aic7xxx_inline.h revision 1.14 1 1.14 cegger /* $NetBSD: aic7xxx_inline.h,v 1.14 2009/03/15 15:52:12 cegger Exp $ */
2 1.2 fvdl
3 1.1 fvdl /*
4 1.1 fvdl * Inline routines shareable across OS platforms.
5 1.1 fvdl *
6 1.1 fvdl * Copyright (c) 1994-2001 Justin T. Gibbs.
7 1.1 fvdl * Copyright (c) 2000-2001 Adaptec Inc.
8 1.1 fvdl * All rights reserved.
9 1.1 fvdl *
10 1.1 fvdl * Redistribution and use in source and binary forms, with or without
11 1.1 fvdl * modification, are permitted provided that the following conditions
12 1.1 fvdl * are met:
13 1.1 fvdl * 1. Redistributions of source code must retain the above copyright
14 1.1 fvdl * notice, this list of conditions, and the following disclaimer,
15 1.1 fvdl * without modification.
16 1.1 fvdl * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 1.1 fvdl * substantially similar to the "NO WARRANTY" disclaimer below
18 1.1 fvdl * ("Disclaimer") and any redistribution must be conditioned upon
19 1.1 fvdl * including a substantially similar Disclaimer requirement for further
20 1.1 fvdl * binary redistribution.
21 1.1 fvdl * 3. Neither the names of the above-listed copyright holders nor the names
22 1.1 fvdl * of any contributors may be used to endorse or promote products derived
23 1.1 fvdl * from this software without specific prior written permission.
24 1.1 fvdl *
25 1.1 fvdl * Alternatively, this software may be distributed under the terms of the
26 1.1 fvdl * GNU General Public License ("GPL") version 2 as published by the Free
27 1.1 fvdl * Software Foundation.
28 1.1 fvdl *
29 1.1 fvdl * NO WARRANTY
30 1.1 fvdl * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 1.1 fvdl * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 1.1 fvdl * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
33 1.1 fvdl * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 1.1 fvdl * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 1.1 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 1.1 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 1.1 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 1.1 fvdl * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
39 1.1 fvdl * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 1.1 fvdl * POSSIBILITY OF SUCH DAMAGES.
41 1.1 fvdl *
42 1.1 fvdl * //depot/aic7xxx/aic7xxx/aic7xxx_inline.h#39 $
43 1.1 fvdl *
44 1.1 fvdl * $FreeBSD: /repoman/r/ncvs/src/sys/dev/aic7xxx/aic7xxx_inline.h,v 1.20 2003/01/20 20:44:55 gibbs Exp $
45 1.1 fvdl */
46 1.1 fvdl /*
47 1.1 fvdl * Ported from FreeBSD by Pascal Renauld, Network Storage Solutions, Inc. - April 2003
48 1.1 fvdl */
49 1.1 fvdl
50 1.1 fvdl #ifndef _AIC7XXX_INLINE_H_
51 1.1 fvdl #define _AIC7XXX_INLINE_H_
52 1.1 fvdl
53 1.1 fvdl /************************* Sequencer Execution Control ************************/
54 1.9 perry static __inline void ahc_pause_bug_fix(struct ahc_softc *ahc);
55 1.9 perry static __inline int ahc_is_paused(struct ahc_softc *ahc);
56 1.9 perry static __inline void ahc_pause(struct ahc_softc *ahc);
57 1.9 perry static __inline void ahc_unpause(struct ahc_softc *ahc);
58 1.1 fvdl
59 1.1 fvdl /*
60 1.1 fvdl * Work around any chip bugs related to halting sequencer execution.
61 1.1 fvdl * On Ultra2 controllers, we must clear the CIOBUS stretch signal by
62 1.1 fvdl * reading a register that will set this signal and deassert it.
63 1.1 fvdl * Without this workaround, if the chip is paused, by an interrupt or
64 1.1 fvdl * manual pause while accessing scb ram, accesses to certain registers
65 1.1 fvdl * will hang the system (infinite pci retries).
66 1.1 fvdl */
67 1.9 perry static __inline void
68 1.1 fvdl ahc_pause_bug_fix(struct ahc_softc *ahc)
69 1.1 fvdl {
70 1.1 fvdl if ((ahc->features & AHC_ULTRA2) != 0)
71 1.1 fvdl (void)ahc_inb(ahc, CCSCBCTL);
72 1.1 fvdl }
73 1.1 fvdl
74 1.1 fvdl /*
75 1.1 fvdl * Determine whether the sequencer has halted code execution.
76 1.1 fvdl * Returns non-zero status if the sequencer is stopped.
77 1.1 fvdl */
78 1.9 perry static __inline int
79 1.1 fvdl ahc_is_paused(struct ahc_softc *ahc)
80 1.1 fvdl {
81 1.1 fvdl return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
82 1.1 fvdl }
83 1.1 fvdl
84 1.1 fvdl /*
85 1.1 fvdl * Request that the sequencer stop and wait, indefinitely, for it
86 1.1 fvdl * to stop. The sequencer will only acknowledge that it is paused
87 1.1 fvdl * once it has reached an instruction boundary and PAUSEDIS is
88 1.1 fvdl * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
89 1.1 fvdl * for critical sections.
90 1.1 fvdl */
91 1.9 perry static __inline void
92 1.1 fvdl ahc_pause(struct ahc_softc *ahc)
93 1.1 fvdl {
94 1.1 fvdl ahc_outb(ahc, HCNTRL, ahc->pause);
95 1.1 fvdl
96 1.1 fvdl /*
97 1.1 fvdl * Since the sequencer can disable pausing in a critical section, we
98 1.1 fvdl * must loop until it actually stops.
99 1.1 fvdl */
100 1.1 fvdl while (ahc_is_paused(ahc) == 0)
101 1.1 fvdl ;
102 1.1 fvdl
103 1.1 fvdl ahc_pause_bug_fix(ahc);
104 1.1 fvdl }
105 1.1 fvdl
106 1.1 fvdl /*
107 1.1 fvdl * Allow the sequencer to continue program execution.
108 1.1 fvdl * We check here to ensure that no additional interrupt
109 1.1 fvdl * sources that would cause the sequencer to halt have been
110 1.1 fvdl * asserted. If, for example, a SCSI bus reset is detected
111 1.1 fvdl * while we are fielding a different, pausing, interrupt type,
112 1.1 fvdl * we don't want to release the sequencer before going back
113 1.1 fvdl * into our interrupt handler and dealing with this new
114 1.1 fvdl * condition.
115 1.1 fvdl */
116 1.9 perry static __inline void
117 1.1 fvdl ahc_unpause(struct ahc_softc *ahc)
118 1.1 fvdl {
119 1.1 fvdl if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
120 1.1 fvdl ahc_outb(ahc, HCNTRL, ahc->unpause);
121 1.1 fvdl }
122 1.1 fvdl
123 1.1 fvdl /*********************** Untagged Transaction Routines ************************/
124 1.9 perry static __inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc);
125 1.9 perry static __inline void ahc_release_untagged_queues(struct ahc_softc *ahc);
126 1.1 fvdl
127 1.1 fvdl /*
128 1.1 fvdl * Block our completion routine from starting the next untagged
129 1.1 fvdl * transaction for this target or target lun.
130 1.1 fvdl */
131 1.9 perry static __inline void
132 1.1 fvdl ahc_freeze_untagged_queues(struct ahc_softc *ahc)
133 1.1 fvdl {
134 1.1 fvdl if ((ahc->flags & AHC_SCB_BTT) == 0)
135 1.1 fvdl ahc->untagged_queue_lock++;
136 1.1 fvdl }
137 1.1 fvdl
138 1.1 fvdl /*
139 1.1 fvdl * Allow the next untagged transaction for this target or target lun
140 1.1 fvdl * to be executed. We use a counting semaphore to allow the lock
141 1.1 fvdl * to be acquired recursively. Once the count drops to zero, the
142 1.1 fvdl * transaction queues will be run.
143 1.1 fvdl */
144 1.9 perry static __inline void
145 1.1 fvdl ahc_release_untagged_queues(struct ahc_softc *ahc)
146 1.1 fvdl {
147 1.1 fvdl if ((ahc->flags & AHC_SCB_BTT) == 0) {
148 1.1 fvdl ahc->untagged_queue_lock--;
149 1.1 fvdl if (ahc->untagged_queue_lock == 0)
150 1.1 fvdl ahc_run_untagged_queues(ahc);
151 1.1 fvdl }
152 1.1 fvdl }
153 1.1 fvdl
154 1.1 fvdl /************************** Memory mapping routines ***************************/
155 1.9 perry static __inline struct ahc_dma_seg *
156 1.1 fvdl ahc_sg_bus_to_virt(struct scb *scb,
157 1.1 fvdl uint32_t sg_busaddr);
158 1.9 perry static __inline uint32_t
159 1.1 fvdl ahc_sg_virt_to_bus(struct scb *scb,
160 1.1 fvdl struct ahc_dma_seg *sg);
161 1.9 perry static __inline uint32_t
162 1.1 fvdl ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index);
163 1.9 perry static __inline void ahc_sync_scb(struct ahc_softc *ahc,
164 1.1 fvdl struct scb *scb, int op);
165 1.9 perry static __inline void ahc_sync_sglist(struct ahc_softc *ahc,
166 1.1 fvdl struct scb *scb, int op);
167 1.9 perry static __inline uint32_t
168 1.1 fvdl ahc_targetcmd_offset(struct ahc_softc *ahc,
169 1.1 fvdl u_int index);
170 1.1 fvdl
171 1.9 perry static __inline struct ahc_dma_seg *
172 1.1 fvdl ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
173 1.1 fvdl {
174 1.1 fvdl int sg_index;
175 1.1 fvdl
176 1.1 fvdl sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
177 1.1 fvdl /* sg_list_phys points to entry 1, not 0 */
178 1.1 fvdl sg_index++;
179 1.1 fvdl
180 1.1 fvdl return (&scb->sg_list[sg_index]);
181 1.1 fvdl }
182 1.1 fvdl
183 1.9 perry static __inline uint32_t
184 1.1 fvdl ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
185 1.1 fvdl {
186 1.1 fvdl int sg_index;
187 1.1 fvdl
188 1.1 fvdl /* sg_list_phys points to entry 1, not 0 */
189 1.1 fvdl sg_index = sg - &scb->sg_list[1];
190 1.1 fvdl
191 1.1 fvdl return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
192 1.1 fvdl }
193 1.1 fvdl
194 1.9 perry static __inline uint32_t
195 1.1 fvdl ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
196 1.1 fvdl {
197 1.1 fvdl return (ahc->scb_data->hscb_busaddr
198 1.1 fvdl + (sizeof(struct hardware_scb) * index));
199 1.1 fvdl }
200 1.1 fvdl
201 1.9 perry static __inline void
202 1.1 fvdl ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op)
203 1.1 fvdl {
204 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat,
205 1.1 fvdl ahc->scb_data->hscb_dmamap,
206 1.1 fvdl /*offset*/(scb->hscb - ahc->scb_data->hscbs) * sizeof(*scb->hscb),
207 1.1 fvdl /*len*/sizeof(*scb->hscb), op);
208 1.1 fvdl }
209 1.1 fvdl
210 1.9 perry static __inline void
211 1.1 fvdl ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op)
212 1.1 fvdl {
213 1.1 fvdl if (scb->sg_count == 0)
214 1.1 fvdl return;
215 1.1 fvdl
216 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat, scb->sg_map->sg_dmamap,
217 1.1 fvdl /*offset*/(scb->sg_list - scb->sg_map->sg_vaddr)
218 1.1 fvdl * sizeof(struct ahc_dma_seg),
219 1.1 fvdl /*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op);
220 1.1 fvdl }
221 1.1 fvdl
222 1.9 perry static __inline uint32_t
223 1.1 fvdl ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index)
224 1.1 fvdl {
225 1.1 fvdl return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo);
226 1.1 fvdl }
227 1.1 fvdl
228 1.1 fvdl /******************************** Debugging ***********************************/
229 1.13 dyoung static inline const char *ahc_name(struct ahc_softc *ahc);
230 1.1 fvdl
231 1.13 dyoung static inline const char *
232 1.1 fvdl ahc_name(struct ahc_softc *ahc)
233 1.1 fvdl {
234 1.1 fvdl return (ahc->name);
235 1.1 fvdl }
236 1.1 fvdl
237 1.4 wiz /*********************** Miscellaneous Support Functions ***********************/
238 1.1 fvdl
239 1.9 perry static __inline void ahc_update_residual(struct ahc_softc *ahc,
240 1.1 fvdl struct scb *scb);
241 1.9 perry static __inline struct ahc_initiator_tinfo *
242 1.1 fvdl ahc_fetch_transinfo(struct ahc_softc *ahc,
243 1.1 fvdl char channel, u_int our_id,
244 1.1 fvdl u_int remote_id,
245 1.1 fvdl struct ahc_tmode_tstate **tstate);
246 1.9 perry static __inline uint16_t
247 1.1 fvdl ahc_inw(struct ahc_softc *ahc, u_int port);
248 1.9 perry static __inline void ahc_outw(struct ahc_softc *ahc, u_int port,
249 1.1 fvdl u_int value);
250 1.9 perry static __inline uint32_t
251 1.1 fvdl ahc_inl(struct ahc_softc *ahc, u_int port);
252 1.9 perry static __inline void ahc_outl(struct ahc_softc *ahc, u_int port,
253 1.1 fvdl uint32_t value);
254 1.9 perry static __inline uint64_t
255 1.1 fvdl ahc_inq(struct ahc_softc *ahc, u_int port);
256 1.9 perry static __inline void ahc_outq(struct ahc_softc *ahc, u_int port,
257 1.1 fvdl uint64_t value);
258 1.9 perry static __inline struct scb*
259 1.1 fvdl ahc_get_scb(struct ahc_softc *ahc);
260 1.9 perry static __inline void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb);
261 1.9 perry static __inline void ahc_swap_with_next_hscb(struct ahc_softc *ahc,
262 1.1 fvdl struct scb *scb);
263 1.9 perry static __inline void ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb);
264 1.9 perry static __inline struct scsi_sense_data *
265 1.1 fvdl ahc_get_sense_buf(struct ahc_softc *ahc,
266 1.1 fvdl struct scb *scb);
267 1.9 perry static __inline uint32_t
268 1.1 fvdl ahc_get_sense_bufaddr(struct ahc_softc *ahc,
269 1.1 fvdl struct scb *scb);
270 1.1 fvdl
271 1.1 fvdl /*
272 1.1 fvdl * Determine whether the sequencer reported a residual
273 1.1 fvdl * for this SCB/transaction.
274 1.1 fvdl */
275 1.9 perry static __inline void
276 1.1 fvdl ahc_update_residual(struct ahc_softc *ahc, struct scb *scb)
277 1.1 fvdl {
278 1.1 fvdl uint32_t sgptr;
279 1.1 fvdl
280 1.1 fvdl sgptr = ahc_le32toh(scb->hscb->sgptr);
281 1.1 fvdl if ((sgptr & SG_RESID_VALID) != 0)
282 1.1 fvdl ahc_calc_residual(ahc, scb);
283 1.1 fvdl }
284 1.1 fvdl
285 1.1 fvdl /*
286 1.1 fvdl * Return pointers to the transfer negotiation information
287 1.1 fvdl * for the specified our_id/remote_id pair.
288 1.1 fvdl */
289 1.9 perry static __inline struct ahc_initiator_tinfo *
290 1.12 christos ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
291 1.1 fvdl u_int remote_id, struct ahc_tmode_tstate **tstate)
292 1.1 fvdl {
293 1.1 fvdl /*
294 1.1 fvdl * Transfer data structures are stored from the perspective
295 1.1 fvdl * of the target role. Since the parameters for a connection
296 1.1 fvdl * in the initiator role to a given target are the same as
297 1.1 fvdl * when the roles are reversed, we pretend we are the target.
298 1.1 fvdl */
299 1.11 christos #ifdef notdef
300 1.11 christos if (channel == 'B')
301 1.11 christos our_id += 8;
302 1.11 christos #endif
303 1.1 fvdl *tstate = ahc->enabled_targets[our_id];
304 1.1 fvdl return (&(*tstate)->transinfo[remote_id]);
305 1.1 fvdl }
306 1.1 fvdl
307 1.9 perry static __inline uint16_t
308 1.1 fvdl ahc_inw(struct ahc_softc *ahc, u_int port)
309 1.1 fvdl {
310 1.1 fvdl return ((ahc_inb(ahc, port+1) << 8) | ahc_inb(ahc, port));
311 1.1 fvdl }
312 1.1 fvdl
313 1.9 perry static __inline void
314 1.1 fvdl ahc_outw(struct ahc_softc *ahc, u_int port, u_int value)
315 1.1 fvdl {
316 1.1 fvdl ahc_outb(ahc, port, value & 0xFF);
317 1.1 fvdl ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
318 1.1 fvdl }
319 1.1 fvdl
320 1.9 perry static __inline uint32_t
321 1.1 fvdl ahc_inl(struct ahc_softc *ahc, u_int port)
322 1.1 fvdl {
323 1.1 fvdl return ((ahc_inb(ahc, port))
324 1.1 fvdl | (ahc_inb(ahc, port+1) << 8)
325 1.1 fvdl | (ahc_inb(ahc, port+2) << 16)
326 1.1 fvdl | (ahc_inb(ahc, port+3) << 24));
327 1.1 fvdl }
328 1.1 fvdl
329 1.9 perry static __inline void
330 1.1 fvdl ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value)
331 1.1 fvdl {
332 1.1 fvdl ahc_outb(ahc, port, (value) & 0xFF);
333 1.1 fvdl ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF);
334 1.1 fvdl ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF);
335 1.1 fvdl ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF);
336 1.1 fvdl }
337 1.1 fvdl
338 1.9 perry static __inline uint64_t
339 1.1 fvdl ahc_inq(struct ahc_softc *ahc, u_int port)
340 1.1 fvdl {
341 1.1 fvdl return ((ahc_inb(ahc, port))
342 1.1 fvdl | (ahc_inb(ahc, port+1) << 8)
343 1.1 fvdl | (ahc_inb(ahc, port+2) << 16)
344 1.1 fvdl | (ahc_inb(ahc, port+3) << 24)
345 1.1 fvdl | (((uint64_t)ahc_inb(ahc, port+4)) << 32)
346 1.1 fvdl | (((uint64_t)ahc_inb(ahc, port+5)) << 40)
347 1.1 fvdl | (((uint64_t)ahc_inb(ahc, port+6)) << 48)
348 1.1 fvdl | (((uint64_t)ahc_inb(ahc, port+7)) << 56));
349 1.1 fvdl }
350 1.1 fvdl
351 1.9 perry static __inline void
352 1.1 fvdl ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value)
353 1.1 fvdl {
354 1.1 fvdl ahc_outb(ahc, port, value & 0xFF);
355 1.1 fvdl ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
356 1.1 fvdl ahc_outb(ahc, port+2, (value >> 16) & 0xFF);
357 1.1 fvdl ahc_outb(ahc, port+3, (value >> 24) & 0xFF);
358 1.1 fvdl ahc_outb(ahc, port+4, (value >> 32) & 0xFF);
359 1.1 fvdl ahc_outb(ahc, port+5, (value >> 40) & 0xFF);
360 1.1 fvdl ahc_outb(ahc, port+6, (value >> 48) & 0xFF);
361 1.1 fvdl ahc_outb(ahc, port+7, (value >> 56) & 0xFF);
362 1.1 fvdl }
363 1.1 fvdl
364 1.1 fvdl /*
365 1.1 fvdl * Get a free scb. If there are none, see if we can allocate a new SCB.
366 1.1 fvdl */
367 1.9 perry static __inline struct scb *
368 1.1 fvdl ahc_get_scb(struct ahc_softc *ahc)
369 1.1 fvdl {
370 1.1 fvdl struct scb *scb;
371 1.1 fvdl
372 1.7 bouyer if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL)
373 1.7 bouyer return (NULL);
374 1.1 fvdl SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
375 1.1 fvdl return (scb);
376 1.1 fvdl }
377 1.1 fvdl
378 1.1 fvdl /*
379 1.1 fvdl * Return an SCB resource to the free list.
380 1.1 fvdl */
381 1.9 perry static __inline void
382 1.1 fvdl ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
383 1.6 perry {
384 1.1 fvdl struct hardware_scb *hscb;
385 1.1 fvdl
386 1.1 fvdl hscb = scb->hscb;
387 1.1 fvdl /* Clean up for the next user */
388 1.1 fvdl ahc->scb_data->scbindex[hscb->tag] = NULL;
389 1.1 fvdl scb->flags = SCB_FREE;
390 1.1 fvdl hscb->control = 0;
391 1.1 fvdl
392 1.1 fvdl SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);
393 1.1 fvdl
394 1.1 fvdl /* Notify the OSM that a resource is now available. */
395 1.1 fvdl ahc_platform_scb_free(ahc, scb);
396 1.1 fvdl }
397 1.1 fvdl
398 1.9 perry static __inline struct scb *
399 1.1 fvdl ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
400 1.1 fvdl {
401 1.1 fvdl struct scb* scb;
402 1.1 fvdl
403 1.1 fvdl scb = ahc->scb_data->scbindex[tag];
404 1.1 fvdl if (scb != NULL)
405 1.1 fvdl ahc_sync_scb(ahc, scb,
406 1.1 fvdl BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
407 1.1 fvdl return (scb);
408 1.1 fvdl }
409 1.1 fvdl
410 1.9 perry static __inline void
411 1.1 fvdl ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
412 1.1 fvdl {
413 1.1 fvdl struct hardware_scb *q_hscb;
414 1.1 fvdl u_int saved_tag;
415 1.1 fvdl
416 1.1 fvdl /*
417 1.1 fvdl * Our queuing method is a bit tricky. The card
418 1.1 fvdl * knows in advance which HSCB to download, and we
419 1.1 fvdl * can't disappoint it. To achieve this, the next
420 1.1 fvdl * SCB to download is saved off in ahc->next_queued_scb.
421 1.1 fvdl * When we are called to queue "an arbitrary scb",
422 1.1 fvdl * we copy the contents of the incoming HSCB to the one
423 1.1 fvdl * the sequencer knows about, swap HSCB pointers and
424 1.1 fvdl * finally assign the SCB to the tag indexed location
425 1.1 fvdl * in the scb_array. This makes sure that we can still
426 1.1 fvdl * locate the correct SCB by SCB_TAG.
427 1.1 fvdl */
428 1.1 fvdl q_hscb = ahc->next_queued_scb->hscb;
429 1.1 fvdl saved_tag = q_hscb->tag;
430 1.1 fvdl memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
431 1.1 fvdl if ((scb->flags & SCB_CDB32_PTR) != 0) {
432 1.1 fvdl q_hscb->shared_data.cdb_ptr =
433 1.1 fvdl ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag)
434 1.1 fvdl + offsetof(struct hardware_scb, cdb32));
435 1.1 fvdl }
436 1.1 fvdl q_hscb->tag = saved_tag;
437 1.1 fvdl q_hscb->next = scb->hscb->tag;
438 1.1 fvdl
439 1.1 fvdl /* Now swap HSCB pointers. */
440 1.1 fvdl ahc->next_queued_scb->hscb = scb->hscb;
441 1.1 fvdl scb->hscb = q_hscb;
442 1.1 fvdl
443 1.1 fvdl /* Now define the mapping from tag to SCB in the scbindex */
444 1.1 fvdl ahc->scb_data->scbindex[scb->hscb->tag] = scb;
445 1.1 fvdl }
446 1.1 fvdl
447 1.1 fvdl /*
448 1.1 fvdl * Tell the sequencer about a new transaction to execute.
449 1.1 fvdl */
450 1.9 perry static __inline void
451 1.1 fvdl ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
452 1.1 fvdl {
453 1.1 fvdl ahc_swap_with_next_hscb(ahc, scb);
454 1.1 fvdl
455 1.1 fvdl if (scb->hscb->tag == SCB_LIST_NULL
456 1.1 fvdl || scb->hscb->next == SCB_LIST_NULL)
457 1.1 fvdl panic("Attempt to queue invalid SCB tag %x:%x\n",
458 1.1 fvdl scb->hscb->tag, scb->hscb->next);
459 1.1 fvdl /*
460 1.1 fvdl * Keep a history of SCBs we've downloaded in the qinfifo.
461 1.1 fvdl */
462 1.1 fvdl ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
463 1.1 fvdl
464 1.1 fvdl /*
465 1.4 wiz * Make sure our data is consistent from the
466 1.1 fvdl * perspective of the adapter.
467 1.1 fvdl */
468 1.1 fvdl ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
469 1.1 fvdl
470 1.1 fvdl /* Tell the adapter about the newly queued SCB */
471 1.1 fvdl if ((ahc->features & AHC_QUEUE_REGS) != 0) {
472 1.1 fvdl ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
473 1.1 fvdl } else {
474 1.1 fvdl if ((ahc->features & AHC_AUTOPAUSE) == 0)
475 1.1 fvdl ahc_pause(ahc);
476 1.1 fvdl ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
477 1.1 fvdl if ((ahc->features & AHC_AUTOPAUSE) == 0)
478 1.1 fvdl ahc_unpause(ahc);
479 1.1 fvdl }
480 1.1 fvdl }
481 1.1 fvdl
482 1.9 perry static __inline struct scsi_sense_data *
483 1.1 fvdl ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
484 1.1 fvdl {
485 1.1 fvdl int offset;
486 1.1 fvdl
487 1.1 fvdl offset = scb - ahc->scb_data->scbarray;
488 1.1 fvdl return (&ahc->scb_data->sense[offset]);
489 1.1 fvdl }
490 1.1 fvdl
491 1.9 perry static __inline uint32_t
492 1.1 fvdl ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
493 1.1 fvdl {
494 1.1 fvdl int offset;
495 1.1 fvdl
496 1.1 fvdl offset = scb - ahc->scb_data->scbarray;
497 1.1 fvdl return (ahc->scb_data->sense_busaddr
498 1.5 thorpej + (offset * sizeof(struct scsi_sense_data)));
499 1.1 fvdl }
500 1.1 fvdl
501 1.1 fvdl /************************** Interrupt Processing ******************************/
502 1.9 perry static __inline void ahc_sync_qoutfifo(struct ahc_softc *ahc, int op);
503 1.9 perry static __inline void ahc_sync_tqinfifo(struct ahc_softc *ahc, int op);
504 1.9 perry static __inline u_int ahc_check_cmdcmpltqueues(struct ahc_softc *ahc);
505 1.9 perry static __inline int ahc_intr(void *arg);
506 1.9 perry static __inline void ahc_minphys(struct buf *bp);
507 1.1 fvdl
508 1.9 perry static __inline void
509 1.14 cegger ahc_minphys(struct buf *bp)
510 1.1 fvdl {
511 1.1 fvdl /*
512 1.1 fvdl * Even though the card can transfer up to 16megs per command
513 1.3 wiz * we are limited by the number of segments in the DMA segment
514 1.1 fvdl * list that we can hold. The worst case is that all pages are
515 1.4 wiz * discontinuous physically, hence the "page per segment" limit
516 1.1 fvdl * enforced here.
517 1.1 fvdl */
518 1.10 tsutsui if (bp->b_bcount > AHC_MAXTRANSFER_SIZE) {
519 1.10 tsutsui bp->b_bcount = AHC_MAXTRANSFER_SIZE;
520 1.10 tsutsui }
521 1.10 tsutsui minphys(bp);
522 1.1 fvdl }
523 1.1 fvdl
524 1.9 perry static __inline void
525 1.1 fvdl ahc_sync_qoutfifo(struct ahc_softc *ahc, int op)
526 1.1 fvdl {
527 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat, ahc->shared_data_dmamap,
528 1.1 fvdl /*offset*/0, /*len*/256, op);
529 1.1 fvdl }
530 1.1 fvdl
531 1.9 perry static __inline void
532 1.12 christos ahc_sync_tqinfifo(struct ahc_softc *ahc, int op)
533 1.1 fvdl {
534 1.1 fvdl #ifdef AHC_TARGET_MODE
535 1.1 fvdl if ((ahc->flags & AHC_TARGETROLE) != 0) {
536 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat /*shared_data_dmat*/,
537 1.1 fvdl ahc->shared_data_dmamap,
538 1.1 fvdl ahc_targetcmd_offset(ahc, 0),
539 1.1 fvdl sizeof(struct target_cmd) * AHC_TMODE_CMDS,
540 1.1 fvdl op);
541 1.1 fvdl }
542 1.1 fvdl #endif
543 1.1 fvdl }
544 1.1 fvdl
545 1.1 fvdl /*
546 1.1 fvdl * See if the firmware has posted any completed commands
547 1.1 fvdl * into our in-core command complete fifos.
548 1.1 fvdl */
549 1.1 fvdl #define AHC_RUN_QOUTFIFO 0x1
550 1.1 fvdl #define AHC_RUN_TQINFIFO 0x2
551 1.9 perry static __inline u_int
552 1.1 fvdl ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
553 1.1 fvdl {
554 1.1 fvdl u_int retval;
555 1.1 fvdl
556 1.1 fvdl retval = 0;
557 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat /*shared_data_dmat*/, ahc->shared_data_dmamap,
558 1.1 fvdl /*offset*/ahc->qoutfifonext, /*len*/1,
559 1.1 fvdl BUS_DMASYNC_POSTREAD);
560 1.1 fvdl if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
561 1.1 fvdl retval |= AHC_RUN_QOUTFIFO;
562 1.1 fvdl #ifdef AHC_TARGET_MODE
563 1.1 fvdl if ((ahc->flags & AHC_TARGETROLE) != 0
564 1.1 fvdl && (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) {
565 1.1 fvdl ahc_dmamap_sync(ahc, ahc->parent_dmat /*shared_data_dmat*/,
566 1.1 fvdl ahc->shared_data_dmamap,
567 1.1 fvdl ahc_targetcmd_offset(ahc, ahc->tqinfifonext),
568 1.1 fvdl /*len*/sizeof(struct target_cmd),
569 1.1 fvdl BUS_DMASYNC_POSTREAD);
570 1.1 fvdl if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
571 1.1 fvdl retval |= AHC_RUN_TQINFIFO;
572 1.1 fvdl }
573 1.1 fvdl #endif
574 1.1 fvdl return (retval);
575 1.1 fvdl }
576 1.1 fvdl
577 1.1 fvdl /*
578 1.1 fvdl * Catch an interrupt from the adapter
579 1.1 fvdl */
580 1.9 perry static __inline int
581 1.1 fvdl ahc_intr(void *arg)
582 1.1 fvdl {
583 1.1 fvdl struct ahc_softc *ahc = (struct ahc_softc*)arg;
584 1.1 fvdl u_int intstat;
585 1.1 fvdl
586 1.1 fvdl if ((ahc->pause & INTEN) == 0) {
587 1.1 fvdl /*
588 1.1 fvdl * Our interrupt is not enabled on the chip
589 1.1 fvdl * and may be disabled for re-entrancy reasons,
590 1.1 fvdl * so just return. This is likely just a shared
591 1.1 fvdl * interrupt.
592 1.1 fvdl */
593 1.1 fvdl return 1;
594 1.1 fvdl }
595 1.1 fvdl /*
596 1.1 fvdl * Instead of directly reading the interrupt status register,
597 1.1 fvdl * infer the cause of the interrupt by checking our in-core
598 1.1 fvdl * completion queues. This avoids a costly PCI bus read in
599 1.1 fvdl * most cases.
600 1.1 fvdl */
601 1.1 fvdl if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0
602 1.1 fvdl && (ahc_check_cmdcmpltqueues(ahc) != 0))
603 1.10 tsutsui intstat = CMDCMPLT;
604 1.10 tsutsui else {
605 1.10 tsutsui intstat = ahc_inb(ahc, INTSTAT);
606 1.10 tsutsui }
607 1.1 fvdl
608 1.10 tsutsui if (intstat & CMDCMPLT) {
609 1.1 fvdl ahc_outb(ahc, CLRINT, CLRCMDINT);
610 1.1 fvdl /*
611 1.1 fvdl * Ensure that the chip sees that we've cleared
612 1.1 fvdl * this interrupt before we walk the output fifo.
613 1.1 fvdl * Otherwise, we may, due to posted bus writes,
614 1.1 fvdl * clear the interrupt after we finish the scan,
615 1.1 fvdl * and after the sequencer has added new entries
616 1.1 fvdl * and asserted the interrupt again.
617 1.1 fvdl */
618 1.1 fvdl ahc_flush_device_writes(ahc);
619 1.1 fvdl scsipi_channel_freeze(ahc->channel == 'A' ? &ahc->sc_channel : &ahc->sc_channel_b, 1);
620 1.1 fvdl ahc_run_qoutfifo(ahc);
621 1.1 fvdl scsipi_channel_thaw(ahc->channel == 'A' ? &ahc->sc_channel : &ahc->sc_channel_b, 1);
622 1.1 fvdl #ifdef AHC_TARGET_MODE
623 1.1 fvdl if ((ahc->flags & AHC_TARGETROLE) != 0)
624 1.1 fvdl ahc_run_tqinfifo(ahc, /*paused*/FALSE);
625 1.1 fvdl #endif
626 1.1 fvdl }
627 1.1 fvdl
628 1.1 fvdl if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0)
629 1.1 fvdl /* Hot eject */
630 1.1 fvdl return 1;
631 1.1 fvdl
632 1.1 fvdl if ((intstat & INT_PEND) == 0) {
633 1.1 fvdl #if AHC_PCI_CONFIG > 0
634 1.1 fvdl if (ahc->unsolicited_ints > 500) {
635 1.1 fvdl ahc->unsolicited_ints = 0;
636 1.1 fvdl if ((ahc->chip & AHC_PCI) != 0
637 1.1 fvdl && (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
638 1.1 fvdl ahc->bus_intr(ahc);
639 1.1 fvdl }
640 1.1 fvdl #endif
641 1.1 fvdl ahc->unsolicited_ints++;
642 1.1 fvdl return 1;
643 1.1 fvdl }
644 1.1 fvdl ahc->unsolicited_ints = 0;
645 1.1 fvdl
646 1.1 fvdl if (intstat & BRKADRINT) {
647 1.1 fvdl ahc_handle_brkadrint(ahc);
648 1.1 fvdl /* Fatal error, no more interrupts to handle. */
649 1.1 fvdl return 1;
650 1.1 fvdl }
651 1.1 fvdl
652 1.1 fvdl if ((intstat & (SEQINT|SCSIINT)) != 0)
653 1.1 fvdl ahc_pause_bug_fix(ahc);
654 1.1 fvdl
655 1.1 fvdl if ((intstat & SEQINT) != 0)
656 1.1 fvdl ahc_handle_seqint(ahc, intstat);
657 1.1 fvdl
658 1.1 fvdl if ((intstat & SCSIINT) != 0)
659 1.1 fvdl ahc_handle_scsiint(ahc, intstat);
660 1.1 fvdl
661 1.1 fvdl return 1;
662 1.1 fvdl }
663 1.1 fvdl
664 1.1 fvdl #endif /* _AIC7XXX_INLINE_H_ */
665