am7990.c revision 1.5 1 /* $NetBSD: am7990.c,v 1.5 1995/12/10 08:55:07 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1995 Charles M. Hannum. All rights reserved.
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Ralph Campbell and Rick Macklem.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * @(#)if_le.c 8.2 (Berkeley) 11/16/93
40 */
41
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44
45 #ifdef INET
46 #include <netinet/in_systm.h>
47 #include <netinet/in_var.h>
48 #include <netinet/ip.h>
49 #endif
50
51 #ifdef NS
52 #include <netns/ns.h>
53 #include <netns/ns_if.h>
54 #endif
55
56 #if defined(CCITT) && defined(LLC)
57 #include <sys/socketvar.h>
58 #include <netccitt/x25.h>
59 extern llc_ctlinput(), cons_rtrequest();
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #include <net/bpfdesc.h>
65 #endif
66
67 #ifdef LEDEBUG
68 void recv_print __P((struct le_softc *, int));
69 void xmit_print __P((struct le_softc *, int));
70 #endif
71
72 void
73 leconfig(sc)
74 struct le_softc *sc;
75 {
76 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
77 int mem;
78
79 /* Make sure the chip is stopped. */
80 lestop(sc);
81
82 /* Initialize ifnet structure. */
83 ifp->if_unit = sc->sc_dev.dv_unit;
84 ifp->if_start = lestart;
85 ifp->if_ioctl = leioctl;
86 ifp->if_watchdog = lewatchdog;
87 ifp->if_flags =
88 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
89 #ifdef LANCE_REVC_BUG
90 ifp->if_flags &= ~IFF_MULTICAST;
91 #endif
92
93 /* Attach the interface. */
94 if_attach(ifp);
95 ether_ifattach(ifp);
96
97 #if NBPFILTER > 0
98 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
99 #endif
100
101 switch (sc->sc_memsize) {
102 case 8192:
103 sc->sc_nrbuf = 4;
104 sc->sc_ntbuf = 1;
105 break;
106 case 16384:
107 sc->sc_nrbuf = 8;
108 sc->sc_ntbuf = 2;
109 break;
110 case 32768:
111 sc->sc_nrbuf = 16;
112 sc->sc_ntbuf = 4;
113 break;
114 case 65536:
115 sc->sc_nrbuf = 32;
116 sc->sc_ntbuf = 8;
117 break;
118 default:
119 panic("leconfig: weird memory size");
120 }
121
122 printf(": address %s\n%s: %d receive buffers, %d transmit buffers\n",
123 ether_sprintf(sc->sc_arpcom.ac_enaddr),
124 sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
125
126 mem = 0;
127 sc->sc_initaddr = mem;
128 mem += sizeof(struct leinit);
129 sc->sc_rmdaddr = mem;
130 mem += sizeof(struct lermd) * sc->sc_nrbuf;
131 sc->sc_tmdaddr = mem;
132 mem += sizeof(struct letmd) * sc->sc_ntbuf;
133 sc->sc_rbufaddr = mem;
134 mem += LEBLEN * sc->sc_nrbuf;
135 sc->sc_tbufaddr = mem;
136 mem += LEBLEN * sc->sc_ntbuf;
137 #ifdef notyet
138 if (mem > ...)
139 panic(...);
140 #endif
141 }
142
143 void
144 lereset(sc)
145 struct le_softc *sc;
146 {
147 int s;
148
149 s = splimp();
150 leinit(sc);
151 splx(s);
152 }
153
154 void
155 lewatchdog(unit)
156 short unit;
157 {
158 struct le_softc *sc = LE_SOFTC(unit);
159
160 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
161 ++sc->sc_arpcom.ac_if.if_oerrors;
162
163 lereset(sc);
164 }
165
166 /*
167 * Set up the initialization block and the descriptor rings.
168 */
169 void
170 lememinit(sc)
171 register struct le_softc *sc;
172 {
173 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
174 u_long a;
175 int bix;
176 struct leinit init;
177 struct lermd rmd;
178 struct letmd tmd;
179
180 #if NBPFILTER > 0
181 if (ifp->if_flags & IFF_PROMISC)
182 init.init_mode = LE_MODE_NORMAL | LE_MODE_PROM;
183 else
184 #endif
185 init.init_mode = LE_MODE_NORMAL;
186 init.init_padr[0] =
187 (sc->sc_arpcom.ac_enaddr[1] << 8) | sc->sc_arpcom.ac_enaddr[0];
188 init.init_padr[1] =
189 (sc->sc_arpcom.ac_enaddr[3] << 8) | sc->sc_arpcom.ac_enaddr[2];
190 init.init_padr[2] =
191 (sc->sc_arpcom.ac_enaddr[5] << 8) | sc->sc_arpcom.ac_enaddr[4];
192 lesetladrf(&sc->sc_arpcom, init.init_ladrf);
193
194 sc->sc_last_rd = 0;
195 sc->sc_first_td = sc->sc_last_td = sc->sc_no_td = 0;
196
197 a = sc->sc_addr + LE_RMDADDR(sc, 0);
198 init.init_rdra = a;
199 init.init_rlen = (a >> 16) | ((ffs(sc->sc_nrbuf) - 1) << 13);
200
201 a = sc->sc_addr + LE_TMDADDR(sc, 0);
202 init.init_tdra = a;
203 init.init_tlen = (a >> 16) | ((ffs(sc->sc_ntbuf) - 1) << 13);
204
205 (*sc->sc_copytodesc)(sc, &init, LE_INITADDR(sc), sizeof(init));
206
207 /*
208 * Set up receive ring descriptors.
209 */
210 for (bix = 0; bix < sc->sc_nrbuf; bix++) {
211 a = sc->sc_addr + LE_RBUFADDR(sc, bix);
212 rmd.rmd0 = a;
213 rmd.rmd1_hadr = a >> 16;
214 rmd.rmd1_bits = LE_R1_OWN;
215 rmd.rmd2 = -LEBLEN | LE_XMD2_ONES;
216 rmd.rmd3 = 0;
217 (*sc->sc_copytodesc)(sc, &rmd, LE_RMDADDR(sc, bix),
218 sizeof(rmd));
219 }
220
221 /*
222 * Set up transmit ring descriptors.
223 */
224 for (bix = 0; bix < sc->sc_ntbuf; bix++) {
225 a = sc->sc_addr + LE_TBUFADDR(sc, bix);
226 tmd.tmd0 = a;
227 tmd.tmd1_hadr = a >> 16;
228 tmd.tmd1_bits = 0;
229 tmd.tmd2 = 0 | LE_XMD2_ONES;
230 tmd.tmd3 = 0;
231 (*sc->sc_copytodesc)(sc, &tmd, LE_TMDADDR(sc, bix),
232 sizeof(tmd));
233 }
234 }
235
236 void
237 lestop(sc)
238 struct le_softc *sc;
239 {
240
241 lewrcsr(sc, LE_CSR0, LE_C0_STOP);
242 }
243
244 /*
245 * Initialization of interface; set up initialization block
246 * and transmit/receive descriptor rings.
247 */
248 void
249 leinit(sc)
250 register struct le_softc *sc;
251 {
252 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
253 register int timo;
254 u_long a;
255
256 lewrcsr(sc, LE_CSR0, LE_C0_STOP);
257 LE_DELAY(100);
258
259 /* Set the correct byte swapping mode, etc. */
260 lewrcsr(sc, LE_CSR3, sc->sc_conf3);
261
262 /* Set up LANCE init block. */
263 lememinit(sc);
264
265 /* Give LANCE the physical address of its init block. */
266 a = sc->sc_addr + LE_INITADDR(sc);
267 lewrcsr(sc, LE_CSR1, a);
268 lewrcsr(sc, LE_CSR2, a >> 16);
269
270 /* Try to initialize the LANCE. */
271 LE_DELAY(100);
272 lewrcsr(sc, LE_CSR0, LE_C0_INIT);
273
274 /* Wait for initialization to finish. */
275 for (timo = 100000; timo; timo--)
276 if (lerdcsr(sc, LE_CSR0) & LE_C0_IDON)
277 break;
278
279 if (lerdcsr(sc, LE_CSR0) & LE_C0_IDON) {
280 /* Start the LANCE. */
281 lewrcsr(sc, LE_CSR0, LE_C0_INEA | LE_C0_STRT | LE_C0_IDON);
282 ifp->if_flags |= IFF_RUNNING;
283 ifp->if_flags &= ~IFF_OACTIVE;
284 ifp->if_timer = 0;
285 lestart(ifp);
286 } else
287 printf("%s: card failed to initialize\n", sc->sc_dev.dv_xname);
288 }
289
290 /*
291 * Routine to copy from mbuf chain to transmit buffer in
292 * network buffer memory.
293 */
294 integrate int
295 leput(sc, boff, m)
296 struct le_softc *sc;
297 int boff;
298 register struct mbuf *m;
299 {
300 register struct mbuf *n;
301 register int len, tlen = 0;
302
303 for (; m; m = n) {
304 len = m->m_len;
305 if (len == 0) {
306 MFREE(m, n);
307 continue;
308 }
309 (*sc->sc_copytobuf)(sc, mtod(m, caddr_t), boff, len);
310 boff += len;
311 tlen += len;
312 MFREE(m, n);
313 }
314 if (tlen < LEMINSIZE) {
315 (*sc->sc_zerobuf)(sc, boff, LEMINSIZE - tlen);
316 tlen = LEMINSIZE;
317 }
318 return (tlen);
319 }
320
321 /*
322 * Pull data off an interface.
323 * Len is length of data, with local net header stripped.
324 * We copy the data into mbufs. When full cluster sized units are present
325 * we copy into clusters.
326 */
327 integrate struct mbuf *
328 leget(sc, boff, totlen)
329 struct le_softc *sc;
330 int boff, totlen;
331 {
332 register struct mbuf *m;
333 struct mbuf *top, **mp;
334 int len, pad;
335
336 MGETHDR(m, M_DONTWAIT, MT_DATA);
337 if (m == 0)
338 return (0);
339 m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
340 m->m_pkthdr.len = totlen;
341 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
342 m->m_data += pad;
343 len = MHLEN - pad;
344 top = 0;
345 mp = ⊤
346
347 while (totlen > 0) {
348 if (top) {
349 MGET(m, M_DONTWAIT, MT_DATA);
350 if (m == 0) {
351 m_freem(top);
352 return 0;
353 }
354 len = MLEN;
355 }
356 if (top && totlen >= MINCLSIZE) {
357 MCLGET(m, M_DONTWAIT);
358 if (m->m_flags & M_EXT)
359 len = MCLBYTES;
360 }
361 m->m_len = len = min(totlen, len);
362 (*sc->sc_copyfrombuf)(sc, mtod(m, caddr_t), boff, len);
363 boff += len;
364 totlen -= len;
365 *mp = m;
366 mp = &m->m_next;
367 }
368
369 return (top);
370 }
371
372 /*
373 * Pass a packet to the higher levels.
374 */
375 integrate void
376 leread(sc, boff, len)
377 register struct le_softc *sc;
378 int boff, len;
379 {
380 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
381 struct mbuf *m;
382 struct ether_header *eh;
383
384 if (len <= sizeof(struct ether_header) ||
385 len > ETHERMTU + sizeof(struct ether_header)) {
386 printf("%s: invalid packet size %d; dropping\n",
387 sc->sc_dev.dv_xname, len);
388 ifp->if_ierrors++;
389 return;
390 }
391
392 /* Pull packet off interface. */
393 m = leget(sc, boff, len);
394 if (m == 0) {
395 ifp->if_ierrors++;
396 return;
397 }
398
399 ifp->if_ipackets++;
400
401 /* We assume that the header fit entirely in one mbuf. */
402 eh = mtod(m, struct ether_header *);
403
404 #if NBPFILTER > 0
405 /*
406 * Check if there's a BPF listener on this interface.
407 * If so, hand off the raw packet to BPF.
408 */
409 if (ifp->if_bpf) {
410 bpf_mtap(ifp->if_bpf, m);
411
412 #ifndef LANCE_REVC_BUG
413 /*
414 * Note that the interface cannot be in promiscuous mode if
415 * there are no BPF listeners. And if we are in promiscuous
416 * mode, we have to check if this packet is really ours.
417 */
418 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
419 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
420 bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
421 sizeof(eh->ether_dhost)) != 0) {
422 m_freem(m);
423 return;
424 }
425 #endif
426 }
427 #endif
428
429 #ifdef LANCE_REVC_BUG
430 if (bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
431 sizeof(eh->ether_dhost)) != 0 &&
432 bcmp(eh->ether_dhost, etherbroadcastaddr,
433 sizeof(eh->ether_dhost)) != 0) {
434 m_freem(m);
435 return;
436 }
437 #endif
438
439 /* Pass the packet up, with the ether header sort-of removed. */
440 m_adj(m, sizeof(struct ether_header));
441 ether_input(ifp, eh, m);
442 }
443
444 integrate void
445 lerint(sc)
446 struct le_softc *sc;
447 {
448 register int bix;
449 int rp;
450 struct lermd rmd;
451
452 bix = sc->sc_last_rd;
453
454 /* Process all buffers with valid data. */
455 for (;;) {
456 rp = LE_RMDADDR(sc, bix);
457 (*sc->sc_copyfromdesc)(sc, &rmd, rp, sizeof(rmd));
458
459 if (rmd.rmd1_bits & LE_R1_OWN)
460 break;
461
462 if (rmd.rmd1_bits & LE_R1_ERR) {
463 if (rmd.rmd1_bits & LE_R1_ENP) {
464 if ((rmd.rmd1_bits & LE_R1_OFLO) == 0) {
465 if (rmd.rmd1_bits & LE_R1_FRAM)
466 printf("%s: framing error\n",
467 sc->sc_dev.dv_xname);
468 if (rmd.rmd1_bits & LE_R1_CRC)
469 printf("%s: crc mismatch\n",
470 sc->sc_dev.dv_xname);
471 }
472 } else {
473 if (rmd.rmd1_bits & LE_R1_OFLO)
474 printf("%s: overflow\n",
475 sc->sc_dev.dv_xname);
476 }
477 if (rmd.rmd1_bits & LE_R1_BUFF)
478 printf("%s: receive buffer error\n",
479 sc->sc_dev.dv_xname);
480 } else if (rmd.rmd1_bits & (LE_R1_STP | LE_R1_ENP) !=
481 (LE_R1_STP | LE_R1_ENP)) {
482 printf("%s: dropping chained buffer\n",
483 sc->sc_dev.dv_xname);
484 } else {
485 #ifdef LEDEBUG
486 if (sc->sc_debug)
487 recv_print(sc, sc->sc_last_rd);
488 #endif
489 leread(sc, LE_RBUFADDR(sc, bix), (int)rmd.rmd3 - 4);
490 }
491
492 rmd.rmd1_bits = LE_R1_OWN;
493 rmd.rmd2 = -LEBLEN | LE_XMD2_ONES;
494 rmd.rmd3 = 0;
495 (*sc->sc_copytodesc)(sc, &rmd, rp, sizeof(rmd));
496
497 #ifdef LEDEBUG
498 if (sc->sc_debug)
499 printf("sc->sc_last_rd = %x, rmd = %x\n",
500 sc->sc_last_rd, rmd);
501 #endif
502
503 if (++bix == sc->sc_nrbuf)
504 bix = 0;
505 }
506
507 sc->sc_last_rd = bix;
508 }
509
510 integrate void
511 letint(sc)
512 register struct le_softc *sc;
513 {
514 register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
515 register int bix;
516 struct letmd tmd;
517
518 bix = sc->sc_first_td;
519
520 for (;;) {
521 if (sc->sc_no_td <= 0)
522 break;
523
524 #ifdef LEDEBUG
525 if (sc->sc_debug)
526 printf("trans tmd = %x\n", tmd);
527 #endif
528
529 (*sc->sc_copyfromdesc)(sc, &tmd, LE_TMDADDR(sc, bix),
530 sizeof(tmd));
531
532 if (tmd.tmd1_bits & LE_T1_OWN)
533 break;
534
535 ifp->if_flags &= ~IFF_OACTIVE;
536
537 if (tmd.tmd1_bits & LE_T1_ERR) {
538 if (tmd.tmd3 & LE_T3_BUFF)
539 printf("%s: transmit buffer error\n", sc->sc_dev.dv_xname);
540 else if (tmd.tmd3 & LE_T3_UFLO)
541 printf("%s: underflow\n", sc->sc_dev.dv_xname);
542 if (tmd.tmd3 & (LE_T3_BUFF | LE_T3_UFLO)) {
543 lereset(sc);
544 return;
545 }
546 if (tmd.tmd3 & LE_T3_LCAR)
547 printf("%s: lost carrier\n", sc->sc_dev.dv_xname);
548 if (tmd.tmd3 & LE_T3_LCOL)
549 ifp->if_collisions++;
550 if (tmd.tmd3 & LE_T3_RTRY) {
551 printf("%s: excessive collisions, tdr %d\n",
552 sc->sc_dev.dv_xname, tmd.tmd3 & LE_T3_TDR_MASK);
553 ifp->if_collisions += 16;
554 }
555 ifp->if_oerrors++;
556 } else {
557 if (tmd.tmd1_bits & LE_T1_ONE)
558 ifp->if_collisions++;
559 else if (tmd.tmd1_bits & LE_T1_MORE)
560 /* Real number is unknown. */
561 ifp->if_collisions += 2;
562 ifp->if_opackets++;
563 }
564
565 if (++bix == sc->sc_ntbuf)
566 bix = 0;
567
568 --sc->sc_no_td;
569 }
570
571 sc->sc_first_td = bix;
572
573 lestart(ifp);
574
575 if (sc->sc_no_td == 0)
576 ifp->if_timer = 0;
577 }
578
579 /*
580 * Controller interrupt.
581 */
582 #ifdef LEINTR_UNIT
583 int
584 leintr(unit)
585 int unit;
586 {
587 register struct le_softc *sc = LE_SOFTC(unit);
588 #else
589 int
590 leintr(arg)
591 register void *arg;
592 {
593 register struct le_softc *sc = arg;
594 #endif
595 register u_int16_t isr;
596
597 isr = lerdcsr(sc, LE_CSR0);
598 #ifdef LEDEBUG
599 if (sc->sc_debug)
600 printf("%s: leintr entering with isr=%04x\n",
601 sc->sc_dev.dv_xname, isr);
602 #endif
603 if ((isr & LE_C0_INTR) == 0)
604 return (0);
605
606 lewrcsr(sc, LE_CSR0,
607 isr & (LE_C0_INEA | LE_C0_BABL | LE_C0_MISS | LE_C0_MERR |
608 LE_C0_RINT | LE_C0_TINT | LE_C0_IDON));
609 if (isr & LE_C0_ERR) {
610 if (isr & LE_C0_BABL) {
611 printf("%s: babble\n", sc->sc_dev.dv_xname);
612 sc->sc_arpcom.ac_if.if_oerrors++;
613 }
614 #if 0
615 if (isr & LE_C0_CERR) {
616 printf("%s: collision error\n", sc->sc_dev.dv_xname);
617 sc->sc_arpcom.ac_if.if_collisions++;
618 }
619 #endif
620 if (isr & LE_C0_MISS)
621 sc->sc_arpcom.ac_if.if_ierrors++;
622 if (isr & LE_C0_MERR) {
623 printf("%s: memory error\n", sc->sc_dev.dv_xname);
624 lereset(sc);
625 return (1);
626 }
627 }
628
629 if ((isr & LE_C0_RXON) == 0) {
630 printf("%s: receiver disabled\n", sc->sc_dev.dv_xname);
631 sc->sc_arpcom.ac_if.if_ierrors++;
632 lereset(sc);
633 return (1);
634 }
635 if ((isr & LE_C0_TXON) == 0) {
636 printf("%s: transmitter disabled\n", sc->sc_dev.dv_xname);
637 sc->sc_arpcom.ac_if.if_oerrors++;
638 lereset(sc);
639 return (1);
640 }
641
642 if (isr & LE_C0_RINT)
643 lerint(sc);
644 if (isr & LE_C0_TINT)
645 letint(sc);
646
647 return (1);
648 }
649
650 /*
651 * Setup output on interface.
652 * Get another datagram to send off of the interface queue, and map it to the
653 * interface before starting the output.
654 * Called only at splimp or interrupt level.
655 */
656 void
657 lestart(ifp)
658 register struct ifnet *ifp;
659 {
660 register struct le_softc *sc = LE_SOFTC(ifp->if_unit);
661 register int bix;
662 register struct mbuf *m;
663 struct letmd tmd;
664 int rp;
665 int len;
666
667 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
668 return;
669
670 bix = sc->sc_last_td;
671
672 for (;;) {
673 rp = LE_TMDADDR(sc, bix);
674 (*sc->sc_copyfromdesc)(sc, &tmd, rp, sizeof(tmd));
675
676 if (tmd.tmd1_bits & LE_T1_OWN) {
677 ifp->if_flags |= IFF_OACTIVE;
678 printf("missing buffer, no_td = %d, last_td = %d\n",
679 sc->sc_no_td, sc->sc_last_td);
680 }
681
682 IF_DEQUEUE(&ifp->if_snd, m);
683 if (m == 0)
684 break;
685
686 #if NBPFILTER > 0
687 /*
688 * If BPF is listening on this interface, let it see the packet
689 * before we commit it to the wire.
690 */
691 if (ifp->if_bpf)
692 bpf_mtap(ifp->if_bpf, m);
693 #endif
694
695 /*
696 * Copy the mbuf chain into the transmit buffer.
697 */
698 len = leput(sc, LE_TBUFADDR(sc, bix), m);
699
700 #ifdef LEDEBUG
701 if (len > ETHERMTU + sizeof(struct ether_header))
702 printf("packet length %d\n", len);
703 #endif
704
705 ifp->if_timer = 5;
706
707 /*
708 * Init transmit registers, and set transmit start flag.
709 */
710 tmd.tmd1_bits = LE_T1_OWN | LE_T1_STP | LE_T1_ENP;
711 tmd.tmd2 = -len | LE_XMD2_ONES;
712 tmd.tmd3 = 0;
713
714 (*sc->sc_copytodesc)(sc, &tmd, rp, sizeof(tmd));
715
716 #ifdef LEDEBUG
717 if (sc->sc_debug)
718 xmit_print(sc, sc->sc_last_td);
719 #endif
720
721 lewrcsr(sc, LE_CSR0, LE_C0_INEA | LE_C0_TDMD);
722
723 if (++bix == sc->sc_ntbuf)
724 bix = 0;
725
726 if (++sc->sc_no_td == sc->sc_ntbuf) {
727 ifp->if_flags |= IFF_OACTIVE;
728 break;
729 }
730
731 }
732
733 sc->sc_last_td = bix;
734 }
735
736 /*
737 * Process an ioctl request.
738 */
739 int
740 leioctl(ifp, cmd, data)
741 register struct ifnet *ifp;
742 u_long cmd;
743 caddr_t data;
744 {
745 struct le_softc *sc = LE_SOFTC(ifp->if_unit);
746 struct ifaddr *ifa = (struct ifaddr *)data;
747 struct ifreq *ifr = (struct ifreq *)data;
748 int s, error = 0;
749
750 s = splimp();
751
752 switch (cmd) {
753
754 case SIOCSIFADDR:
755 ifp->if_flags |= IFF_UP;
756
757 switch (ifa->ifa_addr->sa_family) {
758 #ifdef INET
759 case AF_INET:
760 leinit(sc);
761 arp_ifinit(&sc->sc_arpcom, ifa);
762 break;
763 #endif
764 #ifdef NS
765 case AF_NS:
766 {
767 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
768
769 if (ns_nullhost(*ina))
770 ina->x_host =
771 *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
772 else
773 bcopy(ina->x_host.c_host,
774 sc->sc_arpcom.ac_enaddr,
775 sizeof(sc->sc_arpcom.ac_enaddr));
776 /* Set new address. */
777 leinit(sc);
778 break;
779 }
780 #endif
781 default:
782 leinit(sc);
783 break;
784 }
785 break;
786
787 #if defined(CCITT) && defined(LLC)
788 case SIOCSIFCONF_X25:
789 ifp->if_flags |= IFF_UP;
790 ifa->ifa_rtrequest = (void (*)())cons_rtrequest; /* XXX */
791 error = x25_llcglue(PRC_IFUP, ifa->ifa_addr);
792 if (error == 0)
793 leinit(sc);
794 break;
795 #endif /* CCITT && LLC */
796
797 case SIOCSIFFLAGS:
798 if ((ifp->if_flags & IFF_UP) == 0 &&
799 (ifp->if_flags & IFF_RUNNING) != 0) {
800 /*
801 * If interface is marked down and it is running, then
802 * stop it.
803 */
804 lestop(sc);
805 ifp->if_flags &= ~IFF_RUNNING;
806 } else if ((ifp->if_flags & IFF_UP) != 0 &&
807 (ifp->if_flags & IFF_RUNNING) == 0) {
808 /*
809 * If interface is marked up and it is stopped, then
810 * start it.
811 */
812 leinit(sc);
813 } else {
814 /*
815 * Reset the interface to pick up changes in any other
816 * flags that affect hardware registers.
817 */
818 /*lestop(sc);*/
819 leinit(sc);
820 }
821 #ifdef LEDEBUG
822 if (ifp->if_flags & IFF_DEBUG)
823 sc->sc_debug = 1;
824 else
825 sc->sc_debug = 0;
826 #endif
827 break;
828
829 case SIOCADDMULTI:
830 case SIOCDELMULTI:
831 error = (cmd == SIOCADDMULTI) ?
832 ether_addmulti(ifr, &sc->sc_arpcom) :
833 ether_delmulti(ifr, &sc->sc_arpcom);
834
835 if (error == ENETRESET) {
836 /*
837 * Multicast list has changed; set the hardware filter
838 * accordingly.
839 */
840 lereset(sc);
841 error = 0;
842 }
843 break;
844
845 default:
846 error = EINVAL;
847 break;
848 }
849
850 splx(s);
851 return (error);
852 }
853
854 #ifdef LEDEBUG
855 void
856 recv_print(sc, no)
857 struct le_softc *sc;
858 int no;
859 {
860 struct lermd rmd;
861 u_int16_t len;
862 struct ether_header eh;
863
864 (*sc->sc_copyfromdesc)(sc, &rmd, LE_RMDADDR(sc, no), sizeof(rmd));
865 len = rmd.rmd3;
866 printf("%s: receive buffer %d, len = %d\n", sc->sc_dev.dv_xname, no,
867 len);
868 printf("%s: status %04x\n", sc->sc_dev.dv_xname, lerdcsr(sc, LE_CSR0));
869 printf("%s: ladr %04x, hadr %02x, flags %02x, bcnt %04x, mcnt %04x\n",
870 sc->sc_dev.dv_xname,
871 rmd.rmd0, rmd.rmd1_hadr, rmd.rmd1_bits, rmd.rmd2, rmd.rmd3);
872 if (len >= sizeof(eh)) {
873 (*sc->sc_copyfrombuf)(sc, &eh, LE_RBUFADDR(sc, no), sizeof(eh));
874 printf("%s: dst %s", ether_sprintf(eh.ether_dhost));
875 printf(" src %s type %04x\n", ether_sprintf(eh.ether_shost),
876 ntohs(eh.ether_type));
877 }
878 }
879
880 void
881 xmit_print(sc, no)
882 struct le_softc *sc;
883 int no;
884 {
885 struct letmd tmd;
886 u_int16_t len;
887 struct ether_header eh;
888
889 (*sc->sc_copyfromdesc)(sc, &tmd, LE_TMDADDR(sc, no), sizeof(tmd));
890 len = -tmd.tmd2;
891 printf("%s: transmit buffer %d, len = %d\n", sc->sc_dev.dv_xname, no,
892 len);
893 printf("%s: status %04x\n", sc->sc_dev.dv_xname, lerdcsr(sc, LE_CSR0));
894 printf("%s: ladr %04x, hadr %02x, flags %02x, bcnt %04x, mcnt %04x\n",
895 sc->sc_dev.dv_xname,
896 tmd.tmd0, tmd.tmd1_hadr, tmd.tmd1_bits, tmd.tmd2, tmd.tmd3);
897 if (len >= sizeof(eh)) {
898 (*sc->sc_copyfrombuf)(sc, &eh, LE_TBUFADDR(sc, no), sizeof(eh));
899 printf("%s: dst %s", ether_sprintf(eh.ether_dhost));
900 printf(" src %s type %04x\n", ether_sprintf(eh.ether_shost),
901 ntohs(eh.ether_type));
902 }
903 }
904 #endif /* LEDEBUG */
905
906 /*
907 * Set up the logical address filter.
908 */
909 void
910 lesetladrf(ac, af)
911 struct arpcom *ac;
912 u_int16_t *af;
913 {
914 struct ifnet *ifp = &ac->ac_if;
915 struct ether_multi *enm;
916 register u_char *cp, c;
917 register u_int32_t crc;
918 register int i, len;
919 struct ether_multistep step;
920
921 /*
922 * Set up multicast address filter by passing all multicast addresses
923 * through a crc generator, and then using the high order 6 bits as an
924 * index into the 64 bit logical address filter. The high order bit
925 * selects the word, while the rest of the bits select the bit within
926 * the word.
927 */
928
929 if (ifp->if_flags & IFF_PROMISC)
930 goto allmulti;
931
932 af[0] = af[1] = af[2] = af[3] = 0x0000;
933 ETHER_FIRST_MULTI(step, ac, enm);
934 while (enm != NULL) {
935 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
936 sizeof(enm->enm_addrlo)) != 0) {
937 /*
938 * We must listen to a range of multicast addresses.
939 * For now, just accept all multicasts, rather than
940 * trying to set only those filter bits needed to match
941 * the range. (At this time, the only use of address
942 * ranges is for IP multicast routing, for which the
943 * range is big enough to require all bits set.)
944 */
945 goto allmulti;
946 }
947
948 cp = enm->enm_addrlo;
949 crc = 0xffffffff;
950 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
951 c = *cp++;
952 for (i = 8; --i >= 0;) {
953 if ((crc & 0x01) ^ (c & 0x01)) {
954 crc >>= 1;
955 crc ^= 0xedb88320;
956 } else
957 crc >>= 1;
958 c >>= 1;
959 }
960 }
961 /* Just want the 6 most significant bits. */
962 crc >>= 26;
963
964 /* Set the corresponding bit in the filter. */
965 af[crc >> 4] |= 1 << (crc & 0xf);
966
967 ETHER_NEXT_MULTI(step, enm);
968 }
969 ifp->if_flags &= ~IFF_ALLMULTI;
970 return;
971
972 allmulti:
973 ifp->if_flags |= IFF_ALLMULTI;
974 af[0] = af[1] = af[2] = af[3] = 0xffff;
975 }
976
977
978 /*
979 * Routines for accessing the transmit and receive buffers.
980 * The various CPU and adapter configurations supported by this
981 * driver require three different access methods for buffers
982 * and descriptors:
983 * (1) contig (contiguous data; no padding),
984 * (2) gap2 (two bytes of data followed by two bytes of padding),
985 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
986 */
987
988 #ifdef LE_NEED_BUF_CONTIG
989 /*
990 * contig: contiguous data with no padding.
991 *
992 * Buffers may have any alignment.
993 */
994
995 integrate void
996 copytobuf_contig(sc, from, boff, len)
997 struct le_softc *sc;
998 void *from;
999 int boff, len;
1000 {
1001 volatile caddr_t buf = sc->sc_mem;
1002
1003 /*
1004 * Just call bcopy() to do the work.
1005 */
1006 bcopy(from, buf + boff, len);
1007 }
1008
1009 integrate void
1010 copyfrombuf_contig(sc, to, boff, len)
1011 struct le_softc *sc;
1012 void *to;
1013 int boff, len;
1014 {
1015 volatile caddr_t buf = sc->sc_mem;
1016
1017 /*
1018 * Just call bcopy() to do the work.
1019 */
1020 bcopy(buf + boff, to, len);
1021 }
1022
1023 integrate void
1024 zerobuf_contig(sc, boff, len)
1025 struct le_softc *sc;
1026 int boff, len;
1027 {
1028 volatile caddr_t buf = sc->sc_mem;
1029
1030 /*
1031 * Just let bzero() do the work
1032 */
1033 bzero(buf + boff, len);
1034 }
1035 #endif /* LE_NEED_BUF_CONTIG */
1036
1037 #ifdef LE_NEED_BUF_GAP2
1038 /*
1039 * gap2: two bytes of data followed by two bytes of pad.
1040 *
1041 * Buffers must be 4-byte aligned. The code doesn't worry about
1042 * doing an extra byte.
1043 */
1044
1045 integrate void
1046 copytobuf_gap2(sc, fromv, boff, len)
1047 struct le_softc *sc;
1048 void *fromv;
1049 int boff;
1050 register int len;
1051 {
1052 volatile caddr_t buf = sc->sc_mem;
1053 register caddr_t from = fromv;
1054 register volatile u_int16_t *bptr;
1055 register int xfer;
1056
1057 if (boff & 0x1) {
1058 /* handle unaligned first byte */
1059 bptr = ((volatile u_int16_t *)buf) + (boff - 1);
1060 *bptr = (*from++ << 8) | (*bptr & 0xff);
1061 bptr += 2;
1062 len--;
1063 } else
1064 bptr = ((volatile u_int16_t *)buf) + boff;
1065 while (len > 1) {
1066 *bptr = (from[1] << 8) | (from[0] & 0xff);
1067 bptr += 2;
1068 from += 2;
1069 len -= 2;
1070 }
1071 if (len == 1)
1072 *bptr = (u_int16_t)*from;
1073 }
1074
1075 integrate void
1076 copyfrombuf_gap2(sc, tov, boff, len)
1077 struct le_softc *sc;
1078 void *tov;
1079 int boff, len;
1080 {
1081 volatile caddr_t buf = sc->sc_mem;
1082 register caddr_t to = tov;
1083 register volatile u_int16_t *bptr;
1084 register u_int16_t tmp;
1085 register int xfer;
1086
1087 if (boff & 0x1) {
1088 /* handle unaligned first byte */
1089 bptr = ((volatile u_int16_t *)buf) + (boff - 1);
1090 *to++ = (*bptr >> 8) & 0xff;
1091 bptr += 2;
1092 len--;
1093 } else
1094 bptr = ((volatile u_int16_t *)buf) + boff;
1095 while (len > 1) {
1096 tmp = *bptr;
1097 *to++ = tmp & 0xff;
1098 *to++ = (tmp >> 8) & 0xff;
1099 bptr += 2;
1100 len -= 2;
1101 }
1102 if (len == 1)
1103 *to = *bptr & 0xff;
1104 }
1105
1106 integrate void
1107 zerobuf_gap2(sc, boff, len)
1108 struct le_softc *sc;
1109 int boff, len;
1110 {
1111 volatile caddr_t buf = sc->sc_mem;
1112 register volatile u_int16_t *bptr;
1113
1114 if ((unsigned)boff & 0x1) {
1115 bptr = ((volatile u_int16_t *)buf) + (boff - 1);
1116 *bptr &= 0xff;
1117 bptr += 2;
1118 len--;
1119 } else
1120 bptr = ((volatile u_int16_t *)buf) + boff;
1121 while (len > 0) {
1122 *bptr = 0;
1123 bptr += 2;
1124 len -= 2;
1125 }
1126 }
1127 #endif /* LE_NEED_BUF_GAP2 */
1128
1129 #ifdef LE_NEED_BUF_GAP16
1130 /*
1131 * gap16: 16 bytes of data followed by 16 bytes of pad.
1132 *
1133 * Buffers must be 32-byte aligned.
1134 */
1135
1136 integrate void
1137 copytobuf_gap16(sc, fromv, boff, len)
1138 struct le_softc *sc;
1139 void *fromv;
1140 int boff;
1141 register int len;
1142 {
1143 volatile caddr_t buf = sc->sc_mem;
1144 register caddr_t from = fromv;
1145 register caddr_t bptr;
1146 register int xfer;
1147
1148 bptr = buf + ((boff << 1) & ~0x1f);
1149 boff &= 0xf;
1150 xfer = min(len, 16 - boff);
1151 while (len > 0) {
1152 bcopy(from, bptr + boff, xfer);
1153 from += xfer;
1154 bptr += 32;
1155 boff = 0;
1156 len -= xfer;
1157 xfer = min(len, 16);
1158 }
1159 }
1160
1161 integrate void
1162 copyfrombuf_gap16(sc, tov, boff, len)
1163 struct le_softc *sc;
1164 void *tov;
1165 int boff, len;
1166 {
1167 volatile caddr_t buf = sc->sc_mem;
1168 register caddr_t to = tov;
1169 register caddr_t bptr;
1170 register int xfer;
1171
1172 bptr = buf + ((boff << 1) & ~0x1f);
1173 boff &= 0xf;
1174 xfer = min(len, 16 - boff);
1175 while (len > 0) {
1176 bcopy(bptr + boff, to, xfer);
1177 to += xfer;
1178 bptr += 32;
1179 boff = 0;
1180 len -= xfer;
1181 xfer = min(len, 16);
1182 }
1183 }
1184
1185 integrate void
1186 zerobuf_gap16(sc, boff, len)
1187 struct le_softc *sc;
1188 int boff, len;
1189 {
1190 volatile caddr_t buf = sc->sc_mem;
1191 register caddr_t bptr;
1192 register int xfer;
1193
1194 bptr = buf + ((boff << 1) & ~0x1f);
1195 boff &= 0xf;
1196 xfer = min(len, 16 - boff);
1197 while (len > 0) {
1198 bzero(bptr + boff, xfer);
1199 bptr += 32;
1200 boff = 0;
1201 len -= xfer;
1202 xfer = min(len, 16);
1203 }
1204 }
1205 #endif /* LE_NEED_BUF_GAP16 */
1206