Home | History | Annotate | Line # | Download | only in ic
aic6915.c revision 1.20
      1 /*	$NetBSD: aic6915.c,v 1.20 2008/01/19 22:10:16 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the Adaptec AIC-6915 (``Starfire'')
     41  * 10/100 Ethernet controller.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.20 2008/01/19 22:10:16 dyoung Exp $");
     46 
     47 #include "bpfilter.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/callout.h>
     52 #include <sys/mbuf.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/socket.h>
     56 #include <sys/ioctl.h>
     57 #include <sys/errno.h>
     58 #include <sys/device.h>
     59 
     60 #include <uvm/uvm_extern.h>
     61 
     62 #include <net/if.h>
     63 #include <net/if_dl.h>
     64 #include <net/if_media.h>
     65 #include <net/if_ether.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <sys/bus.h>
     72 #include <sys/intr.h>
     73 
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/ic/aic6915reg.h>
     77 #include <dev/ic/aic6915var.h>
     78 
     79 static void	sf_start(struct ifnet *);
     80 static void	sf_watchdog(struct ifnet *);
     81 static int	sf_ioctl(struct ifnet *, u_long, void *);
     82 static int	sf_init(struct ifnet *);
     83 static void	sf_stop(struct ifnet *, int);
     84 
     85 static void	sf_shutdown(void *);
     86 
     87 static void	sf_txintr(struct sf_softc *);
     88 static void	sf_rxintr(struct sf_softc *);
     89 static void	sf_stats_update(struct sf_softc *);
     90 
     91 static void	sf_reset(struct sf_softc *);
     92 static void	sf_macreset(struct sf_softc *);
     93 static void	sf_rxdrain(struct sf_softc *);
     94 static int	sf_add_rxbuf(struct sf_softc *, int);
     95 static uint8_t	sf_read_eeprom(struct sf_softc *, int);
     96 static void	sf_set_filter(struct sf_softc *);
     97 
     98 static int	sf_mii_read(struct device *, int, int);
     99 static void	sf_mii_write(struct device *, int, int, int);
    100 static void	sf_mii_statchg(struct device *);
    101 
    102 static void	sf_tick(void *);
    103 
    104 #define	sf_funcreg_read(sc, reg)					\
    105 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
    106 #define	sf_funcreg_write(sc, reg, val)					\
    107 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
    108 
    109 static inline uint32_t
    110 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
    111 {
    112 
    113 	if (__predict_false(sc->sc_iomapped)) {
    114 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
    115 		    reg);
    116 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
    117 		    SF_IndirectIoDataPort));
    118 	}
    119 
    120 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
    121 }
    122 
    123 static inline void
    124 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
    125 {
    126 
    127 	if (__predict_false(sc->sc_iomapped)) {
    128 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
    129 		    reg);
    130 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
    131 		    val);
    132 		return;
    133 	}
    134 
    135 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
    136 }
    137 
    138 #define	sf_genreg_read(sc, reg)						\
    139 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
    140 #define	sf_genreg_write(sc, reg, val)					\
    141 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
    142 
    143 /*
    144  * sf_attach:
    145  *
    146  *	Attach a Starfire interface to the system.
    147  */
    148 void
    149 sf_attach(struct sf_softc *sc)
    150 {
    151 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    152 	int i, rseg, error;
    153 	bus_dma_segment_t seg;
    154 	u_int8_t enaddr[ETHER_ADDR_LEN];
    155 
    156 	callout_init(&sc->sc_tick_callout, 0);
    157 
    158 	/*
    159 	 * If we're I/O mapped, the functional register handle is
    160 	 * the same as the base handle.  If we're memory mapped,
    161 	 * carve off a chunk of the register space for the functional
    162 	 * registers, to save on arithmetic later.
    163 	 */
    164 	if (sc->sc_iomapped)
    165 		sc->sc_sh_func = sc->sc_sh;
    166 	else {
    167 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
    168 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
    169 			printf("%s: unable to sub-region functional "
    170 			    "registers, error = %d\n", sc->sc_dev.dv_xname,
    171 			    error);
    172 			return;
    173 		}
    174 	}
    175 
    176 	/*
    177 	 * Initialize the transmit threshold for this interface.  The
    178 	 * manual describes the default as 4 * 16 bytes.  We start out
    179 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
    180 	 * several platforms.
    181 	 */
    182 	sc->sc_txthresh = 10;
    183 
    184 	/*
    185 	 * Allocate the control data structures, and create and load the
    186 	 * DMA map for it.
    187 	 */
    188 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    189 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    190 	    BUS_DMA_NOWAIT)) != 0) {
    191 		printf("%s: unable to allocate control data, error = %d\n",
    192 		    sc->sc_dev.dv_xname, error);
    193 		goto fail_0;
    194 	}
    195 
    196 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    197 	    sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
    198 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    199 		printf("%s: unable to map control data, error = %d\n",
    200 		    sc->sc_dev.dv_xname, error);
    201 		goto fail_1;
    202 	}
    203 
    204 	if ((error = bus_dmamap_create(sc->sc_dmat,
    205 	    sizeof(struct sf_control_data), 1,
    206 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
    207 	    &sc->sc_cddmamap)) != 0) {
    208 		printf("%s: unable to create control data DMA map, "
    209 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    210 		goto fail_2;
    211 	}
    212 
    213 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    214 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
    215 	    BUS_DMA_NOWAIT)) != 0) {
    216 		printf("%s: unable to load control data DMA map, error = %d\n",
    217 		    sc->sc_dev.dv_xname, error);
    218 		goto fail_3;
    219 	}
    220 
    221 	/*
    222 	 * Create the transmit buffer DMA maps.
    223 	 */
    224 	for (i = 0; i < SF_NTXDESC; i++) {
    225 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    226 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
    227 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    228 			printf("%s: unable to create tx DMA map %d, "
    229 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    230 			goto fail_4;
    231 		}
    232 	}
    233 
    234 	/*
    235 	 * Create the receive buffer DMA maps.
    236 	 */
    237 	for (i = 0; i < SF_NRXDESC; i++) {
    238 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    239 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
    240 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    241 			printf("%s: unable to create rx DMA map %d, "
    242 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    243 			goto fail_5;
    244 		}
    245 	}
    246 
    247 	/*
    248 	 * Reset the chip to a known state.
    249 	 */
    250 	sf_reset(sc);
    251 
    252 	/*
    253 	 * Read the Ethernet address from the EEPROM.
    254 	 */
    255 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    256 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
    257 
    258 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    259 	    ether_sprintf(enaddr));
    260 
    261 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
    262 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
    263 
    264 	/*
    265 	 * Initialize our media structures and probe the MII.
    266 	 */
    267 	sc->sc_mii.mii_ifp = ifp;
    268 	sc->sc_mii.mii_readreg = sf_mii_read;
    269 	sc->sc_mii.mii_writereg = sf_mii_write;
    270 	sc->sc_mii.mii_statchg = sf_mii_statchg;
    271 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    272 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    273 	    ether_mediastatus);
    274 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    275 	    MII_OFFSET_ANY, 0);
    276 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    277 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    278 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    279 	} else
    280 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    281 
    282 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    283 	ifp->if_softc = sc;
    284 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    285 	ifp->if_ioctl = sf_ioctl;
    286 	ifp->if_start = sf_start;
    287 	ifp->if_watchdog = sf_watchdog;
    288 	ifp->if_init = sf_init;
    289 	ifp->if_stop = sf_stop;
    290 	IFQ_SET_READY(&ifp->if_snd);
    291 
    292 	/*
    293 	 * Attach the interface.
    294 	 */
    295 	if_attach(ifp);
    296 	ether_ifattach(ifp, enaddr);
    297 
    298 	/*
    299 	 * Make sure the interface is shutdown during reboot.
    300 	 */
    301 	sc->sc_sdhook = shutdownhook_establish(sf_shutdown, sc);
    302 	if (sc->sc_sdhook == NULL)
    303 		printf("%s: WARNING: unable to establish shutdown hook\n",
    304 		    sc->sc_dev.dv_xname);
    305 	return;
    306 
    307 	/*
    308 	 * Free any resources we've allocated during the failed attach
    309 	 * attempt.  Do this in reverse order an fall through.
    310 	 */
    311  fail_5:
    312 	for (i = 0; i < SF_NRXDESC; i++) {
    313 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    314 			bus_dmamap_destroy(sc->sc_dmat,
    315 			    sc->sc_rxsoft[i].ds_dmamap);
    316 	}
    317  fail_4:
    318 	for (i = 0; i < SF_NTXDESC; i++) {
    319 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    320 			bus_dmamap_destroy(sc->sc_dmat,
    321 			    sc->sc_txsoft[i].ds_dmamap);
    322 	}
    323 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    324  fail_3:
    325 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    326  fail_2:
    327 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
    328 	    sizeof(struct sf_control_data));
    329  fail_1:
    330 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    331  fail_0:
    332 	return;
    333 }
    334 
    335 /*
    336  * sf_shutdown:
    337  *
    338  *	Shutdown hook -- make sure the interface is stopped at reboot.
    339  */
    340 static void
    341 sf_shutdown(void *arg)
    342 {
    343 	struct sf_softc *sc = arg;
    344 
    345 	sf_stop(&sc->sc_ethercom.ec_if, 1);
    346 }
    347 
    348 /*
    349  * sf_start:		[ifnet interface function]
    350  *
    351  *	Start packet transmission on the interface.
    352  */
    353 static void
    354 sf_start(struct ifnet *ifp)
    355 {
    356 	struct sf_softc *sc = ifp->if_softc;
    357 	struct mbuf *m0, *m;
    358 	struct sf_txdesc0 *txd;
    359 	struct sf_descsoft *ds;
    360 	bus_dmamap_t dmamap;
    361 	int error, producer, last = -1, opending, seg;
    362 
    363 	/*
    364 	 * Remember the previous number of pending transmits.
    365 	 */
    366 	opending = sc->sc_txpending;
    367 
    368 	/*
    369 	 * Find out where we're sitting.
    370 	 */
    371 	producer = SF_TXDINDEX_TO_HOST(
    372 	    TDQPI_HiPrTxProducerIndex_get(
    373 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
    374 
    375 	/*
    376 	 * Loop through the send queue, setting up transmit descriptors
    377 	 * until we drain the queue, or use up all available transmit
    378 	 * descriptors.  Leave a blank one at the end for sanity's sake.
    379 	 */
    380 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
    381 		/*
    382 		 * Grab a packet off the queue.
    383 		 */
    384 		IFQ_POLL(&ifp->if_snd, m0);
    385 		if (m0 == NULL)
    386 			break;
    387 		m = NULL;
    388 
    389 		/*
    390 		 * Get the transmit descriptor.
    391 		 */
    392 		txd = &sc->sc_txdescs[producer];
    393 		ds = &sc->sc_txsoft[producer];
    394 		dmamap = ds->ds_dmamap;
    395 
    396 		/*
    397 		 * Load the DMA map.  If this fails, the packet either
    398 		 * didn't fit in the allotted number of frags, or we were
    399 		 * short on resources.  In this case, we'll copy and try
    400 		 * again.
    401 		 */
    402 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    403 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    404 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    405 			if (m == NULL) {
    406 				printf("%s: unable to allocate Tx mbuf\n",
    407 				    sc->sc_dev.dv_xname);
    408 				break;
    409 			}
    410 			if (m0->m_pkthdr.len > MHLEN) {
    411 				MCLGET(m, M_DONTWAIT);
    412 				if ((m->m_flags & M_EXT) == 0) {
    413 					printf("%s: unable to allocate Tx "
    414 					    "cluster\n", sc->sc_dev.dv_xname);
    415 					m_freem(m);
    416 					break;
    417 				}
    418 			}
    419 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    420 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    421 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    422 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    423 			if (error) {
    424 				printf("%s: unable to load Tx buffer, "
    425 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    426 				break;
    427 			}
    428 		}
    429 
    430 		/*
    431 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    432 		 */
    433 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    434 		if (m != NULL) {
    435 			m_freem(m0);
    436 			m0 = m;
    437 		}
    438 
    439 		/* Initialize the descriptor. */
    440 		txd->td_word0 =
    441 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
    442 		if (producer == (SF_NTXDESC - 1))
    443 			txd->td_word0 |= TD_W0_END;
    444 		txd->td_word1 = htole32(dmamap->dm_nsegs);
    445 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    446 			txd->td_frags[seg].fr_addr =
    447 			    htole32(dmamap->dm_segs[seg].ds_addr);
    448 			txd->td_frags[seg].fr_len =
    449 			    htole32(dmamap->dm_segs[seg].ds_len);
    450 		}
    451 
    452 		/* Sync the descriptor and the DMA map. */
    453 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
    454 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    455 		    BUS_DMASYNC_PREWRITE);
    456 
    457 		/*
    458 		 * Store a pointer to the packet so we can free it later.
    459 		 */
    460 		ds->ds_mbuf = m0;
    461 
    462 		/* Advance the Tx pointer. */
    463 		sc->sc_txpending++;
    464 		last = producer;
    465 		producer = SF_NEXTTX(producer);
    466 
    467 #if NBPFILTER > 0
    468 		/*
    469 		 * Pass the packet to any BPF listeners.
    470 		 */
    471 		if (ifp->if_bpf)
    472 			bpf_mtap(ifp->if_bpf, m0);
    473 #endif
    474 	}
    475 
    476 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
    477 		/* No more slots left; notify upper layer. */
    478 		ifp->if_flags |= IFF_OACTIVE;
    479 	}
    480 
    481 	if (sc->sc_txpending != opending) {
    482 		KASSERT(last != -1);
    483 		/*
    484 		 * We enqueued packets.  Cause a transmit interrupt to
    485 		 * happen on the last packet we enqueued, and give the
    486 		 * new descriptors to the chip by writing the new
    487 		 * producer index.
    488 		 */
    489 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
    490 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
    491 
    492 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
    493 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
    494 
    495 		/* Set a watchdog timer in case the chip flakes out. */
    496 		ifp->if_timer = 5;
    497 	}
    498 }
    499 
    500 /*
    501  * sf_watchdog:		[ifnet interface function]
    502  *
    503  *	Watchdog timer handler.
    504  */
    505 static void
    506 sf_watchdog(struct ifnet *ifp)
    507 {
    508 	struct sf_softc *sc = ifp->if_softc;
    509 
    510 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    511 	ifp->if_oerrors++;
    512 
    513 	(void) sf_init(ifp);
    514 
    515 	/* Try to get more packets going. */
    516 	sf_start(ifp);
    517 }
    518 
    519 /*
    520  * sf_ioctl:		[ifnet interface function]
    521  *
    522  *	Handle control requests from the operator.
    523  */
    524 static int
    525 sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    526 {
    527 	struct sf_softc *sc = ifp->if_softc;
    528 	int s, error;
    529 
    530 	s = splnet();
    531 
    532 	error = ether_ioctl(ifp, cmd, data);
    533 	if (error == ENETRESET) {
    534 		/*
    535 		 * Multicast list has changed; set the hardware filter
    536 		 * accordingly.
    537 		 */
    538 		if (ifp->if_flags & IFF_RUNNING)
    539 			sf_set_filter(sc);
    540 		error = 0;
    541 	}
    542 
    543 	/* Try to get more packets going. */
    544 	sf_start(ifp);
    545 
    546 	splx(s);
    547 	return (error);
    548 }
    549 
    550 /*
    551  * sf_intr:
    552  *
    553  *	Interrupt service routine.
    554  */
    555 int
    556 sf_intr(void *arg)
    557 {
    558 	struct sf_softc *sc = arg;
    559 	uint32_t isr;
    560 	int handled = 0, wantinit = 0;
    561 
    562 	for (;;) {
    563 		/* Reading clears all interrupts we're interested in. */
    564 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
    565 		if ((isr & IS_PCIPadInt) == 0)
    566 			break;
    567 
    568 		handled = 1;
    569 
    570 		/* Handle receive interrupts. */
    571 		if (isr & IS_RxQ1DoneInt)
    572 			sf_rxintr(sc);
    573 
    574 		/* Handle transmit completion interrupts. */
    575 		if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
    576 			sf_txintr(sc);
    577 
    578 		/* Handle abnormal interrupts. */
    579 		if (isr & IS_AbnormalInterrupt) {
    580 			/* Statistics. */
    581 			if (isr & IS_StatisticWrapInt)
    582 				sf_stats_update(sc);
    583 
    584 			/* DMA errors. */
    585 			if (isr & IS_DmaErrInt) {
    586 				wantinit = 1;
    587 				printf("%s: WARNING: DMA error\n",
    588 				    sc->sc_dev.dv_xname);
    589 			}
    590 
    591 			/* Transmit FIFO underruns. */
    592 			if (isr & IS_TxDataLowInt) {
    593 				if (sc->sc_txthresh < 0xff)
    594 					sc->sc_txthresh++;
    595 				printf("%s: transmit FIFO underrun, new "
    596 				    "threshold: %d bytes\n",
    597 				    sc->sc_dev.dv_xname,
    598 				    sc->sc_txthresh * 16);
    599 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
    600 				    sc->sc_TransmitFrameCSR |
    601 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
    602 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
    603 				    sc->sc_TxDescQueueCtrl |
    604 				    TDQC_TxHighPriorityFifoThreshold(
    605 							sc->sc_txthresh));
    606 			}
    607 		}
    608 	}
    609 
    610 	if (handled) {
    611 		/* Reset the interface, if necessary. */
    612 		if (wantinit)
    613 			sf_init(&sc->sc_ethercom.ec_if);
    614 
    615 		/* Try and get more packets going. */
    616 		sf_start(&sc->sc_ethercom.ec_if);
    617 	}
    618 
    619 	return (handled);
    620 }
    621 
    622 /*
    623  * sf_txintr:
    624  *
    625  *	Helper -- handle transmit completion interrupts.
    626  */
    627 static void
    628 sf_txintr(struct sf_softc *sc)
    629 {
    630 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    631 	struct sf_descsoft *ds;
    632 	uint32_t cqci, tcd;
    633 	int consumer, producer, txidx;
    634 
    635  try_again:
    636 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
    637 
    638 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
    639 	producer = CQPI_TxCompletionProducerIndex_get(
    640 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
    641 
    642 	if (consumer == producer)
    643 		return;
    644 
    645 	ifp->if_flags &= ~IFF_OACTIVE;
    646 
    647 	while (consumer != producer) {
    648 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
    649 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
    650 
    651 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
    652 #ifdef DIAGNOSTIC
    653 		if ((tcd & TCD_PR) == 0)
    654 			printf("%s: Tx queue mismatch, index %d\n",
    655 			    sc->sc_dev.dv_xname, txidx);
    656 #endif
    657 		/*
    658 		 * NOTE: stats are updated later.  We're just
    659 		 * releasing packets that have been DMA'd to
    660 		 * the chip.
    661 		 */
    662 		ds = &sc->sc_txsoft[txidx];
    663 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
    664 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    665 		    0, ds->ds_dmamap->dm_mapsize,
    666 		    BUS_DMASYNC_POSTWRITE);
    667 		m_freem(ds->ds_mbuf);
    668 		ds->ds_mbuf = NULL;
    669 
    670 		consumer = SF_NEXTTCD(consumer);
    671 		sc->sc_txpending--;
    672 	}
    673 
    674 	/* XXXJRT -- should be KDASSERT() */
    675 	KASSERT(sc->sc_txpending >= 0);
    676 
    677 	/* If all packets are done, cancel the watchdog timer. */
    678 	if (sc->sc_txpending == 0)
    679 		ifp->if_timer = 0;
    680 
    681 	/* Update the consumer index. */
    682 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
    683 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
    684 	     CQCI_TxCompletionConsumerIndex(consumer));
    685 
    686 	/* Double check for new completions. */
    687 	goto try_again;
    688 }
    689 
    690 /*
    691  * sf_rxintr:
    692  *
    693  *	Helper -- handle receive interrupts.
    694  */
    695 static void
    696 sf_rxintr(struct sf_softc *sc)
    697 {
    698 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    699 	struct sf_descsoft *ds;
    700 	struct sf_rcd_full *rcd;
    701 	struct mbuf *m;
    702 	uint32_t cqci, word0;
    703 	int consumer, producer, bufproducer, rxidx, len;
    704 
    705  try_again:
    706 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
    707 
    708 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
    709 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
    710 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
    711 	bufproducer = RXQ1P_RxDescQ1Producer_get(
    712 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
    713 
    714 	if (consumer == producer)
    715 		return;
    716 
    717 	while (consumer != producer) {
    718 		rcd = &sc->sc_rxcomp[consumer];
    719 		SF_CDRXCSYNC(sc, consumer,
    720 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    721 		SF_CDRXCSYNC(sc, consumer,
    722 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    723 
    724 		word0 = le32toh(rcd->rcd_word0);
    725 		rxidx = RCD_W0_EndIndex(word0);
    726 
    727 		ds = &sc->sc_rxsoft[rxidx];
    728 
    729 		consumer = SF_NEXTRCD(consumer);
    730 		bufproducer = SF_NEXTRX(bufproducer);
    731 
    732 		if ((word0 & RCD_W0_OK) == 0) {
    733 			SF_INIT_RXDESC(sc, rxidx);
    734 			continue;
    735 		}
    736 
    737 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    738 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    739 
    740 		/*
    741 		 * No errors; receive the packet.  Note that we have
    742 		 * configured the Starfire to NOT transfer the CRC
    743 		 * with the packet.
    744 		 */
    745 		len = RCD_W0_Length(word0);
    746 
    747 #ifdef __NO_STRICT_ALIGNMENT
    748 		/*
    749 		 * Allocate a new mbuf cluster.  If that fails, we are
    750 		 * out of memory, and must drop the packet and recycle
    751 		 * the buffer that's already attached to this descriptor.
    752 		 */
    753 		m = ds->ds_mbuf;
    754 		if (sf_add_rxbuf(sc, rxidx) != 0) {
    755 			ifp->if_ierrors++;
    756 			SF_INIT_RXDESC(sc, rxidx);
    757 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    758 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    759 			continue;
    760 		}
    761 #else
    762 		/*
    763 		 * The Starfire's receive buffer must be 4-byte aligned.
    764 		 * But this means that the data after the Ethernet header
    765 		 * is misaligned.  We must allocate a new buffer and
    766 		 * copy the data, shifted forward 2 bytes.
    767 		 */
    768 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    769 		if (m == NULL) {
    770  dropit:
    771 			ifp->if_ierrors++;
    772 			SF_INIT_RXDESC(sc, rxidx);
    773 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    774 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    775 			continue;
    776 		}
    777 		if (len > (MHLEN - 2)) {
    778 			MCLGET(m, M_DONTWAIT);
    779 			if ((m->m_flags & M_EXT) == 0) {
    780 				m_freem(m);
    781 				goto dropit;
    782 			}
    783 		}
    784 		m->m_data += 2;
    785 
    786 		/*
    787 		 * Note that we use cluster for incoming frames, so the
    788 		 * buffer is virtually contiguous.
    789 		 */
    790 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
    791 
    792 		/* Allow the receive descriptor to continue using its mbuf. */
    793 		SF_INIT_RXDESC(sc, rxidx);
    794 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    795 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    796 #endif /* __NO_STRICT_ALIGNMENT */
    797 
    798 		m->m_pkthdr.rcvif = ifp;
    799 		m->m_pkthdr.len = m->m_len = len;
    800 
    801 #if NBPFILTER > 0
    802 		/*
    803 		 * Pass this up to any BPF listeners.
    804 		 */
    805 		if (ifp->if_bpf)
    806 			bpf_mtap(ifp->if_bpf, m);
    807 #endif /* NBPFILTER > 0 */
    808 
    809 		/* Pass it on. */
    810 		(*ifp->if_input)(ifp, m);
    811 	}
    812 
    813 	/* Update the chip's pointers. */
    814 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
    815 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
    816 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
    817 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
    818 	    RXQ1P_RxDescQ1Producer(bufproducer));
    819 
    820 	/* Double-check for any new completions. */
    821 	goto try_again;
    822 }
    823 
    824 /*
    825  * sf_tick:
    826  *
    827  *	One second timer, used to tick the MII and update stats.
    828  */
    829 static void
    830 sf_tick(void *arg)
    831 {
    832 	struct sf_softc *sc = arg;
    833 	int s;
    834 
    835 	s = splnet();
    836 	mii_tick(&sc->sc_mii);
    837 	sf_stats_update(sc);
    838 	splx(s);
    839 
    840 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
    841 }
    842 
    843 /*
    844  * sf_stats_update:
    845  *
    846  *	Read the statitistics counters.
    847  */
    848 static void
    849 sf_stats_update(struct sf_softc *sc)
    850 {
    851 	struct sf_stats stats;
    852 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    853 	uint32_t *p;
    854 	u_int i;
    855 
    856 	p = &stats.TransmitOKFrames;
    857 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
    858 		*p++ = sf_genreg_read(sc,
    859 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
    860 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
    861 	}
    862 
    863 	ifp->if_opackets += stats.TransmitOKFrames;
    864 
    865 	ifp->if_collisions += stats.SingleCollisionFrames +
    866 	    stats.MultipleCollisionFrames;
    867 
    868 	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
    869 	    stats.TransmitAbortDueToExcessingDeferral +
    870 	    stats.FramesLostDueToInternalTransmitErrors;
    871 
    872 	ifp->if_ipackets += stats.ReceiveOKFrames;
    873 
    874 	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
    875 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
    876 	    stats.ReceiveFramesJabbersError +
    877 	    stats.FramesLostDueToInternalReceiveErrors;
    878 }
    879 
    880 /*
    881  * sf_reset:
    882  *
    883  *	Perform a soft reset on the Starfire.
    884  */
    885 static void
    886 sf_reset(struct sf_softc *sc)
    887 {
    888 	int i;
    889 
    890 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
    891 
    892 	sf_macreset(sc);
    893 
    894 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
    895 	for (i = 0; i < 1000; i++) {
    896 		delay(10);
    897 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
    898 		     PDC_SoftReset) == 0)
    899 			break;
    900 	}
    901 
    902 	if (i == 1000) {
    903 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    904 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
    905 	}
    906 
    907 	delay(1000);
    908 }
    909 
    910 /*
    911  * sf_macreset:
    912  *
    913  *	Reset the MAC portion of the Starfire.
    914  */
    915 static void
    916 sf_macreset(struct sf_softc *sc)
    917 {
    918 
    919 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
    920 	delay(1000);
    921 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
    922 }
    923 
    924 /*
    925  * sf_init:		[ifnet interface function]
    926  *
    927  *	Initialize the interface.  Must be called at splnet().
    928  */
    929 static int
    930 sf_init(struct ifnet *ifp)
    931 {
    932 	struct sf_softc *sc = ifp->if_softc;
    933 	struct sf_descsoft *ds;
    934 	int error = 0;
    935 	u_int i;
    936 
    937 	/*
    938 	 * Cancel any pending I/O.
    939 	 */
    940 	sf_stop(ifp, 0);
    941 
    942 	/*
    943 	 * Reset the Starfire to a known state.
    944 	 */
    945 	sf_reset(sc);
    946 
    947 	/* Clear the stat counters. */
    948 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
    949 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
    950 
    951 	/*
    952 	 * Initialize the transmit descriptor ring.
    953 	 */
    954 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    955 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
    956 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
    957 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
    958 
    959 	/*
    960 	 * Initialize the transmit completion ring.
    961 	 */
    962 	for (i = 0; i < SF_NTCD; i++) {
    963 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
    964 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    965 	}
    966 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
    967 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
    968 
    969 	/*
    970 	 * Initialize the receive descriptor ring.
    971 	 */
    972 	for (i = 0; i < SF_NRXDESC; i++) {
    973 		ds = &sc->sc_rxsoft[i];
    974 		if (ds->ds_mbuf == NULL) {
    975 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
    976 				printf("%s: unable to allocate or map rx "
    977 				    "buffer %d, error = %d\n",
    978 				    sc->sc_dev.dv_xname, i, error);
    979 				/*
    980 				 * XXX Should attempt to run with fewer receive
    981 				 * XXX buffers instead of just failing.
    982 				 */
    983 				sf_rxdrain(sc);
    984 				goto out;
    985 			}
    986 		} else
    987 			SF_INIT_RXDESC(sc, i);
    988 	}
    989 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
    990 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
    991 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
    992 
    993 	/*
    994 	 * Initialize the receive completion ring.
    995 	 */
    996 	for (i = 0; i < SF_NRCD; i++) {
    997 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
    998 		sc->sc_rxcomp[i].rcd_word1 = 0;
    999 		sc->sc_rxcomp[i].rcd_word2 = 0;
   1000 		sc->sc_rxcomp[i].rcd_timestamp = 0;
   1001 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1002 	}
   1003 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
   1004 	    RCQ1C_RxCompletionQ1Type(3));
   1005 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
   1006 
   1007 	/*
   1008 	 * Initialize the Tx CSR.
   1009 	 */
   1010 	sc->sc_TransmitFrameCSR = 0;
   1011 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
   1012 	    sc->sc_TransmitFrameCSR |
   1013 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
   1014 
   1015 	/*
   1016 	 * Initialize the Tx descriptor control register.
   1017 	 */
   1018 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
   1019 	    TDQC_TxDmaBurstSize(4) |	/* default */
   1020 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
   1021 	    TDQC_TxDescType(0);
   1022 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
   1023 	    sc->sc_TxDescQueueCtrl |
   1024 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
   1025 
   1026 	/*
   1027 	 * Initialize the Rx descriptor control registers.
   1028 	 */
   1029 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
   1030 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
   1031 	    RDQ1C_RxDescSpacing(0));
   1032 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
   1033 
   1034 	/*
   1035 	 * Initialize the Tx descriptor producer indices.
   1036 	 */
   1037 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
   1038 	    TDQPI_HiPrTxProducerIndex(0) |
   1039 	    TDQPI_LoPrTxProducerIndex(0));
   1040 
   1041 	/*
   1042 	 * Initialize the Rx descriptor producer indices.
   1043 	 */
   1044 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
   1045 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
   1046 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
   1047 	    RXQ2P_RxDescQ2Producer(0));
   1048 
   1049 	/*
   1050 	 * Initialize the Tx and Rx completion queue consumer indices.
   1051 	 */
   1052 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
   1053 	    CQCI_TxCompletionConsumerIndex(0) |
   1054 	    CQCI_RxCompletionQ1ConsumerIndex(0));
   1055 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
   1056 
   1057 	/*
   1058 	 * Initialize the Rx DMA control register.
   1059 	 */
   1060 	sf_funcreg_write(sc, SF_RxDmaCtrl,
   1061 	    RDC_RxHighPriorityThreshold(6) |	/* default */
   1062 	    RDC_RxBurstSize(4));		/* default */
   1063 
   1064 	/*
   1065 	 * Set the receive filter.
   1066 	 */
   1067 	sc->sc_RxAddressFilteringCtl = 0;
   1068 	sf_set_filter(sc);
   1069 
   1070 	/*
   1071 	 * Set MacConfig1.  When we set the media, MacConfig1 will
   1072 	 * actually be written and the MAC part reset.
   1073 	 */
   1074 	sc->sc_MacConfig1 = MC1_PadEn;
   1075 
   1076 	/*
   1077 	 * Set the media.
   1078 	 */
   1079 	if ((error = ether_mediachange(ifp)) != 0)
   1080 		goto out;
   1081 
   1082 	/*
   1083 	 * Initialize the interrupt register.
   1084 	 */
   1085 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
   1086 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
   1087 	    IS_StatisticWrapInt;
   1088 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
   1089 
   1090 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
   1091 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
   1092 
   1093 	/*
   1094 	 * Start the transmit and receive processes.
   1095 	 */
   1096 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
   1097 	    GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
   1098 
   1099 	/* Start the on second clock. */
   1100 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
   1101 
   1102 	/*
   1103 	 * Note that the interface is now running.
   1104 	 */
   1105 	ifp->if_flags |= IFF_RUNNING;
   1106 	ifp->if_flags &= ~IFF_OACTIVE;
   1107 
   1108  out:
   1109 	if (error) {
   1110 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1111 		ifp->if_timer = 0;
   1112 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1113 	}
   1114 	return (error);
   1115 }
   1116 
   1117 /*
   1118  * sf_rxdrain:
   1119  *
   1120  *	Drain the receive queue.
   1121  */
   1122 static void
   1123 sf_rxdrain(struct sf_softc *sc)
   1124 {
   1125 	struct sf_descsoft *ds;
   1126 	int i;
   1127 
   1128 	for (i = 0; i < SF_NRXDESC; i++) {
   1129 		ds = &sc->sc_rxsoft[i];
   1130 		if (ds->ds_mbuf != NULL) {
   1131 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1132 			m_freem(ds->ds_mbuf);
   1133 			ds->ds_mbuf = NULL;
   1134 		}
   1135 	}
   1136 }
   1137 
   1138 /*
   1139  * sf_stop:		[ifnet interface function]
   1140  *
   1141  *	Stop transmission on the interface.
   1142  */
   1143 static void
   1144 sf_stop(struct ifnet *ifp, int disable)
   1145 {
   1146 	struct sf_softc *sc = ifp->if_softc;
   1147 	struct sf_descsoft *ds;
   1148 	int i;
   1149 
   1150 	/* Stop the one second clock. */
   1151 	callout_stop(&sc->sc_tick_callout);
   1152 
   1153 	/* Down the MII. */
   1154 	mii_down(&sc->sc_mii);
   1155 
   1156 	/* Disable interrupts. */
   1157 	sf_funcreg_write(sc, SF_InterruptEn, 0);
   1158 
   1159 	/* Stop the transmit and receive processes. */
   1160 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
   1161 
   1162 	/*
   1163 	 * Release any queued transmit buffers.
   1164 	 */
   1165 	for (i = 0; i < SF_NTXDESC; i++) {
   1166 		ds = &sc->sc_txsoft[i];
   1167 		if (ds->ds_mbuf != NULL) {
   1168 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1169 			m_freem(ds->ds_mbuf);
   1170 			ds->ds_mbuf = NULL;
   1171 		}
   1172 	}
   1173 
   1174 	if (disable)
   1175 		sf_rxdrain(sc);
   1176 
   1177 	/*
   1178 	 * Mark the interface down and cancel the watchdog timer.
   1179 	 */
   1180 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1181 	ifp->if_timer = 0;
   1182 }
   1183 
   1184 /*
   1185  * sf_read_eeprom:
   1186  *
   1187  *	Read from the Starfire EEPROM.
   1188  */
   1189 static uint8_t
   1190 sf_read_eeprom(struct sf_softc *sc, int offset)
   1191 {
   1192 	uint32_t reg;
   1193 
   1194 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
   1195 
   1196 	return ((reg >> (8 * (offset & 3))) & 0xff);
   1197 }
   1198 
   1199 /*
   1200  * sf_add_rxbuf:
   1201  *
   1202  *	Add a receive buffer to the indicated descriptor.
   1203  */
   1204 static int
   1205 sf_add_rxbuf(struct sf_softc *sc, int idx)
   1206 {
   1207 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
   1208 	struct mbuf *m;
   1209 	int error;
   1210 
   1211 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1212 	if (m == NULL)
   1213 		return (ENOBUFS);
   1214 
   1215 	MCLGET(m, M_DONTWAIT);
   1216 	if ((m->m_flags & M_EXT) == 0) {
   1217 		m_freem(m);
   1218 		return (ENOBUFS);
   1219 	}
   1220 
   1221 	if (ds->ds_mbuf != NULL)
   1222 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1223 
   1224 	ds->ds_mbuf = m;
   1225 
   1226 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1227 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1228 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1229 	if (error) {
   1230 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1231 		    sc->sc_dev.dv_xname, idx, error);
   1232 		panic("sf_add_rxbuf"); /* XXX */
   1233 	}
   1234 
   1235 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1236 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1237 
   1238 	SF_INIT_RXDESC(sc, idx);
   1239 
   1240 	return (0);
   1241 }
   1242 
   1243 static void
   1244 sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
   1245 {
   1246 	uint32_t reg0, reg1, reg2;
   1247 
   1248 	reg0 = enaddr[5] | (enaddr[4] << 8);
   1249 	reg1 = enaddr[3] | (enaddr[2] << 8);
   1250 	reg2 = enaddr[1] | (enaddr[0] << 8);
   1251 
   1252 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
   1253 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
   1254 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
   1255 }
   1256 
   1257 static void
   1258 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
   1259 {
   1260 	uint32_t hash, slot, reg;
   1261 
   1262 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
   1263 	slot = hash >> 4;
   1264 
   1265 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
   1266 	reg |= 1 << (hash & 0xf);
   1267 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
   1268 }
   1269 
   1270 /*
   1271  * sf_set_filter:
   1272  *
   1273  *	Set the Starfire receive filter.
   1274  */
   1275 static void
   1276 sf_set_filter(struct sf_softc *sc)
   1277 {
   1278 	struct ethercom *ec = &sc->sc_ethercom;
   1279 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1280 	struct ether_multi *enm;
   1281 	struct ether_multistep step;
   1282 	int i;
   1283 
   1284 	/* Start by clearing the perfect and hash tables. */
   1285 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
   1286 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
   1287 
   1288 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
   1289 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
   1290 
   1291 	/*
   1292 	 * Clear the perfect and hash mode bits.
   1293 	 */
   1294 	sc->sc_RxAddressFilteringCtl &=
   1295 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
   1296 
   1297 	if (ifp->if_flags & IFF_BROADCAST)
   1298 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
   1299 	else
   1300 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
   1301 
   1302 	if (ifp->if_flags & IFF_PROMISC) {
   1303 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
   1304 		goto allmulti;
   1305 	} else
   1306 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
   1307 
   1308 	/*
   1309 	 * Set normal perfect filtering mode.
   1310 	 */
   1311 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
   1312 
   1313 	/*
   1314 	 * First, write the station address to the perfect filter
   1315 	 * table.
   1316 	 */
   1317 	sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
   1318 
   1319 	/*
   1320 	 * Now set the hash bits for each multicast address in our
   1321 	 * list.
   1322 	 */
   1323 	ETHER_FIRST_MULTI(step, ec, enm);
   1324 	if (enm == NULL)
   1325 		goto done;
   1326 	while (enm != NULL) {
   1327 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1328 			/*
   1329 			 * We must listen to a range of multicast addresses.
   1330 			 * For now, just accept all multicasts, rather than
   1331 			 * trying to set only those filter bits needed to match
   1332 			 * the range.  (At this time, the only use of address
   1333 			 * ranges is for IP multicast routing, for which the
   1334 			 * range is big enough to require all bits set.)
   1335 			 */
   1336 			goto allmulti;
   1337 		}
   1338 		sf_set_filter_hash(sc, enm->enm_addrlo);
   1339 		ETHER_NEXT_MULTI(step, enm);
   1340 	}
   1341 
   1342 	/*
   1343 	 * Set "hash only multicast dest, match regardless of VLAN ID".
   1344 	 */
   1345 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
   1346 	goto done;
   1347 
   1348  allmulti:
   1349 	/*
   1350 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
   1351 	 */
   1352 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
   1353 	ifp->if_flags |= IFF_ALLMULTI;
   1354 
   1355  done:
   1356 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
   1357 	    sc->sc_RxAddressFilteringCtl);
   1358 }
   1359 
   1360 /*
   1361  * sf_mii_read:		[mii interface function]
   1362  *
   1363  *	Read from the MII.
   1364  */
   1365 static int
   1366 sf_mii_read(struct device *self, int phy, int reg)
   1367 {
   1368 	struct sf_softc *sc = (void *) self;
   1369 	uint32_t v;
   1370 	int i;
   1371 
   1372 	for (i = 0; i < 1000; i++) {
   1373 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
   1374 		if (v & MiiDataValid)
   1375 			break;
   1376 		delay(1);
   1377 	}
   1378 
   1379 	if ((v & MiiDataValid) == 0)
   1380 		return (0);
   1381 
   1382 	if (MiiRegDataPort(v) == 0xffff)
   1383 		return (0);
   1384 
   1385 	return (MiiRegDataPort(v));
   1386 }
   1387 
   1388 /*
   1389  * sf_mii_write:	[mii interface function]
   1390  *
   1391  *	Write to the MII.
   1392  */
   1393 static void
   1394 sf_mii_write(struct device *self, int phy, int reg, int val)
   1395 {
   1396 	struct sf_softc *sc = (void *) self;
   1397 	int i;
   1398 
   1399 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
   1400 
   1401 	for (i = 0; i < 1000; i++) {
   1402 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
   1403 		     MiiBusy) == 0)
   1404 			return;
   1405 		delay(1);
   1406 	}
   1407 
   1408 	printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
   1409 }
   1410 
   1411 /*
   1412  * sf_mii_statchg:	[mii interface function]
   1413  *
   1414  *	Callback from the PHY when the media changes.
   1415  */
   1416 static void
   1417 sf_mii_statchg(struct device *self)
   1418 {
   1419 	struct sf_softc *sc = (void *) self;
   1420 	uint32_t ipg;
   1421 
   1422 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1423 		sc->sc_MacConfig1 |= MC1_FullDuplex;
   1424 		ipg = 0x15;
   1425 	} else {
   1426 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
   1427 		ipg = 0x11;
   1428 	}
   1429 
   1430 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
   1431 	sf_macreset(sc);
   1432 
   1433 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
   1434 }
   1435