1 1.3 thorpej /* $NetBSD: arn5416.c,v 1.3 2022/09/25 18:43:32 thorpej Exp $ */ 2 1.1 christos /* $OpenBSD: ar5416.c,v 1.12 2012/06/10 21:23:36 kettenis Exp $ */ 3 1.1 christos 4 1.1 christos /*- 5 1.1 christos * Copyright (c) 2009 Damien Bergamini <damien.bergamini (at) free.fr> 6 1.1 christos * Copyright (c) 2008-2009 Atheros Communications Inc. 7 1.1 christos * 8 1.1 christos * Permission to use, copy, modify, and/or distribute this software for any 9 1.1 christos * purpose with or without fee is hereby granted, provided that the above 10 1.1 christos * copyright notice and this permission notice appear in all copies. 11 1.1 christos * 12 1.1 christos * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 1.1 christos * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 1.1 christos * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 1.1 christos * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 1.1 christos * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 1.1 christos * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 1.1 christos * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 1.1 christos */ 20 1.1 christos 21 1.1 christos /* 22 1.1 christos * Driver for Atheros 802.11a/g/n chipsets. 23 1.1 christos * Routines for AR5416, AR5418 and AR9160 chipsets. 24 1.1 christos */ 25 1.1 christos 26 1.1 christos #include <sys/cdefs.h> 27 1.3 thorpej __KERNEL_RCSID(0, "$NetBSD: arn5416.c,v 1.3 2022/09/25 18:43:32 thorpej Exp $"); 28 1.1 christos 29 1.1 christos #include <sys/param.h> 30 1.1 christos #include <sys/sockio.h> 31 1.1 christos #include <sys/mbuf.h> 32 1.1 christos #include <sys/kernel.h> 33 1.1 christos #include <sys/socket.h> 34 1.1 christos #include <sys/systm.h> 35 1.1 christos #include <sys/queue.h> 36 1.1 christos #include <sys/callout.h> 37 1.1 christos #include <sys/conf.h> 38 1.1 christos #include <sys/device.h> 39 1.1 christos 40 1.1 christos #include <sys/bus.h> 41 1.1 christos #include <sys/endian.h> 42 1.1 christos #include <sys/intr.h> 43 1.1 christos 44 1.1 christos #include <net/bpf.h> 45 1.1 christos #include <net/if.h> 46 1.1 christos #include <net/if_arp.h> 47 1.1 christos #include <net/if_dl.h> 48 1.2 christos #include <net/if_ether.h> 49 1.1 christos #include <net/if_media.h> 50 1.1 christos #include <net/if_types.h> 51 1.1 christos 52 1.1 christos #include <netinet/in.h> 53 1.1 christos #include <netinet/in_systm.h> 54 1.1 christos #include <netinet/in_var.h> 55 1.1 christos #include <netinet/ip.h> 56 1.1 christos 57 1.1 christos #include <net80211/ieee80211_var.h> 58 1.1 christos #include <net80211/ieee80211_amrr.h> 59 1.1 christos #include <net80211/ieee80211_radiotap.h> 60 1.1 christos 61 1.1 christos #include <dev/ic/athnreg.h> 62 1.1 christos #include <dev/ic/athnvar.h> 63 1.1 christos 64 1.1 christos #include <dev/ic/arn5008reg.h> 65 1.1 christos #include <dev/ic/arn5008.h> 66 1.1 christos #include <dev/ic/arn5416reg.h> 67 1.1 christos #include <dev/ic/arn5416.h> 68 1.1 christos #include <dev/ic/arn9280.h> 69 1.1 christos 70 1.1 christos #define Static static 71 1.1 christos 72 1.1 christos Static void ar5416_force_bias(struct athn_softc *, 73 1.1 christos struct ieee80211_channel *); 74 1.1 christos Static void ar5416_get_pdadcs(struct athn_softc *, 75 1.1 christos struct ieee80211_channel *, int, int, uint8_t, uint8_t *, 76 1.1 christos uint8_t *); 77 1.1 christos Static void ar5416_init_from_rom(struct athn_softc *, 78 1.1 christos struct ieee80211_channel *, struct ieee80211_channel *); 79 1.1 christos Static uint8_t ar5416_reverse_bits(uint8_t, int); 80 1.1 christos Static void ar5416_rw_bank6tpc(struct athn_softc *, 81 1.1 christos struct ieee80211_channel *, uint32_t *); 82 1.1 christos Static void ar5416_rw_rfbits(uint32_t *, int, int, uint32_t, int); 83 1.1 christos Static void ar5416_set_power_calib(struct athn_softc *, 84 1.1 christos struct ieee80211_channel *); 85 1.1 christos Static int ar5416_set_synth(struct athn_softc *, 86 1.1 christos struct ieee80211_channel *, struct ieee80211_channel *); 87 1.1 christos Static void ar5416_setup(struct athn_softc *); 88 1.1 christos Static void ar5416_spur_mitigate(struct athn_softc *, 89 1.1 christos struct ieee80211_channel *, struct ieee80211_channel *); 90 1.1 christos Static void ar9160_rw_addac(struct athn_softc *, 91 1.1 christos struct ieee80211_channel *, uint32_t *); 92 1.1 christos 93 1.1 christos PUBLIC int 94 1.1 christos ar5416_attach(struct athn_softc *sc) 95 1.1 christos { 96 1.1 christos sc->sc_eep_base = AR5416_EEP_START_LOC; 97 1.1 christos sc->sc_eep_size = sizeof(struct ar5416_eeprom); 98 1.1 christos sc->sc_def_nf = AR5416_PHY_CCA_MAX_GOOD_VALUE; 99 1.1 christos sc->sc_ngpiopins = 14; 100 1.1 christos sc->sc_led_pin = 1; 101 1.1 christos sc->sc_workaround = AR5416_WA_DEFAULT; 102 1.1 christos sc->sc_ops.setup = ar5416_setup; 103 1.1 christos sc->sc_ops.swap_rom = ar5416_swap_rom; 104 1.1 christos sc->sc_ops.init_from_rom = ar5416_init_from_rom; 105 1.1 christos sc->sc_ops.set_txpower = ar5416_set_txpower; 106 1.1 christos sc->sc_ops.set_synth = ar5416_set_synth; 107 1.1 christos sc->sc_ops.spur_mitigate = ar5416_spur_mitigate; 108 1.1 christos sc->sc_ops.get_spur_chans = ar5416_get_spur_chans; 109 1.1 christos if (AR_SREV_9160_10_OR_LATER(sc)) 110 1.1 christos sc->sc_ini = &ar9160_ini; 111 1.1 christos else 112 1.1 christos sc->sc_ini = &ar5416_ini; 113 1.1 christos sc->sc_serdes = &ar5416_serdes; 114 1.1 christos 115 1.1 christos return ar5008_attach(sc); 116 1.1 christos } 117 1.1 christos 118 1.1 christos Static void 119 1.1 christos ar5416_setup(struct athn_softc *sc) 120 1.1 christos { 121 1.1 christos /* Select ADDAC programming. */ 122 1.1 christos if (AR_SREV_9160_11(sc)) 123 1.1 christos sc->sc_addac = &ar9160_1_1_addac; 124 1.1 christos else if (AR_SREV_9160_10_OR_LATER(sc)) 125 1.1 christos sc->sc_addac = &ar9160_1_0_addac; 126 1.1 christos else if (AR_SREV_5416_22_OR_LATER(sc)) 127 1.1 christos sc->sc_addac = &ar5416_2_2_addac; 128 1.1 christos else 129 1.1 christos sc->sc_addac = &ar5416_2_1_addac; 130 1.1 christos } 131 1.1 christos 132 1.1 christos PUBLIC void 133 1.1 christos ar5416_swap_rom(struct athn_softc *sc) 134 1.1 christos { 135 1.1 christos struct ar5416_eeprom *eep = sc->sc_eep; 136 1.1 christos struct ar5416_modal_eep_header *modal; 137 1.1 christos int i, j; 138 1.1 christos 139 1.1 christos for (i = 0; i < 2; i++) { /* Dual-band. */ 140 1.1 christos modal = &eep->modalHeader[i]; 141 1.1 christos 142 1.1 christos modal->antCtrlCommon = bswap32(modal->antCtrlCommon); 143 1.1 christos for (j = 0; j < AR5416_MAX_CHAINS; j++) { 144 1.1 christos modal->antCtrlChain[j] = 145 1.1 christos bswap32(modal->antCtrlChain[j]); 146 1.1 christos } 147 1.1 christos for (j = 0; j < AR_EEPROM_MODAL_SPURS; j++) { 148 1.1 christos modal->spurChans[j].spurChan = 149 1.1 christos bswap16(modal->spurChans[j].spurChan); 150 1.1 christos } 151 1.1 christos } 152 1.1 christos } 153 1.1 christos 154 1.1 christos PUBLIC const struct ar_spur_chan * 155 1.1 christos ar5416_get_spur_chans(struct athn_softc *sc, int is2ghz) 156 1.1 christos { 157 1.1 christos const struct ar5416_eeprom *eep = sc->sc_eep; 158 1.1 christos 159 1.1 christos return eep->modalHeader[is2ghz].spurChans; 160 1.1 christos } 161 1.1 christos 162 1.1 christos Static int 163 1.1 christos ar5416_set_synth(struct athn_softc *sc, struct ieee80211_channel *c, 164 1.1 christos struct ieee80211_channel *extc) 165 1.1 christos { 166 1.1 christos uint32_t phy, reg; 167 1.1 christos uint32_t freq = c->ic_freq; 168 1.1 christos uint8_t chansel; 169 1.1 christos 170 1.1 christos phy = 0; 171 1.1 christos if (IEEE80211_IS_CHAN_2GHZ(c)) { 172 1.1 christos if (((freq - 2192) % 5) == 0) { 173 1.1 christos chansel = ((freq - 672) * 2 - 3040) / 10; 174 1.1 christos } 175 1.1 christos else if (((freq - 2224) % 5) == 0) { 176 1.1 christos chansel = ((freq - 704) * 2 - 3040) / 10; 177 1.1 christos phy |= AR5416_BMODE_SYNTH; 178 1.1 christos } 179 1.1 christos else 180 1.1 christos return EINVAL; 181 1.1 christos chansel <<= 2; 182 1.1 christos 183 1.1 christos reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL); 184 1.1 christos if (freq == 2484) /* Channel 14. */ 185 1.1 christos reg |= AR_PHY_CCK_TX_CTRL_JAPAN; 186 1.1 christos else 187 1.1 christos reg &= ~AR_PHY_CCK_TX_CTRL_JAPAN; 188 1.1 christos AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg); 189 1.1 christos 190 1.1 christos /* Fix for orientation sensitivity issue. */ 191 1.1 christos if (AR_SREV_5416(sc)) 192 1.1 christos ar5416_force_bias(sc, c); 193 1.1 christos } 194 1.1 christos else { 195 1.1 christos if (freq >= 5120 && (freq % 20) == 0) { 196 1.1 christos chansel = (freq - 4800) / 20; 197 1.1 christos chansel <<= 2; 198 1.1 christos phy |= SM(AR5416_AMODE_REFSEL, 2); 199 1.1 christos } 200 1.1 christos else if ((freq % 10) == 0) { 201 1.1 christos chansel = (freq - 4800) / 10; 202 1.1 christos chansel <<= 1; 203 1.1 christos if (AR_SREV_9160_10_OR_LATER(sc)) 204 1.1 christos phy |= SM(AR5416_AMODE_REFSEL, 1); 205 1.1 christos else 206 1.1 christos phy |= SM(AR5416_AMODE_REFSEL, 2); 207 1.1 christos } 208 1.1 christos else if ((freq % 5) == 0) { 209 1.1 christos chansel = (freq - 4800) / 5; 210 1.1 christos phy |= SM(AR5416_AMODE_REFSEL, 2); 211 1.1 christos } 212 1.1 christos else 213 1.1 christos return EINVAL; 214 1.1 christos } 215 1.1 christos chansel = ar5416_reverse_bits(chansel, 8); 216 1.1 christos phy |= chansel << 8 | 1 << 5 | 1; 217 1.1 christos DPRINTFN(DBG_RF, sc, "AR_PHY(0x37)=0x%08x\n", phy); 218 1.1 christos AR_WRITE(sc, AR_PHY(0x37), phy); 219 1.1 christos return 0; 220 1.1 christos } 221 1.1 christos 222 1.1 christos Static void 223 1.1 christos ar5416_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, 224 1.1 christos struct ieee80211_channel *extc) 225 1.1 christos { 226 1.1 christos static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 }; 227 1.1 christos const struct ar5416_eeprom *eep = sc->sc_eep; 228 1.1 christos const struct ar5416_modal_eep_header *modal; 229 1.1 christos uint32_t reg, offset; 230 1.1 christos uint8_t txRxAtten; 231 1.1 christos int i; 232 1.1 christos 233 1.1 christos modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)]; 234 1.1 christos 235 1.1 christos AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon); 236 1.1 christos 237 1.1 christos for (i = 0; i < AR5416_MAX_CHAINS; i++) { 238 1.1 christos if (AR_SREV_5416_20_OR_LATER(sc) && 239 1.1 christos (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)) 240 1.1 christos offset = chainoffset[i]; 241 1.1 christos else 242 1.1 christos offset = i * 0x1000; 243 1.1 christos 244 1.1 christos AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset, 245 1.1 christos modal->antCtrlChain[i]); 246 1.1 christos 247 1.1 christos reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset); 248 1.1 christos reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, 249 1.1 christos modal->iqCalICh[i]); 250 1.1 christos reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, 251 1.1 christos modal->iqCalQCh[i]); 252 1.1 christos AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg); 253 1.1 christos 254 1.1 christos if (i > 0 && !AR_SREV_5416_20_OR_LATER(sc)) 255 1.1 christos continue; 256 1.1 christos 257 1.1 christos if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) { 258 1.1 christos reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); 259 1.1 christos reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_MARGIN, 260 1.1 christos modal->bswMargin[i]); 261 1.1 christos reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_ATTEN, 262 1.1 christos modal->bswAtten[i]); 263 1.1 christos AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); 264 1.1 christos } 265 1.1 christos if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) 266 1.1 christos txRxAtten = modal->txRxAttenCh[i]; 267 1.1 christos else /* Workaround for ROM versions < 14.3. */ 268 1.1 christos txRxAtten = IEEE80211_IS_CHAN_2GHZ(c) ? 23 : 44; 269 1.1 christos reg = AR_READ(sc, AR_PHY_RXGAIN + offset); 270 1.1 christos reg = RW(reg, AR_PHY_RXGAIN_TXRX_ATTEN, txRxAtten); 271 1.1 christos AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg); 272 1.1 christos 273 1.1 christos reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); 274 1.1 christos reg = RW(reg, AR_PHY_GAIN_2GHZ_RXTX_MARGIN, 275 1.1 christos modal->rxTxMarginCh[i]); 276 1.1 christos AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); 277 1.1 christos } 278 1.1 christos reg = AR_READ(sc, AR_PHY_SETTLING); 279 1.1 christos reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling); 280 1.1 christos AR_WRITE(sc, AR_PHY_SETTLING, reg); 281 1.1 christos 282 1.1 christos reg = AR_READ(sc, AR_PHY_DESIRED_SZ); 283 1.1 christos reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize); 284 1.1 christos reg = RW(reg, AR_PHY_DESIRED_SZ_PGA, modal->pgaDesiredSize); 285 1.1 christos AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); 286 1.1 christos 287 1.1 christos reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff); 288 1.1 christos reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff); 289 1.1 christos reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn); 290 1.1 christos reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn); 291 1.1 christos AR_WRITE(sc, AR_PHY_RF_CTL4, reg); 292 1.1 christos 293 1.1 christos reg = AR_READ(sc, AR_PHY_RF_CTL3); 294 1.1 christos reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn); 295 1.1 christos AR_WRITE(sc, AR_PHY_RF_CTL3, reg); 296 1.1 christos 297 1.1 christos reg = AR_READ(sc, AR_PHY_CCA(0)); 298 1.1 christos reg = RW(reg, AR_PHY_CCA_THRESH62, modal->thresh62); 299 1.1 christos AR_WRITE(sc, AR_PHY_CCA(0), reg); 300 1.1 christos 301 1.1 christos reg = AR_READ(sc, AR_PHY_EXT_CCA(0)); 302 1.1 christos reg = RW(reg, AR_PHY_EXT_CCA_THRESH62, modal->thresh62); 303 1.1 christos AR_WRITE(sc, AR_PHY_EXT_CCA(0), reg); 304 1.1 christos 305 1.1 christos if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) { 306 1.1 christos reg = AR_READ(sc, AR_PHY_RF_CTL2); 307 1.1 christos reg = RW(reg, AR_PHY_TX_END_DATA_START, 308 1.1 christos modal->txFrameToDataStart); 309 1.1 christos reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn); 310 1.1 christos AR_WRITE(sc, AR_PHY_RF_CTL2, reg); 311 1.1 christos } 312 1.1 christos #ifndef IEEE80211_NO_HT 313 1.1 christos if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) { 314 1.1 christos /* Overwrite switch settling with HT-40 value. */ 315 1.1 christos reg = AR_READ(sc, AR_PHY_SETTLING); 316 1.1 christos reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40); 317 1.1 christos AR_WRITE(sc, AR_PHY_SETTLING, reg); 318 1.1 christos } 319 1.1 christos #endif 320 1.1 christos } 321 1.1 christos 322 1.1 christos PUBLIC int 323 1.1 christos ar5416_init_calib(struct athn_softc *sc, struct ieee80211_channel *c, 324 1.1 christos struct ieee80211_channel *extc) 325 1.1 christos { 326 1.1 christos int ntries; 327 1.1 christos 328 1.1 christos if (AR_SREV_9280_10_OR_LATER(sc)) { 329 1.1 christos /* XXX Linux tests AR9287?! */ 330 1.1 christos AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); 331 1.1 christos AR_SETBITS(sc, AR_PHY_AGC_CONTROL, 332 1.1 christos AR_PHY_AGC_CONTROL_FLTR_CAL); 333 1.1 christos } 334 1.1 christos /* Calibrate the AGC. */ 335 1.1 christos AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); 336 1.1 christos /* Poll for offset calibration completion. */ 337 1.1 christos for (ntries = 0; ntries < 10000; ntries++) { 338 1.1 christos if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & 339 1.1 christos AR_PHY_AGC_CONTROL_CAL)) 340 1.1 christos break; 341 1.1 christos DELAY(10); 342 1.1 christos } 343 1.1 christos if (ntries == 10000) 344 1.1 christos return ETIMEDOUT; 345 1.1 christos if (AR_SREV_9280_10_OR_LATER(sc)) { 346 1.1 christos AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); 347 1.1 christos AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, 348 1.1 christos AR_PHY_AGC_CONTROL_FLTR_CAL); 349 1.1 christos } 350 1.1 christos return 0; 351 1.1 christos } 352 1.1 christos 353 1.1 christos Static void 354 1.1 christos ar5416_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c, 355 1.1 christos int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries, 356 1.1 christos uint8_t *pdadcs) 357 1.1 christos { 358 1.1 christos const struct ar5416_eeprom *eep = sc->sc_eep; 359 1.1 christos const struct ar5416_cal_data_per_freq *pierdata; 360 1.1 christos const uint8_t *pierfreq; 361 1.1 christos struct athn_pier lopier, hipier; 362 1.1 christos int16_t delta; 363 1.1 christos uint8_t fbin, pwroff; 364 1.1 christos int i, lo, hi, npiers; 365 1.1 christos 366 1.1 christos if (IEEE80211_IS_CHAN_2GHZ(c)) { 367 1.1 christos pierfreq = eep->calFreqPier2G; 368 1.1 christos pierdata = eep->calPierData2G[chain]; 369 1.1 christos npiers = AR5416_NUM_2G_CAL_PIERS; 370 1.1 christos } 371 1.1 christos else { 372 1.1 christos pierfreq = eep->calFreqPier5G; 373 1.1 christos pierdata = eep->calPierData5G[chain]; 374 1.1 christos npiers = AR5416_NUM_5G_CAL_PIERS; 375 1.1 christos } 376 1.1 christos /* Find channel in ROM pier table. */ 377 1.1 christos fbin = athn_chan2fbin(c); 378 1.1 christos athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); 379 1.1 christos 380 1.1 christos lopier.fbin = pierfreq[lo]; 381 1.1 christos hipier.fbin = pierfreq[hi]; 382 1.1 christos for (i = 0; i < nxpdgains; i++) { 383 1.1 christos lopier.pwr[i] = pierdata[lo].pwrPdg[i]; 384 1.1 christos lopier.vpd[i] = pierdata[lo].vpdPdg[i]; 385 1.1 christos hipier.pwr[i] = pierdata[lo].pwrPdg[i]; 386 1.1 christos hipier.vpd[i] = pierdata[lo].vpdPdg[i]; 387 1.1 christos } 388 1.1 christos ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains, 389 1.1 christos AR5416_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs); 390 1.1 christos 391 1.1 christos if (!AR_SREV_9280_20_OR_LATER(sc)) 392 1.1 christos return; 393 1.1 christos 394 1.1 christos if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_21) 395 1.1 christos pwroff = eep->baseEepHeader.pwrTableOffset; 396 1.1 christos else 397 1.1 christos pwroff = AR_PWR_TABLE_OFFSET_DB; 398 1.1 christos delta = (pwroff - AR_PWR_TABLE_OFFSET_DB) * 2; /* In half dB. */ 399 1.1 christos 400 1.1 christos /* Change the original gain boundaries setting. */ 401 1.1 christos for (i = 0; i < nxpdgains; i++) { 402 1.1 christos /* XXX Possible overflows? */ 403 1.1 christos boundaries[i] -= delta; 404 1.1 christos if (boundaries[i] > AR_MAX_RATE_POWER - overlap) 405 1.1 christos boundaries[i] = AR_MAX_RATE_POWER - overlap; 406 1.1 christos } 407 1.1 christos if (delta != 0) { 408 1.1 christos /* Shift the PDADC table to start at the new offset. */ 409 1.1 christos for (i = 0; i < AR_NUM_PDADC_VALUES; i++) 410 1.1 christos pdadcs[i] = pdadcs[MIN(i + delta, 411 1.1 christos AR_NUM_PDADC_VALUES - 1)]; 412 1.1 christos } 413 1.1 christos } 414 1.1 christos 415 1.1 christos Static void 416 1.1 christos ar5416_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c) 417 1.1 christos { 418 1.1 christos static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 }; 419 1.1 christos const struct ar5416_eeprom *eep = sc->sc_eep; 420 1.1 christos const struct ar5416_modal_eep_header *modal; 421 1.1 christos uint8_t boundaries[AR_PD_GAINS_IN_MASK]; 422 1.1 christos uint8_t pdadcs[AR_NUM_PDADC_VALUES]; 423 1.1 christos uint8_t xpdgains[AR5416_NUM_PD_GAINS]; 424 1.1 christos uint8_t overlap, txgain; 425 1.1 christos uint32_t reg, offset; 426 1.1 christos int i, j, nxpdgains; 427 1.1 christos 428 1.1 christos modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)]; 429 1.1 christos 430 1.1 christos if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) { 431 1.1 christos overlap = MS(AR_READ(sc, AR_PHY_TPCRG5), 432 1.1 christos AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 433 1.1 christos } 434 1.1 christos else 435 1.1 christos overlap = modal->pdGainOverlap; 436 1.1 christos 437 1.1 christos if ((sc->sc_flags & ATHN_FLAG_OLPC) && IEEE80211_IS_CHAN_2GHZ(c)) { 438 1.1 christos /* XXX not here. */ 439 1.1 christos sc->sc_pdadc = 440 1.1 christos ((const struct ar_cal_data_per_freq_olpc *) 441 1.1 christos eep->calPierData2G[0])->vpdPdg[0][0]; 442 1.1 christos } 443 1.1 christos 444 1.1 christos nxpdgains = 0; 445 1.1 christos memset(xpdgains, 0, sizeof(xpdgains)); 446 1.1 christos for (i = AR5416_PD_GAINS_IN_MASK - 1; i >= 0; i--) { 447 1.1 christos if (nxpdgains >= AR5416_NUM_PD_GAINS) 448 1.1 christos break; /* Can't happen. */ 449 1.1 christos if (modal->xpdGain & (1 << i)) 450 1.1 christos xpdgains[nxpdgains++] = i; 451 1.1 christos } 452 1.1 christos reg = AR_READ(sc, AR_PHY_TPCRG1); 453 1.1 christos reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1); 454 1.1 christos reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]); 455 1.1 christos reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]); 456 1.1 christos reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_3, xpdgains[2]); 457 1.1 christos AR_WRITE(sc, AR_PHY_TPCRG1, reg); 458 1.1 christos 459 1.1 christos for (i = 0; i < AR5416_MAX_CHAINS; i++) { 460 1.1 christos if (!(sc->sc_txchainmask & (1 << i))) 461 1.1 christos continue; 462 1.1 christos 463 1.1 christos if (AR_SREV_5416_20_OR_LATER(sc) && 464 1.1 christos (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)) 465 1.1 christos offset = chainoffset[i]; 466 1.1 christos else 467 1.1 christos offset = i * 0x1000; 468 1.1 christos 469 1.1 christos if (sc->sc_flags & ATHN_FLAG_OLPC) { 470 1.1 christos ar9280_olpc_get_pdadcs(sc, c, i, boundaries, 471 1.1 christos pdadcs, &txgain); 472 1.1 christos 473 1.1 christos reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0); 474 1.1 christos reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); 475 1.1 christos AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg); 476 1.1 christos 477 1.1 christos reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1); 478 1.1 christos reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); 479 1.1 christos AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg); 480 1.1 christos 481 1.1 christos reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7); 482 1.1 christos reg = RW(reg, AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, txgain); 483 1.1 christos AR_WRITE(sc, AR_PHY_TX_PWRCTRL7, reg); 484 1.1 christos 485 1.1 christos overlap = 6; 486 1.1 christos } 487 1.1 christos else { 488 1.1 christos ar5416_get_pdadcs(sc, c, i, nxpdgains, overlap, 489 1.1 christos boundaries, pdadcs); 490 1.1 christos } 491 1.1 christos /* Write boundaries. */ 492 1.1 christos if (i == 0 || AR_SREV_5416_20_OR_LATER(sc)) { 493 1.1 christos reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, 494 1.1 christos overlap); 495 1.1 christos reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, 496 1.1 christos boundaries[0]); 497 1.1 christos reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, 498 1.1 christos boundaries[1]); 499 1.1 christos reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, 500 1.1 christos boundaries[2]); 501 1.1 christos reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, 502 1.1 christos boundaries[3]); 503 1.1 christos AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg); 504 1.1 christos } 505 1.1 christos /* Write PDADC values. */ 506 1.1 christos for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) { 507 1.1 christos AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j, 508 1.1 christos pdadcs[j + 0] << 0 | 509 1.1 christos pdadcs[j + 1] << 8 | 510 1.1 christos pdadcs[j + 2] << 16 | 511 1.1 christos pdadcs[j + 3] << 24); 512 1.1 christos } 513 1.1 christos } 514 1.1 christos } 515 1.1 christos 516 1.1 christos PUBLIC void 517 1.1 christos ar5416_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c, 518 1.1 christos struct ieee80211_channel *extc) 519 1.1 christos { 520 1.1 christos const struct ar5416_eeprom *eep = sc->sc_eep; 521 1.1 christos const struct ar5416_modal_eep_header *modal; 522 1.1 christos uint8_t tpow_cck[4], tpow_ofdm[4]; 523 1.1 christos #ifndef IEEE80211_NO_HT 524 1.1 christos uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4]; 525 1.1 christos uint8_t tpow_ht20[8], tpow_ht40[8]; 526 1.1 christos uint8_t ht40inc; 527 1.1 christos #endif 528 1.1 christos int16_t pwr = 0, pwroff, max_ant_gain, power[ATHN_POWER_COUNT]; 529 1.1 christos uint8_t cckinc; 530 1.1 christos int i; 531 1.1 christos 532 1.1 christos ar5416_set_power_calib(sc, c); 533 1.1 christos 534 1.1 christos modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)]; 535 1.1 christos 536 1.1 christos /* Compute transmit power reduction due to antenna gain. */ 537 1.1 christos max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]); 538 1.1 christos max_ant_gain = MAX(modal->antennaGainCh[2], max_ant_gain); 539 1.1 christos /* XXX */ 540 1.1 christos 541 1.1 christos /* 542 1.1 christos * Reduce scaled power by number of active chains to get per-chain 543 1.1 christos * transmit power level. 544 1.1 christos */ 545 1.1 christos if (sc->sc_ntxchains == 2) 546 1.1 christos pwr -= AR_PWR_DECREASE_FOR_2_CHAIN; 547 1.1 christos else if (sc->sc_ntxchains == 3) 548 1.1 christos pwr -= AR_PWR_DECREASE_FOR_3_CHAIN; 549 1.1 christos if (pwr < 0) 550 1.1 christos pwr = 0; 551 1.1 christos 552 1.1 christos if (IEEE80211_IS_CHAN_2GHZ(c)) { 553 1.1 christos /* Get CCK target powers. */ 554 1.1 christos ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck, 555 1.1 christos AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck); 556 1.1 christos 557 1.1 christos /* Get OFDM target powers. */ 558 1.1 christos ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G, 559 1.1 christos AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm); 560 1.1 christos 561 1.1 christos #ifndef IEEE80211_NO_HT 562 1.1 christos /* Get HT-20 target powers. */ 563 1.1 christos ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, 564 1.1 christos eep->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS, 565 1.1 christos tpow_ht20); 566 1.1 christos 567 1.1 christos if (extc != NULL) { 568 1.1 christos /* Get HT-40 target powers. */ 569 1.1 christos ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40, 570 1.1 christos eep->calTargetPower2GHT40, 571 1.1 christos AR5416_NUM_2G_40_TARGET_POWERS, tpow_ht40); 572 1.1 christos 573 1.1 christos /* Get secondary channel CCK target powers. */ 574 1.1 christos ar5008_get_lg_tpow(sc, extc, AR_CTL_11B, 575 1.1 christos eep->calTargetPowerCck, 576 1.1 christos AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck_ext); 577 1.1 christos 578 1.1 christos /* Get secondary channel OFDM target powers. */ 579 1.1 christos ar5008_get_lg_tpow(sc, extc, AR_CTL_11G, 580 1.1 christos eep->calTargetPower2G, 581 1.1 christos AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm_ext); 582 1.1 christos } 583 1.1 christos #endif 584 1.1 christos } 585 1.1 christos else { 586 1.1 christos /* Get OFDM target powers. */ 587 1.1 christos ar5008_get_lg_tpow(sc, c, AR_CTL_11A, eep->calTargetPower5G, 588 1.1 christos AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm); 589 1.1 christos 590 1.1 christos #ifndef IEEE80211_NO_HT 591 1.1 christos /* Get HT-20 target powers. */ 592 1.1 christos ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT20, 593 1.1 christos eep->calTargetPower5GHT20, AR5416_NUM_5G_20_TARGET_POWERS, 594 1.1 christos tpow_ht20); 595 1.1 christos 596 1.1 christos if (extc != NULL) { 597 1.1 christos /* Get HT-40 target powers. */ 598 1.1 christos ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT40, 599 1.1 christos eep->calTargetPower5GHT40, 600 1.1 christos AR5416_NUM_5G_40_TARGET_POWERS, tpow_ht40); 601 1.1 christos 602 1.1 christos /* Get secondary channel OFDM target powers. */ 603 1.1 christos ar5008_get_lg_tpow(sc, extc, AR_CTL_11A, 604 1.1 christos eep->calTargetPower5G, 605 1.1 christos AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm_ext); 606 1.1 christos } 607 1.1 christos #endif 608 1.1 christos } 609 1.1 christos 610 1.1 christos /* Compute CCK/OFDM delta. */ 611 1.1 christos cckinc = (sc->sc_flags & ATHN_FLAG_OLPC) ? -2 : 0; 612 1.1 christos 613 1.1 christos memset(power, 0, sizeof(power)); 614 1.1 christos /* Shuffle target powers accross transmit rates. */ 615 1.1 christos power[ATHN_POWER_OFDM6 ] = 616 1.1 christos power[ATHN_POWER_OFDM9 ] = 617 1.1 christos power[ATHN_POWER_OFDM12] = 618 1.1 christos power[ATHN_POWER_OFDM18] = 619 1.1 christos power[ATHN_POWER_OFDM24] = tpow_ofdm[0]; 620 1.1 christos power[ATHN_POWER_OFDM36] = tpow_ofdm[1]; 621 1.1 christos power[ATHN_POWER_OFDM48] = tpow_ofdm[2]; 622 1.1 christos power[ATHN_POWER_OFDM54] = tpow_ofdm[3]; 623 1.1 christos power[ATHN_POWER_XR ] = tpow_ofdm[0]; 624 1.1 christos if (IEEE80211_IS_CHAN_2GHZ(c)) { 625 1.1 christos power[ATHN_POWER_CCK1_LP ] = tpow_cck[0] + cckinc; 626 1.1 christos power[ATHN_POWER_CCK2_LP ] = 627 1.1 christos power[ATHN_POWER_CCK2_SP ] = tpow_cck[1] + cckinc; 628 1.1 christos power[ATHN_POWER_CCK55_LP] = 629 1.1 christos power[ATHN_POWER_CCK55_SP] = tpow_cck[2] + cckinc; 630 1.1 christos power[ATHN_POWER_CCK11_LP] = 631 1.1 christos power[ATHN_POWER_CCK11_SP] = tpow_cck[3] + cckinc; 632 1.1 christos } 633 1.1 christos #ifndef IEEE80211_NO_HT 634 1.1 christos for (i = 0; i < nitems(tpow_ht20); i++) 635 1.1 christos power[ATHN_POWER_HT20(i)] = tpow_ht20[i]; 636 1.1 christos if (extc != NULL) { 637 1.1 christos /* Correct PAR difference between HT40 and HT20/Legacy. */ 638 1.1 christos if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) 639 1.1 christos ht40inc = modal->ht40PowerIncForPdadc; 640 1.1 christos else 641 1.1 christos ht40inc = AR_HT40_POWER_INC_FOR_PDADC; 642 1.1 christos for (i = 0; i < nitems(tpow_ht40); i++) 643 1.1 christos power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc; 644 1.1 christos power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0]; 645 1.1 christos power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0] + cckinc; 646 1.1 christos power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0]; 647 1.1 christos if (IEEE80211_IS_CHAN_2GHZ(c)) 648 1.1 christos power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0] + cckinc; 649 1.1 christos } 650 1.1 christos #endif 651 1.1 christos 652 1.1 christos if (AR_SREV_9280_10_OR_LATER(sc)) { 653 1.1 christos if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_21) 654 1.1 christos pwroff = eep->baseEepHeader.pwrTableOffset; 655 1.1 christos else 656 1.1 christos pwroff = AR_PWR_TABLE_OFFSET_DB; 657 1.1 christos for (i = 0; i < ATHN_POWER_COUNT; i++) 658 1.1 christos power[i] -= pwroff * 2; /* In half dB. */ 659 1.1 christos } 660 1.1 christos for (i = 0; i < ATHN_POWER_COUNT; i++) { 661 1.1 christos if (power[i] > AR_MAX_RATE_POWER) 662 1.1 christos power[i] = AR_MAX_RATE_POWER; 663 1.1 christos } 664 1.1 christos 665 1.1 christos /* Write transmit power values to hardware. */ 666 1.1 christos ar5008_write_txpower(sc, power); 667 1.1 christos 668 1.1 christos /* 669 1.1 christos * Write transmit power substraction for dynamic chain changing 670 1.1 christos * and per-packet transmit power. 671 1.1 christos */ 672 1.1 christos AR_WRITE(sc, AR_PHY_POWER_TX_SUB, 673 1.1 christos (modal->pwrDecreaseFor3Chain & 0x3f) << 6 | 674 1.1 christos (modal->pwrDecreaseFor2Chain & 0x3f)); 675 1.1 christos } 676 1.1 christos 677 1.1 christos Static void 678 1.1 christos ar5416_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c, 679 1.1 christos struct ieee80211_channel *extc) 680 1.1 christos { 681 1.1 christos const struct ar_spur_chan *spurchans; 682 1.1 christos int i, spur, bin, spur_delta_phase, spur_freq_sd; 683 1.1 christos 684 1.1 christos spurchans = sc->sc_ops.get_spur_chans(sc, IEEE80211_IS_CHAN_2GHZ(c)); 685 1.1 christos for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 686 1.1 christos spur = spurchans[i].spurChan; 687 1.1 christos if (spur == AR_NO_SPUR) 688 1.1 christos return; /* XXX disable if it was enabled! */ 689 1.1 christos spur -= c->ic_freq * 10; 690 1.1 christos /* Verify range +/-9.5MHz */ 691 1.1 christos if (abs(spur) < 95) 692 1.1 christos break; 693 1.1 christos } 694 1.1 christos if (i == AR_EEPROM_MODAL_SPURS) 695 1.1 christos return; /* XXX disable if it was enabled! */ 696 1.1 christos DPRINTFN(DBG_RF, sc, "enabling spur mitigation\n"); 697 1.1 christos 698 1.1 christos AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, 699 1.1 christos AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | 700 1.1 christos AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | 701 1.1 christos AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | 702 1.1 christos AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); 703 1.1 christos 704 1.1 christos AR_WRITE(sc, AR_PHY_SPUR_REG, 705 1.1 christos AR_PHY_SPUR_REG_MASK_RATE_CNTL | 706 1.1 christos AR_PHY_SPUR_REG_ENABLE_MASK_PPM | 707 1.1 christos AR_PHY_SPUR_REG_MASK_RATE_SELECT | 708 1.1 christos AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | 709 1.1 christos SM(AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, AR_SPUR_RSSI_THRESH)); 710 1.1 christos 711 1.1 christos spur_delta_phase = (spur * 524288) / 100; 712 1.1 christos if (IEEE80211_IS_CHAN_2GHZ(c)) 713 1.1 christos spur_freq_sd = (spur * 2048) / 440; 714 1.1 christos else 715 1.1 christos spur_freq_sd = (spur * 2048) / 400; 716 1.1 christos 717 1.1 christos AR_WRITE(sc, AR_PHY_TIMING11, 718 1.1 christos AR_PHY_TIMING11_USE_SPUR_IN_AGC | 719 1.1 christos SM(AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd) | 720 1.1 christos SM(AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase)); 721 1.1 christos 722 1.1 christos bin = spur * 32; 723 1.1 christos ar5008_set_viterbi_mask(sc, bin); 724 1.1 christos } 725 1.1 christos 726 1.1 christos Static uint8_t 727 1.1 christos ar5416_reverse_bits(uint8_t v, int nbits) 728 1.1 christos { 729 1.1 christos KASSERT(nbits <= 8); 730 1.1 christos v = ((v >> 1) & 0x55) | ((v & 0x55) << 1); 731 1.1 christos v = ((v >> 2) & 0x33) | ((v & 0x33) << 2); 732 1.1 christos v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4); 733 1.1 christos return v >> (8 - nbits); 734 1.1 christos } 735 1.1 christos 736 1.1 christos PUBLIC uint8_t 737 1.1 christos ar5416_get_rf_rev(struct athn_softc *sc) 738 1.1 christos { 739 1.1 christos uint8_t rev, reg; 740 1.1 christos int i; 741 1.1 christos 742 1.1 christos /* Allow access to analog chips. */ 743 1.1 christos AR_WRITE(sc, AR_PHY(0), 0x00000007); 744 1.1 christos 745 1.1 christos AR_WRITE(sc, AR_PHY(0x36), 0x00007058); 746 1.1 christos for (i = 0; i < 8; i++) 747 1.1 christos AR_WRITE(sc, AR_PHY(0x20), 0x00010000); 748 1.1 christos reg = (AR_READ(sc, AR_PHY(256)) >> 24) & 0xff; 749 1.1 christos reg = (reg & 0xf0) >> 4 | (reg & 0x0f) << 4; 750 1.1 christos 751 1.1 christos rev = ar5416_reverse_bits(reg, 8); 752 1.1 christos if ((rev & AR_RADIO_SREV_MAJOR) == 0) 753 1.1 christos rev = AR_RAD5133_SREV_MAJOR; 754 1.1 christos return rev; 755 1.1 christos } 756 1.1 christos 757 1.1 christos /* 758 1.1 christos * Replace bits "off" to "off+nbits-1" in column "col" with the specified 759 1.1 christos * value. 760 1.1 christos */ 761 1.1 christos Static void 762 1.1 christos ar5416_rw_rfbits(uint32_t *buf, int col, int off, uint32_t val, int nbits) 763 1.1 christos { 764 1.1 christos int idx, bit; 765 1.1 christos 766 1.1 christos KASSERT(off >= 1 && col < 4 && nbits <= 32); 767 1.1 christos 768 1.1 christos off--; /* Starts at 1. */ 769 1.1 christos while (nbits-- > 0) { 770 1.1 christos idx = off / 8; 771 1.1 christos bit = off % 8; 772 1.1 christos buf[idx] &= ~(1 << (bit + col * 8)); 773 1.1 christos buf[idx] |= ((val >> nbits) & 1) << (bit + col * 8); 774 1.1 christos off++; 775 1.1 christos } 776 1.1 christos } 777 1.1 christos 778 1.1 christos /* 779 1.1 christos * Overwrite db and ob based on ROM settings. 780 1.1 christos */ 781 1.1 christos Static void 782 1.1 christos ar5416_rw_bank6tpc(struct athn_softc *sc, struct ieee80211_channel *c, 783 1.1 christos uint32_t *rwbank6tpc) 784 1.1 christos { 785 1.1 christos const struct ar5416_eeprom *eep = sc->sc_eep; 786 1.1 christos const struct ar5416_modal_eep_header *modal; 787 1.1 christos 788 1.1 christos if (IEEE80211_IS_CHAN_5GHZ(c)) { 789 1.1 christos modal = &eep->modalHeader[0]; 790 1.1 christos /* 5GHz db in column 0, bits [200-202]. */ 791 1.1 christos ar5416_rw_rfbits(rwbank6tpc, 0, 200, modal->db, 3); 792 1.1 christos /* 5GHz ob in column 0, bits [203-205]. */ 793 1.1 christos ar5416_rw_rfbits(rwbank6tpc, 0, 203, modal->ob, 3); 794 1.1 christos } 795 1.1 christos else { 796 1.1 christos modal = &eep->modalHeader[1]; 797 1.1 christos /* 2GHz db in column 0, bits [194-196]. */ 798 1.1 christos ar5416_rw_rfbits(rwbank6tpc, 0, 194, modal->db, 3); 799 1.1 christos /* 2GHz ob in column 0, bits [197-199]. */ 800 1.1 christos ar5416_rw_rfbits(rwbank6tpc, 0, 197, modal->ob, 3); 801 1.1 christos } 802 1.1 christos } 803 1.1 christos 804 1.1 christos /* 805 1.1 christos * Program analog RF. 806 1.1 christos */ 807 1.1 christos PUBLIC void 808 1.1 christos ar5416_rf_reset(struct athn_softc *sc, struct ieee80211_channel *c) 809 1.1 christos { 810 1.1 christos const uint32_t *bank6tpc; 811 1.1 christos int i; 812 1.1 christos 813 1.1 christos /* Bank 0. */ 814 1.1 christos AR_WRITE(sc, 0x98b0, 0x1e5795e5); 815 1.1 christos AR_WRITE(sc, 0x98e0, 0x02008020); 816 1.1 christos 817 1.1 christos /* Bank 1. */ 818 1.1 christos AR_WRITE(sc, 0x98b0, 0x02108421); 819 1.1 christos AR_WRITE(sc, 0x98ec, 0x00000008); 820 1.1 christos 821 1.1 christos /* Bank 2. */ 822 1.1 christos AR_WRITE(sc, 0x98b0, 0x0e73ff17); 823 1.1 christos AR_WRITE(sc, 0x98e0, 0x00000420); 824 1.1 christos 825 1.1 christos /* Bank 3. */ 826 1.1 christos if (IEEE80211_IS_CHAN_5GHZ(c)) 827 1.1 christos AR_WRITE(sc, 0x98f0, 0x01400018); 828 1.1 christos else 829 1.1 christos AR_WRITE(sc, 0x98f0, 0x01c00018); 830 1.1 christos 831 1.1 christos /* Select the Bank 6 TPC values to use. */ 832 1.1 christos if (AR_SREV_9160_10_OR_LATER(sc)) 833 1.1 christos bank6tpc = ar9160_bank6tpc_vals; 834 1.1 christos else 835 1.1 christos bank6tpc = ar5416_bank6tpc_vals; 836 1.1 christos if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) { 837 1.1 christos uint32_t *rwbank6tpc = sc->sc_rwbuf; 838 1.1 christos 839 1.1 christos /* Copy values from .rodata to writable buffer. */ 840 1.1 christos memcpy(rwbank6tpc, bank6tpc, 32 * sizeof(uint32_t)); 841 1.1 christos ar5416_rw_bank6tpc(sc, c, rwbank6tpc); 842 1.1 christos bank6tpc = rwbank6tpc; 843 1.1 christos } 844 1.1 christos /* Bank 6 TPC. */ 845 1.1 christos for (i = 0; i < 32; i++) 846 1.1 christos AR_WRITE(sc, 0x989c, bank6tpc[i]); 847 1.1 christos if (IEEE80211_IS_CHAN_5GHZ(c)) 848 1.1 christos AR_WRITE(sc, 0x98d0, 0x0000000f); 849 1.1 christos else 850 1.1 christos AR_WRITE(sc, 0x98d0, 0x0010000f); 851 1.1 christos 852 1.1 christos /* Bank 7. */ 853 1.1 christos AR_WRITE(sc, 0x989c, 0x00000500); 854 1.1 christos AR_WRITE(sc, 0x989c, 0x00000800); 855 1.1 christos AR_WRITE(sc, 0x98cc, 0x0000000e); 856 1.1 christos } 857 1.1 christos 858 1.1 christos PUBLIC void 859 1.1 christos ar5416_reset_bb_gain(struct athn_softc *sc, struct ieee80211_channel *c) 860 1.1 christos { 861 1.1 christos const uint32_t *pvals; 862 1.1 christos int i; 863 1.1 christos 864 1.1 christos if (IEEE80211_IS_CHAN_2GHZ(c)) 865 1.1 christos pvals = ar5416_bb_rfgain_vals_2g; 866 1.1 christos else 867 1.1 christos pvals = ar5416_bb_rfgain_vals_5g; 868 1.1 christos for (i = 0; i < 64; i++) 869 1.1 christos AR_WRITE(sc, AR_PHY_BB_RFGAIN(i), pvals[i]); 870 1.1 christos } 871 1.1 christos 872 1.1 christos /* 873 1.1 christos * Fix orientation sensitivity issue on AR5416/2GHz by increasing 874 1.1 christos * rf_pwd_icsyndiv. 875 1.1 christos */ 876 1.1 christos Static void 877 1.1 christos ar5416_force_bias(struct athn_softc *sc, struct ieee80211_channel *c) 878 1.1 christos { 879 1.1 christos uint32_t *rwbank6 = sc->sc_rwbuf; 880 1.1 christos uint8_t bias; 881 1.1 christos int i; 882 1.1 christos 883 1.1 christos KASSERT(IEEE80211_IS_CHAN_2GHZ(c)); 884 1.1 christos 885 1.1 christos /* Copy values from .rodata to writable buffer. */ 886 1.1 christos memcpy(rwbank6, ar5416_bank6_vals, sizeof(ar5416_bank6_vals)); 887 1.1 christos 888 1.1 christos if (c->ic_freq < 2412) 889 1.1 christos bias = 0; 890 1.1 christos else if (c->ic_freq < 2422) 891 1.1 christos bias = 1; 892 1.1 christos else 893 1.1 christos bias = 2; 894 1.1 christos ar5416_reverse_bits(bias, 3); 895 1.1 christos 896 1.1 christos /* Overwrite "rf_pwd_icsyndiv" (column 3, bits [181-183].) */ 897 1.1 christos ar5416_rw_rfbits(rwbank6, 3, 181, bias, 3); 898 1.1 christos 899 1.1 christos /* Write Bank 6. */ 900 1.1 christos for (i = 0; i < 32; i++) 901 1.1 christos AR_WRITE(sc, 0x989c, rwbank6[i]); 902 1.1 christos AR_WRITE(sc, 0x98d0, 0x0010000f); 903 1.1 christos } 904 1.1 christos 905 1.1 christos /* 906 1.1 christos * Overwrite XPA bias level based on ROM setting. 907 1.1 christos */ 908 1.1 christos Static void 909 1.1 christos ar9160_rw_addac(struct athn_softc *sc, struct ieee80211_channel *c, 910 1.1 christos uint32_t *addac) 911 1.1 christos { 912 1.1 christos struct ar5416_eeprom *eep = sc->sc_eep; 913 1.1 christos struct ar5416_modal_eep_header *modal; 914 1.1 christos uint8_t fbin, bias; 915 1.1 christos int i; 916 1.1 christos 917 1.1 christos /* XXX xpaBiasLvlFreq values have not been endian-swapped? */ 918 1.1 christos 919 1.1 christos /* Get the XPA bias level to use for the specified channel. */ 920 1.1 christos modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)]; 921 1.1 christos if (modal->xpaBiasLvl == 0xff) { 922 1.1 christos bias = modal->xpaBiasLvlFreq[0] >> 14; 923 1.1 christos fbin = athn_chan2fbin(c); 924 1.1 christos for (i = 1; i < 3; i++) { 925 1.1 christos if (modal->xpaBiasLvlFreq[i] == 0) 926 1.1 christos break; 927 1.1 christos if ((modal->xpaBiasLvlFreq[i] & 0xff) < fbin) 928 1.1 christos break; 929 1.1 christos bias = modal->xpaBiasLvlFreq[i] >> 14; 930 1.1 christos } 931 1.1 christos } 932 1.1 christos else 933 1.1 christos bias = modal->xpaBiasLvl & 0x3; 934 1.1 christos 935 1.1 christos bias = ar5416_reverse_bits(bias, 2); /* Put in host bit-order. */ 936 1.1 christos DPRINTFN(DBG_RF, sc, "bias level=%d\n", bias); 937 1.1 christos if (IEEE80211_IS_CHAN_2GHZ(c)) 938 1.1 christos ar5416_rw_rfbits(addac, 0, 60, bias, 2); 939 1.1 christos else 940 1.1 christos ar5416_rw_rfbits(addac, 0, 55, bias, 2); 941 1.1 christos } 942 1.1 christos 943 1.1 christos PUBLIC void 944 1.1 christos ar5416_reset_addac(struct athn_softc *sc, struct ieee80211_channel *c) 945 1.1 christos { 946 1.1 christos const struct athn_addac *addac = sc->sc_addac; 947 1.1 christos const uint32_t *pvals; 948 1.1 christos int i; 949 1.1 christos 950 1.1 christos if (AR_SREV_9160(sc) && sc->sc_eep_rev >= AR_EEP_MINOR_VER_7) { 951 1.1 christos uint32_t *rwaddac = sc->sc_rwbuf; 952 1.1 christos 953 1.1 christos /* Copy values from .rodata to writable buffer. */ 954 1.1 christos memcpy(rwaddac, addac->vals, addac->nvals * sizeof(uint32_t)); 955 1.1 christos ar9160_rw_addac(sc, c, rwaddac); 956 1.1 christos pvals = rwaddac; 957 1.1 christos } 958 1.1 christos else 959 1.1 christos pvals = addac->vals; 960 1.1 christos for (i = 0; i < addac->nvals; i++) 961 1.1 christos AR_WRITE(sc, 0x989c, pvals[i]); 962 1.1 christos AR_WRITE(sc, 0x98cc, 0); /* Finalize. */ 963 1.1 christos } 964