Home | History | Annotate | Line # | Download | only in ic
arn5008.c revision 1.3
      1 /*	$NetBSD: arn5008.c,v 1.3 2013/04/06 14:57:38 martin Exp $	*/
      2 /*	$OpenBSD: ar5008.c,v 1.21 2012/08/25 12:14:31 kettenis Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr>
      6  * Copyright (c) 2008-2009 Atheros Communications Inc.
      7  *
      8  * Permission to use, copy, modify, and/or distribute this software for any
      9  * purpose with or without fee is hereby granted, provided that the above
     10  * copyright notice and this permission notice appear in all copies.
     11  *
     12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19  */
     20 
     21 /*
     22  * Driver for Atheros 802.11a/g/n chipsets.
     23  * Routines common to AR5008, AR9001 and AR9002 families.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: arn5008.c,v 1.3 2013/04/06 14:57:38 martin Exp $");
     28 
     29 #include <sys/param.h>
     30 #include <sys/sockio.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/queue.h>
     37 #include <sys/conf.h>
     38 #include <sys/device.h>
     39 
     40 #include <sys/bus.h>
     41 #include <sys/endian.h>
     42 #include <sys/intr.h>
     43 
     44 #include <net/bpf.h>
     45 #include <net/if.h>
     46 #include <net/if_arp.h>
     47 #include <net/if_dl.h>
     48 #include <net/if_ether.h>
     49 #include <net/if_media.h>
     50 #include <net/if_types.h>
     51 
     52 #include <netinet/in.h>
     53 #include <netinet/in_systm.h>
     54 #include <netinet/in_var.h>
     55 #include <netinet/ip.h>
     56 
     57 #include <net80211/ieee80211_var.h>
     58 #include <net80211/ieee80211_amrr.h>
     59 #include <net80211/ieee80211_radiotap.h>
     60 
     61 #include <dev/ic/athnreg.h>
     62 #include <dev/ic/athnvar.h>
     63 
     64 #include <dev/ic/arn5008reg.h>
     65 #include <dev/ic/arn5008.h>
     66 #include <dev/ic/arn5416.h>
     67 #include <dev/ic/arn9280.h>
     68 
     69 #define Static static
     70 
     71 Static void	ar5008_calib_adc_dc_off(struct athn_softc *);
     72 Static void	ar5008_calib_adc_gain(struct athn_softc *);
     73 Static void	ar5008_calib_iq(struct athn_softc *);
     74 Static void	ar5008_disable_ofdm_weak_signal(struct athn_softc *);
     75 Static void	ar5008_disable_phy(struct athn_softc *);
     76 Static int	ar5008_dma_alloc(struct athn_softc *);
     77 Static void	ar5008_dma_free(struct athn_softc *);
     78 Static void	ar5008_do_calib(struct athn_softc *);
     79 Static void	ar5008_do_noisefloor_calib(struct athn_softc *);
     80 Static void	ar5008_enable_antenna_diversity(struct athn_softc *);
     81 Static void	ar5008_enable_ofdm_weak_signal(struct athn_softc *);
     82 Static uint8_t	ar5008_get_vpd(uint8_t, const uint8_t *, const uint8_t *, int);
     83 Static void	ar5008_gpio_config_input(struct athn_softc *, int);
     84 Static void	ar5008_gpio_config_output(struct athn_softc *, int, int);
     85 Static int	ar5008_gpio_read(struct athn_softc *, int);
     86 Static void	ar5008_gpio_write(struct athn_softc *, int, int);
     87 Static void	ar5008_hw_init(struct athn_softc *, struct ieee80211_channel *,
     88 		    struct ieee80211_channel *);
     89 Static void	ar5008_init_baseband(struct athn_softc *);
     90 Static void	ar5008_init_chains(struct athn_softc *);
     91 Static int	ar5008_intr(struct athn_softc *);
     92 Static void	ar5008_next_calib(struct athn_softc *);
     93 Static int	ar5008_read_eep_word(struct athn_softc *, uint32_t,
     94 		    uint16_t *);
     95 Static int	ar5008_read_rom(struct athn_softc *);
     96 Static void	ar5008_rf_bus_release(struct athn_softc *);
     97 Static int	ar5008_rf_bus_request(struct athn_softc *);
     98 Static void	ar5008_rfsilent_init(struct athn_softc *);
     99 Static int	ar5008_rx_alloc(struct athn_softc *);
    100 Static void	ar5008_rx_enable(struct athn_softc *);
    101 Static void	ar5008_rx_free(struct athn_softc *);
    102 Static void	ar5008_rx_intr(struct athn_softc *);
    103 Static void	ar5008_rx_radiotap(struct athn_softc *, struct mbuf *,
    104 		    struct ar_rx_desc *);
    105 Static void	ar5008_set_cck_weak_signal(struct athn_softc *, int);
    106 Static void	ar5008_set_delta_slope(struct athn_softc *,
    107 		    struct ieee80211_channel *, struct ieee80211_channel *);
    108 Static void	ar5008_set_firstep_level(struct athn_softc *, int);
    109 Static void	ar5008_set_noise_immunity_level(struct athn_softc *, int);
    110 Static void	ar5008_set_phy(struct athn_softc *, struct ieee80211_channel *,
    111 		    struct ieee80211_channel *);
    112 Static void	ar5008_set_rf_mode(struct athn_softc *,
    113 		    struct ieee80211_channel *);
    114 Static void	ar5008_set_rxchains(struct athn_softc *);
    115 Static void	ar5008_set_spur_immunity_level(struct athn_softc *, int);
    116 Static void	ar5008_swap_rom(struct athn_softc *);
    117 Static int	ar5008_swba_intr(struct athn_softc *);
    118 Static int	ar5008_tx(struct athn_softc *, struct mbuf *,
    119 		    struct ieee80211_node *, int);
    120 Static int	ar5008_tx_alloc(struct athn_softc *);
    121 Static void	ar5008_tx_free(struct athn_softc *);
    122 Static void	ar5008_tx_intr(struct athn_softc *);
    123 Static int	ar5008_tx_process(struct athn_softc *, int);
    124 
    125 #ifdef notused
    126 Static void	ar5008_bb_load_noisefloor(struct athn_softc *);
    127 Static void	ar5008_get_noisefloor(struct athn_softc *,
    128 		    struct ieee80211_channel *);
    129 Static void	ar5008_noisefloor_calib(struct athn_softc *);
    130 Static void	ar5008_read_noisefloor(struct athn_softc *, int16_t *,
    131 		    int16_t *);
    132 Static void	ar5008_write_noisefloor(struct athn_softc *, int16_t *,
    133 		    int16_t *);
    134 #endif /* notused */
    135 
    136 // bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
    137 
    138 /*
    139  * XXX: see if_iwn.c:MCLGETIalt() for a better solution.
    140  */
    141 static struct mbuf *
    142 MCLGETI(struct athn_softc *sc __unused, int how,
    143     struct ifnet *ifp __unused, u_int size)
    144 {
    145 	struct mbuf *m;
    146 
    147 	MGETHDR(m, how, MT_DATA);
    148 	if (m == NULL)
    149 		return NULL;
    150 
    151 	MEXTMALLOC(m, size, how);
    152 	if ((m->m_flags & M_EXT) == 0) {
    153 		m_freem(m);
    154 		return NULL;
    155 	}
    156 	return m;
    157 }
    158 
    159 PUBLIC int
    160 ar5008_attach(struct athn_softc *sc)
    161 {
    162 	struct athn_ops *ops = &sc->sc_ops;
    163 	struct ieee80211com *ic = &sc->sc_ic;
    164 	struct ar_base_eep_header *base;
    165 	uint8_t eep_ver, kc_entries_log;
    166 	int error;
    167 
    168 	/* Set callbacks for AR5008, AR9001 and AR9002 families. */
    169 	ops->gpio_read = ar5008_gpio_read;
    170 	ops->gpio_write = ar5008_gpio_write;
    171 	ops->gpio_config_input = ar5008_gpio_config_input;
    172 	ops->gpio_config_output = ar5008_gpio_config_output;
    173 	ops->rfsilent_init = ar5008_rfsilent_init;
    174 
    175 	ops->dma_alloc = ar5008_dma_alloc;
    176 	ops->dma_free = ar5008_dma_free;
    177 	ops->rx_enable = ar5008_rx_enable;
    178 	ops->intr = ar5008_intr;
    179 	ops->tx = ar5008_tx;
    180 
    181 	ops->set_rf_mode = ar5008_set_rf_mode;
    182 	ops->rf_bus_request = ar5008_rf_bus_request;
    183 	ops->rf_bus_release = ar5008_rf_bus_release;
    184 	ops->set_phy = ar5008_set_phy;
    185 	ops->set_delta_slope = ar5008_set_delta_slope;
    186 	ops->enable_antenna_diversity = ar5008_enable_antenna_diversity;
    187 	ops->init_baseband = ar5008_init_baseband;
    188 	ops->disable_phy = ar5008_disable_phy;
    189 	ops->set_rxchains = ar5008_set_rxchains;
    190 	ops->noisefloor_calib = ar5008_do_noisefloor_calib;
    191 	ops->do_calib = ar5008_do_calib;
    192 	ops->next_calib = ar5008_next_calib;
    193 	ops->hw_init = ar5008_hw_init;
    194 
    195 	ops->set_noise_immunity_level = ar5008_set_noise_immunity_level;
    196 	ops->enable_ofdm_weak_signal = ar5008_enable_ofdm_weak_signal;
    197 	ops->disable_ofdm_weak_signal = ar5008_disable_ofdm_weak_signal;
    198 	ops->set_cck_weak_signal = ar5008_set_cck_weak_signal;
    199 	ops->set_firstep_level = ar5008_set_firstep_level;
    200 	ops->set_spur_immunity_level = ar5008_set_spur_immunity_level;
    201 
    202 	/* Set MAC registers offsets. */
    203 	sc->sc_obs_off = AR_OBS;
    204 	sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
    205 
    206 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
    207 		athn_config_nonpcie(sc);
    208 	else
    209 		athn_config_pcie(sc);
    210 
    211 	/* Read entire ROM content in memory. */
    212 	if ((error = ar5008_read_rom(sc)) != 0) {
    213 		printf("%s: could not read ROM\n", device_xname(sc->sc_dev));
    214 		return error;
    215 	}
    216 
    217 	/* Get RF revision. */
    218 	sc->sc_rf_rev = ar5416_get_rf_rev(sc);
    219 
    220 	base = sc->sc_eep;
    221 	eep_ver = (base->version >> 12) & 0xf;
    222 	sc->sc_eep_rev = (base->version & 0xfff);
    223 	if (eep_ver != AR_EEP_VER || sc->sc_eep_rev == 0) {
    224 		printf("%s: unsupported ROM version %d.%d\n",
    225 		    device_xname(sc->sc_dev), eep_ver, sc->sc_eep_rev);
    226 		return EINVAL;
    227 	}
    228 
    229 	if (base->opCapFlags & AR_OPFLAGS_11A)
    230 		sc->sc_flags |= ATHN_FLAG_11A;
    231 	if (base->opCapFlags & AR_OPFLAGS_11G)
    232 		sc->sc_flags |= ATHN_FLAG_11G;
    233 	if (base->opCapFlags & AR_OPFLAGS_11N)
    234 		sc->sc_flags |= ATHN_FLAG_11N;
    235 
    236 	IEEE80211_ADDR_COPY(ic->ic_myaddr, base->macAddr);
    237 
    238 	/* Check if we have a hardware radio switch. */
    239 	if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) {
    240 		sc->sc_flags |= ATHN_FLAG_RFSILENT;
    241 		/* Get GPIO pin used by hardware radio switch. */
    242 		sc->sc_rfsilent_pin = MS(base->rfSilent,
    243 		    AR_EEP_RFSILENT_GPIO_SEL);
    244 		/* Get polarity of hardware radio switch. */
    245 		if (base->rfSilent & AR_EEP_RFSILENT_POLARITY)
    246 			sc->sc_flags |= ATHN_FLAG_RFSILENT_REVERSED;
    247 	}
    248 
    249 	/* Get the number of HW key cache entries. */
    250 	kc_entries_log = MS(base->deviceCap, AR_EEP_DEVCAP_KC_ENTRIES);
    251 	sc->sc_kc_entries = kc_entries_log != 0 ?
    252 	    1 << kc_entries_log : AR_KEYTABLE_SIZE;
    253 
    254 	sc->sc_txchainmask = base->txMask;
    255 	if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCI &&
    256 	    !(base->opCapFlags & AR_OPFLAGS_11A)) {
    257 		/* For single-band AR5416 PCI, use GPIO pin 0. */
    258 		sc->sc_rxchainmask = ar5008_gpio_read(sc, 0) ? 0x5 : 0x7;
    259 	}
    260 	else
    261 		sc->sc_rxchainmask = base->rxMask;
    262 
    263 	ops->setup(sc);
    264 	return 0;
    265 }
    266 
    267 /*
    268  * Read 16-bit word from ROM.
    269  */
    270 Static int
    271 ar5008_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
    272 {
    273 	uint32_t reg;
    274 	int ntries;
    275 
    276 	reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
    277 	for (ntries = 0; ntries < 1000; ntries++) {
    278 		reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
    279 		if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
    280 		    AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
    281 			*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
    282 			return 0;
    283 		}
    284 		DELAY(10);
    285 	}
    286 	*val = 0xffff;
    287 	return ETIMEDOUT;
    288 }
    289 
    290 Static int
    291 ar5008_read_rom(struct athn_softc *sc)
    292 {
    293 	uint32_t addr, end;
    294 	uint16_t magic, sum, *eep;
    295 	int need_swap = 0;
    296 	int error;
    297 
    298 	/* Determine ROM endianness. */
    299 	error = ar5008_read_eep_word(sc, AR_EEPROM_MAGIC_OFFSET, &magic);
    300 	if (error != 0)
    301 		return error;
    302 	if (magic != AR_EEPROM_MAGIC) {
    303 		if (magic != bswap16(AR_EEPROM_MAGIC)) {
    304 			DPRINTFN(DBG_INIT, sc,
    305 			    "invalid ROM magic 0x%x != 0x%x\n",
    306 			    magic, AR_EEPROM_MAGIC);
    307 			return EIO;
    308 		}
    309 		DPRINTFN(DBG_INIT, sc, "non-native ROM endianness\n");
    310 		need_swap = 1;
    311 	}
    312 
    313 	/* Allocate space to store ROM in host memory. */
    314 	sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT);
    315 	if (sc->sc_eep == NULL)
    316 		return ENOMEM;
    317 
    318 	/* Read entire ROM and compute checksum. */
    319 	sum = 0;
    320 	eep = sc->sc_eep;
    321 	end = sc->sc_eep_base + sc->sc_eep_size / sizeof(uint16_t);
    322 	for (addr = sc->sc_eep_base; addr < end; addr++, eep++) {
    323 		if ((error = ar5008_read_eep_word(sc, addr, eep)) != 0) {
    324 			DPRINTFN(DBG_INIT, sc,
    325 			    "could not read ROM at 0x%x\n", addr);
    326 			return error;
    327 		}
    328 		if (need_swap)
    329 			*eep = bswap16(*eep);
    330 		sum ^= *eep;
    331 	}
    332 	if (sum != 0xffff) {
    333 		printf("%s: bad ROM checksum 0x%04x\n",
    334 		    device_xname(sc->sc_dev), sum);
    335 		return EIO;
    336 	}
    337 	if (need_swap)
    338 		ar5008_swap_rom(sc);
    339 
    340 	return 0;
    341 }
    342 
    343 Static void
    344 ar5008_swap_rom(struct athn_softc *sc)
    345 {
    346 	struct ar_base_eep_header *base = sc->sc_eep;
    347 
    348 	/* Swap common fields first. */
    349 	base->length = bswap16(base->length);
    350 	base->version = bswap16(base->version);
    351 	base->regDmn[0] = bswap16(base->regDmn[0]);
    352 	base->regDmn[1] = bswap16(base->regDmn[1]);
    353 	base->rfSilent = bswap16(base->rfSilent);
    354 	base->blueToothOptions = bswap16(base->blueToothOptions);
    355 	base->deviceCap = bswap16(base->deviceCap);
    356 
    357 	/* Swap device-dependent fields. */
    358 	sc->sc_ops.swap_rom(sc);
    359 }
    360 
    361 /*
    362  * Access to General Purpose Input/Output ports.
    363  */
    364 Static int
    365 ar5008_gpio_read(struct athn_softc *sc, int pin)
    366 {
    367 
    368 	KASSERT(pin < sc->sc_ngpiopins);
    369 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc))
    370 		return !((AR_READ(sc, AR7010_GPIO_IN) >> pin) & 1);
    371 	return (AR_READ(sc, AR_GPIO_IN_OUT) >> (sc->sc_ngpiopins + pin)) & 1;
    372 }
    373 
    374 Static void
    375 ar5008_gpio_write(struct athn_softc *sc, int pin, int set)
    376 {
    377 	uint32_t reg;
    378 
    379 	KASSERT(pin < sc->sc_ngpiopins);
    380 
    381 	if (sc->sc_flags & ATHN_FLAG_USB)
    382 		set = !set;	/* AR9271/AR7010 is reversed. */
    383 
    384 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
    385 		/* Special case for AR7010. */
    386 		reg = AR_READ(sc, AR7010_GPIO_OUT);
    387 		if (set)
    388 			reg |= 1 << pin;
    389 		else
    390 			reg &= ~(1 << pin);
    391 		AR_WRITE(sc, AR7010_GPIO_OUT, reg);
    392 	}
    393 	else {
    394 		reg = AR_READ(sc, AR_GPIO_IN_OUT);
    395 		if (set)
    396 			reg |= 1 << pin;
    397 		else
    398 			reg &= ~(1 << pin);
    399 		AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
    400 	}
    401 	AR_WRITE_BARRIER(sc);
    402 }
    403 
    404 Static void
    405 ar5008_gpio_config_input(struct athn_softc *sc, int pin)
    406 {
    407 	uint32_t reg;
    408 
    409 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
    410 		/* Special case for AR7010. */
    411 		AR_SETBITS(sc, AR7010_GPIO_OE, 1 << pin);
    412 	}
    413 	else {
    414 		reg = AR_READ(sc, AR_GPIO_OE_OUT);
    415 		reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
    416 		reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
    417 		AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
    418 	}
    419 	AR_WRITE_BARRIER(sc);
    420 }
    421 
    422 Static void
    423 ar5008_gpio_config_output(struct athn_softc *sc, int pin, int type)
    424 {
    425 	uint32_t reg;
    426 	int mux, off;
    427 
    428 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
    429 		/* Special case for AR7010. */
    430 		AR_CLRBITS(sc, AR7010_GPIO_OE, 1 << pin);
    431 		AR_WRITE_BARRIER(sc);
    432 		return;
    433 	}
    434 	mux = pin / 6;
    435 	off = pin % 6;
    436 
    437 	reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
    438 	if (!AR_SREV_9280_20_OR_LATER(sc) && mux == 0)
    439 		reg = (reg & ~0x1f0) | (reg & 0x1f0) << 1;
    440 	reg &= ~(0x1f << (off * 5));
    441 	reg |= (type & 0x1f) << (off * 5);
    442 	AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
    443 
    444 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
    445 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
    446 	reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
    447 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
    448 	AR_WRITE_BARRIER(sc);
    449 }
    450 
    451 Static void
    452 ar5008_rfsilent_init(struct athn_softc *sc)
    453 {
    454 	uint32_t reg;
    455 
    456 	/* Configure hardware radio switch. */
    457 	AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
    458 	reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
    459 	reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
    460 	AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
    461 	ar5008_gpio_config_input(sc, sc->sc_rfsilent_pin);
    462 	AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
    463 	if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
    464 		AR_SETBITS(sc, AR_GPIO_INTR_POL,
    465 		    AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
    466 	}
    467 	AR_WRITE_BARRIER(sc);
    468 }
    469 
    470 Static int
    471 ar5008_dma_alloc(struct athn_softc *sc)
    472 {
    473 	int error;
    474 
    475 	error = ar5008_tx_alloc(sc);
    476 	if (error != 0)
    477 		return error;
    478 
    479 	error = ar5008_rx_alloc(sc);
    480 	if (error != 0)
    481 		return error;
    482 
    483 	return 0;
    484 }
    485 
    486 Static void
    487 ar5008_dma_free(struct athn_softc *sc)
    488 {
    489 
    490 	ar5008_tx_free(sc);
    491 	ar5008_rx_free(sc);
    492 }
    493 
    494 Static int
    495 ar5008_tx_alloc(struct athn_softc *sc)
    496 {
    497 	struct athn_tx_buf *bf;
    498 	bus_size_t size;
    499 	int error, nsegs, i;
    500 
    501 	/*
    502 	 * Allocate a pool of Tx descriptors shared between all Tx queues.
    503 	 */
    504 	size = ATHN_NTXBUFS * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc);
    505 
    506 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
    507 	    BUS_DMA_NOWAIT, &sc->sc_map);
    508 	if (error != 0)
    509 		goto fail;
    510 
    511 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
    512 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
    513 	    &nsegs, BUS_DMA_NOWAIT);
    514 	if (error != 0)
    515 		goto fail;
    516 
    517 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
    518 	    (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    519 	if (error != 0)
    520 		goto fail;
    521 
    522 	error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_map, &sc->sc_seg, 1, size,
    523 	    BUS_DMA_NOWAIT);
    524 	if (error != 0)
    525 		goto fail;
    526 
    527 	SIMPLEQ_INIT(&sc->sc_txbufs);
    528 	for (i = 0; i < ATHN_NTXBUFS; i++) {
    529 		bf = &sc->sc_txpool[i];
    530 
    531 		error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
    532 		    AR5008_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
    533 		    &bf->bf_map);
    534 		if (error != 0) {
    535 			printf("%s: could not create Tx buf DMA map\n",
    536 			    device_xname(sc->sc_dev));
    537 			goto fail;
    538 		}
    539 
    540 		bf->bf_descs =
    541 		    &((struct ar_tx_desc *)sc->sc_descs)[i * AR5008_MAX_SCATTER];
    542 		bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
    543 		    i * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc);
    544 
    545 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
    546 	}
    547 	return 0;
    548  fail:
    549 	ar5008_tx_free(sc);
    550 	return error;
    551 }
    552 
    553 Static void
    554 ar5008_tx_free(struct athn_softc *sc)
    555 {
    556 	struct athn_tx_buf *bf;
    557 	int i;
    558 
    559 	for (i = 0; i < ATHN_NTXBUFS; i++) {
    560 		bf = &sc->sc_txpool[i];
    561 
    562 		if (bf->bf_map != NULL)
    563 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
    564 	}
    565 	/* Free Tx descriptors. */
    566 	if (sc->sc_map != NULL) {
    567 		if (sc->sc_descs != NULL) {
    568 			bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
    569 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
    570 			    ATHN_NTXBUFS * AR5008_MAX_SCATTER *
    571 			    sizeof(struct ar_tx_desc));
    572 			bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    573 		}
    574 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
    575 	}
    576 }
    577 
    578 Static int
    579 ar5008_rx_alloc(struct athn_softc *sc)
    580 {
    581 	struct athn_rxq *rxq = &sc->sc_rxq[0];
    582 	struct athn_rx_buf *bf;
    583 	struct ar_rx_desc *ds;
    584 	bus_size_t size;
    585 	int error, nsegs, i;
    586 
    587 	rxq->bf = malloc(ATHN_NRXBUFS * sizeof(*bf), M_DEVBUF,
    588 	    M_NOWAIT | M_ZERO);
    589 	if (rxq->bf == NULL)
    590 		return ENOMEM;
    591 
    592 	size = ATHN_NRXBUFS * sizeof(struct ar_rx_desc);
    593 
    594 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
    595 	    BUS_DMA_NOWAIT, &rxq->map);
    596 	if (error != 0)
    597 		goto fail;
    598 
    599 	error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rxq->seg, 1,
    600 //	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
    601 	    &nsegs, BUS_DMA_NOWAIT);
    602 	if (error != 0)
    603 		goto fail;
    604 
    605 	error = bus_dmamem_map(sc->sc_dmat, &rxq->seg, 1, size,
    606 	    (void **)&rxq->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    607 	if (error != 0)
    608 		goto fail;
    609 
    610 	error = bus_dmamap_load_raw(sc->sc_dmat, rxq->map, &rxq->seg, 1,
    611 	    size, BUS_DMA_NOWAIT);
    612 	if (error != 0)
    613 		goto fail;
    614 
    615 	for (i = 0; i < ATHN_NRXBUFS; i++) {
    616 		bf = &rxq->bf[i];
    617 		ds = &((struct ar_rx_desc *)rxq->descs)[i];
    618 
    619 		error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
    620 		    ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    621 		    &bf->bf_map);
    622 		if (error != 0) {
    623 			printf("%s: could not create Rx buf DMA map\n",
    624 			    device_xname(sc->sc_dev));
    625 			goto fail;
    626 		}
    627 		/*
    628 		 * Assumes MCLGETI returns cache-line-size aligned buffers.
    629 		 * XXX: does ours?
    630 		 */
    631 		bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
    632 		if (bf->bf_m == NULL) {
    633 			printf("%s: could not allocate Rx mbuf\n",
    634 			    device_xname(sc->sc_dev));
    635 			error = ENOBUFS;
    636 			goto fail;
    637 		}
    638 
    639 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
    640 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
    641 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
    642 		if (error != 0) {
    643 			printf("%s: could not DMA map Rx buffer\n",
    644 			    device_xname(sc->sc_dev));
    645 			goto fail;
    646 		}
    647 
    648 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
    649 		    BUS_DMASYNC_PREREAD);
    650 
    651 		bf->bf_desc = ds;
    652 		bf->bf_daddr = rxq->map->dm_segs[0].ds_addr +
    653 		    i * sizeof(struct ar_rx_desc);
    654 	}
    655 	return 0;
    656  fail:
    657 	ar5008_rx_free(sc);
    658 	return error;
    659 }
    660 
    661 Static void
    662 ar5008_rx_free(struct athn_softc *sc)
    663 {
    664 	struct athn_rxq *rxq = &sc->sc_rxq[0];
    665 	struct athn_rx_buf *bf;
    666 	int i;
    667 
    668 	if (rxq->bf == NULL)
    669 		return;
    670 	for (i = 0; i < ATHN_NRXBUFS; i++) {
    671 		bf = &rxq->bf[i];
    672 
    673 		if (bf->bf_map != NULL)
    674 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
    675 		if (bf->bf_m != NULL)
    676 			m_freem(bf->bf_m);
    677 	}
    678 	free(rxq->bf, M_DEVBUF);
    679 
    680 	/* Free Rx descriptors. */
    681 	if (rxq->map != NULL) {
    682 		if (rxq->descs != NULL) {
    683 			bus_dmamap_unload(sc->sc_dmat, rxq->map);
    684 			bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->descs,
    685 			    ATHN_NRXBUFS * sizeof(struct ar_rx_desc));
    686 			bus_dmamem_free(sc->sc_dmat, &rxq->seg, 1);
    687 		}
    688 		bus_dmamap_destroy(sc->sc_dmat, rxq->map);
    689 	}
    690 }
    691 
    692 Static void
    693 ar5008_rx_enable(struct athn_softc *sc)
    694 {
    695 	struct athn_rxq *rxq = &sc->sc_rxq[0];
    696 	struct athn_rx_buf *bf;
    697 	struct ar_rx_desc *ds;
    698 	int i;
    699 
    700 	/* Setup and link Rx descriptors. */
    701 	SIMPLEQ_INIT(&rxq->head);
    702 	rxq->lastds = NULL;
    703 	for (i = 0; i < ATHN_NRXBUFS; i++) {
    704 		bf = &rxq->bf[i];
    705 		ds = bf->bf_desc;
    706 
    707 		memset(ds, 0, sizeof(*ds));
    708 		ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
    709 		ds->ds_ctl1 = SM(AR_RXC1_BUF_LEN, ATHN_RXBUFSZ);
    710 
    711 		if (rxq->lastds != NULL) {
    712 			((struct ar_rx_desc *)rxq->lastds)->ds_link =
    713 			    bf->bf_daddr;
    714 		}
    715 		SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
    716 		rxq->lastds = ds;
    717 	}
    718 	bus_dmamap_sync(sc->sc_dmat, rxq->map, 0, rxq->map->dm_mapsize,
    719 	    BUS_DMASYNC_PREREAD);
    720 
    721 	/* Enable Rx. */
    722 	AR_WRITE(sc, AR_RXDP, SIMPLEQ_FIRST(&rxq->head)->bf_daddr);
    723 	AR_WRITE(sc, AR_CR, AR_CR_RXE);
    724 	AR_WRITE_BARRIER(sc);
    725 }
    726 
    727 Static void
    728 ar5008_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
    729     struct ar_rx_desc *ds)
    730 {
    731 	struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
    732 	struct ieee80211com *ic = &sc->sc_ic;
    733 	uint64_t tsf;
    734 	uint32_t tstamp;
    735 	uint8_t rate;
    736 
    737 	/* Extend the 15-bit timestamp from Rx descriptor to 64-bit TSF. */
    738 	tstamp = ds->ds_status2;
    739 	tsf = AR_READ(sc, AR_TSF_U32);
    740 	tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
    741 	if ((tsf & 0x7fff) < tstamp)
    742 		tsf -= 0x8000;
    743 	tsf = (tsf & ~0x7fff) | tstamp;
    744 
    745 	tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    746 	tap->wr_tsft = htole64(tsf);
    747 	tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    748 	tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    749 	tap->wr_dbm_antsignal = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED);
    750 	/* XXX noise. */
    751 	tap->wr_antenna = MS(ds->ds_status3, AR_RXS3_ANTENNA);
    752 	tap->wr_rate = 0;	/* In case it can't be found below. */
    753 	if (AR_SREV_5416_20_OR_LATER(sc))
    754 		rate = MS(ds->ds_status0, AR_RXS0_RATE);
    755 	else
    756 		rate = MS(ds->ds_status3, AR_RXS3_RATE);
    757 	if (rate & 0x80) {		/* HT. */
    758 		/* Bit 7 set means HT MCS instead of rate. */
    759 		tap->wr_rate = rate;
    760 		if (!(ds->ds_status3 & AR_RXS3_GI))
    761 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
    762 
    763 	}
    764 	else if (rate & 0x10) {	/* CCK. */
    765 		if (rate & 0x04)
    766 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
    767 		switch (rate & ~0x14) {
    768 		case 0xb: tap->wr_rate =   2; break;
    769 		case 0xa: tap->wr_rate =   4; break;
    770 		case 0x9: tap->wr_rate =  11; break;
    771 		case 0x8: tap->wr_rate =  22; break;
    772 		}
    773 	}
    774 	else {			/* OFDM. */
    775 		switch (rate) {
    776 		case 0xb: tap->wr_rate =  12; break;
    777 		case 0xf: tap->wr_rate =  18; break;
    778 		case 0xa: tap->wr_rate =  24; break;
    779 		case 0xe: tap->wr_rate =  36; break;
    780 		case 0x9: tap->wr_rate =  48; break;
    781 		case 0xd: tap->wr_rate =  72; break;
    782 		case 0x8: tap->wr_rate =  96; break;
    783 		case 0xc: tap->wr_rate = 108; break;
    784 		}
    785 	}
    786 	bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
    787 }
    788 
    789 static __inline int
    790 ar5008_rx_process(struct athn_softc *sc)
    791 {
    792 	struct ieee80211com *ic = &sc->sc_ic;
    793 	struct ifnet *ifp = &sc->sc_if;
    794 	struct athn_rxq *rxq = &sc->sc_rxq[0];
    795 	struct athn_rx_buf *bf, *nbf;
    796 	struct ar_rx_desc *ds;
    797 	struct ieee80211_frame *wh;
    798 	struct ieee80211_node *ni;
    799 	struct mbuf *m, *m1;
    800 	u_int32_t rstamp;
    801 	int error, len, rssi;
    802 
    803 	bf = SIMPLEQ_FIRST(&rxq->head);
    804 	if (__predict_false(bf == NULL)) {	/* Should not happen. */
    805 		printf("%s: Rx queue is empty!\n", device_xname(sc->sc_dev));
    806 		return ENOENT;
    807 	}
    808 	ds = bf->bf_desc;
    809 
    810 	if (!(ds->ds_status8 & AR_RXS8_DONE)) {
    811 		/*
    812 		 * On some parts, the status words can get corrupted
    813 		 * (including the "done" bit), so we check the next
    814 		 * descriptor "done" bit.  If it is set, it is a good
    815 		 * indication that the status words are corrupted, so
    816 		 * we skip this descriptor and drop the frame.
    817 		 */
    818 		nbf = SIMPLEQ_NEXT(bf, bf_list);
    819 		if (nbf != NULL &&
    820 		    (((struct ar_rx_desc *)nbf->bf_desc)->ds_status8 &
    821 		     AR_RXS8_DONE)) {
    822 			DPRINTFN(DBG_RX, sc,
    823 			    "corrupted descriptor status=0x%x\n",
    824 			    ds->ds_status8);
    825 			/* HW will not "move" RXDP in this case, so do it. */
    826 			AR_WRITE(sc, AR_RXDP, nbf->bf_daddr);
    827 			AR_WRITE_BARRIER(sc);
    828 			ifp->if_ierrors++;
    829 			goto skip;
    830 		}
    831 		return EBUSY;
    832 	}
    833 
    834 	if (__predict_false(ds->ds_status1 & AR_RXS1_MORE)) {
    835 		/* Drop frames that span multiple Rx descriptors. */
    836 		DPRINTFN(DBG_RX, sc, "dropping split frame\n");
    837 		ifp->if_ierrors++;
    838 		goto skip;
    839 	}
    840 	if (!(ds->ds_status8 & AR_RXS8_FRAME_OK)) {
    841 		if (ds->ds_status8 & AR_RXS8_CRC_ERR)
    842 			DPRINTFN(DBG_RX, sc, "CRC error\n");
    843 		else if (ds->ds_status8 & AR_RXS8_PHY_ERR)
    844 			DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
    845 			    MS(ds->ds_status8, AR_RXS8_PHY_ERR_CODE));
    846 		else if (ds->ds_status8 & AR_RXS8_DECRYPT_CRC_ERR)
    847 			DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
    848 		else if (ds->ds_status8 & AR_RXS8_MICHAEL_ERR) {
    849 			DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
    850 
    851 			len = MS(ds->ds_status1, AR_RXS1_DATA_LEN);
    852 			m = bf->bf_m;
    853 			m->m_pkthdr.rcvif = ifp;
    854 			m->m_pkthdr.len = m->m_len = len;
    855 			wh = mtod(m, struct ieee80211_frame *);
    856 
    857 			/* Report Michael MIC failures to net80211. */
    858 			ieee80211_notify_michael_failure(ic, wh, 0 /* XXX: keyix */);
    859 		}
    860 		ifp->if_ierrors++;
    861 		goto skip;
    862 	}
    863 
    864 	len = MS(ds->ds_status1, AR_RXS1_DATA_LEN);
    865 	if (__predict_false(len < (int)IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ)) {
    866 		DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%d\n", len);
    867 		ifp->if_ierrors++;
    868 		goto skip;
    869 	}
    870 
    871 	/* Allocate a new Rx buffer. */
    872 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
    873 	if (__predict_false(m1 == NULL)) {
    874 		ic->ic_stats.is_rx_nobuf++;
    875 		ifp->if_ierrors++;
    876 		goto skip;
    877 	}
    878 
    879 	/* Sync and unmap the old Rx buffer. */
    880 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
    881 	    BUS_DMASYNC_POSTREAD);
    882 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
    883 
    884 	/* Map the new Rx buffer. */
    885 	error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
    886 	    ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
    887 	if (__predict_false(error != 0)) {
    888 		m_freem(m1);
    889 
    890 		/* Remap the old Rx buffer or panic. */
    891 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
    892 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
    893 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
    894 		KASSERT(error != 0);
    895 		ifp->if_ierrors++;
    896 		goto skip;
    897 	}
    898 
    899 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
    900 	    BUS_DMASYNC_PREREAD);
    901 
    902 	/* Write physical address of new Rx buffer. */
    903 	ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
    904 
    905 	m = bf->bf_m;
    906 	bf->bf_m = m1;
    907 
    908 	/* Finalize mbuf. */
    909 	m->m_pkthdr.rcvif = ifp;
    910 	m->m_pkthdr.len = m->m_len = len;
    911 
    912 	/* Grab a reference to the source node. */
    913 	wh = mtod(m, struct ieee80211_frame *);
    914 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
    915 
    916 	/* Remove any HW padding after the 802.11 header. */
    917 	if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
    918 		u_int hdrlen = ieee80211_anyhdrsize(wh);
    919 		if (hdrlen & 3) {
    920 			ovbcopy(wh, (uint8_t *)wh + 2, hdrlen);
    921 			m_adj(m, 2);
    922 		}
    923 	}
    924 	if (__predict_false(sc->sc_drvbpf != NULL))
    925 		ar5008_rx_radiotap(sc, m, ds);
    926 
    927 	/* Trim 802.11 FCS after radiotap. */
    928 	m_adj(m, -IEEE80211_CRC_LEN);
    929 
    930 	/* Send the frame to the 802.11 layer. */
    931 	rssi = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED);
    932 	rstamp = ds->ds_status2;
    933 	ieee80211_input(ic, m, ni, rssi, rstamp);
    934 
    935 	/* Node is no longer needed. */
    936 	ieee80211_free_node(ni);
    937 
    938  skip:
    939 	/* Unlink this descriptor from head. */
    940 	SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
    941 	memset(&ds->ds_status0, 0, 36);	/* XXX Really needed? */
    942 	ds->ds_status8 &= ~AR_RXS8_DONE;
    943 	ds->ds_link = 0;
    944 
    945 	/* Re-use this descriptor and link it to tail. */
    946 	if (__predict_true(!SIMPLEQ_EMPTY(&rxq->head)))
    947 		((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr;
    948 	else
    949 		AR_WRITE(sc, AR_RXDP, bf->bf_daddr);
    950 	SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
    951 	rxq->lastds = ds;
    952 
    953 	/* Re-enable Rx. */
    954 	AR_WRITE(sc, AR_CR, AR_CR_RXE);
    955 	AR_WRITE_BARRIER(sc);
    956 	return 0;
    957 }
    958 
    959 Static void
    960 ar5008_rx_intr(struct athn_softc *sc)
    961 {
    962 
    963 	while (ar5008_rx_process(sc) == 0)
    964 		continue;
    965 }
    966 
    967 Static int
    968 ar5008_tx_process(struct athn_softc *sc, int qid)
    969 {
    970 	struct ifnet *ifp = &sc->sc_if;
    971 	struct athn_txq *txq = &sc->sc_txq[qid];
    972 	struct athn_node *an;
    973 	struct athn_tx_buf *bf;
    974 	struct ar_tx_desc *ds;
    975 	uint8_t failcnt;
    976 
    977 	bf = SIMPLEQ_FIRST(&txq->head);
    978 	if (bf == NULL)
    979 		return ENOENT;
    980 	/* Get descriptor of last DMA segment. */
    981 	ds = &((struct ar_tx_desc *)bf->bf_descs)[bf->bf_map->dm_nsegs - 1];
    982 
    983 	if (!(ds->ds_status9 & AR_TXS9_DONE))
    984 		return EBUSY;
    985 
    986 	SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
    987 	ifp->if_opackets++;
    988 
    989 	sc->sc_tx_timer = 0;
    990 
    991 	if (ds->ds_status1 & AR_TXS1_EXCESSIVE_RETRIES)
    992 		ifp->if_oerrors++;
    993 
    994 	if (ds->ds_status1 & AR_TXS1_UNDERRUN)
    995 		athn_inc_tx_trigger_level(sc);
    996 
    997 	an = (struct athn_node *)bf->bf_ni;
    998 	/*
    999 	 * NB: the data fail count contains the number of un-acked tries
   1000 	 * for the final series used.  We must add the number of tries for
   1001 	 * each series that was fully processed.
   1002 	 */
   1003 	failcnt  = MS(ds->ds_status1, AR_TXS1_DATA_FAIL_CNT);
   1004 	/* NB: Assume two tries per series. */
   1005 	failcnt += MS(ds->ds_status9, AR_TXS9_FINAL_IDX) * 2;
   1006 
   1007 	/* Update rate control statistics. */
   1008 	an->amn.amn_txcnt++;
   1009 	if (failcnt > 0)
   1010 		an->amn.amn_retrycnt++;
   1011 
   1012 	DPRINTFN(DBG_TX, sc, "Tx done qid=%d status1=%d fail count=%d\n",
   1013 	    qid, ds->ds_status1, failcnt);
   1014 
   1015 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1016 	    BUS_DMASYNC_POSTWRITE);
   1017 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1018 
   1019 	m_freem(bf->bf_m);
   1020 	bf->bf_m = NULL;
   1021 	ieee80211_free_node(bf->bf_ni);
   1022 	bf->bf_ni = NULL;
   1023 
   1024 	/* Link Tx buffer back to global free list. */
   1025 	SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
   1026 	return 0;
   1027 }
   1028 
   1029 Static void
   1030 ar5008_tx_intr(struct athn_softc *sc)
   1031 {
   1032 	struct ifnet *ifp = &sc->sc_if;
   1033 	uint16_t mask = 0;
   1034 	uint32_t reg;
   1035 	int qid;
   1036 
   1037 	reg = AR_READ(sc, AR_ISR_S0_S);
   1038 	mask |= MS(reg, AR_ISR_S0_QCU_TXOK);
   1039 	mask |= MS(reg, AR_ISR_S0_QCU_TXDESC);
   1040 
   1041 	reg = AR_READ(sc, AR_ISR_S1_S);
   1042 	mask |= MS(reg, AR_ISR_S1_QCU_TXERR);
   1043 	mask |= MS(reg, AR_ISR_S1_QCU_TXEOL);
   1044 
   1045 	DPRINTFN(DBG_TX, sc, "Tx interrupt mask=0x%x\n", mask);
   1046 	for (qid = 0; mask != 0; mask >>= 1, qid++) {
   1047 		if (mask & 1)
   1048 			while (ar5008_tx_process(sc, qid) == 0);
   1049 	}
   1050 	if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
   1051 		ifp->if_flags &= ~IFF_OACTIVE;
   1052 		ifp->if_start(ifp);
   1053 	}
   1054 }
   1055 
   1056 #ifndef IEEE80211_STA_ONLY
   1057 /*
   1058  * Process Software Beacon Alert interrupts.
   1059  */
   1060 Static int
   1061 ar5008_swba_intr(struct athn_softc *sc)
   1062 {
   1063 	struct ieee80211com *ic = &sc->sc_ic;
   1064 	struct ifnet *ifp = &sc->sc_if;
   1065 	struct ieee80211_node *ni = ic->ic_bss;
   1066 	struct athn_tx_buf *bf = sc->sc_bcnbuf;
   1067 	struct ieee80211_frame *wh;
   1068 	struct ieee80211_beacon_offsets bo;
   1069 	struct ar_tx_desc *ds;
   1070 	struct mbuf *m;
   1071 	uint8_t ridx, hwrate;
   1072 	int error, totlen;
   1073 
   1074 #if notyet
   1075 	if (ic->ic_tim_mcast_pending &&
   1076 	    IF_IS_EMPTY(&ni->ni_savedq) &&
   1077 	    SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
   1078 		ic->ic_tim_mcast_pending = 0;
   1079 #endif
   1080 	if (ic->ic_dtim_count == 0)
   1081 		ic->ic_dtim_count = ic->ic_dtim_period - 1;
   1082 	else
   1083 		ic->ic_dtim_count--;
   1084 
   1085 	/* Make sure previous beacon has been sent. */
   1086 	if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
   1087 		DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
   1088 		return EBUSY;
   1089 	}
   1090 	/* Get new beacon. */
   1091 	m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
   1092 	if (__predict_false(m == NULL))
   1093 		return ENOBUFS;
   1094 	/* Assign sequence number. */
   1095 	/* XXX: use non-QoS tid? */
   1096 	wh = mtod(m, struct ieee80211_frame *);
   1097 	*(uint16_t *)&wh->i_seq[0] =
   1098 	    htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
   1099 	ic->ic_bss->ni_txseqs[0]++;
   1100 
   1101 	/* Unmap and free old beacon if any. */
   1102 	if (__predict_true(bf->bf_m != NULL)) {
   1103 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
   1104 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1105 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1106 		m_freem(bf->bf_m);
   1107 		bf->bf_m = NULL;
   1108 	}
   1109 	/* DMA map new beacon. */
   1110 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1111 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1112 	if (__predict_false(error != 0)) {
   1113 		m_freem(m);
   1114 		return error;
   1115 	}
   1116 	bf->bf_m = m;
   1117 
   1118 	/* Setup Tx descriptor (simplified ar5008_tx()). */
   1119 	ds = bf->bf_descs;
   1120 	memset(ds, 0, sizeof(*ds));
   1121 
   1122 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
   1123 	ds->ds_ctl0 = SM(AR_TXC0_FRAME_LEN, totlen);
   1124 	ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, AR_MAX_RATE_POWER);
   1125 	ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
   1126 	ds->ds_ctl1 |= AR_TXC1_NO_ACK;
   1127 	ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
   1128 
   1129 	/* Write number of tries. */
   1130 	ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 1);
   1131 
   1132 	/* Write Tx rate. */
   1133 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1134 	    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
   1135 	hwrate = athn_rates[ridx].hwrate;
   1136 	ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, hwrate);
   1137 
   1138 	/* Write Tx chains. */
   1139 	ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask);
   1140 
   1141 	ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
   1142 	/* Segment length must be a multiple of 4. */
   1143 	ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,
   1144 	    (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
   1145 
   1146 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1147 	    BUS_DMASYNC_PREWRITE);
   1148 
   1149 	/* Stop Tx DMA before putting the new beacon on the queue. */
   1150 	athn_stop_tx_dma(sc, ATHN_QID_BEACON);
   1151 
   1152 	AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
   1153 
   1154 	for(;;) {
   1155 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
   1156 			break;
   1157 
   1158 		IF_DEQUEUE(&ni->ni_savedq, m);
   1159 		if (m == NULL)
   1160 			break;
   1161 		if (!IF_IS_EMPTY(&ni->ni_savedq)) {
   1162 			/* more queued frames, set the more data bit */
   1163 			wh = mtod(m, struct ieee80211_frame *);
   1164 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
   1165 		}
   1166 
   1167 		if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
   1168 			ieee80211_free_node(ni);
   1169 			ifp->if_oerrors++;
   1170 			break;
   1171 		}
   1172 	}
   1173 
   1174 	/* Kick Tx. */
   1175 	AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
   1176 	AR_WRITE_BARRIER(sc);
   1177 	return 0;
   1178 }
   1179 #endif
   1180 
   1181 Static int
   1182 ar5008_intr(struct athn_softc *sc)
   1183 {
   1184 	uint32_t intr, intr2, intr5, sync;
   1185 
   1186 	/* Get pending interrupts. */
   1187 	intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
   1188 	if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
   1189 		intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
   1190 		if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
   1191 			return 0;	/* Not for us. */
   1192 	}
   1193 
   1194 	if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
   1195 	    (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
   1196 		intr = AR_READ(sc, AR_ISR);
   1197 	else
   1198 		intr = 0;
   1199 	sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
   1200 	if (intr == 0 && sync == 0)
   1201 		return 0;	/* Not for us. */
   1202 
   1203 	if (intr != 0) {
   1204 		if (intr & AR_ISR_BCNMISC) {
   1205 			intr2 = AR_READ(sc, AR_ISR_S2);
   1206 #if notyet
   1207 			if (intr2 & AR_ISR_S2_TIM)
   1208 				/* TBD */;
   1209 			if (intr2 & AR_ISR_S2_TSFOOR)
   1210 				/* TBD */;
   1211 #endif
   1212 		}
   1213 		intr = AR_READ(sc, AR_ISR_RAC);
   1214 		if (intr == AR_INTR_SPURIOUS)
   1215 			return 1;
   1216 
   1217 #ifndef IEEE80211_STA_ONLY
   1218 		if (intr & AR_ISR_SWBA)
   1219 			ar5008_swba_intr(sc);
   1220 #endif
   1221 		if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
   1222 			ar5008_rx_intr(sc);
   1223 		if (intr & (AR_ISR_RXOK | AR_ISR_RXERR | AR_ISR_RXORN))
   1224 			ar5008_rx_intr(sc);
   1225 
   1226 		if (intr & (AR_ISR_TXOK | AR_ISR_TXDESC |
   1227 		    AR_ISR_TXERR | AR_ISR_TXEOL))
   1228 			ar5008_tx_intr(sc);
   1229 
   1230 		intr5 = AR_READ(sc, AR_ISR_S5_S);
   1231 		if (intr & AR_ISR_GENTMR) {
   1232 			if (intr5 & AR_ISR_GENTMR) {
   1233 				DPRINTFN(DBG_INTR, sc,
   1234 				    "GENTMR trigger=%d thresh=%d\n",
   1235 				    MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
   1236 				    MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
   1237 			}
   1238 		}
   1239 #if notyet
   1240 		if (intr5 & AR_ISR_S5_TIM_TIMER) {
   1241 			/* TBD */;
   1242 		}
   1243 #endif
   1244 	}
   1245 	if (sync != 0) {
   1246 #if notyet
   1247 		if (sync &
   1248 		    (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) {
   1249 			/* TBD */;
   1250 		}
   1251 #endif
   1252 		if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
   1253 			AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
   1254 			AR_WRITE(sc, AR_RC, 0);
   1255 		}
   1256 
   1257 		if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
   1258 		    (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
   1259 			pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
   1260 			return 1;
   1261 		}
   1262 
   1263 		AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
   1264 		(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
   1265 	}
   1266 	return 1;
   1267 }
   1268 
   1269 Static int
   1270 ar5008_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
   1271     int txflags)
   1272 {
   1273 	struct ieee80211com *ic = &sc->sc_ic;
   1274 	struct ieee80211_key *k = NULL;
   1275 	struct ieee80211_frame *wh;
   1276 	struct athn_series series[4];
   1277 	struct ar_tx_desc *ds, *lastds;
   1278 	struct athn_txq *txq;
   1279 	struct athn_tx_buf *bf;
   1280 	struct athn_node *an = (void *)ni;
   1281 	struct mbuf *m1;
   1282 	uint16_t qos;
   1283 	uint8_t txpower, type, encrtype, ridx[4];
   1284 	int i, error, totlen, hasqos, qid;
   1285 
   1286 	/* Grab a Tx buffer from our global free list. */
   1287 	bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
   1288 	KASSERT(bf != NULL);
   1289 
   1290 	/* Map 802.11 frame type to hardware frame type. */
   1291 	wh = mtod(m, struct ieee80211_frame *);
   1292 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1293 	    IEEE80211_FC0_TYPE_MGT) {
   1294 		/* NB: Beacons do not use ar5008_tx(). */
   1295 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1296 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   1297 			type = AR_FRAME_TYPE_PROBE_RESP;
   1298 		else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1299 		    IEEE80211_FC0_SUBTYPE_ATIM)
   1300 			type = AR_FRAME_TYPE_ATIM;
   1301 		else
   1302 			type = AR_FRAME_TYPE_NORMAL;
   1303 	}
   1304 	else if ((wh->i_fc[0] &
   1305 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1306 	    (IEEE80211_FC0_TYPE_CTL  | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
   1307 		type = AR_FRAME_TYPE_PSPOLL;
   1308 	}
   1309 	else
   1310 		type = AR_FRAME_TYPE_NORMAL;
   1311 
   1312 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
   1313 		k = ieee80211_crypto_encap(ic, ni, m);
   1314 		if (k == NULL)
   1315 			return ENOBUFS;
   1316 
   1317 		/* packet header may have moved, reset our local pointer */
   1318 		wh = mtod(m, struct ieee80211_frame *);
   1319 	}
   1320 
   1321 	/* XXX 2-byte padding for QoS and 4-addr headers. */
   1322 
   1323 	/* Select the HW Tx queue to use for this frame. */
   1324 	if ((hasqos = ieee80211_has_qos(wh))) {
   1325 #ifdef notyet_edca
   1326 		uint8_t tid;
   1327 
   1328 		qos = ieee80211_get_qos(wh);
   1329 		tid = qos & IEEE80211_QOS_TID;
   1330 		qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
   1331 #else
   1332 		qos = ieee80211_get_qos(wh);
   1333 		qid = ATHN_QID_AC_BE;
   1334 #endif /* notyet_edca */
   1335 	}
   1336 	else if (type == AR_FRAME_TYPE_PSPOLL) {
   1337 		qos = 0;
   1338 		qid = ATHN_QID_PSPOLL;
   1339 	}
   1340 	else if (txflags & ATHN_TXFLAG_CAB) {
   1341 		qos = 0;
   1342 		qid = ATHN_QID_CAB;
   1343 	}
   1344 	else {
   1345 		qos = 0;
   1346 		qid = ATHN_QID_AC_BE;
   1347 	}
   1348 	txq = &sc->sc_txq[qid];
   1349 
   1350 	/* Select the transmit rates to use for this frame. */
   1351 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1352 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
   1353 	    IEEE80211_FC0_TYPE_DATA) {
   1354 		/* Use lowest rate for all tries. */
   1355 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
   1356 		    (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1357 			ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
   1358 	}
   1359 	else if (ic->ic_fixed_rate != -1) {
   1360 		/* Use same fixed rate for all tries. */
   1361 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
   1362 		    sc->sc_fixed_ridx;
   1363 	}
   1364 	else {
   1365 		int txrate = ni->ni_txrate;
   1366 		/* Use fallback table of the node. */
   1367 		for (i = 0; i < 4; i++) {
   1368 			ridx[i] = an->ridx[txrate];
   1369 			txrate = an->fallback[txrate];
   1370 		}
   1371 	}
   1372 
   1373 	if (__predict_false(sc->sc_drvbpf != NULL)) {
   1374 		struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
   1375 
   1376 		tap->wt_flags = 0;
   1377 		/* Use initial transmit rate. */
   1378 		tap->wt_rate = athn_rates[ridx[0]].rate;
   1379 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1380 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1381 // XXX		tap->wt_hwqueue = qid;
   1382 		if (ridx[0] != ATHN_RIDX_CCK1 &&
   1383 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1384 			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1385 
   1386 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   1387 	}
   1388 
   1389 	/* DMA map mbuf. */
   1390 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1391 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1392 	if (__predict_false(error != 0)) {
   1393 		if (error != EFBIG) {
   1394 			printf("%s: can't map mbuf (error %d)\n",
   1395 			    device_xname(sc->sc_dev), error);
   1396 			m_freem(m);
   1397 			return error;
   1398 		}
   1399 		/*
   1400 		 * DMA mapping requires too many DMA segments; linearize
   1401 		 * mbuf in kernel virtual address space and retry.
   1402 		 */
   1403 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   1404 		if (m1 == NULL) {
   1405 			m_freem(m);
   1406 			return ENOBUFS;
   1407 		}
   1408 		if (m->m_pkthdr.len > (int)MHLEN) {
   1409 			MCLGET(m1, M_DONTWAIT);
   1410 			if (!(m1->m_flags & M_EXT)) {
   1411 				m_freem(m);
   1412 				m_freem(m1);
   1413 				return ENOBUFS;
   1414 			}
   1415 		}
   1416 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   1417 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   1418 		m_freem(m);
   1419 		m = m1;
   1420 
   1421 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1422 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1423 		if (error != 0) {
   1424 			printf("%s: can't map mbuf (error %d)\n",
   1425 			    device_xname(sc->sc_dev), error);
   1426 			m_freem(m);
   1427 			return error;
   1428 		}
   1429 	}
   1430 	bf->bf_m = m;
   1431 	bf->bf_ni = ni;
   1432 	bf->bf_txflags = txflags;
   1433 
   1434 	wh = mtod(m, struct ieee80211_frame *);
   1435 
   1436 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
   1437 
   1438 	/* Clear all Tx descriptors that we will use. */
   1439 	memset(bf->bf_descs, 0, bf->bf_map->dm_nsegs * sizeof(*ds));
   1440 
   1441 	/* Setup first Tx descriptor. */
   1442 	ds = bf->bf_descs;
   1443 
   1444 	ds->ds_ctl0 = AR_TXC0_INTR_REQ | AR_TXC0_CLR_DEST_MASK;
   1445 	txpower = AR_MAX_RATE_POWER;	/* Get from per-rate registers. */
   1446 	ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, txpower);
   1447 
   1448 	ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, type);
   1449 
   1450 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1451 	    (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
   1452 	     IEEE80211_QOS_ACKPOLICY_NOACK))
   1453 		ds->ds_ctl1 |= AR_TXC1_NO_ACK;
   1454 #if notyet
   1455 	if (0 && k != NULL) {
   1456 		uintptr_t entry;
   1457 
   1458 		/*
   1459 		 * Map 802.11 cipher to hardware encryption type and
   1460 		 * compute MIC+ICV overhead.
   1461 		 */
   1462 		totlen += k->wk_keylen;
   1463 		switch (k->wk_cipher->ic_cipher) {
   1464 		case IEEE80211_CIPHER_WEP:
   1465 			encrtype = AR_ENCR_TYPE_WEP;
   1466 			break;
   1467 		case IEEE80211_CIPHER_TKIP:
   1468 			encrtype = AR_ENCR_TYPE_TKIP;
   1469 			break;
   1470 		case IEEE80211_CIPHER_AES_OCB:
   1471 		case IEEE80211_CIPHER_AES_CCM:
   1472 			encrtype = AR_ENCR_TYPE_AES;
   1473 			break;
   1474 		default:
   1475 			panic("unsupported cipher");
   1476 		}
   1477 		/*
   1478 		 * NB: The key cache entry index is stored in the key
   1479 		 * private field when the key is installed.
   1480 		 */
   1481 		entry = (uintptr_t)k->k_priv;
   1482 		ds->ds_ctl1 |= SM(AR_TXC1_DEST_IDX, entry);
   1483 		ds->ds_ctl0 |= AR_TXC0_DEST_IDX_VALID;
   1484 	}
   1485 	else
   1486 #endif
   1487 		encrtype = AR_ENCR_TYPE_CLEAR;
   1488 	ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, encrtype);
   1489 
   1490 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   1491 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1492 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   1493 		if (totlen > ic->ic_rtsthreshold) {
   1494 			ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE;
   1495 		}
   1496 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   1497 		    athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
   1498 			if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   1499 				ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE;
   1500 			else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   1501 				ds->ds_ctl0 |= AR_TXC0_CTS_ENABLE;
   1502 		}
   1503 	}
   1504 	if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) {
   1505 		/* Disable multi-rate retries when protection is used. */
   1506 		ridx[1] = ridx[2] = ridx[3] = ridx[0];
   1507 	}
   1508 	/* Setup multi-rate retries. */
   1509 	for (i = 0; i < 4; i++) {
   1510 		series[i].hwrate = athn_rates[ridx[i]].hwrate;
   1511 		if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
   1512 		    ridx[i] != ATHN_RIDX_CCK1 &&
   1513 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1514 			series[i].hwrate |= 0x04;
   1515 		series[i].dur = 0;
   1516 	}
   1517 	if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) {
   1518 		/* Compute duration for each series. */
   1519 		for (i = 0; i < 4; i++) {
   1520 			series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
   1521 			    athn_rates[ridx[i]].rspridx, ic->ic_flags);
   1522 		}
   1523 	}
   1524 
   1525 	/* Write number of tries for each series. */
   1526 	ds->ds_ctl2 =
   1527 	    SM(AR_TXC2_XMIT_DATA_TRIES0, 2) |
   1528 	    SM(AR_TXC2_XMIT_DATA_TRIES1, 2) |
   1529 	    SM(AR_TXC2_XMIT_DATA_TRIES2, 2) |
   1530 	    SM(AR_TXC2_XMIT_DATA_TRIES3, 4);
   1531 
   1532 	/* Tell HW to update duration field in 802.11 header. */
   1533 	if (type != AR_FRAME_TYPE_PSPOLL)
   1534 		ds->ds_ctl2 |= AR_TXC2_DUR_UPDATE_ENA;
   1535 
   1536 	/* Write Tx rate for each series. */
   1537 	ds->ds_ctl3 =
   1538 	    SM(AR_TXC3_XMIT_RATE0, series[0].hwrate) |
   1539 	    SM(AR_TXC3_XMIT_RATE1, series[1].hwrate) |
   1540 	    SM(AR_TXC3_XMIT_RATE2, series[2].hwrate) |
   1541 	    SM(AR_TXC3_XMIT_RATE3, series[3].hwrate);
   1542 
   1543 	/* Write duration for each series. */
   1544 	ds->ds_ctl4 =
   1545 	    SM(AR_TXC4_PACKET_DUR0, series[0].dur) |
   1546 	    SM(AR_TXC4_PACKET_DUR1, series[1].dur);
   1547 	ds->ds_ctl5 =
   1548 	    SM(AR_TXC5_PACKET_DUR2, series[2].dur) |
   1549 	    SM(AR_TXC5_PACKET_DUR3, series[3].dur);
   1550 
   1551 	/* Use the same Tx chains for all tries. */
   1552 	ds->ds_ctl7 =
   1553 	    SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask) |
   1554 	    SM(AR_TXC7_CHAIN_SEL1, sc->sc_txchainmask) |
   1555 	    SM(AR_TXC7_CHAIN_SEL2, sc->sc_txchainmask) |
   1556 	    SM(AR_TXC7_CHAIN_SEL3, sc->sc_txchainmask);
   1557 #ifdef notyet
   1558 #ifndef IEEE80211_NO_HT
   1559 	/* Use the same short GI setting for all tries. */
   1560 	if (ic->ic_flags & IEEE80211_F_SHGI)
   1561 		ds->ds_ctl7 |= AR_TXC7_GI0123;
   1562 	/* Use the same channel width for all tries. */
   1563 	if (ic->ic_flags & IEEE80211_F_CBW40)
   1564 		ds->ds_ctl7 |= AR_TXC7_2040_0123;
   1565 #endif
   1566 #endif
   1567 
   1568 	if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) {
   1569 		uint8_t protridx, hwrate;
   1570 		uint16_t dur = 0;
   1571 
   1572 		/* Use the same protection mode for all tries. */
   1573 		if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) {
   1574 			ds->ds_ctl4 |= AR_TXC4_RTSCTS_QUAL01;
   1575 			ds->ds_ctl5 |= AR_TXC5_RTSCTS_QUAL23;
   1576 		}
   1577 		/* Select protection rate (suboptimal but ok). */
   1578 		protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1579 		    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
   1580 		if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) {
   1581 			/* Account for CTS duration. */
   1582 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
   1583 			    athn_rates[protridx].rspridx, ic->ic_flags);
   1584 		}
   1585 		dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
   1586 		if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) {
   1587 			/* Account for ACK duration. */
   1588 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
   1589 			    athn_rates[ridx[0]].rspridx, ic->ic_flags);
   1590 		}
   1591 		/* Write protection frame duration and rate. */
   1592 		ds->ds_ctl2 |= SM(AR_TXC2_BURST_DUR, dur);
   1593 		hwrate = athn_rates[protridx].hwrate;
   1594 		if (protridx == ATHN_RIDX_CCK2 &&
   1595 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1596 			hwrate |= 0x04;
   1597 		ds->ds_ctl7 |= SM(AR_TXC7_RTSCTS_RATE, hwrate);
   1598 	}
   1599 
   1600 	/* Finalize first Tx descriptor and fill others (if any). */
   1601 	ds->ds_ctl0 |= SM(AR_TXC0_FRAME_LEN, totlen);
   1602 
   1603 	lastds = NULL;	/* XXX: gcc */
   1604 	for (i = 0; i < bf->bf_map->dm_nsegs; i++, ds++) {
   1605 		ds->ds_data = bf->bf_map->dm_segs[i].ds_addr;
   1606 		ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,
   1607 		    bf->bf_map->dm_segs[i].ds_len);
   1608 
   1609 		if (i != bf->bf_map->dm_nsegs - 1)
   1610 			ds->ds_ctl1 |= AR_TXC1_MORE;
   1611 		ds->ds_link = 0;
   1612 
   1613 		/* Chain Tx descriptor. */
   1614 		if (i != 0)
   1615 			lastds->ds_link = bf->bf_daddr + i * sizeof(*ds);
   1616 		lastds = ds;
   1617 	}
   1618 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1619 	    BUS_DMASYNC_PREWRITE);
   1620 
   1621 	if (!SIMPLEQ_EMPTY(&txq->head))
   1622 		((struct ar_tx_desc *)txq->lastds)->ds_link = bf->bf_daddr;
   1623 	else
   1624 		AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
   1625 	txq->lastds = lastds;
   1626 	SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
   1627 	SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
   1628 
   1629 	ds = bf->bf_descs;
   1630 	DPRINTFN(DBG_TX, sc,
   1631 	    "Tx qid=%d nsegs=%d ctl0=0x%x ctl1=0x%x ctl3=0x%x\n",
   1632 	    qid, bf->bf_map->dm_nsegs, ds->ds_ctl0, ds->ds_ctl1, ds->ds_ctl3);
   1633 
   1634 	/* Kick Tx. */
   1635 	AR_WRITE(sc, AR_Q_TXE, 1 << qid);
   1636 	AR_WRITE_BARRIER(sc);
   1637 	return 0;
   1638 }
   1639 
   1640 Static void
   1641 ar5008_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
   1642 {
   1643 	uint32_t reg;
   1644 
   1645 	reg = IEEE80211_IS_CHAN_2GHZ(c) ?
   1646 	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
   1647 	if (!AR_SREV_9280_10_OR_LATER(sc)) {
   1648 		reg |= IEEE80211_IS_CHAN_2GHZ(c) ?
   1649 		    AR_PHY_MODE_RF2GHZ : AR_PHY_MODE_RF5GHZ;
   1650 	}
   1651 	else if (IEEE80211_IS_CHAN_5GHZ(c) &&
   1652 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
   1653 		reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
   1654 	}
   1655 	AR_WRITE(sc, AR_PHY_MODE, reg);
   1656 	AR_WRITE_BARRIER(sc);
   1657 }
   1658 
   1659 static __inline uint32_t
   1660 ar5008_synth_delay(struct athn_softc *sc)
   1661 {
   1662 	uint32_t delay;
   1663 
   1664 	delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
   1665 	if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
   1666 		delay = (delay * 4) / 22;
   1667 	else
   1668 		delay = delay / 10;	/* in 100ns steps */
   1669 	return delay;
   1670 }
   1671 
   1672 Static int
   1673 ar5008_rf_bus_request(struct athn_softc *sc)
   1674 {
   1675 	int ntries;
   1676 
   1677 	/* Request RF Bus grant. */
   1678 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
   1679 	for (ntries = 0; ntries < 10000; ntries++) {
   1680 		if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
   1681 			return 0;
   1682 		DELAY(10);
   1683 	}
   1684 	DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
   1685 	return ETIMEDOUT;
   1686 }
   1687 
   1688 Static void
   1689 ar5008_rf_bus_release(struct athn_softc *sc)
   1690 {
   1691 
   1692 	/* Wait for the synthesizer to settle. */
   1693 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar5008_synth_delay(sc));
   1694 
   1695 	/* Release the RF Bus grant. */
   1696 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
   1697 	AR_WRITE_BARRIER(sc);
   1698 }
   1699 
   1700 Static void
   1701 ar5008_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
   1702     struct ieee80211_channel *extc)
   1703 {
   1704 	uint32_t phy;
   1705 
   1706 	if (AR_SREV_9285_10_OR_LATER(sc))
   1707 		phy = AR_READ(sc, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO;
   1708 	else
   1709 		phy = 0;
   1710 	phy |= AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 |
   1711 	    AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
   1712 #ifndef IEEE80211_NO_HT
   1713 	if (extc != NULL) {
   1714 		phy |= AR_PHY_FC_DYN2040_EN;
   1715 		if (extc > c)	/* XXX */
   1716 			phy |= AR_PHY_FC_DYN2040_PRI_CH;
   1717 	}
   1718 #endif
   1719 	AR_WRITE(sc, AR_PHY_TURBO, phy);
   1720 
   1721 	AR_WRITE(sc, AR_2040_MODE,
   1722 	    (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
   1723 
   1724 	/* Set global transmit timeout. */
   1725 	AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
   1726 	/* Set carrier sense timeout. */
   1727 	AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
   1728 	AR_WRITE_BARRIER(sc);
   1729 }
   1730 
   1731 Static void
   1732 ar5008_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
   1733     struct ieee80211_channel *extc)
   1734 {
   1735 	uint32_t coeff, exp, man, reg;
   1736 
   1737 	/* Set Delta Slope (exponent and mantissa). */
   1738 	coeff = (100 << 24) / c->ic_freq;
   1739 	athn_get_delta_slope(coeff, &exp, &man);
   1740 	DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
   1741 
   1742 	reg = AR_READ(sc, AR_PHY_TIMING3);
   1743 	reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
   1744 	reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
   1745 	AR_WRITE(sc, AR_PHY_TIMING3, reg);
   1746 
   1747 	/* For Short GI, coeff is 9/10 that of normal coeff. */
   1748 	coeff = (9 * coeff) / 10;
   1749 	athn_get_delta_slope(coeff, &exp, &man);
   1750 	DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
   1751 
   1752 	reg = AR_READ(sc, AR_PHY_HALFGI);
   1753 	reg = RW(reg, AR_PHY_HALFGI_DSC_EXP, exp);
   1754 	reg = RW(reg, AR_PHY_HALFGI_DSC_MAN, man);
   1755 	AR_WRITE(sc, AR_PHY_HALFGI, reg);
   1756 	AR_WRITE_BARRIER(sc);
   1757 }
   1758 
   1759 Static void
   1760 ar5008_enable_antenna_diversity(struct athn_softc *sc)
   1761 {
   1762 
   1763 	AR_SETBITS(sc, AR_PHY_CCK_DETECT,
   1764 	    AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
   1765 	AR_WRITE_BARRIER(sc);
   1766 }
   1767 
   1768 Static void
   1769 ar5008_init_baseband(struct athn_softc *sc)
   1770 {
   1771 	uint32_t synth_delay;
   1772 
   1773 	synth_delay = ar5008_synth_delay(sc);
   1774 	/* Activate the PHY (includes baseband activate and synthesizer on). */
   1775 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
   1776 	AR_WRITE_BARRIER(sc);
   1777 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
   1778 }
   1779 
   1780 Static void
   1781 ar5008_disable_phy(struct athn_softc *sc)
   1782 {
   1783 
   1784 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
   1785 	AR_WRITE_BARRIER(sc);
   1786 }
   1787 
   1788 Static void
   1789 ar5008_init_chains(struct athn_softc *sc)
   1790 {
   1791 
   1792 	if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
   1793 		AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
   1794 
   1795 	/* Setup chain masks. */
   1796 	if (sc->sc_mac_ver <= AR_SREV_VERSION_9160 &&
   1797 	    (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5)) {
   1798 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  0x7);
   1799 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, 0x7);
   1800 	}
   1801 	else {
   1802 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
   1803 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
   1804 	}
   1805 	AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
   1806 	AR_WRITE_BARRIER(sc);
   1807 }
   1808 
   1809 Static void
   1810 ar5008_set_rxchains(struct athn_softc *sc)
   1811 {
   1812 
   1813 	if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
   1814 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
   1815 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
   1816 		AR_WRITE_BARRIER(sc);
   1817 	}
   1818 }
   1819 
   1820 #ifdef notused
   1821 Static void
   1822 ar5008_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
   1823 {
   1824 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
   1825 #define SIGN_EXT(v)	(((v) ^ 0x100) - 0x100)
   1826 	uint32_t reg;
   1827 	int i;
   1828 
   1829 	for (i = 0; i < sc->sc_nrxchains; i++) {
   1830 		reg = AR_READ(sc, AR_PHY_CCA(i));
   1831 		if (AR_SREV_9280_10_OR_LATER(sc))
   1832 			nf[i] = MS(reg, AR9280_PHY_MINCCA_PWR);
   1833 		else
   1834 			nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
   1835 		nf[i] = SIGN_EXT(nf[i]);
   1836 
   1837 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
   1838 		if (AR_SREV_9280_10_OR_LATER(sc))
   1839 			nf_ext[i] = MS(reg, AR9280_PHY_EXT_MINCCA_PWR);
   1840 		else
   1841 			nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
   1842 		nf_ext[i] = SIGN_EXT(nf_ext[i]);
   1843 	}
   1844 #undef SIGN_EXT
   1845 }
   1846 #endif /* notused */
   1847 
   1848 #ifdef notused
   1849 Static void
   1850 ar5008_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
   1851 {
   1852 	uint32_t reg;
   1853 	int i;
   1854 
   1855 	for (i = 0; i < sc->sc_nrxchains; i++) {
   1856 		reg = AR_READ(sc, AR_PHY_CCA(i));
   1857 		reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
   1858 		AR_WRITE(sc, AR_PHY_CCA(i), reg);
   1859 
   1860 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
   1861 		reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
   1862 		AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
   1863 	}
   1864 	AR_WRITE_BARRIER(sc);
   1865 }
   1866 #endif /* notused */
   1867 
   1868 #ifdef notused
   1869 Static void
   1870 ar5008_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
   1871 {
   1872 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
   1873 	int i;
   1874 
   1875 	if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
   1876 		/* Noisefloor calibration not finished. */
   1877 		return;
   1878 	}
   1879 	/* Noisefloor calibration is finished. */
   1880 	ar5008_read_noisefloor(sc, nf, nf_ext);
   1881 
   1882 	/* Update noisefloor history. */
   1883 	for (i = 0; i < sc->sc_nrxchains; i++) {
   1884 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
   1885 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
   1886 	}
   1887 	if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
   1888 		sc->sc_nf_hist_cur = 0;
   1889 }
   1890 #endif /* notused */
   1891 
   1892 #ifdef notused
   1893 Static void
   1894 ar5008_bb_load_noisefloor(struct athn_softc *sc)
   1895 {
   1896 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
   1897 	int i, ntries;
   1898 
   1899 	/* Write filtered noisefloor values. */
   1900 	for (i = 0; i < sc->sc_nrxchains; i++) {
   1901 		nf[i] = sc->sc_nf_priv[i] * 2;
   1902 		nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
   1903 	}
   1904 	ar5008_write_noisefloor(sc, nf, nf_ext);
   1905 
   1906 	/* Load filtered noisefloor values into baseband. */
   1907 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   1908 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   1909 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   1910 	/* Wait for load to complete. */
   1911 	for (ntries = 0; ntries < 1000; ntries++) {
   1912 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
   1913 			break;
   1914 		DELAY(50);
   1915 	}
   1916 	if (ntries == 1000) {
   1917 		DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
   1918 		return;
   1919 	}
   1920 
   1921 	/* Restore noisefloor values to initial (max) values. */
   1922 	for (i = 0; i < AR_MAX_CHAINS; i++)
   1923 		nf[i] = nf_ext[i] = -50 * 2;
   1924 	ar5008_write_noisefloor(sc, nf, nf_ext);
   1925 }
   1926 #endif /* notused */
   1927 
   1928 #ifdef notused
   1929 Static void
   1930 ar5008_noisefloor_calib(struct athn_softc *sc)
   1931 {
   1932 
   1933 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   1934 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   1935 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   1936 	AR_WRITE_BARRIER(sc);
   1937 }
   1938 #endif /* notused */
   1939 
   1940 Static void
   1941 ar5008_do_noisefloor_calib(struct athn_softc *sc)
   1942 {
   1943 
   1944 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   1945 	AR_WRITE_BARRIER(sc);
   1946 }
   1947 
   1948 Static void
   1949 ar5008_do_calib(struct athn_softc *sc)
   1950 {
   1951 	uint32_t mode, reg;
   1952 	int log;
   1953 
   1954 	reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
   1955 	log = AR_SREV_9280_10_OR_LATER(sc) ? 10 : 2;
   1956 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, log);
   1957 	AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);
   1958 
   1959 	if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN)
   1960 		mode = AR_PHY_CALMODE_ADC_GAIN;
   1961 	else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC)
   1962 		mode = AR_PHY_CALMODE_ADC_DC_PER;
   1963 	else	/* ATHN_CAL_IQ */
   1964 		mode = AR_PHY_CALMODE_IQ;
   1965 	AR_WRITE(sc, AR_PHY_CALMODE, mode);
   1966 
   1967 	DPRINTFN(DBG_RF, sc, "starting calibration mode=0x%x\n", mode);
   1968 	AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_DO_CAL);
   1969 	AR_WRITE_BARRIER(sc);
   1970 }
   1971 
   1972 Static void
   1973 ar5008_next_calib(struct athn_softc *sc)
   1974 {
   1975 
   1976 	/* Check if we have any calibration in progress. */
   1977 	if (sc->sc_cur_calib_mask != 0) {
   1978 		if (!(AR_READ(sc, AR_PHY_TIMING_CTRL4_0) &
   1979 		    AR_PHY_TIMING_CTRL4_DO_CAL)) {
   1980 			/* Calibration completed for current sample. */
   1981 			if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN)
   1982 				ar5008_calib_adc_gain(sc);
   1983 			else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC)
   1984 				ar5008_calib_adc_dc_off(sc);
   1985 			else	/* ATHN_CAL_IQ */
   1986 				ar5008_calib_iq(sc);
   1987 		}
   1988 	}
   1989 }
   1990 
   1991 Static void
   1992 ar5008_calib_iq(struct athn_softc *sc)
   1993 {
   1994 	struct athn_iq_cal *cal;
   1995 	uint32_t reg, i_coff_denom, q_coff_denom;
   1996 	int32_t i_coff, q_coff;
   1997 	int i, iq_corr_neg;
   1998 
   1999 	for (i = 0; i < AR_MAX_CHAINS; i++) {
   2000 		cal = &sc->sc_calib.iq[i];
   2001 
   2002 		/* Accumulate IQ calibration measures (clear on read). */
   2003 		cal->pwr_meas_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
   2004 		cal->pwr_meas_q += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
   2005 		cal->iq_corr_meas +=
   2006 		    (int32_t)AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
   2007 	}
   2008 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
   2009 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
   2010 		/* Not enough samples accumulated, continue. */
   2011 		ar5008_do_calib(sc);
   2012 		return;
   2013 	}
   2014 
   2015 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2016 		cal = &sc->sc_calib.iq[i];
   2017 
   2018 		if (cal->pwr_meas_q == 0)
   2019 			continue;
   2020 
   2021 		if ((iq_corr_neg = cal->iq_corr_meas < 0))
   2022 			cal->iq_corr_meas = -cal->iq_corr_meas;
   2023 
   2024 		i_coff_denom =
   2025 		    (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 128;
   2026 		q_coff_denom = cal->pwr_meas_q / 64;
   2027 
   2028 		if (i_coff_denom == 0 || q_coff_denom == 0)
   2029 			continue;	/* Prevents division by zero. */
   2030 
   2031 		i_coff = cal->iq_corr_meas / i_coff_denom;
   2032 		q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
   2033 
   2034 		/* Negate i_coff if iq_corr_meas is positive. */
   2035 		if (!iq_corr_neg)
   2036 			i_coff = 0x40 - (i_coff & 0x3f);
   2037 		if (q_coff > 15)
   2038 			q_coff = 15;
   2039 		else if (q_coff <= -16)
   2040 			q_coff = -16;	/* XXX Linux has a bug here? */
   2041 
   2042 		DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
   2043 		reg = AR_READ(sc, AR_PHY_TIMING_CTRL4(i));
   2044 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, i_coff);
   2045 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, q_coff);
   2046 		AR_WRITE(sc, AR_PHY_TIMING_CTRL4(i), reg);
   2047 	}
   2048 
   2049 	/* Apply new settings. */
   2050 	AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,
   2051 	    AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
   2052 	AR_WRITE_BARRIER(sc);
   2053 
   2054 	/* IQ calibration done. */
   2055 	sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
   2056 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
   2057 }
   2058 
   2059 Static void
   2060 ar5008_calib_adc_gain(struct athn_softc *sc)
   2061 {
   2062 	struct athn_adc_cal *cal;
   2063 	uint32_t reg, gain_mismatch_i, gain_mismatch_q;
   2064 	int i;
   2065 
   2066 	for (i = 0; i < AR_MAX_CHAINS; i++) {
   2067 		cal = &sc->sc_calib.adc_gain[i];
   2068 
   2069 		/* Accumulate ADC gain measures (clear on read). */
   2070 		cal->pwr_meas_odd_i  += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
   2071 		cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
   2072 		cal->pwr_meas_odd_q  += AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
   2073 		cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i));
   2074 	}
   2075 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
   2076 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
   2077 		/* Not enough samples accumulated, continue. */
   2078 		ar5008_do_calib(sc);
   2079 		return;
   2080 	}
   2081 
   2082 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2083 		cal = &sc->sc_calib.adc_gain[i];
   2084 
   2085 		if (cal->pwr_meas_odd_i == 0 || cal->pwr_meas_even_q == 0)
   2086 			continue;	/* Prevents division by zero. */
   2087 
   2088 		gain_mismatch_i =
   2089 		    (cal->pwr_meas_even_i * 32) / cal->pwr_meas_odd_i;
   2090 		gain_mismatch_q =
   2091 		    (cal->pwr_meas_odd_q * 32) / cal->pwr_meas_even_q;
   2092 
   2093 		DPRINTFN(DBG_RF, sc, "ADC gain calibration for chain %d\n", i);
   2094 		reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
   2095 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IGAIN, gain_mismatch_i);
   2096 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QGAIN, gain_mismatch_q);
   2097 		AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg);
   2098 	}
   2099 
   2100 	/* Apply new settings. */
   2101 	AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
   2102 	    AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
   2103 	AR_WRITE_BARRIER(sc);
   2104 
   2105 	/* ADC gain calibration done. */
   2106 	sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_GAIN;
   2107 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
   2108 }
   2109 
   2110 Static void
   2111 ar5008_calib_adc_dc_off(struct athn_softc *sc)
   2112 {
   2113 	struct athn_adc_cal *cal;
   2114 	int32_t dc_offset_mismatch_i, dc_offset_mismatch_q;
   2115 	uint32_t reg;
   2116 	int count, i;
   2117 
   2118 	for (i = 0; i < AR_MAX_CHAINS; i++) {
   2119 		cal = &sc->sc_calib.adc_dc_offset[i];
   2120 
   2121 		/* Accumulate ADC DC offset measures (clear on read). */
   2122 		cal->pwr_meas_odd_i  += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
   2123 		cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
   2124 		cal->pwr_meas_odd_q  += AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
   2125 		cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i));
   2126 	}
   2127 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
   2128 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
   2129 		/* Not enough samples accumulated, continue. */
   2130 		ar5008_do_calib(sc);
   2131 		return;
   2132 	}
   2133 
   2134 	if (AR_SREV_9280_10_OR_LATER(sc))
   2135 		count = (1 << (10 + 5));
   2136 	else
   2137 		count = (1 << ( 2 + 5)) * AR_CAL_SAMPLES;
   2138 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2139 		cal = &sc->sc_calib.adc_dc_offset[i];
   2140 
   2141 		dc_offset_mismatch_i =
   2142 		    (cal->pwr_meas_even_i - cal->pwr_meas_odd_i * 2) / count;
   2143 		dc_offset_mismatch_q =
   2144 		    (cal->pwr_meas_odd_q - cal->pwr_meas_even_q * 2) / count;
   2145 
   2146 		DPRINTFN(DBG_RF, sc, "ADC DC offset calibration for chain %d\n", i);
   2147 		reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
   2148 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QDC,
   2149 		    dc_offset_mismatch_q);
   2150 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IDC,
   2151 		    dc_offset_mismatch_i);
   2152 		AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg);
   2153 	}
   2154 
   2155 	/* Apply new settings. */
   2156 	AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
   2157 	    AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
   2158 	AR_WRITE_BARRIER(sc);
   2159 
   2160 	/* ADC DC offset calibration done. */
   2161 	sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_DC;
   2162 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
   2163 }
   2164 
   2165 PUBLIC void
   2166 ar5008_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
   2167 {
   2168 
   2169 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE1,
   2170 	    (power[ATHN_POWER_OFDM18  ] & 0x3f) << 24 |
   2171 	    (power[ATHN_POWER_OFDM12  ] & 0x3f) << 16 |
   2172 	    (power[ATHN_POWER_OFDM9   ] & 0x3f) <<  8 |
   2173 	    (power[ATHN_POWER_OFDM6   ] & 0x3f));
   2174 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE2,
   2175 	    (power[ATHN_POWER_OFDM54  ] & 0x3f) << 24 |
   2176 	    (power[ATHN_POWER_OFDM48  ] & 0x3f) << 16 |
   2177 	    (power[ATHN_POWER_OFDM36  ] & 0x3f) <<  8 |
   2178 	    (power[ATHN_POWER_OFDM24  ] & 0x3f));
   2179 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE3,
   2180 	    (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
   2181 	    (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
   2182 	    (power[ATHN_POWER_XR      ] & 0x3f) <<  8 |
   2183 	    (power[ATHN_POWER_CCK1_LP ] & 0x3f));
   2184 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE4,
   2185 	    (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
   2186 	    (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
   2187 	    (power[ATHN_POWER_CCK55_SP] & 0x3f) <<  8 |
   2188 	    (power[ATHN_POWER_CCK55_LP] & 0x3f));
   2189 #ifndef IEEE80211_NO_HT
   2190 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE5,
   2191 	    (power[ATHN_POWER_HT20(3) ] & 0x3f) << 24 |
   2192 	    (power[ATHN_POWER_HT20(2) ] & 0x3f) << 16 |
   2193 	    (power[ATHN_POWER_HT20(1) ] & 0x3f) <<  8 |
   2194 	    (power[ATHN_POWER_HT20(0) ] & 0x3f));
   2195 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE6,
   2196 	    (power[ATHN_POWER_HT20(7) ] & 0x3f) << 24 |
   2197 	    (power[ATHN_POWER_HT20(6) ] & 0x3f) << 16 |
   2198 	    (power[ATHN_POWER_HT20(5) ] & 0x3f) <<  8 |
   2199 	    (power[ATHN_POWER_HT20(4) ] & 0x3f));
   2200 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE7,
   2201 	    (power[ATHN_POWER_HT40(3) ] & 0x3f) << 24 |
   2202 	    (power[ATHN_POWER_HT40(2) ] & 0x3f) << 16 |
   2203 	    (power[ATHN_POWER_HT40(1) ] & 0x3f) <<  8 |
   2204 	    (power[ATHN_POWER_HT40(0) ] & 0x3f));
   2205 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE8,
   2206 	    (power[ATHN_POWER_HT40(7) ] & 0x3f) << 24 |
   2207 	    (power[ATHN_POWER_HT40(6) ] & 0x3f) << 16 |
   2208 	    (power[ATHN_POWER_HT40(5) ] & 0x3f) <<  8 |
   2209 	    (power[ATHN_POWER_HT40(4) ] & 0x3f));
   2210 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE9,
   2211 	    (power[ATHN_POWER_OFDM_EXT] & 0x3f) << 24 |
   2212 	    (power[ATHN_POWER_CCK_EXT ] & 0x3f) << 16 |
   2213 	    (power[ATHN_POWER_OFDM_DUP] & 0x3f) <<  8 |
   2214 	    (power[ATHN_POWER_CCK_DUP ] & 0x3f));
   2215 #endif
   2216 	AR_WRITE_BARRIER(sc);
   2217 }
   2218 
   2219 PUBLIC void
   2220 ar5008_set_viterbi_mask(struct athn_softc *sc, int bin)
   2221 {
   2222 	uint32_t mask[4], reg;
   2223 	uint8_t m[62], p[62];	/* XXX use bit arrays? */
   2224 	int i, bit, cur;
   2225 
   2226 	/* Compute pilot mask. */
   2227 	cur = -6000;
   2228 	for (i = 0; i < 4; i++) {
   2229 		mask[i] = 0;
   2230 		for (bit = 0; bit < 30; bit++) {
   2231 			if (abs(cur - bin) < 100)
   2232 				mask[i] |= 1 << bit;
   2233 			cur += 100;
   2234 		}
   2235 		if (cur == 0)	/* Skip entry "0". */
   2236 			cur = 100;
   2237 	}
   2238 	/* Write entries from -6000 to -3100. */
   2239 	AR_WRITE(sc, AR_PHY_TIMING7, mask[0]);
   2240 	AR_WRITE(sc, AR_PHY_TIMING9, mask[0]);
   2241 	/* Write entries from -3000 to -100. */
   2242 	AR_WRITE(sc, AR_PHY_TIMING8, mask[1]);
   2243 	AR_WRITE(sc, AR_PHY_TIMING10, mask[1]);
   2244 	/* Write entries from 100 to 3000. */
   2245 	AR_WRITE(sc, AR_PHY_PILOT_MASK_01_30, mask[2]);
   2246 	AR_WRITE(sc, AR_PHY_CHANNEL_MASK_01_30, mask[2]);
   2247 	/* Write entries from 3100 to 6000. */
   2248 	AR_WRITE(sc, AR_PHY_PILOT_MASK_31_60, mask[3]);
   2249 	AR_WRITE(sc, AR_PHY_CHANNEL_MASK_31_60, mask[3]);
   2250 
   2251 	/* Compute viterbi mask. */
   2252 	for (cur = 6100; cur >= 0; cur -= 100)
   2253 		p[+cur / 100] = abs(cur - bin) < 75;
   2254 	for (cur = -100; cur >= -6100; cur -= 100)
   2255 		m[-cur / 100] = abs(cur - bin) < 75;
   2256 
   2257 	/* Write viterbi mask (XXX needs to be reworked). */
   2258 	reg =
   2259 	    m[46] << 30 | m[47] << 28 | m[48] << 26 | m[49] << 24 |
   2260 	    m[50] << 22 | m[51] << 20 | m[52] << 18 | m[53] << 16 |
   2261 	    m[54] << 14 | m[55] << 12 | m[56] << 10 | m[57] <<  8 |
   2262 	    m[58] <<  6 | m[59] <<  4 | m[60] <<  2 | m[61] <<  0;
   2263 	AR_WRITE(sc, AR_PHY_BIN_MASK_1, reg);
   2264 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_46_61, reg);
   2265 
   2266 	/* XXX m[48] should be m[38] ? */
   2267 	reg =             m[31] << 28 | m[32] << 26 | m[33] << 24 |
   2268 	    m[34] << 22 | m[35] << 20 | m[36] << 18 | m[37] << 16 |
   2269 	    m[48] << 14 | m[39] << 12 | m[40] << 10 | m[41] <<  8 |
   2270 	    m[42] <<  6 | m[43] <<  4 | m[44] <<  2 | m[45] <<  0;
   2271 	AR_WRITE(sc, AR_PHY_BIN_MASK_2, reg);
   2272 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_31_45, reg);
   2273 
   2274 	/* XXX This one is weird too. */
   2275 	reg =
   2276 	    m[16] << 30 | m[16] << 28 | m[18] << 26 | m[18] << 24 |
   2277 	    m[20] << 22 | m[20] << 20 | m[22] << 18 | m[22] << 16 |
   2278 	    m[24] << 14 | m[24] << 12 | m[25] << 10 | m[26] <<  8 |
   2279 	    m[27] <<  6 | m[28] <<  4 | m[29] <<  2 | m[30] <<  0;
   2280 	AR_WRITE(sc, AR_PHY_BIN_MASK_3, reg);
   2281 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_16_30, reg);
   2282 
   2283 	reg =
   2284 	    m[ 0] << 30 | m[ 1] << 28 | m[ 2] << 26 | m[ 3] << 24 |
   2285 	    m[ 4] << 22 | m[ 5] << 20 | m[ 6] << 18 | m[ 7] << 16 |
   2286 	    m[ 8] << 14 | m[ 9] << 12 | m[10] << 10 | m[11] <<  8 |
   2287 	    m[12] <<  6 | m[13] <<  4 | m[14] <<  2 | m[15] <<  0;
   2288 	AR_WRITE(sc, AR_PHY_MASK_CTL, reg);
   2289 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_00_15, reg);
   2290 
   2291 	reg =             p[15] << 28 | p[14] << 26 | p[13] << 24 |
   2292 	    p[12] << 22 | p[11] << 20 | p[10] << 18 | p[ 9] << 16 |
   2293 	    p[ 8] << 14 | p[ 7] << 12 | p[ 6] << 10 | p[ 5] <<  8 |
   2294 	    p[ 4] <<  6 | p[ 3] <<  4 | p[ 2] <<  2 | p[ 1] <<  0;
   2295 	AR_WRITE(sc, AR_PHY_BIN_MASK2_1, reg);
   2296 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_15_01, reg);
   2297 
   2298 	reg =             p[30] << 28 | p[29] << 26 | p[28] << 24 |
   2299 	    p[27] << 22 | p[26] << 20 | p[25] << 18 | p[24] << 16 |
   2300 	    p[23] << 14 | p[22] << 12 | p[21] << 10 | p[20] <<  8 |
   2301 	    p[19] <<  6 | p[18] <<  4 | p[17] <<  2 | p[16] <<  0;
   2302 	AR_WRITE(sc, AR_PHY_BIN_MASK2_2, reg);
   2303 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_30_16, reg);
   2304 
   2305 	reg =             p[45] << 28 | p[44] << 26 | p[43] << 24 |
   2306 	    p[42] << 22 | p[41] << 20 | p[40] << 18 | p[39] << 16 |
   2307 	    p[38] << 14 | p[37] << 12 | p[36] << 10 | p[35] <<  8 |
   2308 	    p[34] <<  6 | p[33] <<  4 | p[32] <<  2 | p[31] <<  0;
   2309 	AR_WRITE(sc, AR_PHY_BIN_MASK2_3, reg);
   2310 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_45_31, reg);
   2311 
   2312 	reg =
   2313 	    p[61] << 30 | p[60] << 28 | p[59] << 26 | p[58] << 24 |
   2314 	    p[57] << 22 | p[56] << 20 | p[55] << 18 | p[54] << 16 |
   2315 	    p[53] << 14 | p[52] << 12 | p[51] << 10 | p[50] <<  8 |
   2316 	    p[49] <<  6 | p[48] <<  4 | p[47] <<  2 | p[46] <<  0;
   2317 	AR_WRITE(sc, AR_PHY_BIN_MASK2_4, reg);
   2318 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_61_46, reg);
   2319 	AR_WRITE_BARRIER(sc);
   2320 }
   2321 
   2322 Static void
   2323 ar5008_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
   2324     struct ieee80211_channel *extc)
   2325 {
   2326 	struct athn_ops *ops = &sc->sc_ops;
   2327 	const struct athn_ini *ini = sc->sc_ini;
   2328 	const uint32_t *pvals;
   2329 	uint32_t reg;
   2330 	int i;
   2331 
   2332 	AR_WRITE(sc, AR_PHY(0), 0x00000007);
   2333 	AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
   2334 
   2335 	if (!AR_SINGLE_CHIP(sc))
   2336 		ar5416_reset_addac(sc, c);
   2337 
   2338 	AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
   2339 
   2340 	/* First initialization step (depends on channel band/bandwidth). */
   2341 #ifndef IEEE80211_NO_HT
   2342 	if (extc != NULL) {
   2343 		if (IEEE80211_IS_CHAN_2GHZ(c))
   2344 			pvals = ini->vals_2g40;
   2345 		else
   2346 			pvals = ini->vals_5g40;
   2347 	}
   2348 	else
   2349 #endif
   2350 	{
   2351 		if (IEEE80211_IS_CHAN_2GHZ(c))
   2352 			pvals = ini->vals_2g20;
   2353 		else
   2354 			pvals = ini->vals_5g20;
   2355 	}
   2356 	DPRINTFN(DBG_INIT, sc, "writing modal init vals\n");
   2357 	for (i = 0; i < ini->nregs; i++) {
   2358 		uint32_t val = pvals[i];
   2359 
   2360 		/* Fix AR_AN_TOP2 initialization value if required. */
   2361 		if (ini->regs[i] == AR_AN_TOP2 &&
   2362 		    (sc->sc_flags & ATHN_FLAG_AN_TOP2_FIXUP))
   2363 			val &= ~AR_AN_TOP2_PWDCLKIND;
   2364 		AR_WRITE(sc, ini->regs[i], val);
   2365 		if (AR_IS_ANALOG_REG(ini->regs[i])) {
   2366 			AR_WRITE_BARRIER(sc);
   2367 			DELAY(100);
   2368 		}
   2369 		if ((i & 0x1f) == 0)
   2370 			DELAY(1);
   2371 	}
   2372 	AR_WRITE_BARRIER(sc);
   2373 
   2374 	if (sc->sc_rx_gain != NULL)
   2375 		ar9280_reset_rx_gain(sc, c);
   2376 	if (sc->sc_tx_gain != NULL)
   2377 		ar9280_reset_tx_gain(sc, c);
   2378 
   2379 	if (AR_SREV_9271_10(sc)) {
   2380 		AR_WRITE(sc, AR_PHY(68), 0x30002311);
   2381 		AR_WRITE(sc, AR_PHY_RF_CTL3, 0x0a020001);
   2382 	}
   2383 	AR_WRITE_BARRIER(sc);
   2384 
   2385 	/* Second initialization step (common to all channels). */
   2386 	DPRINTFN(DBG_INIT, sc, "writing common init vals\n");
   2387 	for (i = 0; i < ini->ncmregs; i++) {
   2388 		AR_WRITE(sc, ini->cmregs[i], ini->cmvals[i]);
   2389 		if (AR_IS_ANALOG_REG(ini->cmregs[i])) {
   2390 			AR_WRITE_BARRIER(sc);
   2391 			DELAY(100);
   2392 		}
   2393 		if ((i & 0x1f) == 0)
   2394 			DELAY(1);
   2395 	}
   2396 	AR_WRITE_BARRIER(sc);
   2397 
   2398 	if (!AR_SINGLE_CHIP(sc))
   2399 		ar5416_reset_bb_gain(sc, c);
   2400 
   2401 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
   2402 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
   2403 		/* Update modal values for fast PLL clock. */
   2404 #ifndef IEEE80211_NO_HT
   2405 		if (extc != NULL)
   2406 			pvals = ini->fastvals_5g40;
   2407 		else
   2408 #endif
   2409 			pvals = ini->fastvals_5g20;
   2410 		DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
   2411 		for (i = 0; i < ini->nfastregs; i++) {
   2412 			AR_WRITE(sc, ini->fastregs[i], pvals[i]);
   2413 			if (AR_IS_ANALOG_REG(ini->fastregs[i])) {
   2414 				AR_WRITE_BARRIER(sc);
   2415 				DELAY(100);
   2416 			}
   2417 			if ((i & 0x1f) == 0)
   2418 				DELAY(1);
   2419 		}
   2420 	}
   2421 
   2422 	/*
   2423 	 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
   2424 	 * descriptor status.
   2425 	 */
   2426 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
   2427 
   2428 	/* Hardware workarounds for occasional Rx data corruption. */
   2429 	if (AR_SREV_9280_10_OR_LATER(sc)) {
   2430 		reg = AR_READ(sc, AR_PCU_MISC_MODE2);
   2431 		if (!AR_SREV_9271(sc))
   2432 			reg &= ~AR_PCU_MISC_MODE2_HWWAR1;
   2433 		if (AR_SREV_9287_10_OR_LATER(sc))
   2434 			reg &= ~AR_PCU_MISC_MODE2_HWWAR2;
   2435 		AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
   2436 
   2437 	}
   2438 	else if (AR_SREV_5416_20_OR_LATER(sc)) {
   2439 		/* Disable baseband clock gating. */
   2440 		AR_WRITE(sc, AR_PHY(651), 0x11);
   2441 
   2442 		if (AR_SREV_9160(sc)) {
   2443 			/* Disable RIFS search to fix baseband hang. */
   2444 			AR_CLRBITS(sc, AR_PHY_HEAVY_CLIP_FACTOR_RIFS,
   2445 			    AR_PHY_RIFS_INIT_DELAY_M);
   2446 		}
   2447 	}
   2448 	AR_WRITE_BARRIER(sc);
   2449 
   2450 	ar5008_set_phy(sc, c, extc);
   2451 	ar5008_init_chains(sc);
   2452 
   2453 	if (sc->sc_flags & ATHN_FLAG_OLPC) {
   2454 		extern int ticks;
   2455 		sc->sc_olpc_ticks = ticks;
   2456 		ops->olpc_init(sc);
   2457 	}
   2458 
   2459 	ops->set_txpower(sc, c, extc);
   2460 
   2461 	if (!AR_SINGLE_CHIP(sc))
   2462 		ar5416_rf_reset(sc, c);
   2463 }
   2464 
   2465 Static uint8_t
   2466 ar5008_get_vpd(uint8_t pwr, const uint8_t *pwrPdg, const uint8_t *vpdPdg,
   2467     int nicepts)
   2468 {
   2469 	uint8_t vpd;
   2470 	int i, lo, hi;
   2471 
   2472 	for (i = 0; i < nicepts; i++)
   2473 		if (pwrPdg[i] > pwr)
   2474 			break;
   2475 	hi = i;
   2476 	lo = hi - 1;
   2477 	if (lo == -1)
   2478 		lo = hi;
   2479 	else if (hi == nicepts)
   2480 		hi = lo;
   2481 
   2482 	vpd = athn_interpolate(pwr, pwrPdg[lo], vpdPdg[lo],
   2483 	    pwrPdg[hi], vpdPdg[hi]);
   2484 	return vpd;
   2485 }
   2486 
   2487 PUBLIC void
   2488 ar5008_get_pdadcs(struct athn_softc *sc, uint8_t fbin,
   2489     struct athn_pier *lopier, struct athn_pier *hipier, int nxpdgains,
   2490     int nicepts, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs)
   2491 {
   2492 #define DB(x)	((x) / 2)	/* Convert half dB to dB. */
   2493 	uint8_t minpwr[AR_PD_GAINS_IN_MASK], maxpwr[AR_PD_GAINS_IN_MASK];
   2494 	uint8_t vpd[AR_MAX_PWR_RANGE_IN_HALF_DB], pwr;
   2495 	uint8_t lovpd, hivpd, boundary;
   2496 	int16_t ss, delta, vpdstep, val;
   2497 	int i, j, npdadcs, nvpds, maxidx, tgtidx;
   2498 
   2499 	/* Compute min and max power in half dB for each pdGain. */
   2500 	for (i = 0; i < nxpdgains; i++) {
   2501 		minpwr[i] = MAX(lopier->pwr[i][0], hipier->pwr[i][0]);
   2502 		maxpwr[i] = MIN(lopier->pwr[i][nicepts - 1],
   2503 		    hipier->pwr[i][nicepts - 1]);
   2504 	}
   2505 
   2506 	/* Fill phase domain analog-to-digital converter (PDADC) table. */
   2507 	npdadcs = 0;
   2508 	for (i = 0; i < nxpdgains; i++) {
   2509 		if (i != nxpdgains - 1)
   2510 			boundaries[i] = DB(maxpwr[i] + minpwr[i + 1]) / 2;
   2511 		else
   2512 			boundaries[i] = DB(maxpwr[i]);
   2513 		if (boundaries[i] > AR_MAX_RATE_POWER)
   2514 			boundaries[i] = AR_MAX_RATE_POWER;
   2515 
   2516 		if (i == 0 && !AR_SREV_5416_20_OR_LATER(sc)) {
   2517 			/* Fix the gain delta (AR5416 1.0 only). */
   2518 			delta = boundaries[0] - 23;
   2519 			boundaries[0] = 23;
   2520 		}
   2521 		else
   2522 			delta = 0;
   2523 
   2524 		/* Find starting index for this pdGain. */
   2525 		if (i != 0) {
   2526 			ss = boundaries[i - 1] - DB(minpwr[i]) -
   2527 			    overlap + 1 + delta;
   2528 		}
   2529 		else if (AR_SREV_9280_10_OR_LATER(sc))
   2530 			ss = -DB(minpwr[i]);
   2531 		else
   2532 			ss = 0;
   2533 
   2534 		/* Compute Vpd table for this pdGain. */
   2535 		nvpds = DB(maxpwr[i] - minpwr[i]) + 1;
   2536 		memset(vpd, 0, sizeof(vpd));
   2537 		pwr = minpwr[i];
   2538 		for (j = 0; j < nvpds; j++) {
   2539 			/* Get lower and higher Vpd. */
   2540 			lovpd = ar5008_get_vpd(pwr, lopier->pwr[i],
   2541 			    lopier->vpd[i], nicepts);
   2542 			hivpd = ar5008_get_vpd(pwr, hipier->pwr[i],
   2543 			    hipier->vpd[i], nicepts);
   2544 
   2545 			/* Interpolate the final Vpd. */
   2546 			vpd[j] = athn_interpolate(fbin,
   2547 			    lopier->fbin, lovpd, hipier->fbin, hivpd);
   2548 
   2549 			pwr += 2;	/* In half dB. */
   2550 		}
   2551 
   2552 		/* Extrapolate data for ss < 0. */
   2553 		if (vpd[1] > vpd[0])
   2554 			vpdstep = vpd[1] - vpd[0];
   2555 		else
   2556 			vpdstep = 1;
   2557 		while (ss < 0 && npdadcs < AR_NUM_PDADC_VALUES - 1) {
   2558 			val = vpd[0] + ss * vpdstep;
   2559 			pdadcs[npdadcs++] = MAX(val, 0);
   2560 			ss++;
   2561 		}
   2562 
   2563 		tgtidx = boundaries[i] + overlap - DB(minpwr[i]);
   2564 		maxidx = MIN(tgtidx, nvpds);
   2565 		while (ss < maxidx && npdadcs < AR_NUM_PDADC_VALUES - 1)
   2566 			pdadcs[npdadcs++] = vpd[ss++];
   2567 
   2568 		if (tgtidx < maxidx)
   2569 			continue;
   2570 
   2571 		/* Extrapolate data for maxidx <= ss <= tgtidx. */
   2572 		if (vpd[nvpds - 1] > vpd[nvpds - 2])
   2573 			vpdstep = vpd[nvpds - 1] - vpd[nvpds - 2];
   2574 		else
   2575 			vpdstep = 1;
   2576 		while (ss <= tgtidx && npdadcs < AR_NUM_PDADC_VALUES - 1) {
   2577 			val = vpd[nvpds - 1] + (ss - maxidx + 1) * vpdstep;
   2578 			pdadcs[npdadcs++] = MIN(val, 255);
   2579 			ss++;
   2580 		}
   2581 	}
   2582 
   2583 	/* Fill remaining PDADC and boundaries entries. */
   2584 	if (AR_SREV_9285(sc))
   2585 		boundary = AR9285_PD_GAIN_BOUNDARY_DEFAULT;
   2586 	else	/* Fill with latest. */
   2587 		boundary = boundaries[nxpdgains - 1];
   2588 
   2589 	for (; nxpdgains < AR_PD_GAINS_IN_MASK; nxpdgains++)
   2590 		boundaries[nxpdgains] = boundary;
   2591 
   2592 	for (; npdadcs < AR_NUM_PDADC_VALUES; npdadcs++)
   2593 		pdadcs[npdadcs] = pdadcs[npdadcs - 1];
   2594 #undef DB
   2595 }
   2596 
   2597 PUBLIC void
   2598 ar5008_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
   2599     uint8_t ctl, const struct ar_cal_target_power_leg *tgt, int nchans,
   2600     uint8_t tpow[4])
   2601 {
   2602 	uint8_t fbin;
   2603 	int i, lo, hi;
   2604 
   2605 	/* Find interval (lower and upper indices). */
   2606 	fbin = athn_chan2fbin(c);
   2607 	for (i = 0; i < nchans; i++) {
   2608 		if (tgt[i].bChannel == AR_BCHAN_UNUSED ||
   2609 		    tgt[i].bChannel > fbin)
   2610 			break;
   2611 	}
   2612 	hi = i;
   2613 	lo = hi - 1;
   2614 	if (lo == -1)
   2615 		lo = hi;
   2616 	else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED)
   2617 		hi = lo;
   2618 
   2619 	/* Interpolate values. */
   2620 	for (i = 0; i < 4; i++) {
   2621 		tpow[i] = athn_interpolate(fbin,
   2622 		    tgt[lo].bChannel, tgt[lo].tPow2x[i],
   2623 		    tgt[hi].bChannel, tgt[hi].tPow2x[i]);
   2624 	}
   2625 	/* XXX Apply conformance testing limit. */
   2626 }
   2627 
   2628 #ifndef IEEE80211_NO_HT
   2629 PUBLIC void
   2630 ar5008_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
   2631     uint8_t ctl, const struct ar_cal_target_power_ht *tgt, int nchans,
   2632     uint8_t tpow[8])
   2633 {
   2634 	uint8_t fbin;
   2635 	int i, lo, hi;
   2636 
   2637 	/* Find interval (lower and upper indices). */
   2638 	fbin = athn_chan2fbin(c);
   2639 	for (i = 0; i < nchans; i++) {
   2640 		if (tgt[i].bChannel == AR_BCHAN_UNUSED ||
   2641 		    tgt[i].bChannel > fbin)
   2642 			break;
   2643 	}
   2644 	hi = i;
   2645 	lo = hi - 1;
   2646 	if (lo == -1)
   2647 		lo = hi;
   2648 	else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED)
   2649 		hi = lo;
   2650 
   2651 	/* Interpolate values. */
   2652 	for (i = 0; i < 8; i++) {
   2653 		tpow[i] = athn_interpolate(fbin,
   2654 		    tgt[lo].bChannel, tgt[lo].tPow2x[i],
   2655 		    tgt[hi].bChannel, tgt[hi].tPow2x[i]);
   2656 	}
   2657 	/* XXX Apply conformance testing limit. */
   2658 }
   2659 #endif
   2660 
   2661 /*
   2662  * Adaptive noise immunity.
   2663  */
   2664 Static void
   2665 ar5008_set_noise_immunity_level(struct athn_softc *sc, int level)
   2666 {
   2667 	int high = level == 4;
   2668 	uint32_t reg;
   2669 
   2670 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
   2671 	reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
   2672 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
   2673 
   2674 	reg = AR_READ(sc, AR_PHY_AGC_CTL1);
   2675 	reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_LOW, high ? -70 : -64);
   2676 	reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_HIGH, high ? -12 : -14);
   2677 	AR_WRITE(sc, AR_PHY_AGC_CTL1, reg);
   2678 
   2679 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
   2680 	reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
   2681 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
   2682 
   2683 	AR_WRITE_BARRIER(sc);
   2684 }
   2685 
   2686 Static void
   2687 ar5008_enable_ofdm_weak_signal(struct athn_softc *sc)
   2688 {
   2689 	uint32_t reg;
   2690 
   2691 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
   2692 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
   2693 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
   2694 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
   2695 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
   2696 
   2697 	reg = AR_READ(sc, AR_PHY_SFCORR);
   2698 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
   2699 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
   2700 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
   2701 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
   2702 
   2703 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
   2704 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
   2705 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
   2706 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
   2707 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
   2708 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
   2709 
   2710 	AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
   2711 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
   2712 	AR_WRITE_BARRIER(sc);
   2713 }
   2714 
   2715 Static void
   2716 ar5008_disable_ofdm_weak_signal(struct athn_softc *sc)
   2717 {
   2718 	uint32_t reg;
   2719 
   2720 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
   2721 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
   2722 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
   2723 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
   2724 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
   2725 
   2726 	reg = AR_READ(sc, AR_PHY_SFCORR);
   2727 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
   2728 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
   2729 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
   2730 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
   2731 
   2732 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
   2733 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
   2734 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
   2735 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
   2736 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
   2737 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
   2738 
   2739 	AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
   2740 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
   2741 	AR_WRITE_BARRIER(sc);
   2742 }
   2743 
   2744 Static void
   2745 ar5008_set_cck_weak_signal(struct athn_softc *sc, int high)
   2746 {
   2747 	uint32_t reg;
   2748 
   2749 	reg = AR_READ(sc, AR_PHY_CCK_DETECT);
   2750 	reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
   2751 	AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
   2752 	AR_WRITE_BARRIER(sc);
   2753 }
   2754 
   2755 Static void
   2756 ar5008_set_firstep_level(struct athn_softc *sc, int level)
   2757 {
   2758 	uint32_t reg;
   2759 
   2760 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
   2761 	reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
   2762 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
   2763 	AR_WRITE_BARRIER(sc);
   2764 }
   2765 
   2766 Static void
   2767 ar5008_set_spur_immunity_level(struct athn_softc *sc, int level)
   2768 {
   2769 	uint32_t reg;
   2770 
   2771 	reg = AR_READ(sc, AR_PHY_TIMING5);
   2772 	reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
   2773 	AR_WRITE(sc, AR_PHY_TIMING5, reg);
   2774 	AR_WRITE_BARRIER(sc);
   2775 }
   2776