1 1.15 christos /* $NetBSD: aic7xxx_inline.h,v 1.15 2018/04/19 21:50:08 christos Exp $ */ 2 1.2 fvdl 3 1.1 fvdl /* 4 1.1 fvdl * Inline routines shareable across OS platforms. 5 1.1 fvdl * 6 1.1 fvdl * Copyright (c) 1994-2001 Justin T. Gibbs. 7 1.1 fvdl * Copyright (c) 2000-2001 Adaptec Inc. 8 1.1 fvdl * All rights reserved. 9 1.1 fvdl * 10 1.1 fvdl * Redistribution and use in source and binary forms, with or without 11 1.1 fvdl * modification, are permitted provided that the following conditions 12 1.1 fvdl * are met: 13 1.1 fvdl * 1. Redistributions of source code must retain the above copyright 14 1.1 fvdl * notice, this list of conditions, and the following disclaimer, 15 1.1 fvdl * without modification. 16 1.1 fvdl * 2. Redistributions in binary form must reproduce at minimum a disclaimer 17 1.1 fvdl * substantially similar to the "NO WARRANTY" disclaimer below 18 1.1 fvdl * ("Disclaimer") and any redistribution must be conditioned upon 19 1.1 fvdl * including a substantially similar Disclaimer requirement for further 20 1.1 fvdl * binary redistribution. 21 1.1 fvdl * 3. Neither the names of the above-listed copyright holders nor the names 22 1.1 fvdl * of any contributors may be used to endorse or promote products derived 23 1.1 fvdl * from this software without specific prior written permission. 24 1.1 fvdl * 25 1.1 fvdl * Alternatively, this software may be distributed under the terms of the 26 1.1 fvdl * GNU General Public License ("GPL") version 2 as published by the Free 27 1.1 fvdl * Software Foundation. 28 1.1 fvdl * 29 1.1 fvdl * NO WARRANTY 30 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 31 1.1 fvdl * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 32 1.1 fvdl * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 33 1.1 fvdl * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 34 1.1 fvdl * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 38 1.1 fvdl * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 39 1.1 fvdl * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 40 1.1 fvdl * POSSIBILITY OF SUCH DAMAGES. 41 1.1 fvdl * 42 1.1 fvdl * //depot/aic7xxx/aic7xxx/aic7xxx_inline.h#39 $ 43 1.1 fvdl * 44 1.1 fvdl * $FreeBSD: /repoman/r/ncvs/src/sys/dev/aic7xxx/aic7xxx_inline.h,v 1.20 2003/01/20 20:44:55 gibbs Exp $ 45 1.1 fvdl */ 46 1.1 fvdl /* 47 1.1 fvdl * Ported from FreeBSD by Pascal Renauld, Network Storage Solutions, Inc. - April 2003 48 1.1 fvdl */ 49 1.1 fvdl 50 1.1 fvdl #ifndef _AIC7XXX_INLINE_H_ 51 1.1 fvdl #define _AIC7XXX_INLINE_H_ 52 1.1 fvdl 53 1.1 fvdl /************************* Sequencer Execution Control ************************/ 54 1.9 perry static __inline void ahc_pause_bug_fix(struct ahc_softc *ahc); 55 1.9 perry static __inline int ahc_is_paused(struct ahc_softc *ahc); 56 1.9 perry static __inline void ahc_pause(struct ahc_softc *ahc); 57 1.9 perry static __inline void ahc_unpause(struct ahc_softc *ahc); 58 1.1 fvdl 59 1.1 fvdl /* 60 1.1 fvdl * Work around any chip bugs related to halting sequencer execution. 61 1.1 fvdl * On Ultra2 controllers, we must clear the CIOBUS stretch signal by 62 1.1 fvdl * reading a register that will set this signal and deassert it. 63 1.1 fvdl * Without this workaround, if the chip is paused, by an interrupt or 64 1.1 fvdl * manual pause while accessing scb ram, accesses to certain registers 65 1.1 fvdl * will hang the system (infinite pci retries). 66 1.1 fvdl */ 67 1.9 perry static __inline void 68 1.1 fvdl ahc_pause_bug_fix(struct ahc_softc *ahc) 69 1.1 fvdl { 70 1.1 fvdl if ((ahc->features & AHC_ULTRA2) != 0) 71 1.1 fvdl (void)ahc_inb(ahc, CCSCBCTL); 72 1.1 fvdl } 73 1.1 fvdl 74 1.1 fvdl /* 75 1.1 fvdl * Determine whether the sequencer has halted code execution. 76 1.1 fvdl * Returns non-zero status if the sequencer is stopped. 77 1.1 fvdl */ 78 1.9 perry static __inline int 79 1.1 fvdl ahc_is_paused(struct ahc_softc *ahc) 80 1.1 fvdl { 81 1.1 fvdl return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0); 82 1.1 fvdl } 83 1.1 fvdl 84 1.1 fvdl /* 85 1.1 fvdl * Request that the sequencer stop and wait, indefinitely, for it 86 1.1 fvdl * to stop. The sequencer will only acknowledge that it is paused 87 1.1 fvdl * once it has reached an instruction boundary and PAUSEDIS is 88 1.1 fvdl * cleared in the SEQCTL register. The sequencer may use PAUSEDIS 89 1.1 fvdl * for critical sections. 90 1.1 fvdl */ 91 1.9 perry static __inline void 92 1.1 fvdl ahc_pause(struct ahc_softc *ahc) 93 1.1 fvdl { 94 1.1 fvdl ahc_outb(ahc, HCNTRL, ahc->pause); 95 1.1 fvdl 96 1.1 fvdl /* 97 1.1 fvdl * Since the sequencer can disable pausing in a critical section, we 98 1.1 fvdl * must loop until it actually stops. 99 1.1 fvdl */ 100 1.1 fvdl while (ahc_is_paused(ahc) == 0) 101 1.1 fvdl ; 102 1.1 fvdl 103 1.1 fvdl ahc_pause_bug_fix(ahc); 104 1.1 fvdl } 105 1.1 fvdl 106 1.1 fvdl /* 107 1.1 fvdl * Allow the sequencer to continue program execution. 108 1.1 fvdl * We check here to ensure that no additional interrupt 109 1.1 fvdl * sources that would cause the sequencer to halt have been 110 1.1 fvdl * asserted. If, for example, a SCSI bus reset is detected 111 1.1 fvdl * while we are fielding a different, pausing, interrupt type, 112 1.1 fvdl * we don't want to release the sequencer before going back 113 1.1 fvdl * into our interrupt handler and dealing with this new 114 1.1 fvdl * condition. 115 1.1 fvdl */ 116 1.9 perry static __inline void 117 1.1 fvdl ahc_unpause(struct ahc_softc *ahc) 118 1.1 fvdl { 119 1.1 fvdl if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0) 120 1.1 fvdl ahc_outb(ahc, HCNTRL, ahc->unpause); 121 1.1 fvdl } 122 1.1 fvdl 123 1.1 fvdl /*********************** Untagged Transaction Routines ************************/ 124 1.9 perry static __inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc); 125 1.9 perry static __inline void ahc_release_untagged_queues(struct ahc_softc *ahc); 126 1.1 fvdl 127 1.1 fvdl /* 128 1.1 fvdl * Block our completion routine from starting the next untagged 129 1.1 fvdl * transaction for this target or target lun. 130 1.1 fvdl */ 131 1.9 perry static __inline void 132 1.1 fvdl ahc_freeze_untagged_queues(struct ahc_softc *ahc) 133 1.1 fvdl { 134 1.1 fvdl if ((ahc->flags & AHC_SCB_BTT) == 0) 135 1.1 fvdl ahc->untagged_queue_lock++; 136 1.1 fvdl } 137 1.1 fvdl 138 1.1 fvdl /* 139 1.1 fvdl * Allow the next untagged transaction for this target or target lun 140 1.1 fvdl * to be executed. We use a counting semaphore to allow the lock 141 1.1 fvdl * to be acquired recursively. Once the count drops to zero, the 142 1.1 fvdl * transaction queues will be run. 143 1.1 fvdl */ 144 1.9 perry static __inline void 145 1.1 fvdl ahc_release_untagged_queues(struct ahc_softc *ahc) 146 1.1 fvdl { 147 1.1 fvdl if ((ahc->flags & AHC_SCB_BTT) == 0) { 148 1.1 fvdl ahc->untagged_queue_lock--; 149 1.1 fvdl if (ahc->untagged_queue_lock == 0) 150 1.1 fvdl ahc_run_untagged_queues(ahc); 151 1.1 fvdl } 152 1.1 fvdl } 153 1.1 fvdl 154 1.1 fvdl /************************** Memory mapping routines ***************************/ 155 1.9 perry static __inline struct ahc_dma_seg * 156 1.1 fvdl ahc_sg_bus_to_virt(struct scb *scb, 157 1.1 fvdl uint32_t sg_busaddr); 158 1.9 perry static __inline uint32_t 159 1.1 fvdl ahc_sg_virt_to_bus(struct scb *scb, 160 1.1 fvdl struct ahc_dma_seg *sg); 161 1.9 perry static __inline uint32_t 162 1.1 fvdl ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index); 163 1.9 perry static __inline void ahc_sync_scb(struct ahc_softc *ahc, 164 1.1 fvdl struct scb *scb, int op); 165 1.9 perry static __inline void ahc_sync_sglist(struct ahc_softc *ahc, 166 1.1 fvdl struct scb *scb, int op); 167 1.9 perry static __inline uint32_t 168 1.1 fvdl ahc_targetcmd_offset(struct ahc_softc *ahc, 169 1.1 fvdl u_int index); 170 1.1 fvdl 171 1.9 perry static __inline struct ahc_dma_seg * 172 1.1 fvdl ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr) 173 1.1 fvdl { 174 1.1 fvdl int sg_index; 175 1.1 fvdl 176 1.1 fvdl sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg); 177 1.1 fvdl /* sg_list_phys points to entry 1, not 0 */ 178 1.1 fvdl sg_index++; 179 1.1 fvdl 180 1.1 fvdl return (&scb->sg_list[sg_index]); 181 1.1 fvdl } 182 1.1 fvdl 183 1.9 perry static __inline uint32_t 184 1.1 fvdl ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg) 185 1.1 fvdl { 186 1.1 fvdl int sg_index; 187 1.1 fvdl 188 1.1 fvdl /* sg_list_phys points to entry 1, not 0 */ 189 1.1 fvdl sg_index = sg - &scb->sg_list[1]; 190 1.1 fvdl 191 1.1 fvdl return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list))); 192 1.1 fvdl } 193 1.1 fvdl 194 1.9 perry static __inline uint32_t 195 1.1 fvdl ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index) 196 1.1 fvdl { 197 1.1 fvdl return (ahc->scb_data->hscb_busaddr 198 1.1 fvdl + (sizeof(struct hardware_scb) * index)); 199 1.1 fvdl } 200 1.1 fvdl 201 1.9 perry static __inline void 202 1.1 fvdl ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op) 203 1.1 fvdl { 204 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat, 205 1.1 fvdl ahc->scb_data->hscb_dmamap, 206 1.1 fvdl /*offset*/(scb->hscb - ahc->scb_data->hscbs) * sizeof(*scb->hscb), 207 1.1 fvdl /*len*/sizeof(*scb->hscb), op); 208 1.1 fvdl } 209 1.1 fvdl 210 1.9 perry static __inline void 211 1.1 fvdl ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op) 212 1.1 fvdl { 213 1.1 fvdl if (scb->sg_count == 0) 214 1.1 fvdl return; 215 1.1 fvdl 216 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat, scb->sg_map->sg_dmamap, 217 1.1 fvdl /*offset*/(scb->sg_list - scb->sg_map->sg_vaddr) 218 1.1 fvdl * sizeof(struct ahc_dma_seg), 219 1.1 fvdl /*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op); 220 1.1 fvdl } 221 1.1 fvdl 222 1.9 perry static __inline uint32_t 223 1.1 fvdl ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index) 224 1.1 fvdl { 225 1.1 fvdl return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo); 226 1.1 fvdl } 227 1.1 fvdl 228 1.1 fvdl /******************************** Debugging ***********************************/ 229 1.15 christos static __inline const char *ahc_name(struct ahc_softc *ahc); 230 1.1 fvdl 231 1.15 christos static __inline const char * 232 1.1 fvdl ahc_name(struct ahc_softc *ahc) 233 1.1 fvdl { 234 1.1 fvdl return (ahc->name); 235 1.1 fvdl } 236 1.1 fvdl 237 1.4 wiz /*********************** Miscellaneous Support Functions ***********************/ 238 1.1 fvdl 239 1.9 perry static __inline void ahc_update_residual(struct ahc_softc *ahc, 240 1.1 fvdl struct scb *scb); 241 1.9 perry static __inline struct ahc_initiator_tinfo * 242 1.1 fvdl ahc_fetch_transinfo(struct ahc_softc *ahc, 243 1.1 fvdl char channel, u_int our_id, 244 1.1 fvdl u_int remote_id, 245 1.1 fvdl struct ahc_tmode_tstate **tstate); 246 1.9 perry static __inline uint16_t 247 1.1 fvdl ahc_inw(struct ahc_softc *ahc, u_int port); 248 1.9 perry static __inline void ahc_outw(struct ahc_softc *ahc, u_int port, 249 1.1 fvdl u_int value); 250 1.9 perry static __inline uint32_t 251 1.1 fvdl ahc_inl(struct ahc_softc *ahc, u_int port); 252 1.9 perry static __inline void ahc_outl(struct ahc_softc *ahc, u_int port, 253 1.1 fvdl uint32_t value); 254 1.9 perry static __inline uint64_t 255 1.1 fvdl ahc_inq(struct ahc_softc *ahc, u_int port); 256 1.9 perry static __inline void ahc_outq(struct ahc_softc *ahc, u_int port, 257 1.1 fvdl uint64_t value); 258 1.9 perry static __inline struct scb* 259 1.1 fvdl ahc_get_scb(struct ahc_softc *ahc); 260 1.9 perry static __inline void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb); 261 1.9 perry static __inline void ahc_swap_with_next_hscb(struct ahc_softc *ahc, 262 1.1 fvdl struct scb *scb); 263 1.9 perry static __inline void ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb); 264 1.9 perry static __inline struct scsi_sense_data * 265 1.1 fvdl ahc_get_sense_buf(struct ahc_softc *ahc, 266 1.1 fvdl struct scb *scb); 267 1.9 perry static __inline uint32_t 268 1.1 fvdl ahc_get_sense_bufaddr(struct ahc_softc *ahc, 269 1.1 fvdl struct scb *scb); 270 1.1 fvdl 271 1.1 fvdl /* 272 1.1 fvdl * Determine whether the sequencer reported a residual 273 1.1 fvdl * for this SCB/transaction. 274 1.1 fvdl */ 275 1.9 perry static __inline void 276 1.1 fvdl ahc_update_residual(struct ahc_softc *ahc, struct scb *scb) 277 1.1 fvdl { 278 1.1 fvdl uint32_t sgptr; 279 1.1 fvdl 280 1.1 fvdl sgptr = ahc_le32toh(scb->hscb->sgptr); 281 1.1 fvdl if ((sgptr & SG_RESID_VALID) != 0) 282 1.1 fvdl ahc_calc_residual(ahc, scb); 283 1.1 fvdl } 284 1.1 fvdl 285 1.1 fvdl /* 286 1.1 fvdl * Return pointers to the transfer negotiation information 287 1.1 fvdl * for the specified our_id/remote_id pair. 288 1.1 fvdl */ 289 1.9 perry static __inline struct ahc_initiator_tinfo * 290 1.12 christos ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id, 291 1.1 fvdl u_int remote_id, struct ahc_tmode_tstate **tstate) 292 1.1 fvdl { 293 1.1 fvdl /* 294 1.1 fvdl * Transfer data structures are stored from the perspective 295 1.1 fvdl * of the target role. Since the parameters for a connection 296 1.1 fvdl * in the initiator role to a given target are the same as 297 1.1 fvdl * when the roles are reversed, we pretend we are the target. 298 1.1 fvdl */ 299 1.11 christos #ifdef notdef 300 1.11 christos if (channel == 'B') 301 1.11 christos our_id += 8; 302 1.11 christos #endif 303 1.1 fvdl *tstate = ahc->enabled_targets[our_id]; 304 1.1 fvdl return (&(*tstate)->transinfo[remote_id]); 305 1.1 fvdl } 306 1.1 fvdl 307 1.9 perry static __inline uint16_t 308 1.1 fvdl ahc_inw(struct ahc_softc *ahc, u_int port) 309 1.1 fvdl { 310 1.1 fvdl return ((ahc_inb(ahc, port+1) << 8) | ahc_inb(ahc, port)); 311 1.1 fvdl } 312 1.1 fvdl 313 1.9 perry static __inline void 314 1.1 fvdl ahc_outw(struct ahc_softc *ahc, u_int port, u_int value) 315 1.1 fvdl { 316 1.1 fvdl ahc_outb(ahc, port, value & 0xFF); 317 1.1 fvdl ahc_outb(ahc, port+1, (value >> 8) & 0xFF); 318 1.1 fvdl } 319 1.1 fvdl 320 1.9 perry static __inline uint32_t 321 1.1 fvdl ahc_inl(struct ahc_softc *ahc, u_int port) 322 1.1 fvdl { 323 1.1 fvdl return ((ahc_inb(ahc, port)) 324 1.1 fvdl | (ahc_inb(ahc, port+1) << 8) 325 1.1 fvdl | (ahc_inb(ahc, port+2) << 16) 326 1.1 fvdl | (ahc_inb(ahc, port+3) << 24)); 327 1.1 fvdl } 328 1.1 fvdl 329 1.9 perry static __inline void 330 1.1 fvdl ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value) 331 1.1 fvdl { 332 1.1 fvdl ahc_outb(ahc, port, (value) & 0xFF); 333 1.1 fvdl ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF); 334 1.1 fvdl ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF); 335 1.1 fvdl ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF); 336 1.1 fvdl } 337 1.1 fvdl 338 1.9 perry static __inline uint64_t 339 1.1 fvdl ahc_inq(struct ahc_softc *ahc, u_int port) 340 1.1 fvdl { 341 1.1 fvdl return ((ahc_inb(ahc, port)) 342 1.1 fvdl | (ahc_inb(ahc, port+1) << 8) 343 1.1 fvdl | (ahc_inb(ahc, port+2) << 16) 344 1.1 fvdl | (ahc_inb(ahc, port+3) << 24) 345 1.1 fvdl | (((uint64_t)ahc_inb(ahc, port+4)) << 32) 346 1.1 fvdl | (((uint64_t)ahc_inb(ahc, port+5)) << 40) 347 1.1 fvdl | (((uint64_t)ahc_inb(ahc, port+6)) << 48) 348 1.1 fvdl | (((uint64_t)ahc_inb(ahc, port+7)) << 56)); 349 1.1 fvdl } 350 1.1 fvdl 351 1.9 perry static __inline void 352 1.1 fvdl ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value) 353 1.1 fvdl { 354 1.1 fvdl ahc_outb(ahc, port, value & 0xFF); 355 1.1 fvdl ahc_outb(ahc, port+1, (value >> 8) & 0xFF); 356 1.1 fvdl ahc_outb(ahc, port+2, (value >> 16) & 0xFF); 357 1.1 fvdl ahc_outb(ahc, port+3, (value >> 24) & 0xFF); 358 1.1 fvdl ahc_outb(ahc, port+4, (value >> 32) & 0xFF); 359 1.1 fvdl ahc_outb(ahc, port+5, (value >> 40) & 0xFF); 360 1.1 fvdl ahc_outb(ahc, port+6, (value >> 48) & 0xFF); 361 1.1 fvdl ahc_outb(ahc, port+7, (value >> 56) & 0xFF); 362 1.1 fvdl } 363 1.1 fvdl 364 1.1 fvdl /* 365 1.1 fvdl * Get a free scb. If there are none, see if we can allocate a new SCB. 366 1.1 fvdl */ 367 1.9 perry static __inline struct scb * 368 1.1 fvdl ahc_get_scb(struct ahc_softc *ahc) 369 1.1 fvdl { 370 1.1 fvdl struct scb *scb; 371 1.1 fvdl 372 1.7 bouyer if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) 373 1.7 bouyer return (NULL); 374 1.1 fvdl SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle); 375 1.1 fvdl return (scb); 376 1.1 fvdl } 377 1.1 fvdl 378 1.1 fvdl /* 379 1.1 fvdl * Return an SCB resource to the free list. 380 1.1 fvdl */ 381 1.9 perry static __inline void 382 1.1 fvdl ahc_free_scb(struct ahc_softc *ahc, struct scb *scb) 383 1.6 perry { 384 1.1 fvdl struct hardware_scb *hscb; 385 1.1 fvdl 386 1.1 fvdl hscb = scb->hscb; 387 1.1 fvdl /* Clean up for the next user */ 388 1.1 fvdl ahc->scb_data->scbindex[hscb->tag] = NULL; 389 1.1 fvdl scb->flags = SCB_FREE; 390 1.1 fvdl hscb->control = 0; 391 1.1 fvdl 392 1.1 fvdl SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle); 393 1.1 fvdl 394 1.1 fvdl /* Notify the OSM that a resource is now available. */ 395 1.1 fvdl ahc_platform_scb_free(ahc, scb); 396 1.1 fvdl } 397 1.1 fvdl 398 1.9 perry static __inline struct scb * 399 1.1 fvdl ahc_lookup_scb(struct ahc_softc *ahc, u_int tag) 400 1.1 fvdl { 401 1.1 fvdl struct scb* scb; 402 1.1 fvdl 403 1.1 fvdl scb = ahc->scb_data->scbindex[tag]; 404 1.1 fvdl if (scb != NULL) 405 1.1 fvdl ahc_sync_scb(ahc, scb, 406 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 407 1.1 fvdl return (scb); 408 1.1 fvdl } 409 1.1 fvdl 410 1.9 perry static __inline void 411 1.1 fvdl ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb) 412 1.1 fvdl { 413 1.1 fvdl struct hardware_scb *q_hscb; 414 1.1 fvdl u_int saved_tag; 415 1.1 fvdl 416 1.1 fvdl /* 417 1.1 fvdl * Our queuing method is a bit tricky. The card 418 1.1 fvdl * knows in advance which HSCB to download, and we 419 1.1 fvdl * can't disappoint it. To achieve this, the next 420 1.1 fvdl * SCB to download is saved off in ahc->next_queued_scb. 421 1.1 fvdl * When we are called to queue "an arbitrary scb", 422 1.1 fvdl * we copy the contents of the incoming HSCB to the one 423 1.1 fvdl * the sequencer knows about, swap HSCB pointers and 424 1.1 fvdl * finally assign the SCB to the tag indexed location 425 1.1 fvdl * in the scb_array. This makes sure that we can still 426 1.1 fvdl * locate the correct SCB by SCB_TAG. 427 1.1 fvdl */ 428 1.1 fvdl q_hscb = ahc->next_queued_scb->hscb; 429 1.1 fvdl saved_tag = q_hscb->tag; 430 1.1 fvdl memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb)); 431 1.1 fvdl if ((scb->flags & SCB_CDB32_PTR) != 0) { 432 1.1 fvdl q_hscb->shared_data.cdb_ptr = 433 1.1 fvdl ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag) 434 1.1 fvdl + offsetof(struct hardware_scb, cdb32)); 435 1.1 fvdl } 436 1.1 fvdl q_hscb->tag = saved_tag; 437 1.1 fvdl q_hscb->next = scb->hscb->tag; 438 1.1 fvdl 439 1.1 fvdl /* Now swap HSCB pointers. */ 440 1.1 fvdl ahc->next_queued_scb->hscb = scb->hscb; 441 1.1 fvdl scb->hscb = q_hscb; 442 1.1 fvdl 443 1.1 fvdl /* Now define the mapping from tag to SCB in the scbindex */ 444 1.1 fvdl ahc->scb_data->scbindex[scb->hscb->tag] = scb; 445 1.1 fvdl } 446 1.1 fvdl 447 1.1 fvdl /* 448 1.1 fvdl * Tell the sequencer about a new transaction to execute. 449 1.1 fvdl */ 450 1.9 perry static __inline void 451 1.1 fvdl ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb) 452 1.1 fvdl { 453 1.1 fvdl ahc_swap_with_next_hscb(ahc, scb); 454 1.1 fvdl 455 1.1 fvdl if (scb->hscb->tag == SCB_LIST_NULL 456 1.1 fvdl || scb->hscb->next == SCB_LIST_NULL) 457 1.1 fvdl panic("Attempt to queue invalid SCB tag %x:%x\n", 458 1.1 fvdl scb->hscb->tag, scb->hscb->next); 459 1.1 fvdl /* 460 1.1 fvdl * Keep a history of SCBs we've downloaded in the qinfifo. 461 1.1 fvdl */ 462 1.1 fvdl ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag; 463 1.1 fvdl 464 1.1 fvdl /* 465 1.4 wiz * Make sure our data is consistent from the 466 1.1 fvdl * perspective of the adapter. 467 1.1 fvdl */ 468 1.1 fvdl ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 469 1.1 fvdl 470 1.1 fvdl /* Tell the adapter about the newly queued SCB */ 471 1.1 fvdl if ((ahc->features & AHC_QUEUE_REGS) != 0) { 472 1.1 fvdl ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext); 473 1.1 fvdl } else { 474 1.1 fvdl if ((ahc->features & AHC_AUTOPAUSE) == 0) 475 1.1 fvdl ahc_pause(ahc); 476 1.1 fvdl ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext); 477 1.1 fvdl if ((ahc->features & AHC_AUTOPAUSE) == 0) 478 1.1 fvdl ahc_unpause(ahc); 479 1.1 fvdl } 480 1.1 fvdl } 481 1.1 fvdl 482 1.9 perry static __inline struct scsi_sense_data * 483 1.1 fvdl ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb) 484 1.1 fvdl { 485 1.1 fvdl int offset; 486 1.1 fvdl 487 1.1 fvdl offset = scb - ahc->scb_data->scbarray; 488 1.1 fvdl return (&ahc->scb_data->sense[offset]); 489 1.1 fvdl } 490 1.1 fvdl 491 1.9 perry static __inline uint32_t 492 1.1 fvdl ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb) 493 1.1 fvdl { 494 1.1 fvdl int offset; 495 1.1 fvdl 496 1.1 fvdl offset = scb - ahc->scb_data->scbarray; 497 1.1 fvdl return (ahc->scb_data->sense_busaddr 498 1.5 thorpej + (offset * sizeof(struct scsi_sense_data))); 499 1.1 fvdl } 500 1.1 fvdl 501 1.1 fvdl /************************** Interrupt Processing ******************************/ 502 1.9 perry static __inline void ahc_sync_qoutfifo(struct ahc_softc *ahc, int op); 503 1.9 perry static __inline void ahc_sync_tqinfifo(struct ahc_softc *ahc, int op); 504 1.9 perry static __inline u_int ahc_check_cmdcmpltqueues(struct ahc_softc *ahc); 505 1.9 perry static __inline int ahc_intr(void *arg); 506 1.9 perry static __inline void ahc_minphys(struct buf *bp); 507 1.1 fvdl 508 1.9 perry static __inline void 509 1.14 cegger ahc_minphys(struct buf *bp) 510 1.1 fvdl { 511 1.1 fvdl /* 512 1.1 fvdl * Even though the card can transfer up to 16megs per command 513 1.3 wiz * we are limited by the number of segments in the DMA segment 514 1.1 fvdl * list that we can hold. The worst case is that all pages are 515 1.4 wiz * discontinuous physically, hence the "page per segment" limit 516 1.1 fvdl * enforced here. 517 1.1 fvdl */ 518 1.10 tsutsui if (bp->b_bcount > AHC_MAXTRANSFER_SIZE) { 519 1.10 tsutsui bp->b_bcount = AHC_MAXTRANSFER_SIZE; 520 1.10 tsutsui } 521 1.10 tsutsui minphys(bp); 522 1.1 fvdl } 523 1.1 fvdl 524 1.9 perry static __inline void 525 1.1 fvdl ahc_sync_qoutfifo(struct ahc_softc *ahc, int op) 526 1.1 fvdl { 527 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat, ahc->shared_data_dmamap, 528 1.1 fvdl /*offset*/0, /*len*/256, op); 529 1.1 fvdl } 530 1.1 fvdl 531 1.9 perry static __inline void 532 1.12 christos ahc_sync_tqinfifo(struct ahc_softc *ahc, int op) 533 1.1 fvdl { 534 1.1 fvdl #ifdef AHC_TARGET_MODE 535 1.1 fvdl if ((ahc->flags & AHC_TARGETROLE) != 0) { 536 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat /*shared_data_dmat*/, 537 1.1 fvdl ahc->shared_data_dmamap, 538 1.1 fvdl ahc_targetcmd_offset(ahc, 0), 539 1.1 fvdl sizeof(struct target_cmd) * AHC_TMODE_CMDS, 540 1.1 fvdl op); 541 1.1 fvdl } 542 1.1 fvdl #endif 543 1.1 fvdl } 544 1.1 fvdl 545 1.1 fvdl /* 546 1.1 fvdl * See if the firmware has posted any completed commands 547 1.1 fvdl * into our in-core command complete fifos. 548 1.1 fvdl */ 549 1.1 fvdl #define AHC_RUN_QOUTFIFO 0x1 550 1.1 fvdl #define AHC_RUN_TQINFIFO 0x2 551 1.9 perry static __inline u_int 552 1.1 fvdl ahc_check_cmdcmpltqueues(struct ahc_softc *ahc) 553 1.1 fvdl { 554 1.1 fvdl u_int retval; 555 1.1 fvdl 556 1.1 fvdl retval = 0; 557 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat /*shared_data_dmat*/, ahc->shared_data_dmamap, 558 1.1 fvdl /*offset*/ahc->qoutfifonext, /*len*/1, 559 1.1 fvdl BUS_DMASYNC_POSTREAD); 560 1.1 fvdl if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) 561 1.1 fvdl retval |= AHC_RUN_QOUTFIFO; 562 1.1 fvdl #ifdef AHC_TARGET_MODE 563 1.1 fvdl if ((ahc->flags & AHC_TARGETROLE) != 0 564 1.1 fvdl && (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) { 565 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat /*shared_data_dmat*/, 566 1.1 fvdl ahc->shared_data_dmamap, 567 1.1 fvdl ahc_targetcmd_offset(ahc, ahc->tqinfifonext), 568 1.1 fvdl /*len*/sizeof(struct target_cmd), 569 1.1 fvdl BUS_DMASYNC_POSTREAD); 570 1.1 fvdl if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0) 571 1.1 fvdl retval |= AHC_RUN_TQINFIFO; 572 1.1 fvdl } 573 1.1 fvdl #endif 574 1.1 fvdl return (retval); 575 1.1 fvdl } 576 1.1 fvdl 577 1.1 fvdl /* 578 1.1 fvdl * Catch an interrupt from the adapter 579 1.1 fvdl */ 580 1.9 perry static __inline int 581 1.1 fvdl ahc_intr(void *arg) 582 1.1 fvdl { 583 1.1 fvdl struct ahc_softc *ahc = (struct ahc_softc*)arg; 584 1.1 fvdl u_int intstat; 585 1.1 fvdl 586 1.1 fvdl if ((ahc->pause & INTEN) == 0) { 587 1.1 fvdl /* 588 1.1 fvdl * Our interrupt is not enabled on the chip 589 1.1 fvdl * and may be disabled for re-entrancy reasons, 590 1.1 fvdl * so just return. This is likely just a shared 591 1.1 fvdl * interrupt. 592 1.1 fvdl */ 593 1.1 fvdl return 1; 594 1.1 fvdl } 595 1.1 fvdl /* 596 1.1 fvdl * Instead of directly reading the interrupt status register, 597 1.1 fvdl * infer the cause of the interrupt by checking our in-core 598 1.1 fvdl * completion queues. This avoids a costly PCI bus read in 599 1.1 fvdl * most cases. 600 1.1 fvdl */ 601 1.1 fvdl if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0 602 1.1 fvdl && (ahc_check_cmdcmpltqueues(ahc) != 0)) 603 1.10 tsutsui intstat = CMDCMPLT; 604 1.10 tsutsui else { 605 1.10 tsutsui intstat = ahc_inb(ahc, INTSTAT); 606 1.10 tsutsui } 607 1.1 fvdl 608 1.10 tsutsui if (intstat & CMDCMPLT) { 609 1.1 fvdl ahc_outb(ahc, CLRINT, CLRCMDINT); 610 1.1 fvdl /* 611 1.1 fvdl * Ensure that the chip sees that we've cleared 612 1.1 fvdl * this interrupt before we walk the output fifo. 613 1.1 fvdl * Otherwise, we may, due to posted bus writes, 614 1.1 fvdl * clear the interrupt after we finish the scan, 615 1.1 fvdl * and after the sequencer has added new entries 616 1.1 fvdl * and asserted the interrupt again. 617 1.1 fvdl */ 618 1.1 fvdl ahc_flush_device_writes(ahc); 619 1.1 fvdl scsipi_channel_freeze(ahc->channel == 'A' ? &ahc->sc_channel : &ahc->sc_channel_b, 1); 620 1.1 fvdl ahc_run_qoutfifo(ahc); 621 1.1 fvdl scsipi_channel_thaw(ahc->channel == 'A' ? &ahc->sc_channel : &ahc->sc_channel_b, 1); 622 1.1 fvdl #ifdef AHC_TARGET_MODE 623 1.1 fvdl if ((ahc->flags & AHC_TARGETROLE) != 0) 624 1.1 fvdl ahc_run_tqinfifo(ahc, /*paused*/FALSE); 625 1.1 fvdl #endif 626 1.1 fvdl } 627 1.1 fvdl 628 1.1 fvdl if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) 629 1.1 fvdl /* Hot eject */ 630 1.1 fvdl return 1; 631 1.1 fvdl 632 1.1 fvdl if ((intstat & INT_PEND) == 0) { 633 1.1 fvdl #if AHC_PCI_CONFIG > 0 634 1.1 fvdl if (ahc->unsolicited_ints > 500) { 635 1.1 fvdl ahc->unsolicited_ints = 0; 636 1.1 fvdl if ((ahc->chip & AHC_PCI) != 0 637 1.1 fvdl && (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0) 638 1.1 fvdl ahc->bus_intr(ahc); 639 1.1 fvdl } 640 1.1 fvdl #endif 641 1.1 fvdl ahc->unsolicited_ints++; 642 1.1 fvdl return 1; 643 1.1 fvdl } 644 1.1 fvdl ahc->unsolicited_ints = 0; 645 1.1 fvdl 646 1.1 fvdl if (intstat & BRKADRINT) { 647 1.1 fvdl ahc_handle_brkadrint(ahc); 648 1.1 fvdl /* Fatal error, no more interrupts to handle. */ 649 1.1 fvdl return 1; 650 1.1 fvdl } 651 1.1 fvdl 652 1.1 fvdl if ((intstat & (SEQINT|SCSIINT)) != 0) 653 1.1 fvdl ahc_pause_bug_fix(ahc); 654 1.1 fvdl 655 1.1 fvdl if ((intstat & SEQINT) != 0) 656 1.1 fvdl ahc_handle_seqint(ahc, intstat); 657 1.1 fvdl 658 1.1 fvdl if ((intstat & SCSIINT) != 0) 659 1.1 fvdl ahc_handle_scsiint(ahc, intstat); 660 1.1 fvdl 661 1.1 fvdl return 1; 662 1.1 fvdl } 663 1.1 fvdl 664 1.1 fvdl #endif /* _AIC7XXX_INLINE_H_ */ 665