Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.1.1.5
      1      1.1  dyoung /*-
      2  1.1.1.4  dyoung  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      3      1.1  dyoung  * All rights reserved.
      4      1.1  dyoung  *
      5      1.1  dyoung  * Redistribution and use in source and binary forms, with or without
      6      1.1  dyoung  * modification, are permitted provided that the following conditions
      7      1.1  dyoung  * are met:
      8      1.1  dyoung  * 1. Redistributions of source code must retain the above copyright
      9      1.1  dyoung  *    notice, this list of conditions and the following disclaimer,
     10      1.1  dyoung  *    without modification.
     11      1.1  dyoung  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     12      1.1  dyoung  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     13      1.1  dyoung  *    redistribution must be conditioned upon including a substantially
     14      1.1  dyoung  *    similar Disclaimer requirement for further binary redistribution.
     15      1.1  dyoung  * 3. Neither the names of the above-listed copyright holders nor the names
     16      1.1  dyoung  *    of any contributors may be used to endorse or promote products derived
     17      1.1  dyoung  *    from this software without specific prior written permission.
     18      1.1  dyoung  *
     19      1.1  dyoung  * Alternatively, this software may be distributed under the terms of the
     20      1.1  dyoung  * GNU General Public License ("GPL") version 2 as published by the Free
     21      1.1  dyoung  * Software Foundation.
     22      1.1  dyoung  *
     23      1.1  dyoung  * NO WARRANTY
     24      1.1  dyoung  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     25      1.1  dyoung  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     26      1.1  dyoung  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     27      1.1  dyoung  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     28      1.1  dyoung  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     29      1.1  dyoung  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30      1.1  dyoung  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31      1.1  dyoung  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     32      1.1  dyoung  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33      1.1  dyoung  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     34      1.1  dyoung  * THE POSSIBILITY OF SUCH DAMAGES.
     35      1.1  dyoung  */
     36      1.1  dyoung 
     37      1.1  dyoung #include <sys/cdefs.h>
     38  1.1.1.5  dyoung __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.94 2005/07/07 00:04:50 sam Exp $");
     39      1.1  dyoung 
     40      1.1  dyoung /*
     41      1.1  dyoung  * Driver for the Atheros Wireless LAN controller.
     42      1.1  dyoung  *
     43      1.1  dyoung  * This software is derived from work of Atsushi Onoe; his contribution
     44      1.1  dyoung  * is greatly appreciated.
     45      1.1  dyoung  */
     46      1.1  dyoung 
     47      1.1  dyoung #include "opt_inet.h"
     48      1.1  dyoung 
     49      1.1  dyoung #include <sys/param.h>
     50      1.1  dyoung #include <sys/systm.h>
     51      1.1  dyoung #include <sys/sysctl.h>
     52      1.1  dyoung #include <sys/mbuf.h>
     53      1.1  dyoung #include <sys/malloc.h>
     54      1.1  dyoung #include <sys/lock.h>
     55      1.1  dyoung #include <sys/mutex.h>
     56      1.1  dyoung #include <sys/kernel.h>
     57      1.1  dyoung #include <sys/socket.h>
     58      1.1  dyoung #include <sys/sockio.h>
     59      1.1  dyoung #include <sys/errno.h>
     60      1.1  dyoung #include <sys/callout.h>
     61      1.1  dyoung #include <sys/bus.h>
     62      1.1  dyoung #include <sys/endian.h>
     63      1.1  dyoung 
     64      1.1  dyoung #include <machine/bus.h>
     65      1.1  dyoung 
     66      1.1  dyoung #include <net/if.h>
     67      1.1  dyoung #include <net/if_dl.h>
     68      1.1  dyoung #include <net/if_media.h>
     69  1.1.1.5  dyoung #include <net/if_types.h>
     70      1.1  dyoung #include <net/if_arp.h>
     71      1.1  dyoung #include <net/ethernet.h>
     72      1.1  dyoung #include <net/if_llc.h>
     73      1.1  dyoung 
     74      1.1  dyoung #include <net80211/ieee80211_var.h>
     75      1.1  dyoung 
     76      1.1  dyoung #include <net/bpf.h>
     77      1.1  dyoung 
     78      1.1  dyoung #ifdef INET
     79      1.1  dyoung #include <netinet/in.h>
     80      1.1  dyoung #include <netinet/if_ether.h>
     81      1.1  dyoung #endif
     82      1.1  dyoung 
     83      1.1  dyoung #define	AR_DEBUG
     84      1.1  dyoung #include <dev/ath/if_athvar.h>
     85      1.1  dyoung #include <contrib/dev/ath/ah_desc.h>
     86  1.1.1.4  dyoung #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
     87      1.1  dyoung 
     88  1.1.1.5  dyoung /* unaligned little endian access */
     89      1.1  dyoung #define LE_READ_2(p)							\
     90      1.1  dyoung 	((u_int16_t)							\
     91      1.1  dyoung 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
     92      1.1  dyoung #define LE_READ_4(p)							\
     93      1.1  dyoung 	((u_int32_t)							\
     94      1.1  dyoung 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
     95      1.1  dyoung 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
     96      1.1  dyoung 
     97  1.1.1.4  dyoung enum {
     98  1.1.1.4  dyoung 	ATH_LED_TX,
     99  1.1.1.4  dyoung 	ATH_LED_RX,
    100  1.1.1.4  dyoung 	ATH_LED_POLL,
    101  1.1.1.4  dyoung };
    102  1.1.1.4  dyoung 
    103      1.1  dyoung static void	ath_init(void *);
    104  1.1.1.4  dyoung static void	ath_stop_locked(struct ifnet *);
    105      1.1  dyoung static void	ath_stop(struct ifnet *);
    106      1.1  dyoung static void	ath_start(struct ifnet *);
    107  1.1.1.4  dyoung static int	ath_reset(struct ifnet *);
    108      1.1  dyoung static int	ath_media_change(struct ifnet *);
    109      1.1  dyoung static void	ath_watchdog(struct ifnet *);
    110      1.1  dyoung static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    111      1.1  dyoung static void	ath_fatal_proc(void *, int);
    112      1.1  dyoung static void	ath_rxorn_proc(void *, int);
    113      1.1  dyoung static void	ath_bmiss_proc(void *, int);
    114  1.1.1.4  dyoung static int	ath_key_alloc(struct ieee80211com *,
    115  1.1.1.4  dyoung 			const struct ieee80211_key *);
    116  1.1.1.4  dyoung static int	ath_key_delete(struct ieee80211com *,
    117  1.1.1.4  dyoung 			const struct ieee80211_key *);
    118  1.1.1.4  dyoung static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    119  1.1.1.4  dyoung 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    120  1.1.1.4  dyoung static void	ath_key_update_begin(struct ieee80211com *);
    121  1.1.1.4  dyoung static void	ath_key_update_end(struct ieee80211com *);
    122      1.1  dyoung static void	ath_mode_init(struct ath_softc *);
    123  1.1.1.4  dyoung static void	ath_setslottime(struct ath_softc *);
    124  1.1.1.4  dyoung static void	ath_updateslot(struct ifnet *);
    125  1.1.1.4  dyoung static int	ath_beaconq_setup(struct ath_hal *);
    126      1.1  dyoung static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    127  1.1.1.4  dyoung static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    128      1.1  dyoung static void	ath_beacon_proc(void *, int);
    129  1.1.1.4  dyoung static void	ath_bstuck_proc(void *, int);
    130      1.1  dyoung static void	ath_beacon_free(struct ath_softc *);
    131      1.1  dyoung static void	ath_beacon_config(struct ath_softc *);
    132  1.1.1.4  dyoung static void	ath_descdma_cleanup(struct ath_softc *sc,
    133  1.1.1.4  dyoung 			struct ath_descdma *, ath_bufhead *);
    134      1.1  dyoung static int	ath_desc_alloc(struct ath_softc *);
    135      1.1  dyoung static void	ath_desc_free(struct ath_softc *);
    136  1.1.1.4  dyoung static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    137  1.1.1.4  dyoung static void	ath_node_free(struct ieee80211_node *);
    138  1.1.1.4  dyoung static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    139      1.1  dyoung static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    140  1.1.1.4  dyoung static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    141  1.1.1.4  dyoung 			struct ieee80211_node *ni,
    142  1.1.1.4  dyoung 			int subtype, int rssi, u_int32_t rstamp);
    143  1.1.1.4  dyoung static void	ath_setdefantenna(struct ath_softc *, u_int);
    144      1.1  dyoung static void	ath_rx_proc(void *, int);
    145  1.1.1.4  dyoung static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    146  1.1.1.4  dyoung static int	ath_tx_setup(struct ath_softc *, int, int);
    147  1.1.1.4  dyoung static int	ath_wme_update(struct ieee80211com *);
    148  1.1.1.4  dyoung static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    149  1.1.1.4  dyoung static void	ath_tx_cleanup(struct ath_softc *);
    150      1.1  dyoung static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    151      1.1  dyoung 			     struct ath_buf *, struct mbuf *);
    152  1.1.1.4  dyoung static void	ath_tx_proc_q0(void *, int);
    153  1.1.1.4  dyoung static void	ath_tx_proc_q0123(void *, int);
    154      1.1  dyoung static void	ath_tx_proc(void *, int);
    155      1.1  dyoung static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    156      1.1  dyoung static void	ath_draintxq(struct ath_softc *);
    157      1.1  dyoung static void	ath_stoprecv(struct ath_softc *);
    158      1.1  dyoung static int	ath_startrecv(struct ath_softc *);
    159  1.1.1.4  dyoung static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    160      1.1  dyoung static void	ath_next_scan(void *);
    161      1.1  dyoung static void	ath_calibrate(void *);
    162      1.1  dyoung static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    163  1.1.1.5  dyoung static void	ath_setup_stationkey(struct ieee80211_node *);
    164      1.1  dyoung static void	ath_newassoc(struct ieee80211com *,
    165      1.1  dyoung 			struct ieee80211_node *, int);
    166  1.1.1.4  dyoung static int	ath_getchannels(struct ath_softc *, u_int cc,
    167  1.1.1.4  dyoung 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    168  1.1.1.4  dyoung static void	ath_led_event(struct ath_softc *, int);
    169  1.1.1.4  dyoung static void	ath_update_txpow(struct ath_softc *);
    170      1.1  dyoung 
    171  1.1.1.4  dyoung static int	ath_rate_setup(struct ath_softc *, u_int mode);
    172      1.1  dyoung static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    173  1.1.1.4  dyoung 
    174  1.1.1.4  dyoung static void	ath_sysctlattach(struct ath_softc *);
    175  1.1.1.4  dyoung static void	ath_bpfattach(struct ath_softc *);
    176  1.1.1.4  dyoung static void	ath_announce(struct ath_softc *);
    177      1.1  dyoung 
    178      1.1  dyoung SYSCTL_DECL(_hw_ath);
    179      1.1  dyoung 
    180      1.1  dyoung /* XXX validate sysctl values */
    181      1.1  dyoung static	int ath_dwelltime = 200;		/* 5 channels/second */
    182      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
    183      1.1  dyoung 	    0, "channel dwell time (ms) for AP/station scanning");
    184      1.1  dyoung static	int ath_calinterval = 30;		/* calibrate every 30 secs */
    185      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
    186      1.1  dyoung 	    0, "chip calibration interval (secs)");
    187      1.1  dyoung static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
    188      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
    189  1.1.1.4  dyoung 	    0, "outdoor operation");
    190  1.1.1.3  dyoung TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
    191  1.1.1.4  dyoung static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
    192  1.1.1.4  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
    193  1.1.1.4  dyoung 	    0, "extended channel mode");
    194  1.1.1.4  dyoung TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
    195      1.1  dyoung static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
    196      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
    197      1.1  dyoung 	    0, "country code");
    198  1.1.1.3  dyoung TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
    199      1.1  dyoung static	int ath_regdomain = 0;			/* regulatory domain */
    200      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
    201      1.1  dyoung 	    0, "regulatory domain");
    202      1.1  dyoung 
    203      1.1  dyoung #ifdef AR_DEBUG
    204  1.1.1.4  dyoung static	int ath_debug = 0;
    205      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
    206      1.1  dyoung 	    0, "control debugging printfs");
    207  1.1.1.3  dyoung TUNABLE_INT("hw.ath.debug", &ath_debug);
    208  1.1.1.3  dyoung enum {
    209  1.1.1.3  dyoung 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    210  1.1.1.3  dyoung 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    211  1.1.1.3  dyoung 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    212  1.1.1.3  dyoung 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    213  1.1.1.3  dyoung 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    214  1.1.1.3  dyoung 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    215  1.1.1.3  dyoung 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    216  1.1.1.3  dyoung 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    217  1.1.1.3  dyoung 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    218  1.1.1.3  dyoung 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    219  1.1.1.3  dyoung 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    220  1.1.1.3  dyoung 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    221  1.1.1.3  dyoung 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    222  1.1.1.3  dyoung 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    223  1.1.1.4  dyoung 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    224  1.1.1.4  dyoung 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    225  1.1.1.4  dyoung 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    226  1.1.1.4  dyoung 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    227  1.1.1.4  dyoung 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    228  1.1.1.3  dyoung 	ATH_DEBUG_ANY		= 0xffffffff
    229  1.1.1.3  dyoung };
    230  1.1.1.4  dyoung #define	IFF_DUMPPKTS(sc, m) \
    231  1.1.1.4  dyoung 	((sc->sc_debug & (m)) || \
    232  1.1.1.5  dyoung 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    233  1.1.1.4  dyoung #define	DPRINTF(sc, m, fmt, ...) do {				\
    234  1.1.1.4  dyoung 	if (sc->sc_debug & (m))					\
    235  1.1.1.4  dyoung 		printf(fmt, __VA_ARGS__);			\
    236  1.1.1.4  dyoung } while (0)
    237  1.1.1.4  dyoung #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    238  1.1.1.4  dyoung 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    239  1.1.1.4  dyoung 		ath_keyprint(__func__, ix, hk, mac);		\
    240  1.1.1.4  dyoung } while (0)
    241  1.1.1.4  dyoung static	void ath_printrxbuf(struct ath_buf *bf, int);
    242  1.1.1.4  dyoung static	void ath_printtxbuf(struct ath_buf *bf, int);
    243      1.1  dyoung #else
    244  1.1.1.4  dyoung #define	IFF_DUMPPKTS(sc, m) \
    245  1.1.1.5  dyoung 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    246  1.1.1.4  dyoung #define	DPRINTF(m, fmt, ...)
    247  1.1.1.4  dyoung #define	KEYPRINTF(sc, k, ix, mac)
    248      1.1  dyoung #endif
    249      1.1  dyoung 
    250  1.1.1.4  dyoung MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    251  1.1.1.4  dyoung 
    252      1.1  dyoung int
    253      1.1  dyoung ath_attach(u_int16_t devid, struct ath_softc *sc)
    254      1.1  dyoung {
    255  1.1.1.5  dyoung 	struct ifnet *ifp;
    256      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
    257  1.1.1.5  dyoung 	struct ath_hal *ah = NULL;
    258      1.1  dyoung 	HAL_STATUS status;
    259  1.1.1.4  dyoung 	int error = 0, i;
    260      1.1  dyoung 
    261  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    262      1.1  dyoung 
    263  1.1.1.5  dyoung 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
    264  1.1.1.5  dyoung 	if (ifp == NULL) {
    265  1.1.1.5  dyoung 		device_printf(sc->sc_dev, "can not if_alloc()\n");
    266  1.1.1.5  dyoung 		error = ENOSPC;
    267  1.1.1.5  dyoung 		goto bad;
    268  1.1.1.5  dyoung 	}
    269  1.1.1.5  dyoung 
    270      1.1  dyoung 	/* set these up early for if_printf use */
    271  1.1.1.2  dyoung 	if_initname(ifp, device_get_name(sc->sc_dev),
    272  1.1.1.4  dyoung 		device_get_unit(sc->sc_dev));
    273      1.1  dyoung 
    274      1.1  dyoung 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    275      1.1  dyoung 	if (ah == NULL) {
    276      1.1  dyoung 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    277      1.1  dyoung 			status);
    278      1.1  dyoung 		error = ENXIO;
    279      1.1  dyoung 		goto bad;
    280      1.1  dyoung 	}
    281  1.1.1.2  dyoung 	if (ah->ah_abi != HAL_ABI_VERSION) {
    282  1.1.1.4  dyoung 		if_printf(ifp, "HAL ABI mismatch detected "
    283  1.1.1.4  dyoung 			"(HAL:0x%x != driver:0x%x)\n",
    284  1.1.1.2  dyoung 			ah->ah_abi, HAL_ABI_VERSION);
    285  1.1.1.2  dyoung 		error = ENXIO;
    286  1.1.1.2  dyoung 		goto bad;
    287  1.1.1.2  dyoung 	}
    288      1.1  dyoung 	sc->sc_ah = ah;
    289      1.1  dyoung 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    290      1.1  dyoung 
    291      1.1  dyoung 	/*
    292  1.1.1.4  dyoung 	 * Check if the MAC has multi-rate retry support.
    293  1.1.1.4  dyoung 	 * We do this by trying to setup a fake extended
    294  1.1.1.4  dyoung 	 * descriptor.  MAC's that don't have support will
    295  1.1.1.4  dyoung 	 * return false w/o doing anything.  MAC's that do
    296  1.1.1.4  dyoung 	 * support it will return true w/o doing anything.
    297  1.1.1.4  dyoung 	 */
    298  1.1.1.4  dyoung 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    299  1.1.1.4  dyoung 
    300  1.1.1.4  dyoung 	/*
    301  1.1.1.4  dyoung 	 * Check if the device has hardware counters for PHY
    302  1.1.1.4  dyoung 	 * errors.  If so we need to enable the MIB interrupt
    303  1.1.1.4  dyoung 	 * so we can act on stat triggers.
    304  1.1.1.4  dyoung 	 */
    305  1.1.1.4  dyoung 	if (ath_hal_hwphycounters(ah))
    306  1.1.1.4  dyoung 		sc->sc_needmib = 1;
    307  1.1.1.4  dyoung 
    308  1.1.1.4  dyoung 	/*
    309  1.1.1.4  dyoung 	 * Get the hardware key cache size.
    310  1.1.1.4  dyoung 	 */
    311  1.1.1.4  dyoung 	sc->sc_keymax = ath_hal_keycachesize(ah);
    312  1.1.1.5  dyoung 	if (sc->sc_keymax > ATH_KEYMAX) {
    313  1.1.1.5  dyoung 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    314  1.1.1.5  dyoung 			ATH_KEYMAX, sc->sc_keymax);
    315  1.1.1.5  dyoung 		sc->sc_keymax = ATH_KEYMAX;
    316  1.1.1.4  dyoung 	}
    317  1.1.1.4  dyoung 	/*
    318  1.1.1.4  dyoung 	 * Reset the key cache since some parts do not
    319  1.1.1.4  dyoung 	 * reset the contents on initial power up.
    320  1.1.1.4  dyoung 	 */
    321  1.1.1.4  dyoung 	for (i = 0; i < sc->sc_keymax; i++)
    322  1.1.1.4  dyoung 		ath_hal_keyreset(ah, i);
    323  1.1.1.4  dyoung 	/*
    324  1.1.1.4  dyoung 	 * Mark key cache slots associated with global keys
    325  1.1.1.4  dyoung 	 * as in use.  If we knew TKIP was not to be used we
    326  1.1.1.4  dyoung 	 * could leave the +32, +64, and +32+64 slots free.
    327  1.1.1.4  dyoung 	 * XXX only for splitmic.
    328  1.1.1.4  dyoung 	 */
    329  1.1.1.4  dyoung 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    330  1.1.1.4  dyoung 		setbit(sc->sc_keymap, i);
    331  1.1.1.4  dyoung 		setbit(sc->sc_keymap, i+32);
    332  1.1.1.4  dyoung 		setbit(sc->sc_keymap, i+64);
    333  1.1.1.4  dyoung 		setbit(sc->sc_keymap, i+32+64);
    334  1.1.1.4  dyoung 	}
    335  1.1.1.4  dyoung 
    336  1.1.1.4  dyoung 	/*
    337      1.1  dyoung 	 * Collect the channel list using the default country
    338      1.1  dyoung 	 * code and including outdoor channels.  The 802.11 layer
    339      1.1  dyoung 	 * is resposible for filtering this list based on settings
    340      1.1  dyoung 	 * like the phy mode.
    341      1.1  dyoung 	 */
    342  1.1.1.4  dyoung 	error = ath_getchannels(sc, ath_countrycode,
    343  1.1.1.4  dyoung 			ath_outdoor, ath_xchanmode);
    344      1.1  dyoung 	if (error != 0)
    345      1.1  dyoung 		goto bad;
    346      1.1  dyoung 	/*
    347  1.1.1.4  dyoung 	 * Setup dynamic sysctl's now that country code and
    348  1.1.1.4  dyoung 	 * regdomain are available from the hal.
    349      1.1  dyoung 	 */
    350  1.1.1.4  dyoung 	ath_sysctlattach(sc);
    351      1.1  dyoung 
    352      1.1  dyoung 	/*
    353      1.1  dyoung 	 * Setup rate tables for all potential media types.
    354      1.1  dyoung 	 */
    355      1.1  dyoung 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    356      1.1  dyoung 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    357      1.1  dyoung 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    358  1.1.1.4  dyoung 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    359  1.1.1.4  dyoung 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    360  1.1.1.4  dyoung 	/* NB: setup here so ath_rate_update is happy */
    361  1.1.1.4  dyoung 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    362      1.1  dyoung 
    363  1.1.1.4  dyoung 	/*
    364  1.1.1.4  dyoung 	 * Allocate tx+rx descriptors and populate the lists.
    365  1.1.1.4  dyoung 	 */
    366      1.1  dyoung 	error = ath_desc_alloc(sc);
    367      1.1  dyoung 	if (error != 0) {
    368      1.1  dyoung 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    369      1.1  dyoung 		goto bad;
    370      1.1  dyoung 	}
    371  1.1.1.4  dyoung 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    372      1.1  dyoung 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    373      1.1  dyoung 
    374  1.1.1.2  dyoung 	ATH_TXBUF_LOCK_INIT(sc);
    375      1.1  dyoung 
    376      1.1  dyoung 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    377      1.1  dyoung 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    378      1.1  dyoung 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    379      1.1  dyoung 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    380  1.1.1.4  dyoung 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
    381      1.1  dyoung 
    382      1.1  dyoung 	/*
    383  1.1.1.4  dyoung 	 * Allocate hardware transmit queues: one queue for
    384  1.1.1.4  dyoung 	 * beacon frames and one data queue for each QoS
    385  1.1.1.4  dyoung 	 * priority.  Note that the hal handles reseting
    386  1.1.1.4  dyoung 	 * these queues at the needed time.
    387  1.1.1.4  dyoung 	 *
    388  1.1.1.4  dyoung 	 * XXX PS-Poll
    389  1.1.1.4  dyoung 	 */
    390  1.1.1.4  dyoung 	sc->sc_bhalq = ath_beaconq_setup(ah);
    391      1.1  dyoung 	if (sc->sc_bhalq == (u_int) -1) {
    392      1.1  dyoung 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    393  1.1.1.4  dyoung 		error = EIO;
    394  1.1.1.4  dyoung 		goto bad2;
    395  1.1.1.4  dyoung 	}
    396  1.1.1.4  dyoung 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    397  1.1.1.4  dyoung 	if (sc->sc_cabq == NULL) {
    398  1.1.1.4  dyoung 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    399  1.1.1.4  dyoung 		error = EIO;
    400  1.1.1.4  dyoung 		goto bad2;
    401  1.1.1.4  dyoung 	}
    402  1.1.1.4  dyoung 	/* NB: insure BK queue is the lowest priority h/w queue */
    403  1.1.1.4  dyoung 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    404  1.1.1.4  dyoung 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    405  1.1.1.4  dyoung 			ieee80211_wme_acnames[WME_AC_BK]);
    406  1.1.1.4  dyoung 		error = EIO;
    407  1.1.1.4  dyoung 		goto bad2;
    408  1.1.1.4  dyoung 	}
    409  1.1.1.4  dyoung 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    410  1.1.1.4  dyoung 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    411  1.1.1.4  dyoung 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    412  1.1.1.4  dyoung 		/*
    413  1.1.1.4  dyoung 		 * Not enough hardware tx queues to properly do WME;
    414  1.1.1.4  dyoung 		 * just punt and assign them all to the same h/w queue.
    415  1.1.1.4  dyoung 		 * We could do a better job of this if, for example,
    416  1.1.1.4  dyoung 		 * we allocate queues when we switch from station to
    417  1.1.1.4  dyoung 		 * AP mode.
    418  1.1.1.4  dyoung 		 */
    419  1.1.1.4  dyoung 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    420  1.1.1.4  dyoung 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    421  1.1.1.4  dyoung 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    422  1.1.1.4  dyoung 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    423  1.1.1.4  dyoung 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    424  1.1.1.4  dyoung 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    425  1.1.1.4  dyoung 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    426  1.1.1.4  dyoung 	}
    427  1.1.1.4  dyoung 
    428  1.1.1.4  dyoung 	/*
    429  1.1.1.4  dyoung 	 * Special case certain configurations.  Note the
    430  1.1.1.4  dyoung 	 * CAB queue is handled by these specially so don't
    431  1.1.1.4  dyoung 	 * include them when checking the txq setup mask.
    432  1.1.1.4  dyoung 	 */
    433  1.1.1.4  dyoung 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    434  1.1.1.4  dyoung 	case 0x01:
    435  1.1.1.4  dyoung 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    436  1.1.1.4  dyoung 		break;
    437  1.1.1.4  dyoung 	case 0x0f:
    438  1.1.1.4  dyoung 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    439  1.1.1.4  dyoung 		break;
    440  1.1.1.4  dyoung 	default:
    441  1.1.1.4  dyoung 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    442  1.1.1.4  dyoung 		break;
    443  1.1.1.4  dyoung 	}
    444  1.1.1.4  dyoung 
    445  1.1.1.4  dyoung 	/*
    446  1.1.1.4  dyoung 	 * Setup rate control.  Some rate control modules
    447  1.1.1.4  dyoung 	 * call back to change the anntena state so expose
    448  1.1.1.4  dyoung 	 * the necessary entry points.
    449  1.1.1.4  dyoung 	 * XXX maybe belongs in struct ath_ratectrl?
    450  1.1.1.4  dyoung 	 */
    451  1.1.1.4  dyoung 	sc->sc_setdefantenna = ath_setdefantenna;
    452  1.1.1.4  dyoung 	sc->sc_rc = ath_rate_attach(sc);
    453  1.1.1.4  dyoung 	if (sc->sc_rc == NULL) {
    454  1.1.1.4  dyoung 		error = EIO;
    455  1.1.1.3  dyoung 		goto bad2;
    456      1.1  dyoung 	}
    457      1.1  dyoung 
    458  1.1.1.4  dyoung 	sc->sc_blinking = 0;
    459  1.1.1.4  dyoung 	sc->sc_ledstate = 1;
    460  1.1.1.4  dyoung 	sc->sc_ledon = 0;			/* low true */
    461  1.1.1.4  dyoung 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    462  1.1.1.4  dyoung 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    463  1.1.1.4  dyoung 	/*
    464  1.1.1.4  dyoung 	 * Auto-enable soft led processing for IBM cards and for
    465  1.1.1.4  dyoung 	 * 5211 minipci cards.  Users can also manually enable/disable
    466  1.1.1.4  dyoung 	 * support with a sysctl.
    467  1.1.1.4  dyoung 	 */
    468  1.1.1.4  dyoung 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    469  1.1.1.4  dyoung 	if (sc->sc_softled) {
    470  1.1.1.4  dyoung 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    471  1.1.1.4  dyoung 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    472  1.1.1.4  dyoung 	}
    473  1.1.1.4  dyoung 
    474      1.1  dyoung 	ifp->if_softc = sc;
    475      1.1  dyoung 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    476      1.1  dyoung 	ifp->if_start = ath_start;
    477      1.1  dyoung 	ifp->if_watchdog = ath_watchdog;
    478      1.1  dyoung 	ifp->if_ioctl = ath_ioctl;
    479      1.1  dyoung 	ifp->if_init = ath_init;
    480  1.1.1.4  dyoung 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    481  1.1.1.4  dyoung 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
    482  1.1.1.4  dyoung 	IFQ_SET_READY(&ifp->if_snd);
    483      1.1  dyoung 
    484  1.1.1.4  dyoung 	ic->ic_ifp = ifp;
    485  1.1.1.4  dyoung 	ic->ic_reset = ath_reset;
    486      1.1  dyoung 	ic->ic_newassoc = ath_newassoc;
    487  1.1.1.4  dyoung 	ic->ic_updateslot = ath_updateslot;
    488  1.1.1.4  dyoung 	ic->ic_wme.wme_update = ath_wme_update;
    489      1.1  dyoung 	/* XXX not right but it's not used anywhere important */
    490      1.1  dyoung 	ic->ic_phytype = IEEE80211_T_OFDM;
    491      1.1  dyoung 	ic->ic_opmode = IEEE80211_M_STA;
    492  1.1.1.4  dyoung 	ic->ic_caps =
    493  1.1.1.4  dyoung 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    494  1.1.1.2  dyoung 		| IEEE80211_C_HOSTAP		/* hostap mode */
    495  1.1.1.2  dyoung 		| IEEE80211_C_MONITOR		/* monitor mode */
    496  1.1.1.2  dyoung 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    497  1.1.1.4  dyoung 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    498  1.1.1.4  dyoung 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    499  1.1.1.3  dyoung 		;
    500  1.1.1.4  dyoung 	/*
    501  1.1.1.4  dyoung 	 * Query the hal to figure out h/w crypto support.
    502  1.1.1.4  dyoung 	 */
    503  1.1.1.4  dyoung 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    504  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_WEP;
    505  1.1.1.4  dyoung 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    506  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_AES;
    507  1.1.1.4  dyoung 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    508  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    509  1.1.1.4  dyoung 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    510  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_CKIP;
    511  1.1.1.4  dyoung 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    512  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_TKIP;
    513  1.1.1.4  dyoung 		/*
    514  1.1.1.4  dyoung 		 * Check if h/w does the MIC and/or whether the
    515  1.1.1.4  dyoung 		 * separate key cache entries are required to
    516  1.1.1.4  dyoung 		 * handle both tx+rx MIC keys.
    517  1.1.1.4  dyoung 		 */
    518  1.1.1.4  dyoung 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    519  1.1.1.4  dyoung 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    520  1.1.1.4  dyoung 		if (ath_hal_tkipsplit(ah))
    521  1.1.1.4  dyoung 			sc->sc_splitmic = 1;
    522  1.1.1.4  dyoung 	}
    523  1.1.1.5  dyoung 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    524  1.1.1.5  dyoung 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    525  1.1.1.4  dyoung 	/*
    526  1.1.1.4  dyoung 	 * TPC support can be done either with a global cap or
    527  1.1.1.4  dyoung 	 * per-packet support.  The latter is not available on
    528  1.1.1.4  dyoung 	 * all parts.  We're a bit pedantic here as all parts
    529  1.1.1.4  dyoung 	 * support a global cap.
    530  1.1.1.4  dyoung 	 */
    531  1.1.1.4  dyoung 	sc->sc_hastpc = ath_hal_hastpc(ah);
    532  1.1.1.4  dyoung 	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
    533  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    534  1.1.1.4  dyoung 
    535  1.1.1.4  dyoung 	/*
    536  1.1.1.4  dyoung 	 * Mark WME capability only if we have sufficient
    537  1.1.1.4  dyoung 	 * hardware queues to do proper priority scheduling.
    538  1.1.1.4  dyoung 	 */
    539  1.1.1.4  dyoung 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    540  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_WME;
    541  1.1.1.4  dyoung 	/*
    542  1.1.1.5  dyoung 	 * Check for misc other capabilities.
    543  1.1.1.4  dyoung 	 */
    544  1.1.1.4  dyoung 	if (ath_hal_hasbursting(ah))
    545  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_BURST;
    546  1.1.1.4  dyoung 
    547  1.1.1.4  dyoung 	/*
    548  1.1.1.4  dyoung 	 * Indicate we need the 802.11 header padded to a
    549  1.1.1.4  dyoung 	 * 32-bit boundary for 4-address and QoS frames.
    550  1.1.1.4  dyoung 	 */
    551  1.1.1.4  dyoung 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    552  1.1.1.4  dyoung 
    553  1.1.1.4  dyoung 	/*
    554  1.1.1.4  dyoung 	 * Query the hal about antenna support.
    555  1.1.1.4  dyoung 	 */
    556  1.1.1.4  dyoung 	if (ath_hal_hasdiversity(ah)) {
    557  1.1.1.4  dyoung 		sc->sc_hasdiversity = 1;
    558  1.1.1.4  dyoung 		sc->sc_diversity = ath_hal_getdiversity(ah);
    559  1.1.1.4  dyoung 	}
    560  1.1.1.4  dyoung 	sc->sc_defant = ath_hal_getdefantenna(ah);
    561  1.1.1.4  dyoung 
    562  1.1.1.4  dyoung 	/*
    563  1.1.1.4  dyoung 	 * Not all chips have the VEOL support we want to
    564  1.1.1.4  dyoung 	 * use with IBSS beacons; check here for it.
    565  1.1.1.4  dyoung 	 */
    566  1.1.1.4  dyoung 	sc->sc_hasveol = ath_hal_hasveol(ah);
    567      1.1  dyoung 
    568      1.1  dyoung 	/* get mac address from hardware */
    569      1.1  dyoung 	ath_hal_getmac(ah, ic->ic_myaddr);
    570      1.1  dyoung 
    571      1.1  dyoung 	/* call MI attach routine. */
    572  1.1.1.4  dyoung 	ieee80211_ifattach(ic);
    573      1.1  dyoung 	/* override default methods */
    574      1.1  dyoung 	ic->ic_node_alloc = ath_node_alloc;
    575  1.1.1.3  dyoung 	sc->sc_node_free = ic->ic_node_free;
    576      1.1  dyoung 	ic->ic_node_free = ath_node_free;
    577  1.1.1.2  dyoung 	ic->ic_node_getrssi = ath_node_getrssi;
    578  1.1.1.4  dyoung 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    579  1.1.1.4  dyoung 	ic->ic_recv_mgmt = ath_recv_mgmt;
    580      1.1  dyoung 	sc->sc_newstate = ic->ic_newstate;
    581      1.1  dyoung 	ic->ic_newstate = ath_newstate;
    582  1.1.1.4  dyoung 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    583  1.1.1.4  dyoung 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    584  1.1.1.4  dyoung 	ic->ic_crypto.cs_key_set = ath_key_set;
    585  1.1.1.4  dyoung 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    586  1.1.1.4  dyoung 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    587      1.1  dyoung 	/* complete initialization */
    588  1.1.1.4  dyoung 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    589  1.1.1.3  dyoung 
    590  1.1.1.4  dyoung 	ath_bpfattach(sc);
    591      1.1  dyoung 
    592  1.1.1.4  dyoung 	if (bootverbose)
    593  1.1.1.4  dyoung 		ieee80211_announce(ic);
    594  1.1.1.4  dyoung 	ath_announce(sc);
    595      1.1  dyoung 	return 0;
    596  1.1.1.3  dyoung bad2:
    597  1.1.1.4  dyoung 	ath_tx_cleanup(sc);
    598  1.1.1.3  dyoung 	ath_desc_free(sc);
    599      1.1  dyoung bad:
    600      1.1  dyoung 	if (ah)
    601      1.1  dyoung 		ath_hal_detach(ah);
    602  1.1.1.5  dyoung 	if (ifp != NULL)
    603  1.1.1.5  dyoung 		if_free(ifp);
    604      1.1  dyoung 	sc->sc_invalid = 1;
    605      1.1  dyoung 	return error;
    606      1.1  dyoung }
    607      1.1  dyoung 
    608      1.1  dyoung int
    609      1.1  dyoung ath_detach(struct ath_softc *sc)
    610      1.1  dyoung {
    611  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    612      1.1  dyoung 
    613  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    614  1.1.1.4  dyoung 		__func__, ifp->if_flags);
    615      1.1  dyoung 
    616      1.1  dyoung 	ath_stop(ifp);
    617      1.1  dyoung 	bpfdetach(ifp);
    618  1.1.1.4  dyoung 	/*
    619  1.1.1.4  dyoung 	 * NB: the order of these is important:
    620  1.1.1.4  dyoung 	 * o call the 802.11 layer before detaching the hal to
    621  1.1.1.4  dyoung 	 *   insure callbacks into the driver to delete global
    622  1.1.1.4  dyoung 	 *   key cache entries can be handled
    623  1.1.1.4  dyoung 	 * o reclaim the tx queue data structures after calling
    624  1.1.1.4  dyoung 	 *   the 802.11 layer as we'll get called back to reclaim
    625  1.1.1.4  dyoung 	 *   node state and potentially want to use them
    626  1.1.1.4  dyoung 	 * o to cleanup the tx queues the hal is called, so detach
    627  1.1.1.4  dyoung 	 *   it last
    628  1.1.1.4  dyoung 	 * Other than that, it's straightforward...
    629  1.1.1.4  dyoung 	 */
    630  1.1.1.4  dyoung 	ieee80211_ifdetach(&sc->sc_ic);
    631  1.1.1.4  dyoung 	ath_rate_detach(sc->sc_rc);
    632      1.1  dyoung 	ath_desc_free(sc);
    633  1.1.1.4  dyoung 	ath_tx_cleanup(sc);
    634      1.1  dyoung 	ath_hal_detach(sc->sc_ah);
    635  1.1.1.2  dyoung 
    636      1.1  dyoung 	return 0;
    637      1.1  dyoung }
    638      1.1  dyoung 
    639      1.1  dyoung void
    640      1.1  dyoung ath_suspend(struct ath_softc *sc)
    641      1.1  dyoung {
    642  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    643      1.1  dyoung 
    644  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    645  1.1.1.4  dyoung 		__func__, ifp->if_flags);
    646      1.1  dyoung 
    647      1.1  dyoung 	ath_stop(ifp);
    648      1.1  dyoung }
    649      1.1  dyoung 
    650      1.1  dyoung void
    651      1.1  dyoung ath_resume(struct ath_softc *sc)
    652      1.1  dyoung {
    653  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    654      1.1  dyoung 
    655  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    656  1.1.1.4  dyoung 		__func__, ifp->if_flags);
    657      1.1  dyoung 
    658      1.1  dyoung 	if (ifp->if_flags & IFF_UP) {
    659  1.1.1.5  dyoung 		ath_init(sc);
    660      1.1  dyoung 		if (ifp->if_flags & IFF_RUNNING)
    661      1.1  dyoung 			ath_start(ifp);
    662      1.1  dyoung 	}
    663  1.1.1.5  dyoung 	if (sc->sc_softled) {
    664  1.1.1.5  dyoung 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    665  1.1.1.5  dyoung 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    666  1.1.1.5  dyoung 	}
    667      1.1  dyoung }
    668      1.1  dyoung 
    669      1.1  dyoung void
    670      1.1  dyoung ath_shutdown(struct ath_softc *sc)
    671      1.1  dyoung {
    672  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    673      1.1  dyoung 
    674  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    675  1.1.1.4  dyoung 		__func__, ifp->if_flags);
    676      1.1  dyoung 
    677      1.1  dyoung 	ath_stop(ifp);
    678      1.1  dyoung }
    679      1.1  dyoung 
    680  1.1.1.4  dyoung /*
    681  1.1.1.4  dyoung  * Interrupt handler.  Most of the actual processing is deferred.
    682  1.1.1.4  dyoung  */
    683      1.1  dyoung void
    684      1.1  dyoung ath_intr(void *arg)
    685      1.1  dyoung {
    686      1.1  dyoung 	struct ath_softc *sc = arg;
    687  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    688      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
    689      1.1  dyoung 	HAL_INT status;
    690      1.1  dyoung 
    691      1.1  dyoung 	if (sc->sc_invalid) {
    692      1.1  dyoung 		/*
    693      1.1  dyoung 		 * The hardware is not ready/present, don't touch anything.
    694      1.1  dyoung 		 * Note this can happen early on if the IRQ is shared.
    695      1.1  dyoung 		 */
    696  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    697      1.1  dyoung 		return;
    698      1.1  dyoung 	}
    699  1.1.1.3  dyoung 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    700  1.1.1.3  dyoung 		return;
    701      1.1  dyoung 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    702  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    703  1.1.1.4  dyoung 			__func__, ifp->if_flags);
    704      1.1  dyoung 		ath_hal_getisr(ah, &status);	/* clear ISR */
    705      1.1  dyoung 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    706      1.1  dyoung 		return;
    707      1.1  dyoung 	}
    708  1.1.1.4  dyoung 	/*
    709  1.1.1.4  dyoung 	 * Figure out the reason(s) for the interrupt.  Note
    710  1.1.1.4  dyoung 	 * that the hal returns a pseudo-ISR that may include
    711  1.1.1.4  dyoung 	 * bits we haven't explicitly enabled so we mask the
    712  1.1.1.4  dyoung 	 * value to insure we only process bits we requested.
    713  1.1.1.4  dyoung 	 */
    714      1.1  dyoung 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    715  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    716  1.1.1.2  dyoung 	status &= sc->sc_imask;			/* discard unasked for bits */
    717      1.1  dyoung 	if (status & HAL_INT_FATAL) {
    718  1.1.1.4  dyoung 		/*
    719  1.1.1.4  dyoung 		 * Fatal errors are unrecoverable.  Typically
    720  1.1.1.4  dyoung 		 * these are caused by DMA errors.  Unfortunately
    721  1.1.1.4  dyoung 		 * the exact reason is not (presently) returned
    722  1.1.1.4  dyoung 		 * by the hal.
    723  1.1.1.4  dyoung 		 */
    724      1.1  dyoung 		sc->sc_stats.ast_hardware++;
    725      1.1  dyoung 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    726      1.1  dyoung 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
    727      1.1  dyoung 	} else if (status & HAL_INT_RXORN) {
    728      1.1  dyoung 		sc->sc_stats.ast_rxorn++;
    729      1.1  dyoung 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    730      1.1  dyoung 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
    731      1.1  dyoung 	} else {
    732  1.1.1.4  dyoung 		if (status & HAL_INT_SWBA) {
    733  1.1.1.4  dyoung 			/*
    734  1.1.1.4  dyoung 			 * Software beacon alert--time to send a beacon.
    735  1.1.1.4  dyoung 			 * Handle beacon transmission directly; deferring
    736  1.1.1.4  dyoung 			 * this is too slow to meet timing constraints
    737  1.1.1.4  dyoung 			 * under load.
    738  1.1.1.4  dyoung 			 */
    739  1.1.1.4  dyoung 			ath_beacon_proc(sc, 0);
    740  1.1.1.4  dyoung 		}
    741      1.1  dyoung 		if (status & HAL_INT_RXEOL) {
    742      1.1  dyoung 			/*
    743      1.1  dyoung 			 * NB: the hardware should re-read the link when
    744      1.1  dyoung 			 *     RXE bit is written, but it doesn't work at
    745      1.1  dyoung 			 *     least on older hardware revs.
    746      1.1  dyoung 			 */
    747      1.1  dyoung 			sc->sc_stats.ast_rxeol++;
    748      1.1  dyoung 			sc->sc_rxlink = NULL;
    749      1.1  dyoung 		}
    750      1.1  dyoung 		if (status & HAL_INT_TXURN) {
    751      1.1  dyoung 			sc->sc_stats.ast_txurn++;
    752      1.1  dyoung 			/* bump tx trigger level */
    753      1.1  dyoung 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    754      1.1  dyoung 		}
    755      1.1  dyoung 		if (status & HAL_INT_RX)
    756      1.1  dyoung 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
    757      1.1  dyoung 		if (status & HAL_INT_TX)
    758      1.1  dyoung 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
    759      1.1  dyoung 		if (status & HAL_INT_BMISS) {
    760      1.1  dyoung 			sc->sc_stats.ast_bmiss++;
    761      1.1  dyoung 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
    762      1.1  dyoung 		}
    763  1.1.1.4  dyoung 		if (status & HAL_INT_MIB) {
    764  1.1.1.4  dyoung 			sc->sc_stats.ast_mib++;
    765  1.1.1.4  dyoung 			/*
    766  1.1.1.4  dyoung 			 * Disable interrupts until we service the MIB
    767  1.1.1.4  dyoung 			 * interrupt; otherwise it will continue to fire.
    768  1.1.1.4  dyoung 			 */
    769  1.1.1.4  dyoung 			ath_hal_intrset(ah, 0);
    770  1.1.1.4  dyoung 			/*
    771  1.1.1.4  dyoung 			 * Let the hal handle the event.  We assume it will
    772  1.1.1.4  dyoung 			 * clear whatever condition caused the interrupt.
    773  1.1.1.4  dyoung 			 */
    774  1.1.1.4  dyoung 			ath_hal_mibevent(ah,
    775  1.1.1.4  dyoung 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
    776  1.1.1.4  dyoung 			ath_hal_intrset(ah, sc->sc_imask);
    777  1.1.1.4  dyoung 		}
    778      1.1  dyoung 	}
    779      1.1  dyoung }
    780      1.1  dyoung 
    781      1.1  dyoung static void
    782      1.1  dyoung ath_fatal_proc(void *arg, int pending)
    783      1.1  dyoung {
    784      1.1  dyoung 	struct ath_softc *sc = arg;
    785  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    786      1.1  dyoung 
    787  1.1.1.4  dyoung 	if_printf(ifp, "hardware error; resetting\n");
    788  1.1.1.4  dyoung 	ath_reset(ifp);
    789      1.1  dyoung }
    790      1.1  dyoung 
    791      1.1  dyoung static void
    792      1.1  dyoung ath_rxorn_proc(void *arg, int pending)
    793      1.1  dyoung {
    794      1.1  dyoung 	struct ath_softc *sc = arg;
    795  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    796      1.1  dyoung 
    797  1.1.1.4  dyoung 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    798  1.1.1.4  dyoung 	ath_reset(ifp);
    799      1.1  dyoung }
    800      1.1  dyoung 
    801      1.1  dyoung static void
    802      1.1  dyoung ath_bmiss_proc(void *arg, int pending)
    803      1.1  dyoung {
    804      1.1  dyoung 	struct ath_softc *sc = arg;
    805      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
    806      1.1  dyoung 
    807  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    808      1.1  dyoung 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    809      1.1  dyoung 		("unexpect operating mode %u", ic->ic_opmode));
    810  1.1.1.2  dyoung 	if (ic->ic_state == IEEE80211_S_RUN) {
    811  1.1.1.2  dyoung 		/*
    812  1.1.1.2  dyoung 		 * Rather than go directly to scan state, try to
    813  1.1.1.2  dyoung 		 * reassociate first.  If that fails then the state
    814  1.1.1.2  dyoung 		 * machine will drop us into scanning after timing
    815  1.1.1.2  dyoung 		 * out waiting for a probe response.
    816  1.1.1.2  dyoung 		 */
    817  1.1.1.4  dyoung 		NET_LOCK_GIANT();
    818  1.1.1.2  dyoung 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
    819  1.1.1.4  dyoung 		NET_UNLOCK_GIANT();
    820  1.1.1.2  dyoung 	}
    821      1.1  dyoung }
    822      1.1  dyoung 
    823      1.1  dyoung static u_int
    824      1.1  dyoung ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    825      1.1  dyoung {
    826  1.1.1.4  dyoung #define	N(a)	(sizeof(a) / sizeof(a[0]))
    827      1.1  dyoung 	static const u_int modeflags[] = {
    828      1.1  dyoung 		0,			/* IEEE80211_MODE_AUTO */
    829      1.1  dyoung 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    830      1.1  dyoung 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    831      1.1  dyoung 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    832  1.1.1.4  dyoung 		0,			/* IEEE80211_MODE_FH */
    833  1.1.1.4  dyoung 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
    834  1.1.1.4  dyoung 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    835      1.1  dyoung 	};
    836  1.1.1.4  dyoung 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    837  1.1.1.4  dyoung 
    838  1.1.1.4  dyoung 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    839  1.1.1.4  dyoung 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    840  1.1.1.4  dyoung 	return modeflags[mode];
    841  1.1.1.4  dyoung #undef N
    842      1.1  dyoung }
    843      1.1  dyoung 
    844      1.1  dyoung static void
    845      1.1  dyoung ath_init(void *arg)
    846      1.1  dyoung {
    847      1.1  dyoung 	struct ath_softc *sc = (struct ath_softc *) arg;
    848      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
    849  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    850      1.1  dyoung 	struct ieee80211_node *ni;
    851      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
    852      1.1  dyoung 	HAL_STATUS status;
    853      1.1  dyoung 
    854  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    855  1.1.1.4  dyoung 		__func__, ifp->if_flags);
    856      1.1  dyoung 
    857  1.1.1.2  dyoung 	ATH_LOCK(sc);
    858      1.1  dyoung 	/*
    859      1.1  dyoung 	 * Stop anything previously setup.  This is safe
    860      1.1  dyoung 	 * whether this is the first time through or not.
    861      1.1  dyoung 	 */
    862  1.1.1.4  dyoung 	ath_stop_locked(ifp);
    863      1.1  dyoung 
    864      1.1  dyoung 	/*
    865      1.1  dyoung 	 * The basic interface to setting the hardware in a good
    866      1.1  dyoung 	 * state is ``reset''.  On return the hardware is known to
    867      1.1  dyoung 	 * be powered up and with interrupts disabled.  This must
    868      1.1  dyoung 	 * be followed by initialization of the appropriate bits
    869      1.1  dyoung 	 * and then setup of the interrupt mask.
    870      1.1  dyoung 	 */
    871  1.1.1.4  dyoung 	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
    872  1.1.1.4  dyoung 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
    873  1.1.1.4  dyoung 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    874      1.1  dyoung 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    875      1.1  dyoung 			status);
    876      1.1  dyoung 		goto done;
    877      1.1  dyoung 	}
    878      1.1  dyoung 
    879      1.1  dyoung 	/*
    880  1.1.1.4  dyoung 	 * This is needed only to setup initial state
    881  1.1.1.4  dyoung 	 * but it's best done after a reset.
    882  1.1.1.4  dyoung 	 */
    883  1.1.1.4  dyoung 	ath_update_txpow(sc);
    884  1.1.1.4  dyoung 
    885  1.1.1.4  dyoung 	/*
    886      1.1  dyoung 	 * Setup the hardware after reset: the key cache
    887      1.1  dyoung 	 * is filled as needed and the receive engine is
    888      1.1  dyoung 	 * set going.  Frame transmit is handled entirely
    889      1.1  dyoung 	 * in the frame output path; there's nothing to do
    890      1.1  dyoung 	 * here except setup the interrupt mask.
    891      1.1  dyoung 	 */
    892      1.1  dyoung 	if (ath_startrecv(sc) != 0) {
    893      1.1  dyoung 		if_printf(ifp, "unable to start recv logic\n");
    894      1.1  dyoung 		goto done;
    895      1.1  dyoung 	}
    896      1.1  dyoung 
    897      1.1  dyoung 	/*
    898      1.1  dyoung 	 * Enable interrupts.
    899      1.1  dyoung 	 */
    900      1.1  dyoung 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
    901      1.1  dyoung 		  | HAL_INT_RXEOL | HAL_INT_RXORN
    902      1.1  dyoung 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
    903  1.1.1.4  dyoung 	/*
    904  1.1.1.4  dyoung 	 * Enable MIB interrupts when there are hardware phy counters.
    905  1.1.1.4  dyoung 	 * Note we only do this (at the moment) for station mode.
    906  1.1.1.4  dyoung 	 */
    907  1.1.1.4  dyoung 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
    908  1.1.1.4  dyoung 		sc->sc_imask |= HAL_INT_MIB;
    909      1.1  dyoung 	ath_hal_intrset(ah, sc->sc_imask);
    910      1.1  dyoung 
    911      1.1  dyoung 	ifp->if_flags |= IFF_RUNNING;
    912      1.1  dyoung 	ic->ic_state = IEEE80211_S_INIT;
    913      1.1  dyoung 
    914      1.1  dyoung 	/*
    915      1.1  dyoung 	 * The hardware should be ready to go now so it's safe
    916      1.1  dyoung 	 * to kick the 802.11 state machine as it's likely to
    917      1.1  dyoung 	 * immediately call back to us to send mgmt frames.
    918      1.1  dyoung 	 */
    919      1.1  dyoung 	ni = ic->ic_bss;
    920      1.1  dyoung 	ni->ni_chan = ic->ic_ibss_chan;
    921  1.1.1.4  dyoung 	ath_chan_change(sc, ni->ni_chan);
    922  1.1.1.4  dyoung 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    923  1.1.1.4  dyoung 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
    924  1.1.1.4  dyoung 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
    925  1.1.1.4  dyoung 	} else
    926      1.1  dyoung 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
    927      1.1  dyoung done:
    928  1.1.1.2  dyoung 	ATH_UNLOCK(sc);
    929      1.1  dyoung }
    930      1.1  dyoung 
    931      1.1  dyoung static void
    932  1.1.1.4  dyoung ath_stop_locked(struct ifnet *ifp)
    933      1.1  dyoung {
    934      1.1  dyoung 	struct ath_softc *sc = ifp->if_softc;
    935  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
    936      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
    937      1.1  dyoung 
    938  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
    939  1.1.1.4  dyoung 		__func__, sc->sc_invalid, ifp->if_flags);
    940      1.1  dyoung 
    941  1.1.1.4  dyoung 	ATH_LOCK_ASSERT(sc);
    942      1.1  dyoung 	if (ifp->if_flags & IFF_RUNNING) {
    943      1.1  dyoung 		/*
    944      1.1  dyoung 		 * Shutdown the hardware and driver:
    945  1.1.1.4  dyoung 		 *    reset 802.11 state machine
    946      1.1  dyoung 		 *    turn off timers
    947  1.1.1.4  dyoung 		 *    disable interrupts
    948  1.1.1.4  dyoung 		 *    turn off the radio
    949      1.1  dyoung 		 *    clear transmit machinery
    950      1.1  dyoung 		 *    clear receive machinery
    951      1.1  dyoung 		 *    drain and release tx queues
    952      1.1  dyoung 		 *    reclaim beacon resources
    953      1.1  dyoung 		 *    power down hardware
    954      1.1  dyoung 		 *
    955      1.1  dyoung 		 * Note that some of this work is not possible if the
    956      1.1  dyoung 		 * hardware is gone (invalid).
    957      1.1  dyoung 		 */
    958  1.1.1.4  dyoung 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
    959      1.1  dyoung 		ifp->if_flags &= ~IFF_RUNNING;
    960      1.1  dyoung 		ifp->if_timer = 0;
    961  1.1.1.4  dyoung 		if (!sc->sc_invalid) {
    962  1.1.1.4  dyoung 			if (sc->sc_softled) {
    963  1.1.1.4  dyoung 				callout_stop(&sc->sc_ledtimer);
    964  1.1.1.4  dyoung 				ath_hal_gpioset(ah, sc->sc_ledpin,
    965  1.1.1.4  dyoung 					!sc->sc_ledon);
    966  1.1.1.4  dyoung 				sc->sc_blinking = 0;
    967  1.1.1.4  dyoung 			}
    968      1.1  dyoung 			ath_hal_intrset(ah, 0);
    969  1.1.1.4  dyoung 		}
    970      1.1  dyoung 		ath_draintxq(sc);
    971  1.1.1.4  dyoung 		if (!sc->sc_invalid) {
    972      1.1  dyoung 			ath_stoprecv(sc);
    973  1.1.1.4  dyoung 			ath_hal_phydisable(ah);
    974  1.1.1.4  dyoung 		} else
    975      1.1  dyoung 			sc->sc_rxlink = NULL;
    976  1.1.1.4  dyoung 		IFQ_DRV_PURGE(&ifp->if_snd);
    977      1.1  dyoung 		ath_beacon_free(sc);
    978  1.1.1.4  dyoung 	}
    979  1.1.1.4  dyoung }
    980  1.1.1.4  dyoung 
    981  1.1.1.4  dyoung static void
    982  1.1.1.4  dyoung ath_stop(struct ifnet *ifp)
    983  1.1.1.4  dyoung {
    984  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
    985  1.1.1.4  dyoung 
    986  1.1.1.4  dyoung 	ATH_LOCK(sc);
    987  1.1.1.4  dyoung 	ath_stop_locked(ifp);
    988  1.1.1.4  dyoung 	if (!sc->sc_invalid) {
    989  1.1.1.4  dyoung 		/*
    990  1.1.1.4  dyoung 		 * Set the chip in full sleep mode.  Note that we are
    991  1.1.1.4  dyoung 		 * careful to do this only when bringing the interface
    992  1.1.1.4  dyoung 		 * completely to a stop.  When the chip is in this state
    993  1.1.1.4  dyoung 		 * it must be carefully woken up or references to
    994  1.1.1.4  dyoung 		 * registers in the PCI clock domain may freeze the bus
    995  1.1.1.4  dyoung 		 * (and system).  This varies by chip and is mostly an
    996  1.1.1.4  dyoung 		 * issue with newer parts that go to sleep more quickly.
    997  1.1.1.4  dyoung 		 */
    998  1.1.1.4  dyoung 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
    999      1.1  dyoung 	}
   1000  1.1.1.2  dyoung 	ATH_UNLOCK(sc);
   1001      1.1  dyoung }
   1002      1.1  dyoung 
   1003      1.1  dyoung /*
   1004      1.1  dyoung  * Reset the hardware w/o losing operational state.  This is
   1005      1.1  dyoung  * basically a more efficient way of doing ath_stop, ath_init,
   1006      1.1  dyoung  * followed by state transitions to the current 802.11
   1007  1.1.1.4  dyoung  * operational state.  Used to recover from various errors and
   1008  1.1.1.4  dyoung  * to reset or reload hardware state.
   1009      1.1  dyoung  */
   1010  1.1.1.4  dyoung static int
   1011  1.1.1.4  dyoung ath_reset(struct ifnet *ifp)
   1012      1.1  dyoung {
   1013  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   1014      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1015      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1016      1.1  dyoung 	struct ieee80211_channel *c;
   1017      1.1  dyoung 	HAL_STATUS status;
   1018      1.1  dyoung 
   1019      1.1  dyoung 	/*
   1020      1.1  dyoung 	 * Convert to a HAL channel description with the flags
   1021      1.1  dyoung 	 * constrained to reflect the current operating mode.
   1022      1.1  dyoung 	 */
   1023      1.1  dyoung 	c = ic->ic_ibss_chan;
   1024  1.1.1.4  dyoung 	sc->sc_curchan.channel = c->ic_freq;
   1025  1.1.1.4  dyoung 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1026      1.1  dyoung 
   1027      1.1  dyoung 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1028      1.1  dyoung 	ath_draintxq(sc);		/* stop xmit side */
   1029      1.1  dyoung 	ath_stoprecv(sc);		/* stop recv side */
   1030      1.1  dyoung 	/* NB: indicate channel change so we do a full reset */
   1031  1.1.1.4  dyoung 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1032      1.1  dyoung 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1033      1.1  dyoung 			__func__, status);
   1034  1.1.1.4  dyoung 	ath_update_txpow(sc);		/* update tx power state */
   1035      1.1  dyoung 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1036      1.1  dyoung 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1037  1.1.1.4  dyoung 	/*
   1038  1.1.1.4  dyoung 	 * We may be doing a reset in response to an ioctl
   1039  1.1.1.4  dyoung 	 * that changes the channel so update any state that
   1040  1.1.1.4  dyoung 	 * might change as a result.
   1041  1.1.1.4  dyoung 	 */
   1042  1.1.1.4  dyoung 	ath_chan_change(sc, c);
   1043      1.1  dyoung 	if (ic->ic_state == IEEE80211_S_RUN)
   1044      1.1  dyoung 		ath_beacon_config(sc);	/* restart beacons */
   1045  1.1.1.4  dyoung 	ath_hal_intrset(ah, sc->sc_imask);
   1046  1.1.1.4  dyoung 
   1047  1.1.1.4  dyoung 	ath_start(ifp);			/* restart xmit */
   1048  1.1.1.4  dyoung 	return 0;
   1049      1.1  dyoung }
   1050      1.1  dyoung 
   1051      1.1  dyoung static void
   1052      1.1  dyoung ath_start(struct ifnet *ifp)
   1053      1.1  dyoung {
   1054      1.1  dyoung 	struct ath_softc *sc = ifp->if_softc;
   1055      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1056      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1057      1.1  dyoung 	struct ieee80211_node *ni;
   1058      1.1  dyoung 	struct ath_buf *bf;
   1059      1.1  dyoung 	struct mbuf *m;
   1060      1.1  dyoung 	struct ieee80211_frame *wh;
   1061  1.1.1.4  dyoung 	struct ether_header *eh;
   1062      1.1  dyoung 
   1063      1.1  dyoung 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1064      1.1  dyoung 		return;
   1065      1.1  dyoung 	for (;;) {
   1066      1.1  dyoung 		/*
   1067      1.1  dyoung 		 * Grab a TX buffer and associated resources.
   1068      1.1  dyoung 		 */
   1069  1.1.1.2  dyoung 		ATH_TXBUF_LOCK(sc);
   1070  1.1.1.4  dyoung 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1071      1.1  dyoung 		if (bf != NULL)
   1072  1.1.1.4  dyoung 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1073  1.1.1.2  dyoung 		ATH_TXBUF_UNLOCK(sc);
   1074      1.1  dyoung 		if (bf == NULL) {
   1075  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
   1076  1.1.1.4  dyoung 				__func__);
   1077      1.1  dyoung 			sc->sc_stats.ast_tx_qstop++;
   1078      1.1  dyoung 			ifp->if_flags |= IFF_OACTIVE;
   1079      1.1  dyoung 			break;
   1080      1.1  dyoung 		}
   1081      1.1  dyoung 		/*
   1082      1.1  dyoung 		 * Poll the management queue for frames; they
   1083      1.1  dyoung 		 * have priority over normal data frames.
   1084      1.1  dyoung 		 */
   1085      1.1  dyoung 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1086      1.1  dyoung 		if (m == NULL) {
   1087      1.1  dyoung 			/*
   1088      1.1  dyoung 			 * No data frames go out unless we're associated.
   1089      1.1  dyoung 			 */
   1090      1.1  dyoung 			if (ic->ic_state != IEEE80211_S_RUN) {
   1091  1.1.1.4  dyoung 				DPRINTF(sc, ATH_DEBUG_ANY,
   1092  1.1.1.4  dyoung 					"%s: ignore data packet, state %u\n",
   1093  1.1.1.4  dyoung 					__func__, ic->ic_state);
   1094      1.1  dyoung 				sc->sc_stats.ast_tx_discard++;
   1095  1.1.1.2  dyoung 				ATH_TXBUF_LOCK(sc);
   1096  1.1.1.4  dyoung 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1097  1.1.1.2  dyoung 				ATH_TXBUF_UNLOCK(sc);
   1098      1.1  dyoung 				break;
   1099      1.1  dyoung 			}
   1100  1.1.1.4  dyoung 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1101      1.1  dyoung 			if (m == NULL) {
   1102  1.1.1.2  dyoung 				ATH_TXBUF_LOCK(sc);
   1103  1.1.1.4  dyoung 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1104  1.1.1.2  dyoung 				ATH_TXBUF_UNLOCK(sc);
   1105      1.1  dyoung 				break;
   1106      1.1  dyoung 			}
   1107  1.1.1.4  dyoung 			/*
   1108  1.1.1.4  dyoung 			 * Find the node for the destination so we can do
   1109  1.1.1.4  dyoung 			 * things like power save and fast frames aggregation.
   1110  1.1.1.4  dyoung 			 */
   1111  1.1.1.4  dyoung 			if (m->m_len < sizeof(struct ether_header) &&
   1112  1.1.1.4  dyoung 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1113  1.1.1.4  dyoung 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1114  1.1.1.4  dyoung 				ni = NULL;
   1115  1.1.1.4  dyoung 				goto bad;
   1116  1.1.1.4  dyoung 			}
   1117  1.1.1.4  dyoung 			eh = mtod(m, struct ether_header *);
   1118  1.1.1.4  dyoung 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1119  1.1.1.4  dyoung 			if (ni == NULL) {
   1120  1.1.1.4  dyoung 				/* NB: ieee80211_find_txnode does stat+msg */
   1121  1.1.1.4  dyoung 				m_freem(m);
   1122  1.1.1.4  dyoung 				goto bad;
   1123  1.1.1.4  dyoung 			}
   1124  1.1.1.4  dyoung 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1125  1.1.1.4  dyoung 			    (m->m_flags & M_PWR_SAV) == 0) {
   1126  1.1.1.4  dyoung 				/*
   1127  1.1.1.4  dyoung 				 * Station in power save mode; pass the frame
   1128  1.1.1.4  dyoung 				 * to the 802.11 layer and continue.  We'll get
   1129  1.1.1.4  dyoung 				 * the frame back when the time is right.
   1130  1.1.1.4  dyoung 				 */
   1131  1.1.1.4  dyoung 				ieee80211_pwrsave(ic, ni, m);
   1132  1.1.1.4  dyoung 				goto reclaim;
   1133  1.1.1.4  dyoung 			}
   1134  1.1.1.4  dyoung 			/* calculate priority so we can find the tx queue */
   1135  1.1.1.4  dyoung 			if (ieee80211_classify(ic, m, ni)) {
   1136  1.1.1.4  dyoung 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1137  1.1.1.4  dyoung 					"%s: discard, classification failure\n",
   1138  1.1.1.4  dyoung 					__func__);
   1139  1.1.1.4  dyoung 				m_freem(m);
   1140  1.1.1.4  dyoung 				goto bad;
   1141  1.1.1.4  dyoung 			}
   1142      1.1  dyoung 			ifp->if_opackets++;
   1143      1.1  dyoung 			BPF_MTAP(ifp, m);
   1144      1.1  dyoung 			/*
   1145      1.1  dyoung 			 * Encapsulate the packet in prep for transmission.
   1146      1.1  dyoung 			 */
   1147  1.1.1.4  dyoung 			m = ieee80211_encap(ic, m, ni);
   1148      1.1  dyoung 			if (m == NULL) {
   1149  1.1.1.4  dyoung 				DPRINTF(sc, ATH_DEBUG_ANY,
   1150  1.1.1.4  dyoung 					"%s: encapsulation failure\n",
   1151  1.1.1.4  dyoung 					__func__);
   1152      1.1  dyoung 				sc->sc_stats.ast_tx_encap++;
   1153      1.1  dyoung 				goto bad;
   1154      1.1  dyoung 			}
   1155      1.1  dyoung 		} else {
   1156      1.1  dyoung 			/*
   1157      1.1  dyoung 			 * Hack!  The referenced node pointer is in the
   1158      1.1  dyoung 			 * rcvif field of the packet header.  This is
   1159      1.1  dyoung 			 * placed there by ieee80211_mgmt_output because
   1160      1.1  dyoung 			 * we need to hold the reference with the frame
   1161      1.1  dyoung 			 * and there's no other way (other than packet
   1162      1.1  dyoung 			 * tags which we consider too expensive to use)
   1163      1.1  dyoung 			 * to pass it along.
   1164      1.1  dyoung 			 */
   1165      1.1  dyoung 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1166      1.1  dyoung 			m->m_pkthdr.rcvif = NULL;
   1167      1.1  dyoung 
   1168      1.1  dyoung 			wh = mtod(m, struct ieee80211_frame *);
   1169      1.1  dyoung 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1170      1.1  dyoung 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1171      1.1  dyoung 				/* fill time stamp */
   1172      1.1  dyoung 				u_int64_t tsf;
   1173      1.1  dyoung 				u_int32_t *tstamp;
   1174      1.1  dyoung 
   1175      1.1  dyoung 				tsf = ath_hal_gettsf64(ah);
   1176      1.1  dyoung 				/* XXX: adjust 100us delay to xmit */
   1177      1.1  dyoung 				tsf += 100;
   1178      1.1  dyoung 				tstamp = (u_int32_t *)&wh[1];
   1179      1.1  dyoung 				tstamp[0] = htole32(tsf & 0xffffffff);
   1180      1.1  dyoung 				tstamp[1] = htole32(tsf >> 32);
   1181      1.1  dyoung 			}
   1182      1.1  dyoung 			sc->sc_stats.ast_tx_mgmt++;
   1183      1.1  dyoung 		}
   1184      1.1  dyoung 
   1185      1.1  dyoung 		if (ath_tx_start(sc, ni, bf, m)) {
   1186      1.1  dyoung 	bad:
   1187  1.1.1.4  dyoung 			ifp->if_oerrors++;
   1188  1.1.1.4  dyoung 	reclaim:
   1189  1.1.1.2  dyoung 			ATH_TXBUF_LOCK(sc);
   1190  1.1.1.4  dyoung 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1191  1.1.1.2  dyoung 			ATH_TXBUF_UNLOCK(sc);
   1192  1.1.1.4  dyoung 			if (ni != NULL)
   1193  1.1.1.4  dyoung 				ieee80211_free_node(ni);
   1194      1.1  dyoung 			continue;
   1195      1.1  dyoung 		}
   1196      1.1  dyoung 
   1197      1.1  dyoung 		sc->sc_tx_timer = 5;
   1198      1.1  dyoung 		ifp->if_timer = 1;
   1199      1.1  dyoung 	}
   1200      1.1  dyoung }
   1201      1.1  dyoung 
   1202      1.1  dyoung static int
   1203      1.1  dyoung ath_media_change(struct ifnet *ifp)
   1204      1.1  dyoung {
   1205  1.1.1.4  dyoung #define	IS_UP(ifp) \
   1206  1.1.1.4  dyoung 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
   1207      1.1  dyoung 	int error;
   1208      1.1  dyoung 
   1209      1.1  dyoung 	error = ieee80211_media_change(ifp);
   1210      1.1  dyoung 	if (error == ENETRESET) {
   1211  1.1.1.4  dyoung 		if (IS_UP(ifp))
   1212  1.1.1.5  dyoung 			ath_init(ifp->if_softc);	/* XXX lose error */
   1213      1.1  dyoung 		error = 0;
   1214      1.1  dyoung 	}
   1215      1.1  dyoung 	return error;
   1216  1.1.1.4  dyoung #undef IS_UP
   1217      1.1  dyoung }
   1218      1.1  dyoung 
   1219  1.1.1.4  dyoung #ifdef AR_DEBUG
   1220      1.1  dyoung static void
   1221  1.1.1.4  dyoung ath_keyprint(const char *tag, u_int ix,
   1222  1.1.1.4  dyoung 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1223      1.1  dyoung {
   1224  1.1.1.4  dyoung 	static const char *ciphers[] = {
   1225  1.1.1.4  dyoung 		"WEP",
   1226  1.1.1.4  dyoung 		"AES-OCB",
   1227  1.1.1.4  dyoung 		"AES-CCM",
   1228  1.1.1.4  dyoung 		"CKIP",
   1229  1.1.1.4  dyoung 		"TKIP",
   1230  1.1.1.4  dyoung 		"CLR",
   1231  1.1.1.4  dyoung 	};
   1232  1.1.1.4  dyoung 	int i, n;
   1233      1.1  dyoung 
   1234  1.1.1.4  dyoung 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1235  1.1.1.4  dyoung 	for (i = 0, n = hk->kv_len; i < n; i++)
   1236  1.1.1.4  dyoung 		printf("%02x", hk->kv_val[i]);
   1237  1.1.1.4  dyoung 	printf(" mac %s", ether_sprintf(mac));
   1238  1.1.1.4  dyoung 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1239  1.1.1.4  dyoung 		printf(" mic ");
   1240  1.1.1.4  dyoung 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1241  1.1.1.4  dyoung 			printf("%02x", hk->kv_mic[i]);
   1242      1.1  dyoung 	}
   1243  1.1.1.4  dyoung 	printf("\n");
   1244      1.1  dyoung }
   1245  1.1.1.4  dyoung #endif
   1246      1.1  dyoung 
   1247  1.1.1.4  dyoung /*
   1248  1.1.1.4  dyoung  * Set a TKIP key into the hardware.  This handles the
   1249  1.1.1.4  dyoung  * potential distribution of key state to multiple key
   1250  1.1.1.4  dyoung  * cache slots for TKIP.
   1251  1.1.1.4  dyoung  */
   1252      1.1  dyoung static int
   1253  1.1.1.4  dyoung ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1254  1.1.1.4  dyoung 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1255      1.1  dyoung {
   1256  1.1.1.4  dyoung #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1257  1.1.1.4  dyoung 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1258  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1259      1.1  dyoung 
   1260  1.1.1.4  dyoung 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1261  1.1.1.4  dyoung 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1262  1.1.1.4  dyoung 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1263  1.1.1.4  dyoung 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1264      1.1  dyoung 		/*
   1265  1.1.1.4  dyoung 		 * TX key goes at first index, RX key at +32.
   1266  1.1.1.4  dyoung 		 * The hal handles the MIC keys at index+64.
   1267      1.1  dyoung 		 */
   1268  1.1.1.4  dyoung 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1269  1.1.1.4  dyoung 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1270  1.1.1.4  dyoung 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1271  1.1.1.4  dyoung 			return 0;
   1272  1.1.1.4  dyoung 
   1273  1.1.1.4  dyoung 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1274  1.1.1.4  dyoung 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1275  1.1.1.4  dyoung 		/* XXX delete tx key on failure? */
   1276  1.1.1.4  dyoung 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1277  1.1.1.4  dyoung 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1278  1.1.1.4  dyoung 		/*
   1279  1.1.1.4  dyoung 		 * TX/RX key goes at first index.
   1280  1.1.1.4  dyoung 		 * The hal handles the MIC keys are index+64.
   1281  1.1.1.4  dyoung 		 */
   1282  1.1.1.4  dyoung 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1283  1.1.1.4  dyoung 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1284  1.1.1.5  dyoung 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1285  1.1.1.5  dyoung 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1286  1.1.1.2  dyoung 	}
   1287  1.1.1.4  dyoung 	return 0;
   1288  1.1.1.4  dyoung #undef IEEE80211_KEY_XR
   1289  1.1.1.4  dyoung }
   1290  1.1.1.4  dyoung 
   1291  1.1.1.4  dyoung /*
   1292  1.1.1.4  dyoung  * Set a net80211 key into the hardware.  This handles the
   1293  1.1.1.4  dyoung  * potential distribution of key state to multiple key
   1294  1.1.1.4  dyoung  * cache slots for TKIP with hardware MIC support.
   1295  1.1.1.4  dyoung  */
   1296  1.1.1.4  dyoung static int
   1297  1.1.1.4  dyoung ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1298  1.1.1.5  dyoung 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1299  1.1.1.5  dyoung 	struct ieee80211_node *bss)
   1300  1.1.1.4  dyoung {
   1301  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1302  1.1.1.4  dyoung 	static const u_int8_t ciphermap[] = {
   1303  1.1.1.4  dyoung 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1304  1.1.1.4  dyoung 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1305  1.1.1.4  dyoung 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1306  1.1.1.4  dyoung 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1307  1.1.1.4  dyoung 		(u_int8_t) -1,		/* 4 is not allocated */
   1308  1.1.1.4  dyoung 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1309  1.1.1.4  dyoung 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1310  1.1.1.4  dyoung 	};
   1311  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1312  1.1.1.4  dyoung 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1313  1.1.1.5  dyoung 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1314  1.1.1.5  dyoung 	const u_int8_t *mac;
   1315  1.1.1.4  dyoung 	HAL_KEYVAL hk;
   1316  1.1.1.4  dyoung 
   1317  1.1.1.4  dyoung 	memset(&hk, 0, sizeof(hk));
   1318  1.1.1.4  dyoung 	/*
   1319  1.1.1.4  dyoung 	 * Software crypto uses a "clear key" so non-crypto
   1320  1.1.1.4  dyoung 	 * state kept in the key cache are maintained and
   1321  1.1.1.4  dyoung 	 * so that rx frames have an entry to match.
   1322  1.1.1.4  dyoung 	 */
   1323  1.1.1.4  dyoung 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1324  1.1.1.4  dyoung 		KASSERT(cip->ic_cipher < N(ciphermap),
   1325  1.1.1.4  dyoung 			("invalid cipher type %u", cip->ic_cipher));
   1326  1.1.1.4  dyoung 		hk.kv_type = ciphermap[cip->ic_cipher];
   1327  1.1.1.4  dyoung 		hk.kv_len = k->wk_keylen;
   1328  1.1.1.4  dyoung 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1329  1.1.1.4  dyoung 	} else
   1330  1.1.1.4  dyoung 		hk.kv_type = HAL_CIPHER_CLR;
   1331  1.1.1.4  dyoung 
   1332  1.1.1.5  dyoung 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1333  1.1.1.5  dyoung 		/*
   1334  1.1.1.5  dyoung 		 * Group keys on hardware that supports multicast frame
   1335  1.1.1.5  dyoung 		 * key search use a mac that is the sender's address with
   1336  1.1.1.5  dyoung 		 * the high bit set instead of the app-specified address.
   1337  1.1.1.5  dyoung 		 */
   1338  1.1.1.5  dyoung 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1339  1.1.1.5  dyoung 		gmac[0] |= 0x80;
   1340  1.1.1.5  dyoung 		mac = gmac;
   1341  1.1.1.5  dyoung 	} else
   1342  1.1.1.5  dyoung 		mac = mac0;
   1343  1.1.1.5  dyoung 
   1344  1.1.1.4  dyoung 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1345  1.1.1.4  dyoung 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1346  1.1.1.4  dyoung 	    sc->sc_splitmic) {
   1347  1.1.1.4  dyoung 		return ath_keyset_tkip(sc, k, &hk, mac);
   1348  1.1.1.4  dyoung 	} else {
   1349  1.1.1.4  dyoung 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1350  1.1.1.4  dyoung 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1351      1.1  dyoung 	}
   1352  1.1.1.4  dyoung #undef N
   1353      1.1  dyoung }
   1354      1.1  dyoung 
   1355      1.1  dyoung /*
   1356  1.1.1.4  dyoung  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1357  1.1.1.4  dyoung  * each key, one for decrypt/encrypt and the other for the MIC.
   1358  1.1.1.4  dyoung  */
   1359  1.1.1.4  dyoung static u_int16_t
   1360  1.1.1.4  dyoung key_alloc_2pair(struct ath_softc *sc)
   1361  1.1.1.4  dyoung {
   1362  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1363  1.1.1.4  dyoung 	u_int i, keyix;
   1364  1.1.1.4  dyoung 
   1365  1.1.1.4  dyoung 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1366  1.1.1.4  dyoung 	/* XXX could optimize */
   1367  1.1.1.4  dyoung 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1368  1.1.1.4  dyoung 		u_int8_t b = sc->sc_keymap[i];
   1369  1.1.1.4  dyoung 		if (b != 0xff) {
   1370  1.1.1.4  dyoung 			/*
   1371  1.1.1.4  dyoung 			 * One or more slots in this byte are free.
   1372  1.1.1.4  dyoung 			 */
   1373  1.1.1.4  dyoung 			keyix = i*NBBY;
   1374  1.1.1.4  dyoung 			while (b & 1) {
   1375  1.1.1.4  dyoung 		again:
   1376  1.1.1.4  dyoung 				keyix++;
   1377  1.1.1.4  dyoung 				b >>= 1;
   1378  1.1.1.4  dyoung 			}
   1379  1.1.1.4  dyoung 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1380  1.1.1.4  dyoung 			if (isset(sc->sc_keymap, keyix+32) ||
   1381  1.1.1.4  dyoung 			    isset(sc->sc_keymap, keyix+64) ||
   1382  1.1.1.4  dyoung 			    isset(sc->sc_keymap, keyix+32+64)) {
   1383  1.1.1.4  dyoung 				/* full pair unavailable */
   1384  1.1.1.4  dyoung 				/* XXX statistic */
   1385  1.1.1.4  dyoung 				if (keyix == (i+1)*NBBY) {
   1386  1.1.1.4  dyoung 					/* no slots were appropriate, advance */
   1387  1.1.1.4  dyoung 					continue;
   1388  1.1.1.4  dyoung 				}
   1389  1.1.1.4  dyoung 				goto again;
   1390  1.1.1.4  dyoung 			}
   1391  1.1.1.4  dyoung 			setbit(sc->sc_keymap, keyix);
   1392  1.1.1.4  dyoung 			setbit(sc->sc_keymap, keyix+64);
   1393  1.1.1.4  dyoung 			setbit(sc->sc_keymap, keyix+32);
   1394  1.1.1.4  dyoung 			setbit(sc->sc_keymap, keyix+32+64);
   1395  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1396  1.1.1.4  dyoung 				"%s: key pair %u,%u %u,%u\n",
   1397  1.1.1.4  dyoung 				__func__, keyix, keyix+64,
   1398  1.1.1.4  dyoung 				keyix+32, keyix+32+64);
   1399  1.1.1.4  dyoung 			return keyix;
   1400  1.1.1.4  dyoung 		}
   1401  1.1.1.4  dyoung 	}
   1402  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1403  1.1.1.4  dyoung 	return IEEE80211_KEYIX_NONE;
   1404  1.1.1.4  dyoung #undef N
   1405  1.1.1.4  dyoung }
   1406  1.1.1.4  dyoung 
   1407  1.1.1.4  dyoung /*
   1408  1.1.1.4  dyoung  * Allocate a single key cache slot.
   1409  1.1.1.4  dyoung  */
   1410  1.1.1.4  dyoung static u_int16_t
   1411  1.1.1.4  dyoung key_alloc_single(struct ath_softc *sc)
   1412  1.1.1.4  dyoung {
   1413  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1414  1.1.1.4  dyoung 	u_int i, keyix;
   1415  1.1.1.4  dyoung 
   1416  1.1.1.4  dyoung 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1417  1.1.1.4  dyoung 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1418  1.1.1.4  dyoung 		u_int8_t b = sc->sc_keymap[i];
   1419  1.1.1.4  dyoung 		if (b != 0xff) {
   1420  1.1.1.4  dyoung 			/*
   1421  1.1.1.4  dyoung 			 * One or more slots are free.
   1422  1.1.1.4  dyoung 			 */
   1423  1.1.1.4  dyoung 			keyix = i*NBBY;
   1424  1.1.1.4  dyoung 			while (b & 1)
   1425  1.1.1.4  dyoung 				keyix++, b >>= 1;
   1426  1.1.1.4  dyoung 			setbit(sc->sc_keymap, keyix);
   1427  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1428  1.1.1.4  dyoung 				__func__, keyix);
   1429  1.1.1.4  dyoung 			return keyix;
   1430  1.1.1.4  dyoung 		}
   1431  1.1.1.4  dyoung 	}
   1432  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1433  1.1.1.4  dyoung 	return IEEE80211_KEYIX_NONE;
   1434  1.1.1.4  dyoung #undef N
   1435  1.1.1.4  dyoung }
   1436  1.1.1.4  dyoung 
   1437  1.1.1.4  dyoung /*
   1438  1.1.1.4  dyoung  * Allocate one or more key cache slots for a uniacst key.  The
   1439  1.1.1.4  dyoung  * key itself is needed only to identify the cipher.  For hardware
   1440  1.1.1.4  dyoung  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1441  1.1.1.4  dyoung  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1442  1.1.1.4  dyoung  * that the MIC key for a TKIP key at slot i is assumed by the
   1443  1.1.1.4  dyoung  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1444  1.1.1.4  dyoung  * 64 entries.
   1445  1.1.1.4  dyoung  */
   1446  1.1.1.4  dyoung static int
   1447  1.1.1.4  dyoung ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
   1448  1.1.1.4  dyoung {
   1449  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1450  1.1.1.4  dyoung 
   1451  1.1.1.4  dyoung 	/*
   1452  1.1.1.4  dyoung 	 * Group key allocation must be handled specially for
   1453  1.1.1.4  dyoung 	 * parts that do not support multicast key cache search
   1454  1.1.1.4  dyoung 	 * functionality.  For those parts the key id must match
   1455  1.1.1.4  dyoung 	 * the h/w key index so lookups find the right key.  On
   1456  1.1.1.4  dyoung 	 * parts w/ the key search facility we install the sender's
   1457  1.1.1.4  dyoung 	 * mac address (with the high bit set) and let the hardware
   1458  1.1.1.4  dyoung 	 * find the key w/o using the key id.  This is preferred as
   1459  1.1.1.4  dyoung 	 * it permits us to support multiple users for adhoc and/or
   1460  1.1.1.4  dyoung 	 * multi-station operation.
   1461  1.1.1.4  dyoung 	 */
   1462  1.1.1.4  dyoung 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1463  1.1.1.4  dyoung 		u_int keyix;
   1464  1.1.1.4  dyoung 
   1465  1.1.1.4  dyoung 		if (!(&ic->ic_nw_keys[0] <= k &&
   1466  1.1.1.4  dyoung 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1467  1.1.1.4  dyoung 			/* should not happen */
   1468  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1469  1.1.1.4  dyoung 				"%s: bogus group key\n", __func__);
   1470  1.1.1.4  dyoung 			return IEEE80211_KEYIX_NONE;
   1471  1.1.1.4  dyoung 		}
   1472  1.1.1.4  dyoung 		keyix = k - ic->ic_nw_keys;
   1473  1.1.1.4  dyoung 		/*
   1474  1.1.1.4  dyoung 		 * XXX we pre-allocate the global keys so
   1475  1.1.1.4  dyoung 		 * have no way to check if they've already been allocated.
   1476  1.1.1.4  dyoung 		 */
   1477  1.1.1.4  dyoung 		return keyix;
   1478  1.1.1.4  dyoung 	}
   1479  1.1.1.4  dyoung 
   1480  1.1.1.4  dyoung 	/*
   1481  1.1.1.4  dyoung 	 * We allocate two pair for TKIP when using the h/w to do
   1482  1.1.1.4  dyoung 	 * the MIC.  For everything else, including software crypto,
   1483  1.1.1.4  dyoung 	 * we allocate a single entry.  Note that s/w crypto requires
   1484  1.1.1.4  dyoung 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1485  1.1.1.4  dyoung 	 * not support pass-through cache entries and we map all
   1486  1.1.1.4  dyoung 	 * those requests to slot 0.
   1487  1.1.1.4  dyoung 	 */
   1488  1.1.1.4  dyoung 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1489  1.1.1.4  dyoung 		return key_alloc_single(sc);
   1490  1.1.1.4  dyoung 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1491  1.1.1.4  dyoung 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1492  1.1.1.4  dyoung 		return key_alloc_2pair(sc);
   1493  1.1.1.4  dyoung 	} else {
   1494  1.1.1.4  dyoung 		return key_alloc_single(sc);
   1495  1.1.1.4  dyoung 	}
   1496  1.1.1.4  dyoung }
   1497  1.1.1.4  dyoung 
   1498  1.1.1.4  dyoung /*
   1499  1.1.1.4  dyoung  * Delete an entry in the key cache allocated by ath_key_alloc.
   1500  1.1.1.4  dyoung  */
   1501  1.1.1.4  dyoung static int
   1502  1.1.1.4  dyoung ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1503  1.1.1.4  dyoung {
   1504  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1505  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1506  1.1.1.4  dyoung 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1507  1.1.1.5  dyoung 	struct ieee80211_node *ni;
   1508  1.1.1.4  dyoung 	u_int keyix = k->wk_keyix;
   1509  1.1.1.4  dyoung 
   1510  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1511  1.1.1.4  dyoung 
   1512  1.1.1.4  dyoung 	ath_hal_keyreset(ah, keyix);
   1513  1.1.1.4  dyoung 	/*
   1514  1.1.1.5  dyoung 	 * Check the key->node map and flush any ref.
   1515  1.1.1.5  dyoung 	 */
   1516  1.1.1.5  dyoung 	ni = sc->sc_keyixmap[keyix];
   1517  1.1.1.5  dyoung 	if (ni != NULL) {
   1518  1.1.1.5  dyoung 		ieee80211_free_node(ni);
   1519  1.1.1.5  dyoung 		sc->sc_keyixmap[keyix] = NULL;
   1520  1.1.1.5  dyoung 	}
   1521  1.1.1.5  dyoung 	/*
   1522  1.1.1.4  dyoung 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1523  1.1.1.4  dyoung 	 */
   1524  1.1.1.4  dyoung 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1525  1.1.1.5  dyoung 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1526  1.1.1.4  dyoung 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1527  1.1.1.5  dyoung 		ni = sc->sc_keyixmap[keyix+32];
   1528  1.1.1.5  dyoung 		if (ni != NULL) {			/* as above... */
   1529  1.1.1.5  dyoung 			ieee80211_free_node(ni);
   1530  1.1.1.5  dyoung 			sc->sc_keyixmap[keyix+32] = NULL;
   1531  1.1.1.5  dyoung 		}
   1532  1.1.1.5  dyoung 	}
   1533  1.1.1.4  dyoung 	if (keyix >= IEEE80211_WEP_NKID) {
   1534  1.1.1.4  dyoung 		/*
   1535  1.1.1.4  dyoung 		 * Don't touch keymap entries for global keys so
   1536  1.1.1.4  dyoung 		 * they are never considered for dynamic allocation.
   1537  1.1.1.4  dyoung 		 */
   1538  1.1.1.4  dyoung 		clrbit(sc->sc_keymap, keyix);
   1539  1.1.1.4  dyoung 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1540  1.1.1.4  dyoung 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1541  1.1.1.4  dyoung 		    sc->sc_splitmic) {
   1542  1.1.1.4  dyoung 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1543  1.1.1.4  dyoung 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1544  1.1.1.4  dyoung 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1545  1.1.1.4  dyoung 		}
   1546      1.1  dyoung 	}
   1547  1.1.1.4  dyoung 	return 1;
   1548  1.1.1.4  dyoung }
   1549  1.1.1.4  dyoung 
   1550  1.1.1.4  dyoung /*
   1551  1.1.1.4  dyoung  * Set the key cache contents for the specified key.  Key cache
   1552  1.1.1.4  dyoung  * slot(s) must already have been allocated by ath_key_alloc.
   1553  1.1.1.4  dyoung  */
   1554  1.1.1.4  dyoung static int
   1555  1.1.1.4  dyoung ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1556  1.1.1.4  dyoung 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1557  1.1.1.4  dyoung {
   1558  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1559  1.1.1.4  dyoung 
   1560  1.1.1.5  dyoung 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1561  1.1.1.4  dyoung }
   1562  1.1.1.4  dyoung 
   1563  1.1.1.4  dyoung /*
   1564  1.1.1.4  dyoung  * Block/unblock tx+rx processing while a key change is done.
   1565  1.1.1.4  dyoung  * We assume the caller serializes key management operations
   1566  1.1.1.4  dyoung  * so we only need to worry about synchronization with other
   1567  1.1.1.4  dyoung  * uses that originate in the driver.
   1568  1.1.1.4  dyoung  */
   1569  1.1.1.4  dyoung static void
   1570  1.1.1.4  dyoung ath_key_update_begin(struct ieee80211com *ic)
   1571  1.1.1.4  dyoung {
   1572  1.1.1.4  dyoung 	struct ifnet *ifp = ic->ic_ifp;
   1573  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   1574  1.1.1.4  dyoung 
   1575  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1576  1.1.1.4  dyoung #if 0
   1577  1.1.1.4  dyoung 	tasklet_disable(&sc->sc_rxtq);
   1578  1.1.1.4  dyoung #endif
   1579  1.1.1.4  dyoung 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1580  1.1.1.4  dyoung }
   1581  1.1.1.4  dyoung 
   1582  1.1.1.4  dyoung static void
   1583  1.1.1.4  dyoung ath_key_update_end(struct ieee80211com *ic)
   1584  1.1.1.4  dyoung {
   1585  1.1.1.4  dyoung 	struct ifnet *ifp = ic->ic_ifp;
   1586  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   1587  1.1.1.4  dyoung 
   1588  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1589  1.1.1.4  dyoung 	IF_UNLOCK(&ifp->if_snd);
   1590  1.1.1.4  dyoung #if 0
   1591  1.1.1.4  dyoung 	tasklet_enable(&sc->sc_rxtq);
   1592  1.1.1.4  dyoung #endif
   1593      1.1  dyoung }
   1594      1.1  dyoung 
   1595  1.1.1.2  dyoung /*
   1596  1.1.1.2  dyoung  * Calculate the receive filter according to the
   1597  1.1.1.2  dyoung  * operating mode and state:
   1598  1.1.1.2  dyoung  *
   1599  1.1.1.2  dyoung  * o always accept unicast, broadcast, and multicast traffic
   1600  1.1.1.4  dyoung  * o maintain current state of phy error reception (the hal
   1601  1.1.1.4  dyoung  *   may enable phy error frames for noise immunity work)
   1602  1.1.1.2  dyoung  * o probe request frames are accepted only when operating in
   1603  1.1.1.2  dyoung  *   hostap, adhoc, or monitor modes
   1604  1.1.1.2  dyoung  * o enable promiscuous mode according to the interface state
   1605  1.1.1.2  dyoung  * o accept beacons:
   1606  1.1.1.2  dyoung  *   - when operating in adhoc mode so the 802.11 layer creates
   1607  1.1.1.2  dyoung  *     node table entries for peers,
   1608  1.1.1.2  dyoung  *   - when operating in station mode for collecting rssi data when
   1609  1.1.1.2  dyoung  *     the station is otherwise quiet, or
   1610  1.1.1.2  dyoung  *   - when scanning
   1611  1.1.1.2  dyoung  */
   1612  1.1.1.2  dyoung static u_int32_t
   1613  1.1.1.4  dyoung ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1614      1.1  dyoung {
   1615      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1616      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1617  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   1618  1.1.1.2  dyoung 	u_int32_t rfilt;
   1619      1.1  dyoung 
   1620      1.1  dyoung 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1621      1.1  dyoung 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1622      1.1  dyoung 	if (ic->ic_opmode != IEEE80211_M_STA)
   1623      1.1  dyoung 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1624      1.1  dyoung 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1625      1.1  dyoung 	    (ifp->if_flags & IFF_PROMISC))
   1626      1.1  dyoung 		rfilt |= HAL_RX_FILTER_PROM;
   1627  1.1.1.2  dyoung 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1628  1.1.1.2  dyoung 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1629  1.1.1.4  dyoung 	    state == IEEE80211_S_SCAN)
   1630      1.1  dyoung 		rfilt |= HAL_RX_FILTER_BEACON;
   1631  1.1.1.2  dyoung 	return rfilt;
   1632  1.1.1.2  dyoung }
   1633  1.1.1.2  dyoung 
   1634  1.1.1.2  dyoung static void
   1635  1.1.1.2  dyoung ath_mode_init(struct ath_softc *sc)
   1636  1.1.1.2  dyoung {
   1637  1.1.1.2  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1638  1.1.1.2  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1639  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   1640  1.1.1.2  dyoung 	u_int32_t rfilt, mfilt[2], val;
   1641  1.1.1.2  dyoung 	u_int8_t pos;
   1642  1.1.1.2  dyoung 	struct ifmultiaddr *ifma;
   1643  1.1.1.2  dyoung 
   1644  1.1.1.2  dyoung 	/* configure rx filter */
   1645  1.1.1.4  dyoung 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1646      1.1  dyoung 	ath_hal_setrxfilter(ah, rfilt);
   1647      1.1  dyoung 
   1648  1.1.1.2  dyoung 	/* configure operational mode */
   1649  1.1.1.4  dyoung 	ath_hal_setopmode(ah);
   1650  1.1.1.4  dyoung 
   1651  1.1.1.4  dyoung 	/*
   1652  1.1.1.4  dyoung 	 * Handle any link-level address change.  Note that we only
   1653  1.1.1.4  dyoung 	 * need to force ic_myaddr; any other addresses are handled
   1654  1.1.1.4  dyoung 	 * as a byproduct of the ifnet code marking the interface
   1655  1.1.1.4  dyoung 	 * down then up.
   1656  1.1.1.4  dyoung 	 *
   1657  1.1.1.4  dyoung 	 * XXX should get from lladdr instead of arpcom but that's more work
   1658  1.1.1.4  dyoung 	 */
   1659  1.1.1.5  dyoung 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2ENADDR(ifp));
   1660  1.1.1.4  dyoung 	ath_hal_setmac(ah, ic->ic_myaddr);
   1661  1.1.1.2  dyoung 
   1662      1.1  dyoung 	/* calculate and install multicast filter */
   1663      1.1  dyoung 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1664      1.1  dyoung 		mfilt[0] = mfilt[1] = 0;
   1665      1.1  dyoung 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1666      1.1  dyoung 			caddr_t dl;
   1667      1.1  dyoung 
   1668      1.1  dyoung 			/* calculate XOR of eight 6bit values */
   1669      1.1  dyoung 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1670      1.1  dyoung 			val = LE_READ_4(dl + 0);
   1671      1.1  dyoung 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1672      1.1  dyoung 			val = LE_READ_4(dl + 3);
   1673      1.1  dyoung 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1674      1.1  dyoung 			pos &= 0x3f;
   1675      1.1  dyoung 			mfilt[pos / 32] |= (1 << (pos % 32));
   1676      1.1  dyoung 		}
   1677      1.1  dyoung 	} else {
   1678      1.1  dyoung 		mfilt[0] = mfilt[1] = ~0;
   1679      1.1  dyoung 	}
   1680      1.1  dyoung 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1681  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1682  1.1.1.4  dyoung 		__func__, rfilt, mfilt[0], mfilt[1]);
   1683  1.1.1.4  dyoung }
   1684  1.1.1.4  dyoung 
   1685  1.1.1.4  dyoung /*
   1686  1.1.1.4  dyoung  * Set the slot time based on the current setting.
   1687  1.1.1.4  dyoung  */
   1688  1.1.1.4  dyoung static void
   1689  1.1.1.4  dyoung ath_setslottime(struct ath_softc *sc)
   1690  1.1.1.4  dyoung {
   1691  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1692  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1693  1.1.1.4  dyoung 
   1694  1.1.1.4  dyoung 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1695  1.1.1.4  dyoung 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1696  1.1.1.4  dyoung 	else
   1697  1.1.1.4  dyoung 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1698  1.1.1.4  dyoung 	sc->sc_updateslot = OK;
   1699      1.1  dyoung }
   1700      1.1  dyoung 
   1701  1.1.1.4  dyoung /*
   1702  1.1.1.4  dyoung  * Callback from the 802.11 layer to update the
   1703  1.1.1.4  dyoung  * slot time based on the current setting.
   1704  1.1.1.4  dyoung  */
   1705      1.1  dyoung static void
   1706  1.1.1.4  dyoung ath_updateslot(struct ifnet *ifp)
   1707  1.1.1.4  dyoung {
   1708  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   1709  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1710  1.1.1.4  dyoung 
   1711  1.1.1.4  dyoung 	/*
   1712  1.1.1.4  dyoung 	 * When not coordinating the BSS, change the hardware
   1713  1.1.1.4  dyoung 	 * immediately.  For other operation we defer the change
   1714  1.1.1.4  dyoung 	 * until beacon updates have propagated to the stations.
   1715  1.1.1.4  dyoung 	 */
   1716  1.1.1.4  dyoung 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1717  1.1.1.4  dyoung 		sc->sc_updateslot = UPDATE;
   1718  1.1.1.4  dyoung 	else
   1719  1.1.1.4  dyoung 		ath_setslottime(sc);
   1720  1.1.1.4  dyoung }
   1721  1.1.1.4  dyoung 
   1722  1.1.1.4  dyoung /*
   1723  1.1.1.4  dyoung  * Setup a h/w transmit queue for beacons.
   1724  1.1.1.4  dyoung  */
   1725  1.1.1.4  dyoung static int
   1726  1.1.1.4  dyoung ath_beaconq_setup(struct ath_hal *ah)
   1727      1.1  dyoung {
   1728  1.1.1.4  dyoung 	HAL_TXQ_INFO qi;
   1729      1.1  dyoung 
   1730  1.1.1.4  dyoung 	memset(&qi, 0, sizeof(qi));
   1731  1.1.1.4  dyoung 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1732  1.1.1.4  dyoung 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1733  1.1.1.4  dyoung 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1734  1.1.1.5  dyoung 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1735  1.1.1.5  dyoung 	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
   1736  1.1.1.4  dyoung 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1737      1.1  dyoung }
   1738      1.1  dyoung 
   1739  1.1.1.4  dyoung /*
   1740  1.1.1.5  dyoung  * Setup the transmit queue parameters for the beacon queue.
   1741  1.1.1.5  dyoung  */
   1742  1.1.1.5  dyoung static int
   1743  1.1.1.5  dyoung ath_beaconq_config(struct ath_softc *sc)
   1744  1.1.1.5  dyoung {
   1745  1.1.1.5  dyoung #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   1746  1.1.1.5  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1747  1.1.1.5  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1748  1.1.1.5  dyoung 	HAL_TXQ_INFO qi;
   1749  1.1.1.5  dyoung 
   1750  1.1.1.5  dyoung 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   1751  1.1.1.5  dyoung 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1752  1.1.1.5  dyoung 		/*
   1753  1.1.1.5  dyoung 		 * Always burst out beacon and CAB traffic.
   1754  1.1.1.5  dyoung 		 */
   1755  1.1.1.5  dyoung 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   1756  1.1.1.5  dyoung 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   1757  1.1.1.5  dyoung 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   1758  1.1.1.5  dyoung 	} else {
   1759  1.1.1.5  dyoung 		struct wmeParams *wmep =
   1760  1.1.1.5  dyoung 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   1761  1.1.1.5  dyoung 		/*
   1762  1.1.1.5  dyoung 		 * Adhoc mode; important thing is to use 2x cwmin.
   1763  1.1.1.5  dyoung 		 */
   1764  1.1.1.5  dyoung 		qi.tqi_aifs = wmep->wmep_aifsn;
   1765  1.1.1.5  dyoung 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   1766  1.1.1.5  dyoung 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   1767  1.1.1.5  dyoung 	}
   1768  1.1.1.5  dyoung 
   1769  1.1.1.5  dyoung 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   1770  1.1.1.5  dyoung 		device_printf(sc->sc_dev, "unable to update parameters for "
   1771  1.1.1.5  dyoung 			"beacon hardware queue!\n");
   1772  1.1.1.5  dyoung 		return 0;
   1773  1.1.1.5  dyoung 	} else {
   1774  1.1.1.5  dyoung 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   1775  1.1.1.5  dyoung 		return 1;
   1776  1.1.1.5  dyoung 	}
   1777  1.1.1.5  dyoung #undef ATH_EXPONENT_TO_VALUE
   1778  1.1.1.5  dyoung }
   1779  1.1.1.5  dyoung 
   1780  1.1.1.5  dyoung /*
   1781  1.1.1.4  dyoung  * Allocate and setup an initial beacon frame.
   1782  1.1.1.4  dyoung  */
   1783      1.1  dyoung static int
   1784      1.1  dyoung ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   1785      1.1  dyoung {
   1786  1.1.1.4  dyoung 	struct ieee80211com *ic = ni->ni_ic;
   1787      1.1  dyoung 	struct ath_buf *bf;
   1788      1.1  dyoung 	struct mbuf *m;
   1789  1.1.1.4  dyoung 	int error;
   1790      1.1  dyoung 
   1791  1.1.1.4  dyoung 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   1792  1.1.1.4  dyoung 	if (bf == NULL) {
   1793  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   1794  1.1.1.4  dyoung 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   1795  1.1.1.4  dyoung 		return ENOMEM;			/* XXX */
   1796      1.1  dyoung 	}
   1797      1.1  dyoung 	/*
   1798      1.1  dyoung 	 * NB: the beacon data buffer must be 32-bit aligned;
   1799      1.1  dyoung 	 * we assume the mbuf routines will return us something
   1800      1.1  dyoung 	 * with this alignment (perhaps should assert).
   1801      1.1  dyoung 	 */
   1802  1.1.1.4  dyoung 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   1803      1.1  dyoung 	if (m == NULL) {
   1804  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   1805  1.1.1.4  dyoung 			__func__);
   1806      1.1  dyoung 		sc->sc_stats.ast_be_nombuf++;
   1807      1.1  dyoung 		return ENOMEM;
   1808      1.1  dyoung 	}
   1809  1.1.1.4  dyoung 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
   1810  1.1.1.4  dyoung 				     bf->bf_segs, &bf->bf_nseg,
   1811      1.1  dyoung 				     BUS_DMA_NOWAIT);
   1812  1.1.1.4  dyoung 	if (error == 0) {
   1813  1.1.1.4  dyoung 		bf->bf_m = m;
   1814  1.1.1.4  dyoung 		bf->bf_node = ieee80211_ref_node(ni);
   1815  1.1.1.4  dyoung 	} else {
   1816      1.1  dyoung 		m_freem(m);
   1817      1.1  dyoung 	}
   1818  1.1.1.4  dyoung 	return error;
   1819  1.1.1.4  dyoung }
   1820  1.1.1.4  dyoung 
   1821  1.1.1.4  dyoung /*
   1822  1.1.1.4  dyoung  * Setup the beacon frame for transmit.
   1823  1.1.1.4  dyoung  */
   1824  1.1.1.4  dyoung static void
   1825  1.1.1.4  dyoung ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   1826  1.1.1.4  dyoung {
   1827  1.1.1.4  dyoung #define	USE_SHPREAMBLE(_ic) \
   1828  1.1.1.4  dyoung 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   1829  1.1.1.4  dyoung 		== IEEE80211_F_SHPREAMBLE)
   1830  1.1.1.4  dyoung 	struct ieee80211_node *ni = bf->bf_node;
   1831  1.1.1.4  dyoung 	struct ieee80211com *ic = ni->ni_ic;
   1832  1.1.1.4  dyoung 	struct mbuf *m = bf->bf_m;
   1833  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1834  1.1.1.4  dyoung 	struct ath_node *an = ATH_NODE(ni);
   1835  1.1.1.4  dyoung 	struct ath_desc *ds;
   1836  1.1.1.4  dyoung 	int flags, antenna;
   1837  1.1.1.4  dyoung 	u_int8_t rate;
   1838  1.1.1.4  dyoung 
   1839  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   1840  1.1.1.4  dyoung 		__func__, m, m->m_len);
   1841      1.1  dyoung 
   1842      1.1  dyoung 	/* setup descriptors */
   1843      1.1  dyoung 	ds = bf->bf_desc;
   1844      1.1  dyoung 
   1845  1.1.1.4  dyoung 	flags = HAL_TXDESC_NOACK;
   1846  1.1.1.4  dyoung 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   1847  1.1.1.4  dyoung 		ds->ds_link = bf->bf_daddr;	/* self-linked */
   1848  1.1.1.4  dyoung 		flags |= HAL_TXDESC_VEOL;
   1849  1.1.1.4  dyoung 		/*
   1850  1.1.1.4  dyoung 		 * Let hardware handle antenna switching.
   1851  1.1.1.4  dyoung 		 */
   1852  1.1.1.4  dyoung 		antenna = 0;
   1853  1.1.1.4  dyoung 	} else {
   1854  1.1.1.4  dyoung 		ds->ds_link = 0;
   1855  1.1.1.4  dyoung 		/*
   1856  1.1.1.4  dyoung 		 * Switch antenna every 4 beacons.
   1857  1.1.1.4  dyoung 		 * XXX assumes two antenna
   1858  1.1.1.4  dyoung 		 */
   1859  1.1.1.4  dyoung 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   1860  1.1.1.4  dyoung 	}
   1861  1.1.1.4  dyoung 
   1862  1.1.1.4  dyoung 	KASSERT(bf->bf_nseg == 1,
   1863  1.1.1.4  dyoung 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   1864      1.1  dyoung 	ds->ds_data = bf->bf_segs[0].ds_addr;
   1865      1.1  dyoung 	/*
   1866      1.1  dyoung 	 * Calculate rate code.
   1867      1.1  dyoung 	 * XXX everything at min xmit rate
   1868      1.1  dyoung 	 */
   1869  1.1.1.4  dyoung 	if (USE_SHPREAMBLE(ic))
   1870  1.1.1.4  dyoung 		rate = an->an_tx_mgtratesp;
   1871      1.1  dyoung 	else
   1872  1.1.1.4  dyoung 		rate = an->an_tx_mgtrate;
   1873      1.1  dyoung 	ath_hal_setuptxdesc(ah, ds
   1874  1.1.1.4  dyoung 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   1875  1.1.1.4  dyoung 		, sizeof(struct ieee80211_frame)/* header length */
   1876      1.1  dyoung 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   1877  1.1.1.4  dyoung 		, ni->ni_txpower		/* txpower XXX */
   1878      1.1  dyoung 		, rate, 1			/* series 0 rate/tries */
   1879      1.1  dyoung 		, HAL_TXKEYIX_INVALID		/* no encryption */
   1880  1.1.1.4  dyoung 		, antenna			/* antenna mode */
   1881  1.1.1.4  dyoung 		, flags				/* no ack, veol for beacons */
   1882      1.1  dyoung 		, 0				/* rts/cts rate */
   1883      1.1  dyoung 		, 0				/* rts/cts duration */
   1884      1.1  dyoung 	);
   1885      1.1  dyoung 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   1886      1.1  dyoung 	ath_hal_filltxdesc(ah, ds
   1887  1.1.1.4  dyoung 		, roundup(m->m_len, 4)		/* buffer length */
   1888  1.1.1.4  dyoung 		, AH_TRUE			/* first segment */
   1889  1.1.1.4  dyoung 		, AH_TRUE			/* last segment */
   1890  1.1.1.4  dyoung 		, ds				/* first descriptor */
   1891      1.1  dyoung 	);
   1892  1.1.1.4  dyoung #undef USE_SHPREAMBLE
   1893      1.1  dyoung }
   1894      1.1  dyoung 
   1895  1.1.1.4  dyoung /*
   1896  1.1.1.4  dyoung  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   1897  1.1.1.4  dyoung  * frame contents are done as needed and the slot time is
   1898  1.1.1.4  dyoung  * also adjusted based on current state.
   1899  1.1.1.4  dyoung  */
   1900      1.1  dyoung static void
   1901      1.1  dyoung ath_beacon_proc(void *arg, int pending)
   1902      1.1  dyoung {
   1903      1.1  dyoung 	struct ath_softc *sc = arg;
   1904  1.1.1.4  dyoung 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   1905  1.1.1.4  dyoung 	struct ieee80211_node *ni = bf->bf_node;
   1906  1.1.1.4  dyoung 	struct ieee80211com *ic = ni->ni_ic;
   1907      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1908  1.1.1.4  dyoung 	struct mbuf *m;
   1909  1.1.1.4  dyoung 	int ncabq, error, otherant;
   1910  1.1.1.4  dyoung 
   1911  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   1912  1.1.1.4  dyoung 		__func__, pending);
   1913      1.1  dyoung 
   1914      1.1  dyoung 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1915  1.1.1.4  dyoung 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   1916      1.1  dyoung 	    bf == NULL || bf->bf_m == NULL) {
   1917  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   1918  1.1.1.4  dyoung 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   1919      1.1  dyoung 		return;
   1920      1.1  dyoung 	}
   1921  1.1.1.4  dyoung 	/*
   1922  1.1.1.4  dyoung 	 * Check if the previous beacon has gone out.  If
   1923  1.1.1.4  dyoung 	 * not don't don't try to post another, skip this
   1924  1.1.1.4  dyoung 	 * period and wait for the next.  Missed beacons
   1925  1.1.1.4  dyoung 	 * indicate a problem and should not occur.  If we
   1926  1.1.1.4  dyoung 	 * miss too many consecutive beacons reset the device.
   1927  1.1.1.4  dyoung 	 */
   1928  1.1.1.4  dyoung 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   1929  1.1.1.4  dyoung 		sc->sc_bmisscount++;
   1930  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   1931  1.1.1.4  dyoung 			"%s: missed %u consecutive beacons\n",
   1932  1.1.1.4  dyoung 			__func__, sc->sc_bmisscount);
   1933  1.1.1.4  dyoung 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   1934  1.1.1.4  dyoung 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
   1935  1.1.1.4  dyoung 		return;
   1936  1.1.1.4  dyoung 	}
   1937  1.1.1.4  dyoung 	if (sc->sc_bmisscount != 0) {
   1938  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_BEACON,
   1939  1.1.1.4  dyoung 			"%s: resume beacon xmit after %u misses\n",
   1940  1.1.1.4  dyoung 			__func__, sc->sc_bmisscount);
   1941  1.1.1.4  dyoung 		sc->sc_bmisscount = 0;
   1942  1.1.1.4  dyoung 	}
   1943  1.1.1.4  dyoung 
   1944  1.1.1.4  dyoung 	/*
   1945  1.1.1.4  dyoung 	 * Update dynamic beacon contents.  If this returns
   1946  1.1.1.4  dyoung 	 * non-zero then we need to remap the memory because
   1947  1.1.1.4  dyoung 	 * the beacon frame changed size (probably because
   1948  1.1.1.4  dyoung 	 * of the TIM bitmap).
   1949  1.1.1.4  dyoung 	 */
   1950  1.1.1.4  dyoung 	m = bf->bf_m;
   1951  1.1.1.4  dyoung 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   1952  1.1.1.4  dyoung 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   1953  1.1.1.4  dyoung 		/* XXX too conservative? */
   1954  1.1.1.4  dyoung 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   1955  1.1.1.4  dyoung 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
   1956  1.1.1.4  dyoung 					     bf->bf_segs, &bf->bf_nseg,
   1957  1.1.1.4  dyoung 					     BUS_DMA_NOWAIT);
   1958  1.1.1.4  dyoung 		if (error != 0) {
   1959  1.1.1.4  dyoung 			if_printf(ic->ic_ifp,
   1960  1.1.1.4  dyoung 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
   1961  1.1.1.4  dyoung 			    __func__, error);
   1962  1.1.1.4  dyoung 			return;
   1963  1.1.1.4  dyoung 		}
   1964  1.1.1.4  dyoung 	}
   1965  1.1.1.4  dyoung 
   1966  1.1.1.4  dyoung 	/*
   1967  1.1.1.4  dyoung 	 * Handle slot time change when a non-ERP station joins/leaves
   1968  1.1.1.4  dyoung 	 * an 11g network.  The 802.11 layer notifies us via callback,
   1969  1.1.1.4  dyoung 	 * we mark updateslot, then wait one beacon before effecting
   1970  1.1.1.4  dyoung 	 * the change.  This gives associated stations at least one
   1971  1.1.1.4  dyoung 	 * beacon interval to note the state change.
   1972  1.1.1.4  dyoung 	 */
   1973  1.1.1.4  dyoung 	/* XXX locking */
   1974  1.1.1.4  dyoung 	if (sc->sc_updateslot == UPDATE)
   1975  1.1.1.4  dyoung 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   1976  1.1.1.4  dyoung 	else if (sc->sc_updateslot == COMMIT)
   1977  1.1.1.4  dyoung 		ath_setslottime(sc);		/* commit change to h/w */
   1978  1.1.1.4  dyoung 
   1979  1.1.1.4  dyoung 	/*
   1980  1.1.1.4  dyoung 	 * Check recent per-antenna transmit statistics and flip
   1981  1.1.1.4  dyoung 	 * the default antenna if noticeably more frames went out
   1982  1.1.1.4  dyoung 	 * on the non-default antenna.
   1983  1.1.1.4  dyoung 	 * XXX assumes 2 anntenae
   1984  1.1.1.4  dyoung 	 */
   1985  1.1.1.4  dyoung 	otherant = sc->sc_defant & 1 ? 2 : 1;
   1986  1.1.1.4  dyoung 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   1987  1.1.1.4  dyoung 		ath_setdefantenna(sc, otherant);
   1988  1.1.1.4  dyoung 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   1989  1.1.1.4  dyoung 
   1990  1.1.1.4  dyoung 	/*
   1991  1.1.1.4  dyoung 	 * Construct tx descriptor.
   1992  1.1.1.4  dyoung 	 */
   1993  1.1.1.4  dyoung 	ath_beacon_setup(sc, bf);
   1994  1.1.1.4  dyoung 
   1995  1.1.1.4  dyoung 	/*
   1996  1.1.1.4  dyoung 	 * Stop any current dma and put the new frame on the queue.
   1997  1.1.1.4  dyoung 	 * This should never fail since we check above that no frames
   1998  1.1.1.4  dyoung 	 * are still pending on the queue.
   1999  1.1.1.4  dyoung 	 */
   2000      1.1  dyoung 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2001  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY,
   2002  1.1.1.4  dyoung 			"%s: beacon queue %u did not stop?\n",
   2003  1.1.1.4  dyoung 			__func__, sc->sc_bhalq);
   2004      1.1  dyoung 	}
   2005      1.1  dyoung 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
   2006      1.1  dyoung 
   2007  1.1.1.4  dyoung 	/*
   2008  1.1.1.4  dyoung 	 * Enable the CAB queue before the beacon queue to
   2009  1.1.1.4  dyoung 	 * insure cab frames are triggered by this beacon.
   2010  1.1.1.4  dyoung 	 */
   2011  1.1.1.4  dyoung 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
   2012  1.1.1.4  dyoung 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2013      1.1  dyoung 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2014      1.1  dyoung 	ath_hal_txstart(ah, sc->sc_bhalq);
   2015  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2016  1.1.1.4  dyoung 		"%s: TXDP[%u] = %p (%p)\n", __func__,
   2017  1.1.1.4  dyoung 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
   2018  1.1.1.4  dyoung 
   2019  1.1.1.4  dyoung 	sc->sc_stats.ast_be_xmit++;
   2020  1.1.1.4  dyoung }
   2021  1.1.1.4  dyoung 
   2022  1.1.1.4  dyoung /*
   2023  1.1.1.4  dyoung  * Reset the hardware after detecting beacons have stopped.
   2024  1.1.1.4  dyoung  */
   2025  1.1.1.4  dyoung static void
   2026  1.1.1.4  dyoung ath_bstuck_proc(void *arg, int pending)
   2027  1.1.1.4  dyoung {
   2028  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   2029  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   2030  1.1.1.4  dyoung 
   2031  1.1.1.4  dyoung 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2032  1.1.1.4  dyoung 		sc->sc_bmisscount);
   2033  1.1.1.4  dyoung 	ath_reset(ifp);
   2034      1.1  dyoung }
   2035      1.1  dyoung 
   2036  1.1.1.4  dyoung /*
   2037  1.1.1.4  dyoung  * Reclaim beacon resources.
   2038  1.1.1.4  dyoung  */
   2039      1.1  dyoung static void
   2040      1.1  dyoung ath_beacon_free(struct ath_softc *sc)
   2041      1.1  dyoung {
   2042  1.1.1.4  dyoung 	struct ath_buf *bf;
   2043      1.1  dyoung 
   2044  1.1.1.4  dyoung 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2045  1.1.1.4  dyoung 		if (bf->bf_m != NULL) {
   2046  1.1.1.4  dyoung 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2047  1.1.1.4  dyoung 			m_freem(bf->bf_m);
   2048  1.1.1.4  dyoung 			bf->bf_m = NULL;
   2049  1.1.1.4  dyoung 		}
   2050  1.1.1.4  dyoung 		if (bf->bf_node != NULL) {
   2051  1.1.1.4  dyoung 			ieee80211_free_node(bf->bf_node);
   2052  1.1.1.4  dyoung 			bf->bf_node = NULL;
   2053  1.1.1.4  dyoung 		}
   2054      1.1  dyoung 	}
   2055      1.1  dyoung }
   2056      1.1  dyoung 
   2057      1.1  dyoung /*
   2058      1.1  dyoung  * Configure the beacon and sleep timers.
   2059      1.1  dyoung  *
   2060      1.1  dyoung  * When operating as an AP this resets the TSF and sets
   2061      1.1  dyoung  * up the hardware to notify us when we need to issue beacons.
   2062      1.1  dyoung  *
   2063      1.1  dyoung  * When operating in station mode this sets up the beacon
   2064      1.1  dyoung  * timers according to the timestamp of the last received
   2065      1.1  dyoung  * beacon and the current TSF, configures PCF and DTIM
   2066      1.1  dyoung  * handling, programs the sleep registers so the hardware
   2067      1.1  dyoung  * will wakeup in time to receive beacons, and configures
   2068      1.1  dyoung  * the beacon miss handling so we'll receive a BMISS
   2069      1.1  dyoung  * interrupt when we stop seeing beacons from the AP
   2070      1.1  dyoung  * we've associated with.
   2071      1.1  dyoung  */
   2072      1.1  dyoung static void
   2073      1.1  dyoung ath_beacon_config(struct ath_softc *sc)
   2074      1.1  dyoung {
   2075  1.1.1.5  dyoung #define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
   2076      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2077      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   2078      1.1  dyoung 	struct ieee80211_node *ni = ic->ic_bss;
   2079  1.1.1.4  dyoung 	u_int32_t nexttbtt, intval;
   2080      1.1  dyoung 
   2081  1.1.1.5  dyoung 	/* extract tstamp from last beacon and convert to TU */
   2082  1.1.1.5  dyoung 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2083  1.1.1.5  dyoung 			     LE_READ_4(ni->ni_tstamp.data));
   2084  1.1.1.5  dyoung 	/* NB: the beacon interval is kept internally in TU's */
   2085  1.1.1.4  dyoung 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2086  1.1.1.4  dyoung 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2087  1.1.1.4  dyoung 		nexttbtt = intval;
   2088  1.1.1.4  dyoung 	else if (intval)		/* NB: can be 0 for monitor mode */
   2089  1.1.1.4  dyoung 		nexttbtt = roundup(nexttbtt, intval);
   2090  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2091  1.1.1.4  dyoung 		__func__, nexttbtt, intval, ni->ni_intval);
   2092      1.1  dyoung 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2093      1.1  dyoung 		HAL_BEACON_STATE bs;
   2094  1.1.1.5  dyoung 		u_int64_t tsf;
   2095  1.1.1.5  dyoung 		u_int32_t tsftu;
   2096  1.1.1.5  dyoung 		int dtimperiod, dtimcount;
   2097  1.1.1.5  dyoung 		int cfpperiod, cfpcount;
   2098  1.1.1.5  dyoung 
   2099  1.1.1.5  dyoung 		/*
   2100  1.1.1.5  dyoung 		 * Setup dtim and cfp parameters according to
   2101  1.1.1.5  dyoung 		 * last beacon we received (which may be none).
   2102  1.1.1.5  dyoung 		 */
   2103  1.1.1.5  dyoung 		dtimperiod = ni->ni_dtim_period;
   2104  1.1.1.5  dyoung 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2105  1.1.1.5  dyoung 			dtimperiod = 1;
   2106  1.1.1.5  dyoung 		dtimcount = ni->ni_dtim_count;
   2107  1.1.1.5  dyoung 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2108  1.1.1.5  dyoung 			dtimcount = 0;		/* XXX? */
   2109  1.1.1.5  dyoung 		cfpperiod = 1;			/* NB: no PCF support yet */
   2110  1.1.1.5  dyoung 		cfpcount = 0;
   2111  1.1.1.5  dyoung #define	FUDGE	2
   2112  1.1.1.5  dyoung 		/*
   2113  1.1.1.5  dyoung 		 * Pull nexttbtt forward to reflect the current
   2114  1.1.1.5  dyoung 		 * TSF and calculate dtim+cfp state for the result.
   2115  1.1.1.5  dyoung 		 */
   2116  1.1.1.5  dyoung 		tsf = ath_hal_gettsf64(ah);
   2117  1.1.1.5  dyoung 		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
   2118  1.1.1.5  dyoung 		do {
   2119  1.1.1.5  dyoung 			nexttbtt += intval;
   2120  1.1.1.5  dyoung 			if (--dtimcount < 0) {
   2121  1.1.1.5  dyoung 				dtimcount = dtimperiod - 1;
   2122  1.1.1.5  dyoung 				if (--cfpcount < 0)
   2123  1.1.1.5  dyoung 					cfpcount = cfpperiod - 1;
   2124  1.1.1.5  dyoung 			}
   2125  1.1.1.5  dyoung 		} while (nexttbtt < tsftu);
   2126  1.1.1.5  dyoung #undef FUDGE
   2127      1.1  dyoung 		memset(&bs, 0, sizeof(bs));
   2128  1.1.1.4  dyoung 		bs.bs_intval = intval;
   2129      1.1  dyoung 		bs.bs_nexttbtt = nexttbtt;
   2130  1.1.1.5  dyoung 		bs.bs_dtimperiod = dtimperiod*intval;
   2131  1.1.1.5  dyoung 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2132  1.1.1.5  dyoung 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2133  1.1.1.5  dyoung 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2134  1.1.1.5  dyoung 		bs.bs_cfpmaxduration = 0;
   2135  1.1.1.5  dyoung #if 0
   2136      1.1  dyoung 		/*
   2137  1.1.1.4  dyoung 		 * The 802.11 layer records the offset to the DTIM
   2138  1.1.1.4  dyoung 		 * bitmap while receiving beacons; use it here to
   2139  1.1.1.4  dyoung 		 * enable h/w detection of our AID being marked in
   2140  1.1.1.4  dyoung 		 * the bitmap vector (to indicate frames for us are
   2141  1.1.1.4  dyoung 		 * pending at the AP).
   2142  1.1.1.5  dyoung 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2143  1.1.1.5  dyoung 		 * XXX enable based on h/w rev for newer chips
   2144  1.1.1.4  dyoung 		 */
   2145  1.1.1.4  dyoung 		bs.bs_timoffset = ni->ni_timoff;
   2146  1.1.1.5  dyoung #endif
   2147  1.1.1.4  dyoung 		/*
   2148      1.1  dyoung 		 * Calculate the number of consecutive beacons to miss
   2149      1.1  dyoung 		 * before taking a BMISS interrupt.  The configuration
   2150      1.1  dyoung 		 * is specified in ms, so we need to convert that to
   2151      1.1  dyoung 		 * TU's and then calculate based on the beacon interval.
   2152      1.1  dyoung 		 * Note that we clamp the result to at most 10 beacons.
   2153      1.1  dyoung 		 */
   2154  1.1.1.4  dyoung 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2155      1.1  dyoung 		if (bs.bs_bmissthreshold > 10)
   2156      1.1  dyoung 			bs.bs_bmissthreshold = 10;
   2157      1.1  dyoung 		else if (bs.bs_bmissthreshold <= 0)
   2158      1.1  dyoung 			bs.bs_bmissthreshold = 1;
   2159      1.1  dyoung 
   2160      1.1  dyoung 		/*
   2161      1.1  dyoung 		 * Calculate sleep duration.  The configuration is
   2162      1.1  dyoung 		 * given in ms.  We insure a multiple of the beacon
   2163      1.1  dyoung 		 * period is used.  Also, if the sleep duration is
   2164      1.1  dyoung 		 * greater than the DTIM period then it makes senses
   2165      1.1  dyoung 		 * to make it a multiple of that.
   2166      1.1  dyoung 		 *
   2167      1.1  dyoung 		 * XXX fixed at 100ms
   2168      1.1  dyoung 		 */
   2169      1.1  dyoung 		bs.bs_sleepduration =
   2170  1.1.1.4  dyoung 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2171      1.1  dyoung 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2172      1.1  dyoung 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2173      1.1  dyoung 
   2174  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2175  1.1.1.5  dyoung 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2176      1.1  dyoung 			, __func__
   2177  1.1.1.5  dyoung 			, tsf, tsftu
   2178      1.1  dyoung 			, bs.bs_intval
   2179      1.1  dyoung 			, bs.bs_nexttbtt
   2180      1.1  dyoung 			, bs.bs_dtimperiod
   2181      1.1  dyoung 			, bs.bs_nextdtim
   2182      1.1  dyoung 			, bs.bs_bmissthreshold
   2183      1.1  dyoung 			, bs.bs_sleepduration
   2184  1.1.1.4  dyoung 			, bs.bs_cfpperiod
   2185  1.1.1.4  dyoung 			, bs.bs_cfpmaxduration
   2186  1.1.1.4  dyoung 			, bs.bs_cfpnext
   2187  1.1.1.4  dyoung 			, bs.bs_timoffset
   2188  1.1.1.4  dyoung 		);
   2189      1.1  dyoung 		ath_hal_intrset(ah, 0);
   2190  1.1.1.4  dyoung 		ath_hal_beacontimers(ah, &bs);
   2191      1.1  dyoung 		sc->sc_imask |= HAL_INT_BMISS;
   2192      1.1  dyoung 		ath_hal_intrset(ah, sc->sc_imask);
   2193      1.1  dyoung 	} else {
   2194      1.1  dyoung 		ath_hal_intrset(ah, 0);
   2195  1.1.1.4  dyoung 		if (nexttbtt == intval)
   2196  1.1.1.4  dyoung 			intval |= HAL_BEACON_RESET_TSF;
   2197  1.1.1.4  dyoung 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2198  1.1.1.4  dyoung 			/*
   2199  1.1.1.4  dyoung 			 * In IBSS mode enable the beacon timers but only
   2200  1.1.1.4  dyoung 			 * enable SWBA interrupts if we need to manually
   2201  1.1.1.4  dyoung 			 * prepare beacon frames.  Otherwise we use a
   2202  1.1.1.4  dyoung 			 * self-linked tx descriptor and let the hardware
   2203  1.1.1.4  dyoung 			 * deal with things.
   2204  1.1.1.4  dyoung 			 */
   2205  1.1.1.4  dyoung 			intval |= HAL_BEACON_ENA;
   2206  1.1.1.4  dyoung 			if (!sc->sc_hasveol)
   2207  1.1.1.4  dyoung 				sc->sc_imask |= HAL_INT_SWBA;
   2208  1.1.1.5  dyoung 			ath_beaconq_config(sc);
   2209  1.1.1.4  dyoung 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2210  1.1.1.4  dyoung 			/*
   2211  1.1.1.4  dyoung 			 * In AP mode we enable the beacon timers and
   2212  1.1.1.4  dyoung 			 * SWBA interrupts to prepare beacon frames.
   2213  1.1.1.4  dyoung 			 */
   2214  1.1.1.4  dyoung 			intval |= HAL_BEACON_ENA;
   2215      1.1  dyoung 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2216  1.1.1.5  dyoung 			ath_beaconq_config(sc);
   2217  1.1.1.4  dyoung 		}
   2218  1.1.1.4  dyoung 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2219  1.1.1.4  dyoung 		sc->sc_bmisscount = 0;
   2220      1.1  dyoung 		ath_hal_intrset(ah, sc->sc_imask);
   2221  1.1.1.4  dyoung 		/*
   2222  1.1.1.4  dyoung 		 * When using a self-linked beacon descriptor in
   2223  1.1.1.4  dyoung 		 * ibss mode load it once here.
   2224  1.1.1.4  dyoung 		 */
   2225  1.1.1.4  dyoung 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2226  1.1.1.4  dyoung 			ath_beacon_proc(sc, 0);
   2227      1.1  dyoung 	}
   2228  1.1.1.5  dyoung #undef TSF_TO_TU
   2229      1.1  dyoung }
   2230      1.1  dyoung 
   2231      1.1  dyoung static void
   2232      1.1  dyoung ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
   2233      1.1  dyoung {
   2234      1.1  dyoung 	bus_addr_t *paddr = (bus_addr_t*) arg;
   2235  1.1.1.4  dyoung 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
   2236      1.1  dyoung 	*paddr = segs->ds_addr;
   2237      1.1  dyoung }
   2238      1.1  dyoung 
   2239      1.1  dyoung static int
   2240  1.1.1.4  dyoung ath_descdma_setup(struct ath_softc *sc,
   2241  1.1.1.4  dyoung 	struct ath_descdma *dd, ath_bufhead *head,
   2242  1.1.1.4  dyoung 	const char *name, int nbuf, int ndesc)
   2243  1.1.1.4  dyoung {
   2244  1.1.1.4  dyoung #define	DS2PHYS(_dd, _ds) \
   2245  1.1.1.4  dyoung 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
   2246  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   2247      1.1  dyoung 	struct ath_desc *ds;
   2248      1.1  dyoung 	struct ath_buf *bf;
   2249  1.1.1.4  dyoung 	int i, bsize, error;
   2250      1.1  dyoung 
   2251  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2252  1.1.1.4  dyoung 	    __func__, name, nbuf, ndesc);
   2253  1.1.1.4  dyoung 
   2254  1.1.1.4  dyoung 	dd->dd_name = name;
   2255  1.1.1.4  dyoung 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2256  1.1.1.4  dyoung 
   2257  1.1.1.4  dyoung 	/*
   2258  1.1.1.4  dyoung 	 * Setup DMA descriptor area.
   2259  1.1.1.4  dyoung 	 */
   2260  1.1.1.4  dyoung 	error = bus_dma_tag_create(NULL,	/* parent */
   2261  1.1.1.4  dyoung 		       PAGE_SIZE, 0,		/* alignment, bounds */
   2262  1.1.1.4  dyoung 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
   2263  1.1.1.4  dyoung 		       BUS_SPACE_MAXADDR,	/* highaddr */
   2264  1.1.1.4  dyoung 		       NULL, NULL,		/* filter, filterarg */
   2265  1.1.1.4  dyoung 		       dd->dd_desc_len,		/* maxsize */
   2266  1.1.1.4  dyoung 		       1,			/* nsegments */
   2267  1.1.1.4  dyoung 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
   2268  1.1.1.4  dyoung 		       BUS_DMA_ALLOCNOW,	/* flags */
   2269  1.1.1.4  dyoung 		       NULL,			/* lockfunc */
   2270  1.1.1.4  dyoung 		       NULL,			/* lockarg */
   2271  1.1.1.4  dyoung 		       &dd->dd_dmat);
   2272  1.1.1.4  dyoung 	if (error != 0) {
   2273  1.1.1.4  dyoung 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
   2274      1.1  dyoung 		return error;
   2275  1.1.1.4  dyoung 	}
   2276      1.1  dyoung 
   2277  1.1.1.4  dyoung 	/* allocate descriptors */
   2278  1.1.1.4  dyoung 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2279  1.1.1.4  dyoung 	if (error != 0) {
   2280  1.1.1.4  dyoung 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2281  1.1.1.4  dyoung 			"error %u\n", dd->dd_name, error);
   2282      1.1  dyoung 		goto fail0;
   2283  1.1.1.4  dyoung 	}
   2284      1.1  dyoung 
   2285  1.1.1.4  dyoung 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
   2286  1.1.1.4  dyoung 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2287  1.1.1.4  dyoung 	if (error != 0) {
   2288  1.1.1.4  dyoung 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2289  1.1.1.4  dyoung 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2290      1.1  dyoung 		goto fail1;
   2291  1.1.1.4  dyoung 	}
   2292      1.1  dyoung 
   2293  1.1.1.4  dyoung 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
   2294  1.1.1.4  dyoung 				dd->dd_desc, dd->dd_desc_len,
   2295  1.1.1.4  dyoung 				ath_load_cb, &dd->dd_desc_paddr,
   2296  1.1.1.4  dyoung 				BUS_DMA_NOWAIT);
   2297  1.1.1.4  dyoung 	if (error != 0) {
   2298  1.1.1.4  dyoung 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2299  1.1.1.4  dyoung 			dd->dd_name, error);
   2300      1.1  dyoung 		goto fail2;
   2301  1.1.1.4  dyoung 	}
   2302      1.1  dyoung 
   2303  1.1.1.4  dyoung 	ds = dd->dd_desc;
   2304  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
   2305  1.1.1.4  dyoung 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2306  1.1.1.4  dyoung 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2307  1.1.1.4  dyoung 
   2308  1.1.1.4  dyoung 	/* allocate rx buffers */
   2309  1.1.1.4  dyoung 	bsize = sizeof(struct ath_buf) * nbuf;
   2310  1.1.1.4  dyoung 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2311  1.1.1.4  dyoung 	if (bf == NULL) {
   2312  1.1.1.4  dyoung 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2313  1.1.1.4  dyoung 			dd->dd_name, bsize);
   2314  1.1.1.4  dyoung 		goto fail3;
   2315      1.1  dyoung 	}
   2316  1.1.1.4  dyoung 	dd->dd_bufptr = bf;
   2317      1.1  dyoung 
   2318  1.1.1.4  dyoung 	STAILQ_INIT(head);
   2319  1.1.1.4  dyoung 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2320      1.1  dyoung 		bf->bf_desc = ds;
   2321  1.1.1.4  dyoung 		bf->bf_daddr = DS2PHYS(dd, ds);
   2322      1.1  dyoung 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
   2323  1.1.1.4  dyoung 				&bf->bf_dmamap);
   2324  1.1.1.4  dyoung 		if (error != 0) {
   2325  1.1.1.4  dyoung 			if_printf(ifp, "unable to create dmamap for %s "
   2326  1.1.1.4  dyoung 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2327  1.1.1.4  dyoung 			ath_descdma_cleanup(sc, dd, head);
   2328  1.1.1.4  dyoung 			return error;
   2329  1.1.1.4  dyoung 		}
   2330  1.1.1.4  dyoung 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2331      1.1  dyoung 	}
   2332      1.1  dyoung 	return 0;
   2333  1.1.1.4  dyoung fail3:
   2334  1.1.1.4  dyoung 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2335      1.1  dyoung fail2:
   2336  1.1.1.4  dyoung 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
   2337      1.1  dyoung fail1:
   2338  1.1.1.4  dyoung 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2339      1.1  dyoung fail0:
   2340  1.1.1.4  dyoung 	bus_dma_tag_destroy(dd->dd_dmat);
   2341  1.1.1.4  dyoung 	memset(dd, 0, sizeof(*dd));
   2342      1.1  dyoung 	return error;
   2343  1.1.1.4  dyoung #undef DS2PHYS
   2344      1.1  dyoung }
   2345      1.1  dyoung 
   2346      1.1  dyoung static void
   2347  1.1.1.4  dyoung ath_descdma_cleanup(struct ath_softc *sc,
   2348  1.1.1.4  dyoung 	struct ath_descdma *dd, ath_bufhead *head)
   2349      1.1  dyoung {
   2350      1.1  dyoung 	struct ath_buf *bf;
   2351  1.1.1.4  dyoung 	struct ieee80211_node *ni;
   2352      1.1  dyoung 
   2353  1.1.1.4  dyoung 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2354  1.1.1.4  dyoung 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
   2355  1.1.1.4  dyoung 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2356  1.1.1.4  dyoung 	bus_dma_tag_destroy(dd->dd_dmat);
   2357      1.1  dyoung 
   2358  1.1.1.4  dyoung 	STAILQ_FOREACH(bf, head, bf_list) {
   2359      1.1  dyoung 		if (bf->bf_m) {
   2360      1.1  dyoung 			m_freem(bf->bf_m);
   2361      1.1  dyoung 			bf->bf_m = NULL;
   2362      1.1  dyoung 		}
   2363  1.1.1.4  dyoung 		if (bf->bf_dmamap != NULL) {
   2364  1.1.1.4  dyoung 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2365  1.1.1.4  dyoung 			bf->bf_dmamap = NULL;
   2366  1.1.1.4  dyoung 		}
   2367  1.1.1.4  dyoung 		ni = bf->bf_node;
   2368  1.1.1.4  dyoung 		bf->bf_node = NULL;
   2369  1.1.1.4  dyoung 		if (ni != NULL) {
   2370  1.1.1.4  dyoung 			/*
   2371  1.1.1.4  dyoung 			 * Reclaim node reference.
   2372  1.1.1.4  dyoung 			 */
   2373  1.1.1.4  dyoung 			ieee80211_free_node(ni);
   2374  1.1.1.4  dyoung 		}
   2375      1.1  dyoung 	}
   2376      1.1  dyoung 
   2377  1.1.1.4  dyoung 	STAILQ_INIT(head);
   2378  1.1.1.4  dyoung 	free(dd->dd_bufptr, M_ATHDEV);
   2379  1.1.1.4  dyoung 	memset(dd, 0, sizeof(*dd));
   2380      1.1  dyoung }
   2381      1.1  dyoung 
   2382  1.1.1.4  dyoung static int
   2383  1.1.1.4  dyoung ath_desc_alloc(struct ath_softc *sc)
   2384      1.1  dyoung {
   2385  1.1.1.4  dyoung 	int error;
   2386  1.1.1.4  dyoung 
   2387  1.1.1.4  dyoung 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2388  1.1.1.4  dyoung 			"rx", ATH_RXBUF, 1);
   2389  1.1.1.4  dyoung 	if (error != 0)
   2390  1.1.1.4  dyoung 		return error;
   2391  1.1.1.4  dyoung 
   2392  1.1.1.4  dyoung 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2393  1.1.1.4  dyoung 			"tx", ATH_TXBUF, ATH_TXDESC);
   2394  1.1.1.4  dyoung 	if (error != 0) {
   2395  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2396  1.1.1.4  dyoung 		return error;
   2397  1.1.1.4  dyoung 	}
   2398  1.1.1.4  dyoung 
   2399  1.1.1.4  dyoung 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2400  1.1.1.4  dyoung 			"beacon", 1, 1);
   2401  1.1.1.4  dyoung 	if (error != 0) {
   2402  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2403  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2404  1.1.1.4  dyoung 		return error;
   2405  1.1.1.4  dyoung 	}
   2406  1.1.1.4  dyoung 	return 0;
   2407      1.1  dyoung }
   2408      1.1  dyoung 
   2409      1.1  dyoung static void
   2410  1.1.1.4  dyoung ath_desc_free(struct ath_softc *sc)
   2411      1.1  dyoung {
   2412      1.1  dyoung 
   2413  1.1.1.4  dyoung 	if (sc->sc_bdma.dd_desc_len != 0)
   2414  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2415  1.1.1.4  dyoung 	if (sc->sc_txdma.dd_desc_len != 0)
   2416  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2417  1.1.1.4  dyoung 	if (sc->sc_rxdma.dd_desc_len != 0)
   2418  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2419  1.1.1.4  dyoung }
   2420  1.1.1.4  dyoung 
   2421  1.1.1.4  dyoung static struct ieee80211_node *
   2422  1.1.1.4  dyoung ath_node_alloc(struct ieee80211_node_table *nt)
   2423  1.1.1.4  dyoung {
   2424  1.1.1.4  dyoung 	struct ieee80211com *ic = nt->nt_ic;
   2425  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2426  1.1.1.4  dyoung 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2427  1.1.1.4  dyoung 	struct ath_node *an;
   2428  1.1.1.4  dyoung 
   2429  1.1.1.4  dyoung 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2430  1.1.1.4  dyoung 	if (an == NULL) {
   2431  1.1.1.4  dyoung 		/* XXX stat+msg */
   2432  1.1.1.4  dyoung 		return NULL;
   2433      1.1  dyoung 	}
   2434  1.1.1.4  dyoung 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2435  1.1.1.4  dyoung 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   2436  1.1.1.4  dyoung 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2437  1.1.1.4  dyoung 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   2438  1.1.1.4  dyoung 	ath_rate_node_init(sc, an);
   2439  1.1.1.4  dyoung 
   2440  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2441  1.1.1.4  dyoung 	return &an->an_node;
   2442      1.1  dyoung }
   2443      1.1  dyoung 
   2444      1.1  dyoung static void
   2445  1.1.1.4  dyoung ath_node_free(struct ieee80211_node *ni)
   2446      1.1  dyoung {
   2447  1.1.1.4  dyoung 	struct ieee80211com *ic = ni->ni_ic;
   2448  1.1.1.4  dyoung         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2449  1.1.1.3  dyoung 
   2450  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2451      1.1  dyoung 
   2452  1.1.1.4  dyoung 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2453  1.1.1.4  dyoung 	sc->sc_node_free(ni);
   2454  1.1.1.4  dyoung }
   2455  1.1.1.2  dyoung 
   2456  1.1.1.2  dyoung static u_int8_t
   2457  1.1.1.4  dyoung ath_node_getrssi(const struct ieee80211_node *ni)
   2458  1.1.1.2  dyoung {
   2459  1.1.1.4  dyoung #define	HAL_EP_RND(x, mul) \
   2460  1.1.1.4  dyoung 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2461  1.1.1.4  dyoung 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2462  1.1.1.4  dyoung 	int32_t rssi;
   2463  1.1.1.2  dyoung 
   2464  1.1.1.2  dyoung 	/*
   2465  1.1.1.4  dyoung 	 * When only one frame is received there will be no state in
   2466  1.1.1.4  dyoung 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2467  1.1.1.2  dyoung 	 */
   2468  1.1.1.4  dyoung 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2469  1.1.1.4  dyoung 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2470  1.1.1.4  dyoung 	else
   2471  1.1.1.4  dyoung 		rssi = ni->ni_rssi;
   2472  1.1.1.4  dyoung 	/* NB: theoretically we shouldn't need this, but be paranoid */
   2473  1.1.1.4  dyoung 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2474  1.1.1.4  dyoung #undef HAL_EP_RND
   2475  1.1.1.2  dyoung }
   2476  1.1.1.2  dyoung 
   2477      1.1  dyoung static int
   2478      1.1  dyoung ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2479      1.1  dyoung {
   2480      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2481      1.1  dyoung 	int error;
   2482      1.1  dyoung 	struct mbuf *m;
   2483      1.1  dyoung 	struct ath_desc *ds;
   2484      1.1  dyoung 
   2485      1.1  dyoung 	m = bf->bf_m;
   2486      1.1  dyoung 	if (m == NULL) {
   2487      1.1  dyoung 		/*
   2488      1.1  dyoung 		 * NB: by assigning a page to the rx dma buffer we
   2489      1.1  dyoung 		 * implicitly satisfy the Atheros requirement that
   2490      1.1  dyoung 		 * this buffer be cache-line-aligned and sized to be
   2491      1.1  dyoung 		 * multiple of the cache line size.  Not doing this
   2492      1.1  dyoung 		 * causes weird stuff to happen (for the 5210 at least).
   2493      1.1  dyoung 		 */
   2494      1.1  dyoung 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2495      1.1  dyoung 		if (m == NULL) {
   2496  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_ANY,
   2497  1.1.1.4  dyoung 				"%s: no mbuf/cluster\n", __func__);
   2498      1.1  dyoung 			sc->sc_stats.ast_rx_nombuf++;
   2499      1.1  dyoung 			return ENOMEM;
   2500      1.1  dyoung 		}
   2501      1.1  dyoung 		bf->bf_m = m;
   2502      1.1  dyoung 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2503      1.1  dyoung 
   2504  1.1.1.4  dyoung 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
   2505  1.1.1.4  dyoung 					     bf->bf_dmamap, m,
   2506  1.1.1.4  dyoung 					     bf->bf_segs, &bf->bf_nseg,
   2507      1.1  dyoung 					     BUS_DMA_NOWAIT);
   2508      1.1  dyoung 		if (error != 0) {
   2509  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_ANY,
   2510  1.1.1.4  dyoung 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
   2511  1.1.1.4  dyoung 			    __func__, error);
   2512      1.1  dyoung 			sc->sc_stats.ast_rx_busdma++;
   2513      1.1  dyoung 			return error;
   2514      1.1  dyoung 		}
   2515      1.1  dyoung 		KASSERT(bf->bf_nseg == 1,
   2516  1.1.1.4  dyoung 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2517      1.1  dyoung 	}
   2518      1.1  dyoung 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
   2519      1.1  dyoung 
   2520  1.1.1.2  dyoung 	/*
   2521  1.1.1.2  dyoung 	 * Setup descriptors.  For receive we always terminate
   2522  1.1.1.2  dyoung 	 * the descriptor list with a self-linked entry so we'll
   2523  1.1.1.2  dyoung 	 * not get overrun under high load (as can happen with a
   2524  1.1.1.4  dyoung 	 * 5212 when ANI processing enables PHY error frames).
   2525  1.1.1.2  dyoung 	 *
   2526  1.1.1.2  dyoung 	 * To insure the last descriptor is self-linked we create
   2527  1.1.1.2  dyoung 	 * each descriptor as self-linked and add it to the end.  As
   2528  1.1.1.2  dyoung 	 * each additional descriptor is added the previous self-linked
   2529  1.1.1.2  dyoung 	 * entry is ``fixed'' naturally.  This should be safe even
   2530  1.1.1.2  dyoung 	 * if DMA is happening.  When processing RX interrupts we
   2531  1.1.1.2  dyoung 	 * never remove/process the last, self-linked, entry on the
   2532  1.1.1.2  dyoung 	 * descriptor list.  This insures the hardware always has
   2533  1.1.1.2  dyoung 	 * someplace to write a new frame.
   2534  1.1.1.2  dyoung 	 */
   2535      1.1  dyoung 	ds = bf->bf_desc;
   2536  1.1.1.2  dyoung 	ds->ds_link = bf->bf_daddr;	/* link to self */
   2537      1.1  dyoung 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2538      1.1  dyoung 	ath_hal_setuprxdesc(ah, ds
   2539      1.1  dyoung 		, m->m_len		/* buffer size */
   2540      1.1  dyoung 		, 0
   2541      1.1  dyoung 	);
   2542      1.1  dyoung 
   2543      1.1  dyoung 	if (sc->sc_rxlink != NULL)
   2544      1.1  dyoung 		*sc->sc_rxlink = bf->bf_daddr;
   2545      1.1  dyoung 	sc->sc_rxlink = &ds->ds_link;
   2546      1.1  dyoung 	return 0;
   2547      1.1  dyoung }
   2548      1.1  dyoung 
   2549  1.1.1.4  dyoung /*
   2550  1.1.1.4  dyoung  * Extend 15-bit time stamp from rx descriptor to
   2551  1.1.1.4  dyoung  * a full 64-bit TSF using the current h/w TSF.
   2552  1.1.1.4  dyoung  */
   2553  1.1.1.4  dyoung static __inline u_int64_t
   2554  1.1.1.4  dyoung ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
   2555  1.1.1.4  dyoung {
   2556  1.1.1.4  dyoung 	u_int64_t tsf;
   2557  1.1.1.4  dyoung 
   2558  1.1.1.4  dyoung 	tsf = ath_hal_gettsf64(ah);
   2559  1.1.1.4  dyoung 	if ((tsf & 0x7fff) < rstamp)
   2560  1.1.1.4  dyoung 		tsf -= 0x8000;
   2561  1.1.1.4  dyoung 	return ((tsf &~ 0x7fff) | rstamp);
   2562  1.1.1.4  dyoung }
   2563  1.1.1.4  dyoung 
   2564  1.1.1.4  dyoung /*
   2565  1.1.1.4  dyoung  * Intercept management frames to collect beacon rssi data
   2566  1.1.1.4  dyoung  * and to do ibss merges.
   2567  1.1.1.4  dyoung  */
   2568  1.1.1.4  dyoung static void
   2569  1.1.1.4  dyoung ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2570  1.1.1.4  dyoung 	struct ieee80211_node *ni,
   2571  1.1.1.4  dyoung 	int subtype, int rssi, u_int32_t rstamp)
   2572  1.1.1.4  dyoung {
   2573  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2574  1.1.1.4  dyoung 
   2575  1.1.1.4  dyoung 	/*
   2576  1.1.1.4  dyoung 	 * Call up first so subsequent work can use information
   2577  1.1.1.4  dyoung 	 * potentially stored in the node (e.g. for ibss merge).
   2578  1.1.1.4  dyoung 	 */
   2579  1.1.1.4  dyoung 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2580  1.1.1.4  dyoung 	switch (subtype) {
   2581  1.1.1.4  dyoung 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2582  1.1.1.4  dyoung 		/* update rssi statistics for use by the hal */
   2583  1.1.1.4  dyoung 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
   2584  1.1.1.4  dyoung 		/* fall thru... */
   2585  1.1.1.4  dyoung 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2586  1.1.1.4  dyoung 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2587  1.1.1.4  dyoung 		    ic->ic_state == IEEE80211_S_RUN) {
   2588  1.1.1.4  dyoung 			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
   2589  1.1.1.4  dyoung 			/*
   2590  1.1.1.4  dyoung 			 * Handle ibss merge as needed; check the tsf on the
   2591  1.1.1.4  dyoung 			 * frame before attempting the merge.  The 802.11 spec
   2592  1.1.1.4  dyoung 			 * says the station should change it's bssid to match
   2593  1.1.1.4  dyoung 			 * the oldest station with the same ssid, where oldest
   2594  1.1.1.4  dyoung 			 * is determined by the tsf.  Note that hardware
   2595  1.1.1.4  dyoung 			 * reconfiguration happens through callback to
   2596  1.1.1.4  dyoung 			 * ath_newstate as the state machine will go from
   2597  1.1.1.4  dyoung 			 * RUN -> RUN when this happens.
   2598  1.1.1.4  dyoung 			 */
   2599  1.1.1.4  dyoung 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2600  1.1.1.4  dyoung 				DPRINTF(sc, ATH_DEBUG_STATE,
   2601  1.1.1.4  dyoung 				    "ibss merge, rstamp %u tsf %ju "
   2602  1.1.1.4  dyoung 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2603  1.1.1.4  dyoung 				    (uintmax_t)ni->ni_tstamp.tsf);
   2604  1.1.1.4  dyoung 				(void) ieee80211_ibss_merge(ic, ni);
   2605  1.1.1.4  dyoung 			}
   2606  1.1.1.4  dyoung 		}
   2607  1.1.1.4  dyoung 		break;
   2608  1.1.1.4  dyoung 	}
   2609  1.1.1.4  dyoung }
   2610  1.1.1.4  dyoung 
   2611  1.1.1.4  dyoung /*
   2612  1.1.1.4  dyoung  * Set the default antenna.
   2613  1.1.1.4  dyoung  */
   2614  1.1.1.4  dyoung static void
   2615  1.1.1.4  dyoung ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2616  1.1.1.4  dyoung {
   2617  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2618  1.1.1.4  dyoung 
   2619  1.1.1.4  dyoung 	/* XXX block beacon interrupts */
   2620  1.1.1.4  dyoung 	ath_hal_setdefantenna(ah, antenna);
   2621  1.1.1.4  dyoung 	if (sc->sc_defant != antenna)
   2622  1.1.1.4  dyoung 		sc->sc_stats.ast_ant_defswitch++;
   2623  1.1.1.4  dyoung 	sc->sc_defant = antenna;
   2624  1.1.1.4  dyoung 	sc->sc_rxotherant = 0;
   2625  1.1.1.4  dyoung }
   2626  1.1.1.4  dyoung 
   2627      1.1  dyoung static void
   2628      1.1  dyoung ath_rx_proc(void *arg, int npending)
   2629      1.1  dyoung {
   2630  1.1.1.2  dyoung #define	PA2DESC(_sc, _pa) \
   2631  1.1.1.4  dyoung 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   2632  1.1.1.4  dyoung 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2633      1.1  dyoung 	struct ath_softc *sc = arg;
   2634      1.1  dyoung 	struct ath_buf *bf;
   2635      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   2636  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   2637      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2638      1.1  dyoung 	struct ath_desc *ds;
   2639      1.1  dyoung 	struct mbuf *m;
   2640      1.1  dyoung 	struct ieee80211_node *ni;
   2641  1.1.1.2  dyoung 	struct ath_node *an;
   2642  1.1.1.4  dyoung 	int len, type;
   2643      1.1  dyoung 	u_int phyerr;
   2644      1.1  dyoung 	HAL_STATUS status;
   2645      1.1  dyoung 
   2646  1.1.1.4  dyoung 	NET_LOCK_GIANT();		/* XXX */
   2647  1.1.1.4  dyoung 
   2648  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2649      1.1  dyoung 	do {
   2650  1.1.1.4  dyoung 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2651      1.1  dyoung 		if (bf == NULL) {		/* NB: shouldn't happen */
   2652  1.1.1.4  dyoung 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2653      1.1  dyoung 			break;
   2654      1.1  dyoung 		}
   2655  1.1.1.2  dyoung 		ds = bf->bf_desc;
   2656  1.1.1.2  dyoung 		if (ds->ds_link == bf->bf_daddr) {
   2657  1.1.1.2  dyoung 			/* NB: never process the self-linked entry at the end */
   2658  1.1.1.2  dyoung 			break;
   2659  1.1.1.2  dyoung 		}
   2660      1.1  dyoung 		m = bf->bf_m;
   2661      1.1  dyoung 		if (m == NULL) {		/* NB: shouldn't happen */
   2662  1.1.1.4  dyoung 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2663      1.1  dyoung 			continue;
   2664      1.1  dyoung 		}
   2665  1.1.1.2  dyoung 		/* XXX sync descriptor memory */
   2666  1.1.1.2  dyoung 		/*
   2667  1.1.1.2  dyoung 		 * Must provide the virtual address of the current
   2668  1.1.1.2  dyoung 		 * descriptor, the physical address, and the virtual
   2669  1.1.1.2  dyoung 		 * address of the next descriptor in the h/w chain.
   2670  1.1.1.2  dyoung 		 * This allows the HAL to look ahead to see if the
   2671  1.1.1.2  dyoung 		 * hardware is done with a descriptor by checking the
   2672  1.1.1.2  dyoung 		 * done bit in the following descriptor and the address
   2673  1.1.1.2  dyoung 		 * of the current descriptor the DMA engine is working
   2674  1.1.1.2  dyoung 		 * on.  All this is necessary because of our use of
   2675  1.1.1.2  dyoung 		 * a self-linked list to avoid rx overruns.
   2676  1.1.1.2  dyoung 		 */
   2677  1.1.1.2  dyoung 		status = ath_hal_rxprocdesc(ah, ds,
   2678  1.1.1.2  dyoung 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2679      1.1  dyoung #ifdef AR_DEBUG
   2680  1.1.1.4  dyoung 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2681      1.1  dyoung 			ath_printrxbuf(bf, status == HAL_OK);
   2682      1.1  dyoung #endif
   2683      1.1  dyoung 		if (status == HAL_EINPROGRESS)
   2684      1.1  dyoung 			break;
   2685  1.1.1.4  dyoung 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2686  1.1.1.4  dyoung 		if (ds->ds_rxstat.rs_more) {
   2687  1.1.1.4  dyoung 			/*
   2688  1.1.1.4  dyoung 			 * Frame spans multiple descriptors; this
   2689  1.1.1.4  dyoung 			 * cannot happen yet as we don't support
   2690  1.1.1.4  dyoung 			 * jumbograms.  If not in monitor mode,
   2691  1.1.1.4  dyoung 			 * discard the frame.
   2692  1.1.1.4  dyoung 			 */
   2693  1.1.1.4  dyoung 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2694  1.1.1.4  dyoung 				sc->sc_stats.ast_rx_toobig++;
   2695  1.1.1.4  dyoung 				goto rx_next;
   2696  1.1.1.4  dyoung 			}
   2697  1.1.1.4  dyoung 			/* fall thru for monitor mode handling... */
   2698  1.1.1.4  dyoung 		} else if (ds->ds_rxstat.rs_status != 0) {
   2699      1.1  dyoung 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2700      1.1  dyoung 				sc->sc_stats.ast_rx_crcerr++;
   2701      1.1  dyoung 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2702      1.1  dyoung 				sc->sc_stats.ast_rx_fifoerr++;
   2703      1.1  dyoung 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2704      1.1  dyoung 				sc->sc_stats.ast_rx_phyerr++;
   2705      1.1  dyoung 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2706      1.1  dyoung 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2707  1.1.1.4  dyoung 				goto rx_next;
   2708  1.1.1.4  dyoung 			}
   2709  1.1.1.4  dyoung 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2710  1.1.1.2  dyoung 				/*
   2711  1.1.1.4  dyoung 				 * Decrypt error.  If the error occurred
   2712  1.1.1.4  dyoung 				 * because there was no hardware key, then
   2713  1.1.1.4  dyoung 				 * let the frame through so the upper layers
   2714  1.1.1.4  dyoung 				 * can process it.  This is necessary for 5210
   2715  1.1.1.4  dyoung 				 * parts which have no way to setup a ``clear''
   2716  1.1.1.4  dyoung 				 * key cache entry.
   2717  1.1.1.4  dyoung 				 *
   2718  1.1.1.4  dyoung 				 * XXX do key cache faulting
   2719  1.1.1.2  dyoung 				 */
   2720  1.1.1.4  dyoung 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2721  1.1.1.4  dyoung 					goto rx_accept;
   2722  1.1.1.4  dyoung 				sc->sc_stats.ast_rx_badcrypt++;
   2723      1.1  dyoung 			}
   2724  1.1.1.4  dyoung 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2725  1.1.1.4  dyoung 				sc->sc_stats.ast_rx_badmic++;
   2726  1.1.1.4  dyoung 				/*
   2727  1.1.1.4  dyoung 				 * Do minimal work required to hand off
   2728  1.1.1.4  dyoung 				 * the 802.11 header for notifcation.
   2729  1.1.1.4  dyoung 				 */
   2730  1.1.1.4  dyoung 				/* XXX frag's and qos frames */
   2731  1.1.1.4  dyoung 				len = ds->ds_rxstat.rs_datalen;
   2732  1.1.1.4  dyoung 				if (len >= sizeof (struct ieee80211_frame)) {
   2733  1.1.1.4  dyoung 					bus_dmamap_sync(sc->sc_dmat,
   2734  1.1.1.4  dyoung 					    bf->bf_dmamap,
   2735  1.1.1.4  dyoung 					    BUS_DMASYNC_POSTREAD);
   2736  1.1.1.4  dyoung 					ieee80211_notify_michael_failure(ic,
   2737  1.1.1.4  dyoung 					    mtod(m, struct ieee80211_frame *),
   2738  1.1.1.4  dyoung 					    sc->sc_splitmic ?
   2739  1.1.1.4  dyoung 					        ds->ds_rxstat.rs_keyix-32 :
   2740  1.1.1.4  dyoung 					        ds->ds_rxstat.rs_keyix
   2741  1.1.1.4  dyoung 					);
   2742  1.1.1.4  dyoung 				}
   2743  1.1.1.4  dyoung 			}
   2744  1.1.1.4  dyoung 			ifp->if_ierrors++;
   2745  1.1.1.4  dyoung 			/*
   2746  1.1.1.4  dyoung 			 * Reject error frames, we normally don't want
   2747  1.1.1.4  dyoung 			 * to see them in monitor mode (in monitor mode
   2748  1.1.1.4  dyoung 			 * allow through packets that have crypto problems).
   2749  1.1.1.4  dyoung 			 */
   2750  1.1.1.4  dyoung 			if ((ds->ds_rxstat.rs_status &~
   2751  1.1.1.4  dyoung 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   2752  1.1.1.4  dyoung 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   2753  1.1.1.4  dyoung 				goto rx_next;
   2754      1.1  dyoung 		}
   2755  1.1.1.4  dyoung rx_accept:
   2756  1.1.1.4  dyoung 		/*
   2757  1.1.1.4  dyoung 		 * Sync and unmap the frame.  At this point we're
   2758  1.1.1.4  dyoung 		 * committed to passing the mbuf somewhere so clear
   2759  1.1.1.4  dyoung 		 * bf_m; this means a new sk_buff must be allocated
   2760  1.1.1.4  dyoung 		 * when the rx descriptor is setup again to receive
   2761  1.1.1.4  dyoung 		 * another frame.
   2762  1.1.1.4  dyoung 		 */
   2763  1.1.1.4  dyoung 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   2764      1.1  dyoung 		    BUS_DMASYNC_POSTREAD);
   2765      1.1  dyoung 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2766      1.1  dyoung 		bf->bf_m = NULL;
   2767  1.1.1.4  dyoung 
   2768      1.1  dyoung 		m->m_pkthdr.rcvif = ifp;
   2769  1.1.1.4  dyoung 		len = ds->ds_rxstat.rs_datalen;
   2770      1.1  dyoung 		m->m_pkthdr.len = m->m_len = len;
   2771      1.1  dyoung 
   2772  1.1.1.4  dyoung 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   2773  1.1.1.4  dyoung 
   2774      1.1  dyoung 		if (sc->sc_drvbpf) {
   2775  1.1.1.4  dyoung 			u_int8_t rix;
   2776  1.1.1.4  dyoung 
   2777  1.1.1.4  dyoung 			/*
   2778  1.1.1.4  dyoung 			 * Discard anything shorter than an ack or cts.
   2779  1.1.1.4  dyoung 			 */
   2780  1.1.1.4  dyoung 			if (len < IEEE80211_ACK_LEN) {
   2781  1.1.1.4  dyoung 				DPRINTF(sc, ATH_DEBUG_RECV,
   2782  1.1.1.4  dyoung 					"%s: runt packet %d\n",
   2783  1.1.1.4  dyoung 					__func__, len);
   2784  1.1.1.4  dyoung 				sc->sc_stats.ast_rx_tooshort++;
   2785  1.1.1.4  dyoung 				m_freem(m);
   2786  1.1.1.4  dyoung 				goto rx_next;
   2787  1.1.1.4  dyoung 			}
   2788  1.1.1.4  dyoung 			rix = ds->ds_rxstat.rs_rate;
   2789  1.1.1.4  dyoung 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   2790  1.1.1.4  dyoung 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   2791  1.1.1.3  dyoung 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
   2792  1.1.1.3  dyoung 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   2793  1.1.1.3  dyoung 			/* XXX TSF */
   2794      1.1  dyoung 
   2795  1.1.1.3  dyoung 			bpf_mtap2(sc->sc_drvbpf,
   2796  1.1.1.3  dyoung 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   2797      1.1  dyoung 		}
   2798      1.1  dyoung 
   2799  1.1.1.4  dyoung 		/*
   2800  1.1.1.4  dyoung 		 * From this point on we assume the frame is at least
   2801  1.1.1.4  dyoung 		 * as large as ieee80211_frame_min; verify that.
   2802  1.1.1.4  dyoung 		 */
   2803  1.1.1.4  dyoung 		if (len < IEEE80211_MIN_LEN) {
   2804  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   2805  1.1.1.4  dyoung 				__func__, len);
   2806  1.1.1.4  dyoung 			sc->sc_stats.ast_rx_tooshort++;
   2807  1.1.1.4  dyoung 			m_freem(m);
   2808  1.1.1.4  dyoung 			goto rx_next;
   2809  1.1.1.4  dyoung 		}
   2810  1.1.1.4  dyoung 
   2811  1.1.1.4  dyoung 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   2812  1.1.1.4  dyoung 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
   2813  1.1.1.4  dyoung 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   2814  1.1.1.4  dyoung 				   ds->ds_rxstat.rs_rssi);
   2815      1.1  dyoung 		}
   2816      1.1  dyoung 
   2817  1.1.1.4  dyoung 		m_adj(m, -IEEE80211_CRC_LEN);
   2818  1.1.1.4  dyoung 
   2819      1.1  dyoung 		/*
   2820  1.1.1.4  dyoung 		 * Locate the node for sender, track state, and then
   2821  1.1.1.4  dyoung 		 * pass the (referenced) node up to the 802.11 layer
   2822  1.1.1.5  dyoung 		 * for its use.  If the sender is unknown spam the
   2823  1.1.1.5  dyoung 		 * frame; it'll be dropped where it's not wanted.
   2824      1.1  dyoung 		 */
   2825  1.1.1.5  dyoung 		if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID &&
   2826  1.1.1.5  dyoung 		    (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) {
   2827  1.1.1.5  dyoung 			/*
   2828  1.1.1.5  dyoung 			 * Fast path: node is present in the key map;
   2829  1.1.1.5  dyoung 			 * grab a reference for processing the frame.
   2830  1.1.1.5  dyoung 			 */
   2831  1.1.1.5  dyoung 			an = ATH_NODE(ieee80211_ref_node(ni));
   2832  1.1.1.5  dyoung 			ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   2833  1.1.1.5  dyoung 			type = ieee80211_input(ic, m, ni,
   2834  1.1.1.5  dyoung 				ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   2835  1.1.1.5  dyoung 		} else {
   2836  1.1.1.5  dyoung 			/*
   2837  1.1.1.5  dyoung 			 * Locate the node for sender, track state, and then
   2838  1.1.1.5  dyoung 			 * pass the (referenced) node up to the 802.11 layer
   2839  1.1.1.5  dyoung 			 * for its use.
   2840  1.1.1.5  dyoung 			 */
   2841  1.1.1.5  dyoung 			ni = ieee80211_find_rxnode(ic,
   2842  1.1.1.5  dyoung 				mtod(m, const struct ieee80211_frame_min *));
   2843  1.1.1.5  dyoung 			/*
   2844  1.1.1.5  dyoung 			 * Track rx rssi and do any rx antenna management.
   2845  1.1.1.5  dyoung 			 */
   2846  1.1.1.5  dyoung 			an = ATH_NODE(ni);
   2847  1.1.1.5  dyoung 			ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   2848  1.1.1.5  dyoung 			/*
   2849  1.1.1.5  dyoung 			 * Send frame up for processing.
   2850  1.1.1.5  dyoung 			 */
   2851  1.1.1.5  dyoung 			type = ieee80211_input(ic, m, ni,
   2852  1.1.1.5  dyoung 				ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   2853  1.1.1.5  dyoung 			if (ni != ic->ic_bss) {
   2854  1.1.1.5  dyoung 				u_int16_t keyix;
   2855  1.1.1.5  dyoung 				/*
   2856  1.1.1.5  dyoung 				 * If the station has a key cache slot assigned
   2857  1.1.1.5  dyoung 				 * update the key->node mapping table.
   2858  1.1.1.5  dyoung 				 */
   2859  1.1.1.5  dyoung 				keyix = ni->ni_ucastkey.wk_keyix;
   2860  1.1.1.5  dyoung 				if (keyix != IEEE80211_KEYIX_NONE &&
   2861  1.1.1.5  dyoung 				    sc->sc_keyixmap[keyix] == NULL)
   2862  1.1.1.5  dyoung 					sc->sc_keyixmap[keyix] =
   2863  1.1.1.5  dyoung 						ieee80211_ref_node(ni);
   2864  1.1.1.5  dyoung 			}
   2865  1.1.1.5  dyoung 		}
   2866  1.1.1.5  dyoung 		ieee80211_free_node(ni);
   2867  1.1.1.4  dyoung 		if (sc->sc_diversity) {
   2868  1.1.1.4  dyoung 			/*
   2869  1.1.1.4  dyoung 			 * When using fast diversity, change the default rx
   2870  1.1.1.4  dyoung 			 * antenna if diversity chooses the other antenna 3
   2871  1.1.1.4  dyoung 			 * times in a row.
   2872  1.1.1.4  dyoung 			 */
   2873  1.1.1.4  dyoung 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   2874  1.1.1.4  dyoung 				if (++sc->sc_rxotherant >= 3)
   2875  1.1.1.4  dyoung 					ath_setdefantenna(sc,
   2876  1.1.1.4  dyoung 						ds->ds_rxstat.rs_antenna);
   2877  1.1.1.4  dyoung 			} else
   2878  1.1.1.4  dyoung 				sc->sc_rxotherant = 0;
   2879  1.1.1.4  dyoung 		}
   2880  1.1.1.4  dyoung 		if (sc->sc_softled) {
   2881  1.1.1.4  dyoung 			/*
   2882  1.1.1.4  dyoung 			 * Blink for any data frame.  Otherwise do a
   2883  1.1.1.4  dyoung 			 * heartbeat-style blink when idle.  The latter
   2884  1.1.1.4  dyoung 			 * is mainly for station mode where we depend on
   2885  1.1.1.4  dyoung 			 * periodic beacon frames to trigger the poll event.
   2886  1.1.1.4  dyoung 			 */
   2887  1.1.1.4  dyoung 			if (type == IEEE80211_FC0_TYPE_DATA) {
   2888  1.1.1.4  dyoung 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   2889  1.1.1.4  dyoung 				ath_led_event(sc, ATH_LED_RX);
   2890  1.1.1.4  dyoung 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   2891  1.1.1.4  dyoung 				ath_led_event(sc, ATH_LED_POLL);
   2892  1.1.1.4  dyoung 		}
   2893  1.1.1.4  dyoung rx_next:
   2894  1.1.1.4  dyoung 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   2895      1.1  dyoung 	} while (ath_rxbuf_init(sc, bf) == 0);
   2896      1.1  dyoung 
   2897  1.1.1.4  dyoung 	/* rx signal state monitoring */
   2898  1.1.1.4  dyoung 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
   2899  1.1.1.4  dyoung 
   2900  1.1.1.4  dyoung 	NET_UNLOCK_GIANT();		/* XXX */
   2901  1.1.1.2  dyoung #undef PA2DESC
   2902      1.1  dyoung }
   2903      1.1  dyoung 
   2904      1.1  dyoung /*
   2905  1.1.1.4  dyoung  * Setup a h/w transmit queue.
   2906  1.1.1.4  dyoung  */
   2907  1.1.1.4  dyoung static struct ath_txq *
   2908  1.1.1.4  dyoung ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   2909  1.1.1.4  dyoung {
   2910  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   2911  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2912  1.1.1.4  dyoung 	HAL_TXQ_INFO qi;
   2913  1.1.1.4  dyoung 	int qnum;
   2914  1.1.1.4  dyoung 
   2915  1.1.1.4  dyoung 	memset(&qi, 0, sizeof(qi));
   2916  1.1.1.4  dyoung 	qi.tqi_subtype = subtype;
   2917  1.1.1.4  dyoung 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2918  1.1.1.4  dyoung 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2919  1.1.1.4  dyoung 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2920  1.1.1.4  dyoung 	/*
   2921  1.1.1.4  dyoung 	 * Enable interrupts only for EOL and DESC conditions.
   2922  1.1.1.4  dyoung 	 * We mark tx descriptors to receive a DESC interrupt
   2923  1.1.1.4  dyoung 	 * when a tx queue gets deep; otherwise waiting for the
   2924  1.1.1.4  dyoung 	 * EOL to reap descriptors.  Note that this is done to
   2925  1.1.1.4  dyoung 	 * reduce interrupt load and this only defers reaping
   2926  1.1.1.4  dyoung 	 * descriptors, never transmitting frames.  Aside from
   2927  1.1.1.4  dyoung 	 * reducing interrupts this also permits more concurrency.
   2928  1.1.1.4  dyoung 	 * The only potential downside is if the tx queue backs
   2929  1.1.1.4  dyoung 	 * up in which case the top half of the kernel may backup
   2930  1.1.1.4  dyoung 	 * due to a lack of tx descriptors.
   2931  1.1.1.4  dyoung 	 */
   2932  1.1.1.4  dyoung 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
   2933  1.1.1.4  dyoung 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   2934  1.1.1.4  dyoung 	if (qnum == -1) {
   2935  1.1.1.4  dyoung 		/*
   2936  1.1.1.5  dyoung 		 * NB: don't print a message, this happens
   2937  1.1.1.4  dyoung 		 * normally on parts with too few tx queues
   2938  1.1.1.4  dyoung 		 */
   2939  1.1.1.4  dyoung 		return NULL;
   2940  1.1.1.4  dyoung 	}
   2941  1.1.1.4  dyoung 	if (qnum >= N(sc->sc_txq)) {
   2942  1.1.1.4  dyoung 		device_printf(sc->sc_dev,
   2943  1.1.1.4  dyoung 			"hal qnum %u out of range, max %zu!\n",
   2944  1.1.1.4  dyoung 			qnum, N(sc->sc_txq));
   2945  1.1.1.4  dyoung 		ath_hal_releasetxqueue(ah, qnum);
   2946  1.1.1.4  dyoung 		return NULL;
   2947  1.1.1.4  dyoung 	}
   2948  1.1.1.4  dyoung 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   2949  1.1.1.4  dyoung 		struct ath_txq *txq = &sc->sc_txq[qnum];
   2950  1.1.1.4  dyoung 
   2951  1.1.1.4  dyoung 		txq->axq_qnum = qnum;
   2952  1.1.1.4  dyoung 		txq->axq_depth = 0;
   2953  1.1.1.4  dyoung 		txq->axq_intrcnt = 0;
   2954  1.1.1.4  dyoung 		txq->axq_link = NULL;
   2955  1.1.1.4  dyoung 		STAILQ_INIT(&txq->axq_q);
   2956  1.1.1.4  dyoung 		ATH_TXQ_LOCK_INIT(sc, txq);
   2957  1.1.1.4  dyoung 		sc->sc_txqsetup |= 1<<qnum;
   2958  1.1.1.4  dyoung 	}
   2959  1.1.1.4  dyoung 	return &sc->sc_txq[qnum];
   2960  1.1.1.4  dyoung #undef N
   2961  1.1.1.4  dyoung }
   2962  1.1.1.4  dyoung 
   2963  1.1.1.4  dyoung /*
   2964  1.1.1.4  dyoung  * Setup a hardware data transmit queue for the specified
   2965  1.1.1.4  dyoung  * access control.  The hal may not support all requested
   2966  1.1.1.4  dyoung  * queues in which case it will return a reference to a
   2967  1.1.1.4  dyoung  * previously setup queue.  We record the mapping from ac's
   2968  1.1.1.4  dyoung  * to h/w queues for use by ath_tx_start and also track
   2969  1.1.1.4  dyoung  * the set of h/w queues being used to optimize work in the
   2970  1.1.1.4  dyoung  * transmit interrupt handler and related routines.
   2971      1.1  dyoung  */
   2972  1.1.1.4  dyoung static int
   2973  1.1.1.4  dyoung ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   2974  1.1.1.4  dyoung {
   2975  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   2976  1.1.1.4  dyoung 	struct ath_txq *txq;
   2977  1.1.1.4  dyoung 
   2978  1.1.1.4  dyoung 	if (ac >= N(sc->sc_ac2q)) {
   2979  1.1.1.4  dyoung 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   2980  1.1.1.4  dyoung 			ac, N(sc->sc_ac2q));
   2981  1.1.1.4  dyoung 		return 0;
   2982  1.1.1.4  dyoung 	}
   2983  1.1.1.4  dyoung 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   2984  1.1.1.4  dyoung 	if (txq != NULL) {
   2985  1.1.1.4  dyoung 		sc->sc_ac2q[ac] = txq;
   2986  1.1.1.4  dyoung 		return 1;
   2987  1.1.1.4  dyoung 	} else
   2988  1.1.1.4  dyoung 		return 0;
   2989  1.1.1.4  dyoung #undef N
   2990  1.1.1.4  dyoung }
   2991      1.1  dyoung 
   2992  1.1.1.4  dyoung /*
   2993  1.1.1.4  dyoung  * Update WME parameters for a transmit queue.
   2994  1.1.1.4  dyoung  */
   2995      1.1  dyoung static int
   2996  1.1.1.4  dyoung ath_txq_update(struct ath_softc *sc, int ac)
   2997      1.1  dyoung {
   2998  1.1.1.4  dyoung #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   2999  1.1.1.4  dyoung #define	ATH_TXOP_TO_US(v)		(v<<5)
   3000      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   3001  1.1.1.4  dyoung 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3002  1.1.1.4  dyoung 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3003      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3004  1.1.1.4  dyoung 	HAL_TXQ_INFO qi;
   3005      1.1  dyoung 
   3006  1.1.1.4  dyoung 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3007  1.1.1.4  dyoung 	qi.tqi_aifs = wmep->wmep_aifsn;
   3008  1.1.1.4  dyoung 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3009  1.1.1.4  dyoung 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3010  1.1.1.4  dyoung 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3011  1.1.1.4  dyoung 
   3012  1.1.1.4  dyoung 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3013  1.1.1.4  dyoung 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3014  1.1.1.4  dyoung 			"parameters for %s traffic!\n",
   3015  1.1.1.4  dyoung 			ieee80211_wme_acnames[ac]);
   3016  1.1.1.4  dyoung 		return 0;
   3017  1.1.1.4  dyoung 	} else {
   3018  1.1.1.4  dyoung 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3019  1.1.1.4  dyoung 		return 1;
   3020      1.1  dyoung 	}
   3021  1.1.1.4  dyoung #undef ATH_TXOP_TO_US
   3022  1.1.1.4  dyoung #undef ATH_EXPONENT_TO_VALUE
   3023  1.1.1.4  dyoung }
   3024  1.1.1.4  dyoung 
   3025  1.1.1.4  dyoung /*
   3026  1.1.1.4  dyoung  * Callback from the 802.11 layer to update WME parameters.
   3027  1.1.1.4  dyoung  */
   3028  1.1.1.5  dyoung static int
   3029  1.1.1.4  dyoung ath_wme_update(struct ieee80211com *ic)
   3030  1.1.1.4  dyoung {
   3031  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3032  1.1.1.4  dyoung 
   3033  1.1.1.4  dyoung 	return !ath_txq_update(sc, WME_AC_BE) ||
   3034  1.1.1.4  dyoung 	    !ath_txq_update(sc, WME_AC_BK) ||
   3035  1.1.1.4  dyoung 	    !ath_txq_update(sc, WME_AC_VI) ||
   3036  1.1.1.4  dyoung 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3037  1.1.1.4  dyoung }
   3038  1.1.1.4  dyoung 
   3039  1.1.1.4  dyoung /*
   3040  1.1.1.4  dyoung  * Reclaim resources for a setup queue.
   3041  1.1.1.4  dyoung  */
   3042  1.1.1.4  dyoung static void
   3043  1.1.1.4  dyoung ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3044  1.1.1.4  dyoung {
   3045  1.1.1.4  dyoung 
   3046  1.1.1.4  dyoung 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3047  1.1.1.4  dyoung 	ATH_TXQ_LOCK_DESTROY(txq);
   3048  1.1.1.4  dyoung 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3049  1.1.1.4  dyoung }
   3050  1.1.1.4  dyoung 
   3051  1.1.1.4  dyoung /*
   3052  1.1.1.4  dyoung  * Reclaim all tx queue resources.
   3053  1.1.1.4  dyoung  */
   3054  1.1.1.4  dyoung static void
   3055  1.1.1.4  dyoung ath_tx_cleanup(struct ath_softc *sc)
   3056  1.1.1.4  dyoung {
   3057  1.1.1.4  dyoung 	int i;
   3058  1.1.1.4  dyoung 
   3059  1.1.1.4  dyoung 	ATH_TXBUF_LOCK_DESTROY(sc);
   3060  1.1.1.4  dyoung 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3061  1.1.1.4  dyoung 		if (ATH_TXQ_SETUP(sc, i))
   3062  1.1.1.4  dyoung 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3063  1.1.1.4  dyoung }
   3064  1.1.1.4  dyoung 
   3065  1.1.1.4  dyoung /*
   3066  1.1.1.4  dyoung  * Defragment an mbuf chain, returning at most maxfrags separate
   3067  1.1.1.4  dyoung  * mbufs+clusters.  If this is not possible NULL is returned and
   3068  1.1.1.4  dyoung  * the original mbuf chain is left in it's present (potentially
   3069  1.1.1.4  dyoung  * modified) state.  We use two techniques: collapsing consecutive
   3070  1.1.1.4  dyoung  * mbufs and replacing consecutive mbufs by a cluster.
   3071  1.1.1.4  dyoung  */
   3072  1.1.1.4  dyoung static struct mbuf *
   3073  1.1.1.4  dyoung ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3074  1.1.1.4  dyoung {
   3075  1.1.1.4  dyoung 	struct mbuf *m, *n, *n2, **prev;
   3076  1.1.1.4  dyoung 	u_int curfrags;
   3077      1.1  dyoung 
   3078      1.1  dyoung 	/*
   3079  1.1.1.4  dyoung 	 * Calculate the current number of frags.
   3080      1.1  dyoung 	 */
   3081  1.1.1.4  dyoung 	curfrags = 0;
   3082  1.1.1.4  dyoung 	for (m = m0; m != NULL; m = m->m_next)
   3083  1.1.1.4  dyoung 		curfrags++;
   3084  1.1.1.4  dyoung 	/*
   3085  1.1.1.4  dyoung 	 * First, try to collapse mbufs.  Note that we always collapse
   3086  1.1.1.4  dyoung 	 * towards the front so we don't need to deal with moving the
   3087  1.1.1.4  dyoung 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3088  1.1.1.4  dyoung 	 * less data than the following.
   3089  1.1.1.4  dyoung 	 */
   3090  1.1.1.4  dyoung 	m = m0;
   3091  1.1.1.4  dyoung again:
   3092  1.1.1.4  dyoung 	for (;;) {
   3093  1.1.1.4  dyoung 		n = m->m_next;
   3094  1.1.1.4  dyoung 		if (n == NULL)
   3095  1.1.1.4  dyoung 			break;
   3096  1.1.1.4  dyoung 		if ((m->m_flags & M_RDONLY) == 0 &&
   3097  1.1.1.4  dyoung 		    n->m_len < M_TRAILINGSPACE(m)) {
   3098  1.1.1.4  dyoung 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3099  1.1.1.4  dyoung 				n->m_len);
   3100  1.1.1.4  dyoung 			m->m_len += n->m_len;
   3101  1.1.1.4  dyoung 			m->m_next = n->m_next;
   3102  1.1.1.4  dyoung 			m_free(n);
   3103  1.1.1.4  dyoung 			if (--curfrags <= maxfrags)
   3104  1.1.1.4  dyoung 				return m0;
   3105  1.1.1.4  dyoung 		} else
   3106  1.1.1.4  dyoung 			m = n;
   3107  1.1.1.4  dyoung 	}
   3108  1.1.1.4  dyoung 	KASSERT(maxfrags > 1,
   3109  1.1.1.4  dyoung 		("maxfrags %u, but normal collapse failed", maxfrags));
   3110  1.1.1.4  dyoung 	/*
   3111  1.1.1.4  dyoung 	 * Collapse consecutive mbufs to a cluster.
   3112  1.1.1.4  dyoung 	 */
   3113  1.1.1.4  dyoung 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3114  1.1.1.4  dyoung 	while ((n = *prev) != NULL) {
   3115  1.1.1.4  dyoung 		if ((n2 = n->m_next) != NULL &&
   3116  1.1.1.4  dyoung 		    n->m_len + n2->m_len < MCLBYTES) {
   3117  1.1.1.4  dyoung 			m = m_getcl(how, MT_DATA, 0);
   3118  1.1.1.4  dyoung 			if (m == NULL)
   3119  1.1.1.4  dyoung 				goto bad;
   3120  1.1.1.4  dyoung 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3121  1.1.1.4  dyoung 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3122  1.1.1.4  dyoung 				n2->m_len);
   3123  1.1.1.4  dyoung 			m->m_len = n->m_len + n2->m_len;
   3124  1.1.1.4  dyoung 			m->m_next = n2->m_next;
   3125  1.1.1.4  dyoung 			*prev = m;
   3126  1.1.1.4  dyoung 			m_free(n);
   3127  1.1.1.4  dyoung 			m_free(n2);
   3128  1.1.1.4  dyoung 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3129  1.1.1.4  dyoung 				return m0;
   3130  1.1.1.4  dyoung 			/*
   3131  1.1.1.4  dyoung 			 * Still not there, try the normal collapse
   3132  1.1.1.4  dyoung 			 * again before we allocate another cluster.
   3133  1.1.1.4  dyoung 			 */
   3134  1.1.1.4  dyoung 			goto again;
   3135  1.1.1.4  dyoung 		}
   3136  1.1.1.4  dyoung 		prev = &n->m_next;
   3137  1.1.1.4  dyoung 	}
   3138  1.1.1.4  dyoung 	/*
   3139  1.1.1.4  dyoung 	 * No place where we can collapse to a cluster; punt.
   3140  1.1.1.4  dyoung 	 * This can occur if, for example, you request 2 frags
   3141  1.1.1.4  dyoung 	 * but the packet requires that both be clusters (we
   3142  1.1.1.4  dyoung 	 * never reallocate the first mbuf to avoid moving the
   3143  1.1.1.4  dyoung 	 * packet header).
   3144  1.1.1.4  dyoung 	 */
   3145  1.1.1.4  dyoung bad:
   3146  1.1.1.4  dyoung 	return NULL;
   3147  1.1.1.4  dyoung }
   3148  1.1.1.4  dyoung 
   3149  1.1.1.4  dyoung static int
   3150  1.1.1.4  dyoung ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3151  1.1.1.4  dyoung     struct mbuf *m0)
   3152  1.1.1.4  dyoung {
   3153  1.1.1.4  dyoung #define	CTS_DURATION \
   3154  1.1.1.4  dyoung 	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
   3155  1.1.1.4  dyoung #define	updateCTSForBursting(_ah, _ds, _txq) \
   3156  1.1.1.4  dyoung 	ath_hal_updateCTSForBursting(_ah, _ds, \
   3157  1.1.1.4  dyoung 	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
   3158  1.1.1.4  dyoung 	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
   3159  1.1.1.4  dyoung 	    txopLimit, CTS_DURATION)
   3160  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   3161  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3162  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   3163  1.1.1.4  dyoung 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3164  1.1.1.4  dyoung 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
   3165  1.1.1.4  dyoung 	u_int8_t rix, txrate, ctsrate;
   3166  1.1.1.4  dyoung 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3167  1.1.1.4  dyoung 	struct ath_desc *ds, *ds0;
   3168  1.1.1.4  dyoung 	struct ath_txq *txq;
   3169  1.1.1.4  dyoung 	struct ieee80211_frame *wh;
   3170  1.1.1.4  dyoung 	u_int subtype, flags, ctsduration;
   3171  1.1.1.4  dyoung 	HAL_PKT_TYPE atype;
   3172  1.1.1.4  dyoung 	const HAL_RATE_TABLE *rt;
   3173  1.1.1.4  dyoung 	HAL_BOOL shortPreamble;
   3174  1.1.1.4  dyoung 	struct ath_node *an;
   3175  1.1.1.4  dyoung 	struct mbuf *m;
   3176  1.1.1.4  dyoung 	u_int pri;
   3177  1.1.1.4  dyoung 
   3178  1.1.1.4  dyoung 	wh = mtod(m0, struct ieee80211_frame *);
   3179  1.1.1.4  dyoung 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3180  1.1.1.4  dyoung 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3181  1.1.1.4  dyoung 	hdrlen = ieee80211_anyhdrsize(wh);
   3182  1.1.1.4  dyoung 	/*
   3183  1.1.1.4  dyoung 	 * Packet length must not include any
   3184  1.1.1.4  dyoung 	 * pad bytes; deduct them here.
   3185  1.1.1.4  dyoung 	 */
   3186  1.1.1.4  dyoung 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3187  1.1.1.4  dyoung 
   3188  1.1.1.4  dyoung 	if (iswep) {
   3189  1.1.1.4  dyoung 		const struct ieee80211_cipher *cip;
   3190  1.1.1.4  dyoung 		struct ieee80211_key *k;
   3191  1.1.1.4  dyoung 
   3192  1.1.1.4  dyoung 		/*
   3193  1.1.1.4  dyoung 		 * Construct the 802.11 header+trailer for an encrypted
   3194  1.1.1.4  dyoung 		 * frame. The only reason this can fail is because of an
   3195  1.1.1.4  dyoung 		 * unknown or unsupported cipher/key type.
   3196  1.1.1.4  dyoung 		 */
   3197  1.1.1.4  dyoung 		k = ieee80211_crypto_encap(ic, ni, m0);
   3198  1.1.1.4  dyoung 		if (k == NULL) {
   3199  1.1.1.4  dyoung 			/*
   3200  1.1.1.4  dyoung 			 * This can happen when the key is yanked after the
   3201  1.1.1.4  dyoung 			 * frame was queued.  Just discard the frame; the
   3202  1.1.1.4  dyoung 			 * 802.11 layer counts failures and provides
   3203  1.1.1.4  dyoung 			 * debugging/diagnostics.
   3204  1.1.1.4  dyoung 			 */
   3205  1.1.1.4  dyoung 			m_freem(m0);
   3206  1.1.1.4  dyoung 			return EIO;
   3207  1.1.1.4  dyoung 		}
   3208  1.1.1.4  dyoung 		/*
   3209  1.1.1.4  dyoung 		 * Adjust the packet + header lengths for the crypto
   3210  1.1.1.4  dyoung 		 * additions and calculate the h/w key index.  When
   3211  1.1.1.4  dyoung 		 * a s/w mic is done the frame will have had any mic
   3212  1.1.1.4  dyoung 		 * added to it prior to entry so skb->len above will
   3213  1.1.1.4  dyoung 		 * account for it. Otherwise we need to add it to the
   3214  1.1.1.4  dyoung 		 * packet length.
   3215  1.1.1.4  dyoung 		 */
   3216  1.1.1.4  dyoung 		cip = k->wk_cipher;
   3217  1.1.1.4  dyoung 		hdrlen += cip->ic_header;
   3218  1.1.1.4  dyoung 		pktlen += cip->ic_header + cip->ic_trailer;
   3219  1.1.1.4  dyoung 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
   3220  1.1.1.4  dyoung 			pktlen += cip->ic_miclen;
   3221  1.1.1.4  dyoung 		keyix = k->wk_keyix;
   3222  1.1.1.4  dyoung 
   3223  1.1.1.4  dyoung 		/* packet header may have moved, reset our local pointer */
   3224  1.1.1.4  dyoung 		wh = mtod(m0, struct ieee80211_frame *);
   3225  1.1.1.5  dyoung 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3226  1.1.1.5  dyoung 		/*
   3227  1.1.1.5  dyoung 		 * Use station key cache slot, if assigned.
   3228  1.1.1.5  dyoung 		 */
   3229  1.1.1.5  dyoung 		keyix = ni->ni_ucastkey.wk_keyix;
   3230  1.1.1.5  dyoung 		if (keyix == IEEE80211_KEYIX_NONE)
   3231  1.1.1.5  dyoung 			keyix = HAL_TXKEYIX_INVALID;
   3232  1.1.1.4  dyoung 	} else
   3233  1.1.1.4  dyoung 		keyix = HAL_TXKEYIX_INVALID;
   3234  1.1.1.4  dyoung 
   3235  1.1.1.4  dyoung 	pktlen += IEEE80211_CRC_LEN;
   3236  1.1.1.4  dyoung 
   3237  1.1.1.4  dyoung 	/*
   3238  1.1.1.4  dyoung 	 * Load the DMA map so any coalescing is done.  This
   3239  1.1.1.4  dyoung 	 * also calculates the number of descriptors we need.
   3240  1.1.1.4  dyoung 	 */
   3241  1.1.1.4  dyoung 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
   3242  1.1.1.4  dyoung 				     bf->bf_segs, &bf->bf_nseg,
   3243      1.1  dyoung 				     BUS_DMA_NOWAIT);
   3244  1.1.1.2  dyoung 	if (error == EFBIG) {
   3245  1.1.1.2  dyoung 		/* XXX packet requires too many descriptors */
   3246  1.1.1.2  dyoung 		bf->bf_nseg = ATH_TXDESC+1;
   3247  1.1.1.2  dyoung 	} else if (error != 0) {
   3248      1.1  dyoung 		sc->sc_stats.ast_tx_busdma++;
   3249      1.1  dyoung 		m_freem(m0);
   3250      1.1  dyoung 		return error;
   3251      1.1  dyoung 	}
   3252      1.1  dyoung 	/*
   3253      1.1  dyoung 	 * Discard null packets and check for packets that
   3254      1.1  dyoung 	 * require too many TX descriptors.  We try to convert
   3255      1.1  dyoung 	 * the latter to a cluster.
   3256      1.1  dyoung 	 */
   3257      1.1  dyoung 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
   3258      1.1  dyoung 		sc->sc_stats.ast_tx_linear++;
   3259  1.1.1.4  dyoung 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3260      1.1  dyoung 		if (m == NULL) {
   3261      1.1  dyoung 			m_freem(m0);
   3262  1.1.1.4  dyoung 			sc->sc_stats.ast_tx_nombuf++;
   3263      1.1  dyoung 			return ENOMEM;
   3264      1.1  dyoung 		}
   3265      1.1  dyoung 		m0 = m;
   3266  1.1.1.4  dyoung 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
   3267  1.1.1.4  dyoung 					     bf->bf_segs, &bf->bf_nseg,
   3268      1.1  dyoung 					     BUS_DMA_NOWAIT);
   3269      1.1  dyoung 		if (error != 0) {
   3270      1.1  dyoung 			sc->sc_stats.ast_tx_busdma++;
   3271      1.1  dyoung 			m_freem(m0);
   3272      1.1  dyoung 			return error;
   3273      1.1  dyoung 		}
   3274  1.1.1.4  dyoung 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3275  1.1.1.4  dyoung 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3276      1.1  dyoung 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3277      1.1  dyoung 		sc->sc_stats.ast_tx_nodata++;
   3278      1.1  dyoung 		m_freem(m0);
   3279      1.1  dyoung 		return EIO;
   3280      1.1  dyoung 	}
   3281  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3282      1.1  dyoung 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
   3283      1.1  dyoung 	bf->bf_m = m0;
   3284      1.1  dyoung 	bf->bf_node = ni;			/* NB: held reference */
   3285      1.1  dyoung 
   3286      1.1  dyoung 	/* setup descriptors */
   3287      1.1  dyoung 	ds = bf->bf_desc;
   3288      1.1  dyoung 	rt = sc->sc_currates;
   3289      1.1  dyoung 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3290      1.1  dyoung 
   3291      1.1  dyoung 	/*
   3292  1.1.1.4  dyoung 	 * NB: the 802.11 layer marks whether or not we should
   3293  1.1.1.4  dyoung 	 * use short preamble based on the current mode and
   3294  1.1.1.4  dyoung 	 * negotiated parameters.
   3295  1.1.1.4  dyoung 	 */
   3296  1.1.1.4  dyoung 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3297  1.1.1.4  dyoung 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
   3298  1.1.1.4  dyoung 		shortPreamble = AH_TRUE;
   3299  1.1.1.4  dyoung 		sc->sc_stats.ast_tx_shortpre++;
   3300  1.1.1.4  dyoung 	} else {
   3301  1.1.1.4  dyoung 		shortPreamble = AH_FALSE;
   3302  1.1.1.4  dyoung 	}
   3303  1.1.1.4  dyoung 
   3304  1.1.1.4  dyoung 	an = ATH_NODE(ni);
   3305  1.1.1.4  dyoung 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3306  1.1.1.4  dyoung 	/*
   3307  1.1.1.4  dyoung 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3308  1.1.1.4  dyoung 	 * setup for rate calculations, and select h/w transmit queue.
   3309      1.1  dyoung 	 */
   3310      1.1  dyoung 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3311      1.1  dyoung 	case IEEE80211_FC0_TYPE_MGT:
   3312      1.1  dyoung 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3313      1.1  dyoung 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3314      1.1  dyoung 			atype = HAL_PKT_TYPE_BEACON;
   3315      1.1  dyoung 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3316      1.1  dyoung 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3317      1.1  dyoung 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3318      1.1  dyoung 			atype = HAL_PKT_TYPE_ATIM;
   3319  1.1.1.4  dyoung 		else
   3320  1.1.1.4  dyoung 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3321      1.1  dyoung 		rix = 0;			/* XXX lowest rate */
   3322  1.1.1.4  dyoung 		try0 = ATH_TXMAXTRY;
   3323  1.1.1.4  dyoung 		if (shortPreamble)
   3324  1.1.1.4  dyoung 			txrate = an->an_tx_mgtratesp;
   3325  1.1.1.4  dyoung 		else
   3326  1.1.1.4  dyoung 			txrate = an->an_tx_mgtrate;
   3327  1.1.1.4  dyoung 		/* NB: force all management frames to highest queue */
   3328  1.1.1.4  dyoung 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3329  1.1.1.4  dyoung 			/* NB: force all management frames to highest queue */
   3330  1.1.1.4  dyoung 			pri = WME_AC_VO;
   3331  1.1.1.4  dyoung 		} else
   3332  1.1.1.4  dyoung 			pri = WME_AC_BE;
   3333  1.1.1.4  dyoung 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3334      1.1  dyoung 		break;
   3335      1.1  dyoung 	case IEEE80211_FC0_TYPE_CTL:
   3336  1.1.1.4  dyoung 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3337      1.1  dyoung 		rix = 0;			/* XXX lowest rate */
   3338  1.1.1.4  dyoung 		try0 = ATH_TXMAXTRY;
   3339  1.1.1.4  dyoung 		if (shortPreamble)
   3340  1.1.1.4  dyoung 			txrate = an->an_tx_mgtratesp;
   3341  1.1.1.4  dyoung 		else
   3342  1.1.1.4  dyoung 			txrate = an->an_tx_mgtrate;
   3343  1.1.1.4  dyoung 		/* NB: force all ctl frames to highest queue */
   3344  1.1.1.4  dyoung 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3345  1.1.1.4  dyoung 			/* NB: force all ctl frames to highest queue */
   3346  1.1.1.4  dyoung 			pri = WME_AC_VO;
   3347  1.1.1.4  dyoung 		} else
   3348  1.1.1.4  dyoung 			pri = WME_AC_BE;
   3349  1.1.1.4  dyoung 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3350      1.1  dyoung 		break;
   3351  1.1.1.4  dyoung 	case IEEE80211_FC0_TYPE_DATA:
   3352  1.1.1.4  dyoung 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3353  1.1.1.4  dyoung 		/*
   3354  1.1.1.4  dyoung 		 * Data frames; consult the rate control module.
   3355  1.1.1.4  dyoung 		 */
   3356  1.1.1.4  dyoung 		ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3357  1.1.1.4  dyoung 			&rix, &try0, &txrate);
   3358  1.1.1.4  dyoung 		sc->sc_txrate = txrate;			/* for LED blinking */
   3359  1.1.1.4  dyoung 		/*
   3360  1.1.1.4  dyoung 		 * Default all non-QoS traffic to the background queue.
   3361  1.1.1.4  dyoung 		 */
   3362  1.1.1.4  dyoung 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
   3363  1.1.1.4  dyoung 			pri = M_WME_GETAC(m0);
   3364  1.1.1.4  dyoung 			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
   3365  1.1.1.4  dyoung 				flags |= HAL_TXDESC_NOACK;
   3366  1.1.1.4  dyoung 				sc->sc_stats.ast_tx_noack++;
   3367  1.1.1.4  dyoung 			}
   3368  1.1.1.4  dyoung 		} else
   3369  1.1.1.4  dyoung 			pri = WME_AC_BE;
   3370      1.1  dyoung 		break;
   3371  1.1.1.4  dyoung 	default:
   3372  1.1.1.4  dyoung 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3373  1.1.1.4  dyoung 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3374  1.1.1.4  dyoung 		/* XXX statistic */
   3375  1.1.1.4  dyoung 		m_freem(m0);
   3376  1.1.1.4  dyoung 		return EIO;
   3377      1.1  dyoung 	}
   3378  1.1.1.4  dyoung 	txq = sc->sc_ac2q[pri];
   3379  1.1.1.4  dyoung 
   3380      1.1  dyoung 	/*
   3381  1.1.1.4  dyoung 	 * When servicing one or more stations in power-save mode
   3382  1.1.1.4  dyoung 	 * multicast frames must be buffered until after the beacon.
   3383  1.1.1.4  dyoung 	 * We use the CAB queue for that.
   3384      1.1  dyoung 	 */
   3385  1.1.1.4  dyoung 	if (ismcast && ic->ic_ps_sta) {
   3386  1.1.1.4  dyoung 		txq = sc->sc_cabq;
   3387  1.1.1.4  dyoung 		/* XXX? more bit in 802.11 frame header */
   3388      1.1  dyoung 	}
   3389      1.1  dyoung 
   3390      1.1  dyoung 	/*
   3391      1.1  dyoung 	 * Calculate miscellaneous flags.
   3392      1.1  dyoung 	 */
   3393  1.1.1.4  dyoung 	if (ismcast) {
   3394      1.1  dyoung 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3395      1.1  dyoung 		sc->sc_stats.ast_tx_noack++;
   3396      1.1  dyoung 	} else if (pktlen > ic->ic_rtsthreshold) {
   3397      1.1  dyoung 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3398  1.1.1.4  dyoung 		cix = rt->info[rix].controlRate;
   3399      1.1  dyoung 		sc->sc_stats.ast_tx_rts++;
   3400      1.1  dyoung 	}
   3401      1.1  dyoung 
   3402      1.1  dyoung 	/*
   3403  1.1.1.4  dyoung 	 * If 802.11g protection is enabled, determine whether
   3404  1.1.1.4  dyoung 	 * to use RTS/CTS or just CTS.  Note that this is only
   3405  1.1.1.4  dyoung 	 * done for OFDM unicast frames.
   3406  1.1.1.4  dyoung 	 */
   3407  1.1.1.4  dyoung 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3408  1.1.1.4  dyoung 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3409  1.1.1.4  dyoung 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3410  1.1.1.4  dyoung 		/* XXX fragments must use CCK rates w/ protection */
   3411  1.1.1.4  dyoung 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3412  1.1.1.4  dyoung 			flags |= HAL_TXDESC_RTSENA;
   3413  1.1.1.4  dyoung 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3414  1.1.1.4  dyoung 			flags |= HAL_TXDESC_CTSENA;
   3415  1.1.1.4  dyoung 		cix = rt->info[sc->sc_protrix].controlRate;
   3416  1.1.1.4  dyoung 		sc->sc_stats.ast_tx_protect++;
   3417  1.1.1.4  dyoung 	}
   3418  1.1.1.4  dyoung 
   3419  1.1.1.4  dyoung 	/*
   3420  1.1.1.2  dyoung 	 * Calculate duration.  This logically belongs in the 802.11
   3421  1.1.1.2  dyoung 	 * layer but it lacks sufficient information to calculate it.
   3422  1.1.1.2  dyoung 	 */
   3423  1.1.1.2  dyoung 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3424  1.1.1.2  dyoung 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3425  1.1.1.2  dyoung 		u_int16_t dur;
   3426  1.1.1.2  dyoung 		/*
   3427  1.1.1.2  dyoung 		 * XXX not right with fragmentation.
   3428  1.1.1.2  dyoung 		 */
   3429  1.1.1.4  dyoung 		if (shortPreamble)
   3430  1.1.1.4  dyoung 			dur = rt->info[rix].spAckDuration;
   3431  1.1.1.4  dyoung 		else
   3432  1.1.1.4  dyoung 			dur = rt->info[rix].lpAckDuration;
   3433  1.1.1.4  dyoung 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3434  1.1.1.2  dyoung 	}
   3435  1.1.1.2  dyoung 
   3436  1.1.1.2  dyoung 	/*
   3437      1.1  dyoung 	 * Calculate RTS/CTS rate and duration if needed.
   3438      1.1  dyoung 	 */
   3439      1.1  dyoung 	ctsduration = 0;
   3440      1.1  dyoung 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3441      1.1  dyoung 		/*
   3442      1.1  dyoung 		 * CTS transmit rate is derived from the transmit rate
   3443      1.1  dyoung 		 * by looking in the h/w rate table.  We must also factor
   3444      1.1  dyoung 		 * in whether or not a short preamble is to be used.
   3445      1.1  dyoung 		 */
   3446  1.1.1.4  dyoung 		/* NB: cix is set above where RTS/CTS is enabled */
   3447  1.1.1.4  dyoung 		KASSERT(cix != 0xff, ("cix not setup"));
   3448      1.1  dyoung 		ctsrate = rt->info[cix].rateCode;
   3449      1.1  dyoung 		/*
   3450  1.1.1.4  dyoung 		 * Compute the transmit duration based on the frame
   3451  1.1.1.4  dyoung 		 * size and the size of an ACK frame.  We call into the
   3452  1.1.1.4  dyoung 		 * HAL to do the computation since it depends on the
   3453  1.1.1.4  dyoung 		 * characteristics of the actual PHY being used.
   3454  1.1.1.4  dyoung 		 *
   3455  1.1.1.4  dyoung 		 * NB: CTS is assumed the same size as an ACK so we can
   3456  1.1.1.4  dyoung 		 *     use the precalculated ACK durations.
   3457      1.1  dyoung 		 */
   3458  1.1.1.4  dyoung 		if (shortPreamble) {
   3459  1.1.1.4  dyoung 			ctsrate |= rt->info[cix].shortPreamble;
   3460  1.1.1.4  dyoung 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3461  1.1.1.4  dyoung 				ctsduration += rt->info[cix].spAckDuration;
   3462      1.1  dyoung 			ctsduration += ath_hal_computetxtime(ah,
   3463  1.1.1.4  dyoung 				rt, pktlen, rix, AH_TRUE);
   3464  1.1.1.4  dyoung 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3465  1.1.1.4  dyoung 				ctsduration += rt->info[cix].spAckDuration;
   3466  1.1.1.4  dyoung 		} else {
   3467  1.1.1.4  dyoung 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3468  1.1.1.4  dyoung 				ctsduration += rt->info[cix].lpAckDuration;
   3469      1.1  dyoung 			ctsduration += ath_hal_computetxtime(ah,
   3470  1.1.1.4  dyoung 				rt, pktlen, rix, AH_FALSE);
   3471  1.1.1.4  dyoung 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3472  1.1.1.4  dyoung 				ctsduration += rt->info[cix].lpAckDuration;
   3473      1.1  dyoung 		}
   3474  1.1.1.4  dyoung 		/*
   3475  1.1.1.4  dyoung 		 * Must disable multi-rate retry when using RTS/CTS.
   3476  1.1.1.4  dyoung 		 */
   3477  1.1.1.4  dyoung 		try0 = ATH_TXMAXTRY;
   3478      1.1  dyoung 	} else
   3479      1.1  dyoung 		ctsrate = 0;
   3480      1.1  dyoung 
   3481  1.1.1.4  dyoung 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3482  1.1.1.4  dyoung 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
   3483  1.1.1.4  dyoung 			sc->sc_hwmap[txrate].ieeerate, -1);
   3484      1.1  dyoung 
   3485  1.1.1.3  dyoung 	if (ic->ic_rawbpf)
   3486  1.1.1.3  dyoung 		bpf_mtap(ic->ic_rawbpf, m0);
   3487  1.1.1.3  dyoung 	if (sc->sc_drvbpf) {
   3488  1.1.1.4  dyoung 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3489  1.1.1.3  dyoung 		if (iswep)
   3490  1.1.1.3  dyoung 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3491  1.1.1.4  dyoung 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3492  1.1.1.4  dyoung 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3493  1.1.1.4  dyoung 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3494  1.1.1.3  dyoung 
   3495  1.1.1.3  dyoung 		bpf_mtap2(sc->sc_drvbpf,
   3496  1.1.1.3  dyoung 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3497  1.1.1.3  dyoung 	}
   3498  1.1.1.3  dyoung 
   3499  1.1.1.4  dyoung 	/*
   3500  1.1.1.4  dyoung 	 * Determine if a tx interrupt should be generated for
   3501  1.1.1.4  dyoung 	 * this descriptor.  We take a tx interrupt to reap
   3502  1.1.1.4  dyoung 	 * descriptors when the h/w hits an EOL condition or
   3503  1.1.1.4  dyoung 	 * when the descriptor is specifically marked to generate
   3504  1.1.1.4  dyoung 	 * an interrupt.  We periodically mark descriptors in this
   3505  1.1.1.4  dyoung 	 * way to insure timely replenishing of the supply needed
   3506  1.1.1.4  dyoung 	 * for sending frames.  Defering interrupts reduces system
   3507  1.1.1.4  dyoung 	 * load and potentially allows more concurrent work to be
   3508  1.1.1.4  dyoung 	 * done but if done to aggressively can cause senders to
   3509  1.1.1.4  dyoung 	 * backup.
   3510  1.1.1.4  dyoung 	 *
   3511  1.1.1.4  dyoung 	 * NB: use >= to deal with sc_txintrperiod changing
   3512  1.1.1.4  dyoung 	 *     dynamically through sysctl.
   3513  1.1.1.4  dyoung 	 */
   3514  1.1.1.4  dyoung 	if (flags & HAL_TXDESC_INTREQ) {
   3515  1.1.1.4  dyoung 		txq->axq_intrcnt = 0;
   3516  1.1.1.4  dyoung 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3517  1.1.1.4  dyoung 		flags |= HAL_TXDESC_INTREQ;
   3518  1.1.1.4  dyoung 		txq->axq_intrcnt = 0;
   3519  1.1.1.4  dyoung 	}
   3520  1.1.1.4  dyoung 
   3521      1.1  dyoung 	/*
   3522      1.1  dyoung 	 * Formulate first tx descriptor with tx controls.
   3523      1.1  dyoung 	 */
   3524      1.1  dyoung 	/* XXX check return value? */
   3525      1.1  dyoung 	ath_hal_setuptxdesc(ah, ds
   3526      1.1  dyoung 		, pktlen		/* packet length */
   3527      1.1  dyoung 		, hdrlen		/* header length */
   3528      1.1  dyoung 		, atype			/* Atheros packet type */
   3529  1.1.1.4  dyoung 		, ni->ni_txpower	/* txpower */
   3530  1.1.1.4  dyoung 		, txrate, try0		/* series 0 rate/tries */
   3531  1.1.1.4  dyoung 		, keyix			/* key cache index */
   3532  1.1.1.4  dyoung 		, sc->sc_txantenna	/* antenna mode */
   3533      1.1  dyoung 		, flags			/* flags */
   3534      1.1  dyoung 		, ctsrate		/* rts/cts rate */
   3535      1.1  dyoung 		, ctsduration		/* rts/cts duration */
   3536      1.1  dyoung 	);
   3537  1.1.1.5  dyoung 	bf->bf_flags = flags;
   3538  1.1.1.4  dyoung 	/*
   3539  1.1.1.4  dyoung 	 * Setup the multi-rate retry state only when we're
   3540  1.1.1.4  dyoung 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3541  1.1.1.4  dyoung 	 * initializes the descriptors (so we don't have to)
   3542  1.1.1.4  dyoung 	 * when the hardware supports multi-rate retry and
   3543  1.1.1.4  dyoung 	 * we don't use it.
   3544  1.1.1.4  dyoung 	 */
   3545  1.1.1.4  dyoung 	if (try0 != ATH_TXMAXTRY)
   3546  1.1.1.4  dyoung 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3547  1.1.1.4  dyoung 
   3548      1.1  dyoung 	/*
   3549      1.1  dyoung 	 * Fillin the remainder of the descriptor info.
   3550      1.1  dyoung 	 */
   3551  1.1.1.4  dyoung 	ds0 = ds;
   3552      1.1  dyoung 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3553      1.1  dyoung 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3554      1.1  dyoung 		if (i == bf->bf_nseg - 1)
   3555      1.1  dyoung 			ds->ds_link = 0;
   3556      1.1  dyoung 		else
   3557      1.1  dyoung 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3558      1.1  dyoung 		ath_hal_filltxdesc(ah, ds
   3559      1.1  dyoung 			, bf->bf_segs[i].ds_len	/* segment length */
   3560      1.1  dyoung 			, i == 0		/* first segment */
   3561      1.1  dyoung 			, i == bf->bf_nseg - 1	/* last segment */
   3562  1.1.1.4  dyoung 			, ds0			/* first descriptor */
   3563      1.1  dyoung 		);
   3564  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3565  1.1.1.4  dyoung 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3566  1.1.1.3  dyoung 			__func__, i, ds->ds_link, ds->ds_data,
   3567  1.1.1.4  dyoung 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3568      1.1  dyoung 	}
   3569      1.1  dyoung 	/*
   3570      1.1  dyoung 	 * Insert the frame on the outbound list and
   3571      1.1  dyoung 	 * pass it on to the hardware.
   3572      1.1  dyoung 	 */
   3573  1.1.1.4  dyoung 	ATH_TXQ_LOCK(txq);
   3574  1.1.1.4  dyoung 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
   3575  1.1.1.4  dyoung 		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
   3576  1.1.1.4  dyoung 			cap->cap_wmeParams[pri].wmep_txopLimit);
   3577  1.1.1.4  dyoung 		/*
   3578  1.1.1.4  dyoung 		 * When bursting, potentially extend the CTS duration
   3579  1.1.1.4  dyoung 		 * of a previously queued frame to cover this frame
   3580  1.1.1.4  dyoung 		 * and not exceed the txopLimit.  If that can be done
   3581  1.1.1.4  dyoung 		 * then disable RTS/CTS on this frame since it's now
   3582  1.1.1.4  dyoung 		 * covered (burst extension).  Otherwise we must terminate
   3583  1.1.1.4  dyoung 		 * the burst before this frame goes out so as not to
   3584  1.1.1.4  dyoung 		 * violate the WME parameters.  All this is complicated
   3585  1.1.1.4  dyoung 		 * as we need to update the state of packets on the
   3586  1.1.1.4  dyoung 		 * (live) hardware queue.  The logic is buried in the hal
   3587  1.1.1.4  dyoung 		 * because it's highly chip-specific.
   3588  1.1.1.4  dyoung 		 */
   3589  1.1.1.4  dyoung 		if (txopLimit != 0) {
   3590  1.1.1.4  dyoung 			sc->sc_stats.ast_tx_ctsburst++;
   3591  1.1.1.4  dyoung 			if (updateCTSForBursting(ah, ds0, txq) == 0) {
   3592  1.1.1.4  dyoung 				/*
   3593  1.1.1.4  dyoung 				 * This frame was not covered by RTS/CTS from
   3594  1.1.1.4  dyoung 				 * the previous frame in the burst; update the
   3595  1.1.1.4  dyoung 				 * descriptor pointers so this frame is now
   3596  1.1.1.4  dyoung 				 * treated as the last frame for extending a
   3597  1.1.1.4  dyoung 				 * burst.
   3598  1.1.1.4  dyoung 				 */
   3599  1.1.1.4  dyoung 				txq->axq_lastdsWithCTS = ds0;
   3600  1.1.1.4  dyoung 				/* set gating Desc to final desc */
   3601  1.1.1.4  dyoung 				txq->axq_gatingds =
   3602  1.1.1.4  dyoung 					(struct ath_desc *)txq->axq_link;
   3603  1.1.1.4  dyoung 			} else
   3604  1.1.1.4  dyoung 				sc->sc_stats.ast_tx_ctsext++;
   3605  1.1.1.4  dyoung 		}
   3606  1.1.1.4  dyoung 	}
   3607  1.1.1.4  dyoung 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3608  1.1.1.4  dyoung 	if (txq->axq_link == NULL) {
   3609  1.1.1.4  dyoung 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3610  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3611  1.1.1.4  dyoung 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
   3612  1.1.1.4  dyoung 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
   3613  1.1.1.4  dyoung 			txq->axq_depth);
   3614      1.1  dyoung 	} else {
   3615  1.1.1.4  dyoung 		*txq->axq_link = bf->bf_daddr;
   3616  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3617  1.1.1.4  dyoung 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
   3618  1.1.1.4  dyoung 			txq->axq_qnum, txq->axq_link,
   3619  1.1.1.4  dyoung 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3620      1.1  dyoung 	}
   3621  1.1.1.4  dyoung 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3622  1.1.1.4  dyoung 	/*
   3623  1.1.1.4  dyoung 	 * The CAB queue is started from the SWBA handler since
   3624  1.1.1.4  dyoung 	 * frames only go out on DTIM and to avoid possible races.
   3625  1.1.1.4  dyoung 	 */
   3626  1.1.1.4  dyoung 	if (txq != sc->sc_cabq)
   3627  1.1.1.4  dyoung 		ath_hal_txstart(ah, txq->axq_qnum);
   3628  1.1.1.4  dyoung 	ATH_TXQ_UNLOCK(txq);
   3629      1.1  dyoung 
   3630      1.1  dyoung 	return 0;
   3631  1.1.1.4  dyoung #undef updateCTSForBursting
   3632  1.1.1.4  dyoung #undef CTS_DURATION
   3633      1.1  dyoung }
   3634      1.1  dyoung 
   3635  1.1.1.4  dyoung /*
   3636  1.1.1.4  dyoung  * Process completed xmit descriptors from the specified queue.
   3637  1.1.1.4  dyoung  */
   3638      1.1  dyoung static void
   3639  1.1.1.4  dyoung ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3640      1.1  dyoung {
   3641      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3642      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   3643  1.1.1.4  dyoung 	struct ath_buf *bf;
   3644  1.1.1.4  dyoung 	struct ath_desc *ds, *ds0;
   3645      1.1  dyoung 	struct ieee80211_node *ni;
   3646      1.1  dyoung 	struct ath_node *an;
   3647  1.1.1.4  dyoung 	int sr, lr, pri;
   3648      1.1  dyoung 	HAL_STATUS status;
   3649      1.1  dyoung 
   3650  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3651  1.1.1.4  dyoung 		__func__, txq->axq_qnum,
   3652  1.1.1.4  dyoung 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3653  1.1.1.4  dyoung 		txq->axq_link);
   3654      1.1  dyoung 	for (;;) {
   3655  1.1.1.4  dyoung 		ATH_TXQ_LOCK(txq);
   3656  1.1.1.4  dyoung 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3657  1.1.1.4  dyoung 		bf = STAILQ_FIRST(&txq->axq_q);
   3658      1.1  dyoung 		if (bf == NULL) {
   3659  1.1.1.4  dyoung 			txq->axq_link = NULL;
   3660  1.1.1.4  dyoung 			ATH_TXQ_UNLOCK(txq);
   3661      1.1  dyoung 			break;
   3662      1.1  dyoung 		}
   3663  1.1.1.4  dyoung 		ds0 = &bf->bf_desc[0];
   3664      1.1  dyoung 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3665      1.1  dyoung 		status = ath_hal_txprocdesc(ah, ds);
   3666      1.1  dyoung #ifdef AR_DEBUG
   3667  1.1.1.4  dyoung 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3668      1.1  dyoung 			ath_printtxbuf(bf, status == HAL_OK);
   3669      1.1  dyoung #endif
   3670      1.1  dyoung 		if (status == HAL_EINPROGRESS) {
   3671  1.1.1.4  dyoung 			ATH_TXQ_UNLOCK(txq);
   3672      1.1  dyoung 			break;
   3673      1.1  dyoung 		}
   3674  1.1.1.4  dyoung 		if (ds0 == txq->axq_lastdsWithCTS)
   3675  1.1.1.4  dyoung 			txq->axq_lastdsWithCTS = NULL;
   3676  1.1.1.4  dyoung 		if (ds == txq->axq_gatingds)
   3677  1.1.1.4  dyoung 			txq->axq_gatingds = NULL;
   3678  1.1.1.4  dyoung 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3679  1.1.1.4  dyoung 		ATH_TXQ_UNLOCK(txq);
   3680      1.1  dyoung 
   3681      1.1  dyoung 		ni = bf->bf_node;
   3682      1.1  dyoung 		if (ni != NULL) {
   3683  1.1.1.4  dyoung 			an = ATH_NODE(ni);
   3684      1.1  dyoung 			if (ds->ds_txstat.ts_status == 0) {
   3685  1.1.1.4  dyoung 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3686  1.1.1.4  dyoung 				sc->sc_stats.ast_ant_tx[txant]++;
   3687  1.1.1.4  dyoung 				sc->sc_ant_tx[txant]++;
   3688  1.1.1.4  dyoung 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3689  1.1.1.4  dyoung 					sc->sc_stats.ast_tx_altrate++;
   3690  1.1.1.4  dyoung 				sc->sc_stats.ast_tx_rssi =
   3691  1.1.1.4  dyoung 					ds->ds_txstat.ts_rssi;
   3692  1.1.1.4  dyoung 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
   3693  1.1.1.4  dyoung 					ds->ds_txstat.ts_rssi);
   3694  1.1.1.4  dyoung 				pri = M_WME_GETAC(bf->bf_m);
   3695  1.1.1.4  dyoung 				if (pri >= WME_AC_VO)
   3696  1.1.1.4  dyoung 					ic->ic_wme.wme_hipri_traffic++;
   3697  1.1.1.4  dyoung 				ni->ni_inact = ni->ni_inact_reload;
   3698      1.1  dyoung 			} else {
   3699      1.1  dyoung 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3700      1.1  dyoung 					sc->sc_stats.ast_tx_xretries++;
   3701      1.1  dyoung 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3702      1.1  dyoung 					sc->sc_stats.ast_tx_fifoerr++;
   3703      1.1  dyoung 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3704      1.1  dyoung 					sc->sc_stats.ast_tx_filtered++;
   3705      1.1  dyoung 			}
   3706      1.1  dyoung 			sr = ds->ds_txstat.ts_shortretry;
   3707      1.1  dyoung 			lr = ds->ds_txstat.ts_longretry;
   3708      1.1  dyoung 			sc->sc_stats.ast_tx_shortretry += sr;
   3709      1.1  dyoung 			sc->sc_stats.ast_tx_longretry += lr;
   3710  1.1.1.4  dyoung 			/*
   3711  1.1.1.4  dyoung 			 * Hand the descriptor to the rate control algorithm.
   3712  1.1.1.4  dyoung 			 */
   3713  1.1.1.5  dyoung 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   3714  1.1.1.5  dyoung 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
   3715  1.1.1.5  dyoung 				ath_rate_tx_complete(sc, an, ds, ds0);
   3716      1.1  dyoung 			/*
   3717      1.1  dyoung 			 * Reclaim reference to node.
   3718      1.1  dyoung 			 *
   3719      1.1  dyoung 			 * NB: the node may be reclaimed here if, for example
   3720      1.1  dyoung 			 *     this is a DEAUTH message that was sent and the
   3721      1.1  dyoung 			 *     node was timed out due to inactivity.
   3722      1.1  dyoung 			 */
   3723  1.1.1.4  dyoung 			ieee80211_free_node(ni);
   3724      1.1  dyoung 		}
   3725      1.1  dyoung 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3726      1.1  dyoung 		    BUS_DMASYNC_POSTWRITE);
   3727      1.1  dyoung 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3728      1.1  dyoung 		m_freem(bf->bf_m);
   3729      1.1  dyoung 		bf->bf_m = NULL;
   3730      1.1  dyoung 		bf->bf_node = NULL;
   3731      1.1  dyoung 
   3732  1.1.1.2  dyoung 		ATH_TXBUF_LOCK(sc);
   3733  1.1.1.4  dyoung 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3734  1.1.1.2  dyoung 		ATH_TXBUF_UNLOCK(sc);
   3735      1.1  dyoung 	}
   3736  1.1.1.4  dyoung }
   3737  1.1.1.4  dyoung 
   3738  1.1.1.4  dyoung /*
   3739  1.1.1.4  dyoung  * Deferred processing of transmit interrupt; special-cased
   3740  1.1.1.4  dyoung  * for a single hardware transmit queue (e.g. 5210 and 5211).
   3741  1.1.1.4  dyoung  */
   3742  1.1.1.4  dyoung static void
   3743  1.1.1.4  dyoung ath_tx_proc_q0(void *arg, int npending)
   3744  1.1.1.4  dyoung {
   3745  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   3746  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   3747  1.1.1.4  dyoung 
   3748  1.1.1.4  dyoung 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3749  1.1.1.4  dyoung 	ath_tx_processq(sc, sc->sc_cabq);
   3750      1.1  dyoung 	ifp->if_flags &= ~IFF_OACTIVE;
   3751      1.1  dyoung 	sc->sc_tx_timer = 0;
   3752      1.1  dyoung 
   3753  1.1.1.4  dyoung 	if (sc->sc_softled)
   3754  1.1.1.4  dyoung 		ath_led_event(sc, ATH_LED_TX);
   3755  1.1.1.4  dyoung 
   3756      1.1  dyoung 	ath_start(ifp);
   3757      1.1  dyoung }
   3758      1.1  dyoung 
   3759      1.1  dyoung /*
   3760  1.1.1.4  dyoung  * Deferred processing of transmit interrupt; special-cased
   3761  1.1.1.4  dyoung  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   3762      1.1  dyoung  */
   3763      1.1  dyoung static void
   3764  1.1.1.4  dyoung ath_tx_proc_q0123(void *arg, int npending)
   3765  1.1.1.4  dyoung {
   3766  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   3767  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   3768  1.1.1.4  dyoung 
   3769  1.1.1.4  dyoung 	/*
   3770  1.1.1.4  dyoung 	 * Process each active queue.
   3771  1.1.1.4  dyoung 	 */
   3772  1.1.1.4  dyoung 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3773  1.1.1.4  dyoung 	ath_tx_processq(sc, &sc->sc_txq[1]);
   3774  1.1.1.4  dyoung 	ath_tx_processq(sc, &sc->sc_txq[2]);
   3775  1.1.1.4  dyoung 	ath_tx_processq(sc, &sc->sc_txq[3]);
   3776  1.1.1.4  dyoung 	ath_tx_processq(sc, sc->sc_cabq);
   3777  1.1.1.4  dyoung 
   3778  1.1.1.4  dyoung 	ifp->if_flags &= ~IFF_OACTIVE;
   3779  1.1.1.4  dyoung 	sc->sc_tx_timer = 0;
   3780  1.1.1.4  dyoung 
   3781  1.1.1.4  dyoung 	if (sc->sc_softled)
   3782  1.1.1.4  dyoung 		ath_led_event(sc, ATH_LED_TX);
   3783  1.1.1.4  dyoung 
   3784  1.1.1.4  dyoung 	ath_start(ifp);
   3785  1.1.1.4  dyoung }
   3786  1.1.1.4  dyoung 
   3787  1.1.1.4  dyoung /*
   3788  1.1.1.4  dyoung  * Deferred processing of transmit interrupt.
   3789  1.1.1.4  dyoung  */
   3790  1.1.1.4  dyoung static void
   3791  1.1.1.4  dyoung ath_tx_proc(void *arg, int npending)
   3792  1.1.1.4  dyoung {
   3793  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   3794  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   3795  1.1.1.4  dyoung 	int i;
   3796  1.1.1.4  dyoung 
   3797  1.1.1.4  dyoung 	/*
   3798  1.1.1.4  dyoung 	 * Process each active queue.
   3799  1.1.1.4  dyoung 	 */
   3800  1.1.1.4  dyoung 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
   3801  1.1.1.4  dyoung 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3802  1.1.1.4  dyoung 		if (ATH_TXQ_SETUP(sc, i))
   3803  1.1.1.4  dyoung 			ath_tx_processq(sc, &sc->sc_txq[i]);
   3804  1.1.1.4  dyoung 
   3805  1.1.1.4  dyoung 	ifp->if_flags &= ~IFF_OACTIVE;
   3806  1.1.1.4  dyoung 	sc->sc_tx_timer = 0;
   3807  1.1.1.4  dyoung 
   3808  1.1.1.4  dyoung 	if (sc->sc_softled)
   3809  1.1.1.4  dyoung 		ath_led_event(sc, ATH_LED_TX);
   3810  1.1.1.4  dyoung 
   3811  1.1.1.4  dyoung 	ath_start(ifp);
   3812  1.1.1.4  dyoung }
   3813  1.1.1.4  dyoung 
   3814  1.1.1.4  dyoung static void
   3815  1.1.1.4  dyoung ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   3816      1.1  dyoung {
   3817      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3818  1.1.1.3  dyoung 	struct ieee80211_node *ni;
   3819      1.1  dyoung 	struct ath_buf *bf;
   3820      1.1  dyoung 
   3821  1.1.1.4  dyoung 	/*
   3822  1.1.1.4  dyoung 	 * NB: this assumes output has been stopped and
   3823  1.1.1.4  dyoung 	 *     we do not need to block ath_tx_tasklet
   3824  1.1.1.4  dyoung 	 */
   3825      1.1  dyoung 	for (;;) {
   3826  1.1.1.4  dyoung 		ATH_TXQ_LOCK(txq);
   3827  1.1.1.4  dyoung 		bf = STAILQ_FIRST(&txq->axq_q);
   3828      1.1  dyoung 		if (bf == NULL) {
   3829  1.1.1.4  dyoung 			txq->axq_link = NULL;
   3830  1.1.1.4  dyoung 			ATH_TXQ_UNLOCK(txq);
   3831      1.1  dyoung 			break;
   3832      1.1  dyoung 		}
   3833  1.1.1.4  dyoung 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3834  1.1.1.4  dyoung 		ATH_TXQ_UNLOCK(txq);
   3835      1.1  dyoung #ifdef AR_DEBUG
   3836  1.1.1.4  dyoung 		if (sc->sc_debug & ATH_DEBUG_RESET)
   3837      1.1  dyoung 			ath_printtxbuf(bf,
   3838      1.1  dyoung 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   3839      1.1  dyoung #endif /* AR_DEBUG */
   3840      1.1  dyoung 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3841      1.1  dyoung 		m_freem(bf->bf_m);
   3842      1.1  dyoung 		bf->bf_m = NULL;
   3843  1.1.1.3  dyoung 		ni = bf->bf_node;
   3844      1.1  dyoung 		bf->bf_node = NULL;
   3845  1.1.1.4  dyoung 		if (ni != NULL) {
   3846  1.1.1.3  dyoung 			/*
   3847  1.1.1.3  dyoung 			 * Reclaim node reference.
   3848  1.1.1.3  dyoung 			 */
   3849  1.1.1.4  dyoung 			ieee80211_free_node(ni);
   3850  1.1.1.3  dyoung 		}
   3851  1.1.1.2  dyoung 		ATH_TXBUF_LOCK(sc);
   3852  1.1.1.4  dyoung 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3853  1.1.1.2  dyoung 		ATH_TXBUF_UNLOCK(sc);
   3854      1.1  dyoung 	}
   3855  1.1.1.4  dyoung }
   3856  1.1.1.4  dyoung 
   3857  1.1.1.4  dyoung static void
   3858  1.1.1.4  dyoung ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   3859  1.1.1.4  dyoung {
   3860  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3861  1.1.1.4  dyoung 
   3862  1.1.1.4  dyoung 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   3863  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   3864  1.1.1.4  dyoung 	    __func__, txq->axq_qnum,
   3865  1.1.1.4  dyoung 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   3866  1.1.1.4  dyoung 	    txq->axq_link);
   3867  1.1.1.4  dyoung }
   3868  1.1.1.4  dyoung 
   3869  1.1.1.4  dyoung /*
   3870  1.1.1.4  dyoung  * Drain the transmit queues and reclaim resources.
   3871  1.1.1.4  dyoung  */
   3872  1.1.1.4  dyoung static void
   3873  1.1.1.4  dyoung ath_draintxq(struct ath_softc *sc)
   3874  1.1.1.4  dyoung {
   3875  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3876  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   3877  1.1.1.4  dyoung 	int i;
   3878  1.1.1.4  dyoung 
   3879  1.1.1.4  dyoung 	/* XXX return value */
   3880  1.1.1.4  dyoung 	if (!sc->sc_invalid) {
   3881  1.1.1.4  dyoung 		/* don't touch the hardware if marked invalid */
   3882  1.1.1.4  dyoung 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   3883  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_RESET,
   3884  1.1.1.4  dyoung 		    "%s: beacon queue %p\n", __func__,
   3885  1.1.1.4  dyoung 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   3886  1.1.1.4  dyoung 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3887  1.1.1.4  dyoung 			if (ATH_TXQ_SETUP(sc, i))
   3888  1.1.1.4  dyoung 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   3889  1.1.1.4  dyoung 	}
   3890  1.1.1.4  dyoung 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3891  1.1.1.4  dyoung 		if (ATH_TXQ_SETUP(sc, i))
   3892  1.1.1.4  dyoung 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   3893      1.1  dyoung 	ifp->if_flags &= ~IFF_OACTIVE;
   3894      1.1  dyoung 	sc->sc_tx_timer = 0;
   3895      1.1  dyoung }
   3896      1.1  dyoung 
   3897      1.1  dyoung /*
   3898      1.1  dyoung  * Disable the receive h/w in preparation for a reset.
   3899      1.1  dyoung  */
   3900      1.1  dyoung static void
   3901      1.1  dyoung ath_stoprecv(struct ath_softc *sc)
   3902      1.1  dyoung {
   3903  1.1.1.2  dyoung #define	PA2DESC(_sc, _pa) \
   3904  1.1.1.4  dyoung 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   3905  1.1.1.4  dyoung 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   3906      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3907      1.1  dyoung 
   3908      1.1  dyoung 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   3909      1.1  dyoung 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   3910      1.1  dyoung 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   3911  1.1.1.4  dyoung 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   3912      1.1  dyoung #ifdef AR_DEBUG
   3913  1.1.1.4  dyoung 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   3914      1.1  dyoung 		struct ath_buf *bf;
   3915      1.1  dyoung 
   3916  1.1.1.3  dyoung 		printf("%s: rx queue %p, link %p\n", __func__,
   3917  1.1.1.3  dyoung 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   3918  1.1.1.4  dyoung 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   3919  1.1.1.2  dyoung 			struct ath_desc *ds = bf->bf_desc;
   3920  1.1.1.4  dyoung 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   3921  1.1.1.4  dyoung 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   3922  1.1.1.4  dyoung 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   3923  1.1.1.4  dyoung 				ath_printrxbuf(bf, status == HAL_OK);
   3924      1.1  dyoung 		}
   3925      1.1  dyoung 	}
   3926      1.1  dyoung #endif
   3927      1.1  dyoung 	sc->sc_rxlink = NULL;		/* just in case */
   3928  1.1.1.2  dyoung #undef PA2DESC
   3929      1.1  dyoung }
   3930      1.1  dyoung 
   3931      1.1  dyoung /*
   3932      1.1  dyoung  * Enable the receive h/w following a reset.
   3933      1.1  dyoung  */
   3934      1.1  dyoung static int
   3935      1.1  dyoung ath_startrecv(struct ath_softc *sc)
   3936      1.1  dyoung {
   3937      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3938      1.1  dyoung 	struct ath_buf *bf;
   3939      1.1  dyoung 
   3940      1.1  dyoung 	sc->sc_rxlink = NULL;
   3941  1.1.1.4  dyoung 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   3942      1.1  dyoung 		int error = ath_rxbuf_init(sc, bf);
   3943      1.1  dyoung 		if (error != 0) {
   3944  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_RECV,
   3945  1.1.1.4  dyoung 				"%s: ath_rxbuf_init failed %d\n",
   3946  1.1.1.4  dyoung 				__func__, error);
   3947      1.1  dyoung 			return error;
   3948      1.1  dyoung 		}
   3949      1.1  dyoung 	}
   3950      1.1  dyoung 
   3951  1.1.1.4  dyoung 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3952      1.1  dyoung 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   3953      1.1  dyoung 	ath_hal_rxena(ah);		/* enable recv descriptors */
   3954      1.1  dyoung 	ath_mode_init(sc);		/* set filters, etc. */
   3955      1.1  dyoung 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   3956      1.1  dyoung 	return 0;
   3957      1.1  dyoung }
   3958      1.1  dyoung 
   3959  1.1.1.4  dyoung /*
   3960  1.1.1.4  dyoung  * Update internal state after a channel change.
   3961  1.1.1.4  dyoung  */
   3962  1.1.1.4  dyoung static void
   3963  1.1.1.4  dyoung ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   3964  1.1.1.4  dyoung {
   3965  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   3966  1.1.1.4  dyoung 	enum ieee80211_phymode mode;
   3967  1.1.1.4  dyoung 	u_int16_t flags;
   3968  1.1.1.4  dyoung 
   3969  1.1.1.4  dyoung 	/*
   3970  1.1.1.4  dyoung 	 * Change channels and update the h/w rate map
   3971  1.1.1.4  dyoung 	 * if we're switching; e.g. 11a to 11b/g.
   3972  1.1.1.4  dyoung 	 */
   3973  1.1.1.4  dyoung 	mode = ieee80211_chan2mode(ic, chan);
   3974  1.1.1.4  dyoung 	if (mode != sc->sc_curmode)
   3975  1.1.1.4  dyoung 		ath_setcurmode(sc, mode);
   3976  1.1.1.4  dyoung 	/*
   3977  1.1.1.4  dyoung 	 * Update BPF state.  NB: ethereal et. al. don't handle
   3978  1.1.1.4  dyoung 	 * merged flags well so pick a unique mode for their use.
   3979  1.1.1.4  dyoung 	 */
   3980  1.1.1.4  dyoung 	if (IEEE80211_IS_CHAN_A(chan))
   3981  1.1.1.4  dyoung 		flags = IEEE80211_CHAN_A;
   3982  1.1.1.4  dyoung 	/* XXX 11g schizophrenia */
   3983  1.1.1.4  dyoung 	else if (IEEE80211_IS_CHAN_G(chan) ||
   3984  1.1.1.4  dyoung 	    IEEE80211_IS_CHAN_PUREG(chan))
   3985  1.1.1.4  dyoung 		flags = IEEE80211_CHAN_G;
   3986  1.1.1.4  dyoung 	else
   3987  1.1.1.4  dyoung 		flags = IEEE80211_CHAN_B;
   3988  1.1.1.4  dyoung 	if (IEEE80211_IS_CHAN_T(chan))
   3989  1.1.1.4  dyoung 		flags |= IEEE80211_CHAN_TURBO;
   3990  1.1.1.4  dyoung 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   3991  1.1.1.4  dyoung 		htole16(chan->ic_freq);
   3992  1.1.1.4  dyoung 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   3993  1.1.1.4  dyoung 		htole16(flags);
   3994  1.1.1.4  dyoung }
   3995  1.1.1.4  dyoung 
   3996      1.1  dyoung /*
   3997      1.1  dyoung  * Set/change channels.  If the channel is really being changed,
   3998  1.1.1.4  dyoung  * it's done by reseting the chip.  To accomplish this we must
   3999      1.1  dyoung  * first cleanup any pending DMA, then restart stuff after a la
   4000      1.1  dyoung  * ath_init.
   4001      1.1  dyoung  */
   4002      1.1  dyoung static int
   4003      1.1  dyoung ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4004      1.1  dyoung {
   4005      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4006      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4007  1.1.1.4  dyoung 	HAL_CHANNEL hchan;
   4008  1.1.1.4  dyoung 
   4009  1.1.1.4  dyoung 	/*
   4010  1.1.1.4  dyoung 	 * Convert to a HAL channel description with
   4011  1.1.1.4  dyoung 	 * the flags constrained to reflect the current
   4012  1.1.1.4  dyoung 	 * operating mode.
   4013  1.1.1.4  dyoung 	 */
   4014  1.1.1.4  dyoung 	hchan.channel = chan->ic_freq;
   4015  1.1.1.4  dyoung 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4016      1.1  dyoung 
   4017  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
   4018  1.1.1.4  dyoung 	    __func__,
   4019  1.1.1.4  dyoung 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
   4020  1.1.1.4  dyoung 		sc->sc_curchan.channelFlags),
   4021  1.1.1.4  dyoung 	    	sc->sc_curchan.channel,
   4022  1.1.1.4  dyoung 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
   4023  1.1.1.4  dyoung 	if (hchan.channel != sc->sc_curchan.channel ||
   4024  1.1.1.4  dyoung 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4025      1.1  dyoung 		HAL_STATUS status;
   4026      1.1  dyoung 
   4027      1.1  dyoung 		/*
   4028      1.1  dyoung 		 * To switch channels clear any pending DMA operations;
   4029      1.1  dyoung 		 * wait long enough for the RX fifo to drain, reset the
   4030      1.1  dyoung 		 * hardware at the new frequency, and then re-enable
   4031      1.1  dyoung 		 * the relevant bits of the h/w.
   4032      1.1  dyoung 		 */
   4033      1.1  dyoung 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4034      1.1  dyoung 		ath_draintxq(sc);		/* clear pending tx frames */
   4035      1.1  dyoung 		ath_stoprecv(sc);		/* turn off frame recv */
   4036      1.1  dyoung 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4037  1.1.1.4  dyoung 			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
   4038      1.1  dyoung 				"channel %u (%u Mhz)\n",
   4039      1.1  dyoung 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
   4040      1.1  dyoung 			return EIO;
   4041      1.1  dyoung 		}
   4042  1.1.1.4  dyoung 		sc->sc_curchan = hchan;
   4043  1.1.1.4  dyoung 		ath_update_txpow(sc);		/* update tx power state */
   4044  1.1.1.4  dyoung 
   4045      1.1  dyoung 		/*
   4046      1.1  dyoung 		 * Re-enable rx framework.
   4047      1.1  dyoung 		 */
   4048      1.1  dyoung 		if (ath_startrecv(sc) != 0) {
   4049  1.1.1.4  dyoung 			if_printf(ic->ic_ifp,
   4050      1.1  dyoung 				"ath_chan_set: unable to restart recv logic\n");
   4051      1.1  dyoung 			return EIO;
   4052      1.1  dyoung 		}
   4053      1.1  dyoung 
   4054      1.1  dyoung 		/*
   4055      1.1  dyoung 		 * Change channels and update the h/w rate map
   4056      1.1  dyoung 		 * if we're switching; e.g. 11a to 11b/g.
   4057      1.1  dyoung 		 */
   4058      1.1  dyoung 		ic->ic_ibss_chan = chan;
   4059  1.1.1.4  dyoung 		ath_chan_change(sc, chan);
   4060      1.1  dyoung 
   4061      1.1  dyoung 		/*
   4062      1.1  dyoung 		 * Re-enable interrupts.
   4063      1.1  dyoung 		 */
   4064      1.1  dyoung 		ath_hal_intrset(ah, sc->sc_imask);
   4065      1.1  dyoung 	}
   4066      1.1  dyoung 	return 0;
   4067      1.1  dyoung }
   4068      1.1  dyoung 
   4069      1.1  dyoung static void
   4070      1.1  dyoung ath_next_scan(void *arg)
   4071      1.1  dyoung {
   4072      1.1  dyoung 	struct ath_softc *sc = arg;
   4073      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4074      1.1  dyoung 
   4075      1.1  dyoung 	if (ic->ic_state == IEEE80211_S_SCAN)
   4076  1.1.1.4  dyoung 		ieee80211_next_scan(ic);
   4077      1.1  dyoung }
   4078      1.1  dyoung 
   4079      1.1  dyoung /*
   4080      1.1  dyoung  * Periodically recalibrate the PHY to account
   4081      1.1  dyoung  * for temperature/environment changes.
   4082      1.1  dyoung  */
   4083      1.1  dyoung static void
   4084      1.1  dyoung ath_calibrate(void *arg)
   4085      1.1  dyoung {
   4086      1.1  dyoung 	struct ath_softc *sc = arg;
   4087      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4088      1.1  dyoung 
   4089      1.1  dyoung 	sc->sc_stats.ast_per_cal++;
   4090      1.1  dyoung 
   4091  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
   4092  1.1.1.4  dyoung 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
   4093      1.1  dyoung 
   4094      1.1  dyoung 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4095      1.1  dyoung 		/*
   4096      1.1  dyoung 		 * Rfgain is out of bounds, reset the chip
   4097      1.1  dyoung 		 * to load new gain values.
   4098      1.1  dyoung 		 */
   4099      1.1  dyoung 		sc->sc_stats.ast_per_rfgain++;
   4100  1.1.1.5  dyoung 		ath_reset(sc->sc_ifp);
   4101      1.1  dyoung 	}
   4102  1.1.1.4  dyoung 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
   4103  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY,
   4104  1.1.1.4  dyoung 			"%s: calibration of channel %u failed\n",
   4105  1.1.1.4  dyoung 			__func__, sc->sc_curchan.channel);
   4106      1.1  dyoung 		sc->sc_stats.ast_per_calfail++;
   4107      1.1  dyoung 	}
   4108  1.1.1.4  dyoung 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
   4109      1.1  dyoung }
   4110      1.1  dyoung 
   4111      1.1  dyoung static int
   4112      1.1  dyoung ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4113      1.1  dyoung {
   4114  1.1.1.4  dyoung 	struct ifnet *ifp = ic->ic_ifp;
   4115      1.1  dyoung 	struct ath_softc *sc = ifp->if_softc;
   4116      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4117      1.1  dyoung 	struct ieee80211_node *ni;
   4118      1.1  dyoung 	int i, error;
   4119  1.1.1.2  dyoung 	const u_int8_t *bssid;
   4120      1.1  dyoung 	u_int32_t rfilt;
   4121      1.1  dyoung 	static const HAL_LED_STATE leds[] = {
   4122      1.1  dyoung 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4123      1.1  dyoung 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4124      1.1  dyoung 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4125      1.1  dyoung 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4126      1.1  dyoung 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4127      1.1  dyoung 	};
   4128      1.1  dyoung 
   4129  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4130      1.1  dyoung 		ieee80211_state_name[ic->ic_state],
   4131  1.1.1.4  dyoung 		ieee80211_state_name[nstate]);
   4132      1.1  dyoung 
   4133  1.1.1.4  dyoung 	callout_stop(&sc->sc_scan_ch);
   4134  1.1.1.4  dyoung 	callout_stop(&sc->sc_cal_ch);
   4135      1.1  dyoung 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4136      1.1  dyoung 
   4137      1.1  dyoung 	if (nstate == IEEE80211_S_INIT) {
   4138      1.1  dyoung 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4139  1.1.1.4  dyoung 		/*
   4140  1.1.1.4  dyoung 		 * NB: disable interrupts so we don't rx frames.
   4141  1.1.1.4  dyoung 		 */
   4142  1.1.1.5  dyoung 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4143  1.1.1.4  dyoung 		/*
   4144  1.1.1.4  dyoung 		 * Notify the rate control algorithm.
   4145  1.1.1.4  dyoung 		 */
   4146  1.1.1.4  dyoung 		ath_rate_newstate(sc, nstate);
   4147  1.1.1.4  dyoung 		goto done;
   4148      1.1  dyoung 	}
   4149      1.1  dyoung 	ni = ic->ic_bss;
   4150      1.1  dyoung 	error = ath_chan_set(sc, ni->ni_chan);
   4151      1.1  dyoung 	if (error != 0)
   4152      1.1  dyoung 		goto bad;
   4153  1.1.1.4  dyoung 	rfilt = ath_calcrxfilter(sc, nstate);
   4154  1.1.1.4  dyoung 	if (nstate == IEEE80211_S_SCAN)
   4155      1.1  dyoung 		bssid = ifp->if_broadcastaddr;
   4156  1.1.1.4  dyoung 	else
   4157      1.1  dyoung 		bssid = ni->ni_bssid;
   4158      1.1  dyoung 	ath_hal_setrxfilter(ah, rfilt);
   4159  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4160  1.1.1.4  dyoung 		 __func__, rfilt, ether_sprintf(bssid));
   4161      1.1  dyoung 
   4162      1.1  dyoung 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4163      1.1  dyoung 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4164      1.1  dyoung 	else
   4165      1.1  dyoung 		ath_hal_setassocid(ah, bssid, 0);
   4166  1.1.1.4  dyoung 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4167      1.1  dyoung 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4168      1.1  dyoung 			if (ath_hal_keyisvalid(ah, i))
   4169      1.1  dyoung 				ath_hal_keysetmac(ah, i, bssid);
   4170      1.1  dyoung 	}
   4171      1.1  dyoung 
   4172  1.1.1.4  dyoung 	/*
   4173  1.1.1.4  dyoung 	 * Notify the rate control algorithm so rates
   4174  1.1.1.4  dyoung 	 * are setup should ath_beacon_alloc be called.
   4175  1.1.1.4  dyoung 	 */
   4176  1.1.1.4  dyoung 	ath_rate_newstate(sc, nstate);
   4177  1.1.1.4  dyoung 
   4178  1.1.1.4  dyoung 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4179  1.1.1.4  dyoung 		/* nothing to do */;
   4180  1.1.1.4  dyoung 	} else if (nstate == IEEE80211_S_RUN) {
   4181  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_STATE,
   4182  1.1.1.4  dyoung 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4183      1.1  dyoung 			"capinfo=0x%04x chan=%d\n"
   4184      1.1  dyoung 			 , __func__
   4185      1.1  dyoung 			 , ic->ic_flags
   4186      1.1  dyoung 			 , ni->ni_intval
   4187      1.1  dyoung 			 , ether_sprintf(ni->ni_bssid)
   4188      1.1  dyoung 			 , ni->ni_capinfo
   4189  1.1.1.4  dyoung 			 , ieee80211_chan2ieee(ic, ni->ni_chan));
   4190      1.1  dyoung 
   4191  1.1.1.5  dyoung 		switch (ic->ic_opmode) {
   4192  1.1.1.5  dyoung 		case IEEE80211_M_HOSTAP:
   4193  1.1.1.5  dyoung 		case IEEE80211_M_IBSS:
   4194  1.1.1.4  dyoung 			/*
   4195  1.1.1.5  dyoung 			 * Allocate and setup the beacon frame.
   4196  1.1.1.5  dyoung 			 *
   4197  1.1.1.4  dyoung 			 * Stop any previous beacon DMA.  This may be
   4198  1.1.1.4  dyoung 			 * necessary, for example, when an ibss merge
   4199  1.1.1.4  dyoung 			 * causes reconfiguration; there will be a state
   4200  1.1.1.4  dyoung 			 * transition from RUN->RUN that means we may
   4201  1.1.1.4  dyoung 			 * be called with beacon transmission active.
   4202  1.1.1.4  dyoung 			 */
   4203  1.1.1.4  dyoung 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4204  1.1.1.4  dyoung 			ath_beacon_free(sc);
   4205      1.1  dyoung 			error = ath_beacon_alloc(sc, ni);
   4206      1.1  dyoung 			if (error != 0)
   4207      1.1  dyoung 				goto bad;
   4208  1.1.1.5  dyoung 			break;
   4209  1.1.1.5  dyoung 		case IEEE80211_M_STA:
   4210  1.1.1.5  dyoung 			/*
   4211  1.1.1.5  dyoung 			 * Allocate a key cache slot to the station.
   4212  1.1.1.5  dyoung 			 */
   4213  1.1.1.5  dyoung 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4214  1.1.1.5  dyoung 			    sc->sc_hasclrkey &&
   4215  1.1.1.5  dyoung 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4216  1.1.1.5  dyoung 				ath_setup_stationkey(ni);
   4217  1.1.1.5  dyoung 			break;
   4218  1.1.1.5  dyoung 		default:
   4219  1.1.1.5  dyoung 			break;
   4220      1.1  dyoung 		}
   4221      1.1  dyoung 
   4222      1.1  dyoung 		/*
   4223      1.1  dyoung 		 * Configure the beacon and sleep timers.
   4224      1.1  dyoung 		 */
   4225      1.1  dyoung 		ath_beacon_config(sc);
   4226      1.1  dyoung 	} else {
   4227  1.1.1.4  dyoung 		ath_hal_intrset(ah,
   4228  1.1.1.4  dyoung 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4229      1.1  dyoung 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4230      1.1  dyoung 	}
   4231  1.1.1.4  dyoung done:
   4232      1.1  dyoung 	/*
   4233  1.1.1.4  dyoung 	 * Invoke the parent method to complete the work.
   4234      1.1  dyoung 	 */
   4235  1.1.1.4  dyoung 	error = sc->sc_newstate(ic, nstate, arg);
   4236      1.1  dyoung 	/*
   4237  1.1.1.4  dyoung 	 * Finally, start any timers.
   4238      1.1  dyoung 	 */
   4239  1.1.1.4  dyoung 	if (nstate == IEEE80211_S_RUN) {
   4240  1.1.1.4  dyoung 		/* start periodic recalibration timer */
   4241  1.1.1.4  dyoung 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
   4242  1.1.1.4  dyoung 			ath_calibrate, sc);
   4243  1.1.1.4  dyoung 	} else if (nstate == IEEE80211_S_SCAN) {
   4244  1.1.1.4  dyoung 		/* start ap/neighbor scan timer */
   4245  1.1.1.4  dyoung 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4246  1.1.1.4  dyoung 			ath_next_scan, sc);
   4247  1.1.1.4  dyoung 	}
   4248      1.1  dyoung bad:
   4249      1.1  dyoung 	return error;
   4250      1.1  dyoung }
   4251      1.1  dyoung 
   4252      1.1  dyoung /*
   4253  1.1.1.5  dyoung  * Allocate a key cache slot to the station so we can
   4254  1.1.1.5  dyoung  * setup a mapping from key index to node. The key cache
   4255  1.1.1.5  dyoung  * slot is needed for managing antenna state and for
   4256  1.1.1.5  dyoung  * compression when stations do not use crypto.  We do
   4257  1.1.1.5  dyoung  * it uniliaterally here; if crypto is employed this slot
   4258  1.1.1.5  dyoung  * will be reassigned.
   4259  1.1.1.5  dyoung  */
   4260  1.1.1.5  dyoung static void
   4261  1.1.1.5  dyoung ath_setup_stationkey(struct ieee80211_node *ni)
   4262  1.1.1.5  dyoung {
   4263  1.1.1.5  dyoung 	struct ieee80211com *ic = ni->ni_ic;
   4264  1.1.1.5  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4265  1.1.1.5  dyoung 	u_int16_t keyix;
   4266  1.1.1.5  dyoung 
   4267  1.1.1.5  dyoung 	keyix = ath_key_alloc(ic, &ni->ni_ucastkey);
   4268  1.1.1.5  dyoung 	if (keyix == IEEE80211_KEYIX_NONE) {
   4269  1.1.1.5  dyoung 		/*
   4270  1.1.1.5  dyoung 		 * Key cache is full; we'll fall back to doing
   4271  1.1.1.5  dyoung 		 * the more expensive lookup in software.  Note
   4272  1.1.1.5  dyoung 		 * this also means no h/w compression.
   4273  1.1.1.5  dyoung 		 */
   4274  1.1.1.5  dyoung 		/* XXX msg+statistic */
   4275  1.1.1.5  dyoung 	} else {
   4276  1.1.1.5  dyoung 		ni->ni_ucastkey.wk_keyix = keyix;
   4277  1.1.1.5  dyoung 		/* NB: this will create a pass-thru key entry */
   4278  1.1.1.5  dyoung 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4279  1.1.1.5  dyoung 	}
   4280  1.1.1.5  dyoung }
   4281  1.1.1.5  dyoung 
   4282  1.1.1.5  dyoung /*
   4283      1.1  dyoung  * Setup driver-specific state for a newly associated node.
   4284      1.1  dyoung  * Note that we're called also on a re-associate, the isnew
   4285      1.1  dyoung  * param tells us if this is the first time or not.
   4286      1.1  dyoung  */
   4287      1.1  dyoung static void
   4288      1.1  dyoung ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
   4289      1.1  dyoung {
   4290  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4291      1.1  dyoung 
   4292  1.1.1.4  dyoung 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4293  1.1.1.5  dyoung 	if (isnew &&
   4294  1.1.1.5  dyoung 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4295  1.1.1.5  dyoung 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4296  1.1.1.5  dyoung 		    ("new assoc with a unicast key already setup (keyix %u)",
   4297  1.1.1.5  dyoung 		    ni->ni_ucastkey.wk_keyix));
   4298  1.1.1.5  dyoung 		ath_setup_stationkey(ni);
   4299  1.1.1.5  dyoung 	}
   4300      1.1  dyoung }
   4301      1.1  dyoung 
   4302      1.1  dyoung static int
   4303  1.1.1.4  dyoung ath_getchannels(struct ath_softc *sc, u_int cc,
   4304  1.1.1.4  dyoung 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4305      1.1  dyoung {
   4306      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4307  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   4308      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4309      1.1  dyoung 	HAL_CHANNEL *chans;
   4310      1.1  dyoung 	int i, ix, nchan;
   4311      1.1  dyoung 
   4312      1.1  dyoung 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4313      1.1  dyoung 			M_TEMP, M_NOWAIT);
   4314      1.1  dyoung 	if (chans == NULL) {
   4315      1.1  dyoung 		if_printf(ifp, "unable to allocate channel table\n");
   4316      1.1  dyoung 		return ENOMEM;
   4317      1.1  dyoung 	}
   4318      1.1  dyoung 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4319  1.1.1.4  dyoung 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4320  1.1.1.4  dyoung 		u_int32_t rd;
   4321  1.1.1.4  dyoung 
   4322  1.1.1.4  dyoung 		ath_hal_getregdomain(ah, &rd);
   4323  1.1.1.4  dyoung 		if_printf(ifp, "unable to collect channel list from hal; "
   4324  1.1.1.4  dyoung 			"regdomain likely %u country code %u\n", rd, cc);
   4325      1.1  dyoung 		free(chans, M_TEMP);
   4326      1.1  dyoung 		return EINVAL;
   4327      1.1  dyoung 	}
   4328      1.1  dyoung 
   4329      1.1  dyoung 	/*
   4330      1.1  dyoung 	 * Convert HAL channels to ieee80211 ones and insert
   4331      1.1  dyoung 	 * them in the table according to their channel number.
   4332      1.1  dyoung 	 */
   4333      1.1  dyoung 	for (i = 0; i < nchan; i++) {
   4334      1.1  dyoung 		HAL_CHANNEL *c = &chans[i];
   4335      1.1  dyoung 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
   4336      1.1  dyoung 		if (ix > IEEE80211_CHAN_MAX) {
   4337      1.1  dyoung 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
   4338      1.1  dyoung 				ix, c->channel, c->channelFlags);
   4339      1.1  dyoung 			continue;
   4340      1.1  dyoung 		}
   4341      1.1  dyoung 		/* NB: flags are known to be compatible */
   4342      1.1  dyoung 		if (ic->ic_channels[ix].ic_freq == 0) {
   4343      1.1  dyoung 			ic->ic_channels[ix].ic_freq = c->channel;
   4344      1.1  dyoung 			ic->ic_channels[ix].ic_flags = c->channelFlags;
   4345      1.1  dyoung 		} else {
   4346      1.1  dyoung 			/* channels overlap; e.g. 11g and 11b */
   4347      1.1  dyoung 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
   4348      1.1  dyoung 		}
   4349      1.1  dyoung 	}
   4350      1.1  dyoung 	free(chans, M_TEMP);
   4351      1.1  dyoung 	return 0;
   4352      1.1  dyoung }
   4353      1.1  dyoung 
   4354  1.1.1.4  dyoung static void
   4355  1.1.1.4  dyoung ath_led_done(void *arg)
   4356  1.1.1.4  dyoung {
   4357  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   4358  1.1.1.4  dyoung 
   4359  1.1.1.4  dyoung 	sc->sc_blinking = 0;
   4360  1.1.1.4  dyoung }
   4361  1.1.1.4  dyoung 
   4362  1.1.1.4  dyoung /*
   4363  1.1.1.4  dyoung  * Turn the LED off: flip the pin and then set a timer so no
   4364  1.1.1.4  dyoung  * update will happen for the specified duration.
   4365  1.1.1.4  dyoung  */
   4366  1.1.1.4  dyoung static void
   4367  1.1.1.4  dyoung ath_led_off(void *arg)
   4368  1.1.1.4  dyoung {
   4369  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   4370  1.1.1.4  dyoung 
   4371  1.1.1.4  dyoung 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4372  1.1.1.4  dyoung 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4373  1.1.1.4  dyoung }
   4374  1.1.1.4  dyoung 
   4375  1.1.1.4  dyoung /*
   4376  1.1.1.4  dyoung  * Blink the LED according to the specified on/off times.
   4377  1.1.1.4  dyoung  */
   4378  1.1.1.4  dyoung static void
   4379  1.1.1.4  dyoung ath_led_blink(struct ath_softc *sc, int on, int off)
   4380  1.1.1.4  dyoung {
   4381  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4382  1.1.1.4  dyoung 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4383  1.1.1.4  dyoung 	sc->sc_blinking = 1;
   4384  1.1.1.4  dyoung 	sc->sc_ledoff = off;
   4385  1.1.1.4  dyoung 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4386  1.1.1.4  dyoung }
   4387  1.1.1.4  dyoung 
   4388  1.1.1.4  dyoung static void
   4389  1.1.1.4  dyoung ath_led_event(struct ath_softc *sc, int event)
   4390  1.1.1.4  dyoung {
   4391  1.1.1.4  dyoung 
   4392  1.1.1.4  dyoung 	sc->sc_ledevent = ticks;	/* time of last event */
   4393  1.1.1.4  dyoung 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4394  1.1.1.4  dyoung 		return;
   4395  1.1.1.4  dyoung 	switch (event) {
   4396  1.1.1.4  dyoung 	case ATH_LED_POLL:
   4397  1.1.1.4  dyoung 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4398  1.1.1.4  dyoung 			sc->sc_hwmap[0].ledoff);
   4399  1.1.1.4  dyoung 		break;
   4400  1.1.1.4  dyoung 	case ATH_LED_TX:
   4401  1.1.1.4  dyoung 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4402  1.1.1.4  dyoung 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4403  1.1.1.4  dyoung 		break;
   4404  1.1.1.4  dyoung 	case ATH_LED_RX:
   4405  1.1.1.4  dyoung 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4406  1.1.1.4  dyoung 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4407  1.1.1.4  dyoung 		break;
   4408  1.1.1.4  dyoung 	}
   4409  1.1.1.4  dyoung }
   4410  1.1.1.4  dyoung 
   4411  1.1.1.4  dyoung static void
   4412  1.1.1.4  dyoung ath_update_txpow(struct ath_softc *sc)
   4413  1.1.1.4  dyoung {
   4414  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4415  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4416  1.1.1.4  dyoung 	u_int32_t txpow;
   4417  1.1.1.4  dyoung 
   4418  1.1.1.4  dyoung 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4419  1.1.1.4  dyoung 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4420  1.1.1.4  dyoung 		/* read back in case value is clamped */
   4421  1.1.1.4  dyoung 		ath_hal_gettxpowlimit(ah, &txpow);
   4422  1.1.1.4  dyoung 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4423  1.1.1.4  dyoung 	}
   4424  1.1.1.4  dyoung 	/*
   4425  1.1.1.4  dyoung 	 * Fetch max tx power level for status requests.
   4426  1.1.1.4  dyoung 	 */
   4427  1.1.1.4  dyoung 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4428  1.1.1.4  dyoung 	ic->ic_bss->ni_txpower = txpow;
   4429  1.1.1.4  dyoung }
   4430  1.1.1.4  dyoung 
   4431      1.1  dyoung static int
   4432      1.1  dyoung ath_rate_setup(struct ath_softc *sc, u_int mode)
   4433      1.1  dyoung {
   4434      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4435      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4436      1.1  dyoung 	const HAL_RATE_TABLE *rt;
   4437      1.1  dyoung 	struct ieee80211_rateset *rs;
   4438      1.1  dyoung 	int i, maxrates;
   4439      1.1  dyoung 
   4440      1.1  dyoung 	switch (mode) {
   4441      1.1  dyoung 	case IEEE80211_MODE_11A:
   4442      1.1  dyoung 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
   4443      1.1  dyoung 		break;
   4444      1.1  dyoung 	case IEEE80211_MODE_11B:
   4445      1.1  dyoung 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
   4446      1.1  dyoung 		break;
   4447      1.1  dyoung 	case IEEE80211_MODE_11G:
   4448      1.1  dyoung 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
   4449      1.1  dyoung 		break;
   4450  1.1.1.4  dyoung 	case IEEE80211_MODE_TURBO_A:
   4451      1.1  dyoung 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4452      1.1  dyoung 		break;
   4453  1.1.1.4  dyoung 	case IEEE80211_MODE_TURBO_G:
   4454  1.1.1.4  dyoung 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
   4455  1.1.1.4  dyoung 		break;
   4456      1.1  dyoung 	default:
   4457  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4458  1.1.1.4  dyoung 			__func__, mode);
   4459      1.1  dyoung 		return 0;
   4460      1.1  dyoung 	}
   4461      1.1  dyoung 	rt = sc->sc_rates[mode];
   4462      1.1  dyoung 	if (rt == NULL)
   4463      1.1  dyoung 		return 0;
   4464      1.1  dyoung 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4465  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY,
   4466  1.1.1.4  dyoung 			"%s: rate table too small (%u > %u)\n",
   4467  1.1.1.4  dyoung 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4468      1.1  dyoung 		maxrates = IEEE80211_RATE_MAXSIZE;
   4469      1.1  dyoung 	} else
   4470      1.1  dyoung 		maxrates = rt->rateCount;
   4471      1.1  dyoung 	rs = &ic->ic_sup_rates[mode];
   4472      1.1  dyoung 	for (i = 0; i < maxrates; i++)
   4473      1.1  dyoung 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4474      1.1  dyoung 	rs->rs_nrates = maxrates;
   4475      1.1  dyoung 	return 1;
   4476      1.1  dyoung }
   4477      1.1  dyoung 
   4478      1.1  dyoung static void
   4479      1.1  dyoung ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4480      1.1  dyoung {
   4481  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4482  1.1.1.4  dyoung 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4483  1.1.1.4  dyoung 	static const struct {
   4484  1.1.1.4  dyoung 		u_int		rate;		/* tx/rx 802.11 rate */
   4485  1.1.1.4  dyoung 		u_int16_t	timeOn;		/* LED on time (ms) */
   4486  1.1.1.4  dyoung 		u_int16_t	timeOff;	/* LED off time (ms) */
   4487  1.1.1.4  dyoung 	} blinkrates[] = {
   4488  1.1.1.4  dyoung 		{ 108,  40,  10 },
   4489  1.1.1.4  dyoung 		{  96,  44,  11 },
   4490  1.1.1.4  dyoung 		{  72,  50,  13 },
   4491  1.1.1.4  dyoung 		{  48,  57,  14 },
   4492  1.1.1.4  dyoung 		{  36,  67,  16 },
   4493  1.1.1.4  dyoung 		{  24,  80,  20 },
   4494  1.1.1.4  dyoung 		{  22, 100,  25 },
   4495  1.1.1.4  dyoung 		{  18, 133,  34 },
   4496  1.1.1.4  dyoung 		{  12, 160,  40 },
   4497  1.1.1.4  dyoung 		{  10, 200,  50 },
   4498  1.1.1.4  dyoung 		{   6, 240,  58 },
   4499  1.1.1.4  dyoung 		{   4, 267,  66 },
   4500  1.1.1.4  dyoung 		{   2, 400, 100 },
   4501  1.1.1.4  dyoung 		{   0, 500, 130 },
   4502  1.1.1.4  dyoung 	};
   4503      1.1  dyoung 	const HAL_RATE_TABLE *rt;
   4504  1.1.1.4  dyoung 	int i, j;
   4505      1.1  dyoung 
   4506      1.1  dyoung 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4507      1.1  dyoung 	rt = sc->sc_rates[mode];
   4508      1.1  dyoung 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4509      1.1  dyoung 	for (i = 0; i < rt->rateCount; i++)
   4510      1.1  dyoung 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4511      1.1  dyoung 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4512  1.1.1.4  dyoung 	for (i = 0; i < 32; i++) {
   4513  1.1.1.4  dyoung 		u_int8_t ix = rt->rateCodeToIndex[i];
   4514  1.1.1.4  dyoung 		if (ix == 0xff) {
   4515  1.1.1.4  dyoung 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4516  1.1.1.4  dyoung 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4517  1.1.1.4  dyoung 			continue;
   4518  1.1.1.4  dyoung 		}
   4519  1.1.1.4  dyoung 		sc->sc_hwmap[i].ieeerate =
   4520  1.1.1.4  dyoung 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4521  1.1.1.4  dyoung 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4522  1.1.1.4  dyoung 		if (rt->info[ix].shortPreamble ||
   4523  1.1.1.4  dyoung 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4524  1.1.1.4  dyoung 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4525  1.1.1.4  dyoung 		/* NB: receive frames include FCS */
   4526  1.1.1.4  dyoung 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4527  1.1.1.4  dyoung 			IEEE80211_RADIOTAP_F_FCS;
   4528  1.1.1.4  dyoung 		/* setup blink rate table to avoid per-packet lookup */
   4529  1.1.1.4  dyoung 		for (j = 0; j < N(blinkrates)-1; j++)
   4530  1.1.1.4  dyoung 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4531  1.1.1.4  dyoung 				break;
   4532  1.1.1.4  dyoung 		/* NB: this uses the last entry if the rate isn't found */
   4533  1.1.1.4  dyoung 		/* XXX beware of overlow */
   4534  1.1.1.4  dyoung 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4535  1.1.1.4  dyoung 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4536  1.1.1.4  dyoung 	}
   4537      1.1  dyoung 	sc->sc_currates = rt;
   4538      1.1  dyoung 	sc->sc_curmode = mode;
   4539  1.1.1.4  dyoung 	/*
   4540  1.1.1.4  dyoung 	 * All protection frames are transmited at 2Mb/s for
   4541  1.1.1.4  dyoung 	 * 11g, otherwise at 1Mb/s.
   4542  1.1.1.4  dyoung 	 * XXX select protection rate index from rate table.
   4543  1.1.1.4  dyoung 	 */
   4544  1.1.1.4  dyoung 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
   4545  1.1.1.4  dyoung 	/* NB: caller is responsible for reseting rate control state */
   4546  1.1.1.4  dyoung #undef N
   4547      1.1  dyoung }
   4548      1.1  dyoung 
   4549  1.1.1.4  dyoung #ifdef AR_DEBUG
   4550      1.1  dyoung static void
   4551  1.1.1.4  dyoung ath_printrxbuf(struct ath_buf *bf, int done)
   4552      1.1  dyoung {
   4553  1.1.1.4  dyoung 	struct ath_desc *ds;
   4554  1.1.1.4  dyoung 	int i;
   4555      1.1  dyoung 
   4556  1.1.1.4  dyoung 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4557  1.1.1.4  dyoung 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
   4558  1.1.1.4  dyoung 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4559  1.1.1.4  dyoung 		    ds->ds_link, ds->ds_data,
   4560  1.1.1.4  dyoung 		    ds->ds_ctl0, ds->ds_ctl1,
   4561  1.1.1.4  dyoung 		    ds->ds_hw[0], ds->ds_hw[1],
   4562  1.1.1.4  dyoung 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   4563  1.1.1.2  dyoung 	}
   4564      1.1  dyoung }
   4565      1.1  dyoung 
   4566      1.1  dyoung static void
   4567  1.1.1.4  dyoung ath_printtxbuf(struct ath_buf *bf, int done)
   4568      1.1  dyoung {
   4569  1.1.1.4  dyoung 	struct ath_desc *ds;
   4570  1.1.1.4  dyoung 	int i;
   4571      1.1  dyoung 
   4572  1.1.1.4  dyoung 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4573  1.1.1.4  dyoung 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   4574  1.1.1.4  dyoung 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4575  1.1.1.4  dyoung 		    ds->ds_link, ds->ds_data,
   4576  1.1.1.4  dyoung 		    ds->ds_ctl0, ds->ds_ctl1,
   4577  1.1.1.4  dyoung 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   4578  1.1.1.4  dyoung 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   4579  1.1.1.4  dyoung 	}
   4580  1.1.1.4  dyoung }
   4581  1.1.1.4  dyoung #endif /* AR_DEBUG */
   4582      1.1  dyoung 
   4583  1.1.1.4  dyoung static void
   4584  1.1.1.4  dyoung ath_watchdog(struct ifnet *ifp)
   4585  1.1.1.4  dyoung {
   4586  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   4587  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4588  1.1.1.4  dyoung 
   4589  1.1.1.4  dyoung 	ifp->if_timer = 0;
   4590  1.1.1.4  dyoung 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   4591  1.1.1.4  dyoung 		return;
   4592  1.1.1.4  dyoung 	if (sc->sc_tx_timer) {
   4593  1.1.1.4  dyoung 		if (--sc->sc_tx_timer == 0) {
   4594  1.1.1.4  dyoung 			if_printf(ifp, "device timeout\n");
   4595  1.1.1.4  dyoung 			ath_reset(ifp);
   4596  1.1.1.4  dyoung 			ifp->if_oerrors++;
   4597  1.1.1.4  dyoung 			sc->sc_stats.ast_watchdog++;
   4598  1.1.1.4  dyoung 		} else
   4599  1.1.1.4  dyoung 			ifp->if_timer = 1;
   4600  1.1.1.4  dyoung 	}
   4601  1.1.1.4  dyoung 	ieee80211_watchdog(ic);
   4602  1.1.1.4  dyoung }
   4603      1.1  dyoung 
   4604  1.1.1.4  dyoung /*
   4605  1.1.1.4  dyoung  * Diagnostic interface to the HAL.  This is used by various
   4606  1.1.1.4  dyoung  * tools to do things like retrieve register contents for
   4607  1.1.1.4  dyoung  * debugging.  The mechanism is intentionally opaque so that
   4608  1.1.1.4  dyoung  * it can change frequently w/o concern for compatiblity.
   4609  1.1.1.4  dyoung  */
   4610  1.1.1.4  dyoung static int
   4611  1.1.1.4  dyoung ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   4612  1.1.1.4  dyoung {
   4613  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4614  1.1.1.4  dyoung 	u_int id = ad->ad_id & ATH_DIAG_ID;
   4615  1.1.1.4  dyoung 	void *indata = NULL;
   4616  1.1.1.4  dyoung 	void *outdata = NULL;
   4617  1.1.1.4  dyoung 	u_int32_t insize = ad->ad_in_size;
   4618  1.1.1.4  dyoung 	u_int32_t outsize = ad->ad_out_size;
   4619  1.1.1.4  dyoung 	int error = 0;
   4620      1.1  dyoung 
   4621  1.1.1.4  dyoung 	if (ad->ad_id & ATH_DIAG_IN) {
   4622  1.1.1.4  dyoung 		/*
   4623  1.1.1.4  dyoung 		 * Copy in data.
   4624  1.1.1.4  dyoung 		 */
   4625  1.1.1.4  dyoung 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   4626  1.1.1.4  dyoung 		if (indata == NULL) {
   4627  1.1.1.4  dyoung 			error = ENOMEM;
   4628  1.1.1.4  dyoung 			goto bad;
   4629  1.1.1.4  dyoung 		}
   4630  1.1.1.4  dyoung 		error = copyin(ad->ad_in_data, indata, insize);
   4631  1.1.1.4  dyoung 		if (error)
   4632  1.1.1.4  dyoung 			goto bad;
   4633  1.1.1.4  dyoung 	}
   4634  1.1.1.4  dyoung 	if (ad->ad_id & ATH_DIAG_DYN) {
   4635  1.1.1.4  dyoung 		/*
   4636  1.1.1.4  dyoung 		 * Allocate a buffer for the results (otherwise the HAL
   4637  1.1.1.4  dyoung 		 * returns a pointer to a buffer where we can read the
   4638  1.1.1.4  dyoung 		 * results).  Note that we depend on the HAL leaving this
   4639  1.1.1.4  dyoung 		 * pointer for us to use below in reclaiming the buffer;
   4640  1.1.1.4  dyoung 		 * may want to be more defensive.
   4641  1.1.1.4  dyoung 		 */
   4642  1.1.1.4  dyoung 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   4643  1.1.1.4  dyoung 		if (outdata == NULL) {
   4644  1.1.1.4  dyoung 			error = ENOMEM;
   4645  1.1.1.4  dyoung 			goto bad;
   4646  1.1.1.4  dyoung 		}
   4647  1.1.1.4  dyoung 	}
   4648  1.1.1.4  dyoung 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   4649  1.1.1.4  dyoung 		if (outsize < ad->ad_out_size)
   4650  1.1.1.4  dyoung 			ad->ad_out_size = outsize;
   4651  1.1.1.4  dyoung 		if (outdata != NULL)
   4652  1.1.1.4  dyoung 			error = copyout(outdata, ad->ad_out_data,
   4653  1.1.1.4  dyoung 					ad->ad_out_size);
   4654  1.1.1.4  dyoung 	} else {
   4655  1.1.1.4  dyoung 		error = EINVAL;
   4656  1.1.1.4  dyoung 	}
   4657  1.1.1.4  dyoung bad:
   4658  1.1.1.4  dyoung 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   4659  1.1.1.4  dyoung 		free(indata, M_TEMP);
   4660  1.1.1.4  dyoung 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   4661  1.1.1.4  dyoung 		free(outdata, M_TEMP);
   4662  1.1.1.4  dyoung 	return error;
   4663  1.1.1.4  dyoung }
   4664      1.1  dyoung 
   4665  1.1.1.4  dyoung static int
   4666  1.1.1.4  dyoung ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   4667  1.1.1.4  dyoung {
   4668  1.1.1.4  dyoung #define	IS_RUNNING(ifp) \
   4669  1.1.1.4  dyoung 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
   4670  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   4671  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4672  1.1.1.4  dyoung 	struct ifreq *ifr = (struct ifreq *)data;
   4673  1.1.1.4  dyoung 	int error = 0;
   4674      1.1  dyoung 
   4675  1.1.1.4  dyoung 	ATH_LOCK(sc);
   4676  1.1.1.4  dyoung 	switch (cmd) {
   4677  1.1.1.4  dyoung 	case SIOCSIFFLAGS:
   4678  1.1.1.4  dyoung 		if (IS_RUNNING(ifp)) {
   4679  1.1.1.4  dyoung 			/*
   4680  1.1.1.4  dyoung 			 * To avoid rescanning another access point,
   4681  1.1.1.4  dyoung 			 * do not call ath_init() here.  Instead,
   4682  1.1.1.4  dyoung 			 * only reflect promisc mode settings.
   4683  1.1.1.4  dyoung 			 */
   4684  1.1.1.4  dyoung 			ath_mode_init(sc);
   4685  1.1.1.4  dyoung 		} else if (ifp->if_flags & IFF_UP) {
   4686  1.1.1.4  dyoung 			/*
   4687  1.1.1.4  dyoung 			 * Beware of being called during attach/detach
   4688  1.1.1.4  dyoung 			 * to reset promiscuous mode.  In that case we
   4689  1.1.1.4  dyoung 			 * will still be marked UP but not RUNNING.
   4690  1.1.1.4  dyoung 			 * However trying to re-init the interface
   4691  1.1.1.4  dyoung 			 * is the wrong thing to do as we've already
   4692  1.1.1.4  dyoung 			 * torn down much of our state.  There's
   4693  1.1.1.4  dyoung 			 * probably a better way to deal with this.
   4694  1.1.1.4  dyoung 			 */
   4695  1.1.1.4  dyoung 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   4696  1.1.1.5  dyoung 				ath_init(sc);	/* XXX lose error */
   4697  1.1.1.4  dyoung 		} else
   4698  1.1.1.4  dyoung 			ath_stop_locked(ifp);
   4699      1.1  dyoung 		break;
   4700  1.1.1.4  dyoung 	case SIOCADDMULTI:
   4701  1.1.1.4  dyoung 	case SIOCDELMULTI:
   4702  1.1.1.4  dyoung 		/*
   4703  1.1.1.4  dyoung 		 * The upper layer has already installed/removed
   4704  1.1.1.4  dyoung 		 * the multicast address(es), just recalculate the
   4705  1.1.1.4  dyoung 		 * multicast filter for the card.
   4706  1.1.1.4  dyoung 		 */
   4707  1.1.1.4  dyoung 		if (ifp->if_flags & IFF_RUNNING)
   4708  1.1.1.4  dyoung 			ath_mode_init(sc);
   4709      1.1  dyoung 		break;
   4710  1.1.1.4  dyoung 	case SIOCGATHSTATS:
   4711  1.1.1.4  dyoung 		/* NB: embed these numbers to get a consistent view */
   4712  1.1.1.4  dyoung 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   4713  1.1.1.4  dyoung 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   4714  1.1.1.4  dyoung 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   4715  1.1.1.4  dyoung 		ATH_UNLOCK(sc);
   4716  1.1.1.4  dyoung 		/*
   4717  1.1.1.4  dyoung 		 * NB: Drop the softc lock in case of a page fault;
   4718  1.1.1.4  dyoung 		 * we'll accept any potential inconsisentcy in the
   4719  1.1.1.4  dyoung 		 * statistics.  The alternative is to copy the data
   4720  1.1.1.4  dyoung 		 * to a local structure.
   4721  1.1.1.4  dyoung 		 */
   4722  1.1.1.4  dyoung 		return copyout(&sc->sc_stats,
   4723  1.1.1.4  dyoung 				ifr->ifr_data, sizeof (sc->sc_stats));
   4724  1.1.1.4  dyoung 	case SIOCGATHDIAG:
   4725  1.1.1.4  dyoung 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   4726  1.1.1.4  dyoung 		break;
   4727  1.1.1.4  dyoung 	default:
   4728  1.1.1.4  dyoung 		error = ieee80211_ioctl(ic, cmd, data);
   4729  1.1.1.4  dyoung 		if (error == ENETRESET) {
   4730  1.1.1.4  dyoung 			if (IS_RUNNING(ifp) &&
   4731  1.1.1.4  dyoung 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   4732  1.1.1.5  dyoung 				ath_init(sc);	/* XXX lose error */
   4733  1.1.1.4  dyoung 			error = 0;
   4734      1.1  dyoung 		}
   4735  1.1.1.4  dyoung 		if (error == ERESTART)
   4736  1.1.1.4  dyoung 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   4737      1.1  dyoung 		break;
   4738      1.1  dyoung 	}
   4739  1.1.1.4  dyoung 	ATH_UNLOCK(sc);
   4740  1.1.1.4  dyoung 	return error;
   4741  1.1.1.4  dyoung #undef IS_RUNNING
   4742  1.1.1.4  dyoung }
   4743      1.1  dyoung 
   4744  1.1.1.4  dyoung static int
   4745  1.1.1.4  dyoung ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
   4746  1.1.1.4  dyoung {
   4747  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4748  1.1.1.4  dyoung 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
   4749  1.1.1.4  dyoung 	int error;
   4750  1.1.1.4  dyoung 
   4751  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &slottime, 0, req);
   4752  1.1.1.4  dyoung 	if (error || !req->newptr)
   4753  1.1.1.4  dyoung 		return error;
   4754  1.1.1.4  dyoung 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
   4755      1.1  dyoung }
   4756      1.1  dyoung 
   4757      1.1  dyoung static int
   4758  1.1.1.4  dyoung ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
   4759      1.1  dyoung {
   4760  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4761  1.1.1.4  dyoung 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
   4762      1.1  dyoung 	int error;
   4763      1.1  dyoung 
   4764  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
   4765  1.1.1.4  dyoung 	if (error || !req->newptr)
   4766  1.1.1.4  dyoung 		return error;
   4767  1.1.1.4  dyoung 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
   4768  1.1.1.4  dyoung }
   4769  1.1.1.4  dyoung 
   4770  1.1.1.4  dyoung static int
   4771  1.1.1.4  dyoung ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
   4772  1.1.1.4  dyoung {
   4773  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4774  1.1.1.4  dyoung 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
   4775  1.1.1.4  dyoung 	int error;
   4776  1.1.1.4  dyoung 
   4777  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
   4778  1.1.1.4  dyoung 	if (error || !req->newptr)
   4779  1.1.1.4  dyoung 		return error;
   4780  1.1.1.4  dyoung 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
   4781  1.1.1.4  dyoung }
   4782  1.1.1.4  dyoung 
   4783  1.1.1.4  dyoung static int
   4784  1.1.1.4  dyoung ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
   4785  1.1.1.4  dyoung {
   4786  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4787  1.1.1.4  dyoung 	int softled = sc->sc_softled;
   4788  1.1.1.4  dyoung 	int error;
   4789  1.1.1.4  dyoung 
   4790  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &softled, 0, req);
   4791  1.1.1.4  dyoung 	if (error || !req->newptr)
   4792  1.1.1.4  dyoung 		return error;
   4793  1.1.1.4  dyoung 	softled = (softled != 0);
   4794  1.1.1.4  dyoung 	if (softled != sc->sc_softled) {
   4795  1.1.1.4  dyoung 		if (softled) {
   4796  1.1.1.4  dyoung 			/* NB: handle any sc_ledpin change */
   4797  1.1.1.4  dyoung 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
   4798  1.1.1.4  dyoung 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
   4799  1.1.1.4  dyoung 				!sc->sc_ledon);
   4800  1.1.1.4  dyoung 		}
   4801  1.1.1.4  dyoung 		sc->sc_softled = softled;
   4802      1.1  dyoung 	}
   4803  1.1.1.4  dyoung 	return 0;
   4804  1.1.1.4  dyoung }
   4805  1.1.1.4  dyoung 
   4806  1.1.1.4  dyoung static int
   4807  1.1.1.4  dyoung ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
   4808  1.1.1.4  dyoung {
   4809  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4810  1.1.1.4  dyoung 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
   4811  1.1.1.4  dyoung 	int error;
   4812  1.1.1.4  dyoung 
   4813  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
   4814  1.1.1.4  dyoung 	if (!error && req->newptr)
   4815  1.1.1.4  dyoung 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
   4816      1.1  dyoung 	return error;
   4817      1.1  dyoung }
   4818  1.1.1.4  dyoung 
   4819  1.1.1.4  dyoung static int
   4820  1.1.1.4  dyoung ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
   4821  1.1.1.4  dyoung {
   4822  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4823  1.1.1.4  dyoung 	u_int diversity = sc->sc_diversity;
   4824  1.1.1.4  dyoung 	int error;
   4825  1.1.1.4  dyoung 
   4826  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &diversity, 0, req);
   4827  1.1.1.4  dyoung 	if (error || !req->newptr)
   4828  1.1.1.4  dyoung 		return error;
   4829  1.1.1.4  dyoung 	sc->sc_diversity = diversity;
   4830  1.1.1.4  dyoung 	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
   4831  1.1.1.4  dyoung }
   4832  1.1.1.4  dyoung 
   4833  1.1.1.4  dyoung static int
   4834  1.1.1.4  dyoung ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
   4835  1.1.1.4  dyoung {
   4836  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4837  1.1.1.4  dyoung 	u_int32_t diag;
   4838  1.1.1.4  dyoung 	int error;
   4839  1.1.1.4  dyoung 
   4840  1.1.1.4  dyoung 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
   4841  1.1.1.4  dyoung 		return EINVAL;
   4842  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &diag, 0, req);
   4843  1.1.1.4  dyoung 	if (error || !req->newptr)
   4844  1.1.1.4  dyoung 		return error;
   4845  1.1.1.4  dyoung 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
   4846  1.1.1.4  dyoung }
   4847  1.1.1.4  dyoung 
   4848  1.1.1.4  dyoung static int
   4849  1.1.1.4  dyoung ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
   4850  1.1.1.4  dyoung {
   4851  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4852  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   4853  1.1.1.4  dyoung 	u_int32_t scale;
   4854  1.1.1.4  dyoung 	int error;
   4855  1.1.1.4  dyoung 
   4856  1.1.1.4  dyoung 	ath_hal_gettpscale(sc->sc_ah, &scale);
   4857  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &scale, 0, req);
   4858  1.1.1.4  dyoung 	if (error || !req->newptr)
   4859  1.1.1.4  dyoung 		return error;
   4860  1.1.1.4  dyoung 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
   4861  1.1.1.4  dyoung }
   4862  1.1.1.4  dyoung 
   4863  1.1.1.4  dyoung static int
   4864  1.1.1.4  dyoung ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
   4865  1.1.1.4  dyoung {
   4866  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4867  1.1.1.4  dyoung 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
   4868  1.1.1.4  dyoung 	int error;
   4869  1.1.1.4  dyoung 
   4870  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &tpc, 0, req);
   4871  1.1.1.4  dyoung 	if (error || !req->newptr)
   4872  1.1.1.4  dyoung 		return error;
   4873  1.1.1.4  dyoung 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
   4874  1.1.1.4  dyoung }
   4875      1.1  dyoung 
   4876      1.1  dyoung static void
   4877  1.1.1.4  dyoung ath_sysctlattach(struct ath_softc *sc)
   4878      1.1  dyoung {
   4879  1.1.1.4  dyoung 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
   4880  1.1.1.4  dyoung 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
   4881      1.1  dyoung 
   4882  1.1.1.4  dyoung 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
   4883  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4884  1.1.1.4  dyoung 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
   4885  1.1.1.4  dyoung 		"EEPROM country code");
   4886  1.1.1.4  dyoung 	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
   4887  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4888  1.1.1.4  dyoung 		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
   4889  1.1.1.4  dyoung 		"EEPROM regdomain code");
   4890  1.1.1.4  dyoung 	sc->sc_debug = ath_debug;
   4891  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4892  1.1.1.4  dyoung 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
   4893  1.1.1.4  dyoung 		"control debugging printfs");
   4894  1.1.1.4  dyoung 
   4895  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4896  1.1.1.4  dyoung 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4897  1.1.1.4  dyoung 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
   4898  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4899  1.1.1.4  dyoung 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4900  1.1.1.4  dyoung 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
   4901  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4902  1.1.1.4  dyoung 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4903  1.1.1.4  dyoung 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
   4904  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4905  1.1.1.4  dyoung 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4906  1.1.1.4  dyoung 		ath_sysctl_softled, "I", "enable/disable software LED support");
   4907  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4908  1.1.1.4  dyoung 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
   4909  1.1.1.4  dyoung 		"GPIO pin connected to LED");
   4910  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4911  1.1.1.4  dyoung 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
   4912  1.1.1.4  dyoung 		"setting to turn LED on");
   4913  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4914  1.1.1.4  dyoung 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
   4915  1.1.1.4  dyoung 		"idle time for inactivity LED (ticks)");
   4916  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4917  1.1.1.4  dyoung 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
   4918  1.1.1.4  dyoung 		"tx antenna (0=auto)");
   4919  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4920  1.1.1.4  dyoung 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4921  1.1.1.4  dyoung 		ath_sysctl_rxantenna, "I", "default/rx antenna");
   4922  1.1.1.4  dyoung 	if (sc->sc_hasdiversity)
   4923  1.1.1.4  dyoung 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4924  1.1.1.4  dyoung 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4925  1.1.1.4  dyoung 			ath_sysctl_diversity, "I", "antenna diversity");
   4926  1.1.1.4  dyoung 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
   4927  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4928  1.1.1.4  dyoung 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
   4929  1.1.1.4  dyoung 		"tx descriptor batching");
   4930  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4931  1.1.1.4  dyoung 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4932  1.1.1.4  dyoung 		ath_sysctl_diag, "I", "h/w diagnostic control");
   4933  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4934  1.1.1.4  dyoung 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4935  1.1.1.4  dyoung 		ath_sysctl_tpscale, "I", "tx power scaling");
   4936  1.1.1.4  dyoung 	if (sc->sc_hastpc)
   4937  1.1.1.4  dyoung 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4938  1.1.1.4  dyoung 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4939  1.1.1.4  dyoung 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
   4940      1.1  dyoung }
   4941      1.1  dyoung 
   4942      1.1  dyoung static void
   4943  1.1.1.4  dyoung ath_bpfattach(struct ath_softc *sc)
   4944      1.1  dyoung {
   4945  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   4946      1.1  dyoung 
   4947  1.1.1.4  dyoung 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   4948  1.1.1.4  dyoung 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   4949  1.1.1.4  dyoung 		&sc->sc_drvbpf);
   4950  1.1.1.4  dyoung 	/*
   4951  1.1.1.4  dyoung 	 * Initialize constant fields.
   4952  1.1.1.4  dyoung 	 * XXX make header lengths a multiple of 32-bits so subsequent
   4953  1.1.1.4  dyoung 	 *     headers are properly aligned; this is a kludge to keep
   4954  1.1.1.4  dyoung 	 *     certain applications happy.
   4955  1.1.1.4  dyoung 	 *
   4956  1.1.1.4  dyoung 	 * NB: the channel is setup each time we transition to the
   4957  1.1.1.4  dyoung 	 *     RUN state to avoid filling it in for each frame.
   4958  1.1.1.4  dyoung 	 */
   4959  1.1.1.4  dyoung 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   4960  1.1.1.4  dyoung 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   4961  1.1.1.4  dyoung 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   4962  1.1.1.4  dyoung 
   4963  1.1.1.4  dyoung 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   4964  1.1.1.4  dyoung 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   4965  1.1.1.4  dyoung 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   4966  1.1.1.4  dyoung }
   4967  1.1.1.4  dyoung 
   4968  1.1.1.4  dyoung /*
   4969  1.1.1.4  dyoung  * Announce various information on device/driver attach.
   4970  1.1.1.4  dyoung  */
   4971  1.1.1.4  dyoung static void
   4972  1.1.1.4  dyoung ath_announce(struct ath_softc *sc)
   4973  1.1.1.4  dyoung {
   4974  1.1.1.4  dyoung #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   4975  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   4976  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4977  1.1.1.4  dyoung 	u_int modes, cc;
   4978  1.1.1.4  dyoung 
   4979  1.1.1.4  dyoung 	if_printf(ifp, "mac %d.%d phy %d.%d",
   4980  1.1.1.4  dyoung 		ah->ah_macVersion, ah->ah_macRev,
   4981  1.1.1.4  dyoung 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   4982  1.1.1.4  dyoung 	/*
   4983  1.1.1.4  dyoung 	 * Print radio revision(s).  We check the wireless modes
   4984  1.1.1.4  dyoung 	 * to avoid falsely printing revs for inoperable parts.
   4985  1.1.1.4  dyoung 	 * Dual-band radio revs are returned in the 5Ghz rev number.
   4986  1.1.1.4  dyoung 	 */
   4987  1.1.1.4  dyoung 	ath_hal_getcountrycode(ah, &cc);
   4988  1.1.1.4  dyoung 	modes = ath_hal_getwirelessmodes(ah, cc);
   4989  1.1.1.4  dyoung 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   4990  1.1.1.4  dyoung 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   4991  1.1.1.4  dyoung 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
   4992  1.1.1.4  dyoung 				ah->ah_analog5GhzRev >> 4,
   4993  1.1.1.4  dyoung 				ah->ah_analog5GhzRev & 0xf,
   4994  1.1.1.4  dyoung 				ah->ah_analog2GhzRev >> 4,
   4995  1.1.1.4  dyoung 				ah->ah_analog2GhzRev & 0xf);
   4996  1.1.1.4  dyoung 		else
   4997  1.1.1.4  dyoung 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4998  1.1.1.4  dyoung 				ah->ah_analog5GhzRev & 0xf);
   4999  1.1.1.4  dyoung 	} else
   5000  1.1.1.4  dyoung 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5001  1.1.1.4  dyoung 			ah->ah_analog5GhzRev & 0xf);
   5002  1.1.1.4  dyoung 	printf("\n");
   5003  1.1.1.4  dyoung 	if (bootverbose) {
   5004  1.1.1.4  dyoung 		int i;
   5005  1.1.1.4  dyoung 		for (i = 0; i <= WME_AC_VO; i++) {
   5006  1.1.1.4  dyoung 			struct ath_txq *txq = sc->sc_ac2q[i];
   5007  1.1.1.4  dyoung 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5008  1.1.1.4  dyoung 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5009  1.1.1.4  dyoung 		}
   5010  1.1.1.4  dyoung 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5011  1.1.1.4  dyoung 			sc->sc_cabq->axq_qnum);
   5012  1.1.1.4  dyoung 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5013      1.1  dyoung 	}
   5014  1.1.1.4  dyoung #undef HAL_MODE_DUALBAND
   5015      1.1  dyoung }
   5016