aic6915.c revision 1.27 1 /* $NetBSD: aic6915.c,v 1.27 2010/04/05 07:19:33 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the Adaptec AIC-6915 (``Starfire'')
34 * 10/100 Ethernet controller.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.27 2010/04/05 07:19:33 joerg Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58
59 #include <net/bpf.h>
60
61 #include <sys/bus.h>
62 #include <sys/intr.h>
63
64 #include <dev/mii/miivar.h>
65
66 #include <dev/ic/aic6915reg.h>
67 #include <dev/ic/aic6915var.h>
68
69 static void sf_start(struct ifnet *);
70 static void sf_watchdog(struct ifnet *);
71 static int sf_ioctl(struct ifnet *, u_long, void *);
72 static int sf_init(struct ifnet *);
73 static void sf_stop(struct ifnet *, int);
74
75 static bool sf_shutdown(device_t, int);
76
77 static void sf_txintr(struct sf_softc *);
78 static void sf_rxintr(struct sf_softc *);
79 static void sf_stats_update(struct sf_softc *);
80
81 static void sf_reset(struct sf_softc *);
82 static void sf_macreset(struct sf_softc *);
83 static void sf_rxdrain(struct sf_softc *);
84 static int sf_add_rxbuf(struct sf_softc *, int);
85 static uint8_t sf_read_eeprom(struct sf_softc *, int);
86 static void sf_set_filter(struct sf_softc *);
87
88 static int sf_mii_read(device_t, int, int);
89 static void sf_mii_write(device_t, int, int, int);
90 static void sf_mii_statchg(device_t);
91
92 static void sf_tick(void *);
93
94 #define sf_funcreg_read(sc, reg) \
95 bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
96 #define sf_funcreg_write(sc, reg, val) \
97 bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
98
99 static inline uint32_t
100 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
101 {
102
103 if (__predict_false(sc->sc_iomapped)) {
104 bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
105 reg);
106 return (bus_space_read_4(sc->sc_st, sc->sc_sh,
107 SF_IndirectIoDataPort));
108 }
109
110 return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
111 }
112
113 static inline void
114 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
115 {
116
117 if (__predict_false(sc->sc_iomapped)) {
118 bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
119 reg);
120 bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
121 val);
122 return;
123 }
124
125 bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
126 }
127
128 #define sf_genreg_read(sc, reg) \
129 sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
130 #define sf_genreg_write(sc, reg, val) \
131 sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
132
133 /*
134 * sf_attach:
135 *
136 * Attach a Starfire interface to the system.
137 */
138 void
139 sf_attach(struct sf_softc *sc)
140 {
141 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
142 int i, rseg, error;
143 bus_dma_segment_t seg;
144 u_int8_t enaddr[ETHER_ADDR_LEN];
145
146 callout_init(&sc->sc_tick_callout, 0);
147
148 /*
149 * If we're I/O mapped, the functional register handle is
150 * the same as the base handle. If we're memory mapped,
151 * carve off a chunk of the register space for the functional
152 * registers, to save on arithmetic later.
153 */
154 if (sc->sc_iomapped)
155 sc->sc_sh_func = sc->sc_sh;
156 else {
157 if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
158 SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
159 aprint_error_dev(&sc->sc_dev, "unable to sub-region functional "
160 "registers, error = %d\n",
161 error);
162 return;
163 }
164 }
165
166 /*
167 * Initialize the transmit threshold for this interface. The
168 * manual describes the default as 4 * 16 bytes. We start out
169 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
170 * several platforms.
171 */
172 sc->sc_txthresh = 10;
173
174 /*
175 * Allocate the control data structures, and create and load the
176 * DMA map for it.
177 */
178 if ((error = bus_dmamem_alloc(sc->sc_dmat,
179 sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
180 BUS_DMA_NOWAIT)) != 0) {
181 aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
182 error);
183 goto fail_0;
184 }
185
186 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
187 sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
188 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
189 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
190 error);
191 goto fail_1;
192 }
193
194 if ((error = bus_dmamap_create(sc->sc_dmat,
195 sizeof(struct sf_control_data), 1,
196 sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
197 &sc->sc_cddmamap)) != 0) {
198 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
199 "error = %d\n", error);
200 goto fail_2;
201 }
202
203 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
204 sc->sc_control_data, sizeof(struct sf_control_data), NULL,
205 BUS_DMA_NOWAIT)) != 0) {
206 aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
207 error);
208 goto fail_3;
209 }
210
211 /*
212 * Create the transmit buffer DMA maps.
213 */
214 for (i = 0; i < SF_NTXDESC; i++) {
215 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
216 SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
217 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
218 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
219 "error = %d\n", i, error);
220 goto fail_4;
221 }
222 }
223
224 /*
225 * Create the receive buffer DMA maps.
226 */
227 for (i = 0; i < SF_NRXDESC; i++) {
228 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
229 MCLBYTES, 0, BUS_DMA_NOWAIT,
230 &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
231 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
232 "error = %d\n", i, error);
233 goto fail_5;
234 }
235 }
236
237 /*
238 * Reset the chip to a known state.
239 */
240 sf_reset(sc);
241
242 /*
243 * Read the Ethernet address from the EEPROM.
244 */
245 for (i = 0; i < ETHER_ADDR_LEN; i++)
246 enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
247
248 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
249 ether_sprintf(enaddr));
250
251 if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
252 printf("%s: 64-bit PCI slot detected\n", device_xname(&sc->sc_dev));
253
254 /*
255 * Initialize our media structures and probe the MII.
256 */
257 sc->sc_mii.mii_ifp = ifp;
258 sc->sc_mii.mii_readreg = sf_mii_read;
259 sc->sc_mii.mii_writereg = sf_mii_write;
260 sc->sc_mii.mii_statchg = sf_mii_statchg;
261 sc->sc_ethercom.ec_mii = &sc->sc_mii;
262 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
263 ether_mediastatus);
264 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
265 MII_OFFSET_ANY, 0);
266 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
267 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
268 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
269 } else
270 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
271
272 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
273 ifp->if_softc = sc;
274 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
275 ifp->if_ioctl = sf_ioctl;
276 ifp->if_start = sf_start;
277 ifp->if_watchdog = sf_watchdog;
278 ifp->if_init = sf_init;
279 ifp->if_stop = sf_stop;
280 IFQ_SET_READY(&ifp->if_snd);
281
282 /*
283 * Attach the interface.
284 */
285 if_attach(ifp);
286 ether_ifattach(ifp, enaddr);
287
288 /*
289 * Make sure the interface is shutdown during reboot.
290 */
291 if (pmf_device_register1(&sc->sc_dev, NULL, NULL, sf_shutdown))
292 pmf_class_network_register(&sc->sc_dev, ifp);
293 else
294 aprint_error_dev(&sc->sc_dev,
295 "couldn't establish power handler\n");
296 return;
297
298 /*
299 * Free any resources we've allocated during the failed attach
300 * attempt. Do this in reverse order an fall through.
301 */
302 fail_5:
303 for (i = 0; i < SF_NRXDESC; i++) {
304 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
305 bus_dmamap_destroy(sc->sc_dmat,
306 sc->sc_rxsoft[i].ds_dmamap);
307 }
308 fail_4:
309 for (i = 0; i < SF_NTXDESC; i++) {
310 if (sc->sc_txsoft[i].ds_dmamap != NULL)
311 bus_dmamap_destroy(sc->sc_dmat,
312 sc->sc_txsoft[i].ds_dmamap);
313 }
314 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
315 fail_3:
316 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
317 fail_2:
318 bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
319 sizeof(struct sf_control_data));
320 fail_1:
321 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
322 fail_0:
323 return;
324 }
325
326 /*
327 * sf_shutdown:
328 *
329 * Shutdown hook -- make sure the interface is stopped at reboot.
330 */
331 static bool
332 sf_shutdown(device_t self, int howto)
333 {
334 struct sf_softc *sc;
335
336 sc = device_private(self);
337 sf_stop(&sc->sc_ethercom.ec_if, 1);
338
339 return true;
340 }
341
342 /*
343 * sf_start: [ifnet interface function]
344 *
345 * Start packet transmission on the interface.
346 */
347 static void
348 sf_start(struct ifnet *ifp)
349 {
350 struct sf_softc *sc = ifp->if_softc;
351 struct mbuf *m0, *m;
352 struct sf_txdesc0 *txd;
353 struct sf_descsoft *ds;
354 bus_dmamap_t dmamap;
355 int error, producer, last = -1, opending, seg;
356
357 /*
358 * Remember the previous number of pending transmits.
359 */
360 opending = sc->sc_txpending;
361
362 /*
363 * Find out where we're sitting.
364 */
365 producer = SF_TXDINDEX_TO_HOST(
366 TDQPI_HiPrTxProducerIndex_get(
367 sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
368
369 /*
370 * Loop through the send queue, setting up transmit descriptors
371 * until we drain the queue, or use up all available transmit
372 * descriptors. Leave a blank one at the end for sanity's sake.
373 */
374 while (sc->sc_txpending < (SF_NTXDESC - 1)) {
375 /*
376 * Grab a packet off the queue.
377 */
378 IFQ_POLL(&ifp->if_snd, m0);
379 if (m0 == NULL)
380 break;
381 m = NULL;
382
383 /*
384 * Get the transmit descriptor.
385 */
386 txd = &sc->sc_txdescs[producer];
387 ds = &sc->sc_txsoft[producer];
388 dmamap = ds->ds_dmamap;
389
390 /*
391 * Load the DMA map. If this fails, the packet either
392 * didn't fit in the allotted number of frags, or we were
393 * short on resources. In this case, we'll copy and try
394 * again.
395 */
396 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
397 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
398 MGETHDR(m, M_DONTWAIT, MT_DATA);
399 if (m == NULL) {
400 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
401 break;
402 }
403 if (m0->m_pkthdr.len > MHLEN) {
404 MCLGET(m, M_DONTWAIT);
405 if ((m->m_flags & M_EXT) == 0) {
406 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
407 "cluster\n");
408 m_freem(m);
409 break;
410 }
411 }
412 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
413 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
414 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
415 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
416 if (error) {
417 aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
418 "error = %d\n", error);
419 break;
420 }
421 }
422
423 /*
424 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
425 */
426 IFQ_DEQUEUE(&ifp->if_snd, m0);
427 if (m != NULL) {
428 m_freem(m0);
429 m0 = m;
430 }
431
432 /* Initialize the descriptor. */
433 txd->td_word0 =
434 htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
435 if (producer == (SF_NTXDESC - 1))
436 txd->td_word0 |= TD_W0_END;
437 txd->td_word1 = htole32(dmamap->dm_nsegs);
438 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
439 txd->td_frags[seg].fr_addr =
440 htole32(dmamap->dm_segs[seg].ds_addr);
441 txd->td_frags[seg].fr_len =
442 htole32(dmamap->dm_segs[seg].ds_len);
443 }
444
445 /* Sync the descriptor and the DMA map. */
446 SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
447 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
448 BUS_DMASYNC_PREWRITE);
449
450 /*
451 * Store a pointer to the packet so we can free it later.
452 */
453 ds->ds_mbuf = m0;
454
455 /* Advance the Tx pointer. */
456 sc->sc_txpending++;
457 last = producer;
458 producer = SF_NEXTTX(producer);
459
460 /*
461 * Pass the packet to any BPF listeners.
462 */
463 bpf_mtap(ifp, m0);
464 }
465
466 if (sc->sc_txpending == (SF_NTXDESC - 1)) {
467 /* No more slots left; notify upper layer. */
468 ifp->if_flags |= IFF_OACTIVE;
469 }
470
471 if (sc->sc_txpending != opending) {
472 KASSERT(last != -1);
473 /*
474 * We enqueued packets. Cause a transmit interrupt to
475 * happen on the last packet we enqueued, and give the
476 * new descriptors to the chip by writing the new
477 * producer index.
478 */
479 sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
480 SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
481
482 sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
483 TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
484
485 /* Set a watchdog timer in case the chip flakes out. */
486 ifp->if_timer = 5;
487 }
488 }
489
490 /*
491 * sf_watchdog: [ifnet interface function]
492 *
493 * Watchdog timer handler.
494 */
495 static void
496 sf_watchdog(struct ifnet *ifp)
497 {
498 struct sf_softc *sc = ifp->if_softc;
499
500 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
501 ifp->if_oerrors++;
502
503 (void) sf_init(ifp);
504
505 /* Try to get more packets going. */
506 sf_start(ifp);
507 }
508
509 /*
510 * sf_ioctl: [ifnet interface function]
511 *
512 * Handle control requests from the operator.
513 */
514 static int
515 sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
516 {
517 struct sf_softc *sc = ifp->if_softc;
518 int s, error;
519
520 s = splnet();
521
522 error = ether_ioctl(ifp, cmd, data);
523 if (error == ENETRESET) {
524 /*
525 * Multicast list has changed; set the hardware filter
526 * accordingly.
527 */
528 if (ifp->if_flags & IFF_RUNNING)
529 sf_set_filter(sc);
530 error = 0;
531 }
532
533 /* Try to get more packets going. */
534 sf_start(ifp);
535
536 splx(s);
537 return (error);
538 }
539
540 /*
541 * sf_intr:
542 *
543 * Interrupt service routine.
544 */
545 int
546 sf_intr(void *arg)
547 {
548 struct sf_softc *sc = arg;
549 uint32_t isr;
550 int handled = 0, wantinit = 0;
551
552 for (;;) {
553 /* Reading clears all interrupts we're interested in. */
554 isr = sf_funcreg_read(sc, SF_InterruptStatus);
555 if ((isr & IS_PCIPadInt) == 0)
556 break;
557
558 handled = 1;
559
560 /* Handle receive interrupts. */
561 if (isr & IS_RxQ1DoneInt)
562 sf_rxintr(sc);
563
564 /* Handle transmit completion interrupts. */
565 if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
566 sf_txintr(sc);
567
568 /* Handle abnormal interrupts. */
569 if (isr & IS_AbnormalInterrupt) {
570 /* Statistics. */
571 if (isr & IS_StatisticWrapInt)
572 sf_stats_update(sc);
573
574 /* DMA errors. */
575 if (isr & IS_DmaErrInt) {
576 wantinit = 1;
577 aprint_error_dev(&sc->sc_dev, "WARNING: DMA error\n");
578 }
579
580 /* Transmit FIFO underruns. */
581 if (isr & IS_TxDataLowInt) {
582 if (sc->sc_txthresh < 0xff)
583 sc->sc_txthresh++;
584 printf("%s: transmit FIFO underrun, new "
585 "threshold: %d bytes\n",
586 device_xname(&sc->sc_dev),
587 sc->sc_txthresh * 16);
588 sf_funcreg_write(sc, SF_TransmitFrameCSR,
589 sc->sc_TransmitFrameCSR |
590 TFCSR_TransmitThreshold(sc->sc_txthresh));
591 sf_funcreg_write(sc, SF_TxDescQueueCtrl,
592 sc->sc_TxDescQueueCtrl |
593 TDQC_TxHighPriorityFifoThreshold(
594 sc->sc_txthresh));
595 }
596 }
597 }
598
599 if (handled) {
600 /* Reset the interface, if necessary. */
601 if (wantinit)
602 sf_init(&sc->sc_ethercom.ec_if);
603
604 /* Try and get more packets going. */
605 sf_start(&sc->sc_ethercom.ec_if);
606 }
607
608 return (handled);
609 }
610
611 /*
612 * sf_txintr:
613 *
614 * Helper -- handle transmit completion interrupts.
615 */
616 static void
617 sf_txintr(struct sf_softc *sc)
618 {
619 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
620 struct sf_descsoft *ds;
621 uint32_t cqci, tcd;
622 int consumer, producer, txidx;
623
624 try_again:
625 cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
626
627 consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
628 producer = CQPI_TxCompletionProducerIndex_get(
629 sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
630
631 if (consumer == producer)
632 return;
633
634 ifp->if_flags &= ~IFF_OACTIVE;
635
636 while (consumer != producer) {
637 SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
638 tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
639
640 txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
641 #ifdef DIAGNOSTIC
642 if ((tcd & TCD_PR) == 0)
643 aprint_error_dev(&sc->sc_dev, "Tx queue mismatch, index %d\n",
644 txidx);
645 #endif
646 /*
647 * NOTE: stats are updated later. We're just
648 * releasing packets that have been DMA'd to
649 * the chip.
650 */
651 ds = &sc->sc_txsoft[txidx];
652 SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
653 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
654 0, ds->ds_dmamap->dm_mapsize,
655 BUS_DMASYNC_POSTWRITE);
656 m_freem(ds->ds_mbuf);
657 ds->ds_mbuf = NULL;
658
659 consumer = SF_NEXTTCD(consumer);
660 sc->sc_txpending--;
661 }
662
663 /* XXXJRT -- should be KDASSERT() */
664 KASSERT(sc->sc_txpending >= 0);
665
666 /* If all packets are done, cancel the watchdog timer. */
667 if (sc->sc_txpending == 0)
668 ifp->if_timer = 0;
669
670 /* Update the consumer index. */
671 sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
672 (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
673 CQCI_TxCompletionConsumerIndex(consumer));
674
675 /* Double check for new completions. */
676 goto try_again;
677 }
678
679 /*
680 * sf_rxintr:
681 *
682 * Helper -- handle receive interrupts.
683 */
684 static void
685 sf_rxintr(struct sf_softc *sc)
686 {
687 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
688 struct sf_descsoft *ds;
689 struct sf_rcd_full *rcd;
690 struct mbuf *m;
691 uint32_t cqci, word0;
692 int consumer, producer, bufproducer, rxidx, len;
693
694 try_again:
695 cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
696
697 consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
698 producer = CQPI_RxCompletionQ1ProducerIndex_get(
699 sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
700 bufproducer = RXQ1P_RxDescQ1Producer_get(
701 sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
702
703 if (consumer == producer)
704 return;
705
706 while (consumer != producer) {
707 rcd = &sc->sc_rxcomp[consumer];
708 SF_CDRXCSYNC(sc, consumer,
709 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
710 SF_CDRXCSYNC(sc, consumer,
711 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
712
713 word0 = le32toh(rcd->rcd_word0);
714 rxidx = RCD_W0_EndIndex(word0);
715
716 ds = &sc->sc_rxsoft[rxidx];
717
718 consumer = SF_NEXTRCD(consumer);
719 bufproducer = SF_NEXTRX(bufproducer);
720
721 if ((word0 & RCD_W0_OK) == 0) {
722 SF_INIT_RXDESC(sc, rxidx);
723 continue;
724 }
725
726 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
727 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
728
729 /*
730 * No errors; receive the packet. Note that we have
731 * configured the Starfire to NOT transfer the CRC
732 * with the packet.
733 */
734 len = RCD_W0_Length(word0);
735
736 #ifdef __NO_STRICT_ALIGNMENT
737 /*
738 * Allocate a new mbuf cluster. If that fails, we are
739 * out of memory, and must drop the packet and recycle
740 * the buffer that's already attached to this descriptor.
741 */
742 m = ds->ds_mbuf;
743 if (sf_add_rxbuf(sc, rxidx) != 0) {
744 ifp->if_ierrors++;
745 SF_INIT_RXDESC(sc, rxidx);
746 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
747 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
748 continue;
749 }
750 #else
751 /*
752 * The Starfire's receive buffer must be 4-byte aligned.
753 * But this means that the data after the Ethernet header
754 * is misaligned. We must allocate a new buffer and
755 * copy the data, shifted forward 2 bytes.
756 */
757 MGETHDR(m, M_DONTWAIT, MT_DATA);
758 if (m == NULL) {
759 dropit:
760 ifp->if_ierrors++;
761 SF_INIT_RXDESC(sc, rxidx);
762 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
763 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
764 continue;
765 }
766 if (len > (MHLEN - 2)) {
767 MCLGET(m, M_DONTWAIT);
768 if ((m->m_flags & M_EXT) == 0) {
769 m_freem(m);
770 goto dropit;
771 }
772 }
773 m->m_data += 2;
774
775 /*
776 * Note that we use cluster for incoming frames, so the
777 * buffer is virtually contiguous.
778 */
779 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
780
781 /* Allow the receive descriptor to continue using its mbuf. */
782 SF_INIT_RXDESC(sc, rxidx);
783 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
784 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
785 #endif /* __NO_STRICT_ALIGNMENT */
786
787 m->m_pkthdr.rcvif = ifp;
788 m->m_pkthdr.len = m->m_len = len;
789
790 /*
791 * Pass this up to any BPF listeners.
792 */
793 bpf_mtap(ifp, m);
794
795 /* Pass it on. */
796 (*ifp->if_input)(ifp, m);
797 }
798
799 /* Update the chip's pointers. */
800 sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
801 (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
802 CQCI_RxCompletionQ1ConsumerIndex(consumer));
803 sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
804 RXQ1P_RxDescQ1Producer(bufproducer));
805
806 /* Double-check for any new completions. */
807 goto try_again;
808 }
809
810 /*
811 * sf_tick:
812 *
813 * One second timer, used to tick the MII and update stats.
814 */
815 static void
816 sf_tick(void *arg)
817 {
818 struct sf_softc *sc = arg;
819 int s;
820
821 s = splnet();
822 mii_tick(&sc->sc_mii);
823 sf_stats_update(sc);
824 splx(s);
825
826 callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
827 }
828
829 /*
830 * sf_stats_update:
831 *
832 * Read the statitistics counters.
833 */
834 static void
835 sf_stats_update(struct sf_softc *sc)
836 {
837 struct sf_stats stats;
838 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
839 uint32_t *p;
840 u_int i;
841
842 p = &stats.TransmitOKFrames;
843 for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
844 *p++ = sf_genreg_read(sc,
845 SF_STATS_BASE + (i * sizeof(uint32_t)));
846 sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
847 }
848
849 ifp->if_opackets += stats.TransmitOKFrames;
850
851 ifp->if_collisions += stats.SingleCollisionFrames +
852 stats.MultipleCollisionFrames;
853
854 ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
855 stats.TransmitAbortDueToExcessingDeferral +
856 stats.FramesLostDueToInternalTransmitErrors;
857
858 ifp->if_ipackets += stats.ReceiveOKFrames;
859
860 ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
861 stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
862 stats.ReceiveFramesJabbersError +
863 stats.FramesLostDueToInternalReceiveErrors;
864 }
865
866 /*
867 * sf_reset:
868 *
869 * Perform a soft reset on the Starfire.
870 */
871 static void
872 sf_reset(struct sf_softc *sc)
873 {
874 int i;
875
876 sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
877
878 sf_macreset(sc);
879
880 sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
881 for (i = 0; i < 1000; i++) {
882 delay(10);
883 if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
884 PDC_SoftReset) == 0)
885 break;
886 }
887
888 if (i == 1000) {
889 aprint_error_dev(&sc->sc_dev, "reset failed to complete\n");
890 sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
891 }
892
893 delay(1000);
894 }
895
896 /*
897 * sf_macreset:
898 *
899 * Reset the MAC portion of the Starfire.
900 */
901 static void
902 sf_macreset(struct sf_softc *sc)
903 {
904
905 sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
906 delay(1000);
907 sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
908 }
909
910 /*
911 * sf_init: [ifnet interface function]
912 *
913 * Initialize the interface. Must be called at splnet().
914 */
915 static int
916 sf_init(struct ifnet *ifp)
917 {
918 struct sf_softc *sc = ifp->if_softc;
919 struct sf_descsoft *ds;
920 int error = 0;
921 u_int i;
922
923 /*
924 * Cancel any pending I/O.
925 */
926 sf_stop(ifp, 0);
927
928 /*
929 * Reset the Starfire to a known state.
930 */
931 sf_reset(sc);
932
933 /* Clear the stat counters. */
934 for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
935 sf_genreg_write(sc, SF_STATS_BASE + i, 0);
936
937 /*
938 * Initialize the transmit descriptor ring.
939 */
940 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
941 sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
942 sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
943 sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
944
945 /*
946 * Initialize the transmit completion ring.
947 */
948 for (i = 0; i < SF_NTCD; i++) {
949 sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
950 SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
951 }
952 sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
953 sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
954
955 /*
956 * Initialize the receive descriptor ring.
957 */
958 for (i = 0; i < SF_NRXDESC; i++) {
959 ds = &sc->sc_rxsoft[i];
960 if (ds->ds_mbuf == NULL) {
961 if ((error = sf_add_rxbuf(sc, i)) != 0) {
962 aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
963 "buffer %d, error = %d\n",
964 i, error);
965 /*
966 * XXX Should attempt to run with fewer receive
967 * XXX buffers instead of just failing.
968 */
969 sf_rxdrain(sc);
970 goto out;
971 }
972 } else
973 SF_INIT_RXDESC(sc, i);
974 }
975 sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
976 sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
977 sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
978
979 /*
980 * Initialize the receive completion ring.
981 */
982 for (i = 0; i < SF_NRCD; i++) {
983 sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
984 sc->sc_rxcomp[i].rcd_word1 = 0;
985 sc->sc_rxcomp[i].rcd_word2 = 0;
986 sc->sc_rxcomp[i].rcd_timestamp = 0;
987 SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
988 }
989 sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
990 RCQ1C_RxCompletionQ1Type(3));
991 sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
992
993 /*
994 * Initialize the Tx CSR.
995 */
996 sc->sc_TransmitFrameCSR = 0;
997 sf_funcreg_write(sc, SF_TransmitFrameCSR,
998 sc->sc_TransmitFrameCSR |
999 TFCSR_TransmitThreshold(sc->sc_txthresh));
1000
1001 /*
1002 * Initialize the Tx descriptor control register.
1003 */
1004 sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
1005 TDQC_TxDmaBurstSize(4) | /* default */
1006 TDQC_MinFrameSpacing(3) | /* 128 bytes */
1007 TDQC_TxDescType(0);
1008 sf_funcreg_write(sc, SF_TxDescQueueCtrl,
1009 sc->sc_TxDescQueueCtrl |
1010 TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
1011
1012 /*
1013 * Initialize the Rx descriptor control registers.
1014 */
1015 sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
1016 RDQ1C_RxQ1BufferLength(MCLBYTES) |
1017 RDQ1C_RxDescSpacing(0));
1018 sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
1019
1020 /*
1021 * Initialize the Tx descriptor producer indices.
1022 */
1023 sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
1024 TDQPI_HiPrTxProducerIndex(0) |
1025 TDQPI_LoPrTxProducerIndex(0));
1026
1027 /*
1028 * Initialize the Rx descriptor producer indices.
1029 */
1030 sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
1031 RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
1032 sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
1033 RXQ2P_RxDescQ2Producer(0));
1034
1035 /*
1036 * Initialize the Tx and Rx completion queue consumer indices.
1037 */
1038 sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
1039 CQCI_TxCompletionConsumerIndex(0) |
1040 CQCI_RxCompletionQ1ConsumerIndex(0));
1041 sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
1042
1043 /*
1044 * Initialize the Rx DMA control register.
1045 */
1046 sf_funcreg_write(sc, SF_RxDmaCtrl,
1047 RDC_RxHighPriorityThreshold(6) | /* default */
1048 RDC_RxBurstSize(4)); /* default */
1049
1050 /*
1051 * Set the receive filter.
1052 */
1053 sc->sc_RxAddressFilteringCtl = 0;
1054 sf_set_filter(sc);
1055
1056 /*
1057 * Set MacConfig1. When we set the media, MacConfig1 will
1058 * actually be written and the MAC part reset.
1059 */
1060 sc->sc_MacConfig1 = MC1_PadEn;
1061
1062 /*
1063 * Set the media.
1064 */
1065 if ((error = ether_mediachange(ifp)) != 0)
1066 goto out;
1067
1068 /*
1069 * Initialize the interrupt register.
1070 */
1071 sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
1072 IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
1073 IS_StatisticWrapInt;
1074 sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
1075
1076 sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
1077 PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
1078
1079 /*
1080 * Start the transmit and receive processes.
1081 */
1082 sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
1083 GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
1084
1085 /* Start the on second clock. */
1086 callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
1087
1088 /*
1089 * Note that the interface is now running.
1090 */
1091 ifp->if_flags |= IFF_RUNNING;
1092 ifp->if_flags &= ~IFF_OACTIVE;
1093
1094 out:
1095 if (error) {
1096 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1097 ifp->if_timer = 0;
1098 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1099 }
1100 return (error);
1101 }
1102
1103 /*
1104 * sf_rxdrain:
1105 *
1106 * Drain the receive queue.
1107 */
1108 static void
1109 sf_rxdrain(struct sf_softc *sc)
1110 {
1111 struct sf_descsoft *ds;
1112 int i;
1113
1114 for (i = 0; i < SF_NRXDESC; i++) {
1115 ds = &sc->sc_rxsoft[i];
1116 if (ds->ds_mbuf != NULL) {
1117 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1118 m_freem(ds->ds_mbuf);
1119 ds->ds_mbuf = NULL;
1120 }
1121 }
1122 }
1123
1124 /*
1125 * sf_stop: [ifnet interface function]
1126 *
1127 * Stop transmission on the interface.
1128 */
1129 static void
1130 sf_stop(struct ifnet *ifp, int disable)
1131 {
1132 struct sf_softc *sc = ifp->if_softc;
1133 struct sf_descsoft *ds;
1134 int i;
1135
1136 /* Stop the one second clock. */
1137 callout_stop(&sc->sc_tick_callout);
1138
1139 /* Down the MII. */
1140 mii_down(&sc->sc_mii);
1141
1142 /* Disable interrupts. */
1143 sf_funcreg_write(sc, SF_InterruptEn, 0);
1144
1145 /* Stop the transmit and receive processes. */
1146 sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
1147
1148 /*
1149 * Release any queued transmit buffers.
1150 */
1151 for (i = 0; i < SF_NTXDESC; i++) {
1152 ds = &sc->sc_txsoft[i];
1153 if (ds->ds_mbuf != NULL) {
1154 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1155 m_freem(ds->ds_mbuf);
1156 ds->ds_mbuf = NULL;
1157 }
1158 }
1159
1160 /*
1161 * Mark the interface down and cancel the watchdog timer.
1162 */
1163 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1164 ifp->if_timer = 0;
1165
1166 if (disable)
1167 sf_rxdrain(sc);
1168 }
1169
1170 /*
1171 * sf_read_eeprom:
1172 *
1173 * Read from the Starfire EEPROM.
1174 */
1175 static uint8_t
1176 sf_read_eeprom(struct sf_softc *sc, int offset)
1177 {
1178 uint32_t reg;
1179
1180 reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
1181
1182 return ((reg >> (8 * (offset & 3))) & 0xff);
1183 }
1184
1185 /*
1186 * sf_add_rxbuf:
1187 *
1188 * Add a receive buffer to the indicated descriptor.
1189 */
1190 static int
1191 sf_add_rxbuf(struct sf_softc *sc, int idx)
1192 {
1193 struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
1194 struct mbuf *m;
1195 int error;
1196
1197 MGETHDR(m, M_DONTWAIT, MT_DATA);
1198 if (m == NULL)
1199 return (ENOBUFS);
1200
1201 MCLGET(m, M_DONTWAIT);
1202 if ((m->m_flags & M_EXT) == 0) {
1203 m_freem(m);
1204 return (ENOBUFS);
1205 }
1206
1207 if (ds->ds_mbuf != NULL)
1208 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1209
1210 ds->ds_mbuf = m;
1211
1212 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1213 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1214 BUS_DMA_READ|BUS_DMA_NOWAIT);
1215 if (error) {
1216 aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
1217 idx, error);
1218 panic("sf_add_rxbuf"); /* XXX */
1219 }
1220
1221 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1222 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1223
1224 SF_INIT_RXDESC(sc, idx);
1225
1226 return (0);
1227 }
1228
1229 static void
1230 sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
1231 {
1232 uint32_t reg0, reg1, reg2;
1233
1234 reg0 = enaddr[5] | (enaddr[4] << 8);
1235 reg1 = enaddr[3] | (enaddr[2] << 8);
1236 reg2 = enaddr[1] | (enaddr[0] << 8);
1237
1238 sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
1239 sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
1240 sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
1241 }
1242
1243 static void
1244 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
1245 {
1246 uint32_t hash, slot, reg;
1247
1248 hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
1249 slot = hash >> 4;
1250
1251 reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
1252 reg |= 1 << (hash & 0xf);
1253 sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
1254 }
1255
1256 /*
1257 * sf_set_filter:
1258 *
1259 * Set the Starfire receive filter.
1260 */
1261 static void
1262 sf_set_filter(struct sf_softc *sc)
1263 {
1264 struct ethercom *ec = &sc->sc_ethercom;
1265 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1266 struct ether_multi *enm;
1267 struct ether_multistep step;
1268 int i;
1269
1270 /* Start by clearing the perfect and hash tables. */
1271 for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
1272 sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
1273
1274 for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
1275 sf_genreg_write(sc, SF_HASH_BASE + i, 0);
1276
1277 /*
1278 * Clear the perfect and hash mode bits.
1279 */
1280 sc->sc_RxAddressFilteringCtl &=
1281 ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
1282
1283 if (ifp->if_flags & IFF_BROADCAST)
1284 sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
1285 else
1286 sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
1287
1288 if (ifp->if_flags & IFF_PROMISC) {
1289 sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
1290 goto allmulti;
1291 } else
1292 sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
1293
1294 /*
1295 * Set normal perfect filtering mode.
1296 */
1297 sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
1298
1299 /*
1300 * First, write the station address to the perfect filter
1301 * table.
1302 */
1303 sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
1304
1305 /*
1306 * Now set the hash bits for each multicast address in our
1307 * list.
1308 */
1309 ETHER_FIRST_MULTI(step, ec, enm);
1310 if (enm == NULL)
1311 goto done;
1312 while (enm != NULL) {
1313 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1314 /*
1315 * We must listen to a range of multicast addresses.
1316 * For now, just accept all multicasts, rather than
1317 * trying to set only those filter bits needed to match
1318 * the range. (At this time, the only use of address
1319 * ranges is for IP multicast routing, for which the
1320 * range is big enough to require all bits set.)
1321 */
1322 goto allmulti;
1323 }
1324 sf_set_filter_hash(sc, enm->enm_addrlo);
1325 ETHER_NEXT_MULTI(step, enm);
1326 }
1327
1328 /*
1329 * Set "hash only multicast dest, match regardless of VLAN ID".
1330 */
1331 sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
1332 goto done;
1333
1334 allmulti:
1335 /*
1336 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
1337 */
1338 sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
1339 ifp->if_flags |= IFF_ALLMULTI;
1340
1341 done:
1342 sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
1343 sc->sc_RxAddressFilteringCtl);
1344 }
1345
1346 /*
1347 * sf_mii_read: [mii interface function]
1348 *
1349 * Read from the MII.
1350 */
1351 static int
1352 sf_mii_read(device_t self, int phy, int reg)
1353 {
1354 struct sf_softc *sc = (void *) self;
1355 uint32_t v;
1356 int i;
1357
1358 for (i = 0; i < 1000; i++) {
1359 v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
1360 if (v & MiiDataValid)
1361 break;
1362 delay(1);
1363 }
1364
1365 if ((v & MiiDataValid) == 0)
1366 return (0);
1367
1368 if (MiiRegDataPort(v) == 0xffff)
1369 return (0);
1370
1371 return (MiiRegDataPort(v));
1372 }
1373
1374 /*
1375 * sf_mii_write: [mii interface function]
1376 *
1377 * Write to the MII.
1378 */
1379 static void
1380 sf_mii_write(device_t self, int phy, int reg, int val)
1381 {
1382 struct sf_softc *sc = (void *) self;
1383 int i;
1384
1385 sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
1386
1387 for (i = 0; i < 1000; i++) {
1388 if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
1389 MiiBusy) == 0)
1390 return;
1391 delay(1);
1392 }
1393
1394 printf("%s: MII write timed out\n", device_xname(&sc->sc_dev));
1395 }
1396
1397 /*
1398 * sf_mii_statchg: [mii interface function]
1399 *
1400 * Callback from the PHY when the media changes.
1401 */
1402 static void
1403 sf_mii_statchg(device_t self)
1404 {
1405 struct sf_softc *sc = (void *) self;
1406 uint32_t ipg;
1407
1408 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1409 sc->sc_MacConfig1 |= MC1_FullDuplex;
1410 ipg = 0x15;
1411 } else {
1412 sc->sc_MacConfig1 &= ~MC1_FullDuplex;
1413 ipg = 0x11;
1414 }
1415
1416 sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
1417 sf_macreset(sc);
1418
1419 sf_genreg_write(sc, SF_BkToBkIPG, ipg);
1420 }
1421