Home | History | Annotate | Line # | Download | only in ic
aic6915.c revision 1.43
      1 /*	$NetBSD: aic6915.c,v 1.43 2020/03/12 03:01:46 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Device driver for the Adaptec AIC-6915 (``Starfire'')
     34  * 10/100 Ethernet controller.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.43 2020/03/12 03:01:46 thorpej Exp $");
     39 
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/errno.h>
     50 #include <sys/device.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #include <sys/bus.h>
     60 #include <sys/intr.h>
     61 
     62 #include <dev/mii/miivar.h>
     63 
     64 #include <dev/ic/aic6915reg.h>
     65 #include <dev/ic/aic6915var.h>
     66 
     67 static void	sf_start(struct ifnet *);
     68 static void	sf_watchdog(struct ifnet *);
     69 static int	sf_ioctl(struct ifnet *, u_long, void *);
     70 static int	sf_init(struct ifnet *);
     71 static void	sf_stop(struct ifnet *, int);
     72 
     73 static bool	sf_shutdown(device_t, int);
     74 
     75 static void	sf_txintr(struct sf_softc *);
     76 static void	sf_rxintr(struct sf_softc *);
     77 static void	sf_stats_update(struct sf_softc *);
     78 
     79 static void	sf_reset(struct sf_softc *);
     80 static void	sf_macreset(struct sf_softc *);
     81 static void	sf_rxdrain(struct sf_softc *);
     82 static int	sf_add_rxbuf(struct sf_softc *, int);
     83 static uint8_t	sf_read_eeprom(struct sf_softc *, int);
     84 static void	sf_set_filter(struct sf_softc *);
     85 
     86 static int	sf_mii_read(device_t, int, int, uint16_t *);
     87 static int	sf_mii_write(device_t, int, int, uint16_t);
     88 static void	sf_mii_statchg(struct ifnet *);
     89 
     90 static void	sf_tick(void *);
     91 
     92 #define	sf_funcreg_read(sc, reg)					\
     93 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
     94 #define	sf_funcreg_write(sc, reg, val)					\
     95 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
     96 
     97 static inline uint32_t
     98 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
     99 {
    100 
    101 	if (__predict_false(sc->sc_iomapped)) {
    102 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
    103 		    reg);
    104 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
    105 		    SF_IndirectIoDataPort));
    106 	}
    107 
    108 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
    109 }
    110 
    111 static inline void
    112 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
    113 {
    114 
    115 	if (__predict_false(sc->sc_iomapped)) {
    116 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
    117 		    reg);
    118 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
    119 		    val);
    120 		return;
    121 	}
    122 
    123 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
    124 }
    125 
    126 #define	sf_genreg_read(sc, reg)						\
    127 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
    128 #define	sf_genreg_write(sc, reg, val)					\
    129 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
    130 
    131 /*
    132  * sf_attach:
    133  *
    134  *	Attach a Starfire interface to the system.
    135  */
    136 void
    137 sf_attach(struct sf_softc *sc)
    138 {
    139 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    140 	struct mii_data * const mii = &sc->sc_mii;
    141 	int i, rseg, error;
    142 	bus_dma_segment_t seg;
    143 	uint8_t enaddr[ETHER_ADDR_LEN];
    144 
    145 	callout_init(&sc->sc_tick_callout, 0);
    146 	callout_setfunc(&sc->sc_tick_callout, sf_tick, sc);
    147 
    148 	/*
    149 	 * If we're I/O mapped, the functional register handle is
    150 	 * the same as the base handle.  If we're memory mapped,
    151 	 * carve off a chunk of the register space for the functional
    152 	 * registers, to save on arithmetic later.
    153 	 */
    154 	if (sc->sc_iomapped)
    155 		sc->sc_sh_func = sc->sc_sh;
    156 	else {
    157 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
    158 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
    159 			aprint_error_dev(sc->sc_dev, "unable to sub-region "
    160 			    "functional registers, error = %d\n", error);
    161 			return;
    162 		}
    163 	}
    164 
    165 	/*
    166 	 * Initialize the transmit threshold for this interface.  The
    167 	 * manual describes the default as 4 * 16 bytes.  We start out
    168 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
    169 	 * several platforms.
    170 	 */
    171 	sc->sc_txthresh = 10;
    172 
    173 	/*
    174 	 * Allocate the control data structures, and create and load the
    175 	 * DMA map for it.
    176 	 */
    177 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    178 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    179 	    BUS_DMA_NOWAIT)) != 0) {
    180 		aprint_error_dev(sc->sc_dev,
    181 		    "unable to allocate control data, error = %d\n", error);
    182 		goto fail_0;
    183 	}
    184 
    185 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    186 	    sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
    187 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    188 		aprint_error_dev(sc->sc_dev,
    189 		    "unable to map control data, error = %d\n", error);
    190 		goto fail_1;
    191 	}
    192 
    193 	if ((error = bus_dmamap_create(sc->sc_dmat,
    194 	    sizeof(struct sf_control_data), 1,
    195 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
    196 	    &sc->sc_cddmamap)) != 0) {
    197 		aprint_error_dev(sc->sc_dev, "unable to create control data "
    198 		    "DMA map, error = %d\n", error);
    199 		goto fail_2;
    200 	}
    201 
    202 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    203 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
    204 	    BUS_DMA_NOWAIT)) != 0) {
    205 		aprint_error_dev(sc->sc_dev, "unable to load control data "
    206 		    "DMA map, error = %d\n", error);
    207 		goto fail_3;
    208 	}
    209 
    210 	/*
    211 	 * Create the transmit buffer DMA maps.
    212 	 */
    213 	for (i = 0; i < SF_NTXDESC; i++) {
    214 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    215 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
    216 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    217 			aprint_error_dev(sc->sc_dev,
    218 			    "unable to create tx DMA map %d, error = %d\n", i,
    219 			    error);
    220 			goto fail_4;
    221 		}
    222 	}
    223 
    224 	/*
    225 	 * Create the receive buffer DMA maps.
    226 	 */
    227 	for (i = 0; i < SF_NRXDESC; i++) {
    228 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    229 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
    230 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    231 			aprint_error_dev(sc->sc_dev,
    232 			    "unable to create rx DMA map %d, error = %d\n", i,
    233 			    error);
    234 			goto fail_5;
    235 		}
    236 	}
    237 
    238 	/*
    239 	 * Reset the chip to a known state.
    240 	 */
    241 	sf_reset(sc);
    242 
    243 	/*
    244 	 * Read the Ethernet address from the EEPROM.
    245 	 */
    246 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    247 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
    248 
    249 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
    250 	    ether_sprintf(enaddr));
    251 
    252 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
    253 		printf("%s: 64-bit PCI slot detected\n",
    254 		    device_xname(sc->sc_dev));
    255 
    256 	/*
    257 	 * Initialize our media structures and probe the MII.
    258 	 */
    259 	mii->mii_ifp = ifp;
    260 	mii->mii_readreg = sf_mii_read;
    261 	mii->mii_writereg = sf_mii_write;
    262 	mii->mii_statchg = sf_mii_statchg;
    263 	sc->sc_ethercom.ec_mii = mii;
    264 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    265 	    ether_mediastatus);
    266 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    267 	    MII_OFFSET_ANY, 0);
    268 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    269 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    270 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    271 	} else
    272 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    273 
    274 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    275 	ifp->if_softc = sc;
    276 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    277 	ifp->if_ioctl = sf_ioctl;
    278 	ifp->if_start = sf_start;
    279 	ifp->if_watchdog = sf_watchdog;
    280 	ifp->if_init = sf_init;
    281 	ifp->if_stop = sf_stop;
    282 	IFQ_SET_READY(&ifp->if_snd);
    283 
    284 	/*
    285 	 * Attach the interface.
    286 	 */
    287 	if_attach(ifp);
    288 	if_deferred_start_init(ifp, NULL);
    289 	ether_ifattach(ifp, enaddr);
    290 
    291 	/*
    292 	 * Make sure the interface is shutdown during reboot.
    293 	 */
    294 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, sf_shutdown))
    295 		pmf_class_network_register(sc->sc_dev, ifp);
    296 	else
    297 		aprint_error_dev(sc->sc_dev,
    298 		    "couldn't establish power handler\n");
    299 	return;
    300 
    301 	/*
    302 	 * Free any resources we've allocated during the failed attach
    303 	 * attempt.  Do this in reverse order an fall through.
    304 	 */
    305  fail_5:
    306 	for (i = 0; i < SF_NRXDESC; i++) {
    307 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    308 			bus_dmamap_destroy(sc->sc_dmat,
    309 			    sc->sc_rxsoft[i].ds_dmamap);
    310 	}
    311  fail_4:
    312 	for (i = 0; i < SF_NTXDESC; i++) {
    313 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    314 			bus_dmamap_destroy(sc->sc_dmat,
    315 			    sc->sc_txsoft[i].ds_dmamap);
    316 	}
    317 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    318  fail_3:
    319 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    320  fail_2:
    321 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
    322 	    sizeof(struct sf_control_data));
    323  fail_1:
    324 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    325  fail_0:
    326 	return;
    327 }
    328 
    329 /*
    330  * sf_shutdown:
    331  *
    332  *	Shutdown hook -- make sure the interface is stopped at reboot.
    333  */
    334 static bool
    335 sf_shutdown(device_t self, int howto)
    336 {
    337 	struct sf_softc *sc;
    338 
    339 	sc = device_private(self);
    340 	sf_stop(&sc->sc_ethercom.ec_if, 1);
    341 
    342 	return true;
    343 }
    344 
    345 /*
    346  * sf_start:		[ifnet interface function]
    347  *
    348  *	Start packet transmission on the interface.
    349  */
    350 static void
    351 sf_start(struct ifnet *ifp)
    352 {
    353 	struct sf_softc *sc = ifp->if_softc;
    354 	struct mbuf *m0, *m;
    355 	struct sf_txdesc0 *txd;
    356 	struct sf_descsoft *ds;
    357 	bus_dmamap_t dmamap;
    358 	int error, producer, last = -1, opending, seg;
    359 
    360 	/*
    361 	 * Remember the previous number of pending transmits.
    362 	 */
    363 	opending = sc->sc_txpending;
    364 
    365 	/*
    366 	 * Find out where we're sitting.
    367 	 */
    368 	producer = SF_TXDINDEX_TO_HOST(
    369 	    TDQPI_HiPrTxProducerIndex_get(
    370 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
    371 
    372 	/*
    373 	 * Loop through the send queue, setting up transmit descriptors
    374 	 * until we drain the queue, or use up all available transmit
    375 	 * descriptors.  Leave a blank one at the end for sanity's sake.
    376 	 */
    377 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
    378 		/*
    379 		 * Grab a packet off the queue.
    380 		 */
    381 		IFQ_POLL(&ifp->if_snd, m0);
    382 		if (m0 == NULL)
    383 			break;
    384 		m = NULL;
    385 
    386 		/*
    387 		 * Get the transmit descriptor.
    388 		 */
    389 		txd = &sc->sc_txdescs[producer];
    390 		ds = &sc->sc_txsoft[producer];
    391 		dmamap = ds->ds_dmamap;
    392 
    393 		/*
    394 		 * Load the DMA map.  If this fails, the packet either
    395 		 * didn't fit in the allotted number of frags, or we were
    396 		 * short on resources.  In this case, we'll copy and try
    397 		 * again.
    398 		 */
    399 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    400 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
    401 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    402 			if (m == NULL) {
    403 				aprint_error_dev(sc->sc_dev,
    404 				    "unable to allocate Tx mbuf\n");
    405 				break;
    406 			}
    407 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    408 			if (m0->m_pkthdr.len > MHLEN) {
    409 				MCLGET(m, M_DONTWAIT);
    410 				if ((m->m_flags & M_EXT) == 0) {
    411 					aprint_error_dev(sc->sc_dev,
    412 					    "unable to allocate Tx cluster\n");
    413 					m_freem(m);
    414 					break;
    415 				}
    416 			}
    417 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    418 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    419 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    420 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    421 			if (error) {
    422 				aprint_error_dev(sc->sc_dev,
    423 				    "unable to load Tx buffer, error = %d\n",
    424 				    error);
    425 				break;
    426 			}
    427 		}
    428 
    429 		/*
    430 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    431 		 */
    432 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    433 		if (m != NULL) {
    434 			m_freem(m0);
    435 			m0 = m;
    436 		}
    437 
    438 		/* Initialize the descriptor. */
    439 		txd->td_word0 =
    440 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
    441 		if (producer == (SF_NTXDESC - 1))
    442 			txd->td_word0 |= TD_W0_END;
    443 		txd->td_word1 = htole32(dmamap->dm_nsegs);
    444 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    445 			txd->td_frags[seg].fr_addr =
    446 			    htole32(dmamap->dm_segs[seg].ds_addr);
    447 			txd->td_frags[seg].fr_len =
    448 			    htole32(dmamap->dm_segs[seg].ds_len);
    449 		}
    450 
    451 		/* Sync the descriptor and the DMA map. */
    452 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
    453 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    454 		    BUS_DMASYNC_PREWRITE);
    455 
    456 		/*
    457 		 * Store a pointer to the packet so we can free it later.
    458 		 */
    459 		ds->ds_mbuf = m0;
    460 
    461 		/* Advance the Tx pointer. */
    462 		sc->sc_txpending++;
    463 		last = producer;
    464 		producer = SF_NEXTTX(producer);
    465 
    466 		/*
    467 		 * Pass the packet to any BPF listeners.
    468 		 */
    469 		bpf_mtap(ifp, m0, BPF_D_OUT);
    470 	}
    471 
    472 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
    473 		/* No more slots left; notify upper layer. */
    474 		ifp->if_flags |= IFF_OACTIVE;
    475 	}
    476 
    477 	if (sc->sc_txpending != opending) {
    478 		KASSERT(last != -1);
    479 		/*
    480 		 * We enqueued packets.  Cause a transmit interrupt to
    481 		 * happen on the last packet we enqueued, and give the
    482 		 * new descriptors to the chip by writing the new
    483 		 * producer index.
    484 		 */
    485 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
    486 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
    487 
    488 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
    489 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
    490 
    491 		/* Set a watchdog timer in case the chip flakes out. */
    492 		ifp->if_timer = 5;
    493 	}
    494 }
    495 
    496 /*
    497  * sf_watchdog:		[ifnet interface function]
    498  *
    499  *	Watchdog timer handler.
    500  */
    501 static void
    502 sf_watchdog(struct ifnet *ifp)
    503 {
    504 	struct sf_softc *sc = ifp->if_softc;
    505 
    506 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
    507 	if_statinc(ifp, if_oerrors);
    508 
    509 	(void) sf_init(ifp);
    510 
    511 	/* Try to get more packets going. */
    512 	sf_start(ifp);
    513 }
    514 
    515 /*
    516  * sf_ioctl:		[ifnet interface function]
    517  *
    518  *	Handle control requests from the operator.
    519  */
    520 static int
    521 sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    522 {
    523 	struct sf_softc *sc = ifp->if_softc;
    524 	int s, error;
    525 
    526 	s = splnet();
    527 
    528 	error = ether_ioctl(ifp, cmd, data);
    529 	if (error == ENETRESET) {
    530 		/*
    531 		 * Multicast list has changed; set the hardware filter
    532 		 * accordingly.
    533 		 */
    534 		if (ifp->if_flags & IFF_RUNNING)
    535 			sf_set_filter(sc);
    536 		error = 0;
    537 	}
    538 
    539 	/* Try to get more packets going. */
    540 	sf_start(ifp);
    541 
    542 	splx(s);
    543 	return (error);
    544 }
    545 
    546 /*
    547  * sf_intr:
    548  *
    549  *	Interrupt service routine.
    550  */
    551 int
    552 sf_intr(void *arg)
    553 {
    554 	struct sf_softc *sc = arg;
    555 	uint32_t isr;
    556 	int handled = 0, wantinit = 0;
    557 
    558 	for (;;) {
    559 		/* Reading clears all interrupts we're interested in. */
    560 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
    561 		if ((isr & IS_PCIPadInt) == 0)
    562 			break;
    563 
    564 		handled = 1;
    565 
    566 		/* Handle receive interrupts. */
    567 		if (isr & IS_RxQ1DoneInt)
    568 			sf_rxintr(sc);
    569 
    570 		/* Handle transmit completion interrupts. */
    571 		if (isr & (IS_TxDmaDoneInt | IS_TxQueueDoneInt))
    572 			sf_txintr(sc);
    573 
    574 		/* Handle abnormal interrupts. */
    575 		if (isr & IS_AbnormalInterrupt) {
    576 			/* Statistics. */
    577 			if (isr & IS_StatisticWrapInt)
    578 				sf_stats_update(sc);
    579 
    580 			/* DMA errors. */
    581 			if (isr & IS_DmaErrInt) {
    582 				wantinit = 1;
    583 				aprint_error_dev(sc->sc_dev,
    584 				    "WARNING: DMA error\n");
    585 			}
    586 
    587 			/* Transmit FIFO underruns. */
    588 			if (isr & IS_TxDataLowInt) {
    589 				if (sc->sc_txthresh < 0xff)
    590 					sc->sc_txthresh++;
    591 				printf("%s: transmit FIFO underrun, new "
    592 				    "threshold: %d bytes\n",
    593 				    device_xname(sc->sc_dev),
    594 				    sc->sc_txthresh * 16);
    595 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
    596 				    sc->sc_TransmitFrameCSR |
    597 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
    598 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
    599 				    sc->sc_TxDescQueueCtrl |
    600 				    TDQC_TxHighPriorityFifoThreshold(
    601 							sc->sc_txthresh));
    602 			}
    603 		}
    604 	}
    605 
    606 	if (handled) {
    607 		/* Reset the interface, if necessary. */
    608 		if (wantinit)
    609 			sf_init(&sc->sc_ethercom.ec_if);
    610 
    611 		/* Try and get more packets going. */
    612 		if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
    613 	}
    614 
    615 	return (handled);
    616 }
    617 
    618 /*
    619  * sf_txintr:
    620  *
    621  *	Helper -- handle transmit completion interrupts.
    622  */
    623 static void
    624 sf_txintr(struct sf_softc *sc)
    625 {
    626 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    627 	struct sf_descsoft *ds;
    628 	uint32_t cqci, tcd;
    629 	int consumer, producer, txidx;
    630 
    631  try_again:
    632 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
    633 
    634 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
    635 	producer = CQPI_TxCompletionProducerIndex_get(
    636 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
    637 
    638 	if (consumer == producer)
    639 		return;
    640 
    641 	ifp->if_flags &= ~IFF_OACTIVE;
    642 
    643 	while (consumer != producer) {
    644 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
    645 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
    646 
    647 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
    648 #ifdef DIAGNOSTIC
    649 		if ((tcd & TCD_PR) == 0)
    650 			aprint_error_dev(sc->sc_dev,
    651 			    "Tx queue mismatch, index %d\n", txidx);
    652 #endif
    653 		/*
    654 		 * NOTE: stats are updated later.  We're just
    655 		 * releasing packets that have been DMA'd to
    656 		 * the chip.
    657 		 */
    658 		ds = &sc->sc_txsoft[txidx];
    659 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
    660 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    661 		    0, ds->ds_dmamap->dm_mapsize,
    662 		    BUS_DMASYNC_POSTWRITE);
    663 		m_freem(ds->ds_mbuf);
    664 		ds->ds_mbuf = NULL;
    665 
    666 		consumer = SF_NEXTTCD(consumer);
    667 		sc->sc_txpending--;
    668 	}
    669 
    670 	/* XXXJRT -- should be KDASSERT() */
    671 	KASSERT(sc->sc_txpending >= 0);
    672 
    673 	/* If all packets are done, cancel the watchdog timer. */
    674 	if (sc->sc_txpending == 0)
    675 		ifp->if_timer = 0;
    676 
    677 	/* Update the consumer index. */
    678 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
    679 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
    680 	     CQCI_TxCompletionConsumerIndex(consumer));
    681 
    682 	/* Double check for new completions. */
    683 	goto try_again;
    684 }
    685 
    686 /*
    687  * sf_rxintr:
    688  *
    689  *	Helper -- handle receive interrupts.
    690  */
    691 static void
    692 sf_rxintr(struct sf_softc *sc)
    693 {
    694 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    695 	struct sf_descsoft *ds;
    696 	struct sf_rcd_full *rcd;
    697 	struct mbuf *m;
    698 	uint32_t cqci, word0;
    699 	int consumer, producer, bufproducer, rxidx, len;
    700 
    701  try_again:
    702 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
    703 
    704 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
    705 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
    706 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
    707 	bufproducer = RXQ1P_RxDescQ1Producer_get(
    708 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
    709 
    710 	if (consumer == producer)
    711 		return;
    712 
    713 	while (consumer != producer) {
    714 		rcd = &sc->sc_rxcomp[consumer];
    715 		SF_CDRXCSYNC(sc, consumer,
    716 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    717 		SF_CDRXCSYNC(sc, consumer,
    718 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    719 
    720 		word0 = le32toh(rcd->rcd_word0);
    721 		rxidx = RCD_W0_EndIndex(word0);
    722 
    723 		ds = &sc->sc_rxsoft[rxidx];
    724 
    725 		consumer = SF_NEXTRCD(consumer);
    726 		bufproducer = SF_NEXTRX(bufproducer);
    727 
    728 		if ((word0 & RCD_W0_OK) == 0) {
    729 			SF_INIT_RXDESC(sc, rxidx);
    730 			continue;
    731 		}
    732 
    733 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    734 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    735 
    736 		/*
    737 		 * No errors; receive the packet.  Note that we have
    738 		 * configured the Starfire to NOT transfer the CRC
    739 		 * with the packet.
    740 		 */
    741 		len = RCD_W0_Length(word0);
    742 
    743 #ifdef __NO_STRICT_ALIGNMENT
    744 		/*
    745 		 * Allocate a new mbuf cluster.  If that fails, we are
    746 		 * out of memory, and must drop the packet and recycle
    747 		 * the buffer that's already attached to this descriptor.
    748 		 */
    749 		m = ds->ds_mbuf;
    750 		if (sf_add_rxbuf(sc, rxidx) != 0) {
    751 			if_statinc(ifp, if_ierrors);
    752 			SF_INIT_RXDESC(sc, rxidx);
    753 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    754 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    755 			continue;
    756 		}
    757 #else
    758 		/*
    759 		 * The Starfire's receive buffer must be 4-byte aligned.
    760 		 * But this means that the data after the Ethernet header
    761 		 * is misaligned.  We must allocate a new buffer and
    762 		 * copy the data, shifted forward 2 bytes.
    763 		 */
    764 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    765 		if (m == NULL) {
    766  dropit:
    767 			if_statinc(ifp, if_ierrors);
    768 			SF_INIT_RXDESC(sc, rxidx);
    769 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    770 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    771 			continue;
    772 		}
    773 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
    774 		if (len > (MHLEN - 2)) {
    775 			MCLGET(m, M_DONTWAIT);
    776 			if ((m->m_flags & M_EXT) == 0) {
    777 				m_freem(m);
    778 				goto dropit;
    779 			}
    780 		}
    781 		m->m_data += 2;
    782 
    783 		/*
    784 		 * Note that we use cluster for incoming frames, so the
    785 		 * buffer is virtually contiguous.
    786 		 */
    787 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
    788 
    789 		/* Allow the receive descriptor to continue using its mbuf. */
    790 		SF_INIT_RXDESC(sc, rxidx);
    791 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    792 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    793 #endif /* __NO_STRICT_ALIGNMENT */
    794 
    795 		m_set_rcvif(m, ifp);
    796 		m->m_pkthdr.len = m->m_len = len;
    797 
    798 		/* Pass it on. */
    799 		if_percpuq_enqueue(ifp->if_percpuq, m);
    800 	}
    801 
    802 	/* Update the chip's pointers. */
    803 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
    804 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
    805 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
    806 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
    807 	    RXQ1P_RxDescQ1Producer(bufproducer));
    808 
    809 	/* Double-check for any new completions. */
    810 	goto try_again;
    811 }
    812 
    813 /*
    814  * sf_tick:
    815  *
    816  *	One second timer, used to tick the MII and update stats.
    817  */
    818 static void
    819 sf_tick(void *arg)
    820 {
    821 	struct sf_softc *sc = arg;
    822 	int s;
    823 
    824 	s = splnet();
    825 	mii_tick(&sc->sc_mii);
    826 	sf_stats_update(sc);
    827 	splx(s);
    828 
    829 	callout_schedule(&sc->sc_tick_callout, hz);
    830 }
    831 
    832 /*
    833  * sf_stats_update:
    834  *
    835  *	Read the statitistics counters.
    836  */
    837 static void
    838 sf_stats_update(struct sf_softc *sc)
    839 {
    840 	struct sf_stats stats;
    841 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    842 	uint32_t *p;
    843 	u_int i;
    844 
    845 	p = &stats.TransmitOKFrames;
    846 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
    847 		*p++ = sf_genreg_read(sc,
    848 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
    849 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
    850 	}
    851 
    852 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
    853 
    854 	if_statadd_ref(nsr, if_opackets, stats.TransmitOKFrames);
    855 
    856 	if_statadd_ref(nsr, if_collisions,
    857 	    stats.SingleCollisionFrames +
    858 	    stats.MultipleCollisionFrames);
    859 
    860 	if_statadd_ref(nsr, if_oerrors,
    861 	    stats.TransmitAbortDueToExcessiveCollisions +
    862 	    stats.TransmitAbortDueToExcessingDeferral +
    863 	    stats.FramesLostDueToInternalTransmitErrors);
    864 
    865 	if_statadd_ref(nsr, if_ierrors,
    866 	    stats.ReceiveCRCErrors + stats.AlignmentErrors +
    867 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
    868 	    stats.ReceiveFramesJabbersError +
    869 	    stats.FramesLostDueToInternalReceiveErrors);
    870 
    871 	IF_STAT_PUTREF(ifp);
    872 }
    873 
    874 /*
    875  * sf_reset:
    876  *
    877  *	Perform a soft reset on the Starfire.
    878  */
    879 static void
    880 sf_reset(struct sf_softc *sc)
    881 {
    882 	int i;
    883 
    884 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
    885 
    886 	sf_macreset(sc);
    887 
    888 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
    889 	for (i = 0; i < 1000; i++) {
    890 		delay(10);
    891 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
    892 		     PDC_SoftReset) == 0)
    893 			break;
    894 	}
    895 
    896 	if (i == 1000) {
    897 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
    898 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
    899 	}
    900 
    901 	delay(1000);
    902 }
    903 
    904 /*
    905  * sf_macreset:
    906  *
    907  *	Reset the MAC portion of the Starfire.
    908  */
    909 static void
    910 sf_macreset(struct sf_softc *sc)
    911 {
    912 
    913 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
    914 	delay(1000);
    915 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
    916 }
    917 
    918 /*
    919  * sf_init:		[ifnet interface function]
    920  *
    921  *	Initialize the interface.  Must be called at splnet().
    922  */
    923 static int
    924 sf_init(struct ifnet *ifp)
    925 {
    926 	struct sf_softc *sc = ifp->if_softc;
    927 	struct sf_descsoft *ds;
    928 	int error = 0;
    929 	u_int i;
    930 
    931 	/*
    932 	 * Cancel any pending I/O.
    933 	 */
    934 	sf_stop(ifp, 0);
    935 
    936 	/*
    937 	 * Reset the Starfire to a known state.
    938 	 */
    939 	sf_reset(sc);
    940 
    941 	/* Clear the stat counters. */
    942 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
    943 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
    944 
    945 	/*
    946 	 * Initialize the transmit descriptor ring.
    947 	 */
    948 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    949 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
    950 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
    951 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
    952 
    953 	/*
    954 	 * Initialize the transmit completion ring.
    955 	 */
    956 	for (i = 0; i < SF_NTCD; i++) {
    957 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
    958 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD |BUS_DMASYNC_PREWRITE);
    959 	}
    960 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
    961 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
    962 
    963 	/*
    964 	 * Initialize the receive descriptor ring.
    965 	 */
    966 	for (i = 0; i < SF_NRXDESC; i++) {
    967 		ds = &sc->sc_rxsoft[i];
    968 		if (ds->ds_mbuf == NULL) {
    969 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
    970 				aprint_error_dev(sc->sc_dev,
    971 				    "unable to allocate or map rx buffer %d, "
    972 				    "error = %d\n", i, error);
    973 				/*
    974 				 * XXX Should attempt to run with fewer receive
    975 				 * XXX buffers instead of just failing.
    976 				 */
    977 				sf_rxdrain(sc);
    978 				goto out;
    979 			}
    980 		} else
    981 			SF_INIT_RXDESC(sc, i);
    982 	}
    983 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
    984 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
    985 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
    986 
    987 	/*
    988 	 * Initialize the receive completion ring.
    989 	 */
    990 	for (i = 0; i < SF_NRCD; i++) {
    991 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
    992 		sc->sc_rxcomp[i].rcd_word1 = 0;
    993 		sc->sc_rxcomp[i].rcd_word2 = 0;
    994 		sc->sc_rxcomp[i].rcd_timestamp = 0;
    995 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD |BUS_DMASYNC_PREWRITE);
    996 	}
    997 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
    998 	    RCQ1C_RxCompletionQ1Type(3));
    999 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
   1000 
   1001 	/*
   1002 	 * Initialize the Tx CSR.
   1003 	 */
   1004 	sc->sc_TransmitFrameCSR = 0;
   1005 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
   1006 	    sc->sc_TransmitFrameCSR |
   1007 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
   1008 
   1009 	/*
   1010 	 * Initialize the Tx descriptor control register.
   1011 	 */
   1012 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
   1013 	    TDQC_TxDmaBurstSize(4) |	/* default */
   1014 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
   1015 	    TDQC_TxDescType(0);
   1016 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
   1017 	    sc->sc_TxDescQueueCtrl |
   1018 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
   1019 
   1020 	/*
   1021 	 * Initialize the Rx descriptor control registers.
   1022 	 */
   1023 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
   1024 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
   1025 	    RDQ1C_RxDescSpacing(0));
   1026 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
   1027 
   1028 	/*
   1029 	 * Initialize the Tx descriptor producer indices.
   1030 	 */
   1031 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
   1032 	    TDQPI_HiPrTxProducerIndex(0) |
   1033 	    TDQPI_LoPrTxProducerIndex(0));
   1034 
   1035 	/*
   1036 	 * Initialize the Rx descriptor producer indices.
   1037 	 */
   1038 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
   1039 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
   1040 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
   1041 	    RXQ2P_RxDescQ2Producer(0));
   1042 
   1043 	/*
   1044 	 * Initialize the Tx and Rx completion queue consumer indices.
   1045 	 */
   1046 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
   1047 	    CQCI_TxCompletionConsumerIndex(0) |
   1048 	    CQCI_RxCompletionQ1ConsumerIndex(0));
   1049 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
   1050 
   1051 	/*
   1052 	 * Initialize the Rx DMA control register.
   1053 	 */
   1054 	sf_funcreg_write(sc, SF_RxDmaCtrl,
   1055 	    RDC_RxHighPriorityThreshold(6) |	/* default */
   1056 	    RDC_RxBurstSize(4));		/* default */
   1057 
   1058 	/*
   1059 	 * Set the receive filter.
   1060 	 */
   1061 	sc->sc_RxAddressFilteringCtl = 0;
   1062 	sf_set_filter(sc);
   1063 
   1064 	/*
   1065 	 * Set MacConfig1.  When we set the media, MacConfig1 will
   1066 	 * actually be written and the MAC part reset.
   1067 	 */
   1068 	sc->sc_MacConfig1 = MC1_PadEn;
   1069 
   1070 	/*
   1071 	 * Set the media.
   1072 	 */
   1073 	if ((error = ether_mediachange(ifp)) != 0)
   1074 		goto out;
   1075 
   1076 	/*
   1077 	 * Initialize the interrupt register.
   1078 	 */
   1079 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
   1080 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
   1081 	    IS_StatisticWrapInt;
   1082 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
   1083 
   1084 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
   1085 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
   1086 
   1087 	/*
   1088 	 * Start the transmit and receive processes.
   1089 	 */
   1090 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
   1091 	    GEC_TxDmaEn | GEC_RxDmaEn | GEC_TransmitEn | GEC_ReceiveEn);
   1092 
   1093 	/* Start the on second clock. */
   1094 	callout_schedule(&sc->sc_tick_callout, hz);
   1095 
   1096 	/*
   1097 	 * Note that the interface is now running.
   1098 	 */
   1099 	ifp->if_flags |= IFF_RUNNING;
   1100 	ifp->if_flags &= ~IFF_OACTIVE;
   1101 
   1102  out:
   1103 	if (error) {
   1104 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1105 		ifp->if_timer = 0;
   1106 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1107 	}
   1108 	return (error);
   1109 }
   1110 
   1111 /*
   1112  * sf_rxdrain:
   1113  *
   1114  *	Drain the receive queue.
   1115  */
   1116 static void
   1117 sf_rxdrain(struct sf_softc *sc)
   1118 {
   1119 	struct sf_descsoft *ds;
   1120 	int i;
   1121 
   1122 	for (i = 0; i < SF_NRXDESC; i++) {
   1123 		ds = &sc->sc_rxsoft[i];
   1124 		if (ds->ds_mbuf != NULL) {
   1125 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1126 			m_freem(ds->ds_mbuf);
   1127 			ds->ds_mbuf = NULL;
   1128 		}
   1129 	}
   1130 }
   1131 
   1132 /*
   1133  * sf_stop:		[ifnet interface function]
   1134  *
   1135  *	Stop transmission on the interface.
   1136  */
   1137 static void
   1138 sf_stop(struct ifnet *ifp, int disable)
   1139 {
   1140 	struct sf_softc *sc = ifp->if_softc;
   1141 	struct sf_descsoft *ds;
   1142 	int i;
   1143 
   1144 	/* Stop the one second clock. */
   1145 	callout_stop(&sc->sc_tick_callout);
   1146 
   1147 	/* Down the MII. */
   1148 	mii_down(&sc->sc_mii);
   1149 
   1150 	/* Disable interrupts. */
   1151 	sf_funcreg_write(sc, SF_InterruptEn, 0);
   1152 
   1153 	/* Stop the transmit and receive processes. */
   1154 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
   1155 
   1156 	/*
   1157 	 * Release any queued transmit buffers.
   1158 	 */
   1159 	for (i = 0; i < SF_NTXDESC; i++) {
   1160 		ds = &sc->sc_txsoft[i];
   1161 		if (ds->ds_mbuf != NULL) {
   1162 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1163 			m_freem(ds->ds_mbuf);
   1164 			ds->ds_mbuf = NULL;
   1165 		}
   1166 	}
   1167 
   1168 	/*
   1169 	 * Mark the interface down and cancel the watchdog timer.
   1170 	 */
   1171 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1172 	ifp->if_timer = 0;
   1173 
   1174 	if (disable)
   1175 		sf_rxdrain(sc);
   1176 }
   1177 
   1178 /*
   1179  * sf_read_eeprom:
   1180  *
   1181  *	Read from the Starfire EEPROM.
   1182  */
   1183 static uint8_t
   1184 sf_read_eeprom(struct sf_softc *sc, int offset)
   1185 {
   1186 	uint32_t reg;
   1187 
   1188 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
   1189 
   1190 	return ((reg >> (8 * (offset & 3))) & 0xff);
   1191 }
   1192 
   1193 /*
   1194  * sf_add_rxbuf:
   1195  *
   1196  *	Add a receive buffer to the indicated descriptor.
   1197  */
   1198 static int
   1199 sf_add_rxbuf(struct sf_softc *sc, int idx)
   1200 {
   1201 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
   1202 	struct mbuf *m;
   1203 	int error;
   1204 
   1205 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1206 	if (m == NULL)
   1207 		return (ENOBUFS);
   1208 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1209 
   1210 	MCLGET(m, M_DONTWAIT);
   1211 	if ((m->m_flags & M_EXT) == 0) {
   1212 		m_freem(m);
   1213 		return (ENOBUFS);
   1214 	}
   1215 
   1216 	if (ds->ds_mbuf != NULL)
   1217 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1218 
   1219 	ds->ds_mbuf = m;
   1220 
   1221 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1222 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1223 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1224 	if (error) {
   1225 		aprint_error_dev(sc->sc_dev,
   1226 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   1227 		panic("sf_add_rxbuf"); /* XXX */
   1228 	}
   1229 
   1230 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1231 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1232 
   1233 	SF_INIT_RXDESC(sc, idx);
   1234 
   1235 	return (0);
   1236 }
   1237 
   1238 static void
   1239 sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
   1240 {
   1241 	uint32_t reg0, reg1, reg2;
   1242 
   1243 	reg0 = enaddr[5] | (enaddr[4] << 8);
   1244 	reg1 = enaddr[3] | (enaddr[2] << 8);
   1245 	reg2 = enaddr[1] | (enaddr[0] << 8);
   1246 
   1247 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
   1248 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
   1249 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
   1250 }
   1251 
   1252 static void
   1253 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
   1254 {
   1255 	uint32_t hash, slot, reg;
   1256 
   1257 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
   1258 	slot = hash >> 4;
   1259 
   1260 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
   1261 	reg |= 1 << (hash & 0xf);
   1262 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
   1263 }
   1264 
   1265 /*
   1266  * sf_set_filter:
   1267  *
   1268  *	Set the Starfire receive filter.
   1269  */
   1270 static void
   1271 sf_set_filter(struct sf_softc *sc)
   1272 {
   1273 	struct ethercom *ec = &sc->sc_ethercom;
   1274 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1275 	struct ether_multi *enm;
   1276 	struct ether_multistep step;
   1277 	int i;
   1278 
   1279 	/* Start by clearing the perfect and hash tables. */
   1280 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
   1281 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
   1282 
   1283 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
   1284 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
   1285 
   1286 	/*
   1287 	 * Clear the perfect and hash mode bits.
   1288 	 */
   1289 	sc->sc_RxAddressFilteringCtl &=
   1290 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
   1291 
   1292 	if (ifp->if_flags & IFF_BROADCAST)
   1293 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
   1294 	else
   1295 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
   1296 
   1297 	if (ifp->if_flags & IFF_PROMISC) {
   1298 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
   1299 		goto allmulti;
   1300 	} else
   1301 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
   1302 
   1303 	/*
   1304 	 * Set normal perfect filtering mode.
   1305 	 */
   1306 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
   1307 
   1308 	/*
   1309 	 * First, write the station address to the perfect filter
   1310 	 * table.
   1311 	 */
   1312 	sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
   1313 
   1314 	/*
   1315 	 * Now set the hash bits for each multicast address in our
   1316 	 * list.
   1317 	 */
   1318 	ETHER_LOCK(ec);
   1319 	ETHER_FIRST_MULTI(step, ec, enm);
   1320 	if (enm == NULL) {
   1321 		ETHER_UNLOCK(ec);
   1322 		goto done;
   1323 	}
   1324 	while (enm != NULL) {
   1325 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1326 			/*
   1327 			 * We must listen to a range of multicast addresses.
   1328 			 * For now, just accept all multicasts, rather than
   1329 			 * trying to set only those filter bits needed to match
   1330 			 * the range.  (At this time, the only use of address
   1331 			 * ranges is for IP multicast routing, for which the
   1332 			 * range is big enough to require all bits set.)
   1333 			 */
   1334 			ETHER_UNLOCK(ec);
   1335 			goto allmulti;
   1336 		}
   1337 		sf_set_filter_hash(sc, enm->enm_addrlo);
   1338 		ETHER_NEXT_MULTI(step, enm);
   1339 	}
   1340 	ETHER_UNLOCK(ec);
   1341 
   1342 	/*
   1343 	 * Set "hash only multicast dest, match regardless of VLAN ID".
   1344 	 */
   1345 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
   1346 	goto done;
   1347 
   1348  allmulti:
   1349 	/*
   1350 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
   1351 	 */
   1352 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
   1353 	ifp->if_flags |= IFF_ALLMULTI;
   1354 
   1355  done:
   1356 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
   1357 	    sc->sc_RxAddressFilteringCtl);
   1358 }
   1359 
   1360 /*
   1361  * sf_mii_read:		[mii interface function]
   1362  *
   1363  *	Read from the MII.
   1364  */
   1365 static int
   1366 sf_mii_read(device_t self, int phy, int reg, uint16_t *data)
   1367 {
   1368 	struct sf_softc *sc = device_private(self);
   1369 	uint32_t v;
   1370 	int i;
   1371 
   1372 	for (i = 0; i < 1000; i++) {
   1373 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
   1374 		if (v & MiiDataValid)
   1375 			break;
   1376 		delay(1);
   1377 	}
   1378 
   1379 	if ((v & MiiDataValid) == 0)
   1380 		return -1;
   1381 
   1382 	if (MiiRegDataPort(v) == 0xffff)
   1383 		return -1;
   1384 
   1385 	*data = MiiRegDataPort(v);
   1386 	return 0;
   1387 }
   1388 
   1389 /*
   1390  * sf_mii_write:	[mii interface function]
   1391  *
   1392  *	Write to the MII.
   1393  */
   1394 static int
   1395 sf_mii_write(device_t self, int phy, int reg, uint16_t val)
   1396 {
   1397 	struct sf_softc *sc = device_private(self);
   1398 	int i;
   1399 
   1400 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
   1401 
   1402 	for (i = 0; i < 1000; i++) {
   1403 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
   1404 		     MiiBusy) == 0)
   1405 			return 0;
   1406 		delay(1);
   1407 	}
   1408 
   1409 	printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
   1410 	return ETIMEDOUT;
   1411 }
   1412 
   1413 /*
   1414  * sf_mii_statchg:	[mii interface function]
   1415  *
   1416  *	Callback from the PHY when the media changes.
   1417  */
   1418 static void
   1419 sf_mii_statchg(struct ifnet *ifp)
   1420 {
   1421 	struct sf_softc *sc = ifp->if_softc;
   1422 	uint32_t ipg;
   1423 
   1424 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1425 		sc->sc_MacConfig1 |= MC1_FullDuplex;
   1426 		ipg = 0x15;
   1427 	} else {
   1428 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
   1429 		ipg = 0x11;
   1430 	}
   1431 
   1432 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
   1433 	sf_macreset(sc);
   1434 
   1435 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
   1436 }
   1437