Home | History | Annotate | Line # | Download | only in ic
aic6915.c revision 1.36
      1 /*	$NetBSD: aic6915.c,v 1.36 2018/06/26 06:48:00 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Adaptec AIC-6915 (``Starfire'')
     34  * 10/100 Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.36 2018/06/26 06:48:00 msaitoh Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #include <sys/bus.h>
     60 #include <sys/intr.h>
     61 
     62 #include <dev/mii/miivar.h>
     63 
     64 #include <dev/ic/aic6915reg.h>
     65 #include <dev/ic/aic6915var.h>
     66 
     67 static void	sf_start(struct ifnet *);
     68 static void	sf_watchdog(struct ifnet *);
     69 static int	sf_ioctl(struct ifnet *, u_long, void *);
     70 static int	sf_init(struct ifnet *);
     71 static void	sf_stop(struct ifnet *, int);
     72 
     73 static bool	sf_shutdown(device_t, int);
     74 
     75 static void	sf_txintr(struct sf_softc *);
     76 static void	sf_rxintr(struct sf_softc *);
     77 static void	sf_stats_update(struct sf_softc *);
     78 
     79 static void	sf_reset(struct sf_softc *);
     80 static void	sf_macreset(struct sf_softc *);
     81 static void	sf_rxdrain(struct sf_softc *);
     82 static int	sf_add_rxbuf(struct sf_softc *, int);
     83 static uint8_t	sf_read_eeprom(struct sf_softc *, int);
     84 static void	sf_set_filter(struct sf_softc *);
     85 
     86 static int	sf_mii_read(device_t, int, int);
     87 static void	sf_mii_write(device_t, int, int, int);
     88 static void	sf_mii_statchg(struct ifnet *);
     89 
     90 static void	sf_tick(void *);
     91 
     92 #define	sf_funcreg_read(sc, reg)					\
     93 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
     94 #define	sf_funcreg_write(sc, reg, val)					\
     95 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
     96 
     97 static inline uint32_t
     98 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
     99 {
    100 
    101 	if (__predict_false(sc->sc_iomapped)) {
    102 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
    103 		    reg);
    104 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
    105 		    SF_IndirectIoDataPort));
    106 	}
    107 
    108 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
    109 }
    110 
    111 static inline void
    112 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
    113 {
    114 
    115 	if (__predict_false(sc->sc_iomapped)) {
    116 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
    117 		    reg);
    118 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
    119 		    val);
    120 		return;
    121 	}
    122 
    123 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
    124 }
    125 
    126 #define	sf_genreg_read(sc, reg)						\
    127 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
    128 #define	sf_genreg_write(sc, reg, val)					\
    129 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
    130 
    131 /*
    132  * sf_attach:
    133  *
    134  *	Attach a Starfire interface to the system.
    135  */
    136 void
    137 sf_attach(struct sf_softc *sc)
    138 {
    139 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    140 	int i, rseg, error;
    141 	bus_dma_segment_t seg;
    142 	u_int8_t enaddr[ETHER_ADDR_LEN];
    143 
    144 	callout_init(&sc->sc_tick_callout, 0);
    145 
    146 	/*
    147 	 * If we're I/O mapped, the functional register handle is
    148 	 * the same as the base handle.  If we're memory mapped,
    149 	 * carve off a chunk of the register space for the functional
    150 	 * registers, to save on arithmetic later.
    151 	 */
    152 	if (sc->sc_iomapped)
    153 		sc->sc_sh_func = sc->sc_sh;
    154 	else {
    155 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
    156 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
    157 			aprint_error_dev(sc->sc_dev, "unable to sub-region "
    158 			    "functional registers, error = %d\n", error);
    159 			return;
    160 		}
    161 	}
    162 
    163 	/*
    164 	 * Initialize the transmit threshold for this interface.  The
    165 	 * manual describes the default as 4 * 16 bytes.  We start out
    166 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
    167 	 * several platforms.
    168 	 */
    169 	sc->sc_txthresh = 10;
    170 
    171 	/*
    172 	 * Allocate the control data structures, and create and load the
    173 	 * DMA map for it.
    174 	 */
    175 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    176 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    177 	    BUS_DMA_NOWAIT)) != 0) {
    178 		aprint_error_dev(sc->sc_dev,
    179 		    "unable to allocate control data, error = %d\n", error);
    180 		goto fail_0;
    181 	}
    182 
    183 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    184 	    sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
    185 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    186 		aprint_error_dev(sc->sc_dev,
    187 		    "unable to map control data, error = %d\n", error);
    188 		goto fail_1;
    189 	}
    190 
    191 	if ((error = bus_dmamap_create(sc->sc_dmat,
    192 	    sizeof(struct sf_control_data), 1,
    193 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
    194 	    &sc->sc_cddmamap)) != 0) {
    195 		aprint_error_dev(sc->sc_dev, "unable to create control data "
    196 		    "DMA map, error = %d\n", error);
    197 		goto fail_2;
    198 	}
    199 
    200 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    201 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
    202 	    BUS_DMA_NOWAIT)) != 0) {
    203 		aprint_error_dev(sc->sc_dev, "unable to load control data "
    204 		    "DMA map, error = %d\n", error);
    205 		goto fail_3;
    206 	}
    207 
    208 	/*
    209 	 * Create the transmit buffer DMA maps.
    210 	 */
    211 	for (i = 0; i < SF_NTXDESC; i++) {
    212 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    213 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
    214 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    215 			aprint_error_dev(sc->sc_dev,
    216 			    "unable to create tx DMA map %d, error = %d\n", i,
    217 			    error);
    218 			goto fail_4;
    219 		}
    220 	}
    221 
    222 	/*
    223 	 * Create the receive buffer DMA maps.
    224 	 */
    225 	for (i = 0; i < SF_NRXDESC; i++) {
    226 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    227 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
    228 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    229 			aprint_error_dev(sc->sc_dev,
    230 			    "unable to create rx DMA map %d, error = %d\n", i,
    231 			    error);
    232 			goto fail_5;
    233 		}
    234 	}
    235 
    236 	/*
    237 	 * Reset the chip to a known state.
    238 	 */
    239 	sf_reset(sc);
    240 
    241 	/*
    242 	 * Read the Ethernet address from the EEPROM.
    243 	 */
    244 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    245 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
    246 
    247 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
    248 	    ether_sprintf(enaddr));
    249 
    250 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
    251 		printf("%s: 64-bit PCI slot detected\n",
    252 		    device_xname(sc->sc_dev));
    253 
    254 	/*
    255 	 * Initialize our media structures and probe the MII.
    256 	 */
    257 	sc->sc_mii.mii_ifp = ifp;
    258 	sc->sc_mii.mii_readreg = sf_mii_read;
    259 	sc->sc_mii.mii_writereg = sf_mii_write;
    260 	sc->sc_mii.mii_statchg = sf_mii_statchg;
    261 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    262 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    263 	    ether_mediastatus);
    264 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    265 	    MII_OFFSET_ANY, 0);
    266 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    267 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    268 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    269 	} else
    270 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    271 
    272 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    273 	ifp->if_softc = sc;
    274 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    275 	ifp->if_ioctl = sf_ioctl;
    276 	ifp->if_start = sf_start;
    277 	ifp->if_watchdog = sf_watchdog;
    278 	ifp->if_init = sf_init;
    279 	ifp->if_stop = sf_stop;
    280 	IFQ_SET_READY(&ifp->if_snd);
    281 
    282 	/*
    283 	 * Attach the interface.
    284 	 */
    285 	if_attach(ifp);
    286 	if_deferred_start_init(ifp, NULL);
    287 	ether_ifattach(ifp, enaddr);
    288 
    289 	/*
    290 	 * Make sure the interface is shutdown during reboot.
    291 	 */
    292 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, sf_shutdown))
    293 		pmf_class_network_register(sc->sc_dev, ifp);
    294 	else
    295 		aprint_error_dev(sc->sc_dev,
    296 		    "couldn't establish power handler\n");
    297 	return;
    298 
    299 	/*
    300 	 * Free any resources we've allocated during the failed attach
    301 	 * attempt.  Do this in reverse order an fall through.
    302 	 */
    303  fail_5:
    304 	for (i = 0; i < SF_NRXDESC; i++) {
    305 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    306 			bus_dmamap_destroy(sc->sc_dmat,
    307 			    sc->sc_rxsoft[i].ds_dmamap);
    308 	}
    309  fail_4:
    310 	for (i = 0; i < SF_NTXDESC; i++) {
    311 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    312 			bus_dmamap_destroy(sc->sc_dmat,
    313 			    sc->sc_txsoft[i].ds_dmamap);
    314 	}
    315 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    316  fail_3:
    317 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    318  fail_2:
    319 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
    320 	    sizeof(struct sf_control_data));
    321  fail_1:
    322 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    323  fail_0:
    324 	return;
    325 }
    326 
    327 /*
    328  * sf_shutdown:
    329  *
    330  *	Shutdown hook -- make sure the interface is stopped at reboot.
    331  */
    332 static bool
    333 sf_shutdown(device_t self, int howto)
    334 {
    335 	struct sf_softc *sc;
    336 
    337 	sc = device_private(self);
    338 	sf_stop(&sc->sc_ethercom.ec_if, 1);
    339 
    340 	return true;
    341 }
    342 
    343 /*
    344  * sf_start:		[ifnet interface function]
    345  *
    346  *	Start packet transmission on the interface.
    347  */
    348 static void
    349 sf_start(struct ifnet *ifp)
    350 {
    351 	struct sf_softc *sc = ifp->if_softc;
    352 	struct mbuf *m0, *m;
    353 	struct sf_txdesc0 *txd;
    354 	struct sf_descsoft *ds;
    355 	bus_dmamap_t dmamap;
    356 	int error, producer, last = -1, opending, seg;
    357 
    358 	/*
    359 	 * Remember the previous number of pending transmits.
    360 	 */
    361 	opending = sc->sc_txpending;
    362 
    363 	/*
    364 	 * Find out where we're sitting.
    365 	 */
    366 	producer = SF_TXDINDEX_TO_HOST(
    367 	    TDQPI_HiPrTxProducerIndex_get(
    368 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
    369 
    370 	/*
    371 	 * Loop through the send queue, setting up transmit descriptors
    372 	 * until we drain the queue, or use up all available transmit
    373 	 * descriptors.  Leave a blank one at the end for sanity's sake.
    374 	 */
    375 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
    376 		/*
    377 		 * Grab a packet off the queue.
    378 		 */
    379 		IFQ_POLL(&ifp->if_snd, m0);
    380 		if (m0 == NULL)
    381 			break;
    382 		m = NULL;
    383 
    384 		/*
    385 		 * Get the transmit descriptor.
    386 		 */
    387 		txd = &sc->sc_txdescs[producer];
    388 		ds = &sc->sc_txsoft[producer];
    389 		dmamap = ds->ds_dmamap;
    390 
    391 		/*
    392 		 * Load the DMA map.  If this fails, the packet either
    393 		 * didn't fit in the allotted number of frags, or we were
    394 		 * short on resources.  In this case, we'll copy and try
    395 		 * again.
    396 		 */
    397 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    398 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    399 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    400 			if (m == NULL) {
    401 				aprint_error_dev(sc->sc_dev,
    402 				    "unable to allocate Tx mbuf\n");
    403 				break;
    404 			}
    405 			if (m0->m_pkthdr.len > MHLEN) {
    406 				MCLGET(m, M_DONTWAIT);
    407 				if ((m->m_flags & M_EXT) == 0) {
    408 					aprint_error_dev(sc->sc_dev,
    409 					    "unable to allocate Tx cluster\n");
    410 					m_freem(m);
    411 					break;
    412 				}
    413 			}
    414 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    415 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    416 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    417 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    418 			if (error) {
    419 				aprint_error_dev(sc->sc_dev,
    420 				    "unable to load Tx buffer, error = %d\n",
    421 				    error);
    422 				break;
    423 			}
    424 		}
    425 
    426 		/*
    427 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    428 		 */
    429 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    430 		if (m != NULL) {
    431 			m_freem(m0);
    432 			m0 = m;
    433 		}
    434 
    435 		/* Initialize the descriptor. */
    436 		txd->td_word0 =
    437 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
    438 		if (producer == (SF_NTXDESC - 1))
    439 			txd->td_word0 |= TD_W0_END;
    440 		txd->td_word1 = htole32(dmamap->dm_nsegs);
    441 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    442 			txd->td_frags[seg].fr_addr =
    443 			    htole32(dmamap->dm_segs[seg].ds_addr);
    444 			txd->td_frags[seg].fr_len =
    445 			    htole32(dmamap->dm_segs[seg].ds_len);
    446 		}
    447 
    448 		/* Sync the descriptor and the DMA map. */
    449 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
    450 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    451 		    BUS_DMASYNC_PREWRITE);
    452 
    453 		/*
    454 		 * Store a pointer to the packet so we can free it later.
    455 		 */
    456 		ds->ds_mbuf = m0;
    457 
    458 		/* Advance the Tx pointer. */
    459 		sc->sc_txpending++;
    460 		last = producer;
    461 		producer = SF_NEXTTX(producer);
    462 
    463 		/*
    464 		 * Pass the packet to any BPF listeners.
    465 		 */
    466 		bpf_mtap(ifp, m0, BPF_D_OUT);
    467 	}
    468 
    469 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
    470 		/* No more slots left; notify upper layer. */
    471 		ifp->if_flags |= IFF_OACTIVE;
    472 	}
    473 
    474 	if (sc->sc_txpending != opending) {
    475 		KASSERT(last != -1);
    476 		/*
    477 		 * We enqueued packets.  Cause a transmit interrupt to
    478 		 * happen on the last packet we enqueued, and give the
    479 		 * new descriptors to the chip by writing the new
    480 		 * producer index.
    481 		 */
    482 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
    483 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
    484 
    485 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
    486 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
    487 
    488 		/* Set a watchdog timer in case the chip flakes out. */
    489 		ifp->if_timer = 5;
    490 	}
    491 }
    492 
    493 /*
    494  * sf_watchdog:		[ifnet interface function]
    495  *
    496  *	Watchdog timer handler.
    497  */
    498 static void
    499 sf_watchdog(struct ifnet *ifp)
    500 {
    501 	struct sf_softc *sc = ifp->if_softc;
    502 
    503 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
    504 	ifp->if_oerrors++;
    505 
    506 	(void) sf_init(ifp);
    507 
    508 	/* Try to get more packets going. */
    509 	sf_start(ifp);
    510 }
    511 
    512 /*
    513  * sf_ioctl:		[ifnet interface function]
    514  *
    515  *	Handle control requests from the operator.
    516  */
    517 static int
    518 sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    519 {
    520 	struct sf_softc *sc = ifp->if_softc;
    521 	int s, error;
    522 
    523 	s = splnet();
    524 
    525 	error = ether_ioctl(ifp, cmd, data);
    526 	if (error == ENETRESET) {
    527 		/*
    528 		 * Multicast list has changed; set the hardware filter
    529 		 * accordingly.
    530 		 */
    531 		if (ifp->if_flags & IFF_RUNNING)
    532 			sf_set_filter(sc);
    533 		error = 0;
    534 	}
    535 
    536 	/* Try to get more packets going. */
    537 	sf_start(ifp);
    538 
    539 	splx(s);
    540 	return (error);
    541 }
    542 
    543 /*
    544  * sf_intr:
    545  *
    546  *	Interrupt service routine.
    547  */
    548 int
    549 sf_intr(void *arg)
    550 {
    551 	struct sf_softc *sc = arg;
    552 	uint32_t isr;
    553 	int handled = 0, wantinit = 0;
    554 
    555 	for (;;) {
    556 		/* Reading clears all interrupts we're interested in. */
    557 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
    558 		if ((isr & IS_PCIPadInt) == 0)
    559 			break;
    560 
    561 		handled = 1;
    562 
    563 		/* Handle receive interrupts. */
    564 		if (isr & IS_RxQ1DoneInt)
    565 			sf_rxintr(sc);
    566 
    567 		/* Handle transmit completion interrupts. */
    568 		if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
    569 			sf_txintr(sc);
    570 
    571 		/* Handle abnormal interrupts. */
    572 		if (isr & IS_AbnormalInterrupt) {
    573 			/* Statistics. */
    574 			if (isr & IS_StatisticWrapInt)
    575 				sf_stats_update(sc);
    576 
    577 			/* DMA errors. */
    578 			if (isr & IS_DmaErrInt) {
    579 				wantinit = 1;
    580 				aprint_error_dev(sc->sc_dev,
    581 				    "WARNING: DMA error\n");
    582 			}
    583 
    584 			/* Transmit FIFO underruns. */
    585 			if (isr & IS_TxDataLowInt) {
    586 				if (sc->sc_txthresh < 0xff)
    587 					sc->sc_txthresh++;
    588 				printf("%s: transmit FIFO underrun, new "
    589 				    "threshold: %d bytes\n",
    590 				    device_xname(sc->sc_dev),
    591 				    sc->sc_txthresh * 16);
    592 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
    593 				    sc->sc_TransmitFrameCSR |
    594 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
    595 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
    596 				    sc->sc_TxDescQueueCtrl |
    597 				    TDQC_TxHighPriorityFifoThreshold(
    598 							sc->sc_txthresh));
    599 			}
    600 		}
    601 	}
    602 
    603 	if (handled) {
    604 		/* Reset the interface, if necessary. */
    605 		if (wantinit)
    606 			sf_init(&sc->sc_ethercom.ec_if);
    607 
    608 		/* Try and get more packets going. */
    609 		if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
    610 	}
    611 
    612 	return (handled);
    613 }
    614 
    615 /*
    616  * sf_txintr:
    617  *
    618  *	Helper -- handle transmit completion interrupts.
    619  */
    620 static void
    621 sf_txintr(struct sf_softc *sc)
    622 {
    623 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    624 	struct sf_descsoft *ds;
    625 	uint32_t cqci, tcd;
    626 	int consumer, producer, txidx;
    627 
    628  try_again:
    629 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
    630 
    631 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
    632 	producer = CQPI_TxCompletionProducerIndex_get(
    633 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
    634 
    635 	if (consumer == producer)
    636 		return;
    637 
    638 	ifp->if_flags &= ~IFF_OACTIVE;
    639 
    640 	while (consumer != producer) {
    641 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
    642 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
    643 
    644 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
    645 #ifdef DIAGNOSTIC
    646 		if ((tcd & TCD_PR) == 0)
    647 			aprint_error_dev(sc->sc_dev,
    648 			    "Tx queue mismatch, index %d\n", txidx);
    649 #endif
    650 		/*
    651 		 * NOTE: stats are updated later.  We're just
    652 		 * releasing packets that have been DMA'd to
    653 		 * the chip.
    654 		 */
    655 		ds = &sc->sc_txsoft[txidx];
    656 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
    657 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    658 		    0, ds->ds_dmamap->dm_mapsize,
    659 		    BUS_DMASYNC_POSTWRITE);
    660 		m_freem(ds->ds_mbuf);
    661 		ds->ds_mbuf = NULL;
    662 
    663 		consumer = SF_NEXTTCD(consumer);
    664 		sc->sc_txpending--;
    665 	}
    666 
    667 	/* XXXJRT -- should be KDASSERT() */
    668 	KASSERT(sc->sc_txpending >= 0);
    669 
    670 	/* If all packets are done, cancel the watchdog timer. */
    671 	if (sc->sc_txpending == 0)
    672 		ifp->if_timer = 0;
    673 
    674 	/* Update the consumer index. */
    675 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
    676 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
    677 	     CQCI_TxCompletionConsumerIndex(consumer));
    678 
    679 	/* Double check for new completions. */
    680 	goto try_again;
    681 }
    682 
    683 /*
    684  * sf_rxintr:
    685  *
    686  *	Helper -- handle receive interrupts.
    687  */
    688 static void
    689 sf_rxintr(struct sf_softc *sc)
    690 {
    691 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    692 	struct sf_descsoft *ds;
    693 	struct sf_rcd_full *rcd;
    694 	struct mbuf *m;
    695 	uint32_t cqci, word0;
    696 	int consumer, producer, bufproducer, rxidx, len;
    697 
    698  try_again:
    699 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
    700 
    701 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
    702 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
    703 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
    704 	bufproducer = RXQ1P_RxDescQ1Producer_get(
    705 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
    706 
    707 	if (consumer == producer)
    708 		return;
    709 
    710 	while (consumer != producer) {
    711 		rcd = &sc->sc_rxcomp[consumer];
    712 		SF_CDRXCSYNC(sc, consumer,
    713 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    714 		SF_CDRXCSYNC(sc, consumer,
    715 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    716 
    717 		word0 = le32toh(rcd->rcd_word0);
    718 		rxidx = RCD_W0_EndIndex(word0);
    719 
    720 		ds = &sc->sc_rxsoft[rxidx];
    721 
    722 		consumer = SF_NEXTRCD(consumer);
    723 		bufproducer = SF_NEXTRX(bufproducer);
    724 
    725 		if ((word0 & RCD_W0_OK) == 0) {
    726 			SF_INIT_RXDESC(sc, rxidx);
    727 			continue;
    728 		}
    729 
    730 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    731 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    732 
    733 		/*
    734 		 * No errors; receive the packet.  Note that we have
    735 		 * configured the Starfire to NOT transfer the CRC
    736 		 * with the packet.
    737 		 */
    738 		len = RCD_W0_Length(word0);
    739 
    740 #ifdef __NO_STRICT_ALIGNMENT
    741 		/*
    742 		 * Allocate a new mbuf cluster.  If that fails, we are
    743 		 * out of memory, and must drop the packet and recycle
    744 		 * the buffer that's already attached to this descriptor.
    745 		 */
    746 		m = ds->ds_mbuf;
    747 		if (sf_add_rxbuf(sc, rxidx) != 0) {
    748 			ifp->if_ierrors++;
    749 			SF_INIT_RXDESC(sc, rxidx);
    750 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    751 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    752 			continue;
    753 		}
    754 #else
    755 		/*
    756 		 * The Starfire's receive buffer must be 4-byte aligned.
    757 		 * But this means that the data after the Ethernet header
    758 		 * is misaligned.  We must allocate a new buffer and
    759 		 * copy the data, shifted forward 2 bytes.
    760 		 */
    761 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    762 		if (m == NULL) {
    763  dropit:
    764 			ifp->if_ierrors++;
    765 			SF_INIT_RXDESC(sc, rxidx);
    766 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    767 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    768 			continue;
    769 		}
    770 		if (len > (MHLEN - 2)) {
    771 			MCLGET(m, M_DONTWAIT);
    772 			if ((m->m_flags & M_EXT) == 0) {
    773 				m_freem(m);
    774 				goto dropit;
    775 			}
    776 		}
    777 		m->m_data += 2;
    778 
    779 		/*
    780 		 * Note that we use cluster for incoming frames, so the
    781 		 * buffer is virtually contiguous.
    782 		 */
    783 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
    784 
    785 		/* Allow the receive descriptor to continue using its mbuf. */
    786 		SF_INIT_RXDESC(sc, rxidx);
    787 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    788 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    789 #endif /* __NO_STRICT_ALIGNMENT */
    790 
    791 		m_set_rcvif(m, ifp);
    792 		m->m_pkthdr.len = m->m_len = len;
    793 
    794 		/* Pass it on. */
    795 		if_percpuq_enqueue(ifp->if_percpuq, m);
    796 	}
    797 
    798 	/* Update the chip's pointers. */
    799 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
    800 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
    801 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
    802 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
    803 	    RXQ1P_RxDescQ1Producer(bufproducer));
    804 
    805 	/* Double-check for any new completions. */
    806 	goto try_again;
    807 }
    808 
    809 /*
    810  * sf_tick:
    811  *
    812  *	One second timer, used to tick the MII and update stats.
    813  */
    814 static void
    815 sf_tick(void *arg)
    816 {
    817 	struct sf_softc *sc = arg;
    818 	int s;
    819 
    820 	s = splnet();
    821 	mii_tick(&sc->sc_mii);
    822 	sf_stats_update(sc);
    823 	splx(s);
    824 
    825 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
    826 }
    827 
    828 /*
    829  * sf_stats_update:
    830  *
    831  *	Read the statitistics counters.
    832  */
    833 static void
    834 sf_stats_update(struct sf_softc *sc)
    835 {
    836 	struct sf_stats stats;
    837 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    838 	uint32_t *p;
    839 	u_int i;
    840 
    841 	p = &stats.TransmitOKFrames;
    842 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
    843 		*p++ = sf_genreg_read(sc,
    844 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
    845 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
    846 	}
    847 
    848 	ifp->if_opackets += stats.TransmitOKFrames;
    849 
    850 	ifp->if_collisions += stats.SingleCollisionFrames +
    851 	    stats.MultipleCollisionFrames;
    852 
    853 	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
    854 	    stats.TransmitAbortDueToExcessingDeferral +
    855 	    stats.FramesLostDueToInternalTransmitErrors;
    856 
    857 	ifp->if_ipackets += stats.ReceiveOKFrames;
    858 
    859 	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
    860 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
    861 	    stats.ReceiveFramesJabbersError +
    862 	    stats.FramesLostDueToInternalReceiveErrors;
    863 }
    864 
    865 /*
    866  * sf_reset:
    867  *
    868  *	Perform a soft reset on the Starfire.
    869  */
    870 static void
    871 sf_reset(struct sf_softc *sc)
    872 {
    873 	int i;
    874 
    875 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
    876 
    877 	sf_macreset(sc);
    878 
    879 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
    880 	for (i = 0; i < 1000; i++) {
    881 		delay(10);
    882 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
    883 		     PDC_SoftReset) == 0)
    884 			break;
    885 	}
    886 
    887 	if (i == 1000) {
    888 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
    889 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
    890 	}
    891 
    892 	delay(1000);
    893 }
    894 
    895 /*
    896  * sf_macreset:
    897  *
    898  *	Reset the MAC portion of the Starfire.
    899  */
    900 static void
    901 sf_macreset(struct sf_softc *sc)
    902 {
    903 
    904 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
    905 	delay(1000);
    906 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
    907 }
    908 
    909 /*
    910  * sf_init:		[ifnet interface function]
    911  *
    912  *	Initialize the interface.  Must be called at splnet().
    913  */
    914 static int
    915 sf_init(struct ifnet *ifp)
    916 {
    917 	struct sf_softc *sc = ifp->if_softc;
    918 	struct sf_descsoft *ds;
    919 	int error = 0;
    920 	u_int i;
    921 
    922 	/*
    923 	 * Cancel any pending I/O.
    924 	 */
    925 	sf_stop(ifp, 0);
    926 
    927 	/*
    928 	 * Reset the Starfire to a known state.
    929 	 */
    930 	sf_reset(sc);
    931 
    932 	/* Clear the stat counters. */
    933 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
    934 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
    935 
    936 	/*
    937 	 * Initialize the transmit descriptor ring.
    938 	 */
    939 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    940 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
    941 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
    942 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
    943 
    944 	/*
    945 	 * Initialize the transmit completion ring.
    946 	 */
    947 	for (i = 0; i < SF_NTCD; i++) {
    948 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
    949 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    950 	}
    951 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
    952 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
    953 
    954 	/*
    955 	 * Initialize the receive descriptor ring.
    956 	 */
    957 	for (i = 0; i < SF_NRXDESC; i++) {
    958 		ds = &sc->sc_rxsoft[i];
    959 		if (ds->ds_mbuf == NULL) {
    960 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
    961 				aprint_error_dev(sc->sc_dev,
    962 				    "unable to allocate or map rx buffer %d, "
    963 				    "error = %d\n", i, error);
    964 				/*
    965 				 * XXX Should attempt to run with fewer receive
    966 				 * XXX buffers instead of just failing.
    967 				 */
    968 				sf_rxdrain(sc);
    969 				goto out;
    970 			}
    971 		} else
    972 			SF_INIT_RXDESC(sc, i);
    973 	}
    974 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
    975 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
    976 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
    977 
    978 	/*
    979 	 * Initialize the receive completion ring.
    980 	 */
    981 	for (i = 0; i < SF_NRCD; i++) {
    982 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
    983 		sc->sc_rxcomp[i].rcd_word1 = 0;
    984 		sc->sc_rxcomp[i].rcd_word2 = 0;
    985 		sc->sc_rxcomp[i].rcd_timestamp = 0;
    986 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    987 	}
    988 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
    989 	    RCQ1C_RxCompletionQ1Type(3));
    990 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
    991 
    992 	/*
    993 	 * Initialize the Tx CSR.
    994 	 */
    995 	sc->sc_TransmitFrameCSR = 0;
    996 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
    997 	    sc->sc_TransmitFrameCSR |
    998 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
    999 
   1000 	/*
   1001 	 * Initialize the Tx descriptor control register.
   1002 	 */
   1003 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
   1004 	    TDQC_TxDmaBurstSize(4) |	/* default */
   1005 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
   1006 	    TDQC_TxDescType(0);
   1007 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
   1008 	    sc->sc_TxDescQueueCtrl |
   1009 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
   1010 
   1011 	/*
   1012 	 * Initialize the Rx descriptor control registers.
   1013 	 */
   1014 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
   1015 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
   1016 	    RDQ1C_RxDescSpacing(0));
   1017 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
   1018 
   1019 	/*
   1020 	 * Initialize the Tx descriptor producer indices.
   1021 	 */
   1022 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
   1023 	    TDQPI_HiPrTxProducerIndex(0) |
   1024 	    TDQPI_LoPrTxProducerIndex(0));
   1025 
   1026 	/*
   1027 	 * Initialize the Rx descriptor producer indices.
   1028 	 */
   1029 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
   1030 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
   1031 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
   1032 	    RXQ2P_RxDescQ2Producer(0));
   1033 
   1034 	/*
   1035 	 * Initialize the Tx and Rx completion queue consumer indices.
   1036 	 */
   1037 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
   1038 	    CQCI_TxCompletionConsumerIndex(0) |
   1039 	    CQCI_RxCompletionQ1ConsumerIndex(0));
   1040 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
   1041 
   1042 	/*
   1043 	 * Initialize the Rx DMA control register.
   1044 	 */
   1045 	sf_funcreg_write(sc, SF_RxDmaCtrl,
   1046 	    RDC_RxHighPriorityThreshold(6) |	/* default */
   1047 	    RDC_RxBurstSize(4));		/* default */
   1048 
   1049 	/*
   1050 	 * Set the receive filter.
   1051 	 */
   1052 	sc->sc_RxAddressFilteringCtl = 0;
   1053 	sf_set_filter(sc);
   1054 
   1055 	/*
   1056 	 * Set MacConfig1.  When we set the media, MacConfig1 will
   1057 	 * actually be written and the MAC part reset.
   1058 	 */
   1059 	sc->sc_MacConfig1 = MC1_PadEn;
   1060 
   1061 	/*
   1062 	 * Set the media.
   1063 	 */
   1064 	if ((error = ether_mediachange(ifp)) != 0)
   1065 		goto out;
   1066 
   1067 	/*
   1068 	 * Initialize the interrupt register.
   1069 	 */
   1070 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
   1071 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
   1072 	    IS_StatisticWrapInt;
   1073 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
   1074 
   1075 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
   1076 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
   1077 
   1078 	/*
   1079 	 * Start the transmit and receive processes.
   1080 	 */
   1081 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
   1082 	    GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
   1083 
   1084 	/* Start the on second clock. */
   1085 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
   1086 
   1087 	/*
   1088 	 * Note that the interface is now running.
   1089 	 */
   1090 	ifp->if_flags |= IFF_RUNNING;
   1091 	ifp->if_flags &= ~IFF_OACTIVE;
   1092 
   1093  out:
   1094 	if (error) {
   1095 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1096 		ifp->if_timer = 0;
   1097 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1098 	}
   1099 	return (error);
   1100 }
   1101 
   1102 /*
   1103  * sf_rxdrain:
   1104  *
   1105  *	Drain the receive queue.
   1106  */
   1107 static void
   1108 sf_rxdrain(struct sf_softc *sc)
   1109 {
   1110 	struct sf_descsoft *ds;
   1111 	int i;
   1112 
   1113 	for (i = 0; i < SF_NRXDESC; i++) {
   1114 		ds = &sc->sc_rxsoft[i];
   1115 		if (ds->ds_mbuf != NULL) {
   1116 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1117 			m_freem(ds->ds_mbuf);
   1118 			ds->ds_mbuf = NULL;
   1119 		}
   1120 	}
   1121 }
   1122 
   1123 /*
   1124  * sf_stop:		[ifnet interface function]
   1125  *
   1126  *	Stop transmission on the interface.
   1127  */
   1128 static void
   1129 sf_stop(struct ifnet *ifp, int disable)
   1130 {
   1131 	struct sf_softc *sc = ifp->if_softc;
   1132 	struct sf_descsoft *ds;
   1133 	int i;
   1134 
   1135 	/* Stop the one second clock. */
   1136 	callout_stop(&sc->sc_tick_callout);
   1137 
   1138 	/* Down the MII. */
   1139 	mii_down(&sc->sc_mii);
   1140 
   1141 	/* Disable interrupts. */
   1142 	sf_funcreg_write(sc, SF_InterruptEn, 0);
   1143 
   1144 	/* Stop the transmit and receive processes. */
   1145 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
   1146 
   1147 	/*
   1148 	 * Release any queued transmit buffers.
   1149 	 */
   1150 	for (i = 0; i < SF_NTXDESC; i++) {
   1151 		ds = &sc->sc_txsoft[i];
   1152 		if (ds->ds_mbuf != NULL) {
   1153 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1154 			m_freem(ds->ds_mbuf);
   1155 			ds->ds_mbuf = NULL;
   1156 		}
   1157 	}
   1158 
   1159 	/*
   1160 	 * Mark the interface down and cancel the watchdog timer.
   1161 	 */
   1162 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1163 	ifp->if_timer = 0;
   1164 
   1165 	if (disable)
   1166 		sf_rxdrain(sc);
   1167 }
   1168 
   1169 /*
   1170  * sf_read_eeprom:
   1171  *
   1172  *	Read from the Starfire EEPROM.
   1173  */
   1174 static uint8_t
   1175 sf_read_eeprom(struct sf_softc *sc, int offset)
   1176 {
   1177 	uint32_t reg;
   1178 
   1179 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
   1180 
   1181 	return ((reg >> (8 * (offset & 3))) & 0xff);
   1182 }
   1183 
   1184 /*
   1185  * sf_add_rxbuf:
   1186  *
   1187  *	Add a receive buffer to the indicated descriptor.
   1188  */
   1189 static int
   1190 sf_add_rxbuf(struct sf_softc *sc, int idx)
   1191 {
   1192 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
   1193 	struct mbuf *m;
   1194 	int error;
   1195 
   1196 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1197 	if (m == NULL)
   1198 		return (ENOBUFS);
   1199 
   1200 	MCLGET(m, M_DONTWAIT);
   1201 	if ((m->m_flags & M_EXT) == 0) {
   1202 		m_freem(m);
   1203 		return (ENOBUFS);
   1204 	}
   1205 
   1206 	if (ds->ds_mbuf != NULL)
   1207 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1208 
   1209 	ds->ds_mbuf = m;
   1210 
   1211 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1212 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1213 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1214 	if (error) {
   1215 		aprint_error_dev(sc->sc_dev,
   1216 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   1217 		panic("sf_add_rxbuf"); /* XXX */
   1218 	}
   1219 
   1220 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1221 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1222 
   1223 	SF_INIT_RXDESC(sc, idx);
   1224 
   1225 	return (0);
   1226 }
   1227 
   1228 static void
   1229 sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
   1230 {
   1231 	uint32_t reg0, reg1, reg2;
   1232 
   1233 	reg0 = enaddr[5] | (enaddr[4] << 8);
   1234 	reg1 = enaddr[3] | (enaddr[2] << 8);
   1235 	reg2 = enaddr[1] | (enaddr[0] << 8);
   1236 
   1237 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
   1238 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
   1239 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
   1240 }
   1241 
   1242 static void
   1243 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
   1244 {
   1245 	uint32_t hash, slot, reg;
   1246 
   1247 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
   1248 	slot = hash >> 4;
   1249 
   1250 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
   1251 	reg |= 1 << (hash & 0xf);
   1252 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
   1253 }
   1254 
   1255 /*
   1256  * sf_set_filter:
   1257  *
   1258  *	Set the Starfire receive filter.
   1259  */
   1260 static void
   1261 sf_set_filter(struct sf_softc *sc)
   1262 {
   1263 	struct ethercom *ec = &sc->sc_ethercom;
   1264 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1265 	struct ether_multi *enm;
   1266 	struct ether_multistep step;
   1267 	int i;
   1268 
   1269 	/* Start by clearing the perfect and hash tables. */
   1270 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
   1271 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
   1272 
   1273 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
   1274 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
   1275 
   1276 	/*
   1277 	 * Clear the perfect and hash mode bits.
   1278 	 */
   1279 	sc->sc_RxAddressFilteringCtl &=
   1280 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
   1281 
   1282 	if (ifp->if_flags & IFF_BROADCAST)
   1283 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
   1284 	else
   1285 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
   1286 
   1287 	if (ifp->if_flags & IFF_PROMISC) {
   1288 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
   1289 		goto allmulti;
   1290 	} else
   1291 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
   1292 
   1293 	/*
   1294 	 * Set normal perfect filtering mode.
   1295 	 */
   1296 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
   1297 
   1298 	/*
   1299 	 * First, write the station address to the perfect filter
   1300 	 * table.
   1301 	 */
   1302 	sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
   1303 
   1304 	/*
   1305 	 * Now set the hash bits for each multicast address in our
   1306 	 * list.
   1307 	 */
   1308 	ETHER_FIRST_MULTI(step, ec, enm);
   1309 	if (enm == NULL)
   1310 		goto done;
   1311 	while (enm != NULL) {
   1312 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1313 			/*
   1314 			 * We must listen to a range of multicast addresses.
   1315 			 * For now, just accept all multicasts, rather than
   1316 			 * trying to set only those filter bits needed to match
   1317 			 * the range.  (At this time, the only use of address
   1318 			 * ranges is for IP multicast routing, for which the
   1319 			 * range is big enough to require all bits set.)
   1320 			 */
   1321 			goto allmulti;
   1322 		}
   1323 		sf_set_filter_hash(sc, enm->enm_addrlo);
   1324 		ETHER_NEXT_MULTI(step, enm);
   1325 	}
   1326 
   1327 	/*
   1328 	 * Set "hash only multicast dest, match regardless of VLAN ID".
   1329 	 */
   1330 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
   1331 	goto done;
   1332 
   1333  allmulti:
   1334 	/*
   1335 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
   1336 	 */
   1337 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
   1338 	ifp->if_flags |= IFF_ALLMULTI;
   1339 
   1340  done:
   1341 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
   1342 	    sc->sc_RxAddressFilteringCtl);
   1343 }
   1344 
   1345 /*
   1346  * sf_mii_read:		[mii interface function]
   1347  *
   1348  *	Read from the MII.
   1349  */
   1350 static int
   1351 sf_mii_read(device_t self, int phy, int reg)
   1352 {
   1353 	struct sf_softc *sc = device_private(self);
   1354 	uint32_t v;
   1355 	int i;
   1356 
   1357 	for (i = 0; i < 1000; i++) {
   1358 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
   1359 		if (v & MiiDataValid)
   1360 			break;
   1361 		delay(1);
   1362 	}
   1363 
   1364 	if ((v & MiiDataValid) == 0)
   1365 		return (0);
   1366 
   1367 	if (MiiRegDataPort(v) == 0xffff)
   1368 		return (0);
   1369 
   1370 	return (MiiRegDataPort(v));
   1371 }
   1372 
   1373 /*
   1374  * sf_mii_write:	[mii interface function]
   1375  *
   1376  *	Write to the MII.
   1377  */
   1378 static void
   1379 sf_mii_write(device_t self, int phy, int reg, int val)
   1380 {
   1381 	struct sf_softc *sc = device_private(self);
   1382 	int i;
   1383 
   1384 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
   1385 
   1386 	for (i = 0; i < 1000; i++) {
   1387 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
   1388 		     MiiBusy) == 0)
   1389 			return;
   1390 		delay(1);
   1391 	}
   1392 
   1393 	printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
   1394 }
   1395 
   1396 /*
   1397  * sf_mii_statchg:	[mii interface function]
   1398  *
   1399  *	Callback from the PHY when the media changes.
   1400  */
   1401 static void
   1402 sf_mii_statchg(struct ifnet *ifp)
   1403 {
   1404 	struct sf_softc *sc = ifp->if_softc;
   1405 	uint32_t ipg;
   1406 
   1407 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1408 		sc->sc_MacConfig1 |= MC1_FullDuplex;
   1409 		ipg = 0x15;
   1410 	} else {
   1411 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
   1412 		ipg = 0x11;
   1413 	}
   1414 
   1415 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
   1416 	sf_macreset(sc);
   1417 
   1418 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
   1419 }
   1420