Home | History | Annotate | Line # | Download | only in ic
aic6915.c revision 1.33
      1 /*	$NetBSD: aic6915.c,v 1.33 2016/07/07 06:55:41 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Adaptec AIC-6915 (``Starfire'')
     34  * 10/100 Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.33 2016/07/07 06:55:41 msaitoh Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #include <sys/bus.h>
     60 #include <sys/intr.h>
     61 
     62 #include <dev/mii/miivar.h>
     63 
     64 #include <dev/ic/aic6915reg.h>
     65 #include <dev/ic/aic6915var.h>
     66 
     67 static void	sf_start(struct ifnet *);
     68 static void	sf_watchdog(struct ifnet *);
     69 static int	sf_ioctl(struct ifnet *, u_long, void *);
     70 static int	sf_init(struct ifnet *);
     71 static void	sf_stop(struct ifnet *, int);
     72 
     73 static bool	sf_shutdown(device_t, int);
     74 
     75 static void	sf_txintr(struct sf_softc *);
     76 static void	sf_rxintr(struct sf_softc *);
     77 static void	sf_stats_update(struct sf_softc *);
     78 
     79 static void	sf_reset(struct sf_softc *);
     80 static void	sf_macreset(struct sf_softc *);
     81 static void	sf_rxdrain(struct sf_softc *);
     82 static int	sf_add_rxbuf(struct sf_softc *, int);
     83 static uint8_t	sf_read_eeprom(struct sf_softc *, int);
     84 static void	sf_set_filter(struct sf_softc *);
     85 
     86 static int	sf_mii_read(device_t, int, int);
     87 static void	sf_mii_write(device_t, int, int, int);
     88 static void	sf_mii_statchg(struct ifnet *);
     89 
     90 static void	sf_tick(void *);
     91 
     92 #define	sf_funcreg_read(sc, reg)					\
     93 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
     94 #define	sf_funcreg_write(sc, reg, val)					\
     95 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
     96 
     97 static inline uint32_t
     98 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
     99 {
    100 
    101 	if (__predict_false(sc->sc_iomapped)) {
    102 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
    103 		    reg);
    104 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
    105 		    SF_IndirectIoDataPort));
    106 	}
    107 
    108 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
    109 }
    110 
    111 static inline void
    112 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
    113 {
    114 
    115 	if (__predict_false(sc->sc_iomapped)) {
    116 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
    117 		    reg);
    118 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
    119 		    val);
    120 		return;
    121 	}
    122 
    123 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
    124 }
    125 
    126 #define	sf_genreg_read(sc, reg)						\
    127 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
    128 #define	sf_genreg_write(sc, reg, val)					\
    129 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
    130 
    131 /*
    132  * sf_attach:
    133  *
    134  *	Attach a Starfire interface to the system.
    135  */
    136 void
    137 sf_attach(struct sf_softc *sc)
    138 {
    139 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    140 	int i, rseg, error;
    141 	bus_dma_segment_t seg;
    142 	u_int8_t enaddr[ETHER_ADDR_LEN];
    143 
    144 	callout_init(&sc->sc_tick_callout, 0);
    145 
    146 	/*
    147 	 * If we're I/O mapped, the functional register handle is
    148 	 * the same as the base handle.  If we're memory mapped,
    149 	 * carve off a chunk of the register space for the functional
    150 	 * registers, to save on arithmetic later.
    151 	 */
    152 	if (sc->sc_iomapped)
    153 		sc->sc_sh_func = sc->sc_sh;
    154 	else {
    155 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
    156 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
    157 			aprint_error_dev(sc->sc_dev, "unable to sub-region "
    158 			    "functional registers, error = %d\n", error);
    159 			return;
    160 		}
    161 	}
    162 
    163 	/*
    164 	 * Initialize the transmit threshold for this interface.  The
    165 	 * manual describes the default as 4 * 16 bytes.  We start out
    166 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
    167 	 * several platforms.
    168 	 */
    169 	sc->sc_txthresh = 10;
    170 
    171 	/*
    172 	 * Allocate the control data structures, and create and load the
    173 	 * DMA map for it.
    174 	 */
    175 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    176 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    177 	    BUS_DMA_NOWAIT)) != 0) {
    178 		aprint_error_dev(sc->sc_dev,
    179 		    "unable to allocate control data, error = %d\n", error);
    180 		goto fail_0;
    181 	}
    182 
    183 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    184 	    sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
    185 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    186 		aprint_error_dev(sc->sc_dev,
    187 		    "unable to map control data, error = %d\n", error);
    188 		goto fail_1;
    189 	}
    190 
    191 	if ((error = bus_dmamap_create(sc->sc_dmat,
    192 	    sizeof(struct sf_control_data), 1,
    193 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
    194 	    &sc->sc_cddmamap)) != 0) {
    195 		aprint_error_dev(sc->sc_dev, "unable to create control data "
    196 		    "DMA map, error = %d\n", error);
    197 		goto fail_2;
    198 	}
    199 
    200 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    201 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
    202 	    BUS_DMA_NOWAIT)) != 0) {
    203 		aprint_error_dev(sc->sc_dev, "unable to load control data "
    204 		    "DMA map, error = %d\n", error);
    205 		goto fail_3;
    206 	}
    207 
    208 	/*
    209 	 * Create the transmit buffer DMA maps.
    210 	 */
    211 	for (i = 0; i < SF_NTXDESC; i++) {
    212 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    213 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
    214 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    215 			aprint_error_dev(sc->sc_dev,
    216 			    "unable to create tx DMA map %d, error = %d\n", i,
    217 			    error);
    218 			goto fail_4;
    219 		}
    220 	}
    221 
    222 	/*
    223 	 * Create the receive buffer DMA maps.
    224 	 */
    225 	for (i = 0; i < SF_NRXDESC; i++) {
    226 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    227 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
    228 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    229 			aprint_error_dev(sc->sc_dev,
    230 			    "unable to create rx DMA map %d, error = %d\n", i,
    231 			    error);
    232 			goto fail_5;
    233 		}
    234 	}
    235 
    236 	/*
    237 	 * Reset the chip to a known state.
    238 	 */
    239 	sf_reset(sc);
    240 
    241 	/*
    242 	 * Read the Ethernet address from the EEPROM.
    243 	 */
    244 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    245 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
    246 
    247 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
    248 	    ether_sprintf(enaddr));
    249 
    250 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
    251 		printf("%s: 64-bit PCI slot detected\n",
    252 		    device_xname(sc->sc_dev));
    253 
    254 	/*
    255 	 * Initialize our media structures and probe the MII.
    256 	 */
    257 	sc->sc_mii.mii_ifp = ifp;
    258 	sc->sc_mii.mii_readreg = sf_mii_read;
    259 	sc->sc_mii.mii_writereg = sf_mii_write;
    260 	sc->sc_mii.mii_statchg = sf_mii_statchg;
    261 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    262 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    263 	    ether_mediastatus);
    264 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    265 	    MII_OFFSET_ANY, 0);
    266 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    267 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    268 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    269 	} else
    270 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    271 
    272 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    273 	ifp->if_softc = sc;
    274 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    275 	ifp->if_ioctl = sf_ioctl;
    276 	ifp->if_start = sf_start;
    277 	ifp->if_watchdog = sf_watchdog;
    278 	ifp->if_init = sf_init;
    279 	ifp->if_stop = sf_stop;
    280 	IFQ_SET_READY(&ifp->if_snd);
    281 
    282 	/*
    283 	 * Attach the interface.
    284 	 */
    285 	if_attach(ifp);
    286 	ether_ifattach(ifp, enaddr);
    287 
    288 	/*
    289 	 * Make sure the interface is shutdown during reboot.
    290 	 */
    291 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, sf_shutdown))
    292 		pmf_class_network_register(sc->sc_dev, ifp);
    293 	else
    294 		aprint_error_dev(sc->sc_dev,
    295 		    "couldn't establish power handler\n");
    296 	return;
    297 
    298 	/*
    299 	 * Free any resources we've allocated during the failed attach
    300 	 * attempt.  Do this in reverse order an fall through.
    301 	 */
    302  fail_5:
    303 	for (i = 0; i < SF_NRXDESC; i++) {
    304 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    305 			bus_dmamap_destroy(sc->sc_dmat,
    306 			    sc->sc_rxsoft[i].ds_dmamap);
    307 	}
    308  fail_4:
    309 	for (i = 0; i < SF_NTXDESC; i++) {
    310 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    311 			bus_dmamap_destroy(sc->sc_dmat,
    312 			    sc->sc_txsoft[i].ds_dmamap);
    313 	}
    314 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    315  fail_3:
    316 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    317  fail_2:
    318 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
    319 	    sizeof(struct sf_control_data));
    320  fail_1:
    321 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    322  fail_0:
    323 	return;
    324 }
    325 
    326 /*
    327  * sf_shutdown:
    328  *
    329  *	Shutdown hook -- make sure the interface is stopped at reboot.
    330  */
    331 static bool
    332 sf_shutdown(device_t self, int howto)
    333 {
    334 	struct sf_softc *sc;
    335 
    336 	sc = device_private(self);
    337 	sf_stop(&sc->sc_ethercom.ec_if, 1);
    338 
    339 	return true;
    340 }
    341 
    342 /*
    343  * sf_start:		[ifnet interface function]
    344  *
    345  *	Start packet transmission on the interface.
    346  */
    347 static void
    348 sf_start(struct ifnet *ifp)
    349 {
    350 	struct sf_softc *sc = ifp->if_softc;
    351 	struct mbuf *m0, *m;
    352 	struct sf_txdesc0 *txd;
    353 	struct sf_descsoft *ds;
    354 	bus_dmamap_t dmamap;
    355 	int error, producer, last = -1, opending, seg;
    356 
    357 	/*
    358 	 * Remember the previous number of pending transmits.
    359 	 */
    360 	opending = sc->sc_txpending;
    361 
    362 	/*
    363 	 * Find out where we're sitting.
    364 	 */
    365 	producer = SF_TXDINDEX_TO_HOST(
    366 	    TDQPI_HiPrTxProducerIndex_get(
    367 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
    368 
    369 	/*
    370 	 * Loop through the send queue, setting up transmit descriptors
    371 	 * until we drain the queue, or use up all available transmit
    372 	 * descriptors.  Leave a blank one at the end for sanity's sake.
    373 	 */
    374 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
    375 		/*
    376 		 * Grab a packet off the queue.
    377 		 */
    378 		IFQ_POLL(&ifp->if_snd, m0);
    379 		if (m0 == NULL)
    380 			break;
    381 		m = NULL;
    382 
    383 		/*
    384 		 * Get the transmit descriptor.
    385 		 */
    386 		txd = &sc->sc_txdescs[producer];
    387 		ds = &sc->sc_txsoft[producer];
    388 		dmamap = ds->ds_dmamap;
    389 
    390 		/*
    391 		 * Load the DMA map.  If this fails, the packet either
    392 		 * didn't fit in the allotted number of frags, or we were
    393 		 * short on resources.  In this case, we'll copy and try
    394 		 * again.
    395 		 */
    396 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    397 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    398 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    399 			if (m == NULL) {
    400 				aprint_error_dev(sc->sc_dev,
    401 				    "unable to allocate Tx mbuf\n");
    402 				break;
    403 			}
    404 			if (m0->m_pkthdr.len > MHLEN) {
    405 				MCLGET(m, M_DONTWAIT);
    406 				if ((m->m_flags & M_EXT) == 0) {
    407 					aprint_error_dev(sc->sc_dev,
    408 					    "unable to allocate Tx cluster\n");
    409 					m_freem(m);
    410 					break;
    411 				}
    412 			}
    413 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    414 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    415 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    416 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    417 			if (error) {
    418 				aprint_error_dev(sc->sc_dev,
    419 				    "unable to load Tx buffer, error = %d\n",
    420 				    error);
    421 				break;
    422 			}
    423 		}
    424 
    425 		/*
    426 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    427 		 */
    428 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    429 		if (m != NULL) {
    430 			m_freem(m0);
    431 			m0 = m;
    432 		}
    433 
    434 		/* Initialize the descriptor. */
    435 		txd->td_word0 =
    436 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
    437 		if (producer == (SF_NTXDESC - 1))
    438 			txd->td_word0 |= TD_W0_END;
    439 		txd->td_word1 = htole32(dmamap->dm_nsegs);
    440 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    441 			txd->td_frags[seg].fr_addr =
    442 			    htole32(dmamap->dm_segs[seg].ds_addr);
    443 			txd->td_frags[seg].fr_len =
    444 			    htole32(dmamap->dm_segs[seg].ds_len);
    445 		}
    446 
    447 		/* Sync the descriptor and the DMA map. */
    448 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
    449 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    450 		    BUS_DMASYNC_PREWRITE);
    451 
    452 		/*
    453 		 * Store a pointer to the packet so we can free it later.
    454 		 */
    455 		ds->ds_mbuf = m0;
    456 
    457 		/* Advance the Tx pointer. */
    458 		sc->sc_txpending++;
    459 		last = producer;
    460 		producer = SF_NEXTTX(producer);
    461 
    462 		/*
    463 		 * Pass the packet to any BPF listeners.
    464 		 */
    465 		bpf_mtap(ifp, m0);
    466 	}
    467 
    468 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
    469 		/* No more slots left; notify upper layer. */
    470 		ifp->if_flags |= IFF_OACTIVE;
    471 	}
    472 
    473 	if (sc->sc_txpending != opending) {
    474 		KASSERT(last != -1);
    475 		/*
    476 		 * We enqueued packets.  Cause a transmit interrupt to
    477 		 * happen on the last packet we enqueued, and give the
    478 		 * new descriptors to the chip by writing the new
    479 		 * producer index.
    480 		 */
    481 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
    482 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
    483 
    484 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
    485 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
    486 
    487 		/* Set a watchdog timer in case the chip flakes out. */
    488 		ifp->if_timer = 5;
    489 	}
    490 }
    491 
    492 /*
    493  * sf_watchdog:		[ifnet interface function]
    494  *
    495  *	Watchdog timer handler.
    496  */
    497 static void
    498 sf_watchdog(struct ifnet *ifp)
    499 {
    500 	struct sf_softc *sc = ifp->if_softc;
    501 
    502 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
    503 	ifp->if_oerrors++;
    504 
    505 	(void) sf_init(ifp);
    506 
    507 	/* Try to get more packets going. */
    508 	sf_start(ifp);
    509 }
    510 
    511 /*
    512  * sf_ioctl:		[ifnet interface function]
    513  *
    514  *	Handle control requests from the operator.
    515  */
    516 static int
    517 sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    518 {
    519 	struct sf_softc *sc = ifp->if_softc;
    520 	int s, error;
    521 
    522 	s = splnet();
    523 
    524 	error = ether_ioctl(ifp, cmd, data);
    525 	if (error == ENETRESET) {
    526 		/*
    527 		 * Multicast list has changed; set the hardware filter
    528 		 * accordingly.
    529 		 */
    530 		if (ifp->if_flags & IFF_RUNNING)
    531 			sf_set_filter(sc);
    532 		error = 0;
    533 	}
    534 
    535 	/* Try to get more packets going. */
    536 	sf_start(ifp);
    537 
    538 	splx(s);
    539 	return (error);
    540 }
    541 
    542 /*
    543  * sf_intr:
    544  *
    545  *	Interrupt service routine.
    546  */
    547 int
    548 sf_intr(void *arg)
    549 {
    550 	struct sf_softc *sc = arg;
    551 	uint32_t isr;
    552 	int handled = 0, wantinit = 0;
    553 
    554 	for (;;) {
    555 		/* Reading clears all interrupts we're interested in. */
    556 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
    557 		if ((isr & IS_PCIPadInt) == 0)
    558 			break;
    559 
    560 		handled = 1;
    561 
    562 		/* Handle receive interrupts. */
    563 		if (isr & IS_RxQ1DoneInt)
    564 			sf_rxintr(sc);
    565 
    566 		/* Handle transmit completion interrupts. */
    567 		if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
    568 			sf_txintr(sc);
    569 
    570 		/* Handle abnormal interrupts. */
    571 		if (isr & IS_AbnormalInterrupt) {
    572 			/* Statistics. */
    573 			if (isr & IS_StatisticWrapInt)
    574 				sf_stats_update(sc);
    575 
    576 			/* DMA errors. */
    577 			if (isr & IS_DmaErrInt) {
    578 				wantinit = 1;
    579 				aprint_error_dev(sc->sc_dev,
    580 				    "WARNING: DMA error\n");
    581 			}
    582 
    583 			/* Transmit FIFO underruns. */
    584 			if (isr & IS_TxDataLowInt) {
    585 				if (sc->sc_txthresh < 0xff)
    586 					sc->sc_txthresh++;
    587 				printf("%s: transmit FIFO underrun, new "
    588 				    "threshold: %d bytes\n",
    589 				    device_xname(sc->sc_dev),
    590 				    sc->sc_txthresh * 16);
    591 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
    592 				    sc->sc_TransmitFrameCSR |
    593 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
    594 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
    595 				    sc->sc_TxDescQueueCtrl |
    596 				    TDQC_TxHighPriorityFifoThreshold(
    597 							sc->sc_txthresh));
    598 			}
    599 		}
    600 	}
    601 
    602 	if (handled) {
    603 		/* Reset the interface, if necessary. */
    604 		if (wantinit)
    605 			sf_init(&sc->sc_ethercom.ec_if);
    606 
    607 		/* Try and get more packets going. */
    608 		sf_start(&sc->sc_ethercom.ec_if);
    609 	}
    610 
    611 	return (handled);
    612 }
    613 
    614 /*
    615  * sf_txintr:
    616  *
    617  *	Helper -- handle transmit completion interrupts.
    618  */
    619 static void
    620 sf_txintr(struct sf_softc *sc)
    621 {
    622 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    623 	struct sf_descsoft *ds;
    624 	uint32_t cqci, tcd;
    625 	int consumer, producer, txidx;
    626 
    627  try_again:
    628 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
    629 
    630 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
    631 	producer = CQPI_TxCompletionProducerIndex_get(
    632 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
    633 
    634 	if (consumer == producer)
    635 		return;
    636 
    637 	ifp->if_flags &= ~IFF_OACTIVE;
    638 
    639 	while (consumer != producer) {
    640 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
    641 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
    642 
    643 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
    644 #ifdef DIAGNOSTIC
    645 		if ((tcd & TCD_PR) == 0)
    646 			aprint_error_dev(sc->sc_dev,
    647 			    "Tx queue mismatch, index %d\n", txidx);
    648 #endif
    649 		/*
    650 		 * NOTE: stats are updated later.  We're just
    651 		 * releasing packets that have been DMA'd to
    652 		 * the chip.
    653 		 */
    654 		ds = &sc->sc_txsoft[txidx];
    655 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
    656 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    657 		    0, ds->ds_dmamap->dm_mapsize,
    658 		    BUS_DMASYNC_POSTWRITE);
    659 		m_freem(ds->ds_mbuf);
    660 		ds->ds_mbuf = NULL;
    661 
    662 		consumer = SF_NEXTTCD(consumer);
    663 		sc->sc_txpending--;
    664 	}
    665 
    666 	/* XXXJRT -- should be KDASSERT() */
    667 	KASSERT(sc->sc_txpending >= 0);
    668 
    669 	/* If all packets are done, cancel the watchdog timer. */
    670 	if (sc->sc_txpending == 0)
    671 		ifp->if_timer = 0;
    672 
    673 	/* Update the consumer index. */
    674 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
    675 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
    676 	     CQCI_TxCompletionConsumerIndex(consumer));
    677 
    678 	/* Double check for new completions. */
    679 	goto try_again;
    680 }
    681 
    682 /*
    683  * sf_rxintr:
    684  *
    685  *	Helper -- handle receive interrupts.
    686  */
    687 static void
    688 sf_rxintr(struct sf_softc *sc)
    689 {
    690 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    691 	struct sf_descsoft *ds;
    692 	struct sf_rcd_full *rcd;
    693 	struct mbuf *m;
    694 	uint32_t cqci, word0;
    695 	int consumer, producer, bufproducer, rxidx, len;
    696 
    697  try_again:
    698 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
    699 
    700 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
    701 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
    702 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
    703 	bufproducer = RXQ1P_RxDescQ1Producer_get(
    704 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
    705 
    706 	if (consumer == producer)
    707 		return;
    708 
    709 	while (consumer != producer) {
    710 		rcd = &sc->sc_rxcomp[consumer];
    711 		SF_CDRXCSYNC(sc, consumer,
    712 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    713 		SF_CDRXCSYNC(sc, consumer,
    714 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    715 
    716 		word0 = le32toh(rcd->rcd_word0);
    717 		rxidx = RCD_W0_EndIndex(word0);
    718 
    719 		ds = &sc->sc_rxsoft[rxidx];
    720 
    721 		consumer = SF_NEXTRCD(consumer);
    722 		bufproducer = SF_NEXTRX(bufproducer);
    723 
    724 		if ((word0 & RCD_W0_OK) == 0) {
    725 			SF_INIT_RXDESC(sc, rxidx);
    726 			continue;
    727 		}
    728 
    729 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    730 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    731 
    732 		/*
    733 		 * No errors; receive the packet.  Note that we have
    734 		 * configured the Starfire to NOT transfer the CRC
    735 		 * with the packet.
    736 		 */
    737 		len = RCD_W0_Length(word0);
    738 
    739 #ifdef __NO_STRICT_ALIGNMENT
    740 		/*
    741 		 * Allocate a new mbuf cluster.  If that fails, we are
    742 		 * out of memory, and must drop the packet and recycle
    743 		 * the buffer that's already attached to this descriptor.
    744 		 */
    745 		m = ds->ds_mbuf;
    746 		if (sf_add_rxbuf(sc, rxidx) != 0) {
    747 			ifp->if_ierrors++;
    748 			SF_INIT_RXDESC(sc, rxidx);
    749 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    750 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    751 			continue;
    752 		}
    753 #else
    754 		/*
    755 		 * The Starfire's receive buffer must be 4-byte aligned.
    756 		 * But this means that the data after the Ethernet header
    757 		 * is misaligned.  We must allocate a new buffer and
    758 		 * copy the data, shifted forward 2 bytes.
    759 		 */
    760 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    761 		if (m == NULL) {
    762  dropit:
    763 			ifp->if_ierrors++;
    764 			SF_INIT_RXDESC(sc, rxidx);
    765 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    766 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    767 			continue;
    768 		}
    769 		if (len > (MHLEN - 2)) {
    770 			MCLGET(m, M_DONTWAIT);
    771 			if ((m->m_flags & M_EXT) == 0) {
    772 				m_freem(m);
    773 				goto dropit;
    774 			}
    775 		}
    776 		m->m_data += 2;
    777 
    778 		/*
    779 		 * Note that we use cluster for incoming frames, so the
    780 		 * buffer is virtually contiguous.
    781 		 */
    782 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
    783 
    784 		/* Allow the receive descriptor to continue using its mbuf. */
    785 		SF_INIT_RXDESC(sc, rxidx);
    786 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    787 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    788 #endif /* __NO_STRICT_ALIGNMENT */
    789 
    790 		m_set_rcvif(m, ifp);
    791 		m->m_pkthdr.len = m->m_len = len;
    792 
    793 		/*
    794 		 * Pass this up to any BPF listeners.
    795 		 */
    796 		bpf_mtap(ifp, m);
    797 
    798 		/* Pass it on. */
    799 		if_percpuq_enqueue(ifp->if_percpuq, m);
    800 	}
    801 
    802 	/* Update the chip's pointers. */
    803 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
    804 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
    805 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
    806 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
    807 	    RXQ1P_RxDescQ1Producer(bufproducer));
    808 
    809 	/* Double-check for any new completions. */
    810 	goto try_again;
    811 }
    812 
    813 /*
    814  * sf_tick:
    815  *
    816  *	One second timer, used to tick the MII and update stats.
    817  */
    818 static void
    819 sf_tick(void *arg)
    820 {
    821 	struct sf_softc *sc = arg;
    822 	int s;
    823 
    824 	s = splnet();
    825 	mii_tick(&sc->sc_mii);
    826 	sf_stats_update(sc);
    827 	splx(s);
    828 
    829 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
    830 }
    831 
    832 /*
    833  * sf_stats_update:
    834  *
    835  *	Read the statitistics counters.
    836  */
    837 static void
    838 sf_stats_update(struct sf_softc *sc)
    839 {
    840 	struct sf_stats stats;
    841 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    842 	uint32_t *p;
    843 	u_int i;
    844 
    845 	p = &stats.TransmitOKFrames;
    846 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
    847 		*p++ = sf_genreg_read(sc,
    848 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
    849 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
    850 	}
    851 
    852 	ifp->if_opackets += stats.TransmitOKFrames;
    853 
    854 	ifp->if_collisions += stats.SingleCollisionFrames +
    855 	    stats.MultipleCollisionFrames;
    856 
    857 	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
    858 	    stats.TransmitAbortDueToExcessingDeferral +
    859 	    stats.FramesLostDueToInternalTransmitErrors;
    860 
    861 	ifp->if_ipackets += stats.ReceiveOKFrames;
    862 
    863 	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
    864 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
    865 	    stats.ReceiveFramesJabbersError +
    866 	    stats.FramesLostDueToInternalReceiveErrors;
    867 }
    868 
    869 /*
    870  * sf_reset:
    871  *
    872  *	Perform a soft reset on the Starfire.
    873  */
    874 static void
    875 sf_reset(struct sf_softc *sc)
    876 {
    877 	int i;
    878 
    879 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
    880 
    881 	sf_macreset(sc);
    882 
    883 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
    884 	for (i = 0; i < 1000; i++) {
    885 		delay(10);
    886 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
    887 		     PDC_SoftReset) == 0)
    888 			break;
    889 	}
    890 
    891 	if (i == 1000) {
    892 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
    893 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
    894 	}
    895 
    896 	delay(1000);
    897 }
    898 
    899 /*
    900  * sf_macreset:
    901  *
    902  *	Reset the MAC portion of the Starfire.
    903  */
    904 static void
    905 sf_macreset(struct sf_softc *sc)
    906 {
    907 
    908 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
    909 	delay(1000);
    910 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
    911 }
    912 
    913 /*
    914  * sf_init:		[ifnet interface function]
    915  *
    916  *	Initialize the interface.  Must be called at splnet().
    917  */
    918 static int
    919 sf_init(struct ifnet *ifp)
    920 {
    921 	struct sf_softc *sc = ifp->if_softc;
    922 	struct sf_descsoft *ds;
    923 	int error = 0;
    924 	u_int i;
    925 
    926 	/*
    927 	 * Cancel any pending I/O.
    928 	 */
    929 	sf_stop(ifp, 0);
    930 
    931 	/*
    932 	 * Reset the Starfire to a known state.
    933 	 */
    934 	sf_reset(sc);
    935 
    936 	/* Clear the stat counters. */
    937 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
    938 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
    939 
    940 	/*
    941 	 * Initialize the transmit descriptor ring.
    942 	 */
    943 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    944 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
    945 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
    946 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
    947 
    948 	/*
    949 	 * Initialize the transmit completion ring.
    950 	 */
    951 	for (i = 0; i < SF_NTCD; i++) {
    952 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
    953 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    954 	}
    955 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
    956 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
    957 
    958 	/*
    959 	 * Initialize the receive descriptor ring.
    960 	 */
    961 	for (i = 0; i < SF_NRXDESC; i++) {
    962 		ds = &sc->sc_rxsoft[i];
    963 		if (ds->ds_mbuf == NULL) {
    964 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
    965 				aprint_error_dev(sc->sc_dev,
    966 				    "unable to allocate or map rx buffer %d, "
    967 				    "error = %d\n", i, error);
    968 				/*
    969 				 * XXX Should attempt to run with fewer receive
    970 				 * XXX buffers instead of just failing.
    971 				 */
    972 				sf_rxdrain(sc);
    973 				goto out;
    974 			}
    975 		} else
    976 			SF_INIT_RXDESC(sc, i);
    977 	}
    978 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
    979 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
    980 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
    981 
    982 	/*
    983 	 * Initialize the receive completion ring.
    984 	 */
    985 	for (i = 0; i < SF_NRCD; i++) {
    986 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
    987 		sc->sc_rxcomp[i].rcd_word1 = 0;
    988 		sc->sc_rxcomp[i].rcd_word2 = 0;
    989 		sc->sc_rxcomp[i].rcd_timestamp = 0;
    990 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    991 	}
    992 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
    993 	    RCQ1C_RxCompletionQ1Type(3));
    994 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
    995 
    996 	/*
    997 	 * Initialize the Tx CSR.
    998 	 */
    999 	sc->sc_TransmitFrameCSR = 0;
   1000 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
   1001 	    sc->sc_TransmitFrameCSR |
   1002 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
   1003 
   1004 	/*
   1005 	 * Initialize the Tx descriptor control register.
   1006 	 */
   1007 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
   1008 	    TDQC_TxDmaBurstSize(4) |	/* default */
   1009 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
   1010 	    TDQC_TxDescType(0);
   1011 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
   1012 	    sc->sc_TxDescQueueCtrl |
   1013 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
   1014 
   1015 	/*
   1016 	 * Initialize the Rx descriptor control registers.
   1017 	 */
   1018 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
   1019 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
   1020 	    RDQ1C_RxDescSpacing(0));
   1021 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
   1022 
   1023 	/*
   1024 	 * Initialize the Tx descriptor producer indices.
   1025 	 */
   1026 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
   1027 	    TDQPI_HiPrTxProducerIndex(0) |
   1028 	    TDQPI_LoPrTxProducerIndex(0));
   1029 
   1030 	/*
   1031 	 * Initialize the Rx descriptor producer indices.
   1032 	 */
   1033 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
   1034 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
   1035 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
   1036 	    RXQ2P_RxDescQ2Producer(0));
   1037 
   1038 	/*
   1039 	 * Initialize the Tx and Rx completion queue consumer indices.
   1040 	 */
   1041 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
   1042 	    CQCI_TxCompletionConsumerIndex(0) |
   1043 	    CQCI_RxCompletionQ1ConsumerIndex(0));
   1044 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
   1045 
   1046 	/*
   1047 	 * Initialize the Rx DMA control register.
   1048 	 */
   1049 	sf_funcreg_write(sc, SF_RxDmaCtrl,
   1050 	    RDC_RxHighPriorityThreshold(6) |	/* default */
   1051 	    RDC_RxBurstSize(4));		/* default */
   1052 
   1053 	/*
   1054 	 * Set the receive filter.
   1055 	 */
   1056 	sc->sc_RxAddressFilteringCtl = 0;
   1057 	sf_set_filter(sc);
   1058 
   1059 	/*
   1060 	 * Set MacConfig1.  When we set the media, MacConfig1 will
   1061 	 * actually be written and the MAC part reset.
   1062 	 */
   1063 	sc->sc_MacConfig1 = MC1_PadEn;
   1064 
   1065 	/*
   1066 	 * Set the media.
   1067 	 */
   1068 	if ((error = ether_mediachange(ifp)) != 0)
   1069 		goto out;
   1070 
   1071 	/*
   1072 	 * Initialize the interrupt register.
   1073 	 */
   1074 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
   1075 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
   1076 	    IS_StatisticWrapInt;
   1077 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
   1078 
   1079 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
   1080 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
   1081 
   1082 	/*
   1083 	 * Start the transmit and receive processes.
   1084 	 */
   1085 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
   1086 	    GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
   1087 
   1088 	/* Start the on second clock. */
   1089 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
   1090 
   1091 	/*
   1092 	 * Note that the interface is now running.
   1093 	 */
   1094 	ifp->if_flags |= IFF_RUNNING;
   1095 	ifp->if_flags &= ~IFF_OACTIVE;
   1096 
   1097  out:
   1098 	if (error) {
   1099 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1100 		ifp->if_timer = 0;
   1101 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1102 	}
   1103 	return (error);
   1104 }
   1105 
   1106 /*
   1107  * sf_rxdrain:
   1108  *
   1109  *	Drain the receive queue.
   1110  */
   1111 static void
   1112 sf_rxdrain(struct sf_softc *sc)
   1113 {
   1114 	struct sf_descsoft *ds;
   1115 	int i;
   1116 
   1117 	for (i = 0; i < SF_NRXDESC; i++) {
   1118 		ds = &sc->sc_rxsoft[i];
   1119 		if (ds->ds_mbuf != NULL) {
   1120 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1121 			m_freem(ds->ds_mbuf);
   1122 			ds->ds_mbuf = NULL;
   1123 		}
   1124 	}
   1125 }
   1126 
   1127 /*
   1128  * sf_stop:		[ifnet interface function]
   1129  *
   1130  *	Stop transmission on the interface.
   1131  */
   1132 static void
   1133 sf_stop(struct ifnet *ifp, int disable)
   1134 {
   1135 	struct sf_softc *sc = ifp->if_softc;
   1136 	struct sf_descsoft *ds;
   1137 	int i;
   1138 
   1139 	/* Stop the one second clock. */
   1140 	callout_stop(&sc->sc_tick_callout);
   1141 
   1142 	/* Down the MII. */
   1143 	mii_down(&sc->sc_mii);
   1144 
   1145 	/* Disable interrupts. */
   1146 	sf_funcreg_write(sc, SF_InterruptEn, 0);
   1147 
   1148 	/* Stop the transmit and receive processes. */
   1149 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
   1150 
   1151 	/*
   1152 	 * Release any queued transmit buffers.
   1153 	 */
   1154 	for (i = 0; i < SF_NTXDESC; i++) {
   1155 		ds = &sc->sc_txsoft[i];
   1156 		if (ds->ds_mbuf != NULL) {
   1157 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1158 			m_freem(ds->ds_mbuf);
   1159 			ds->ds_mbuf = NULL;
   1160 		}
   1161 	}
   1162 
   1163 	/*
   1164 	 * Mark the interface down and cancel the watchdog timer.
   1165 	 */
   1166 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1167 	ifp->if_timer = 0;
   1168 
   1169 	if (disable)
   1170 		sf_rxdrain(sc);
   1171 }
   1172 
   1173 /*
   1174  * sf_read_eeprom:
   1175  *
   1176  *	Read from the Starfire EEPROM.
   1177  */
   1178 static uint8_t
   1179 sf_read_eeprom(struct sf_softc *sc, int offset)
   1180 {
   1181 	uint32_t reg;
   1182 
   1183 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
   1184 
   1185 	return ((reg >> (8 * (offset & 3))) & 0xff);
   1186 }
   1187 
   1188 /*
   1189  * sf_add_rxbuf:
   1190  *
   1191  *	Add a receive buffer to the indicated descriptor.
   1192  */
   1193 static int
   1194 sf_add_rxbuf(struct sf_softc *sc, int idx)
   1195 {
   1196 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
   1197 	struct mbuf *m;
   1198 	int error;
   1199 
   1200 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1201 	if (m == NULL)
   1202 		return (ENOBUFS);
   1203 
   1204 	MCLGET(m, M_DONTWAIT);
   1205 	if ((m->m_flags & M_EXT) == 0) {
   1206 		m_freem(m);
   1207 		return (ENOBUFS);
   1208 	}
   1209 
   1210 	if (ds->ds_mbuf != NULL)
   1211 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1212 
   1213 	ds->ds_mbuf = m;
   1214 
   1215 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1216 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1217 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1218 	if (error) {
   1219 		aprint_error_dev(sc->sc_dev,
   1220 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   1221 		panic("sf_add_rxbuf"); /* XXX */
   1222 	}
   1223 
   1224 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1225 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1226 
   1227 	SF_INIT_RXDESC(sc, idx);
   1228 
   1229 	return (0);
   1230 }
   1231 
   1232 static void
   1233 sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
   1234 {
   1235 	uint32_t reg0, reg1, reg2;
   1236 
   1237 	reg0 = enaddr[5] | (enaddr[4] << 8);
   1238 	reg1 = enaddr[3] | (enaddr[2] << 8);
   1239 	reg2 = enaddr[1] | (enaddr[0] << 8);
   1240 
   1241 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
   1242 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
   1243 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
   1244 }
   1245 
   1246 static void
   1247 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
   1248 {
   1249 	uint32_t hash, slot, reg;
   1250 
   1251 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
   1252 	slot = hash >> 4;
   1253 
   1254 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
   1255 	reg |= 1 << (hash & 0xf);
   1256 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
   1257 }
   1258 
   1259 /*
   1260  * sf_set_filter:
   1261  *
   1262  *	Set the Starfire receive filter.
   1263  */
   1264 static void
   1265 sf_set_filter(struct sf_softc *sc)
   1266 {
   1267 	struct ethercom *ec = &sc->sc_ethercom;
   1268 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1269 	struct ether_multi *enm;
   1270 	struct ether_multistep step;
   1271 	int i;
   1272 
   1273 	/* Start by clearing the perfect and hash tables. */
   1274 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
   1275 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
   1276 
   1277 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
   1278 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
   1279 
   1280 	/*
   1281 	 * Clear the perfect and hash mode bits.
   1282 	 */
   1283 	sc->sc_RxAddressFilteringCtl &=
   1284 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
   1285 
   1286 	if (ifp->if_flags & IFF_BROADCAST)
   1287 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
   1288 	else
   1289 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
   1290 
   1291 	if (ifp->if_flags & IFF_PROMISC) {
   1292 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
   1293 		goto allmulti;
   1294 	} else
   1295 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
   1296 
   1297 	/*
   1298 	 * Set normal perfect filtering mode.
   1299 	 */
   1300 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
   1301 
   1302 	/*
   1303 	 * First, write the station address to the perfect filter
   1304 	 * table.
   1305 	 */
   1306 	sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
   1307 
   1308 	/*
   1309 	 * Now set the hash bits for each multicast address in our
   1310 	 * list.
   1311 	 */
   1312 	ETHER_FIRST_MULTI(step, ec, enm);
   1313 	if (enm == NULL)
   1314 		goto done;
   1315 	while (enm != NULL) {
   1316 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1317 			/*
   1318 			 * We must listen to a range of multicast addresses.
   1319 			 * For now, just accept all multicasts, rather than
   1320 			 * trying to set only those filter bits needed to match
   1321 			 * the range.  (At this time, the only use of address
   1322 			 * ranges is for IP multicast routing, for which the
   1323 			 * range is big enough to require all bits set.)
   1324 			 */
   1325 			goto allmulti;
   1326 		}
   1327 		sf_set_filter_hash(sc, enm->enm_addrlo);
   1328 		ETHER_NEXT_MULTI(step, enm);
   1329 	}
   1330 
   1331 	/*
   1332 	 * Set "hash only multicast dest, match regardless of VLAN ID".
   1333 	 */
   1334 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
   1335 	goto done;
   1336 
   1337  allmulti:
   1338 	/*
   1339 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
   1340 	 */
   1341 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
   1342 	ifp->if_flags |= IFF_ALLMULTI;
   1343 
   1344  done:
   1345 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
   1346 	    sc->sc_RxAddressFilteringCtl);
   1347 }
   1348 
   1349 /*
   1350  * sf_mii_read:		[mii interface function]
   1351  *
   1352  *	Read from the MII.
   1353  */
   1354 static int
   1355 sf_mii_read(device_t self, int phy, int reg)
   1356 {
   1357 	struct sf_softc *sc = device_private(self);
   1358 	uint32_t v;
   1359 	int i;
   1360 
   1361 	for (i = 0; i < 1000; i++) {
   1362 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
   1363 		if (v & MiiDataValid)
   1364 			break;
   1365 		delay(1);
   1366 	}
   1367 
   1368 	if ((v & MiiDataValid) == 0)
   1369 		return (0);
   1370 
   1371 	if (MiiRegDataPort(v) == 0xffff)
   1372 		return (0);
   1373 
   1374 	return (MiiRegDataPort(v));
   1375 }
   1376 
   1377 /*
   1378  * sf_mii_write:	[mii interface function]
   1379  *
   1380  *	Write to the MII.
   1381  */
   1382 static void
   1383 sf_mii_write(device_t self, int phy, int reg, int val)
   1384 {
   1385 	struct sf_softc *sc = device_private(self);
   1386 	int i;
   1387 
   1388 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
   1389 
   1390 	for (i = 0; i < 1000; i++) {
   1391 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
   1392 		     MiiBusy) == 0)
   1393 			return;
   1394 		delay(1);
   1395 	}
   1396 
   1397 	printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
   1398 }
   1399 
   1400 /*
   1401  * sf_mii_statchg:	[mii interface function]
   1402  *
   1403  *	Callback from the PHY when the media changes.
   1404  */
   1405 static void
   1406 sf_mii_statchg(struct ifnet *ifp)
   1407 {
   1408 	struct sf_softc *sc = ifp->if_softc;
   1409 	uint32_t ipg;
   1410 
   1411 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1412 		sc->sc_MacConfig1 |= MC1_FullDuplex;
   1413 		ipg = 0x15;
   1414 	} else {
   1415 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
   1416 		ipg = 0x11;
   1417 	}
   1418 
   1419 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
   1420 	sf_macreset(sc);
   1421 
   1422 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
   1423 }
   1424