am7990.c revision 1.1 1 /* $NetBSD: am7990.c,v 1.1 1995/06/28 02:24:50 cgd Exp $ */
2
3 /*-
4 * Copyright (c) 1995 Charles M. Hannum. All rights reserved.
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Ralph Campbell and Rick Macklem.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * @(#)if_le.c 8.2 (Berkeley) 11/16/93
40 */
41
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44
45 #ifdef INET
46 #include <netinet/in_systm.h>
47 #include <netinet/in_var.h>
48 #include <netinet/ip.h>
49 #endif
50
51 #ifdef NS
52 #include <netns/ns.h>
53 #include <netns/ns_if.h>
54 #endif
55
56 #if defined(CCITT) && defined(LLC)
57 #include <sys/socketvar.h>
58 #include <netccitt/x25.h>
59 extern llc_ctlinput(), cons_rtrequest();
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #include <net/bpfdesc.h>
65 #endif
66
67 #ifdef LEDEBUG
68 void recv_print __P((struct le_softc *, int));
69 void xmit_print __P((struct le_softc *, int));
70 #endif
71
72 void
73 leconfig(sc)
74 struct le_softc *sc;
75 {
76 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
77 int mem;
78
79 /* Make sure the chip is stopped. */
80 lestop(sc);
81
82 /* Initialize ifnet structure. */
83 ifp->if_unit = sc->sc_dev.dv_unit;
84 ifp->if_start = lestart;
85 ifp->if_ioctl = leioctl;
86 ifp->if_watchdog = lewatchdog;
87 ifp->if_flags =
88 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
89
90 /* Attach the interface. */
91 if_attach(ifp);
92 ether_ifattach(ifp);
93
94 #if NBPFILTER > 0
95 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
96 #endif
97
98 switch (sc->sc_memsize) {
99 case 8192:
100 sc->sc_nrbuf = 4;
101 sc->sc_ntbuf = 1;
102 break;
103 case 16384:
104 sc->sc_nrbuf = 8;
105 sc->sc_ntbuf = 2;
106 break;
107 case 32768:
108 sc->sc_nrbuf = 16;
109 sc->sc_ntbuf = 4;
110 break;
111 case 65536:
112 sc->sc_nrbuf = 32;
113 sc->sc_ntbuf = 8;
114 break;
115 default:
116 panic("leconfig: weird memory size");
117 }
118
119 printf(": address %s, %d receive buffers, %d transmit buffers\n",
120 ether_sprintf(sc->sc_arpcom.ac_enaddr),
121 sc->sc_nrbuf, sc->sc_ntbuf);
122
123 mem = 0;
124 sc->sc_initaddr = mem;
125 mem += sizeof(struct leinit);
126 sc->sc_rmdaddr = mem;
127 mem += sizeof(struct lermd) * sc->sc_nrbuf;
128 sc->sc_tmdaddr = mem;
129 mem += sizeof(struct letmd) * sc->sc_ntbuf;
130 sc->sc_rbufaddr = mem;
131 mem += LEBLEN * sc->sc_nrbuf;
132 sc->sc_tbufaddr = mem;
133 mem += LEBLEN * sc->sc_ntbuf;
134 #ifdef notyet
135 if (mem > ...)
136 panic(...);
137 #endif
138 }
139
140 void
141 lereset(sc)
142 struct le_softc *sc;
143 {
144
145 leinit(sc);
146 }
147
148 void
149 lewatchdog(unit)
150 short unit;
151 {
152 struct le_softc *sc = LE_SOFTC(unit);
153
154 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
155 ++sc->sc_arpcom.ac_if.if_oerrors;
156
157 lereset(sc);
158 }
159
160 /*
161 * Set up the initialization block and the descriptor rings.
162 */
163 void
164 lememinit(sc)
165 register struct le_softc *sc;
166 {
167 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
168 u_long a;
169 int bix;
170 struct leinit init;
171 struct lermd rmd;
172 struct letmd tmd;
173
174 #if NBPFILTER > 0
175 if (ifp->if_flags & IFF_PROMISC)
176 init.init_mode = LE_MODE_NORMAL | LE_MODE_PROM;
177 else
178 #endif
179 init.init_mode = LE_MODE_NORMAL;
180 init.init_padr[0] =
181 (sc->sc_arpcom.ac_enaddr[1] << 8) | sc->sc_arpcom.ac_enaddr[0];
182 init.init_padr[1] =
183 (sc->sc_arpcom.ac_enaddr[3] << 8) | sc->sc_arpcom.ac_enaddr[2];
184 init.init_padr[2] =
185 (sc->sc_arpcom.ac_enaddr[5] << 8) | sc->sc_arpcom.ac_enaddr[4];
186 lesetladrf(&sc->sc_arpcom, init.init_ladrf);
187
188 sc->sc_last_rd = 0;
189 sc->sc_first_td = sc->sc_last_td = sc->sc_no_td = 0;
190
191 a = sc->sc_addr + LE_RMDADDR(sc, 0);
192 init.init_rdra = a;
193 init.init_rlen = (a >> 16) | ((ffs(sc->sc_nrbuf) - 1) << 13);
194
195 a = sc->sc_addr + LE_TMDADDR(sc, 0);
196 init.init_tdra = a;
197 init.init_tlen = (a >> 16) | ((ffs(sc->sc_ntbuf) - 1) << 13);
198
199 (*sc->sc_copytodesc)(sc, &init, LE_INITADDR(sc), sizeof(init));
200
201 /*
202 * Set up receive ring descriptors.
203 */
204 for (bix = 0; bix < sc->sc_nrbuf; bix++) {
205 a = sc->sc_addr + LE_RBUFADDR(sc, bix);
206 rmd.rmd0 = a;
207 rmd.rmd1_hadr = a >> 16;
208 rmd.rmd1_bits = LE_R1_OWN;
209 rmd.rmd2 = -LEBLEN | LE_XMD2_ONES;
210 rmd.rmd3 = 0;
211 (*sc->sc_copytodesc)(sc, &rmd, LE_RMDADDR(sc, bix),
212 sizeof(rmd));
213 }
214
215 /*
216 * Set up transmit ring descriptors.
217 */
218 for (bix = 0; bix < sc->sc_ntbuf; bix++) {
219 a = sc->sc_addr + LE_TBUFADDR(sc, bix);
220 tmd.tmd0 = a;
221 tmd.tmd1_hadr = a >> 16;
222 tmd.tmd1_bits = 0;
223 tmd.tmd2 = 0 | LE_XMD2_ONES;
224 tmd.tmd3 = 0;
225 (*sc->sc_copytodesc)(sc, &tmd, LE_TMDADDR(sc, bix),
226 sizeof(tmd));
227 }
228 }
229
230 void
231 lestop(sc)
232 struct le_softc *sc;
233 {
234
235 lewrcsr(sc, LE_CSR0, LE_C0_STOP);
236 }
237
238 /*
239 * Initialization of interface; set up initialization block
240 * and transmit/receive descriptor rings.
241 */
242 void
243 leinit(sc)
244 register struct le_softc *sc;
245 {
246 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
247 int s;
248 register int timo;
249 u_long a;
250
251 s = splimp();
252
253 lewrcsr(sc, LE_CSR0, LE_C0_STOP);
254 LE_DELAY(100);
255
256 /* Set the correct byte swapping mode, etc. */
257 lewrcsr(sc, LE_CSR3, sc->sc_conf3);
258
259 /* Set up LANCE init block. */
260 lememinit(sc);
261
262 /* Give LANCE the physical address of its init block. */
263 a = sc->sc_addr + LE_INITADDR(sc);
264 lewrcsr(sc, LE_CSR1, a);
265 lewrcsr(sc, LE_CSR2, a >> 16);
266
267 /* Try to initialize the LANCE. */
268 LE_DELAY(100);
269 lewrcsr(sc, LE_CSR0, LE_C0_INIT);
270
271 /* Wait for initialization to finish. */
272 for (timo = 100000; timo; timo--)
273 if (lerdcsr(sc, LE_CSR0) & LE_C0_IDON)
274 break;
275
276 if (lerdcsr(sc, LE_CSR0) & LE_C0_IDON) {
277 /* Start the LANCE. */
278 lewrcsr(sc, LE_CSR0, LE_C0_INEA | LE_C0_STRT | LE_C0_IDON);
279 ifp->if_flags |= IFF_RUNNING;
280 ifp->if_flags &= ~IFF_OACTIVE;
281 ifp->if_timer = 0;
282 lestart(ifp);
283 } else
284 printf("%s: card failed to initialize\n", sc->sc_dev.dv_xname);
285
286 splx(s);
287 }
288
289 /*
290 * Routine to copy from mbuf chain to transmit buffer in
291 * network buffer memory.
292 */
293 integrate int
294 leput(sc, boff, m)
295 struct le_softc *sc;
296 int boff;
297 register struct mbuf *m;
298 {
299 register struct mbuf *n;
300 register int len, tlen = 0;
301
302 for (; m; m = n) {
303 len = m->m_len;
304 if (len == 0) {
305 MFREE(m, n);
306 continue;
307 }
308 (*sc->sc_copytobuf)(sc, mtod(m, caddr_t), boff, len);
309 boff += len;
310 tlen += len;
311 MFREE(m, n);
312 }
313 if (tlen < LEMINSIZE) {
314 (*sc->sc_zerobuf)(sc, boff, LEMINSIZE - tlen);
315 tlen = LEMINSIZE;
316 }
317 return (tlen);
318 }
319
320 /*
321 * Pull data off an interface.
322 * Len is length of data, with local net header stripped.
323 * We copy the data into mbufs. When full cluster sized units are present
324 * we copy into clusters.
325 */
326 integrate struct mbuf *
327 leget(sc, boff, totlen)
328 struct le_softc *sc;
329 int boff, totlen;
330 {
331 register struct mbuf *m;
332 struct mbuf *top, **mp;
333 int len, pad;
334
335 MGETHDR(m, M_DONTWAIT, MT_DATA);
336 if (m == 0)
337 return (0);
338 m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
339 m->m_pkthdr.len = totlen;
340 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
341 m->m_data += pad;
342 len = MHLEN - pad;
343 top = 0;
344 mp = ⊤
345
346 while (totlen > 0) {
347 if (top) {
348 MGET(m, M_DONTWAIT, MT_DATA);
349 if (m == 0) {
350 m_freem(top);
351 return 0;
352 }
353 len = MLEN;
354 }
355 if (top && totlen >= MINCLSIZE) {
356 MCLGET(m, M_DONTWAIT);
357 if (m->m_flags & M_EXT)
358 len = MCLBYTES;
359 }
360 m->m_len = len = min(totlen, len);
361 (*sc->sc_copyfrombuf)(sc, mtod(m, caddr_t), boff, len);
362 boff += len;
363 totlen -= len;
364 *mp = m;
365 mp = &m->m_next;
366 }
367
368 return (top);
369 }
370
371 /*
372 * Pass a packet to the higher levels.
373 */
374 integrate void
375 leread(sc, boff, len)
376 register struct le_softc *sc;
377 int boff, len;
378 {
379 struct ifnet *ifp;
380 struct mbuf *m;
381 struct ether_header *eh;
382
383 len -= 4;
384 if (len <= sizeof(struct ether_header))
385 return;
386
387 /* Pull packet off interface. */
388 m = leget(sc, boff, len);
389 if (m == 0)
390 return;
391
392 /* We assume that the header fit entirely in one mbuf. */
393 eh = mtod(m, struct ether_header *);
394
395 ifp = &sc->sc_arpcom.ac_if;
396
397 #if NBPFILTER > 0
398 /*
399 * Check if there's a BPF listener on this interface.
400 * If so, hand off the raw packet to BPF.
401 */
402 if (ifp->if_bpf) {
403 bpf_mtap(ifp->if_bpf, m);
404
405 /*
406 * Note that the interface cannot be in promiscuous mode if
407 * there are no BPF listeners. And if we are in promiscuous
408 * mode, we have to check if this packet is really ours.
409 */
410 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
411 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
412 bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
413 sizeof(eh->ether_dhost)) != 0) {
414 m_freem(m);
415 return;
416 }
417 }
418 #endif
419
420 /* Pass the packet up, with the ether header sort-of removed. */
421 m_adj(m, sizeof(struct ether_header));
422 ether_input(ifp, eh, m);
423 }
424
425 integrate void
426 lerint(sc)
427 struct le_softc *sc;
428 {
429 register int bix;
430 int rp;
431 struct lermd rmd;
432
433 bix = sc->sc_last_rd;
434
435 /* Process all buffers with valid data. */
436 for (;;) {
437 rp = LE_RMDADDR(sc, bix);
438 (*sc->sc_copyfromdesc)(sc, &rmd, rp, sizeof(rmd));
439
440 if (rmd.rmd1_bits & LE_R1_OWN)
441 break;
442
443 if (rmd.rmd1_bits & LE_R1_ERR) {
444 if (rmd.rmd1_bits & LE_R1_ENP) {
445 if ((rmd.rmd1_bits & LE_R1_OFLO) == 0) {
446 if (rmd.rmd1_bits & LE_R1_FRAM)
447 printf("%s: framing error\n",
448 sc->sc_dev.dv_xname);
449 if (rmd.rmd1_bits & LE_R1_CRC)
450 printf("%s: crc mismatch\n",
451 sc->sc_dev.dv_xname);
452 }
453 } else {
454 if (rmd.rmd1_bits & LE_R1_OFLO)
455 printf("%s: overflow\n",
456 sc->sc_dev.dv_xname);
457 }
458 if (rmd.rmd1_bits & LE_R1_BUFF)
459 printf("%s: receive buffer error\n",
460 sc->sc_dev.dv_xname);
461 } else if (rmd.rmd1_bits & (LE_R1_STP | LE_R1_ENP) !=
462 (LE_R1_STP | LE_R1_ENP)) {
463 printf("%s: dropping chained buffer\n",
464 sc->sc_dev.dv_xname);
465 } else {
466 #ifdef LEDEBUG
467 if (sc->sc_debug)
468 recv_print(sc, sc->sc_last_rd);
469 #endif
470 leread(sc, LE_RBUFADDR(sc, bix), (int)rmd.rmd3);
471 sc->sc_arpcom.ac_if.if_ipackets++;
472 }
473
474 rmd.rmd1_bits = LE_R1_OWN;
475 rmd.rmd2 = -LEBLEN | LE_XMD2_ONES;
476 rmd.rmd3 = 0;
477 (*sc->sc_copytodesc)(sc, &rmd, rp, sizeof(rmd));
478
479 #ifdef LEDEBUG
480 if (sc->sc_debug)
481 printf("sc->sc_last_rd = %x, rmd = %x\n",
482 sc->sc_last_rd, rmd);
483 #endif
484
485 if (++bix == sc->sc_nrbuf)
486 bix = 0;
487 }
488
489 sc->sc_last_rd = bix;
490 }
491
492 integrate void
493 letint(sc)
494 register struct le_softc *sc;
495 {
496 register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
497 register int bix;
498 struct letmd tmd;
499
500 bix = sc->sc_first_td;
501
502 for (;;) {
503 if (sc->sc_no_td <= 0)
504 break;
505
506 #ifdef LEDEBUG
507 if (sc->sc_debug)
508 printf("trans tmd = %x\n", tmd);
509 #endif
510
511 (*sc->sc_copyfromdesc)(sc, &tmd, LE_TMDADDR(sc, bix),
512 sizeof(tmd));
513
514 if (tmd.tmd1_bits & LE_T1_OWN)
515 break;
516
517 ifp->if_flags &= ~IFF_OACTIVE;
518
519 if (tmd.tmd1_bits & LE_T1_ERR) {
520 if (tmd.tmd3 & LE_T3_BUFF)
521 printf("%s: transmit buffer error\n", sc->sc_dev.dv_xname);
522 else if (tmd.tmd3 & LE_T3_UFLO)
523 printf("%s: underflow\n", sc->sc_dev.dv_xname);
524 if (tmd.tmd3 & (LE_T3_BUFF | LE_T3_UFLO)) {
525 lereset(sc);
526 return;
527 }
528 if (tmd.tmd3 & LE_T3_LCAR)
529 printf("%s: lost carrier\n", sc->sc_dev.dv_xname);
530 if (tmd.tmd3 & LE_T3_LCOL)
531 ifp->if_collisions++;
532 if (tmd.tmd3 & LE_T3_RTRY) {
533 printf("%s: excessive collisions, tdr %d\n",
534 sc->sc_dev.dv_xname, tmd.tmd3 & LE_T3_TDR_MASK);
535 ifp->if_collisions += 16;
536 }
537 ifp->if_oerrors++;
538 } else {
539 if (tmd.tmd1_bits & LE_T1_ONE)
540 ifp->if_collisions++;
541 else if (tmd.tmd1_bits & LE_T1_MORE)
542 /* Real number is unknown. */
543 ifp->if_collisions += 2;
544 ifp->if_opackets++;
545 }
546
547 if (++bix == sc->sc_ntbuf)
548 bix = 0;
549
550 --sc->sc_no_td;
551 }
552
553 sc->sc_first_td = bix;
554
555 lestart(ifp);
556
557 if (sc->sc_no_td == 0)
558 ifp->if_timer = 0;
559 }
560
561 /*
562 * Controller interrupt.
563 */
564 #ifdef LEINTR_UNIT
565 int
566 leintr(unit)
567 int unit;
568 {
569 register struct le_softc *sc = LE_SOFTC(unit);
570 #else
571 int
572 leintr(arg)
573 register void *arg;
574 {
575 register struct le_softc *sc = arg;
576 #endif
577 register u_int16_t isr;
578
579 isr = lerdcsr(sc, LE_CSR0);
580 #ifdef LEDEBUG
581 if (sc->sc_debug)
582 printf("%s: leintr entering with isr=%04x\n",
583 sc->sc_dev.dv_xname, isr);
584 #endif
585 if ((isr & LE_C0_INTR) == 0)
586 return (0);
587
588 lewrcsr(sc, LE_CSR0,
589 isr & (LE_C0_INEA | LE_C0_BABL | LE_C0_MISS | LE_C0_MERR |
590 LE_C0_RINT | LE_C0_TINT | LE_C0_IDON));
591 if (isr & LE_C0_ERR) {
592 if (isr & LE_C0_BABL) {
593 printf("%s: babble\n", sc->sc_dev.dv_xname);
594 sc->sc_arpcom.ac_if.if_oerrors++;
595 }
596 #if 0
597 if (isr & LE_C0_CERR) {
598 printf("%s: collision error\n", sc->sc_dev.dv_xname);
599 sc->sc_arpcom.ac_if.if_collisions++;
600 }
601 #endif
602 if (isr & LE_C0_MISS)
603 sc->sc_arpcom.ac_if.if_ierrors++;
604 if (isr & LE_C0_MERR) {
605 printf("%s: memory error\n", sc->sc_dev.dv_xname);
606 lereset(sc);
607 return (1);
608 }
609 }
610
611 if ((isr & LE_C0_RXON) == 0) {
612 printf("%s: receiver disabled\n", sc->sc_dev.dv_xname);
613 sc->sc_arpcom.ac_if.if_ierrors++;
614 lereset(sc);
615 return (1);
616 }
617 if ((isr & LE_C0_TXON) == 0) {
618 printf("%s: transmitter disabled\n", sc->sc_dev.dv_xname);
619 sc->sc_arpcom.ac_if.if_oerrors++;
620 lereset(sc);
621 return (1);
622 }
623
624 if (isr & LE_C0_RINT)
625 lerint(sc);
626 if (isr & LE_C0_TINT)
627 letint(sc);
628
629 return (1);
630 }
631
632 /*
633 * Setup output on interface.
634 * Get another datagram to send off of the interface queue, and map it to the
635 * interface before starting the output.
636 * Called only at splimp or interrupt level.
637 */
638 void
639 lestart(ifp)
640 register struct ifnet *ifp;
641 {
642 register struct le_softc *sc = LE_SOFTC(ifp->if_unit);
643 register int bix;
644 register struct mbuf *m;
645 struct letmd tmd;
646 int rp;
647 int len;
648
649 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
650 return;
651
652 bix = sc->sc_last_td;
653
654 for (;;) {
655 rp = LE_TMDADDR(sc, bix);
656 (*sc->sc_copyfromdesc)(sc, &tmd, rp, sizeof(tmd));
657
658 if (tmd.tmd1_bits & LE_T1_OWN) {
659 ifp->if_flags |= IFF_OACTIVE;
660 printf("missing buffer, no_td = %d, last_td = %d\n",
661 sc->sc_no_td, sc->sc_last_td);
662 }
663
664 IF_DEQUEUE(&ifp->if_snd, m);
665 if (m == 0)
666 break;
667
668 #if NBPFILTER > 0
669 /*
670 * If BPF is listening on this interface, let it see the packet
671 * before we commit it to the wire.
672 */
673 if (ifp->if_bpf)
674 bpf_mtap(ifp->if_bpf, m);
675 #endif
676
677 /*
678 * Copy the mbuf chain into the transmit buffer.
679 */
680 len = leput(sc, LE_TBUFADDR(sc, bix), m);
681
682 #ifdef LEDEBUG
683 if (len > ETHERMTU)
684 printf("packet length %d\n", len);
685 #endif
686
687 ifp->if_timer = 5;
688
689 /*
690 * Init transmit registers, and set transmit start flag.
691 */
692 tmd.tmd1_bits = LE_T1_OWN | LE_T1_STP | LE_T1_ENP;
693 tmd.tmd2 = -len | LE_XMD2_ONES;
694 tmd.tmd3 = 0;
695
696 (*sc->sc_copytodesc)(sc, &tmd, rp, sizeof(tmd));
697
698 #ifdef LEDEBUG
699 if (sc->sc_debug)
700 xmit_print(sc, sc->sc_last_td);
701 #endif
702
703 lewrcsr(sc, LE_CSR0, LE_C0_INEA | LE_C0_TDMD);
704
705 if (++bix == sc->sc_ntbuf)
706 bix = 0;
707
708 if (++sc->sc_no_td == sc->sc_ntbuf) {
709 ifp->if_flags |= IFF_OACTIVE;
710 break;
711 }
712
713 }
714
715 sc->sc_last_td = bix;
716 }
717
718 /*
719 * Process an ioctl request.
720 */
721 int
722 leioctl(ifp, cmd, data)
723 register struct ifnet *ifp;
724 u_long cmd;
725 caddr_t data;
726 {
727 struct le_softc *sc = LE_SOFTC(ifp->if_unit);
728 struct ifaddr *ifa = (struct ifaddr *)data;
729 struct ifreq *ifr = (struct ifreq *)data;
730 int s, error = 0;
731
732 s = splimp();
733
734 switch (cmd) {
735
736 case SIOCSIFADDR:
737 ifp->if_flags |= IFF_UP;
738
739 switch (ifa->ifa_addr->sa_family) {
740 #ifdef INET
741 case AF_INET:
742 leinit(sc);
743 arp_ifinit(&sc->sc_arpcom, ifa);
744 break;
745 #endif
746 #ifdef NS
747 case AF_NS:
748 {
749 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
750
751 if (ns_nullhost(*ina))
752 ina->x_host =
753 *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
754 else
755 bcopy(ina->x_host.c_host,
756 sc->sc_arpcom.ac_enaddr,
757 sizeof(sc->sc_arpcom.ac_enaddr));
758 /* Set new address. */
759 leinit(sc);
760 break;
761 }
762 #endif
763 default:
764 leinit(sc);
765 break;
766 }
767 break;
768
769 #if defined(CCITT) && defined(LLC)
770 case SIOCSIFCONF_X25:
771 ifp->if_flags |= IFF_UP;
772 ifa->ifa_rtrequest = (void (*)())cons_rtrequest; /* XXX */
773 error = x25_llcglue(PRC_IFUP, ifa->ifa_addr);
774 if (error == 0)
775 leinit(sc);
776 break;
777 #endif /* CCITT && LLC */
778
779 case SIOCSIFFLAGS:
780 if ((ifp->if_flags & IFF_UP) == 0 &&
781 (ifp->if_flags & IFF_RUNNING) != 0) {
782 /*
783 * If interface is marked down and it is running, then
784 * stop it.
785 */
786 lestop(sc);
787 ifp->if_flags &= ~IFF_RUNNING;
788 } else if ((ifp->if_flags & IFF_UP) != 0 &&
789 (ifp->if_flags & IFF_RUNNING) == 0) {
790 /*
791 * If interface is marked up and it is stopped, then
792 * start it.
793 */
794 leinit(sc);
795 } else {
796 /*
797 * Reset the interface to pick up changes in any other
798 * flags that affect hardware registers.
799 */
800 /*lestop(sc);*/
801 leinit(sc);
802 }
803 #ifdef LEDEBUG
804 if (ifp->if_flags & IFF_DEBUG)
805 sc->sc_debug = 1;
806 else
807 sc->sc_debug = 0;
808 #endif
809 break;
810
811 case SIOCADDMULTI:
812 case SIOCDELMULTI:
813 error = (cmd == SIOCADDMULTI) ?
814 ether_addmulti(ifr, &sc->sc_arpcom):
815 ether_delmulti(ifr, &sc->sc_arpcom);
816
817 if (error == ENETRESET) {
818 /*
819 * Multicast list has changed; set the hardware filter
820 * accordingly.
821 */
822 leinit(sc);
823 error = 0;
824 }
825 break;
826
827 default:
828 error = EINVAL;
829 }
830
831 splx(s);
832 return (error);
833 }
834
835 #ifdef LEDEBUG
836 void
837 recv_print(sc, no)
838 struct le_softc *sc;
839 int no;
840 {
841 struct lermd rmd;
842 u_int16_t len;
843 struct ether_header eh;
844
845 (*sc->sc_copyfromdesc)(sc, &rmd, LE_RMDADDR(sc, no), sizeof(rmd));
846 len = rmd.rmd3;
847 printf("%s: receive buffer %d, len = %d\n", sc->sc_dev.dv_xname, no,
848 len);
849 printf("%s: status %04x\n", sc->sc_dev.dv_xname, lerdcsr(sc, LE_CSR0));
850 printf("%s: ladr %04x, hadr %02x, flags %02x, bcnt %04x, mcnt %04x\n",
851 sc->sc_dev.dv_xname,
852 rmd.rmd0, rmd.rmd1_hadr, rmd.rmd1_bits, rmd.rmd2, rmd.rmd3);
853 if (len >= sizeof(eh)) {
854 (*sc->sc_copyfrombuf)(sc, &eh, LE_RBUFADDR(sc, no), sizeof(eh));
855 printf("%s: dst %s", ether_sprintf(eh.ether_dhost));
856 printf(" src %s type %04x\n", ether_sprintf(eh.ether_shost),
857 ntohs(eh.ether_type));
858 }
859 }
860
861 void
862 xmit_print(sc, no)
863 struct le_softc *sc;
864 int no;
865 {
866 struct letmd tmd;
867 u_int16_t len;
868 struct ether_header eh;
869
870 (*sc->sc_copyfromdesc)(sc, &tmd, LE_TMDADDR(sc, no), sizeof(tmd));
871 len = -tmd.tmd2;
872 printf("%s: transmit buffer %d, len = %d\n", sc->sc_dev.dv_xname, no,
873 len);
874 printf("%s: status %04x\n", sc->sc_dev.dv_xname, lerdcsr(sc, LE_CSR0));
875 printf("%s: ladr %04x, hadr %02x, flags %02x, bcnt %04x, mcnt %04x\n",
876 sc->sc_dev.dv_xname,
877 tmd.tmd0, tmd.tmd1_hadr, tmd.tmd1_bits, tmd.tmd2, tmd.tmd3);
878 if (len >= sizeof(eh)) {
879 (*sc->sc_copyfrombuf)(sc, &eh, LE_TBUFADDR(sc, no), sizeof(eh));
880 printf("%s: dst %s", ether_sprintf(eh.ether_dhost));
881 printf(" src %s type %04x\n", ether_sprintf(eh.ether_shost),
882 ntohs(eh.ether_type));
883 }
884 }
885 #endif /* LEDEBUG */
886
887 /*
888 * Set up the logical address filter.
889 */
890 void
891 lesetladrf(ac, af)
892 struct arpcom *ac;
893 u_int16_t *af;
894 {
895 struct ifnet *ifp = &ac->ac_if;
896 struct ether_multi *enm;
897 register u_char *cp, c;
898 register u_int32_t crc;
899 register int i, len;
900 struct ether_multistep step;
901
902 /*
903 * Set up multicast address filter by passing all multicast addresses
904 * through a crc generator, and then using the high order 6 bits as an
905 * index into the 64 bit logical address filter. The high order bit
906 * selects the word, while the rest of the bits select the bit within
907 * the word.
908 */
909
910 if (ifp->if_flags & IFF_PROMISC)
911 goto allmulti;
912
913 af[0] = af[1] = af[2] = af[3] = 0x0000;
914 ETHER_FIRST_MULTI(step, ac, enm);
915 while (enm != NULL) {
916 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
917 sizeof(enm->enm_addrlo)) != 0) {
918 /*
919 * We must listen to a range of multicast addresses.
920 * For now, just accept all multicasts, rather than
921 * trying to set only those filter bits needed to match
922 * the range. (At this time, the only use of address
923 * ranges is for IP multicast routing, for which the
924 * range is big enough to require all bits set.)
925 */
926 goto allmulti;
927 }
928
929 cp = enm->enm_addrlo;
930 crc = 0xffffffff;
931 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
932 c = *cp++;
933 for (i = 8; --i >= 0;) {
934 if ((crc & 0x01) ^ (c & 0x01)) {
935 crc >>= 1;
936 crc ^= 0xedb88320;
937 } else
938 crc >>= 1;
939 c >>= 1;
940 }
941 }
942 /* Just want the 6 most significant bits. */
943 crc >>= 26;
944
945 /* Set the corresponding bit in the filter. */
946 af[crc >> 4] |= 1 << (crc & 0xf);
947
948 ETHER_NEXT_MULTI(step, enm);
949 }
950 ifp->if_flags &= ~IFF_ALLMULTI;
951 return;
952
953 allmulti:
954 ifp->if_flags |= IFF_ALLMULTI;
955 af[0] = af[1] = af[2] = af[3] = 0xffff;
956 }
957
958
959 #if 0 /* USE OF THE FOLLOWING IS MACHINE-SPECIFIC */
960 /*
961 * Routines for accessing the transmit and receive buffers. Unfortunately,
962 * CPU addressing of these buffers is done in one of 3 ways:
963 * - contiguous (for the 3max and turbochannel option card)
964 * - gap2, which means shorts (2 bytes) interspersed with short (2 byte)
965 * spaces (for the pmax)
966 * - gap16, which means 16bytes interspersed with 16byte spaces
967 * for buffers which must begin on a 32byte boundary (for 3min and maxine)
968 * The buffer offset is the logical byte offset, assuming contiguous storage.
969 */
970 void
971 copytodesc_contig(sc, from, boff, len)
972 struct le_softc *sc;
973 caddr_t from;
974 int boff, len;
975 {
976 volatile caddr_t buf = sc->sc_mem;
977
978 /*
979 * Just call bcopy() to do the work.
980 */
981 bcopy(from, buf + boff, len);
982 }
983
984 void
985 copyfromdesc_contig(sc, to, boff, len)
986 struct le_softc *sc;
987 caddr_t to;
988 int boff, len;
989 {
990 volatile caddr_t buf = sc->sc_mem;
991
992 /*
993 * Just call bcopy() to do the work.
994 */
995 bcopy(buf + boff, to, len);
996 }
997
998 void
999 copytobuf_contig(sc, from, boff, len)
1000 struct le_softc *sc;
1001 caddr_t from;
1002 int boff, len;
1003 {
1004 volatile caddr_t buf = sc->sc_mem;
1005
1006 /*
1007 * Just call bcopy() to do the work.
1008 */
1009 bcopy(from, buf + boff, len);
1010 }
1011
1012 void
1013 copyfrombuf_contig(sc, to, boff, len)
1014 struct le_softc *sc;
1015 caddr_t to;
1016 int boff, len;
1017 {
1018 volatile caddr_t buf = sc->sc_mem;
1019
1020 /*
1021 * Just call bcopy() to do the work.
1022 */
1023 bcopy(buf + boff, to, len);
1024 }
1025
1026 void
1027 zerobuf_contig(sc, boff, len)
1028 struct le_softc *sc;
1029 int boff, len;
1030 {
1031 volatile caddr_t buf = sc->sc_mem;
1032
1033 /*
1034 * Just let bzero() do the work
1035 */
1036 bzero(buf + boff, len);
1037 }
1038
1039 /*
1040 * For the pmax the buffer consists of shorts (2 bytes) interspersed with
1041 * short (2 byte) spaces and must be accessed with halfword load/stores.
1042 * (don't worry about doing an extra byte)
1043 */
1044 void
1045 copytobuf_gap2(sc, from, boff, len)
1046 struct le_softc *sc;
1047 register caddr_t from;
1048 int boff;
1049 register int len;
1050 {
1051 volatile caddr_t buf = sc->sc_mem;
1052 register volatile u_short *bptr;
1053 register int xfer;
1054
1055 if (boff & 0x1) {
1056 /* handle unaligned first byte */
1057 bptr = ((volatile u_short *)buf) + (boff - 1);
1058 *bptr = (*from++ << 8) | (*bptr & 0xff);
1059 bptr += 2;
1060 len--;
1061 } else
1062 bptr = ((volatile u_short *)buf) + boff;
1063 if ((unsigned)from & 0x1) {
1064 while (len > 1) {
1065 *bptr = (from[1] << 8) | (from[0] & 0xff);
1066 bptr += 2;
1067 from += 2;
1068 len -= 2;
1069 }
1070 } else {
1071 /* optimize for aligned transfers */
1072 xfer = (int)((unsigned)len & ~0x1);
1073 CopyToBuffer((u_short *)from, bptr, xfer);
1074 bptr += xfer;
1075 from += xfer;
1076 len -= xfer;
1077 }
1078 if (len == 1)
1079 *bptr = (u_short)*from;
1080 }
1081
1082 void
1083 copyfrombuf_gap2(sc, to, boff, len)
1084 struct le_softc *sc;
1085 register caddr_t to;
1086 int boff, len;
1087 {
1088 volatile caddr_t buf = sc->sc_mem;
1089 register volatile u_short *bptr;
1090 register u_short tmp;
1091 register int xfer;
1092
1093 if (boff & 0x1) {
1094 /* handle unaligned first byte */
1095 bptr = ((volatile u_short *)buf) + (boff - 1);
1096 *to++ = (*bptr >> 8) & 0xff;
1097 bptr += 2;
1098 len--;
1099 } else
1100 bptr = ((volatile u_short *)buf) + boff;
1101 if ((unsigned)to & 0x1) {
1102 while (len > 1) {
1103 tmp = *bptr;
1104 *to++ = tmp & 0xff;
1105 *to++ = (tmp >> 8) & 0xff;
1106 bptr += 2;
1107 len -= 2;
1108 }
1109 } else {
1110 /* optimize for aligned transfers */
1111 xfer = (int)((unsigned)len & ~0x1);
1112 CopyFromBuffer(bptr, to, xfer);
1113 bptr += xfer;
1114 to += xfer;
1115 len -= xfer;
1116 }
1117 if (len == 1)
1118 *to = *bptr & 0xff;
1119 }
1120
1121 void
1122 zerobuf_gap2(sc, boff, len)
1123 struct le_softc *sc;
1124 int boff, len;
1125 {
1126 volatile caddr_t buf = sc->sc_mem;
1127 register volatile u_short *bptr;
1128
1129 if ((unsigned)boff & 0x1) {
1130 bptr = ((volatile u_short *)buf) + (boff - 1);
1131 *bptr &= 0xff;
1132 bptr += 2;
1133 len--;
1134 } else
1135 bptr = ((volatile u_short *)buf) + boff;
1136 while (len > 0) {
1137 *bptr = 0;
1138 bptr += 2;
1139 len -= 2;
1140 }
1141 }
1142
1143 /*
1144 * For the 3min and maxine, the buffers are in main memory filled in with
1145 * 16byte blocks interspersed with 16byte spaces.
1146 */
1147 void
1148 copytobuf_gap16(sc, from, boff, len)
1149 struct le_softc *sc;
1150 register caddr_t from;
1151 int boff;
1152 register int len;
1153 {
1154 volatile caddr_t buf = sc->sc_mem;
1155 register caddr_t bptr;
1156 register int xfer;
1157
1158 bptr = buf + ((boff << 1) & ~0x1f);
1159 boff &= 0xf;
1160 xfer = min(len, 16 - boff);
1161 while (len > 0) {
1162 bcopy(from, bptr + boff, xfer);
1163 from += xfer;
1164 bptr += 32;
1165 boff = 0;
1166 len -= xfer;
1167 xfer = min(len, 16);
1168 }
1169 }
1170
1171 void
1172 copyfrombuf_gap16(sc, to, boff, len)
1173 struct le_softc *sc;
1174 register caddr_t to;
1175 int boff, len;
1176 {
1177 volatile caddr_t buf = sc->sc_mem;
1178 register caddr_t bptr;
1179 register int xfer;
1180
1181 bptr = buf + ((boff << 1) & ~0x1f);
1182 boff &= 0xf;
1183 xfer = min(len, 16 - boff);
1184 while (len > 0) {
1185 bcopy(bptr + boff, to, xfer);
1186 to += xfer;
1187 bptr += 32;
1188 boff = 0;
1189 len -= xfer;
1190 xfer = min(len, 16);
1191 }
1192 }
1193
1194 void
1195 zerobuf_gap16(sc, boff, len)
1196 struct le_softc *sc;
1197 int boff, len;
1198 {
1199 volatile caddr_t buf = sc->sc_mem;
1200 register caddr_t bptr;
1201 register int xfer;
1202
1203 bptr = buf + ((boff << 1) & ~0x1f);
1204 boff &= 0xf;
1205 xfer = min(len, 16 - boff);
1206 while (len > 0) {
1207 bzero(bptr + boff, xfer);
1208 bptr += 32;
1209 boff = 0;
1210 len -= xfer;
1211 xfer = min(len, 16);
1212 }
1213 }
1214 #endif
1215