
   2183 
   2184 	splx(s);
   2185 	return ADW_ERROR;
   2186 }
   2187 
   2188 
   2189 /*
   2190  * Inquiry Information Byte 7 Handling
   2191  *
   2192  * Handle SCSI Inquiry Command information for a device by setting
   2193  * microcode operating variables that affect WDTR, SDTR, and Tag
   2194  * Queuing.
   2195  */
   2196 static void
   2197 AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   2198 {
   2199 #ifndef FAILSAFE
   2200 	bus_space_tag_t iot = sc->sc_iot;
   2201 	bus_space_handle_t ioh = sc->sc_ioh;
   2202 	u_int8_t		tid;
   2203 	struct scsipi_inquiry_data *inq;
   2204 	u_int16_t		tidmask;
   2205 	u_int16_t		cfg_word;
   2206 
   2207 
   2208 	/*
   2209 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2210 	 * to be available.
   2211 	 *
   2212 	 * If less than 8 bytes of INQUIRY information were requested or less
   2213 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2214 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2215 	 * microcode to the transfer residual count.
   2216 	 */
   2217 
   2218 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2219 		return;
   2220 	}
   2221 
   2222 	tid = scsiq->target_id;
   2223 
   2224 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2225 
   2226 	/*
   2227 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2228 	 */
   2229 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2230 	    ((inq->version & SID_ANSII) < 2)) {
   2231 		return;
   2232 	} else {
   2233 		/*
   2234 		 * INQUIRY Byte 7 Handling
   2235 		 *
   2236 		 * Use a device's INQUIRY byte 7 to determine whether it
   2237 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2238 		 * is enabled in the EEPROM and the device supports the
   2239 		 * feature, then enable it in the microcode.
   2240 		 */
   2241 
   2242 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2243 
   2244 		/*
   2245 		 * Wide Transfers
   2246 		 *
   2247 		 * If the EEPROM enabled WDTR for the device and the device
   2248 		 * supports wide bus (16 bit) transfers, then turn on the
   2249 		 * device's 'wdtr_able' bit and write the new value to the
   2250 		 * microcode.
   2251 		 */
   2252 #ifdef SCSI_ADW_WDTR_DISABLE
   2253 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2254 #endif /* SCSI_ADW_WDTR_DISABLE */
   2255 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2256 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2257 					cfg_word);
   2258 			if ((cfg_word & tidmask) == 0) {
   2259 				cfg_word |= tidmask;
   2260 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2261 						cfg_word);
   2262 
   2263 				/*
   2264 				 * Clear the microcode "SDTR negotiation" and
   2265 				 * "WDTR negotiation" done indicators for the
   2266 				 * target to cause it to negotiate with the new
   2267 				 * setting set above.
   2268 				 * WDTR when accepted causes the target to enter
   2269 				 * asynchronous mode, so SDTR must be negotiated
   2270 				 */
   2271 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2272 						cfg_word);
   2273 				cfg_word &= ~tidmask;
   2274 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2275 						cfg_word);
   2276 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2277 						cfg_word);
   2278 				cfg_word &= ~tidmask;
   2279 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2280 						cfg_word);
   2281 			}
   2282 		}
   2283 
   2284 		/*
   2285 		 * Synchronous Transfers
   2286 		 *
   2287 		 * If the EEPROM enabled SDTR for the device and the device
   2288 		 * supports synchronous transfers, then turn on the device's
   2289 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2290 		 */
   2291 #ifdef SCSI_ADW_SDTR_DISABLE
   2292 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2293 #endif /* SCSI_ADW_SDTR_DISABLE */
   2294 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2295 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2296 			if ((cfg_word & tidmask) == 0) {
   2297 				cfg_word |= tidmask;
   2298 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2299 						cfg_word);
   2300 
   2301 				/*
   2302 				 * Clear the microcode "SDTR negotiation"
   2303 				 * done indicator for the target to cause it
   2304 				 * to negotiate with the new setting set above.
   2305 				 */
   2306 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2307 						cfg_word);
   2308 				cfg_word &= ~tidmask;
   2309 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2310 						cfg_word);
   2311 			}
   2312 		}
   2313 		/*
   2314 		 * If the Inquiry data included enough space for the SPI-3
   2315 		 * Clocking field, then check if DT mode is supported.
   2316 		 */
   2317 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2318 		   (scsiq->cdb[4] >= 57 ||
   2319 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2320 			/*
   2321 			 * PPR (Parallel Protocol Request) Capable
   2322 			 *
   2323 			 * If the device supports DT mode, then it must be
   2324 			 * PPR capable.
   2325 			 * The PPR message will be used in place of the SDTR
   2326 			 * and WDTR messages to negotiate synchronous speed
   2327 			 * and offset, transfer width, and protocol options.
   2328 			 */
   2329 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2330 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2331 						sc->ppr_able);
   2332 				sc->ppr_able |= tidmask;
   2333 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2334 						sc->ppr_able);
   2335 			}
   2336 		}
   2337 
   2338 		/*
   2339 		 * If the EEPROM enabled Tag Queuing for the device and the
   2340 		 * device supports Tag Queueing, then turn on the device's
   2341 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2342 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2343 		 * value.
   2344 		 *
   2345 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2346 		 * mode and would see no benefit from Tag Queuing. Also by
   2347 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2348 		 * bugs will at least work with the BIOS.
   2349 		 */
   2350 #ifdef SCSI_ADW_TAGQ_DISABLE
   2351 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2352 #endif /* SCSI_ADW_TAGQ_DISABLE */
   2353 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2354 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2355 					cfg_word);
   2356 			cfg_word |= tidmask;
   2357 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2358 					cfg_word);
   2359 
   2360 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2361 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2362 					sc->max_dvc_qng);
   2363 		}
   2364 	}
   2365 #endif /* FAILSAFE */
   2366 }
   2367 
   2368 
   2369 static void
   2370 AdwSleepMilliSecond(u_int32_t n)
   2371 {
   2372 
   2373 	DELAY(n * 1000);
   2374 }
   2375 
   2376 
   2377 static void
   2378 AdwDelayMicroSecond(u_int32_t n)
   2379 {
   2380 
   2381 	DELAY(n);
   2382 }
   2383 
   2384