Home | History | Annotate | Line # | Download | only in ic
aic6915.c revision 1.7
      1 /*	$NetBSD: aic6915.c,v 1.7 2002/10/22 00:01:55 fair Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Device driver for the Adaptec AIC-6915 (``Starfire'')
     41  * 10/100 Ethernet controller.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.7 2002/10/22 00:01:55 fair Exp $");
     46 
     47 #include "bpfilter.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/callout.h>
     52 #include <sys/mbuf.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/socket.h>
     56 #include <sys/ioctl.h>
     57 #include <sys/errno.h>
     58 #include <sys/device.h>
     59 
     60 #include <uvm/uvm_extern.h>
     61 
     62 #include <net/if.h>
     63 #include <net/if_dl.h>
     64 #include <net/if_media.h>
     65 #include <net/if_ether.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #endif
     70 
     71 #include <machine/bus.h>
     72 #include <machine/intr.h>
     73 
     74 #include <dev/mii/miivar.h>
     75 
     76 #include <dev/ic/aic6915reg.h>
     77 #include <dev/ic/aic6915var.h>
     78 
     79 void	sf_start(struct ifnet *);
     80 void	sf_watchdog(struct ifnet *);
     81 int	sf_ioctl(struct ifnet *, u_long, caddr_t);
     82 int	sf_init(struct ifnet *);
     83 void	sf_stop(struct ifnet *, int);
     84 
     85 void	sf_shutdown(void *);
     86 
     87 void	sf_txintr(struct sf_softc *);
     88 void	sf_rxintr(struct sf_softc *);
     89 void	sf_stats_update(struct sf_softc *);
     90 
     91 void	sf_reset(struct sf_softc *);
     92 void	sf_macreset(struct sf_softc *);
     93 void	sf_rxdrain(struct sf_softc *);
     94 int	sf_add_rxbuf(struct sf_softc *, int);
     95 uint8_t	sf_read_eeprom(struct sf_softc *, int);
     96 void	sf_set_filter(struct sf_softc *);
     97 
     98 int	sf_mii_read(struct device *, int, int);
     99 void	sf_mii_write(struct device *, int, int, int);
    100 void	sf_mii_statchg(struct device *);
    101 
    102 void	sf_tick(void *);
    103 
    104 int	sf_mediachange(struct ifnet *);
    105 void	sf_mediastatus(struct ifnet *, struct ifmediareq *);
    106 
    107 int	sf_copy_small = 0;
    108 
    109 #define	sf_funcreg_read(sc, reg)					\
    110 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
    111 #define	sf_funcreg_write(sc, reg, val)					\
    112 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
    113 
    114 static __inline uint32_t
    115 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
    116 {
    117 
    118 	if (__predict_false(sc->sc_iomapped)) {
    119 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
    120 		    reg);
    121 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
    122 		    SF_IndirectIoDataPort));
    123 	}
    124 
    125 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
    126 }
    127 
    128 static __inline void
    129 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
    130 {
    131 
    132 	if (__predict_false(sc->sc_iomapped)) {
    133 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
    134 		    reg);
    135 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
    136 		    val);
    137 		return;
    138 	}
    139 
    140 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
    141 }
    142 
    143 #define	sf_genreg_read(sc, reg)						\
    144 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
    145 #define	sf_genreg_write(sc, reg, val)					\
    146 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
    147 
    148 /*
    149  * sf_attach:
    150  *
    151  *	Attach a Starfire interface to the system.
    152  */
    153 void
    154 sf_attach(struct sf_softc *sc)
    155 {
    156 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    157 	int i, rseg, error;
    158 	bus_dma_segment_t seg;
    159 	u_int8_t enaddr[ETHER_ADDR_LEN];
    160 
    161 	callout_init(&sc->sc_tick_callout);
    162 
    163 	/*
    164 	 * If we're I/O mapped, the functional register handle is
    165 	 * the same as the base handle.  If we're memory mapped,
    166 	 * carve off a chunk of the register space for the functional
    167 	 * registers, to save on arithmetic later.
    168 	 */
    169 	if (sc->sc_iomapped)
    170 		sc->sc_sh_func = sc->sc_sh;
    171 	else {
    172 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
    173 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
    174 			printf("%s: unable to sub-region functional "
    175 			    "registers, error = %d\n", sc->sc_dev.dv_xname,
    176 			    error);
    177 			return;
    178 		}
    179 	}
    180 
    181 	/*
    182 	 * Initialize the transmit threshold for this interface.  The
    183 	 * manual describes the default as 4 * 16 bytes.  We start out
    184 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
    185 	 * several platforms.
    186 	 */
    187 	sc->sc_txthresh = 10;
    188 
    189 	/*
    190 	 * Allocate the control data structures, and create and load the
    191 	 * DMA map for it.
    192 	 */
    193 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    194 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    195 	    BUS_DMA_NOWAIT)) != 0) {
    196 		printf("%s: unable to allocate control data, error = %d\n",
    197 		    sc->sc_dev.dv_xname, error);
    198 		goto fail_0;
    199 	}
    200 
    201 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    202 	    sizeof(struct sf_control_data), (caddr_t *)&sc->sc_control_data,
    203 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    204 		printf("%s: unable to map control data, error = %d\n",
    205 		    sc->sc_dev.dv_xname, error);
    206 		goto fail_1;
    207 	}
    208 
    209 	if ((error = bus_dmamap_create(sc->sc_dmat,
    210 	    sizeof(struct sf_control_data), 1,
    211 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
    212 	    &sc->sc_cddmamap)) != 0) {
    213 		printf("%s: unable to create control data DMA map, "
    214 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    215 		goto fail_2;
    216 	}
    217 
    218 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    219 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
    220 	    BUS_DMA_NOWAIT)) != 0) {
    221 		printf("%s: unable to load control data DMA map, error = %d\n",
    222 		    sc->sc_dev.dv_xname, error);
    223 		goto fail_3;
    224 	}
    225 
    226 	/*
    227 	 * Create the transmit buffer DMA maps.
    228 	 */
    229 	for (i = 0; i < SF_NTXDESC; i++) {
    230 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    231 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
    232 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
    233 			printf("%s: unable to create tx DMA map %d, "
    234 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    235 			goto fail_4;
    236 		}
    237 	}
    238 
    239 	/*
    240 	 * Create the receive buffer DMA maps.
    241 	 */
    242 	for (i = 0; i < SF_NRXDESC; i++) {
    243 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    244 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
    245 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
    246 			printf("%s: unable to create rx DMA map %d, "
    247 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    248 			goto fail_5;
    249 		}
    250 	}
    251 
    252 	/*
    253 	 * Reset the chip to a known state.
    254 	 */
    255 	sf_reset(sc);
    256 
    257 	/*
    258 	 * Read the Ethernet address from the EEPROM.
    259 	 */
    260 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    261 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
    262 
    263 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    264 	    ether_sprintf(enaddr));
    265 
    266 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
    267 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
    268 
    269 	/*
    270 	 * Initialize our media structures and probe the MII.
    271 	 */
    272 	sc->sc_mii.mii_ifp = ifp;
    273 	sc->sc_mii.mii_readreg = sf_mii_read;
    274 	sc->sc_mii.mii_writereg = sf_mii_write;
    275 	sc->sc_mii.mii_statchg = sf_mii_statchg;
    276 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sf_mediachange,
    277 	    sf_mediastatus);
    278 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    279 	    MII_OFFSET_ANY, 0);
    280 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    281 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    282 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    283 	} else
    284 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    285 
    286 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    287 	ifp->if_softc = sc;
    288 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    289 	ifp->if_ioctl = sf_ioctl;
    290 	ifp->if_start = sf_start;
    291 	ifp->if_watchdog = sf_watchdog;
    292 	ifp->if_init = sf_init;
    293 	ifp->if_stop = sf_stop;
    294 	IFQ_SET_READY(&ifp->if_snd);
    295 
    296 	/*
    297 	 * Attach the interface.
    298 	 */
    299 	if_attach(ifp);
    300 	ether_ifattach(ifp, enaddr);
    301 
    302 	/*
    303 	 * Make sure the interface is shutdown during reboot.
    304 	 */
    305 	sc->sc_sdhook = shutdownhook_establish(sf_shutdown, sc);
    306 	if (sc->sc_sdhook == NULL)
    307 		printf("%s: WARNING: unable to establish shutdown hook\n",
    308 		    sc->sc_dev.dv_xname);
    309 	return;
    310 
    311 	/*
    312 	 * Free any resources we've allocated during the failed attach
    313 	 * attempt.  Do this in reverse order an fall through.
    314 	 */
    315  fail_5:
    316 	for (i = 0; i < SF_NRXDESC; i++) {
    317 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
    318 			bus_dmamap_destroy(sc->sc_dmat,
    319 			    sc->sc_rxsoft[i].ds_dmamap);
    320 	}
    321  fail_4:
    322 	for (i = 0; i < SF_NTXDESC; i++) {
    323 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
    324 			bus_dmamap_destroy(sc->sc_dmat,
    325 			    sc->sc_txsoft[i].ds_dmamap);
    326 	}
    327 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    328  fail_3:
    329 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    330  fail_2:
    331 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t) sc->sc_control_data,
    332 	    sizeof(struct sf_control_data));
    333  fail_1:
    334 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    335  fail_0:
    336 	return;
    337 }
    338 
    339 /*
    340  * sf_shutdown:
    341  *
    342  *	Shutdown hook -- make sure the interface is stopped at reboot.
    343  */
    344 void
    345 sf_shutdown(void *arg)
    346 {
    347 	struct sf_softc *sc = arg;
    348 
    349 	sf_stop(&sc->sc_ethercom.ec_if, 1);
    350 }
    351 
    352 /*
    353  * sf_start:		[ifnet interface function]
    354  *
    355  *	Start packet transmission on the interface.
    356  */
    357 void
    358 sf_start(struct ifnet *ifp)
    359 {
    360 	struct sf_softc *sc = ifp->if_softc;
    361 	struct mbuf *m0, *m;
    362 	struct sf_txdesc0 *txd;
    363 	struct sf_descsoft *ds;
    364 	bus_dmamap_t dmamap;
    365 	int error, producer, last, opending, seg;
    366 
    367 	/*
    368 	 * Remember the previous number of pending transmits.
    369 	 */
    370 	opending = sc->sc_txpending;
    371 
    372 	/*
    373 	 * Find out where we're sitting.
    374 	 */
    375 	producer = SF_TXDINDEX_TO_HOST(
    376 	    TDQPI_HiPrTxProducerIndex_get(
    377 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
    378 
    379 	/*
    380 	 * Loop through the send queue, setting up transmit descriptors
    381 	 * until we drain the queue, or use up all available transmit
    382 	 * descriptors.  Leave a blank one at the end for sanity's sake.
    383 	 */
    384 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
    385 		/*
    386 		 * Grab a packet off the queue.
    387 		 */
    388 		IFQ_POLL(&ifp->if_snd, m0);
    389 		if (m0 == NULL)
    390 			break;
    391 		m = NULL;
    392 
    393 		/*
    394 		 * Get the transmit descriptor.
    395 		 */
    396 		txd = &sc->sc_txdescs[producer];
    397 		ds = &sc->sc_txsoft[producer];
    398 		dmamap = ds->ds_dmamap;
    399 
    400 		/*
    401 		 * Load the DMA map.  If this fails, the packet either
    402 		 * didn't fit in the allotted number of frags, or we were
    403 		 * short on resources.  In this case, we'll copy and try
    404 		 * again.
    405 		 */
    406 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    407 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    408 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    409 			if (m == NULL) {
    410 				printf("%s: unable to allocate Tx mbuf\n",
    411 				    sc->sc_dev.dv_xname);
    412 				break;
    413 			}
    414 			if (m0->m_pkthdr.len > MHLEN) {
    415 				MCLGET(m, M_DONTWAIT);
    416 				if ((m->m_flags & M_EXT) == 0) {
    417 					printf("%s: unable to allocate Tx "
    418 					    "cluster\n", sc->sc_dev.dv_xname);
    419 					m_freem(m);
    420 					break;
    421 				}
    422 			}
    423 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    424 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    425 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    426 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    427 			if (error) {
    428 				printf("%s: unable to load Tx buffer, "
    429 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    430 				break;
    431 			}
    432 		}
    433 
    434 		/*
    435 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    436 		 */
    437 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    438 		if (m != NULL) {
    439 			m_freem(m0);
    440 			m0 = m;
    441 		}
    442 
    443 		/* Initialize the descriptor. */
    444 		txd->td_word0 =
    445 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
    446 		if (producer == (SF_NTXDESC - 1))
    447 			txd->td_word0 |= TD_W0_END;
    448 		txd->td_word1 = htole32(dmamap->dm_nsegs);
    449 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    450 			txd->td_frags[seg].fr_addr =
    451 			    htole32(dmamap->dm_segs[seg].ds_addr);
    452 			txd->td_frags[seg].fr_len =
    453 			    htole32(dmamap->dm_segs[seg].ds_len);
    454 		}
    455 
    456 		/* Sync the descriptor and the DMA map. */
    457 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
    458 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    459 		    BUS_DMASYNC_PREWRITE);
    460 
    461 		/*
    462 		 * Store a pointer to the packet so we can free it later.
    463 		 */
    464 		ds->ds_mbuf = m0;
    465 
    466 		/* Advance the Tx pointer. */
    467 		sc->sc_txpending++;
    468 		last = producer;
    469 		producer = SF_NEXTTX(producer);
    470 
    471 #if NBPFILTER > 0
    472 		/*
    473 		 * Pass the packet to any BPF listeners.
    474 		 */
    475 		if (ifp->if_bpf)
    476 			bpf_mtap(ifp->if_bpf, m0);
    477 #endif
    478 	}
    479 
    480 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
    481 		/* No more slots left; notify upper layer. */
    482 		ifp->if_flags |= IFF_OACTIVE;
    483 	}
    484 
    485 	if (sc->sc_txpending != opending) {
    486 		/*
    487 		 * We enqueued packets.  Cause a transmit interrupt to
    488 		 * happen on the last packet we enqueued, and give the
    489 		 * new descriptors to the chip by writing the new
    490 		 * producer index.
    491 		 */
    492 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
    493 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
    494 
    495 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
    496 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
    497 
    498 		/* Set a watchdog timer in case the chip flakes out. */
    499 		ifp->if_timer = 5;
    500 	}
    501 }
    502 
    503 /*
    504  * sf_watchdog:		[ifnet interface function]
    505  *
    506  *	Watchdog timer handler.
    507  */
    508 void
    509 sf_watchdog(struct ifnet *ifp)
    510 {
    511 	struct sf_softc *sc = ifp->if_softc;
    512 
    513 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
    514 	ifp->if_oerrors++;
    515 
    516 	(void) sf_init(ifp);
    517 
    518 	/* Try to get more packets going. */
    519 	sf_start(ifp);
    520 }
    521 
    522 /*
    523  * sf_ioctl:		[ifnet interface function]
    524  *
    525  *	Handle control requests from the operator.
    526  */
    527 int
    528 sf_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    529 {
    530 	struct sf_softc *sc = ifp->if_softc;
    531 	struct ifreq *ifr = (struct ifreq *) data;
    532 	int s, error;
    533 
    534 	s = splnet();
    535 
    536 	switch (cmd) {
    537 	case SIOCSIFMEDIA:
    538 	case SIOCGIFMEDIA:
    539 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
    540 		break;
    541 
    542 	default:
    543 		error = ether_ioctl(ifp, cmd, data);
    544 		if (error == ENETRESET) {
    545 			/*
    546 			 * Multicast list has changed; set the hardware filter
    547 			 * accordingly.
    548 			 */
    549 			sf_set_filter(sc);
    550 			error = 0;
    551 		}
    552 		break;
    553 	}
    554 
    555 	/* Try to get more packets going. */
    556 	sf_start(ifp);
    557 
    558 	splx(s);
    559 	return (error);
    560 }
    561 
    562 /*
    563  * sf_intr:
    564  *
    565  *	Interrupt service routine.
    566  */
    567 int
    568 sf_intr(void *arg)
    569 {
    570 	struct sf_softc *sc = arg;
    571 	uint32_t isr;
    572 	int handled = 0, wantinit = 0;
    573 
    574 	for (;;) {
    575 		/* Reading clears all interrupts we're interested in. */
    576 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
    577 		if ((isr & IS_PCIPadInt) == 0)
    578 			break;
    579 
    580 		handled = 1;
    581 
    582 		/* Handle receive interrupts. */
    583 		if (isr & IS_RxQ1DoneInt)
    584 			sf_rxintr(sc);
    585 
    586 		/* Handle transmit completion interrupts. */
    587 		if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
    588 			sf_txintr(sc);
    589 
    590 		/* Handle abnormal interrupts. */
    591 		if (isr & IS_AbnormalInterrupt) {
    592 			/* Statistics. */
    593 			if (isr & IS_StatisticWrapInt)
    594 				sf_stats_update(sc);
    595 
    596 			/* DMA errors. */
    597 			if (isr & IS_DmaErrInt) {
    598 				wantinit = 1;
    599 				printf("%s: WARNING: DMA error\n",
    600 				    sc->sc_dev.dv_xname);
    601 			}
    602 
    603 			/* Transmit FIFO underruns. */
    604 			if (isr & IS_TxDataLowInt) {
    605 				if (sc->sc_txthresh < 0xff)
    606 					sc->sc_txthresh++;
    607 				printf("%s: transmit FIFO underrun, new "
    608 				    "threshold: %d bytes\n",
    609 				    sc->sc_dev.dv_xname,
    610 				    sc->sc_txthresh * 16);
    611 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
    612 				    sc->sc_TransmitFrameCSR |
    613 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
    614 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
    615 				    sc->sc_TxDescQueueCtrl |
    616 				    TDQC_TxHighPriorityFifoThreshold(
    617 							sc->sc_txthresh));
    618 			}
    619 		}
    620 	}
    621 
    622 	if (handled) {
    623 		/* Reset the interface, if necessary. */
    624 		if (wantinit)
    625 			sf_init(&sc->sc_ethercom.ec_if);
    626 
    627 		/* Try and get more packets going. */
    628 		sf_start(&sc->sc_ethercom.ec_if);
    629 	}
    630 
    631 	return (handled);
    632 }
    633 
    634 /*
    635  * sf_txintr:
    636  *
    637  *	Helper -- handle transmit completion interrupts.
    638  */
    639 void
    640 sf_txintr(struct sf_softc *sc)
    641 {
    642 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    643 	struct sf_descsoft *ds;
    644 	uint32_t cqci, tcd;
    645 	int consumer, producer, txidx;
    646 
    647  try_again:
    648 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
    649 
    650 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
    651 	producer = CQPI_TxCompletionProducerIndex_get(
    652 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
    653 
    654 	if (consumer == producer)
    655 		return;
    656 
    657 	ifp->if_flags &= ~IFF_OACTIVE;
    658 
    659 	while (consumer != producer) {
    660 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
    661 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
    662 
    663 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
    664 #ifdef DIAGNOSTIC
    665 		if ((tcd & TCD_PR) == 0)
    666 			printf("%s: Tx queue mismatch, index %d\n",
    667 			    sc->sc_dev.dv_xname, txidx);
    668 #endif
    669 		/*
    670 		 * NOTE: stats are updated later.  We're just
    671 		 * releasing packets that have been DMA'd to
    672 		 * the chip.
    673 		 */
    674 		ds = &sc->sc_txsoft[txidx];
    675 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
    676 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
    677 		    0, ds->ds_dmamap->dm_mapsize,
    678 		    BUS_DMASYNC_POSTWRITE);
    679 		m_freem(ds->ds_mbuf);
    680 		ds->ds_mbuf = NULL;
    681 
    682 		consumer = SF_NEXTTCD(consumer);
    683 		sc->sc_txpending--;
    684 	}
    685 
    686 	/* XXXJRT -- should be KDASSERT() */
    687 	KASSERT(sc->sc_txpending >= 0);
    688 
    689 	/* If all packets are done, cancel the watchdog timer. */
    690 	if (sc->sc_txpending == 0)
    691 		ifp->if_timer = 0;
    692 
    693 	/* Update the consumer index. */
    694 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
    695 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
    696 	     CQCI_TxCompletionConsumerIndex(consumer));
    697 
    698 	/* Double check for new completions. */
    699 	goto try_again;
    700 }
    701 
    702 /*
    703  * sf_rxintr:
    704  *
    705  *	Helper -- handle receive interrupts.
    706  */
    707 void
    708 sf_rxintr(struct sf_softc *sc)
    709 {
    710 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    711 	struct sf_descsoft *ds;
    712 	struct sf_rcd_full *rcd;
    713 	struct mbuf *m;
    714 	uint32_t cqci, word0;
    715 	int consumer, producer, bufproducer, rxidx, len;
    716 
    717  try_again:
    718 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
    719 
    720 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
    721 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
    722 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
    723 	bufproducer = RXQ1P_RxDescQ1Producer_get(
    724 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
    725 
    726 	if (consumer == producer)
    727 		return;
    728 
    729 	while (consumer != producer) {
    730 		rcd = &sc->sc_rxcomp[consumer];
    731 		SF_CDRXCSYNC(sc, consumer,
    732 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    733 		SF_CDRXCSYNC(sc, consumer,
    734 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    735 
    736 		word0 = le32toh(rcd->rcd_word0);
    737 		rxidx = RCD_W0_EndIndex(word0);
    738 
    739 		ds = &sc->sc_rxsoft[rxidx];
    740 
    741 		consumer = SF_NEXTRCD(consumer);
    742 		bufproducer = SF_NEXTRX(bufproducer);
    743 
    744 		if ((word0 & RCD_W0_OK) == 0) {
    745 			SF_INIT_RXDESC(sc, rxidx);
    746 			continue;
    747 		}
    748 
    749 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    750 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    751 
    752 		/*
    753 		 * No errors; receive the packet.  Note that we have
    754 		 * configured the Starfire to NOT transfer the CRC
    755 		 * with the packet.
    756 		 */
    757 		len = RCD_W0_Length(word0);
    758 
    759 #ifdef __NO_STRICT_ALIGNMENT
    760 		/*
    761 		 * Allocate a new mbuf cluster.  If that fails, we are
    762 		 * out of memory, and must drop the packet and recycle
    763 		 * the buffer that's already attached to this descriptor.
    764 		 */
    765 		m = ds->ds_mbuf;
    766 		if (sf_add_rxbuf(sc, rxidx) != 0) {
    767 			ifp->if_ierrors++;
    768 			SF_INIT_RXDESC(sc, rxidx);
    769 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    770 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    771 			continue;
    772 		}
    773 #else
    774 		/*
    775 		 * The Starfire's receive buffer must be 4-byte aligned.
    776 		 * But this means that the data after the Ethernet header
    777 		 * is misaligned.  We must allocate a new buffer and
    778 		 * copy the data, shifted forward 2 bytes.
    779 		 */
    780 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    781 		if (m == NULL) {
    782  dropit:
    783 			ifp->if_ierrors++;
    784 			SF_INIT_RXDESC(sc, rxidx);
    785 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    786 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    787 			continue;
    788 		}
    789 		if (len > (MHLEN - 2)) {
    790 			MCLGET(m, M_DONTWAIT);
    791 			if ((m->m_flags & M_EXT) == 0) {
    792 				m_freem(m);
    793 				goto dropit;
    794 			}
    795 		}
    796 		m->m_data += 2;
    797 
    798 		/*
    799 		 * Note that we use cluster for incoming frames, so the
    800 		 * buffer is virtually contiguous.
    801 		 */
    802 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t), len);
    803 
    804 		/* Allow the receive descriptor to continue using its mbuf. */
    805 		SF_INIT_RXDESC(sc, rxidx);
    806 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
    807 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
    808 #endif /* __NO_STRICT_ALIGNMENT */
    809 
    810 		m->m_pkthdr.rcvif = ifp;
    811 		m->m_pkthdr.len = m->m_len = len;
    812 
    813 #if NBPFILTER > 0
    814 		/*
    815 		 * Pass this up to any BPF listeners.
    816 		 */
    817 		if (ifp->if_bpf)
    818 			bpf_mtap(ifp->if_bpf, m);
    819 #endif /* NBPFILTER > 0 */
    820 
    821 		/* Pass it on. */
    822 		(*ifp->if_input)(ifp, m);
    823 	}
    824 
    825 	/* Update the chip's pointers. */
    826 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
    827 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
    828 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
    829 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
    830 	    RXQ1P_RxDescQ1Producer(bufproducer));
    831 
    832 	/* Double-check for any new completions. */
    833 	goto try_again;
    834 }
    835 
    836 /*
    837  * sf_tick:
    838  *
    839  *	One second timer, used to tick the MII and update stats.
    840  */
    841 void
    842 sf_tick(void *arg)
    843 {
    844 	struct sf_softc *sc = arg;
    845 	int s;
    846 
    847 	s = splnet();
    848 	mii_tick(&sc->sc_mii);
    849 	sf_stats_update(sc);
    850 	splx(s);
    851 
    852 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
    853 }
    854 
    855 /*
    856  * sf_stats_update:
    857  *
    858  *	Read the statitistics counters.
    859  */
    860 void
    861 sf_stats_update(struct sf_softc *sc)
    862 {
    863 	struct sf_stats stats;
    864 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    865 	uint32_t *p;
    866 	int i;
    867 
    868 	p = &stats.TransmitOKFrames;
    869 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
    870 		*p++ = sf_genreg_read(sc,
    871 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
    872 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
    873 	}
    874 
    875 	ifp->if_opackets += stats.TransmitOKFrames;
    876 
    877 	ifp->if_collisions += stats.SingleCollisionFrames +
    878 	    stats.MultipleCollisionFrames;
    879 
    880 	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
    881 	    stats.TransmitAbortDueToExcessingDeferral +
    882 	    stats.FramesLostDueToInternalTransmitErrors;
    883 
    884 	ifp->if_ipackets += stats.ReceiveOKFrames;
    885 
    886 	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
    887 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
    888 	    stats.ReceiveFramesJabbersError +
    889 	    stats.FramesLostDueToInternalReceiveErrors;
    890 }
    891 
    892 /*
    893  * sf_reset:
    894  *
    895  *	Perform a soft reset on the Starfire.
    896  */
    897 void
    898 sf_reset(struct sf_softc *sc)
    899 {
    900 	int i;
    901 
    902 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
    903 
    904 	sf_macreset(sc);
    905 
    906 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
    907 	for (i = 0; i < 1000; i++) {
    908 		delay(10);
    909 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
    910 		     PDC_SoftReset) == 0)
    911 			break;
    912 	}
    913 
    914 	if (i == 1000) {
    915 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
    916 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
    917 	}
    918 
    919 	delay(1000);
    920 }
    921 
    922 /*
    923  * sf_macreset:
    924  *
    925  *	Reset the MAC portion of the Starfire.
    926  */
    927 void
    928 sf_macreset(struct sf_softc *sc)
    929 {
    930 
    931 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
    932 	delay(1000);
    933 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
    934 }
    935 
    936 /*
    937  * sf_init:		[ifnet interface function]
    938  *
    939  *	Initialize the interface.  Must be called at splnet().
    940  */
    941 int
    942 sf_init(struct ifnet *ifp)
    943 {
    944 	struct sf_softc *sc = ifp->if_softc;
    945 	struct sf_descsoft *ds;
    946 	int i, error = 0;
    947 
    948 	/*
    949 	 * Cancel any pending I/O.
    950 	 */
    951 	sf_stop(ifp, 0);
    952 
    953 	/*
    954 	 * Reset the Starfire to a known state.
    955 	 */
    956 	sf_reset(sc);
    957 
    958 	/* Clear the stat counters. */
    959 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
    960 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
    961 
    962 	/*
    963 	 * Initialize the transmit descriptor ring.
    964 	 */
    965 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    966 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
    967 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
    968 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
    969 
    970 	/*
    971 	 * Initialize the transmit completion ring.
    972 	 */
    973 	for (i = 0; i < SF_NTCD; i++) {
    974 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
    975 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    976 	}
    977 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
    978 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
    979 
    980 	/*
    981 	 * Initialize the receive descriptor ring.
    982 	 */
    983 	for (i = 0; i < SF_NRXDESC; i++) {
    984 		ds = &sc->sc_rxsoft[i];
    985 		if (ds->ds_mbuf == NULL) {
    986 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
    987 				printf("%s: unable to allocate or map rx "
    988 				    "buffer %d, error = %d\n",
    989 				    sc->sc_dev.dv_xname, i, error);
    990 				/*
    991 				 * XXX Should attempt to run with fewer receive
    992 				 * XXX buffers instead of just failing.
    993 				 */
    994 				sf_rxdrain(sc);
    995 				goto out;
    996 			}
    997 		} else
    998 			SF_INIT_RXDESC(sc, i);
    999 	}
   1000 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
   1001 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
   1002 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
   1003 
   1004 	/*
   1005 	 * Initialize the receive completion ring.
   1006 	 */
   1007 	for (i = 0; i < SF_NRCD; i++) {
   1008 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
   1009 		sc->sc_rxcomp[i].rcd_word1 = 0;
   1010 		sc->sc_rxcomp[i].rcd_word2 = 0;
   1011 		sc->sc_rxcomp[i].rcd_timestamp = 0;
   1012 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1013 	}
   1014 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
   1015 	    RCQ1C_RxCompletionQ1Type(3));
   1016 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
   1017 
   1018 	/*
   1019 	 * Initialize the Tx CSR.
   1020 	 */
   1021 	sc->sc_TransmitFrameCSR = 0;
   1022 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
   1023 	    sc->sc_TransmitFrameCSR |
   1024 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
   1025 
   1026 	/*
   1027 	 * Initialize the Tx descriptor control register.
   1028 	 */
   1029 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
   1030 	    TDQC_TxDmaBurstSize(4) |	/* default */
   1031 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
   1032 	    TDQC_TxDescType(0);
   1033 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
   1034 	    sc->sc_TxDescQueueCtrl |
   1035 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
   1036 
   1037 	/*
   1038 	 * Initialize the Rx descriptor control registers.
   1039 	 */
   1040 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
   1041 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
   1042 	    RDQ1C_RxDescSpacing(0));
   1043 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
   1044 
   1045 	/*
   1046 	 * Initialize the Tx descriptor producer indices.
   1047 	 */
   1048 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
   1049 	    TDQPI_HiPrTxProducerIndex(0) |
   1050 	    TDQPI_LoPrTxProducerIndex(0));
   1051 
   1052 	/*
   1053 	 * Initialize the Rx descriptor producer indices.
   1054 	 */
   1055 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
   1056 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
   1057 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
   1058 	    RXQ2P_RxDescQ2Producer(0));
   1059 
   1060 	/*
   1061 	 * Initialize the Tx and Rx completion queue consumer indices.
   1062 	 */
   1063 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
   1064 	    CQCI_TxCompletionConsumerIndex(0) |
   1065 	    CQCI_RxCompletionQ1ConsumerIndex(0));
   1066 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
   1067 
   1068 	/*
   1069 	 * Initialize the Rx DMA control register.
   1070 	 */
   1071 	sf_funcreg_write(sc, SF_RxDmaCtrl,
   1072 	    RDC_RxHighPriorityThreshold(6) |	/* default */
   1073 	    RDC_RxBurstSize(4));		/* default */
   1074 
   1075 	/*
   1076 	 * Set the receive filter.
   1077 	 */
   1078 	sc->sc_RxAddressFilteringCtl = 0;
   1079 	sf_set_filter(sc);
   1080 
   1081 	/*
   1082 	 * Set MacConfig1.  When we set the media, MacConfig1 will
   1083 	 * actually be written and the MAC part reset.
   1084 	 */
   1085 	sc->sc_MacConfig1 = MC1_PadEn;
   1086 
   1087 	/*
   1088 	 * Set the media.
   1089 	 */
   1090 	mii_mediachg(&sc->sc_mii);
   1091 
   1092 	/*
   1093 	 * Initialize the interrupt register.
   1094 	 */
   1095 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
   1096 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
   1097 	    IS_StatisticWrapInt;
   1098 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
   1099 
   1100 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
   1101 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
   1102 
   1103 	/*
   1104 	 * Start the transmit and receive processes.
   1105 	 */
   1106 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
   1107 	    GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
   1108 
   1109 	/* Start the on second clock. */
   1110 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
   1111 
   1112 	/*
   1113 	 * Note that the interface is now running.
   1114 	 */
   1115 	ifp->if_flags |= IFF_RUNNING;
   1116 	ifp->if_flags &= ~IFF_OACTIVE;
   1117 
   1118  out:
   1119 	if (error) {
   1120 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1121 		ifp->if_timer = 0;
   1122 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1123 	}
   1124 	return (error);
   1125 }
   1126 
   1127 /*
   1128  * sf_rxdrain:
   1129  *
   1130  *	Drain the receive queue.
   1131  */
   1132 void
   1133 sf_rxdrain(struct sf_softc *sc)
   1134 {
   1135 	struct sf_descsoft *ds;
   1136 	int i;
   1137 
   1138 	for (i = 0; i < SF_NRXDESC; i++) {
   1139 		ds = &sc->sc_rxsoft[i];
   1140 		if (ds->ds_mbuf != NULL) {
   1141 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1142 			m_freem(ds->ds_mbuf);
   1143 			ds->ds_mbuf = NULL;
   1144 		}
   1145 	}
   1146 }
   1147 
   1148 /*
   1149  * sf_stop:		[ifnet interface function]
   1150  *
   1151  *	Stop transmission on the interface.
   1152  */
   1153 void
   1154 sf_stop(struct ifnet *ifp, int disable)
   1155 {
   1156 	struct sf_softc *sc = ifp->if_softc;
   1157 	struct sf_descsoft *ds;
   1158 	int i;
   1159 
   1160 	/* Stop the one second clock. */
   1161 	callout_stop(&sc->sc_tick_callout);
   1162 
   1163 	/* Down the MII. */
   1164 	mii_down(&sc->sc_mii);
   1165 
   1166 	/* Disable interrupts. */
   1167 	sf_funcreg_write(sc, SF_InterruptEn, 0);
   1168 
   1169 	/* Stop the transmit and receive processes. */
   1170 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
   1171 
   1172 	/*
   1173 	 * Release any queued transmit buffers.
   1174 	 */
   1175 	for (i = 0; i < SF_NTXDESC; i++) {
   1176 		ds = &sc->sc_txsoft[i];
   1177 		if (ds->ds_mbuf != NULL) {
   1178 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1179 			m_freem(ds->ds_mbuf);
   1180 			ds->ds_mbuf = NULL;
   1181 		}
   1182 	}
   1183 
   1184 	if (disable)
   1185 		sf_rxdrain(sc);
   1186 
   1187 	/*
   1188 	 * Mark the interface down and cancel the watchdog timer.
   1189 	 */
   1190 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1191 	ifp->if_timer = 0;
   1192 }
   1193 
   1194 /*
   1195  * sf_read_eeprom:
   1196  *
   1197  *	Read from the Starfire EEPROM.
   1198  */
   1199 uint8_t
   1200 sf_read_eeprom(struct sf_softc *sc, int offset)
   1201 {
   1202 	uint32_t reg;
   1203 
   1204 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
   1205 
   1206 	return ((reg >> (8 * (offset & 3))) & 0xff);
   1207 }
   1208 
   1209 /*
   1210  * sf_add_rxbuf:
   1211  *
   1212  *	Add a receive buffer to the indicated descriptor.
   1213  */
   1214 int
   1215 sf_add_rxbuf(struct sf_softc *sc, int idx)
   1216 {
   1217 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
   1218 	struct mbuf *m;
   1219 	int error;
   1220 
   1221 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1222 	if (m == NULL)
   1223 		return (ENOBUFS);
   1224 
   1225 	MCLGET(m, M_DONTWAIT);
   1226 	if ((m->m_flags & M_EXT) == 0) {
   1227 		m_freem(m);
   1228 		return (ENOBUFS);
   1229 	}
   1230 
   1231 	if (ds->ds_mbuf != NULL)
   1232 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
   1233 
   1234 	ds->ds_mbuf = m;
   1235 
   1236 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
   1237 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1238 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1239 	if (error) {
   1240 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1241 		    sc->sc_dev.dv_xname, idx, error);
   1242 		panic("sf_add_rxbuf"); /* XXX */
   1243 	}
   1244 
   1245 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
   1246 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1247 
   1248 	SF_INIT_RXDESC(sc, idx);
   1249 
   1250 	return (0);
   1251 }
   1252 
   1253 static void
   1254 sf_set_filter_perfect(struct sf_softc *sc, int slot, uint8_t *enaddr)
   1255 {
   1256 	uint32_t reg0, reg1, reg2;
   1257 
   1258 	reg0 = enaddr[5] | (enaddr[4] << 8);
   1259 	reg1 = enaddr[3] | (enaddr[2] << 8);
   1260 	reg2 = enaddr[1] | (enaddr[0] << 8);
   1261 
   1262 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
   1263 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
   1264 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
   1265 }
   1266 
   1267 static void
   1268 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
   1269 {
   1270 	uint32_t hash, slot, reg;
   1271 
   1272 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
   1273 	slot = hash >> 4;
   1274 
   1275 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
   1276 	reg |= 1 << (hash & 0xf);
   1277 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
   1278 }
   1279 
   1280 /*
   1281  * sf_set_filter:
   1282  *
   1283  *	Set the Starfire receive filter.
   1284  */
   1285 void
   1286 sf_set_filter(struct sf_softc *sc)
   1287 {
   1288 	struct ethercom *ec = &sc->sc_ethercom;
   1289 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1290 	struct ether_multi *enm;
   1291 	struct ether_multistep step;
   1292 	int i;
   1293 
   1294 	/* Start by clearing the perfect and hash tables. */
   1295 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
   1296 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
   1297 
   1298 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
   1299 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
   1300 
   1301 	/*
   1302 	 * Clear the perfect and hash mode bits.
   1303 	 */
   1304 	sc->sc_RxAddressFilteringCtl &=
   1305 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
   1306 
   1307 	if (ifp->if_flags & IFF_BROADCAST)
   1308 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
   1309 	else
   1310 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
   1311 
   1312 	if (ifp->if_flags & IFF_PROMISC) {
   1313 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
   1314 		goto allmulti;
   1315 	} else
   1316 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
   1317 
   1318 	/*
   1319 	 * Set normal perfect filtering mode.
   1320 	 */
   1321 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
   1322 
   1323 	/*
   1324 	 * First, write the station address to the perfect filter
   1325 	 * table.
   1326 	 */
   1327 	sf_set_filter_perfect(sc, 0, LLADDR(ifp->if_sadl));
   1328 
   1329 	/*
   1330 	 * Now set the hash bits for each multicast address in our
   1331 	 * list.
   1332 	 */
   1333 	ETHER_FIRST_MULTI(step, ec, enm);
   1334 	if (enm == NULL)
   1335 		goto done;
   1336 	while (enm != NULL) {
   1337 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1338 			/*
   1339 			 * We must listen to a range of multicast addresses.
   1340 			 * For now, just accept all multicasts, rather than
   1341 			 * trying to set only those filter bits needed to match
   1342 			 * the range.  (At this time, the only use of address
   1343 			 * ranges is for IP multicast routing, for which the
   1344 			 * range is big enough to require all bits set.)
   1345 			 */
   1346 			goto allmulti;
   1347 		}
   1348 		sf_set_filter_hash(sc, enm->enm_addrlo);
   1349 		ETHER_NEXT_MULTI(step, enm);
   1350 	}
   1351 
   1352 	/*
   1353 	 * Set "hash only multicast dest, match regardless of VLAN ID".
   1354 	 */
   1355 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
   1356 	goto done;
   1357 
   1358  allmulti:
   1359 	/*
   1360 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
   1361 	 */
   1362 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
   1363 	ifp->if_flags |= IFF_ALLMULTI;
   1364 
   1365  done:
   1366 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
   1367 	    sc->sc_RxAddressFilteringCtl);
   1368 }
   1369 
   1370 /*
   1371  * sf_mii_read:		[mii interface function]
   1372  *
   1373  *	Read from the MII.
   1374  */
   1375 int
   1376 sf_mii_read(struct device *self, int phy, int reg)
   1377 {
   1378 	struct sf_softc *sc = (void *) self;
   1379 	uint32_t v;
   1380 	int i;
   1381 
   1382 	for (i = 0; i < 1000; i++) {
   1383 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
   1384 		if (v & MiiDataValid)
   1385 			break;
   1386 		delay(1);
   1387 	}
   1388 
   1389 	if ((v & MiiDataValid) == 0)
   1390 		return (0);
   1391 
   1392 	if (MiiRegDataPort(v) == 0xffff)
   1393 		return (0);
   1394 
   1395 	return (MiiRegDataPort(v));
   1396 }
   1397 
   1398 /*
   1399  * sf_mii_write:	[mii interface function]
   1400  *
   1401  *	Write to the MII.
   1402  */
   1403 void
   1404 sf_mii_write(struct device *self, int phy, int reg, int val)
   1405 {
   1406 	struct sf_softc *sc = (void *) self;
   1407 	int i;
   1408 
   1409 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
   1410 
   1411 	for (i = 0; i < 1000; i++) {
   1412 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
   1413 		     MiiBusy) == 0)
   1414 			return;
   1415 		delay(1);
   1416 	}
   1417 
   1418 	printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
   1419 }
   1420 
   1421 /*
   1422  * sf_mii_statchg:	[mii interface function]
   1423  *
   1424  *	Callback from the PHY when the media changes.
   1425  */
   1426 void
   1427 sf_mii_statchg(struct device *self)
   1428 {
   1429 	struct sf_softc *sc = (void *) self;
   1430 	uint32_t ipg;
   1431 
   1432 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1433 		sc->sc_MacConfig1 |= MC1_FullDuplex;
   1434 		ipg = 0x15;
   1435 	} else {
   1436 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
   1437 		ipg = 0x11;
   1438 	}
   1439 
   1440 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
   1441 	sf_macreset(sc);
   1442 
   1443 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
   1444 }
   1445 
   1446 /*
   1447  * sf_mediastatus:	[ifmedia interface function]
   1448  *
   1449  *	Callback from ifmedia to request current media status.
   1450  */
   1451 void
   1452 sf_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1453 {
   1454 	struct sf_softc *sc = ifp->if_softc;
   1455 
   1456 	mii_pollstat(&sc->sc_mii);
   1457 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1458 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1459 }
   1460 
   1461 /*
   1462  * sf_mediachange:	[ifmedia interface function]
   1463  *
   1464  *	Callback from ifmedia to request new media setting.
   1465  */
   1466 int
   1467 sf_mediachange(struct ifnet *ifp)
   1468 {
   1469 	struct sf_softc *sc = ifp->if_softc;
   1470 
   1471 	if (ifp->if_flags & IFF_UP)
   1472 		mii_mediachg(&sc->sc_mii);
   1473 	return (0);
   1474 }
   1475