am7990.c revision 1.16 1 /* $NetBSD: am7990.c,v 1.16 1996/04/09 15:21:59 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1995 Charles M. Hannum. All rights reserved.
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Ralph Campbell and Rick Macklem.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * @(#)if_le.c 8.2 (Berkeley) 11/16/93
40 */
41
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44
45 #ifdef INET
46 #include <netinet/in_systm.h>
47 #include <netinet/in_var.h>
48 #include <netinet/ip.h>
49 #endif
50
51 #ifdef NS
52 #include <netns/ns.h>
53 #include <netns/ns_if.h>
54 #endif
55
56 #if defined(CCITT) && defined(LLC)
57 #include <sys/socketvar.h>
58 #include <netccitt/x25.h>
59 #include <netccitt/pk.h>
60 #include <netccitt/pk_var.h>
61 #include <netccitt/pk_extern.h>
62 #endif
63
64 #if NBPFILTER > 0
65 #include <net/bpf.h>
66 #include <net/bpfdesc.h>
67 #endif
68
69 #ifdef LEDEBUG
70 void recv_print __P((struct le_softc *, int));
71 void xmit_print __P((struct le_softc *, int));
72 #endif
73
74 #define ifp (&sc->sc_arpcom.ac_if)
75
76 #ifndef ETHER_CMP
77 #define ETHER_CMP(a, b) bcmp((a), (b), ETHER_ADDR_LEN)
78 #endif
79
80 void
81 leconfig(sc)
82 struct le_softc *sc;
83 {
84 int mem;
85
86 /* Make sure the chip is stopped. */
87 lestop(sc);
88
89 /* Initialize ifnet structure. */
90 ifp->if_unit = sc->sc_dev.dv_unit;
91 ifp->if_start = lestart;
92 ifp->if_ioctl = leioctl;
93 ifp->if_watchdog = lewatchdog;
94 ifp->if_flags =
95 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
96 #ifdef LANCE_REVC_BUG
97 ifp->if_flags &= ~IFF_MULTICAST;
98 #endif
99
100 /* Attach the interface. */
101 if_attach(ifp);
102 ether_ifattach(ifp);
103
104 #if NBPFILTER > 0
105 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
106 #endif
107
108 switch (sc->sc_memsize) {
109 case 8192:
110 sc->sc_nrbuf = 4;
111 sc->sc_ntbuf = 1;
112 break;
113 case 16384:
114 sc->sc_nrbuf = 8;
115 sc->sc_ntbuf = 2;
116 break;
117 case 32768:
118 sc->sc_nrbuf = 16;
119 sc->sc_ntbuf = 4;
120 break;
121 case 65536:
122 sc->sc_nrbuf = 32;
123 sc->sc_ntbuf = 8;
124 break;
125 default:
126 panic("leconfig: weird memory size");
127 }
128
129 printf(": address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
130 printf("%s: %d receive buffers, %d transmit buffers\n",
131 sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
132
133 mem = 0;
134 sc->sc_initaddr = mem;
135 mem += sizeof(struct leinit);
136 sc->sc_rmdaddr = mem;
137 mem += sizeof(struct lermd) * sc->sc_nrbuf;
138 sc->sc_tmdaddr = mem;
139 mem += sizeof(struct letmd) * sc->sc_ntbuf;
140 sc->sc_rbufaddr = mem;
141 mem += LEBLEN * sc->sc_nrbuf;
142 sc->sc_tbufaddr = mem;
143 mem += LEBLEN * sc->sc_ntbuf;
144 #ifdef notyet
145 if (mem > ...)
146 panic(...);
147 #endif
148 }
149
150 void
151 lereset(sc)
152 struct le_softc *sc;
153 {
154 int s;
155
156 s = splimp();
157 leinit(sc);
158 splx(s);
159 }
160
161 void
162 lewatchdog(unit)
163 int unit;
164 {
165 struct le_softc *sc = LE_SOFTC(unit);
166
167 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
168 ++ifp->if_oerrors;
169
170 lereset(sc);
171 }
172
173 /*
174 * Set up the initialization block and the descriptor rings.
175 */
176 void
177 lememinit(sc)
178 register struct le_softc *sc;
179 {
180 u_long a;
181 int bix;
182 struct leinit init;
183 struct lermd rmd;
184 struct letmd tmd;
185
186 #if NBPFILTER > 0
187 if (ifp->if_flags & IFF_PROMISC)
188 init.init_mode = LE_MODE_NORMAL | LE_MODE_PROM;
189 else
190 #endif
191 init.init_mode = LE_MODE_NORMAL;
192 init.init_padr[0] =
193 (sc->sc_arpcom.ac_enaddr[1] << 8) | sc->sc_arpcom.ac_enaddr[0];
194 init.init_padr[1] =
195 (sc->sc_arpcom.ac_enaddr[3] << 8) | sc->sc_arpcom.ac_enaddr[2];
196 init.init_padr[2] =
197 (sc->sc_arpcom.ac_enaddr[5] << 8) | sc->sc_arpcom.ac_enaddr[4];
198 lesetladrf(&sc->sc_arpcom, init.init_ladrf);
199
200 sc->sc_last_rd = 0;
201 sc->sc_first_td = sc->sc_last_td = sc->sc_no_td = 0;
202
203 a = sc->sc_addr + LE_RMDADDR(sc, 0);
204 init.init_rdra = a;
205 init.init_rlen = (a >> 16) | ((ffs(sc->sc_nrbuf) - 1) << 13);
206
207 a = sc->sc_addr + LE_TMDADDR(sc, 0);
208 init.init_tdra = a;
209 init.init_tlen = (a >> 16) | ((ffs(sc->sc_ntbuf) - 1) << 13);
210
211 (*sc->sc_copytodesc)(sc, &init, LE_INITADDR(sc), sizeof(init));
212
213 /*
214 * Set up receive ring descriptors.
215 */
216 for (bix = 0; bix < sc->sc_nrbuf; bix++) {
217 a = sc->sc_addr + LE_RBUFADDR(sc, bix);
218 rmd.rmd0 = a;
219 rmd.rmd1_hadr = a >> 16;
220 rmd.rmd1_bits = LE_R1_OWN;
221 rmd.rmd2 = -LEBLEN | LE_XMD2_ONES;
222 rmd.rmd3 = 0;
223 (*sc->sc_copytodesc)(sc, &rmd, LE_RMDADDR(sc, bix),
224 sizeof(rmd));
225 }
226
227 /*
228 * Set up transmit ring descriptors.
229 */
230 for (bix = 0; bix < sc->sc_ntbuf; bix++) {
231 a = sc->sc_addr + LE_TBUFADDR(sc, bix);
232 tmd.tmd0 = a;
233 tmd.tmd1_hadr = a >> 16;
234 tmd.tmd1_bits = 0;
235 tmd.tmd2 = 0 | LE_XMD2_ONES;
236 tmd.tmd3 = 0;
237 (*sc->sc_copytodesc)(sc, &tmd, LE_TMDADDR(sc, bix),
238 sizeof(tmd));
239 }
240 }
241
242 void
243 lestop(sc)
244 struct le_softc *sc;
245 {
246
247 lewrcsr(sc, LE_CSR0, LE_C0_STOP);
248 }
249
250 /*
251 * Initialization of interface; set up initialization block
252 * and transmit/receive descriptor rings.
253 */
254 void
255 leinit(sc)
256 register struct le_softc *sc;
257 {
258 register int timo;
259 u_long a;
260
261 lewrcsr(sc, LE_CSR0, LE_C0_STOP);
262 LE_DELAY(100);
263
264 /* Set the correct byte swapping mode, etc. */
265 lewrcsr(sc, LE_CSR3, sc->sc_conf3);
266
267 /* Set up LANCE init block. */
268 lememinit(sc);
269
270 /* Give LANCE the physical address of its init block. */
271 a = sc->sc_addr + LE_INITADDR(sc);
272 lewrcsr(sc, LE_CSR1, a);
273 lewrcsr(sc, LE_CSR2, a >> 16);
274
275 /* Try to initialize the LANCE. */
276 LE_DELAY(100);
277 lewrcsr(sc, LE_CSR0, LE_C0_INIT);
278
279 /* Wait for initialization to finish. */
280 for (timo = 100000; timo; timo--)
281 if (lerdcsr(sc, LE_CSR0) & LE_C0_IDON)
282 break;
283
284 if (lerdcsr(sc, LE_CSR0) & LE_C0_IDON) {
285 /* Start the LANCE. */
286 lewrcsr(sc, LE_CSR0, LE_C0_INEA | LE_C0_STRT | LE_C0_IDON);
287 ifp->if_flags |= IFF_RUNNING;
288 ifp->if_flags &= ~IFF_OACTIVE;
289 ifp->if_timer = 0;
290 lestart(ifp);
291 } else
292 printf("%s: card failed to initialize\n", sc->sc_dev.dv_xname);
293 }
294
295 /*
296 * Routine to copy from mbuf chain to transmit buffer in
297 * network buffer memory.
298 */
299 integrate int
300 leput(sc, boff, m)
301 struct le_softc *sc;
302 int boff;
303 register struct mbuf *m;
304 {
305 register struct mbuf *n;
306 register int len, tlen = 0;
307
308 for (; m; m = n) {
309 len = m->m_len;
310 if (len == 0) {
311 MFREE(m, n);
312 continue;
313 }
314 (*sc->sc_copytobuf)(sc, mtod(m, caddr_t), boff, len);
315 boff += len;
316 tlen += len;
317 MFREE(m, n);
318 }
319 if (tlen < LEMINSIZE) {
320 (*sc->sc_zerobuf)(sc, boff, LEMINSIZE - tlen);
321 tlen = LEMINSIZE;
322 }
323 return (tlen);
324 }
325
326 /*
327 * Pull data off an interface.
328 * Len is length of data, with local net header stripped.
329 * We copy the data into mbufs. When full cluster sized units are present
330 * we copy into clusters.
331 */
332 integrate struct mbuf *
333 leget(sc, boff, totlen)
334 struct le_softc *sc;
335 int boff, totlen;
336 {
337 register struct mbuf *m;
338 struct mbuf *top, **mp;
339 int len, pad;
340
341 MGETHDR(m, M_DONTWAIT, MT_DATA);
342 if (m == 0)
343 return (0);
344 m->m_pkthdr.rcvif = ifp;
345 m->m_pkthdr.len = totlen;
346 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
347 m->m_data += pad;
348 len = MHLEN - pad;
349 top = 0;
350 mp = ⊤
351
352 while (totlen > 0) {
353 if (top) {
354 MGET(m, M_DONTWAIT, MT_DATA);
355 if (m == 0) {
356 m_freem(top);
357 return 0;
358 }
359 len = MLEN;
360 }
361 if (top && totlen >= MINCLSIZE) {
362 MCLGET(m, M_DONTWAIT);
363 if (m->m_flags & M_EXT)
364 len = MCLBYTES;
365 }
366 m->m_len = len = min(totlen, len);
367 (*sc->sc_copyfrombuf)(sc, mtod(m, caddr_t), boff, len);
368 boff += len;
369 totlen -= len;
370 *mp = m;
371 mp = &m->m_next;
372 }
373
374 return (top);
375 }
376
377 /*
378 * Pass a packet to the higher levels.
379 */
380 integrate void
381 leread(sc, boff, len)
382 register struct le_softc *sc;
383 int boff, len;
384 {
385 struct mbuf *m;
386 struct ether_header *eh;
387
388 if (len <= sizeof(struct ether_header) ||
389 len > ETHERMTU + sizeof(struct ether_header)) {
390 #ifdef LEDEBUG
391 printf("%s: invalid packet size %d; dropping\n",
392 sc->sc_dev.dv_xname, len);
393 #endif
394 ifp->if_ierrors++;
395 return;
396 }
397
398 /* Pull packet off interface. */
399 m = leget(sc, boff, len);
400 if (m == 0) {
401 ifp->if_ierrors++;
402 return;
403 }
404
405 ifp->if_ipackets++;
406
407 /* We assume that the header fit entirely in one mbuf. */
408 eh = mtod(m, struct ether_header *);
409
410 #if NBPFILTER > 0
411 /*
412 * Check if there's a BPF listener on this interface.
413 * If so, hand off the raw packet to BPF.
414 */
415 if (ifp->if_bpf) {
416 bpf_mtap(ifp->if_bpf, m);
417
418 #ifndef LANCE_REVC_BUG
419 /*
420 * Note that the interface cannot be in promiscuous mode if
421 * there are no BPF listeners. And if we are in promiscuous
422 * mode, we have to check if this packet is really ours.
423 */
424 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
425 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
426 ETHER_CMP(eh->ether_dhost, sc->sc_arpcom.ac_enaddr)) {
427 m_freem(m);
428 return;
429 }
430 #endif
431 }
432 #endif
433
434 #ifdef LANCE_REVC_BUG
435 /*
436 * The old LANCE (Rev. C) chips have a bug which causes
437 * garbage to be inserted in front of the received packet.
438 * The work-around is to ignore packets with an invalid
439 * destination address (garbage will usually not match).
440 * Of course, this precludes multicast support...
441 */
442 if (ETHER_CMP(eh->ether_dhost, sc->sc_arpcom.ac_enaddr) &&
443 ETHER_CMP(eh->ether_dhost, etherbroadcastaddr)) {
444 m_freem(m);
445 return;
446 }
447 #endif
448
449 /* Pass the packet up, with the ether header sort-of removed. */
450 m_adj(m, sizeof(struct ether_header));
451 ether_input(ifp, eh, m);
452 }
453
454 integrate void
455 lerint(sc)
456 struct le_softc *sc;
457 {
458 register int bix;
459 int rp;
460 struct lermd rmd;
461
462 bix = sc->sc_last_rd;
463
464 /* Process all buffers with valid data. */
465 for (;;) {
466 rp = LE_RMDADDR(sc, bix);
467 (*sc->sc_copyfromdesc)(sc, &rmd, rp, sizeof(rmd));
468
469 if (rmd.rmd1_bits & LE_R1_OWN)
470 break;
471
472 if (rmd.rmd1_bits & LE_R1_ERR) {
473 if (rmd.rmd1_bits & LE_R1_ENP) {
474 #ifdef LEDEBUG
475 if ((rmd.rmd1_bits & LE_R1_OFLO) == 0) {
476 if (rmd.rmd1_bits & LE_R1_FRAM)
477 printf("%s: framing error\n",
478 sc->sc_dev.dv_xname);
479 if (rmd.rmd1_bits & LE_R1_CRC)
480 printf("%s: crc mismatch\n",
481 sc->sc_dev.dv_xname);
482 }
483 #endif
484 } else {
485 if (rmd.rmd1_bits & LE_R1_OFLO)
486 printf("%s: overflow\n",
487 sc->sc_dev.dv_xname);
488 }
489 if (rmd.rmd1_bits & LE_R1_BUFF)
490 printf("%s: receive buffer error\n",
491 sc->sc_dev.dv_xname);
492 ifp->if_ierrors++;
493 } else if ((rmd.rmd1_bits & (LE_R1_STP | LE_R1_ENP)) !=
494 (LE_R1_STP | LE_R1_ENP)) {
495 printf("%s: dropping chained buffer\n",
496 sc->sc_dev.dv_xname);
497 ifp->if_ierrors++;
498 } else {
499 #ifdef LEDEBUG
500 if (sc->sc_debug)
501 recv_print(sc, sc->sc_last_rd);
502 #endif
503 leread(sc, LE_RBUFADDR(sc, bix), (int)rmd.rmd3 - 4);
504 }
505
506 rmd.rmd1_bits = LE_R1_OWN;
507 rmd.rmd2 = -LEBLEN | LE_XMD2_ONES;
508 rmd.rmd3 = 0;
509 (*sc->sc_copytodesc)(sc, &rmd, rp, sizeof(rmd));
510
511 #ifdef LEDEBUG
512 if (sc->sc_debug)
513 printf("sc->sc_last_rd = %x, rmd: "
514 "ladr %04x, hadr %02x, flags %02x, "
515 "bcnt %04x, mcnt %04x\n",
516 sc->sc_last_rd,
517 rmd.rmd0, rmd.rmd1_hadr, rmd.rmd1_bits,
518 rmd.rmd2, rmd.rmd3);
519 #endif
520
521 if (++bix == sc->sc_nrbuf)
522 bix = 0;
523 }
524
525 sc->sc_last_rd = bix;
526 }
527
528 integrate void
529 letint(sc)
530 register struct le_softc *sc;
531 {
532 register int bix;
533 struct letmd tmd;
534
535 bix = sc->sc_first_td;
536
537 for (;;) {
538 if (sc->sc_no_td <= 0)
539 break;
540
541 #ifdef LEDEBUG
542 if (sc->sc_debug)
543 printf("trans tmd: "
544 "ladr %04x, hadr %02x, flags %02x, "
545 "bcnt %04x, mcnt %04x\n",
546 tmd.tmd0, tmd.tmd1_hadr, tmd.tmd1_bits,
547 tmd.tmd2, tmd.tmd3);
548 #endif
549
550 (*sc->sc_copyfromdesc)(sc, &tmd, LE_TMDADDR(sc, bix),
551 sizeof(tmd));
552
553 if (tmd.tmd1_bits & LE_T1_OWN)
554 break;
555
556 ifp->if_flags &= ~IFF_OACTIVE;
557
558 if (tmd.tmd1_bits & LE_T1_ERR) {
559 if (tmd.tmd3 & LE_T3_BUFF)
560 printf("%s: transmit buffer error\n", sc->sc_dev.dv_xname);
561 else if (tmd.tmd3 & LE_T3_UFLO)
562 printf("%s: underflow\n", sc->sc_dev.dv_xname);
563 if (tmd.tmd3 & (LE_T3_BUFF | LE_T3_UFLO)) {
564 lereset(sc);
565 return;
566 }
567 if (tmd.tmd3 & LE_T3_LCAR)
568 printf("%s: lost carrier\n", sc->sc_dev.dv_xname);
569 if (tmd.tmd3 & LE_T3_LCOL)
570 ifp->if_collisions++;
571 if (tmd.tmd3 & LE_T3_RTRY) {
572 printf("%s: excessive collisions, tdr %d\n",
573 sc->sc_dev.dv_xname, tmd.tmd3 & LE_T3_TDR_MASK);
574 ifp->if_collisions += 16;
575 }
576 ifp->if_oerrors++;
577 } else {
578 if (tmd.tmd1_bits & LE_T1_ONE)
579 ifp->if_collisions++;
580 else if (tmd.tmd1_bits & LE_T1_MORE)
581 /* Real number is unknown. */
582 ifp->if_collisions += 2;
583 ifp->if_opackets++;
584 }
585
586 if (++bix == sc->sc_ntbuf)
587 bix = 0;
588
589 --sc->sc_no_td;
590 }
591
592 sc->sc_first_td = bix;
593
594 lestart(ifp);
595
596 if (sc->sc_no_td == 0)
597 ifp->if_timer = 0;
598 }
599
600 /*
601 * Controller interrupt.
602 */
603 int
604 leintr(arg)
605 register void *arg;
606 {
607 register struct le_softc *sc = arg;
608 register u_int16_t isr;
609
610 isr = lerdcsr(sc, LE_CSR0);
611 #ifdef LEDEBUG
612 if (sc->sc_debug)
613 printf("%s: leintr entering with isr=%04x\n",
614 sc->sc_dev.dv_xname, isr);
615 #endif
616 if ((isr & LE_C0_INTR) == 0)
617 return (0);
618
619 lewrcsr(sc, LE_CSR0,
620 isr & (LE_C0_INEA | LE_C0_BABL | LE_C0_MISS | LE_C0_MERR |
621 LE_C0_RINT | LE_C0_TINT | LE_C0_IDON));
622 if (isr & LE_C0_ERR) {
623 if (isr & LE_C0_BABL) {
624 #ifdef LEDEBUG
625 printf("%s: babble\n", sc->sc_dev.dv_xname);
626 #endif
627 ifp->if_oerrors++;
628 }
629 #if 0
630 if (isr & LE_C0_CERR) {
631 printf("%s: collision error\n", sc->sc_dev.dv_xname);
632 ifp->if_collisions++;
633 }
634 #endif
635 if (isr & LE_C0_MISS) {
636 #ifdef LEDEBUG
637 printf("%s: missed packet\n", sc->sc_dev.dv_xname);
638 #endif
639 ifp->if_ierrors++;
640 }
641 if (isr & LE_C0_MERR) {
642 printf("%s: memory error\n", sc->sc_dev.dv_xname);
643 lereset(sc);
644 return (1);
645 }
646 }
647
648 if ((isr & LE_C0_RXON) == 0) {
649 printf("%s: receiver disabled\n", sc->sc_dev.dv_xname);
650 ifp->if_ierrors++;
651 lereset(sc);
652 return (1);
653 }
654 if ((isr & LE_C0_TXON) == 0) {
655 printf("%s: transmitter disabled\n", sc->sc_dev.dv_xname);
656 ifp->if_oerrors++;
657 lereset(sc);
658 return (1);
659 }
660
661 if (isr & LE_C0_RINT)
662 lerint(sc);
663 if (isr & LE_C0_TINT)
664 letint(sc);
665
666 return (1);
667 }
668
669 #undef ifp
670
671 /*
672 * Setup output on interface.
673 * Get another datagram to send off of the interface queue, and map it to the
674 * interface before starting the output.
675 * Called only at splimp or interrupt level.
676 */
677 void
678 lestart(ifp)
679 register struct ifnet *ifp;
680 {
681 register struct le_softc *sc = LE_SOFTC(ifp->if_unit);
682 register int bix;
683 register struct mbuf *m;
684 struct letmd tmd;
685 int rp;
686 int len;
687
688 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
689 return;
690
691 bix = sc->sc_last_td;
692
693 for (;;) {
694 rp = LE_TMDADDR(sc, bix);
695 (*sc->sc_copyfromdesc)(sc, &tmd, rp, sizeof(tmd));
696
697 if (tmd.tmd1_bits & LE_T1_OWN) {
698 ifp->if_flags |= IFF_OACTIVE;
699 printf("missing buffer, no_td = %d, last_td = %d\n",
700 sc->sc_no_td, sc->sc_last_td);
701 }
702
703 IF_DEQUEUE(&ifp->if_snd, m);
704 if (m == 0)
705 break;
706
707 #if NBPFILTER > 0
708 /*
709 * If BPF is listening on this interface, let it see the packet
710 * before we commit it to the wire.
711 */
712 if (ifp->if_bpf)
713 bpf_mtap(ifp->if_bpf, m);
714 #endif
715
716 /*
717 * Copy the mbuf chain into the transmit buffer.
718 */
719 len = leput(sc, LE_TBUFADDR(sc, bix), m);
720
721 #ifdef LEDEBUG
722 if (len > ETHERMTU + sizeof(struct ether_header))
723 printf("packet length %d\n", len);
724 #endif
725
726 ifp->if_timer = 5;
727
728 /*
729 * Init transmit registers, and set transmit start flag.
730 */
731 tmd.tmd1_bits = LE_T1_OWN | LE_T1_STP | LE_T1_ENP;
732 tmd.tmd2 = -len | LE_XMD2_ONES;
733 tmd.tmd3 = 0;
734
735 (*sc->sc_copytodesc)(sc, &tmd, rp, sizeof(tmd));
736
737 #ifdef LEDEBUG
738 if (sc->sc_debug)
739 xmit_print(sc, sc->sc_last_td);
740 #endif
741
742 lewrcsr(sc, LE_CSR0, LE_C0_INEA | LE_C0_TDMD);
743
744 if (++bix == sc->sc_ntbuf)
745 bix = 0;
746
747 if (++sc->sc_no_td == sc->sc_ntbuf) {
748 ifp->if_flags |= IFF_OACTIVE;
749 break;
750 }
751
752 }
753
754 sc->sc_last_td = bix;
755 }
756
757 /*
758 * Process an ioctl request.
759 */
760 int
761 leioctl(ifp, cmd, data)
762 register struct ifnet *ifp;
763 u_long cmd;
764 caddr_t data;
765 {
766 struct le_softc *sc = LE_SOFTC(ifp->if_unit);
767 struct ifaddr *ifa = (struct ifaddr *)data;
768 struct ifreq *ifr = (struct ifreq *)data;
769 int s, error = 0;
770
771 s = splimp();
772
773 switch (cmd) {
774
775 case SIOCSIFADDR:
776 ifp->if_flags |= IFF_UP;
777
778 switch (ifa->ifa_addr->sa_family) {
779 #ifdef INET
780 case AF_INET:
781 leinit(sc);
782 arp_ifinit(&sc->sc_arpcom, ifa);
783 break;
784 #endif
785 #ifdef NS
786 case AF_NS:
787 {
788 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
789
790 if (ns_nullhost(*ina))
791 ina->x_host =
792 *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
793 else
794 bcopy(ina->x_host.c_host,
795 sc->sc_arpcom.ac_enaddr,
796 sizeof(sc->sc_arpcom.ac_enaddr));
797 /* Set new address. */
798 leinit(sc);
799 break;
800 }
801 #endif
802 default:
803 leinit(sc);
804 break;
805 }
806 break;
807
808 #if defined(CCITT) && defined(LLC)
809 case SIOCSIFCONF_X25:
810 ifp->if_flags |= IFF_UP;
811 ifa->ifa_rtrequest = cons_rtrequest; /* XXX */
812 error = x25_llcglue(PRC_IFUP, ifa->ifa_addr);
813 if (error == 0)
814 leinit(sc);
815 break;
816 #endif /* CCITT && LLC */
817
818 case SIOCSIFFLAGS:
819 if ((ifp->if_flags & IFF_UP) == 0 &&
820 (ifp->if_flags & IFF_RUNNING) != 0) {
821 /*
822 * If interface is marked down and it is running, then
823 * stop it.
824 */
825 lestop(sc);
826 ifp->if_flags &= ~IFF_RUNNING;
827 } else if ((ifp->if_flags & IFF_UP) != 0 &&
828 (ifp->if_flags & IFF_RUNNING) == 0) {
829 /*
830 * If interface is marked up and it is stopped, then
831 * start it.
832 */
833 leinit(sc);
834 } else {
835 /*
836 * Reset the interface to pick up changes in any other
837 * flags that affect hardware registers.
838 */
839 /*lestop(sc);*/
840 leinit(sc);
841 }
842 #ifdef LEDEBUG
843 if (ifp->if_flags & IFF_DEBUG)
844 sc->sc_debug = 1;
845 else
846 sc->sc_debug = 0;
847 #endif
848 break;
849
850 case SIOCADDMULTI:
851 case SIOCDELMULTI:
852 error = (cmd == SIOCADDMULTI) ?
853 ether_addmulti(ifr, &sc->sc_arpcom) :
854 ether_delmulti(ifr, &sc->sc_arpcom);
855
856 if (error == ENETRESET) {
857 /*
858 * Multicast list has changed; set the hardware filter
859 * accordingly.
860 */
861 lereset(sc);
862 error = 0;
863 }
864 break;
865
866 default:
867 error = EINVAL;
868 break;
869 }
870
871 splx(s);
872 return (error);
873 }
874
875 #ifdef LEDEBUG
876 void
877 recv_print(sc, no)
878 struct le_softc *sc;
879 int no;
880 {
881 struct lermd rmd;
882 u_int16_t len;
883 struct ether_header eh;
884
885 (*sc->sc_copyfromdesc)(sc, &rmd, LE_RMDADDR(sc, no), sizeof(rmd));
886 len = rmd.rmd3;
887 printf("%s: receive buffer %d, len = %d\n", sc->sc_dev.dv_xname, no,
888 len);
889 printf("%s: status %04x\n", sc->sc_dev.dv_xname, lerdcsr(sc, LE_CSR0));
890 printf("%s: ladr %04x, hadr %02x, flags %02x, bcnt %04x, mcnt %04x\n",
891 sc->sc_dev.dv_xname,
892 rmd.rmd0, rmd.rmd1_hadr, rmd.rmd1_bits, rmd.rmd2, rmd.rmd3);
893 if (len >= sizeof(eh)) {
894 (*sc->sc_copyfrombuf)(sc, &eh, LE_RBUFADDR(sc, no), sizeof(eh));
895 printf("%s: dst %s", sc->sc_dev.dv_xname,
896 ether_sprintf(eh.ether_dhost));
897 printf(" src %s type %04x\n", ether_sprintf(eh.ether_shost),
898 ntohs(eh.ether_type));
899 }
900 }
901
902 void
903 xmit_print(sc, no)
904 struct le_softc *sc;
905 int no;
906 {
907 struct letmd tmd;
908 u_int16_t len;
909 struct ether_header eh;
910
911 (*sc->sc_copyfromdesc)(sc, &tmd, LE_TMDADDR(sc, no), sizeof(tmd));
912 len = -tmd.tmd2;
913 printf("%s: transmit buffer %d, len = %d\n", sc->sc_dev.dv_xname, no,
914 len);
915 printf("%s: status %04x\n", sc->sc_dev.dv_xname, lerdcsr(sc, LE_CSR0));
916 printf("%s: ladr %04x, hadr %02x, flags %02x, bcnt %04x, mcnt %04x\n",
917 sc->sc_dev.dv_xname,
918 tmd.tmd0, tmd.tmd1_hadr, tmd.tmd1_bits, tmd.tmd2, tmd.tmd3);
919 if (len >= sizeof(eh)) {
920 (*sc->sc_copyfrombuf)(sc, &eh, LE_TBUFADDR(sc, no), sizeof(eh));
921 printf("%s: dst %s", sc->sc_dev.dv_xname,
922 ether_sprintf(eh.ether_dhost));
923 printf(" src %s type %04x\n", ether_sprintf(eh.ether_shost),
924 ntohs(eh.ether_type));
925 }
926 }
927 #endif /* LEDEBUG */
928
929 /*
930 * Set up the logical address filter.
931 */
932 void
933 lesetladrf(ac, af)
934 struct arpcom *ac;
935 u_int16_t *af;
936 {
937 struct ifnet *ifp = &ac->ac_if;
938 struct ether_multi *enm;
939 register u_char *cp, c;
940 register u_int32_t crc;
941 register int i, len;
942 struct ether_multistep step;
943
944 /*
945 * Set up multicast address filter by passing all multicast addresses
946 * through a crc generator, and then using the high order 6 bits as an
947 * index into the 64 bit logical address filter. The high order bit
948 * selects the word, while the rest of the bits select the bit within
949 * the word.
950 */
951
952 if (ifp->if_flags & IFF_PROMISC)
953 goto allmulti;
954
955 af[0] = af[1] = af[2] = af[3] = 0x0000;
956 ETHER_FIRST_MULTI(step, ac, enm);
957 while (enm != NULL) {
958 if (ETHER_CMP(enm->enm_addrlo, enm->enm_addrhi)) {
959 /*
960 * We must listen to a range of multicast addresses.
961 * For now, just accept all multicasts, rather than
962 * trying to set only those filter bits needed to match
963 * the range. (At this time, the only use of address
964 * ranges is for IP multicast routing, for which the
965 * range is big enough to require all bits set.)
966 */
967 goto allmulti;
968 }
969
970 cp = enm->enm_addrlo;
971 crc = 0xffffffff;
972 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
973 c = *cp++;
974 for (i = 8; --i >= 0;) {
975 if ((crc & 0x01) ^ (c & 0x01)) {
976 crc >>= 1;
977 crc ^= 0xedb88320;
978 } else
979 crc >>= 1;
980 c >>= 1;
981 }
982 }
983 /* Just want the 6 most significant bits. */
984 crc >>= 26;
985
986 /* Set the corresponding bit in the filter. */
987 af[crc >> 4] |= 1 << (crc & 0xf);
988
989 ETHER_NEXT_MULTI(step, enm);
990 }
991 ifp->if_flags &= ~IFF_ALLMULTI;
992 return;
993
994 allmulti:
995 ifp->if_flags |= IFF_ALLMULTI;
996 af[0] = af[1] = af[2] = af[3] = 0xffff;
997 }
998
999
1000 /*
1001 * Routines for accessing the transmit and receive buffers.
1002 * The various CPU and adapter configurations supported by this
1003 * driver require three different access methods for buffers
1004 * and descriptors:
1005 * (1) contig (contiguous data; no padding),
1006 * (2) gap2 (two bytes of data followed by two bytes of padding),
1007 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1008 */
1009
1010 #ifdef LE_NEED_BUF_CONTIG
1011 /*
1012 * contig: contiguous data with no padding.
1013 *
1014 * Buffers may have any alignment.
1015 */
1016
1017 integrate void
1018 copytobuf_contig(sc, from, boff, len)
1019 struct le_softc *sc;
1020 void *from;
1021 int boff, len;
1022 {
1023 volatile caddr_t buf = sc->sc_mem;
1024
1025 /*
1026 * Just call bcopy() to do the work.
1027 */
1028 bcopy(from, buf + boff, len);
1029 }
1030
1031 integrate void
1032 copyfrombuf_contig(sc, to, boff, len)
1033 struct le_softc *sc;
1034 void *to;
1035 int boff, len;
1036 {
1037 volatile caddr_t buf = sc->sc_mem;
1038
1039 /*
1040 * Just call bcopy() to do the work.
1041 */
1042 bcopy(buf + boff, to, len);
1043 }
1044
1045 integrate void
1046 zerobuf_contig(sc, boff, len)
1047 struct le_softc *sc;
1048 int boff, len;
1049 {
1050 volatile caddr_t buf = sc->sc_mem;
1051
1052 /*
1053 * Just let bzero() do the work
1054 */
1055 bzero(buf + boff, len);
1056 }
1057 #endif /* LE_NEED_BUF_CONTIG */
1058
1059 #ifdef LE_NEED_BUF_GAP2
1060 /*
1061 * gap2: two bytes of data followed by two bytes of pad.
1062 *
1063 * Buffers must be 4-byte aligned. The code doesn't worry about
1064 * doing an extra byte.
1065 */
1066
1067 integrate void
1068 copytobuf_gap2(sc, fromv, boff, len)
1069 struct le_softc *sc;
1070 void *fromv;
1071 int boff;
1072 register int len;
1073 {
1074 volatile caddr_t buf = sc->sc_mem;
1075 register caddr_t from = fromv;
1076 register volatile u_int16_t *bptr;
1077
1078 if (boff & 0x1) {
1079 /* handle unaligned first byte */
1080 bptr = ((volatile u_int16_t *)buf) + (boff - 1);
1081 *bptr = (*from++ << 8) | (*bptr & 0xff);
1082 bptr += 2;
1083 len--;
1084 } else
1085 bptr = ((volatile u_int16_t *)buf) + boff;
1086 while (len > 1) {
1087 *bptr = (from[1] << 8) | (from[0] & 0xff);
1088 bptr += 2;
1089 from += 2;
1090 len -= 2;
1091 }
1092 if (len == 1)
1093 *bptr = (u_int16_t)*from;
1094 }
1095
1096 integrate void
1097 copyfrombuf_gap2(sc, tov, boff, len)
1098 struct le_softc *sc;
1099 void *tov;
1100 int boff, len;
1101 {
1102 volatile caddr_t buf = sc->sc_mem;
1103 register caddr_t to = tov;
1104 register volatile u_int16_t *bptr;
1105 register u_int16_t tmp;
1106
1107 if (boff & 0x1) {
1108 /* handle unaligned first byte */
1109 bptr = ((volatile u_int16_t *)buf) + (boff - 1);
1110 *to++ = (*bptr >> 8) & 0xff;
1111 bptr += 2;
1112 len--;
1113 } else
1114 bptr = ((volatile u_int16_t *)buf) + boff;
1115 while (len > 1) {
1116 tmp = *bptr;
1117 *to++ = tmp & 0xff;
1118 *to++ = (tmp >> 8) & 0xff;
1119 bptr += 2;
1120 len -= 2;
1121 }
1122 if (len == 1)
1123 *to = *bptr & 0xff;
1124 }
1125
1126 integrate void
1127 zerobuf_gap2(sc, boff, len)
1128 struct le_softc *sc;
1129 int boff, len;
1130 {
1131 volatile caddr_t buf = sc->sc_mem;
1132 register volatile u_int16_t *bptr;
1133
1134 if ((unsigned)boff & 0x1) {
1135 bptr = ((volatile u_int16_t *)buf) + (boff - 1);
1136 *bptr &= 0xff;
1137 bptr += 2;
1138 len--;
1139 } else
1140 bptr = ((volatile u_int16_t *)buf) + boff;
1141 while (len > 0) {
1142 *bptr = 0;
1143 bptr += 2;
1144 len -= 2;
1145 }
1146 }
1147 #endif /* LE_NEED_BUF_GAP2 */
1148
1149 #ifdef LE_NEED_BUF_GAP16
1150 /*
1151 * gap16: 16 bytes of data followed by 16 bytes of pad.
1152 *
1153 * Buffers must be 32-byte aligned.
1154 */
1155
1156 integrate void
1157 copytobuf_gap16(sc, fromv, boff, len)
1158 struct le_softc *sc;
1159 void *fromv;
1160 int boff;
1161 register int len;
1162 {
1163 volatile caddr_t buf = sc->sc_mem;
1164 register caddr_t from = fromv;
1165 register caddr_t bptr;
1166 register int xfer;
1167
1168 bptr = buf + ((boff << 1) & ~0x1f);
1169 boff &= 0xf;
1170 xfer = min(len, 16 - boff);
1171 while (len > 0) {
1172 bcopy(from, bptr + boff, xfer);
1173 from += xfer;
1174 bptr += 32;
1175 boff = 0;
1176 len -= xfer;
1177 xfer = min(len, 16);
1178 }
1179 }
1180
1181 integrate void
1182 copyfrombuf_gap16(sc, tov, boff, len)
1183 struct le_softc *sc;
1184 void *tov;
1185 int boff, len;
1186 {
1187 volatile caddr_t buf = sc->sc_mem;
1188 register caddr_t to = tov;
1189 register caddr_t bptr;
1190 register int xfer;
1191
1192 bptr = buf + ((boff << 1) & ~0x1f);
1193 boff &= 0xf;
1194 xfer = min(len, 16 - boff);
1195 while (len > 0) {
1196 bcopy(bptr + boff, to, xfer);
1197 to += xfer;
1198 bptr += 32;
1199 boff = 0;
1200 len -= xfer;
1201 xfer = min(len, 16);
1202 }
1203 }
1204
1205 integrate void
1206 zerobuf_gap16(sc, boff, len)
1207 struct le_softc *sc;
1208 int boff, len;
1209 {
1210 volatile caddr_t buf = sc->sc_mem;
1211 register caddr_t bptr;
1212 register int xfer;
1213
1214 bptr = buf + ((boff << 1) & ~0x1f);
1215 boff &= 0xf;
1216 xfer = min(len, 16 - boff);
1217 while (len > 0) {
1218 bzero(bptr + boff, xfer);
1219 bptr += 32;
1220 boff = 0;
1221 len -= xfer;
1222 xfer = min(len, 16);
1223 }
1224 }
1225 #endif /* LE_NEED_BUF_GAP16 */
1226