adwlib.c revision 1.44 1 /* $NetBSD: adwlib.c,v 1.44 2019/12/15 16:48:27 tsutsui Exp $ */
2
3 /*
4 * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 *
6 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * Author: Baldassare Dante Profeta <dante (at) mclink.it>
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32 /*
33 * Ported from:
34 */
35 /*
36 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
37 *
38 * Copyright (c) 1995-2000 Advanced System Products, Inc.
39 * All Rights Reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that redistributions of source
43 * code retain the above copyright notice and this comment without
44 * modification.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.44 2019/12/15 16:48:27 tsutsui Exp $");
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/queue.h>
55 #include <sys/device.h>
56
57 #include <sys/bus.h>
58 #include <sys/intr.h>
59
60 #include <dev/scsipi/scsi_all.h>
61 #include <dev/scsipi/scsipi_all.h>
62 #include <dev/scsipi/scsiconf.h>
63
64 #include <dev/pci/pcidevs.h>
65
66 #include <dev/ic/adwlib.h>
67 #include <dev/ic/adwmcode.h>
68 #include <dev/ic/adw.h>
69
70
71 /* Static Functions */
72
73 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
74 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
75 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
76 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
77 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
78
79 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
80 ADW_EEPROM *);
81 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
82 ADW_EEPROM *);
83 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
84 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
85
86 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
87
88 static void AdwSleepMilliSecond(u_int32_t);
89 static void AdwDelayMicroSecond(u_int32_t);
90
91
92 /*
93 * EEPROM Configuration.
94 *
95 * All drivers should use this structure to set the default EEPROM
96 * configuration. The BIOS now uses this structure when it is built.
97 * Additional structure information can be found in adwlib.h where
98 * the structure is defined.
99 */
100 static const ADW_EEPROM adw_3550_Default_EEPROM = {
101 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
102 0x0000, /* 01 cfg_msw */
103 0xFFFF, /* 02 disc_enable */
104 0xFFFF, /* 03 wdtr_able */
105 { 0xFFFF }, /* 04 sdtr_able */
106 0xFFFF, /* 05 start_motor */
107 0xFFFF, /* 06 tagqng_able */
108 0xFFFF, /* 07 bios_scan */
109 0, /* 08 scam_tolerant */
110 7, /* 09 adapter_scsi_id */
111 0, /* bios_boot_delay */
112 3, /* 10 scsi_reset_delay */
113 0, /* bios_id_lun */
114 0, /* 11 termination */
115 0, /* reserved1 */
116 0xFFE7, /* 12 bios_ctrl */
117 { 0xFFFF }, /* 13 ultra_able */
118 { 0 }, /* 14 reserved2 */
119 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
120 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
121 0, /* 16 dvc_cntl */
122 { 0 }, /* 17 bug_fix */
123 { 0,0,0 }, /* 18-20 serial_number[3] */
124 0, /* 21 check_sum */
125 { /* 22-29 oem_name[16] */
126 0,0,0,0,0,0,0,0,
127 0,0,0,0,0,0,0,0
128 },
129 0, /* 30 dvc_err_code */
130 0, /* 31 adv_err_code */
131 0, /* 32 adv_err_addr */
132 0, /* 33 saved_dvc_err_code */
133 0, /* 34 saved_adv_err_code */
134 0, /* 35 saved_adv_err_addr */
135 { /* 36-55 reserved1[16] */
136 0,0,0,0,0,0,0,0,0,0,
137 0,0,0,0,0,0,0,0,0,0
138 },
139 0, /* 56 cisptr_lsw */
140 0, /* 57 cisprt_msw */
141 0, /* 58 subsysvid */
142 0, /* 59 subsysid */
143 { 0,0,0,0 } /* 60-63 reserved2[4] */
144 };
145
146 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
147 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
148 0x0000, /* 01 cfg_msw */
149 0xFFFF, /* 02 disc_enable */
150 0xFFFF, /* 03 wdtr_able */
151 { 0x4444 }, /* 04 sdtr_speed1 */
152 0xFFFF, /* 05 start_motor */
153 0xFFFF, /* 06 tagqng_able */
154 0xFFFF, /* 07 bios_scan */
155 0, /* 08 scam_tolerant */
156 7, /* 09 adapter_scsi_id */
157 0, /* bios_boot_delay */
158 3, /* 10 scsi_reset_delay */
159 0, /* bios_id_lun */
160 0, /* 11 termination_se */
161 0, /* termination_lvd */
162 0xFFE7, /* 12 bios_ctrl */
163 { 0x4444 }, /* 13 sdtr_speed2 */
164 { 0x4444 }, /* 14 sdtr_speed3 */
165 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
166 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
167 0, /* 16 dvc_cntl */
168 { 0x4444 }, /* 17 sdtr_speed4 */
169 { 0,0,0 }, /* 18-20 serial_number[3] */
170 0, /* 21 check_sum */
171 { /* 22-29 oem_name[16] */
172 0,0,0,0,0,0,0,0,
173 0,0,0,0,0,0,0,0
174 },
175 0, /* 30 dvc_err_code */
176 0, /* 31 adv_err_code */
177 0, /* 32 adv_err_addr */
178 0, /* 33 saved_dvc_err_code */
179 0, /* 34 saved_adv_err_code */
180 0, /* 35 saved_adv_err_addr */
181 { /* 36-55 reserved1[16] */
182 0,0,0,0,0,0,0,0,0,0,
183 0,0,0,0,0,0,0,0,0,0
184 },
185 0, /* 56 cisptr_lsw */
186 0, /* 57 cisprt_msw */
187 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
188 PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
189 { 0,0,0,0 } /* 60-63 reserved2[4] */
190 };
191
192 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
193 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
194 0x0000, /* 01 cfg_msw */
195 0xFFFF, /* 02 disc_enable */
196 0xFFFF, /* 03 wdtr_able */
197 { 0x5555 }, /* 04 sdtr_speed1 */
198 0xFFFF, /* 05 start_motor */
199 0xFFFF, /* 06 tagqng_able */
200 0xFFFF, /* 07 bios_scan */
201 0, /* 08 scam_tolerant */
202 7, /* 09 adapter_scsi_id */
203 0, /* bios_boot_delay */
204 3, /* 10 scsi_reset_delay */
205 0, /* bios_id_lun */
206 0, /* 11 termination_se */
207 0, /* termination_lvd */
208 0xFFE7, /* 12 bios_ctrl */
209 { 0x5555 }, /* 13 sdtr_speed2 */
210 { 0x5555 }, /* 14 sdtr_speed3 */
211 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
212 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
213 0, /* 16 dvc_cntl */
214 { 0x5555 }, /* 17 sdtr_speed4 */
215 { 0,0,0 }, /* 18-20 serial_number[3] */
216 0, /* 21 check_sum */
217 { /* 22-29 oem_name[16] */
218 0,0,0,0,0,0,0,0,
219 0,0,0,0,0,0,0,0
220 },
221 0, /* 30 dvc_err_code */
222 0, /* 31 adv_err_code */
223 0, /* 32 adv_err_addr */
224 0, /* 33 saved_dvc_err_code */
225 0, /* 34 saved_adv_err_code */
226 0, /* 35 saved_adv_err_addr */
227 { /* 36-55 reserved1[16] */
228 0,0,0,0,0,0,0,0,0,0,
229 0,0,0,0,0,0,0,0,0,0
230 },
231 0, /* 56 cisptr_lsw */
232 0, /* 57 cisprt_msw */
233 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
234 PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
235 { 0,0,0,0 } /* 60-63 reserved2[4] */
236 };
237
238
239 /*
240 * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
241 * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
242 * all of this is done.
243 *
244 * For a non-fatal error return a warning code. If there are no warnings
245 * then 0 is returned.
246 *
247 * Note: Chip is stopped on entry.
248 */
249 int
250 AdwInitFromEEPROM(ADW_SOFTC *sc)
251 {
252 bus_space_tag_t iot = sc->sc_iot;
253 bus_space_handle_t ioh = sc->sc_ioh;
254 ADW_EEPROM eep_config;
255 u_int16_t warn_code;
256 u_int16_t sdtr_speed = 0;
257 u_int8_t tid, termination;
258 int i, j;
259
260
261 warn_code = 0;
262
263 /*
264 * Read the board's EEPROM configuration.
265 *
266 * Set default values if a bad checksum is found.
267 *
268 * XXX - Don't handle big-endian access to EEPROM yet.
269 */
270 if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
271 warn_code |= ADW_WARN_EEPROM_CHKSUM;
272
273 /*
274 * Set EEPROM default values.
275 */
276 switch(sc->chip_type) {
277 case ADW_CHIP_ASC3550:
278 eep_config = adw_3550_Default_EEPROM;
279 break;
280 case ADW_CHIP_ASC38C0800:
281 eep_config = adw_38C0800_Default_EEPROM;
282 break;
283 case ADW_CHIP_ASC38C1600:
284 eep_config = adw_38C1600_Default_EEPROM;
285
286 #if 0
287 XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
288 #endif
289 if (sc->cfg.pci_slot_info != 0) {
290 u_int8_t lsw_msb;
291
292 lsw_msb = eep_config.cfg_lsw >> 8;
293 /*
294 * Set Function 1 EEPROM Word 0 MSB
295 *
296 * Clear the BIOS_ENABLE (bit 14) and
297 * INTAB (bit 11) EEPROM bits.
298 *
299 * Disable Bit 14 (BIOS_ENABLE) to fix
300 * SPARC Ultra 60 and old Mac system booting
301 * problem. The Expansion ROM must
302 * be disabled in Function 1 for these systems.
303 */
304 lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
305 ADW_EEPROM_INTAB) >> 8) & 0xFF);
306 /*
307 * Set the INTAB (bit 11) if the GPIO 0 input
308 * indicates the Function 1 interrupt line is
309 * wired to INTA.
310 *
311 * Set/Clear Bit 11 (INTAB) from
312 * the GPIO bit 0 input:
313 * 1 - Function 1 intr line wired to INT A.
314 * 0 - Function 1 intr line wired to INT B.
315 *
316 * Note: Adapter boards always have Function 0
317 * wired to INTA.
318 * Put all 5 GPIO bits in input mode and then
319 * read their input values.
320 */
321 ADW_WRITE_BYTE_REGISTER(iot, ioh,
322 IOPB_GPIO_CNTL, 0);
323 if (ADW_READ_BYTE_REGISTER(iot, ioh,
324 IOPB_GPIO_DATA) & 0x01) {
325 /*
326 * Function 1 interrupt wired to INTA;
327 * Set EEPROM bit.
328 */
329 lsw_msb |= (ADW_EEPROM_INTAB >> 8)
330 & 0xFF;
331 }
332 eep_config.cfg_lsw &= 0x00FF;
333 eep_config.cfg_lsw |= lsw_msb << 8;
334 }
335 break;
336 }
337
338 /*
339 * Assume the 6 byte board serial number that was read
340 * from EEPROM is correct even if the EEPROM checksum
341 * failed.
342 */
343 for (i=2, j=1; i>=0; i--, j++) {
344 eep_config.serial_number[i] =
345 AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
346 }
347
348 AdwSetEEPROMConfig(iot, ioh, &eep_config);
349 }
350 /*
351 * Set sc and sc->cfg variables from the EEPROM configuration
352 * that was read.
353 *
354 * This is the mapping of EEPROM fields to Adw Library fields.
355 */
356 sc->wdtr_able = eep_config.wdtr_able;
357 if (sc->chip_type == ADW_CHIP_ASC3550) {
358 sc->sdtr_able = eep_config.sdtr1.sdtr_able;
359 sc->ultra_able = eep_config.sdtr2.ultra_able;
360 } else {
361 sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
362 sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
363 sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
364 sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
365 }
366 sc->ppr_able = 0;
367 sc->tagqng_able = eep_config.tagqng_able;
368 sc->cfg.disc_enable = eep_config.disc_enable;
369 sc->max_host_qng = eep_config.max_host_qng;
370 sc->max_dvc_qng = eep_config.max_dvc_qng;
371 sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
372 sc->start_motor = eep_config.start_motor;
373 sc->scsi_reset_wait = eep_config.scsi_reset_delay;
374 sc->bios_ctrl = eep_config.bios_ctrl;
375 sc->no_scam = eep_config.scam_tolerant;
376 sc->cfg.serial1 = eep_config.serial_number[0];
377 sc->cfg.serial2 = eep_config.serial_number[1];
378 sc->cfg.serial3 = eep_config.serial_number[2];
379
380 if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
381 sc->chip_type == ADW_CHIP_ASC38C1600) {
382 sc->sdtr_able = 0;
383 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
384 if (tid == 0) {
385 sdtr_speed = sc->sdtr_speed1;
386 } else if (tid == 4) {
387 sdtr_speed = sc->sdtr_speed2;
388 } else if (tid == 8) {
389 sdtr_speed = sc->sdtr_speed3;
390 } else if (tid == 12) {
391 sdtr_speed = sc->sdtr_speed4;
392 }
393 if (sdtr_speed & ADW_MAX_TID) {
394 sc->sdtr_able |= (1 << tid);
395 }
396 sdtr_speed >>= 4;
397 }
398 }
399
400 /*
401 * Set the host maximum queuing (max. 253, min. 16) and the per device
402 * maximum queuing (max. 63, min. 4).
403 */
404 if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
405 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
406 } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
407 {
408 /* If the value is zero, assume it is uninitialized. */
409 if (eep_config.max_host_qng == 0) {
410 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
411 } else {
412 eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
413 }
414 }
415
416 if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
417 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
418 } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
419 /* If the value is zero, assume it is uninitialized. */
420 if (eep_config.max_dvc_qng == 0) {
421 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
422 } else {
423 eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
424 }
425 }
426
427 /*
428 * If 'max_dvc_qng' is greater than 'max_host_qng', then
429 * set 'max_dvc_qng' to 'max_host_qng'.
430 */
431 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
432 eep_config.max_dvc_qng = eep_config.max_host_qng;
433 }
434
435 /*
436 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
437 * values based on possibly adjusted EEPROM values.
438 */
439 sc->max_host_qng = eep_config.max_host_qng;
440 sc->max_dvc_qng = eep_config.max_dvc_qng;
441
442
443 /*
444 * If the EEPROM 'termination' field is set to automatic (0), then set
445 * the ADV_DVC_CFG 'termination' field to automatic also.
446 *
447 * If the termination is specified with a non-zero 'termination'
448 * value check that a legal value is set and set the ADV_DVC_CFG
449 * 'termination' field appropriately.
450 */
451
452 switch(sc->chip_type) {
453 case ADW_CHIP_ASC3550:
454 sc->cfg.termination = 0; /* auto termination */
455 switch(eep_config.termination_se) {
456 case 3:
457 /* Enable manual control with low on / high on. */
458 sc->cfg.termination |= ADW_TERM_CTL_L;
459 /* FALLTHROUGH */
460 case 2:
461 /* Enable manual control with low off / high on. */
462 sc->cfg.termination |= ADW_TERM_CTL_H;
463 /* FALLTHROUGH */
464 case 1:
465 /* Enable manual control with low off / high off. */
466 sc->cfg.termination |= ADW_TERM_CTL_SEL;
467 /* FALLTHROUGH */
468 case 0:
469 break;
470 default:
471 warn_code |= ADW_WARN_EEPROM_TERMINATION;
472 }
473 break;
474
475 case ADW_CHIP_ASC38C0800:
476 case ADW_CHIP_ASC38C1600:
477 switch(eep_config.termination_se) {
478 case 0:
479 /* auto termination for SE */
480 termination = 0;
481 break;
482 case 1:
483 /* Enable manual control with low off / high off. */
484 termination = 0;
485 break;
486 case 2:
487 /* Enable manual control with low off / high on. */
488 termination = ADW_TERM_SE_HI;
489 break;
490 case 3:
491 /* Enable manual control with low on / high on. */
492 termination = ADW_TERM_SE;
493 break;
494 default:
495 /*
496 * The EEPROM 'termination_se' field contains a
497 * bad value. Use automatic termination instead.
498 */
499 termination = 0;
500 warn_code |= ADW_WARN_EEPROM_TERMINATION;
501 }
502
503 switch(eep_config.termination_lvd) {
504 case 0:
505 /* auto termination for LVD */
506 sc->cfg.termination = termination;
507 break;
508 case 1:
509 /* Enable manual control with low off / high off. */
510 sc->cfg.termination = termination;
511 break;
512 case 2:
513 /* Enable manual control with low off / high on. */
514 sc->cfg.termination = termination | ADW_TERM_LVD_HI;
515 break;
516 case 3:
517 /* Enable manual control with low on / high on. */
518 sc->cfg.termination = termination | ADW_TERM_LVD;
519 break;
520 default:
521 /*
522 * The EEPROM 'termination_lvd' field contains a
523 * bad value. Use automatic termination instead.
524 */
525 sc->cfg.termination = termination;
526 warn_code |= ADW_WARN_EEPROM_TERMINATION;
527 }
528 break;
529 }
530
531 return warn_code;
532 }
533
534
535 /*
536 * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
537 *
538 * On failure return the error code.
539 */
540 int
541 AdwInitDriver(ADW_SOFTC *sc)
542 {
543 bus_space_tag_t iot = sc->sc_iot;
544 bus_space_handle_t ioh = sc->sc_ioh;
545 u_int16_t error_code;
546 int word;
547 int i;
548 u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
549 0x40-0x8F. */
550 u_int16_t wdtr_able = 0, sdtr_able, /* ppr_able, */ tagqng_able;
551 u_int8_t max_cmd[ADW_MAX_TID + 1];
552 u_int8_t tid;
553
554
555 error_code = 0;
556
557 /*
558 * Save the RISC memory BIOS region before writing the microcode.
559 * The BIOS may already be loaded and using its RISC LRAM region
560 * so its region must be saved and restored.
561 *
562 * Note: This code makes the assumption, which is currently true,
563 * that a chip reset does not clear RISC LRAM.
564 */
565 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
566 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
567 }
568
569 /*
570 * Save current per TID negotiated values.
571 */
572 switch (sc->chip_type) {
573 case ADW_CHIP_ASC3550:
574 if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
575
576 u_int16_t bios_version, major, minor;
577
578 bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
579 ADW_MC_BIOSMEM) / 2];
580 major = (bios_version >> 12) & 0xF;
581 minor = (bios_version >> 8) & 0xF;
582 if (major < 3 || (major == 3 && minor == 1)) {
583 /*
584 * BIOS 3.1 and earlier location of
585 * 'wdtr_able' variable.
586 */
587 ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
588 } else {
589 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
590 wdtr_able);
591 }
592 }
593 break;
594
595 case ADW_CHIP_ASC38C1600:
596 /* ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able); */
597 /* FALLTHROUGH */
598 case ADW_CHIP_ASC38C0800:
599 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
600 break;
601 }
602 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
603 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
604 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
605 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
606 max_cmd[tid]);
607 }
608
609 /*
610 * Perform a RAM Built-In Self Test
611 */
612 if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
613 return error_code;
614 }
615
616 /*
617 * Load the Microcode
618 */
619 ;
620 if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
621 return error_code;
622 }
623
624 /*
625 * Read microcode version and date.
626 */
627 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
628 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
629
630 /*
631 * If the PCI Configuration Command Register "Parity Error Response
632 * Control" Bit was clear (0), then set the microcode variable
633 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
634 * to ignore DMA parity errors.
635 */
636 if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
637 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
638 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
639 word | CONTROL_FLAG_IGNORE_PERR);
640 }
641
642 switch (sc->chip_type) {
643 case ADW_CHIP_ASC3550:
644 /*
645 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
646 * FIFO threshold of 128 bytes.
647 * This register is only accessible to the host.
648 */
649 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
650 START_CTL_EMFU | READ_CMD_MRM);
651 break;
652
653 case ADW_CHIP_ASC38C0800:
654 /*
655 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
656 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
657 * cable detection and then we are able to read C_DET[3:0].
658 *
659 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
660 * Microcode Default Value' section below.
661 */
662 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
663 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
664 | ADW_DIS_TERM_DRV);
665
666 /*
667 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
668 * START_CTL_TH [3:2] bits for the default FIFO threshold.
669 *
670 * Note: ASC-38C0800 FIFO threshold has been changed to
671 * 256 bytes.
672 *
673 * For DMA Errata #4 set the BC_THRESH_ENB bit.
674 */
675 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
676 BC_THRESH_ENB | FIFO_THRESH_80B
677 | START_CTL_TH | READ_CMD_MRM);
678 break;
679
680 case ADW_CHIP_ASC38C1600:
681 /*
682 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
683 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
684 * cable detection and then we are able to read C_DET[3:0].
685 *
686 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
687 * Microcode Default Value' section below.
688 */
689 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
690 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
691 | ADW_DIS_TERM_DRV);
692
693 /*
694 * If the BIOS control flag AIPP (Asynchronous Information
695 * Phase Protection) disable bit is not set, then set the
696 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
697 * enable AIPP checking and encoding.
698 */
699 if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
700 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
701 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
702 word | CONTROL_FLAG_ENABLE_AIPP);
703 }
704
705 /*
706 * For ASC-38C1600 use DMA_CFG0 default values:
707 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
708 */
709 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
710 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
711 break;
712 }
713
714 /*
715 * Microcode operating variables for WDTR, SDTR, and command tag
716 * queuing will be set in AdvInquiryHandling() based on what a
717 * device reports it is capable of in Inquiry byte 7.
718 *
719 * If SCSI Bus Resets have been disabled, then directly set
720 * SDTR and WDTR from the EEPROM configuration. This will allow
721 * the BIOS and warm boot to work without a SCSI bus hang on
722 * the Inquiry caused by host and target mismatched DTR values.
723 * Without the SCSI Bus Reset, before an Inquiry a device can't
724 * be assumed to be in Asynchronous, Narrow mode.
725 */
726 if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
727 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
728 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
729 }
730
731 /*
732 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
733 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
734 * bitmask. These values determine the maximum SDTR speed negotiated
735 * with a device.
736 *
737 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
738 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
739 * without determining here whether the device supports SDTR.
740 */
741 switch (sc->chip_type) {
742 case ADW_CHIP_ASC3550:
743 word = 0;
744 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
745 if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
746 /* Set Ultra speed for TID 'tid'. */
747 word |= (0x3 << (4 * (tid % 4)));
748 } else {
749 /* Set Fast speed for TID 'tid'. */
750 word |= (0x2 << (4 * (tid % 4)));
751 }
752 /* Check if done with sdtr_speed1. */
753 if (tid == 3) {
754 ADW_WRITE_WORD_LRAM(iot, ioh,
755 ADW_MC_SDTR_SPEED1, word);
756 word = 0;
757 /* Check if done with sdtr_speed2. */
758 } else if (tid == 7) {
759 ADW_WRITE_WORD_LRAM(iot, ioh,
760 ADW_MC_SDTR_SPEED2, word);
761 word = 0;
762 /* Check if done with sdtr_speed3. */
763 } else if (tid == 11) {
764 ADW_WRITE_WORD_LRAM(iot, ioh,
765 ADW_MC_SDTR_SPEED3, word);
766 word = 0;
767 /* Check if done with sdtr_speed4. */
768 } else if (tid == 15) {
769 ADW_WRITE_WORD_LRAM(iot, ioh,
770 ADW_MC_SDTR_SPEED4, word);
771 /* End of loop. */
772 }
773 }
774
775 /*
776 * Set microcode operating variable for the
777 * disconnect per TID bitmask.
778 */
779 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
780 sc->cfg.disc_enable);
781 break;
782
783 case ADW_CHIP_ASC38C0800:
784 /* FALLTHROUGH */
785 case ADW_CHIP_ASC38C1600:
786 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
787 sc->cfg.disc_enable);
788 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
789 sc->sdtr_speed1);
790 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
791 sc->sdtr_speed2);
792 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
793 sc->sdtr_speed3);
794 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
795 sc->sdtr_speed4);
796 break;
797 }
798
799
800 /*
801 * Set SCSI_CFG0 Microcode Default Value.
802 *
803 * The microcode will set the SCSI_CFG0 register using this value
804 * after it is started below.
805 */
806 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
807 ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
808 ADW_OUR_ID_EN | sc->chip_scsi_id);
809
810
811 switch(sc->chip_type) {
812 case ADW_CHIP_ASC3550:
813 error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
814 break;
815
816 case ADW_CHIP_ASC38C0800:
817 error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
818 break;
819
820 case ADW_CHIP_ASC38C1600:
821 error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
822 break;
823 }
824 if(error_code) {
825 return error_code;
826 }
827
828 /*
829 * Set SEL_MASK Microcode Default Value
830 *
831 * The microcode will set the SEL_MASK register using this value
832 * after it is started below.
833 */
834 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
835 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
836
837 /*
838 * Create and Initialize Host->RISC Carrier lists
839 */
840 sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
841 sc->sc_control->carriers);
842
843 /*
844 * Set-up the Host->RISC Initiator Command Queue (ICQ).
845 */
846
847 if ((sc->icq_sp = sc->carr_freelist) == NULL) {
848 return ADW_IERR_NO_CARRIER;
849 }
850 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
851 ASC_GET_CARRP(sc->icq_sp->next_ba));
852
853 /*
854 * The first command issued will be placed in the stopper carrier.
855 */
856 sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
857
858 /*
859 * Set RISC ICQ physical address start value.
860 */
861 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
862
863 /*
864 * Initialize the COMMA register to the same value otherwise
865 * the RISC will prematurely detect a command is available.
866 */
867 if(sc->chip_type == ADW_CHIP_ASC38C1600) {
868 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
869 le32toh(sc->icq_sp->carr_ba));
870 }
871
872 /*
873 * Set-up the RISC->Host Initiator Response Queue (IRQ).
874 */
875 if ((sc->irq_sp = sc->carr_freelist) == NULL) {
876 return ADW_IERR_NO_CARRIER;
877 }
878 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
879 ASC_GET_CARRP(sc->irq_sp->next_ba));
880
881 /*
882 * The first command completed by the RISC will be placed in
883 * the stopper.
884 *
885 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
886 * completed the RISC will set the ASC_RQ_DONE bit.
887 */
888 sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
889
890 /*
891 * Set RISC IRQ physical address start value.
892 */
893 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
894 sc->carr_pending_cnt = 0;
895
896 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
897 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
898 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
899 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
900
901 /* finally, finally, gentlemen, start your engine */
902 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
903
904 /*
905 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
906 * Resets should be performed. The RISC has to be running
907 * to issue a SCSI Bus Reset.
908 */
909 if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
910 {
911 /*
912 * If the BIOS Signature is present in memory, restore the
913 * BIOS Handshake Configuration Table and do not perform
914 * a SCSI Bus Reset.
915 */
916 if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
917 0x55AA) {
918 /*
919 * Restore per TID negotiated values.
920 */
921 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
922 wdtr_able);
923 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
924 sdtr_able);
925 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
926 tagqng_able);
927 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
928 ADW_WRITE_BYTE_LRAM(iot, ioh,
929 ADW_MC_NUMBER_OF_MAX_CMD + tid,
930 max_cmd[tid]);
931 }
932 } else {
933 if (AdwResetCCB(sc) != ADW_TRUE) {
934 error_code = ADW_WARN_BUSRESET_ERROR;
935 }
936 }
937 }
938
939 return error_code;
940 }
941
942
943 int
944 AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
945 {
946 int i;
947 u_int8_t byte;
948
949
950 if ((chip_type == ADW_CHIP_ASC38C0800) ||
951 (chip_type == ADW_CHIP_ASC38C1600)) {
952 /*
953 * RAM BIST (RAM Built-In Self Test)
954 *
955 * Address : I/O base + offset 0x38h register (byte).
956 * Function: Bit 7-6(RW) : RAM mode
957 * Normal Mode : 0x00
958 * Pre-test Mode : 0x40
959 * RAM Test Mode : 0x80
960 * Bit 5 : unused
961 * Bit 4(RO) : Done bit
962 * Bit 3-0(RO) : Status
963 * Host Error : 0x08
964 * Int_RAM Error : 0x04
965 * RISC Error : 0x02
966 * SCSI Error : 0x01
967 * No Error : 0x00
968 *
969 * Note: RAM BIST code should be put right here, before loading
970 * the microcode and after saving the RISC memory BIOS region.
971 */
972
973 /*
974 * LRAM Pre-test
975 *
976 * Write PRE_TEST_MODE (0x40) to register and wait for
977 * 10 milliseconds.
978 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
979 * return an error. Reset to NORMAL_MODE (0x00) and do again.
980 * If cannot reset to NORMAL_MODE, return an error too.
981 */
982 for (i = 0; i < 2; i++) {
983 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
984 PRE_TEST_MODE);
985 /* Wait for 10ms before reading back. */
986 AdwSleepMilliSecond(10);
987 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
988 if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
989 PRE_TEST_VALUE) {
990 return ADW_IERR_BIST_PRE_TEST;
991 }
992
993 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
994 NORMAL_MODE);
995 /* Wait for 10ms before reading back. */
996 AdwSleepMilliSecond(10);
997 if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
998 != NORMAL_VALUE) {
999 return ADW_IERR_BIST_PRE_TEST;
1000 }
1001 }
1002
1003 /*
1004 * LRAM Test - It takes about 1.5 ms to run through the test.
1005 *
1006 * Write RAM_TEST_MODE (0x80) to register and wait for
1007 * 10 milliseconds.
1008 * If Done bit not set or Status not 0, save register byte,
1009 * set the err_code, and return an error.
1010 */
1011 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1012 /* Wait for 10ms before checking status. */
1013 AdwSleepMilliSecond(10);
1014
1015 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1016 if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1017 /* Get here if Done bit not set or Status not 0. */
1018 return ADW_IERR_BIST_RAM_TEST;
1019 }
1020
1021 /* We need to reset back to normal mode after LRAM test passes*/
1022 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1023 }
1024
1025 return 0;
1026 }
1027
1028
1029 int
1030 AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
1031 {
1032 const u_int8_t *mcode_data;
1033 u_int32_t mcode_chksum;
1034 u_int16_t mcode_size;
1035 u_int32_t sum;
1036 u_int16_t code_sum;
1037 int begin_addr;
1038 int end_addr;
1039 int word;
1040 int adw_memsize;
1041 int adw_mcode_expanded_size;
1042 int i, j;
1043
1044
1045 switch(chip_type) {
1046 case ADW_CHIP_ASC3550:
1047 mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1048 mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1049 mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1050 adw_memsize = ADW_3550_MEMSIZE;
1051 break;
1052
1053 case ADW_CHIP_ASC38C0800:
1054 mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1055 mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1056 mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1057 adw_memsize = ADW_38C0800_MEMSIZE;
1058 break;
1059
1060 case ADW_CHIP_ASC38C1600:
1061 mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1062 mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1063 mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1064 adw_memsize = ADW_38C1600_MEMSIZE;
1065 break;
1066
1067 default:
1068 return (EINVAL);
1069 }
1070
1071 /*
1072 * Write the microcode image to RISC memory starting at address 0.
1073 */
1074 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1075
1076 /* Assume the following compressed format of the microcode buffer:
1077 *
1078 * 254 word (508 byte) table indexed by byte code followed
1079 * by the following byte codes:
1080 *
1081 * 1-Byte Code:
1082 * 00: Emit word 0 in table.
1083 * 01: Emit word 1 in table.
1084 * .
1085 * FD: Emit word 253 in table.
1086 *
1087 * Multi-Byte Code:
1088 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1089 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1090 */
1091 word = 0;
1092 for (i = 253 * 2; i < mcode_size; i++) {
1093 if (mcode_data[i] == 0xff) {
1094 for (j = 0; j < mcode_data[i + 1]; j++) {
1095 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1096 (((u_int16_t)mcode_data[i + 3] << 8) |
1097 mcode_data[i + 2]));
1098 word++;
1099 }
1100 i += 3;
1101 } else if (mcode_data[i] == 0xfe) {
1102 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1103 (((u_int16_t)mcode_data[i + 2] << 8) |
1104 mcode_data[i + 1]));
1105 i += 2;
1106 word++;
1107 } else {
1108 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1109 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1110 mcode_data[mcode_data[i] * 2]));
1111 word++;
1112 }
1113 }
1114
1115 /*
1116 * Set 'word' for later use to clear the rest of memory and save
1117 * the expanded mcode size.
1118 */
1119 word *= 2;
1120 adw_mcode_expanded_size = word;
1121
1122 /*
1123 * Clear the rest of the Internal RAM.
1124 */
1125 for (; word < adw_memsize; word += 2) {
1126 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1127 }
1128
1129 /*
1130 * Verify the microcode checksum.
1131 */
1132 sum = 0;
1133 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1134
1135 for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1136 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1137 }
1138
1139 if (sum != mcode_chksum) {
1140 return ADW_IERR_MCODE_CHKSUM;
1141 }
1142
1143 /*
1144 * Restore the RISC memory BIOS region.
1145 */
1146 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1147 if(chip_type == ADW_CHIP_ASC3550) {
1148 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1149 bios_mem[i]);
1150 } else {
1151 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1152 bios_mem[i]);
1153 }
1154 }
1155
1156 /*
1157 * Calculate and write the microcode code checksum to the microcode
1158 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1159 */
1160 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1161 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1162 code_sum = 0;
1163 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1164 for (word = begin_addr; word < end_addr; word += 2) {
1165 code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1166 }
1167 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1168
1169 /*
1170 * Set the chip type.
1171 */
1172 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1173
1174 return 0;
1175 }
1176
1177
1178 int
1179 AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1180 {
1181 u_int16_t scsi_cfg1;
1182
1183
1184 /*
1185 * Determine SCSI_CFG1 Microcode Default Value.
1186 *
1187 * The microcode will set the SCSI_CFG1 register using this value
1188 * after it is started below.
1189 */
1190
1191 /* Read current SCSI_CFG1 Register value. */
1192 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1193
1194 /*
1195 * If all three connectors are in use in ASC3550, return an error.
1196 */
1197 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1198 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1199 return ADW_IERR_ILLEGAL_CONNECTION;
1200 }
1201
1202 /*
1203 * If the cable is reversed all of the SCSI_CTRL register signals
1204 * will be set. Check for and return an error if this condition is
1205 * found.
1206 */
1207 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1208 return ADW_IERR_REVERSED_CABLE;
1209 }
1210
1211 /*
1212 * If this is a differential board and a single-ended device
1213 * is attached to one of the connectors, return an error.
1214 */
1215 if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1216 (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1217 return ADW_IERR_SINGLE_END_DEVICE;
1218 }
1219
1220 /*
1221 * If automatic termination control is enabled, then set the
1222 * termination value based on a table listed in a_condor.h.
1223 *
1224 * If manual termination was specified with an EEPROM setting
1225 * then 'termination' was set-up in AdwInitFromEEPROM() and
1226 * is ready to be 'ored' into SCSI_CFG1.
1227 */
1228 if (cfg->termination == 0) {
1229 /*
1230 * The software always controls termination by setting
1231 * TERM_CTL_SEL.
1232 * If TERM_CTL_SEL were set to 0, the hardware would set
1233 * termination.
1234 */
1235 cfg->termination |= ADW_TERM_CTL_SEL;
1236
1237 switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1238 /* TERM_CTL_H: on, TERM_CTL_L: on */
1239 case 0x3: case 0x7: case 0xB:
1240 case 0xD: case 0xE: case 0xF:
1241 cfg->termination |=
1242 (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1243 break;
1244
1245 /* TERM_CTL_H: on, TERM_CTL_L: off */
1246 case 0x1: case 0x5: case 0x9:
1247 case 0xA: case 0xC:
1248 cfg->termination |= ADW_TERM_CTL_H;
1249 break;
1250
1251 /* TERM_CTL_H: off, TERM_CTL_L: off */
1252 case 0x2: case 0x6:
1253 break;
1254 }
1255 }
1256
1257 /*
1258 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1259 */
1260 scsi_cfg1 &= ~ADW_TERM_CTL;
1261
1262 /*
1263 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1264 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1265 * referenced, because the hardware internally inverts
1266 * the Termination High and Low bits if TERM_POL is set.
1267 */
1268 scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1269
1270 /*
1271 * Set SCSI_CFG1 Microcode Default Value
1272 *
1273 * Set filter value and possibly modified termination control
1274 * bits in the Microcode SCSI_CFG1 Register Value.
1275 *
1276 * The microcode will set the SCSI_CFG1 register using this value
1277 * after it is started below.
1278 */
1279 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1280 ADW_FLTR_DISABLE | scsi_cfg1);
1281
1282 /*
1283 * Set MEM_CFG Microcode Default Value
1284 *
1285 * The microcode will set the MEM_CFG register using this value
1286 * after it is started below.
1287 *
1288 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1289 * are defined.
1290 *
1291 * ASC-3550 has 8KB internal memory.
1292 */
1293 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1294 ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1295
1296 return 0;
1297 }
1298
1299
1300 int
1301 AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1302 {
1303 u_int16_t scsi_cfg1;
1304
1305
1306 /*
1307 * Determine SCSI_CFG1 Microcode Default Value.
1308 *
1309 * The microcode will set the SCSI_CFG1 register using this value
1310 * after it is started below.
1311 */
1312
1313 /* Read current SCSI_CFG1 Register value. */
1314 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1315
1316 /*
1317 * If the cable is reversed all of the SCSI_CTRL register signals
1318 * will be set. Check for and return an error if this condition is
1319 * found.
1320 */
1321 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1322 return ADW_IERR_REVERSED_CABLE;
1323 }
1324
1325 /*
1326 * All kind of combinations of devices attached to one of four
1327 * connectors are acceptable except HVD device attached.
1328 * For example, LVD device can be attached to SE connector while
1329 * SE device attached to LVD connector.
1330 * If LVD device attached to SE connector, it only runs up to
1331 * Ultra speed.
1332 *
1333 * If an HVD device is attached to one of LVD connectors, return
1334 * an error.
1335 * However, there is no way to detect HVD device attached to
1336 * SE connectors.
1337 */
1338 if (scsi_cfg1 & ADW_HVD) {
1339 return ADW_IERR_HVD_DEVICE;
1340 }
1341
1342 /*
1343 * If either SE or LVD automatic termination control is enabled, then
1344 * set the termination value based on a table listed in a_condor.h.
1345 *
1346 * If manual termination was specified with an EEPROM setting then
1347 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1348 * to be 'ored' into SCSI_CFG1.
1349 */
1350 if ((cfg->termination & ADW_TERM_SE) == 0) {
1351 /* SE automatic termination control is enabled. */
1352 switch(scsi_cfg1 & ADW_C_DET_SE) {
1353 /* TERM_SE_HI: on, TERM_SE_LO: on */
1354 case 0x1: case 0x2: case 0x3:
1355 cfg->termination |= ADW_TERM_SE;
1356 break;
1357
1358 /* TERM_SE_HI: on, TERM_SE_LO: off */
1359 case 0x0:
1360 cfg->termination |= ADW_TERM_SE_HI;
1361 break;
1362 }
1363 }
1364
1365 if ((cfg->termination & ADW_TERM_LVD) == 0) {
1366 /* LVD automatic termination control is enabled. */
1367 switch(scsi_cfg1 & ADW_C_DET_LVD) {
1368 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1369 case 0x4: case 0x8: case 0xC:
1370 cfg->termination |= ADW_TERM_LVD;
1371 break;
1372
1373 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1374 case 0x0:
1375 break;
1376 }
1377 }
1378
1379 /*
1380 * Clear any set TERM_SE and TERM_LVD bits.
1381 */
1382 scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1383
1384 /*
1385 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1386 */
1387 scsi_cfg1 |= (~cfg->termination & 0xF0);
1388
1389 /*
1390 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1391 * HVD/LVD/SE bits and set possibly modified termination control bits
1392 * in the Microcode SCSI_CFG1 Register Value.
1393 */
1394 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1395 ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1396
1397 /*
1398 * Set SCSI_CFG1 Microcode Default Value
1399 *
1400 * Set possibly modified termination control and reset DIS_TERM_DRV
1401 * bits in the Microcode SCSI_CFG1 Register Value.
1402 *
1403 * The microcode will set the SCSI_CFG1 register using this value
1404 * after it is started below.
1405 */
1406 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1407
1408 /*
1409 * Set MEM_CFG Microcode Default Value
1410 *
1411 * The microcode will set the MEM_CFG register using this value
1412 * after it is started below.
1413 *
1414 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1415 * are defined.
1416 *
1417 * ASC-38C0800 has 16KB internal memory.
1418 */
1419 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1420 ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1421
1422 return 0;
1423 }
1424
1425
1426 int
1427 AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1428 {
1429 u_int16_t scsi_cfg1;
1430
1431
1432 /*
1433 * Determine SCSI_CFG1 Microcode Default Value.
1434 *
1435 * The microcode will set the SCSI_CFG1 register using this value
1436 * after it is started below.
1437 * Each ASC-38C1600 function has only two cable detect bits.
1438 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1439 */
1440
1441 /* Read current SCSI_CFG1 Register value. */
1442 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1443
1444 /*
1445 * If the cable is reversed all of the SCSI_CTRL register signals
1446 * will be set. Check for and return an error if this condition is
1447 * found.
1448 */
1449 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1450 return ADW_IERR_REVERSED_CABLE;
1451 }
1452
1453 /*
1454 * Each ASC-38C1600 function has two connectors. Only an HVD device
1455 * cannot be connected to either connector. An LVD device or SE device
1456 * may be connected to either connector. If an SE device is connected,
1457 * then at most Ultra speed (20 MHz) can be used on both connectors.
1458 *
1459 * If an HVD device is attached, return an error.
1460 */
1461 if (scsi_cfg1 & ADW_HVD) {
1462 return ADW_IERR_HVD_DEVICE;
1463 }
1464
1465 /*
1466 * Each function in the ASC-38C1600 uses only the SE cable detect and
1467 * termination because there are two connectors for each function.
1468 * Each function may use either LVD or SE mode.
1469 * Corresponding the SE automatic termination control EEPROM bits are
1470 * used for each function.
1471 * Each function has its own EEPROM. If SE automatic control is enabled
1472 * for the function, then set the termination value based on a table
1473 * listed in adwlib.h.
1474 *
1475 * If manual termination is specified in the EEPROM for the function,
1476 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1477 * ready to be 'ored' into SCSI_CFG1.
1478 */
1479 if ((cfg->termination & ADW_TERM_SE) == 0) {
1480 /* SE automatic termination control is enabled. */
1481 switch(scsi_cfg1 & ADW_C_DET_SE) {
1482 /* TERM_SE_HI: on, TERM_SE_LO: on */
1483 case 0x1: case 0x2: case 0x3:
1484 cfg->termination |= ADW_TERM_SE;
1485 break;
1486
1487 case 0x0:
1488 #if 0
1489 /* !!!!TODO!!!! */
1490 if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1491 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1492 }
1493 else
1494 #endif
1495 {
1496 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1497 cfg->termination |= ADW_TERM_SE_HI;
1498 }
1499 break;
1500 }
1501 }
1502
1503 /*
1504 * Clear any set TERM_SE bits.
1505 */
1506 scsi_cfg1 &= ~ADW_TERM_SE;
1507
1508 /*
1509 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1510 */
1511 scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1512
1513 /*
1514 * Clear Big Endian and Terminator Polarity bits and set possibly
1515 * modified termination control bits in the Microcode SCSI_CFG1
1516 * Register Value.
1517 */
1518 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1519
1520 /*
1521 * Set SCSI_CFG1 Microcode Default Value
1522 *
1523 * Set possibly modified termination control bits in the Microcode
1524 * SCSI_CFG1 Register Value.
1525 *
1526 * The microcode will set the SCSI_CFG1 register using this value
1527 * after it is started below.
1528 */
1529 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1530
1531 /*
1532 * Set MEM_CFG Microcode Default Value
1533 *
1534 * The microcode will set the MEM_CFG register using this value
1535 * after it is started below.
1536 *
1537 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1538 * are defined.
1539 *
1540 * ASC-38C1600 has 32KB internal memory.
1541 */
1542 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1543 ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1544
1545 return 0;
1546 }
1547
1548
1549 /*
1550 * Read EEPROM configuration into the specified buffer.
1551 *
1552 * Return a checksum based on the EEPROM configuration read.
1553 */
1554 static u_int16_t
1555 AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
1556 {
1557 u_int16_t wval, chksum;
1558 u_int16_t *wbuf;
1559 int eep_addr;
1560
1561
1562 wbuf = (u_int16_t *) cfg_buf;
1563 chksum = 0;
1564
1565 for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1566 eep_addr < ASC_EEP_DVC_CFG_END;
1567 eep_addr++, wbuf++) {
1568 wval = AdwReadEEPWord(iot, ioh, eep_addr);
1569 chksum += wval;
1570 *wbuf = wval;
1571 }
1572
1573 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1574 wbuf++;
1575 for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1576 eep_addr < ASC_EEP_MAX_WORD_ADDR;
1577 eep_addr++, wbuf++) {
1578 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1579 }
1580
1581 return chksum;
1582 }
1583
1584
1585 /*
1586 * Read the EEPROM from specified location
1587 */
1588 static u_int16_t
1589 AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
1590 {
1591 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1592 ASC_EEP_CMD_READ | eep_word_addr);
1593 AdwWaitEEPCmd(iot, ioh);
1594
1595 return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1596 }
1597
1598
1599 /*
1600 * Wait for EEPROM command to complete
1601 */
1602 static void
1603 AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
1604 {
1605 int eep_delay_ms;
1606
1607
1608 for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1609 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1610 ASC_EEP_CMD_DONE) {
1611 break;
1612 }
1613 AdwSleepMilliSecond(1);
1614 }
1615
1616 (void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1617 }
1618
1619
1620 /*
1621 * Write the EEPROM from 'cfg_buf'.
1622 */
1623 static void
1624 AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
1625 {
1626 u_int16_t *wbuf;
1627 u_int16_t addr, chksum;
1628
1629
1630 wbuf = (u_int16_t *) cfg_buf;
1631 chksum = 0;
1632
1633 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1634 AdwWaitEEPCmd(iot, ioh);
1635
1636 /*
1637 * Write EEPROM from word 0 to word 20
1638 */
1639 for (addr = ASC_EEP_DVC_CFG_BEGIN;
1640 addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1641 chksum += *wbuf;
1642 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1643 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1644 ASC_EEP_CMD_WRITE | addr);
1645 AdwWaitEEPCmd(iot, ioh);
1646 AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1647 }
1648
1649 /*
1650 * Write EEPROM checksum at word 21
1651 */
1652 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1653 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1654 ASC_EEP_CMD_WRITE | addr);
1655 AdwWaitEEPCmd(iot, ioh);
1656 wbuf++; /* skip over check_sum */
1657
1658 /*
1659 * Write EEPROM OEM name at words 22 to 29
1660 */
1661 for (addr = ASC_EEP_DVC_CTL_BEGIN;
1662 addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1663 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1664 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1665 ASC_EEP_CMD_WRITE | addr);
1666 AdwWaitEEPCmd(iot, ioh);
1667 }
1668
1669 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1670 ASC_EEP_CMD_WRITE_DISABLE);
1671 AdwWaitEEPCmd(iot, ioh);
1672
1673 return;
1674 }
1675
1676
1677 /*
1678 * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1679 *
1680 * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1681 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1682 * RISC to notify it a new command is ready to be executed.
1683 *
1684 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1685 * set to SCSI_MAX_RETRY.
1686 *
1687 * Return:
1688 * ADW_SUCCESS(1) - The request was successfully queued.
1689 * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1690 * request completes.
1691 * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1692 * host IC error.
1693 */
1694 int
1695 AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
1696 {
1697 bus_space_tag_t iot = sc->sc_iot;
1698 bus_space_handle_t ioh = sc->sc_ioh;
1699 ADW_CCB *ccb;
1700 u_int32_t req_paddr;
1701 ADW_CARRIER *new_carrp;
1702
1703 /*
1704 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1705 */
1706 if (scsiq->target_id > ADW_MAX_TID) {
1707 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1708 scsiq->done_status = QD_WITH_ERROR;
1709 return ADW_ERROR;
1710 }
1711
1712 /*
1713 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1714 */
1715
1716 ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1717
1718 /*
1719 * Allocate a carrier and initialize fields.
1720 */
1721 if ((new_carrp = sc->carr_freelist) == NULL) {
1722 return ADW_BUSY;
1723 }
1724 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1725 ASC_GET_CARRP(new_carrp->next_ba));
1726 sc->carr_pending_cnt++;
1727
1728 /*
1729 * Set the carrier to be a stopper by setting 'next_ba'
1730 * to the stopper value. The current stopper will be changed
1731 * below to point to the new stopper.
1732 */
1733 new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1734
1735 req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1736 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1737
1738 /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1739 scsiq->scsiq_rptr = htole32(req_paddr);
1740
1741 /*
1742 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1743 * order during initialization.
1744 */
1745 scsiq->carr_ba = sc->icq_sp->carr_ba;
1746 scsiq->carr_va = sc->icq_sp->carr_ba;
1747
1748 /*
1749 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1750 * the microcode. The newly allocated stopper will become the new
1751 * stopper.
1752 */
1753 sc->icq_sp->areq_ba = htole32(req_paddr);
1754
1755 /*
1756 * Set the 'next_ba' pointer for the old stopper to be the
1757 * physical address of the new stopper. The RISC can only
1758 * follow physical addresses.
1759 */
1760 sc->icq_sp->next_ba = new_carrp->carr_ba;
1761
1762 #if ADW_DEBUG
1763 printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1764 sc->icq_sp->carr_id,
1765 sc->icq_sp->carr_ba,
1766 sc->icq_sp->areq_ba,
1767 sc->icq_sp->next_ba);
1768 #endif
1769 /*
1770 * Set the host adapter stopper pointer to point to the new carrier.
1771 */
1772 sc->icq_sp = new_carrp;
1773
1774 if (sc->chip_type == ADW_CHIP_ASC3550 ||
1775 sc->chip_type == ADW_CHIP_ASC38C0800) {
1776 /*
1777 * Tickle the RISC to tell it to read its Command Queue Head
1778 * pointer.
1779 */
1780 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1781 if (sc->chip_type == ADW_CHIP_ASC3550) {
1782 /*
1783 * Clear the tickle value. In the ASC-3550 the RISC flag
1784 * command 'clr_tickle_a' does not work unless the host
1785 * value is cleared.
1786 */
1787 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1788 ADW_TICKLE_NOP);
1789 }
1790 } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1791 /*
1792 * Notify the RISC a carrier is ready by writing the physical
1793 * address of the new carrier stopper to the COMMA register.
1794 */
1795 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1796 le32toh(new_carrp->carr_ba));
1797 }
1798
1799 /*
1800 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1801 */
1802
1803 return ADW_SUCCESS;
1804 }
1805
1806
1807 void
1808 AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
1809 {
1810
1811 /*
1812 * Reset Chip.
1813 */
1814 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1815 ADW_CTRL_REG_CMD_RESET);
1816 AdwSleepMilliSecond(100);
1817 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1818 ADW_CTRL_REG_CMD_WR_IO_REG);
1819 }
1820
1821
1822 /*
1823 * Reset SCSI Bus and purge all outstanding requests.
1824 *
1825 * Return Value:
1826 * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1827 * ADW_FALSE(0) - Microcode command failed.
1828 * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1829 * may be hung which requires driver recovery.
1830 */
1831 int
1832 AdwResetCCB(ADW_SOFTC *sc)
1833 {
1834 int status;
1835
1836 /*
1837 * Send the SCSI Bus Reset idle start idle command which asserts
1838 * the SCSI Bus Reset signal.
1839 */
1840 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1841 if (status != ADW_TRUE) {
1842 return status;
1843 }
1844
1845 /*
1846 * Delay for the specified SCSI Bus Reset hold time.
1847 *
1848 * The hold time delay is done on the host because the RISC has no
1849 * microsecond accurate timer.
1850 */
1851 AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1852
1853 /*
1854 * Send the SCSI Bus Reset end idle command which de-asserts
1855 * the SCSI Bus Reset signal and purges any pending requests.
1856 */
1857 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1858 if (status != ADW_TRUE) {
1859 return status;
1860 }
1861
1862 AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1863
1864 return status;
1865 }
1866
1867
1868 /*
1869 * Reset chip and SCSI Bus.
1870 *
1871 * Return Value:
1872 * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1873 * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1874 */
1875 int
1876 AdwResetSCSIBus(ADW_SOFTC *sc)
1877 {
1878 bus_space_tag_t iot = sc->sc_iot;
1879 bus_space_handle_t ioh = sc->sc_ioh;
1880 int status;
1881 u_int16_t wdtr_able, sdtr_able, tagqng_able;
1882 u_int16_t ppr_able = 0; /* XXX: gcc */
1883 u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
1884 u_int16_t bios_sig;
1885
1886
1887 /*
1888 * Save current per TID negotiated values.
1889 */
1890 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1891 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1892 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1893 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1894 }
1895 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1896 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1897 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1898 max_cmd[tid]);
1899 }
1900
1901 /*
1902 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1903 * by clearing the BIOS signature word.
1904 * The initialization functions assumes a SCSI Bus Reset is not
1905 * needed if the BIOS signature word is present.
1906 */
1907 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1908 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1909
1910 /*
1911 * Stop chip and reset it.
1912 */
1913 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1914 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1915 ADW_CTRL_REG_CMD_RESET);
1916 AdwSleepMilliSecond(100);
1917 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1918 ADW_CTRL_REG_CMD_WR_IO_REG);
1919
1920 /*
1921 * Reset Adv Library error code, if any, and try
1922 * re-initializing the chip.
1923 * Then translate initialization return value to status value.
1924 */
1925 status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1926
1927 /*
1928 * Restore the BIOS signature word.
1929 */
1930 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1931
1932 /*
1933 * Restore per TID negotiated values.
1934 */
1935 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1936 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1937 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1938 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1939 }
1940 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1941 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1942 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1943 max_cmd[tid]);
1944 }
1945
1946 return status;
1947 }
1948
1949
1950 /*
1951 * Adv Library Interrupt Service Routine
1952 *
1953 * This function is called by a driver's interrupt service routine.
1954 * The function disables and re-enables interrupts.
1955 *
1956 * When a microcode idle command is completed, the ADV_DVC_VAR
1957 * 'idle_cmd_done' field is set to ADW_TRUE.
1958 *
1959 * Note: AdwISR() can be called when interrupts are disabled or even
1960 * when there is no hardware interrupt condition present. It will
1961 * always check for completed idle commands and microcode requests.
1962 * This is an important feature that shouldn't be changed because it
1963 * allows commands to be completed from polling mode loops.
1964 *
1965 * Return:
1966 * ADW_TRUE(1) - interrupt was pending
1967 * ADW_FALSE(0) - no interrupt was pending
1968 */
1969 int
1970 AdwISR(ADW_SOFTC *sc)
1971 {
1972 bus_space_tag_t iot = sc->sc_iot;
1973 bus_space_handle_t ioh = sc->sc_ioh;
1974 u_int8_t int_stat;
1975 ADW_CARRIER *free_carrp/*, *ccb_carr*/;
1976 u_int32_t irq_next_pa;
1977 ADW_SCSI_REQ_Q *scsiq;
1978 ADW_CCB *ccb;
1979 int s;
1980
1981
1982 s = splbio();
1983
1984 /* Reading the register clears the interrupt. */
1985 int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
1986
1987 if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
1988 ADW_INTR_STATUS_INTRC)) == 0) {
1989 splx(s);
1990 return ADW_FALSE;
1991 }
1992
1993 /*
1994 * Notify the driver of an asynchronous microcode condition by
1995 * calling the ADV_DVC_VAR.async_callback function. The function
1996 * is passed the microcode ADW_MC_INTRB_CODE byte value.
1997 */
1998 if (int_stat & ADW_INTR_STATUS_INTRB) {
1999 u_int8_t intrb_code;
2000
2001 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2002
2003 if (sc->chip_type == ADW_CHIP_ASC3550 ||
2004 sc->chip_type == ADW_CHIP_ASC38C0800) {
2005 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2006 sc->carr_pending_cnt != 0) {
2007 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2008 IOPB_TICKLE, ADW_TICKLE_A);
2009 if (sc->chip_type == ADW_CHIP_ASC3550) {
2010 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2011 IOPB_TICKLE, ADW_TICKLE_NOP);
2012 }
2013 }
2014 }
2015
2016 if (sc->async_callback != 0) {
2017 (*sc->async_callback)(sc, intrb_code);
2018 }
2019 }
2020
2021 /*
2022 * Check if the IRQ stopper carrier contains a completed request.
2023 */
2024 while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2025 {
2026 #if ADW_DEBUG
2027 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2028 sc->irq_sp->carr_id,
2029 sc->irq_sp->carr_ba,
2030 sc->irq_sp->areq_ba,
2031 sc->irq_sp->next_ba);
2032 #endif
2033 /*
2034 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2035 * structure.
2036 * The RISC will have set 'areq_ba' to a virtual address.
2037 *
2038 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2039 * field to the carrier ADV_CARR_T.areq_ba field.
2040 * The conversion below complements the conversion of
2041 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2042 */
2043 ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2044 scsiq = &ccb->scsiq;
2045 scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2046
2047 /*
2048 * Request finished with good status and the queue was not
2049 * DMAed to host memory by the firmware. Set all status fields
2050 * to indicate good status.
2051 */
2052 if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2053 scsiq->done_status = QD_NO_ERROR;
2054 scsiq->host_status = scsiq->scsi_status = 0;
2055 scsiq->data_cnt = 0L;
2056 }
2057
2058 /*
2059 * Advance the stopper pointer to the next carrier
2060 * ignoring the lower four bits. Free the previous
2061 * stopper carrier.
2062 */
2063 free_carrp = sc->irq_sp;
2064 sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2065
2066 free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
2067 : sc->carr_freelist->carr_ba;
2068 sc->carr_freelist = free_carrp;
2069 sc->carr_pending_cnt--;
2070
2071 /*
2072 * Clear request microcode control flag.
2073 */
2074 scsiq->cntl = 0;
2075
2076 /*
2077 * Check Condition handling
2078 */
2079 /*
2080 * If the command that completed was a SCSI INQUIRY and
2081 * LUN 0 was sent the command, then process the INQUIRY
2082 * command information for the device.
2083 */
2084 if (scsiq->done_status == QD_NO_ERROR &&
2085 scsiq->cdb[0] == INQUIRY &&
2086 scsiq->target_lun == 0) {
2087 AdwInquiryHandling(sc, scsiq);
2088 }
2089
2090 /*
2091 * Notify the driver of the completed request by passing
2092 * the ADW_SCSI_REQ_Q pointer to its callback function.
2093 */
2094 (*sc->isr_callback)(sc, scsiq);
2095 /*
2096 * Note: After the driver callback function is called, 'scsiq'
2097 * can no longer be referenced.
2098 *
2099 * Fall through and continue processing other completed
2100 * requests...
2101 */
2102 }
2103
2104 splx(s);
2105
2106 return ADW_TRUE;
2107 }
2108
2109
2110 /*
2111 * Send an idle command to the chip and wait for completion.
2112 *
2113 * Command completion is polled for once per microsecond.
2114 *
2115 * The function can be called from anywhere including an interrupt handler.
2116 * But the function is not re-entrant, so it uses the splbio/splx()
2117 * functions to prevent reentrancy.
2118 *
2119 * Return Values:
2120 * ADW_TRUE - command completed successfully
2121 * ADW_FALSE - command failed
2122 * ADW_ERROR - command timed out
2123 */
2124 int
2125 AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
2126 {
2127 bus_space_tag_t iot = sc->sc_iot;
2128 bus_space_handle_t ioh = sc->sc_ioh;
2129 u_int16_t result;
2130 u_int32_t i, j, s;
2131
2132 s = splbio();
2133
2134 /*
2135 * Clear the idle command status which is set by the microcode
2136 * to a non-zero value to indicate when the command is completed.
2137 */
2138 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2139
2140 /*
2141 * Write the idle command value after the idle command parameter
2142 * has been written to avoid a race condition. If the order is not
2143 * followed, the microcode may process the idle command before the
2144 * parameters have been written to LRAM.
2145 */
2146 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2147 idle_cmd_parameter);
2148 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2149
2150 /*
2151 * Tickle the RISC to tell it to process the idle command.
2152 */
2153 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2154 if (sc->chip_type == ADW_CHIP_ASC3550) {
2155 /*
2156 * Clear the tickle value. In the ASC-3550 the RISC flag
2157 * command 'clr_tickle_b' does not work unless the host
2158 * value is cleared.
2159 */
2160 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2161 }
2162
2163 /* Wait for up to 100 millisecond for the idle command to timeout. */
2164 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2165 /* Poll once each microsecond for command completion. */
2166 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2167 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2168 result);
2169 if (result != 0) {
2170 splx(s);
2171 return result;
2172 }
2173 AdwDelayMicroSecond(1);
2174 }
2175 }
2176
2177 splx(s);
2178 return ADW_ERROR;
2179 }
2180
2181
2182 /*
2183 * Inquiry Information Byte 7 Handling
2184 *
2185 * Handle SCSI Inquiry Command information for a device by setting
2186 * microcode operating variables that affect WDTR, SDTR, and Tag
2187 * Queuing.
2188 */
2189 static void
2190 AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
2191 {
2192 #ifndef FAILSAFE
2193 bus_space_tag_t iot = sc->sc_iot;
2194 bus_space_handle_t ioh = sc->sc_ioh;
2195 u_int8_t tid;
2196 struct scsipi_inquiry_data *inq;
2197 u_int16_t tidmask;
2198 u_int16_t cfg_word;
2199
2200
2201 /*
2202 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2203 * to be available.
2204 *
2205 * If less than 8 bytes of INQUIRY information were requested or less
2206 * than 8 bytes were transferred, then return. cdb[4] is the request
2207 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2208 * microcode to the transfer residual count.
2209 */
2210
2211 if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2212 return;
2213 }
2214
2215 tid = scsiq->target_id;
2216
2217 inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2218
2219 /*
2220 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2221 */
2222 if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2223 ((inq->version & SID_ANSII) < 2)) {
2224 return;
2225 } else {
2226 /*
2227 * INQUIRY Byte 7 Handling
2228 *
2229 * Use a device's INQUIRY byte 7 to determine whether it
2230 * supports WDTR, SDTR, and Tag Queuing. If the feature
2231 * is enabled in the EEPROM and the device supports the
2232 * feature, then enable it in the microcode.
2233 */
2234
2235 tidmask = ADW_TID_TO_TIDMASK(tid);
2236
2237 /*
2238 * Wide Transfers
2239 *
2240 * If the EEPROM enabled WDTR for the device and the device
2241 * supports wide bus (16 bit) transfers, then turn on the
2242 * device's 'wdtr_able' bit and write the new value to the
2243 * microcode.
2244 */
2245 #ifdef SCSI_ADW_WDTR_DISABLE
2246 if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2247 #endif /* SCSI_ADW_WDTR_DISABLE */
2248 if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2249 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2250 cfg_word);
2251 if ((cfg_word & tidmask) == 0) {
2252 cfg_word |= tidmask;
2253 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2254 cfg_word);
2255
2256 /*
2257 * Clear the microcode "SDTR negotiation" and
2258 * "WDTR negotiation" done indicators for the
2259 * target to cause it to negotiate with the new
2260 * setting set above.
2261 * WDTR when accepted causes the target to enter
2262 * asynchronous mode, so SDTR must be negotiated
2263 */
2264 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2265 cfg_word);
2266 cfg_word &= ~tidmask;
2267 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2268 cfg_word);
2269 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2270 cfg_word);
2271 cfg_word &= ~tidmask;
2272 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2273 cfg_word);
2274 }
2275 }
2276
2277 /*
2278 * Synchronous Transfers
2279 *
2280 * If the EEPROM enabled SDTR for the device and the device
2281 * supports synchronous transfers, then turn on the device's
2282 * 'sdtr_able' bit. Write the new value to the microcode.
2283 */
2284 #ifdef SCSI_ADW_SDTR_DISABLE
2285 if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2286 #endif /* SCSI_ADW_SDTR_DISABLE */
2287 if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2288 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2289 if ((cfg_word & tidmask) == 0) {
2290 cfg_word |= tidmask;
2291 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2292 cfg_word);
2293
2294 /*
2295 * Clear the microcode "SDTR negotiation"
2296 * done indicator for the target to cause it
2297 * to negotiate with the new setting set above.
2298 */
2299 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2300 cfg_word);
2301 cfg_word &= ~tidmask;
2302 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2303 cfg_word);
2304 }
2305 }
2306 /*
2307 * If the Inquiry data included enough space for the SPI-3
2308 * Clocking field, then check if DT mode is supported.
2309 */
2310 if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2311 (scsiq->cdb[4] >= 57 ||
2312 (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2313 /*
2314 * PPR (Parallel Protocol Request) Capable
2315 *
2316 * If the device supports DT mode, then it must be
2317 * PPR capable.
2318 * The PPR message will be used in place of the SDTR
2319 * and WDTR messages to negotiate synchronous speed
2320 * and offset, transfer width, and protocol options.
2321 */
2322 if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2323 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2324 sc->ppr_able);
2325 sc->ppr_able |= tidmask;
2326 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2327 sc->ppr_able);
2328 }
2329 }
2330
2331 /*
2332 * If the EEPROM enabled Tag Queuing for the device and the
2333 * device supports Tag Queueing, then turn on the device's
2334 * 'tagqng_enable' bit in the microcode and set the microcode
2335 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2336 * value.
2337 *
2338 * Tag Queuing is disabled for the BIOS which runs in polled
2339 * mode and would see no benefit from Tag Queuing. Also by
2340 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2341 * bugs will at least work with the BIOS.
2342 */
2343 #ifdef SCSI_ADW_TAGQ_DISABLE
2344 if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2345 #endif /* SCSI_ADW_TAGQ_DISABLE */
2346 if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2347 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2348 cfg_word);
2349 cfg_word |= tidmask;
2350 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2351 cfg_word);
2352
2353 ADW_WRITE_BYTE_LRAM(iot, ioh,
2354 ADW_MC_NUMBER_OF_MAX_CMD + tid,
2355 sc->max_dvc_qng);
2356 }
2357 }
2358 #endif /* FAILSAFE */
2359 }
2360
2361
2362 static void
2363 AdwSleepMilliSecond(u_int32_t n)
2364 {
2365
2366 DELAY(n * 1000);
2367 }
2368
2369
2370 static void
2371 AdwDelayMicroSecond(u_int32_t n)
2372 {
2373
2374 DELAY(n);
2375 }
2376
2377