ath.c revision 1.1.1.5 1 1.1 dyoung /*-
2 1.1.1.4 dyoung * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 1.1 dyoung * All rights reserved.
4 1.1 dyoung *
5 1.1 dyoung * Redistribution and use in source and binary forms, with or without
6 1.1 dyoung * modification, are permitted provided that the following conditions
7 1.1 dyoung * are met:
8 1.1 dyoung * 1. Redistributions of source code must retain the above copyright
9 1.1 dyoung * notice, this list of conditions and the following disclaimer,
10 1.1 dyoung * without modification.
11 1.1 dyoung * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 1.1 dyoung * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 1.1 dyoung * redistribution must be conditioned upon including a substantially
14 1.1 dyoung * similar Disclaimer requirement for further binary redistribution.
15 1.1 dyoung * 3. Neither the names of the above-listed copyright holders nor the names
16 1.1 dyoung * of any contributors may be used to endorse or promote products derived
17 1.1 dyoung * from this software without specific prior written permission.
18 1.1 dyoung *
19 1.1 dyoung * Alternatively, this software may be distributed under the terms of the
20 1.1 dyoung * GNU General Public License ("GPL") version 2 as published by the Free
21 1.1 dyoung * Software Foundation.
22 1.1 dyoung *
23 1.1 dyoung * NO WARRANTY
24 1.1 dyoung * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 1.1 dyoung * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 1.1 dyoung * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 1.1 dyoung * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 1.1 dyoung * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 1.1 dyoung * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 dyoung * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 dyoung * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 1.1 dyoung * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 dyoung * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 1.1 dyoung * THE POSSIBILITY OF SUCH DAMAGES.
35 1.1 dyoung */
36 1.1 dyoung
37 1.1 dyoung #include <sys/cdefs.h>
38 1.1.1.5 dyoung __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.94 2005/07/07 00:04:50 sam Exp $");
39 1.1 dyoung
40 1.1 dyoung /*
41 1.1 dyoung * Driver for the Atheros Wireless LAN controller.
42 1.1 dyoung *
43 1.1 dyoung * This software is derived from work of Atsushi Onoe; his contribution
44 1.1 dyoung * is greatly appreciated.
45 1.1 dyoung */
46 1.1 dyoung
47 1.1 dyoung #include "opt_inet.h"
48 1.1 dyoung
49 1.1 dyoung #include <sys/param.h>
50 1.1 dyoung #include <sys/systm.h>
51 1.1 dyoung #include <sys/sysctl.h>
52 1.1 dyoung #include <sys/mbuf.h>
53 1.1 dyoung #include <sys/malloc.h>
54 1.1 dyoung #include <sys/lock.h>
55 1.1 dyoung #include <sys/mutex.h>
56 1.1 dyoung #include <sys/kernel.h>
57 1.1 dyoung #include <sys/socket.h>
58 1.1 dyoung #include <sys/sockio.h>
59 1.1 dyoung #include <sys/errno.h>
60 1.1 dyoung #include <sys/callout.h>
61 1.1 dyoung #include <sys/bus.h>
62 1.1 dyoung #include <sys/endian.h>
63 1.1 dyoung
64 1.1 dyoung #include <machine/bus.h>
65 1.1 dyoung
66 1.1 dyoung #include <net/if.h>
67 1.1 dyoung #include <net/if_dl.h>
68 1.1 dyoung #include <net/if_media.h>
69 1.1.1.5 dyoung #include <net/if_types.h>
70 1.1 dyoung #include <net/if_arp.h>
71 1.1 dyoung #include <net/ethernet.h>
72 1.1 dyoung #include <net/if_llc.h>
73 1.1 dyoung
74 1.1 dyoung #include <net80211/ieee80211_var.h>
75 1.1 dyoung
76 1.1 dyoung #include <net/bpf.h>
77 1.1 dyoung
78 1.1 dyoung #ifdef INET
79 1.1 dyoung #include <netinet/in.h>
80 1.1 dyoung #include <netinet/if_ether.h>
81 1.1 dyoung #endif
82 1.1 dyoung
83 1.1 dyoung #define AR_DEBUG
84 1.1 dyoung #include <dev/ath/if_athvar.h>
85 1.1 dyoung #include <contrib/dev/ath/ah_desc.h>
86 1.1.1.4 dyoung #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
87 1.1 dyoung
88 1.1.1.5 dyoung /* unaligned little endian access */
89 1.1 dyoung #define LE_READ_2(p) \
90 1.1 dyoung ((u_int16_t) \
91 1.1 dyoung ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
92 1.1 dyoung #define LE_READ_4(p) \
93 1.1 dyoung ((u_int32_t) \
94 1.1 dyoung ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
95 1.1 dyoung (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
96 1.1 dyoung
97 1.1.1.4 dyoung enum {
98 1.1.1.4 dyoung ATH_LED_TX,
99 1.1.1.4 dyoung ATH_LED_RX,
100 1.1.1.4 dyoung ATH_LED_POLL,
101 1.1.1.4 dyoung };
102 1.1.1.4 dyoung
103 1.1 dyoung static void ath_init(void *);
104 1.1.1.4 dyoung static void ath_stop_locked(struct ifnet *);
105 1.1 dyoung static void ath_stop(struct ifnet *);
106 1.1 dyoung static void ath_start(struct ifnet *);
107 1.1.1.4 dyoung static int ath_reset(struct ifnet *);
108 1.1 dyoung static int ath_media_change(struct ifnet *);
109 1.1 dyoung static void ath_watchdog(struct ifnet *);
110 1.1 dyoung static int ath_ioctl(struct ifnet *, u_long, caddr_t);
111 1.1 dyoung static void ath_fatal_proc(void *, int);
112 1.1 dyoung static void ath_rxorn_proc(void *, int);
113 1.1 dyoung static void ath_bmiss_proc(void *, int);
114 1.1.1.4 dyoung static int ath_key_alloc(struct ieee80211com *,
115 1.1.1.4 dyoung const struct ieee80211_key *);
116 1.1.1.4 dyoung static int ath_key_delete(struct ieee80211com *,
117 1.1.1.4 dyoung const struct ieee80211_key *);
118 1.1.1.4 dyoung static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119 1.1.1.4 dyoung const u_int8_t mac[IEEE80211_ADDR_LEN]);
120 1.1.1.4 dyoung static void ath_key_update_begin(struct ieee80211com *);
121 1.1.1.4 dyoung static void ath_key_update_end(struct ieee80211com *);
122 1.1 dyoung static void ath_mode_init(struct ath_softc *);
123 1.1.1.4 dyoung static void ath_setslottime(struct ath_softc *);
124 1.1.1.4 dyoung static void ath_updateslot(struct ifnet *);
125 1.1.1.4 dyoung static int ath_beaconq_setup(struct ath_hal *);
126 1.1 dyoung static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127 1.1.1.4 dyoung static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128 1.1 dyoung static void ath_beacon_proc(void *, int);
129 1.1.1.4 dyoung static void ath_bstuck_proc(void *, int);
130 1.1 dyoung static void ath_beacon_free(struct ath_softc *);
131 1.1 dyoung static void ath_beacon_config(struct ath_softc *);
132 1.1.1.4 dyoung static void ath_descdma_cleanup(struct ath_softc *sc,
133 1.1.1.4 dyoung struct ath_descdma *, ath_bufhead *);
134 1.1 dyoung static int ath_desc_alloc(struct ath_softc *);
135 1.1 dyoung static void ath_desc_free(struct ath_softc *);
136 1.1.1.4 dyoung static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137 1.1.1.4 dyoung static void ath_node_free(struct ieee80211_node *);
138 1.1.1.4 dyoung static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
139 1.1 dyoung static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140 1.1.1.4 dyoung static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141 1.1.1.4 dyoung struct ieee80211_node *ni,
142 1.1.1.4 dyoung int subtype, int rssi, u_int32_t rstamp);
143 1.1.1.4 dyoung static void ath_setdefantenna(struct ath_softc *, u_int);
144 1.1 dyoung static void ath_rx_proc(void *, int);
145 1.1.1.4 dyoung static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
146 1.1.1.4 dyoung static int ath_tx_setup(struct ath_softc *, int, int);
147 1.1.1.4 dyoung static int ath_wme_update(struct ieee80211com *);
148 1.1.1.4 dyoung static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
149 1.1.1.4 dyoung static void ath_tx_cleanup(struct ath_softc *);
150 1.1 dyoung static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
151 1.1 dyoung struct ath_buf *, struct mbuf *);
152 1.1.1.4 dyoung static void ath_tx_proc_q0(void *, int);
153 1.1.1.4 dyoung static void ath_tx_proc_q0123(void *, int);
154 1.1 dyoung static void ath_tx_proc(void *, int);
155 1.1 dyoung static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
156 1.1 dyoung static void ath_draintxq(struct ath_softc *);
157 1.1 dyoung static void ath_stoprecv(struct ath_softc *);
158 1.1 dyoung static int ath_startrecv(struct ath_softc *);
159 1.1.1.4 dyoung static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
160 1.1 dyoung static void ath_next_scan(void *);
161 1.1 dyoung static void ath_calibrate(void *);
162 1.1 dyoung static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
163 1.1.1.5 dyoung static void ath_setup_stationkey(struct ieee80211_node *);
164 1.1 dyoung static void ath_newassoc(struct ieee80211com *,
165 1.1 dyoung struct ieee80211_node *, int);
166 1.1.1.4 dyoung static int ath_getchannels(struct ath_softc *, u_int cc,
167 1.1.1.4 dyoung HAL_BOOL outdoor, HAL_BOOL xchanmode);
168 1.1.1.4 dyoung static void ath_led_event(struct ath_softc *, int);
169 1.1.1.4 dyoung static void ath_update_txpow(struct ath_softc *);
170 1.1 dyoung
171 1.1.1.4 dyoung static int ath_rate_setup(struct ath_softc *, u_int mode);
172 1.1 dyoung static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
173 1.1.1.4 dyoung
174 1.1.1.4 dyoung static void ath_sysctlattach(struct ath_softc *);
175 1.1.1.4 dyoung static void ath_bpfattach(struct ath_softc *);
176 1.1.1.4 dyoung static void ath_announce(struct ath_softc *);
177 1.1 dyoung
178 1.1 dyoung SYSCTL_DECL(_hw_ath);
179 1.1 dyoung
180 1.1 dyoung /* XXX validate sysctl values */
181 1.1 dyoung static int ath_dwelltime = 200; /* 5 channels/second */
182 1.1 dyoung SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
183 1.1 dyoung 0, "channel dwell time (ms) for AP/station scanning");
184 1.1 dyoung static int ath_calinterval = 30; /* calibrate every 30 secs */
185 1.1 dyoung SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
186 1.1 dyoung 0, "chip calibration interval (secs)");
187 1.1 dyoung static int ath_outdoor = AH_TRUE; /* outdoor operation */
188 1.1 dyoung SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
189 1.1.1.4 dyoung 0, "outdoor operation");
190 1.1.1.3 dyoung TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
191 1.1.1.4 dyoung static int ath_xchanmode = AH_TRUE; /* extended channel use */
192 1.1.1.4 dyoung SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
193 1.1.1.4 dyoung 0, "extended channel mode");
194 1.1.1.4 dyoung TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
195 1.1 dyoung static int ath_countrycode = CTRY_DEFAULT; /* country code */
196 1.1 dyoung SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
197 1.1 dyoung 0, "country code");
198 1.1.1.3 dyoung TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
199 1.1 dyoung static int ath_regdomain = 0; /* regulatory domain */
200 1.1 dyoung SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
201 1.1 dyoung 0, "regulatory domain");
202 1.1 dyoung
203 1.1 dyoung #ifdef AR_DEBUG
204 1.1.1.4 dyoung static int ath_debug = 0;
205 1.1 dyoung SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
206 1.1 dyoung 0, "control debugging printfs");
207 1.1.1.3 dyoung TUNABLE_INT("hw.ath.debug", &ath_debug);
208 1.1.1.3 dyoung enum {
209 1.1.1.3 dyoung ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
210 1.1.1.3 dyoung ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
211 1.1.1.3 dyoung ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
212 1.1.1.3 dyoung ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
213 1.1.1.3 dyoung ATH_DEBUG_RATE = 0x00000010, /* rate control */
214 1.1.1.3 dyoung ATH_DEBUG_RESET = 0x00000020, /* reset processing */
215 1.1.1.3 dyoung ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
216 1.1.1.3 dyoung ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
217 1.1.1.3 dyoung ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
218 1.1.1.3 dyoung ATH_DEBUG_INTR = 0x00001000, /* ISR */
219 1.1.1.3 dyoung ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
220 1.1.1.3 dyoung ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
221 1.1.1.3 dyoung ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
222 1.1.1.3 dyoung ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
223 1.1.1.4 dyoung ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
224 1.1.1.4 dyoung ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
225 1.1.1.4 dyoung ATH_DEBUG_NODE = 0x00080000, /* node management */
226 1.1.1.4 dyoung ATH_DEBUG_LED = 0x00100000, /* led management */
227 1.1.1.4 dyoung ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
228 1.1.1.3 dyoung ATH_DEBUG_ANY = 0xffffffff
229 1.1.1.3 dyoung };
230 1.1.1.4 dyoung #define IFF_DUMPPKTS(sc, m) \
231 1.1.1.4 dyoung ((sc->sc_debug & (m)) || \
232 1.1.1.5 dyoung (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
233 1.1.1.4 dyoung #define DPRINTF(sc, m, fmt, ...) do { \
234 1.1.1.4 dyoung if (sc->sc_debug & (m)) \
235 1.1.1.4 dyoung printf(fmt, __VA_ARGS__); \
236 1.1.1.4 dyoung } while (0)
237 1.1.1.4 dyoung #define KEYPRINTF(sc, ix, hk, mac) do { \
238 1.1.1.4 dyoung if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
239 1.1.1.4 dyoung ath_keyprint(__func__, ix, hk, mac); \
240 1.1.1.4 dyoung } while (0)
241 1.1.1.4 dyoung static void ath_printrxbuf(struct ath_buf *bf, int);
242 1.1.1.4 dyoung static void ath_printtxbuf(struct ath_buf *bf, int);
243 1.1 dyoung #else
244 1.1.1.4 dyoung #define IFF_DUMPPKTS(sc, m) \
245 1.1.1.5 dyoung ((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
246 1.1.1.4 dyoung #define DPRINTF(m, fmt, ...)
247 1.1.1.4 dyoung #define KEYPRINTF(sc, k, ix, mac)
248 1.1 dyoung #endif
249 1.1 dyoung
250 1.1.1.4 dyoung MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
251 1.1.1.4 dyoung
252 1.1 dyoung int
253 1.1 dyoung ath_attach(u_int16_t devid, struct ath_softc *sc)
254 1.1 dyoung {
255 1.1.1.5 dyoung struct ifnet *ifp;
256 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
257 1.1.1.5 dyoung struct ath_hal *ah = NULL;
258 1.1 dyoung HAL_STATUS status;
259 1.1.1.4 dyoung int error = 0, i;
260 1.1 dyoung
261 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
262 1.1 dyoung
263 1.1.1.5 dyoung ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
264 1.1.1.5 dyoung if (ifp == NULL) {
265 1.1.1.5 dyoung device_printf(sc->sc_dev, "can not if_alloc()\n");
266 1.1.1.5 dyoung error = ENOSPC;
267 1.1.1.5 dyoung goto bad;
268 1.1.1.5 dyoung }
269 1.1.1.5 dyoung
270 1.1 dyoung /* set these up early for if_printf use */
271 1.1.1.2 dyoung if_initname(ifp, device_get_name(sc->sc_dev),
272 1.1.1.4 dyoung device_get_unit(sc->sc_dev));
273 1.1 dyoung
274 1.1 dyoung ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
275 1.1 dyoung if (ah == NULL) {
276 1.1 dyoung if_printf(ifp, "unable to attach hardware; HAL status %u\n",
277 1.1 dyoung status);
278 1.1 dyoung error = ENXIO;
279 1.1 dyoung goto bad;
280 1.1 dyoung }
281 1.1.1.2 dyoung if (ah->ah_abi != HAL_ABI_VERSION) {
282 1.1.1.4 dyoung if_printf(ifp, "HAL ABI mismatch detected "
283 1.1.1.4 dyoung "(HAL:0x%x != driver:0x%x)\n",
284 1.1.1.2 dyoung ah->ah_abi, HAL_ABI_VERSION);
285 1.1.1.2 dyoung error = ENXIO;
286 1.1.1.2 dyoung goto bad;
287 1.1.1.2 dyoung }
288 1.1 dyoung sc->sc_ah = ah;
289 1.1 dyoung sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
290 1.1 dyoung
291 1.1 dyoung /*
292 1.1.1.4 dyoung * Check if the MAC has multi-rate retry support.
293 1.1.1.4 dyoung * We do this by trying to setup a fake extended
294 1.1.1.4 dyoung * descriptor. MAC's that don't have support will
295 1.1.1.4 dyoung * return false w/o doing anything. MAC's that do
296 1.1.1.4 dyoung * support it will return true w/o doing anything.
297 1.1.1.4 dyoung */
298 1.1.1.4 dyoung sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
299 1.1.1.4 dyoung
300 1.1.1.4 dyoung /*
301 1.1.1.4 dyoung * Check if the device has hardware counters for PHY
302 1.1.1.4 dyoung * errors. If so we need to enable the MIB interrupt
303 1.1.1.4 dyoung * so we can act on stat triggers.
304 1.1.1.4 dyoung */
305 1.1.1.4 dyoung if (ath_hal_hwphycounters(ah))
306 1.1.1.4 dyoung sc->sc_needmib = 1;
307 1.1.1.4 dyoung
308 1.1.1.4 dyoung /*
309 1.1.1.4 dyoung * Get the hardware key cache size.
310 1.1.1.4 dyoung */
311 1.1.1.4 dyoung sc->sc_keymax = ath_hal_keycachesize(ah);
312 1.1.1.5 dyoung if (sc->sc_keymax > ATH_KEYMAX) {
313 1.1.1.5 dyoung if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
314 1.1.1.5 dyoung ATH_KEYMAX, sc->sc_keymax);
315 1.1.1.5 dyoung sc->sc_keymax = ATH_KEYMAX;
316 1.1.1.4 dyoung }
317 1.1.1.4 dyoung /*
318 1.1.1.4 dyoung * Reset the key cache since some parts do not
319 1.1.1.4 dyoung * reset the contents on initial power up.
320 1.1.1.4 dyoung */
321 1.1.1.4 dyoung for (i = 0; i < sc->sc_keymax; i++)
322 1.1.1.4 dyoung ath_hal_keyreset(ah, i);
323 1.1.1.4 dyoung /*
324 1.1.1.4 dyoung * Mark key cache slots associated with global keys
325 1.1.1.4 dyoung * as in use. If we knew TKIP was not to be used we
326 1.1.1.4 dyoung * could leave the +32, +64, and +32+64 slots free.
327 1.1.1.4 dyoung * XXX only for splitmic.
328 1.1.1.4 dyoung */
329 1.1.1.4 dyoung for (i = 0; i < IEEE80211_WEP_NKID; i++) {
330 1.1.1.4 dyoung setbit(sc->sc_keymap, i);
331 1.1.1.4 dyoung setbit(sc->sc_keymap, i+32);
332 1.1.1.4 dyoung setbit(sc->sc_keymap, i+64);
333 1.1.1.4 dyoung setbit(sc->sc_keymap, i+32+64);
334 1.1.1.4 dyoung }
335 1.1.1.4 dyoung
336 1.1.1.4 dyoung /*
337 1.1 dyoung * Collect the channel list using the default country
338 1.1 dyoung * code and including outdoor channels. The 802.11 layer
339 1.1 dyoung * is resposible for filtering this list based on settings
340 1.1 dyoung * like the phy mode.
341 1.1 dyoung */
342 1.1.1.4 dyoung error = ath_getchannels(sc, ath_countrycode,
343 1.1.1.4 dyoung ath_outdoor, ath_xchanmode);
344 1.1 dyoung if (error != 0)
345 1.1 dyoung goto bad;
346 1.1 dyoung /*
347 1.1.1.4 dyoung * Setup dynamic sysctl's now that country code and
348 1.1.1.4 dyoung * regdomain are available from the hal.
349 1.1 dyoung */
350 1.1.1.4 dyoung ath_sysctlattach(sc);
351 1.1 dyoung
352 1.1 dyoung /*
353 1.1 dyoung * Setup rate tables for all potential media types.
354 1.1 dyoung */
355 1.1 dyoung ath_rate_setup(sc, IEEE80211_MODE_11A);
356 1.1 dyoung ath_rate_setup(sc, IEEE80211_MODE_11B);
357 1.1 dyoung ath_rate_setup(sc, IEEE80211_MODE_11G);
358 1.1.1.4 dyoung ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
359 1.1.1.4 dyoung ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
360 1.1.1.4 dyoung /* NB: setup here so ath_rate_update is happy */
361 1.1.1.4 dyoung ath_setcurmode(sc, IEEE80211_MODE_11A);
362 1.1 dyoung
363 1.1.1.4 dyoung /*
364 1.1.1.4 dyoung * Allocate tx+rx descriptors and populate the lists.
365 1.1.1.4 dyoung */
366 1.1 dyoung error = ath_desc_alloc(sc);
367 1.1 dyoung if (error != 0) {
368 1.1 dyoung if_printf(ifp, "failed to allocate descriptors: %d\n", error);
369 1.1 dyoung goto bad;
370 1.1 dyoung }
371 1.1.1.4 dyoung callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
372 1.1 dyoung callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
373 1.1 dyoung
374 1.1.1.2 dyoung ATH_TXBUF_LOCK_INIT(sc);
375 1.1 dyoung
376 1.1 dyoung TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
377 1.1 dyoung TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
378 1.1 dyoung TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
379 1.1 dyoung TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
380 1.1.1.4 dyoung TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
381 1.1 dyoung
382 1.1 dyoung /*
383 1.1.1.4 dyoung * Allocate hardware transmit queues: one queue for
384 1.1.1.4 dyoung * beacon frames and one data queue for each QoS
385 1.1.1.4 dyoung * priority. Note that the hal handles reseting
386 1.1.1.4 dyoung * these queues at the needed time.
387 1.1.1.4 dyoung *
388 1.1.1.4 dyoung * XXX PS-Poll
389 1.1.1.4 dyoung */
390 1.1.1.4 dyoung sc->sc_bhalq = ath_beaconq_setup(ah);
391 1.1 dyoung if (sc->sc_bhalq == (u_int) -1) {
392 1.1 dyoung if_printf(ifp, "unable to setup a beacon xmit queue!\n");
393 1.1.1.4 dyoung error = EIO;
394 1.1.1.4 dyoung goto bad2;
395 1.1.1.4 dyoung }
396 1.1.1.4 dyoung sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
397 1.1.1.4 dyoung if (sc->sc_cabq == NULL) {
398 1.1.1.4 dyoung if_printf(ifp, "unable to setup CAB xmit queue!\n");
399 1.1.1.4 dyoung error = EIO;
400 1.1.1.4 dyoung goto bad2;
401 1.1.1.4 dyoung }
402 1.1.1.4 dyoung /* NB: insure BK queue is the lowest priority h/w queue */
403 1.1.1.4 dyoung if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
404 1.1.1.4 dyoung if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
405 1.1.1.4 dyoung ieee80211_wme_acnames[WME_AC_BK]);
406 1.1.1.4 dyoung error = EIO;
407 1.1.1.4 dyoung goto bad2;
408 1.1.1.4 dyoung }
409 1.1.1.4 dyoung if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
410 1.1.1.4 dyoung !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
411 1.1.1.4 dyoung !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
412 1.1.1.4 dyoung /*
413 1.1.1.4 dyoung * Not enough hardware tx queues to properly do WME;
414 1.1.1.4 dyoung * just punt and assign them all to the same h/w queue.
415 1.1.1.4 dyoung * We could do a better job of this if, for example,
416 1.1.1.4 dyoung * we allocate queues when we switch from station to
417 1.1.1.4 dyoung * AP mode.
418 1.1.1.4 dyoung */
419 1.1.1.4 dyoung if (sc->sc_ac2q[WME_AC_VI] != NULL)
420 1.1.1.4 dyoung ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
421 1.1.1.4 dyoung if (sc->sc_ac2q[WME_AC_BE] != NULL)
422 1.1.1.4 dyoung ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
423 1.1.1.4 dyoung sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
424 1.1.1.4 dyoung sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
425 1.1.1.4 dyoung sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
426 1.1.1.4 dyoung }
427 1.1.1.4 dyoung
428 1.1.1.4 dyoung /*
429 1.1.1.4 dyoung * Special case certain configurations. Note the
430 1.1.1.4 dyoung * CAB queue is handled by these specially so don't
431 1.1.1.4 dyoung * include them when checking the txq setup mask.
432 1.1.1.4 dyoung */
433 1.1.1.4 dyoung switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
434 1.1.1.4 dyoung case 0x01:
435 1.1.1.4 dyoung TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
436 1.1.1.4 dyoung break;
437 1.1.1.4 dyoung case 0x0f:
438 1.1.1.4 dyoung TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
439 1.1.1.4 dyoung break;
440 1.1.1.4 dyoung default:
441 1.1.1.4 dyoung TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
442 1.1.1.4 dyoung break;
443 1.1.1.4 dyoung }
444 1.1.1.4 dyoung
445 1.1.1.4 dyoung /*
446 1.1.1.4 dyoung * Setup rate control. Some rate control modules
447 1.1.1.4 dyoung * call back to change the anntena state so expose
448 1.1.1.4 dyoung * the necessary entry points.
449 1.1.1.4 dyoung * XXX maybe belongs in struct ath_ratectrl?
450 1.1.1.4 dyoung */
451 1.1.1.4 dyoung sc->sc_setdefantenna = ath_setdefantenna;
452 1.1.1.4 dyoung sc->sc_rc = ath_rate_attach(sc);
453 1.1.1.4 dyoung if (sc->sc_rc == NULL) {
454 1.1.1.4 dyoung error = EIO;
455 1.1.1.3 dyoung goto bad2;
456 1.1 dyoung }
457 1.1 dyoung
458 1.1.1.4 dyoung sc->sc_blinking = 0;
459 1.1.1.4 dyoung sc->sc_ledstate = 1;
460 1.1.1.4 dyoung sc->sc_ledon = 0; /* low true */
461 1.1.1.4 dyoung sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
462 1.1.1.4 dyoung callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
463 1.1.1.4 dyoung /*
464 1.1.1.4 dyoung * Auto-enable soft led processing for IBM cards and for
465 1.1.1.4 dyoung * 5211 minipci cards. Users can also manually enable/disable
466 1.1.1.4 dyoung * support with a sysctl.
467 1.1.1.4 dyoung */
468 1.1.1.4 dyoung sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
469 1.1.1.4 dyoung if (sc->sc_softled) {
470 1.1.1.4 dyoung ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
471 1.1.1.4 dyoung ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
472 1.1.1.4 dyoung }
473 1.1.1.4 dyoung
474 1.1 dyoung ifp->if_softc = sc;
475 1.1 dyoung ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
476 1.1 dyoung ifp->if_start = ath_start;
477 1.1 dyoung ifp->if_watchdog = ath_watchdog;
478 1.1 dyoung ifp->if_ioctl = ath_ioctl;
479 1.1 dyoung ifp->if_init = ath_init;
480 1.1.1.4 dyoung IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
481 1.1.1.4 dyoung ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
482 1.1.1.4 dyoung IFQ_SET_READY(&ifp->if_snd);
483 1.1 dyoung
484 1.1.1.4 dyoung ic->ic_ifp = ifp;
485 1.1.1.4 dyoung ic->ic_reset = ath_reset;
486 1.1 dyoung ic->ic_newassoc = ath_newassoc;
487 1.1.1.4 dyoung ic->ic_updateslot = ath_updateslot;
488 1.1.1.4 dyoung ic->ic_wme.wme_update = ath_wme_update;
489 1.1 dyoung /* XXX not right but it's not used anywhere important */
490 1.1 dyoung ic->ic_phytype = IEEE80211_T_OFDM;
491 1.1 dyoung ic->ic_opmode = IEEE80211_M_STA;
492 1.1.1.4 dyoung ic->ic_caps =
493 1.1.1.4 dyoung IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
494 1.1.1.2 dyoung | IEEE80211_C_HOSTAP /* hostap mode */
495 1.1.1.2 dyoung | IEEE80211_C_MONITOR /* monitor mode */
496 1.1.1.2 dyoung | IEEE80211_C_SHPREAMBLE /* short preamble supported */
497 1.1.1.4 dyoung | IEEE80211_C_SHSLOT /* short slot time supported */
498 1.1.1.4 dyoung | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
499 1.1.1.3 dyoung ;
500 1.1.1.4 dyoung /*
501 1.1.1.4 dyoung * Query the hal to figure out h/w crypto support.
502 1.1.1.4 dyoung */
503 1.1.1.4 dyoung if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
504 1.1.1.4 dyoung ic->ic_caps |= IEEE80211_C_WEP;
505 1.1.1.4 dyoung if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
506 1.1.1.4 dyoung ic->ic_caps |= IEEE80211_C_AES;
507 1.1.1.4 dyoung if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
508 1.1.1.4 dyoung ic->ic_caps |= IEEE80211_C_AES_CCM;
509 1.1.1.4 dyoung if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
510 1.1.1.4 dyoung ic->ic_caps |= IEEE80211_C_CKIP;
511 1.1.1.4 dyoung if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
512 1.1.1.4 dyoung ic->ic_caps |= IEEE80211_C_TKIP;
513 1.1.1.4 dyoung /*
514 1.1.1.4 dyoung * Check if h/w does the MIC and/or whether the
515 1.1.1.4 dyoung * separate key cache entries are required to
516 1.1.1.4 dyoung * handle both tx+rx MIC keys.
517 1.1.1.4 dyoung */
518 1.1.1.4 dyoung if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
519 1.1.1.4 dyoung ic->ic_caps |= IEEE80211_C_TKIPMIC;
520 1.1.1.4 dyoung if (ath_hal_tkipsplit(ah))
521 1.1.1.4 dyoung sc->sc_splitmic = 1;
522 1.1.1.4 dyoung }
523 1.1.1.5 dyoung sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
524 1.1.1.5 dyoung sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
525 1.1.1.4 dyoung /*
526 1.1.1.4 dyoung * TPC support can be done either with a global cap or
527 1.1.1.4 dyoung * per-packet support. The latter is not available on
528 1.1.1.4 dyoung * all parts. We're a bit pedantic here as all parts
529 1.1.1.4 dyoung * support a global cap.
530 1.1.1.4 dyoung */
531 1.1.1.4 dyoung sc->sc_hastpc = ath_hal_hastpc(ah);
532 1.1.1.4 dyoung if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
533 1.1.1.4 dyoung ic->ic_caps |= IEEE80211_C_TXPMGT;
534 1.1.1.4 dyoung
535 1.1.1.4 dyoung /*
536 1.1.1.4 dyoung * Mark WME capability only if we have sufficient
537 1.1.1.4 dyoung * hardware queues to do proper priority scheduling.
538 1.1.1.4 dyoung */
539 1.1.1.4 dyoung if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
540 1.1.1.4 dyoung ic->ic_caps |= IEEE80211_C_WME;
541 1.1.1.4 dyoung /*
542 1.1.1.5 dyoung * Check for misc other capabilities.
543 1.1.1.4 dyoung */
544 1.1.1.4 dyoung if (ath_hal_hasbursting(ah))
545 1.1.1.4 dyoung ic->ic_caps |= IEEE80211_C_BURST;
546 1.1.1.4 dyoung
547 1.1.1.4 dyoung /*
548 1.1.1.4 dyoung * Indicate we need the 802.11 header padded to a
549 1.1.1.4 dyoung * 32-bit boundary for 4-address and QoS frames.
550 1.1.1.4 dyoung */
551 1.1.1.4 dyoung ic->ic_flags |= IEEE80211_F_DATAPAD;
552 1.1.1.4 dyoung
553 1.1.1.4 dyoung /*
554 1.1.1.4 dyoung * Query the hal about antenna support.
555 1.1.1.4 dyoung */
556 1.1.1.4 dyoung if (ath_hal_hasdiversity(ah)) {
557 1.1.1.4 dyoung sc->sc_hasdiversity = 1;
558 1.1.1.4 dyoung sc->sc_diversity = ath_hal_getdiversity(ah);
559 1.1.1.4 dyoung }
560 1.1.1.4 dyoung sc->sc_defant = ath_hal_getdefantenna(ah);
561 1.1.1.4 dyoung
562 1.1.1.4 dyoung /*
563 1.1.1.4 dyoung * Not all chips have the VEOL support we want to
564 1.1.1.4 dyoung * use with IBSS beacons; check here for it.
565 1.1.1.4 dyoung */
566 1.1.1.4 dyoung sc->sc_hasveol = ath_hal_hasveol(ah);
567 1.1 dyoung
568 1.1 dyoung /* get mac address from hardware */
569 1.1 dyoung ath_hal_getmac(ah, ic->ic_myaddr);
570 1.1 dyoung
571 1.1 dyoung /* call MI attach routine. */
572 1.1.1.4 dyoung ieee80211_ifattach(ic);
573 1.1 dyoung /* override default methods */
574 1.1 dyoung ic->ic_node_alloc = ath_node_alloc;
575 1.1.1.3 dyoung sc->sc_node_free = ic->ic_node_free;
576 1.1 dyoung ic->ic_node_free = ath_node_free;
577 1.1.1.2 dyoung ic->ic_node_getrssi = ath_node_getrssi;
578 1.1.1.4 dyoung sc->sc_recv_mgmt = ic->ic_recv_mgmt;
579 1.1.1.4 dyoung ic->ic_recv_mgmt = ath_recv_mgmt;
580 1.1 dyoung sc->sc_newstate = ic->ic_newstate;
581 1.1 dyoung ic->ic_newstate = ath_newstate;
582 1.1.1.4 dyoung ic->ic_crypto.cs_key_alloc = ath_key_alloc;
583 1.1.1.4 dyoung ic->ic_crypto.cs_key_delete = ath_key_delete;
584 1.1.1.4 dyoung ic->ic_crypto.cs_key_set = ath_key_set;
585 1.1.1.4 dyoung ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
586 1.1.1.4 dyoung ic->ic_crypto.cs_key_update_end = ath_key_update_end;
587 1.1 dyoung /* complete initialization */
588 1.1.1.4 dyoung ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
589 1.1.1.3 dyoung
590 1.1.1.4 dyoung ath_bpfattach(sc);
591 1.1 dyoung
592 1.1.1.4 dyoung if (bootverbose)
593 1.1.1.4 dyoung ieee80211_announce(ic);
594 1.1.1.4 dyoung ath_announce(sc);
595 1.1 dyoung return 0;
596 1.1.1.3 dyoung bad2:
597 1.1.1.4 dyoung ath_tx_cleanup(sc);
598 1.1.1.3 dyoung ath_desc_free(sc);
599 1.1 dyoung bad:
600 1.1 dyoung if (ah)
601 1.1 dyoung ath_hal_detach(ah);
602 1.1.1.5 dyoung if (ifp != NULL)
603 1.1.1.5 dyoung if_free(ifp);
604 1.1 dyoung sc->sc_invalid = 1;
605 1.1 dyoung return error;
606 1.1 dyoung }
607 1.1 dyoung
608 1.1 dyoung int
609 1.1 dyoung ath_detach(struct ath_softc *sc)
610 1.1 dyoung {
611 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
612 1.1 dyoung
613 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
614 1.1.1.4 dyoung __func__, ifp->if_flags);
615 1.1 dyoung
616 1.1 dyoung ath_stop(ifp);
617 1.1 dyoung bpfdetach(ifp);
618 1.1.1.4 dyoung /*
619 1.1.1.4 dyoung * NB: the order of these is important:
620 1.1.1.4 dyoung * o call the 802.11 layer before detaching the hal to
621 1.1.1.4 dyoung * insure callbacks into the driver to delete global
622 1.1.1.4 dyoung * key cache entries can be handled
623 1.1.1.4 dyoung * o reclaim the tx queue data structures after calling
624 1.1.1.4 dyoung * the 802.11 layer as we'll get called back to reclaim
625 1.1.1.4 dyoung * node state and potentially want to use them
626 1.1.1.4 dyoung * o to cleanup the tx queues the hal is called, so detach
627 1.1.1.4 dyoung * it last
628 1.1.1.4 dyoung * Other than that, it's straightforward...
629 1.1.1.4 dyoung */
630 1.1.1.4 dyoung ieee80211_ifdetach(&sc->sc_ic);
631 1.1.1.4 dyoung ath_rate_detach(sc->sc_rc);
632 1.1 dyoung ath_desc_free(sc);
633 1.1.1.4 dyoung ath_tx_cleanup(sc);
634 1.1 dyoung ath_hal_detach(sc->sc_ah);
635 1.1.1.2 dyoung
636 1.1 dyoung return 0;
637 1.1 dyoung }
638 1.1 dyoung
639 1.1 dyoung void
640 1.1 dyoung ath_suspend(struct ath_softc *sc)
641 1.1 dyoung {
642 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
643 1.1 dyoung
644 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
645 1.1.1.4 dyoung __func__, ifp->if_flags);
646 1.1 dyoung
647 1.1 dyoung ath_stop(ifp);
648 1.1 dyoung }
649 1.1 dyoung
650 1.1 dyoung void
651 1.1 dyoung ath_resume(struct ath_softc *sc)
652 1.1 dyoung {
653 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
654 1.1 dyoung
655 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
656 1.1.1.4 dyoung __func__, ifp->if_flags);
657 1.1 dyoung
658 1.1 dyoung if (ifp->if_flags & IFF_UP) {
659 1.1.1.5 dyoung ath_init(sc);
660 1.1 dyoung if (ifp->if_flags & IFF_RUNNING)
661 1.1 dyoung ath_start(ifp);
662 1.1 dyoung }
663 1.1.1.5 dyoung if (sc->sc_softled) {
664 1.1.1.5 dyoung ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
665 1.1.1.5 dyoung ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
666 1.1.1.5 dyoung }
667 1.1 dyoung }
668 1.1 dyoung
669 1.1 dyoung void
670 1.1 dyoung ath_shutdown(struct ath_softc *sc)
671 1.1 dyoung {
672 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
673 1.1 dyoung
674 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
675 1.1.1.4 dyoung __func__, ifp->if_flags);
676 1.1 dyoung
677 1.1 dyoung ath_stop(ifp);
678 1.1 dyoung }
679 1.1 dyoung
680 1.1.1.4 dyoung /*
681 1.1.1.4 dyoung * Interrupt handler. Most of the actual processing is deferred.
682 1.1.1.4 dyoung */
683 1.1 dyoung void
684 1.1 dyoung ath_intr(void *arg)
685 1.1 dyoung {
686 1.1 dyoung struct ath_softc *sc = arg;
687 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
688 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
689 1.1 dyoung HAL_INT status;
690 1.1 dyoung
691 1.1 dyoung if (sc->sc_invalid) {
692 1.1 dyoung /*
693 1.1 dyoung * The hardware is not ready/present, don't touch anything.
694 1.1 dyoung * Note this can happen early on if the IRQ is shared.
695 1.1 dyoung */
696 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
697 1.1 dyoung return;
698 1.1 dyoung }
699 1.1.1.3 dyoung if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
700 1.1.1.3 dyoung return;
701 1.1 dyoung if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
702 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
703 1.1.1.4 dyoung __func__, ifp->if_flags);
704 1.1 dyoung ath_hal_getisr(ah, &status); /* clear ISR */
705 1.1 dyoung ath_hal_intrset(ah, 0); /* disable further intr's */
706 1.1 dyoung return;
707 1.1 dyoung }
708 1.1.1.4 dyoung /*
709 1.1.1.4 dyoung * Figure out the reason(s) for the interrupt. Note
710 1.1.1.4 dyoung * that the hal returns a pseudo-ISR that may include
711 1.1.1.4 dyoung * bits we haven't explicitly enabled so we mask the
712 1.1.1.4 dyoung * value to insure we only process bits we requested.
713 1.1.1.4 dyoung */
714 1.1 dyoung ath_hal_getisr(ah, &status); /* NB: clears ISR too */
715 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
716 1.1.1.2 dyoung status &= sc->sc_imask; /* discard unasked for bits */
717 1.1 dyoung if (status & HAL_INT_FATAL) {
718 1.1.1.4 dyoung /*
719 1.1.1.4 dyoung * Fatal errors are unrecoverable. Typically
720 1.1.1.4 dyoung * these are caused by DMA errors. Unfortunately
721 1.1.1.4 dyoung * the exact reason is not (presently) returned
722 1.1.1.4 dyoung * by the hal.
723 1.1.1.4 dyoung */
724 1.1 dyoung sc->sc_stats.ast_hardware++;
725 1.1 dyoung ath_hal_intrset(ah, 0); /* disable intr's until reset */
726 1.1 dyoung taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
727 1.1 dyoung } else if (status & HAL_INT_RXORN) {
728 1.1 dyoung sc->sc_stats.ast_rxorn++;
729 1.1 dyoung ath_hal_intrset(ah, 0); /* disable intr's until reset */
730 1.1 dyoung taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
731 1.1 dyoung } else {
732 1.1.1.4 dyoung if (status & HAL_INT_SWBA) {
733 1.1.1.4 dyoung /*
734 1.1.1.4 dyoung * Software beacon alert--time to send a beacon.
735 1.1.1.4 dyoung * Handle beacon transmission directly; deferring
736 1.1.1.4 dyoung * this is too slow to meet timing constraints
737 1.1.1.4 dyoung * under load.
738 1.1.1.4 dyoung */
739 1.1.1.4 dyoung ath_beacon_proc(sc, 0);
740 1.1.1.4 dyoung }
741 1.1 dyoung if (status & HAL_INT_RXEOL) {
742 1.1 dyoung /*
743 1.1 dyoung * NB: the hardware should re-read the link when
744 1.1 dyoung * RXE bit is written, but it doesn't work at
745 1.1 dyoung * least on older hardware revs.
746 1.1 dyoung */
747 1.1 dyoung sc->sc_stats.ast_rxeol++;
748 1.1 dyoung sc->sc_rxlink = NULL;
749 1.1 dyoung }
750 1.1 dyoung if (status & HAL_INT_TXURN) {
751 1.1 dyoung sc->sc_stats.ast_txurn++;
752 1.1 dyoung /* bump tx trigger level */
753 1.1 dyoung ath_hal_updatetxtriglevel(ah, AH_TRUE);
754 1.1 dyoung }
755 1.1 dyoung if (status & HAL_INT_RX)
756 1.1 dyoung taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
757 1.1 dyoung if (status & HAL_INT_TX)
758 1.1 dyoung taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
759 1.1 dyoung if (status & HAL_INT_BMISS) {
760 1.1 dyoung sc->sc_stats.ast_bmiss++;
761 1.1 dyoung taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
762 1.1 dyoung }
763 1.1.1.4 dyoung if (status & HAL_INT_MIB) {
764 1.1.1.4 dyoung sc->sc_stats.ast_mib++;
765 1.1.1.4 dyoung /*
766 1.1.1.4 dyoung * Disable interrupts until we service the MIB
767 1.1.1.4 dyoung * interrupt; otherwise it will continue to fire.
768 1.1.1.4 dyoung */
769 1.1.1.4 dyoung ath_hal_intrset(ah, 0);
770 1.1.1.4 dyoung /*
771 1.1.1.4 dyoung * Let the hal handle the event. We assume it will
772 1.1.1.4 dyoung * clear whatever condition caused the interrupt.
773 1.1.1.4 dyoung */
774 1.1.1.4 dyoung ath_hal_mibevent(ah,
775 1.1.1.4 dyoung &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
776 1.1.1.4 dyoung ath_hal_intrset(ah, sc->sc_imask);
777 1.1.1.4 dyoung }
778 1.1 dyoung }
779 1.1 dyoung }
780 1.1 dyoung
781 1.1 dyoung static void
782 1.1 dyoung ath_fatal_proc(void *arg, int pending)
783 1.1 dyoung {
784 1.1 dyoung struct ath_softc *sc = arg;
785 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
786 1.1 dyoung
787 1.1.1.4 dyoung if_printf(ifp, "hardware error; resetting\n");
788 1.1.1.4 dyoung ath_reset(ifp);
789 1.1 dyoung }
790 1.1 dyoung
791 1.1 dyoung static void
792 1.1 dyoung ath_rxorn_proc(void *arg, int pending)
793 1.1 dyoung {
794 1.1 dyoung struct ath_softc *sc = arg;
795 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
796 1.1 dyoung
797 1.1.1.4 dyoung if_printf(ifp, "rx FIFO overrun; resetting\n");
798 1.1.1.4 dyoung ath_reset(ifp);
799 1.1 dyoung }
800 1.1 dyoung
801 1.1 dyoung static void
802 1.1 dyoung ath_bmiss_proc(void *arg, int pending)
803 1.1 dyoung {
804 1.1 dyoung struct ath_softc *sc = arg;
805 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
806 1.1 dyoung
807 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
808 1.1 dyoung KASSERT(ic->ic_opmode == IEEE80211_M_STA,
809 1.1 dyoung ("unexpect operating mode %u", ic->ic_opmode));
810 1.1.1.2 dyoung if (ic->ic_state == IEEE80211_S_RUN) {
811 1.1.1.2 dyoung /*
812 1.1.1.2 dyoung * Rather than go directly to scan state, try to
813 1.1.1.2 dyoung * reassociate first. If that fails then the state
814 1.1.1.2 dyoung * machine will drop us into scanning after timing
815 1.1.1.2 dyoung * out waiting for a probe response.
816 1.1.1.2 dyoung */
817 1.1.1.4 dyoung NET_LOCK_GIANT();
818 1.1.1.2 dyoung ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
819 1.1.1.4 dyoung NET_UNLOCK_GIANT();
820 1.1.1.2 dyoung }
821 1.1 dyoung }
822 1.1 dyoung
823 1.1 dyoung static u_int
824 1.1 dyoung ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
825 1.1 dyoung {
826 1.1.1.4 dyoung #define N(a) (sizeof(a) / sizeof(a[0]))
827 1.1 dyoung static const u_int modeflags[] = {
828 1.1 dyoung 0, /* IEEE80211_MODE_AUTO */
829 1.1 dyoung CHANNEL_A, /* IEEE80211_MODE_11A */
830 1.1 dyoung CHANNEL_B, /* IEEE80211_MODE_11B */
831 1.1 dyoung CHANNEL_PUREG, /* IEEE80211_MODE_11G */
832 1.1.1.4 dyoung 0, /* IEEE80211_MODE_FH */
833 1.1.1.4 dyoung CHANNEL_T, /* IEEE80211_MODE_TURBO_A */
834 1.1.1.4 dyoung CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
835 1.1 dyoung };
836 1.1.1.4 dyoung enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
837 1.1.1.4 dyoung
838 1.1.1.4 dyoung KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
839 1.1.1.4 dyoung KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
840 1.1.1.4 dyoung return modeflags[mode];
841 1.1.1.4 dyoung #undef N
842 1.1 dyoung }
843 1.1 dyoung
844 1.1 dyoung static void
845 1.1 dyoung ath_init(void *arg)
846 1.1 dyoung {
847 1.1 dyoung struct ath_softc *sc = (struct ath_softc *) arg;
848 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
849 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
850 1.1 dyoung struct ieee80211_node *ni;
851 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
852 1.1 dyoung HAL_STATUS status;
853 1.1 dyoung
854 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
855 1.1.1.4 dyoung __func__, ifp->if_flags);
856 1.1 dyoung
857 1.1.1.2 dyoung ATH_LOCK(sc);
858 1.1 dyoung /*
859 1.1 dyoung * Stop anything previously setup. This is safe
860 1.1 dyoung * whether this is the first time through or not.
861 1.1 dyoung */
862 1.1.1.4 dyoung ath_stop_locked(ifp);
863 1.1 dyoung
864 1.1 dyoung /*
865 1.1 dyoung * The basic interface to setting the hardware in a good
866 1.1 dyoung * state is ``reset''. On return the hardware is known to
867 1.1 dyoung * be powered up and with interrupts disabled. This must
868 1.1 dyoung * be followed by initialization of the appropriate bits
869 1.1 dyoung * and then setup of the interrupt mask.
870 1.1 dyoung */
871 1.1.1.4 dyoung sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
872 1.1.1.4 dyoung sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
873 1.1.1.4 dyoung if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
874 1.1 dyoung if_printf(ifp, "unable to reset hardware; hal status %u\n",
875 1.1 dyoung status);
876 1.1 dyoung goto done;
877 1.1 dyoung }
878 1.1 dyoung
879 1.1 dyoung /*
880 1.1.1.4 dyoung * This is needed only to setup initial state
881 1.1.1.4 dyoung * but it's best done after a reset.
882 1.1.1.4 dyoung */
883 1.1.1.4 dyoung ath_update_txpow(sc);
884 1.1.1.4 dyoung
885 1.1.1.4 dyoung /*
886 1.1 dyoung * Setup the hardware after reset: the key cache
887 1.1 dyoung * is filled as needed and the receive engine is
888 1.1 dyoung * set going. Frame transmit is handled entirely
889 1.1 dyoung * in the frame output path; there's nothing to do
890 1.1 dyoung * here except setup the interrupt mask.
891 1.1 dyoung */
892 1.1 dyoung if (ath_startrecv(sc) != 0) {
893 1.1 dyoung if_printf(ifp, "unable to start recv logic\n");
894 1.1 dyoung goto done;
895 1.1 dyoung }
896 1.1 dyoung
897 1.1 dyoung /*
898 1.1 dyoung * Enable interrupts.
899 1.1 dyoung */
900 1.1 dyoung sc->sc_imask = HAL_INT_RX | HAL_INT_TX
901 1.1 dyoung | HAL_INT_RXEOL | HAL_INT_RXORN
902 1.1 dyoung | HAL_INT_FATAL | HAL_INT_GLOBAL;
903 1.1.1.4 dyoung /*
904 1.1.1.4 dyoung * Enable MIB interrupts when there are hardware phy counters.
905 1.1.1.4 dyoung * Note we only do this (at the moment) for station mode.
906 1.1.1.4 dyoung */
907 1.1.1.4 dyoung if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
908 1.1.1.4 dyoung sc->sc_imask |= HAL_INT_MIB;
909 1.1 dyoung ath_hal_intrset(ah, sc->sc_imask);
910 1.1 dyoung
911 1.1 dyoung ifp->if_flags |= IFF_RUNNING;
912 1.1 dyoung ic->ic_state = IEEE80211_S_INIT;
913 1.1 dyoung
914 1.1 dyoung /*
915 1.1 dyoung * The hardware should be ready to go now so it's safe
916 1.1 dyoung * to kick the 802.11 state machine as it's likely to
917 1.1 dyoung * immediately call back to us to send mgmt frames.
918 1.1 dyoung */
919 1.1 dyoung ni = ic->ic_bss;
920 1.1 dyoung ni->ni_chan = ic->ic_ibss_chan;
921 1.1.1.4 dyoung ath_chan_change(sc, ni->ni_chan);
922 1.1.1.4 dyoung if (ic->ic_opmode != IEEE80211_M_MONITOR) {
923 1.1.1.4 dyoung if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
924 1.1.1.4 dyoung ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
925 1.1.1.4 dyoung } else
926 1.1 dyoung ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
927 1.1 dyoung done:
928 1.1.1.2 dyoung ATH_UNLOCK(sc);
929 1.1 dyoung }
930 1.1 dyoung
931 1.1 dyoung static void
932 1.1.1.4 dyoung ath_stop_locked(struct ifnet *ifp)
933 1.1 dyoung {
934 1.1 dyoung struct ath_softc *sc = ifp->if_softc;
935 1.1.1.4 dyoung struct ieee80211com *ic = &sc->sc_ic;
936 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
937 1.1 dyoung
938 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
939 1.1.1.4 dyoung __func__, sc->sc_invalid, ifp->if_flags);
940 1.1 dyoung
941 1.1.1.4 dyoung ATH_LOCK_ASSERT(sc);
942 1.1 dyoung if (ifp->if_flags & IFF_RUNNING) {
943 1.1 dyoung /*
944 1.1 dyoung * Shutdown the hardware and driver:
945 1.1.1.4 dyoung * reset 802.11 state machine
946 1.1 dyoung * turn off timers
947 1.1.1.4 dyoung * disable interrupts
948 1.1.1.4 dyoung * turn off the radio
949 1.1 dyoung * clear transmit machinery
950 1.1 dyoung * clear receive machinery
951 1.1 dyoung * drain and release tx queues
952 1.1 dyoung * reclaim beacon resources
953 1.1 dyoung * power down hardware
954 1.1 dyoung *
955 1.1 dyoung * Note that some of this work is not possible if the
956 1.1 dyoung * hardware is gone (invalid).
957 1.1 dyoung */
958 1.1.1.4 dyoung ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
959 1.1 dyoung ifp->if_flags &= ~IFF_RUNNING;
960 1.1 dyoung ifp->if_timer = 0;
961 1.1.1.4 dyoung if (!sc->sc_invalid) {
962 1.1.1.4 dyoung if (sc->sc_softled) {
963 1.1.1.4 dyoung callout_stop(&sc->sc_ledtimer);
964 1.1.1.4 dyoung ath_hal_gpioset(ah, sc->sc_ledpin,
965 1.1.1.4 dyoung !sc->sc_ledon);
966 1.1.1.4 dyoung sc->sc_blinking = 0;
967 1.1.1.4 dyoung }
968 1.1 dyoung ath_hal_intrset(ah, 0);
969 1.1.1.4 dyoung }
970 1.1 dyoung ath_draintxq(sc);
971 1.1.1.4 dyoung if (!sc->sc_invalid) {
972 1.1 dyoung ath_stoprecv(sc);
973 1.1.1.4 dyoung ath_hal_phydisable(ah);
974 1.1.1.4 dyoung } else
975 1.1 dyoung sc->sc_rxlink = NULL;
976 1.1.1.4 dyoung IFQ_DRV_PURGE(&ifp->if_snd);
977 1.1 dyoung ath_beacon_free(sc);
978 1.1.1.4 dyoung }
979 1.1.1.4 dyoung }
980 1.1.1.4 dyoung
981 1.1.1.4 dyoung static void
982 1.1.1.4 dyoung ath_stop(struct ifnet *ifp)
983 1.1.1.4 dyoung {
984 1.1.1.4 dyoung struct ath_softc *sc = ifp->if_softc;
985 1.1.1.4 dyoung
986 1.1.1.4 dyoung ATH_LOCK(sc);
987 1.1.1.4 dyoung ath_stop_locked(ifp);
988 1.1.1.4 dyoung if (!sc->sc_invalid) {
989 1.1.1.4 dyoung /*
990 1.1.1.4 dyoung * Set the chip in full sleep mode. Note that we are
991 1.1.1.4 dyoung * careful to do this only when bringing the interface
992 1.1.1.4 dyoung * completely to a stop. When the chip is in this state
993 1.1.1.4 dyoung * it must be carefully woken up or references to
994 1.1.1.4 dyoung * registers in the PCI clock domain may freeze the bus
995 1.1.1.4 dyoung * (and system). This varies by chip and is mostly an
996 1.1.1.4 dyoung * issue with newer parts that go to sleep more quickly.
997 1.1.1.4 dyoung */
998 1.1.1.4 dyoung ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
999 1.1 dyoung }
1000 1.1.1.2 dyoung ATH_UNLOCK(sc);
1001 1.1 dyoung }
1002 1.1 dyoung
1003 1.1 dyoung /*
1004 1.1 dyoung * Reset the hardware w/o losing operational state. This is
1005 1.1 dyoung * basically a more efficient way of doing ath_stop, ath_init,
1006 1.1 dyoung * followed by state transitions to the current 802.11
1007 1.1.1.4 dyoung * operational state. Used to recover from various errors and
1008 1.1.1.4 dyoung * to reset or reload hardware state.
1009 1.1 dyoung */
1010 1.1.1.4 dyoung static int
1011 1.1.1.4 dyoung ath_reset(struct ifnet *ifp)
1012 1.1 dyoung {
1013 1.1.1.4 dyoung struct ath_softc *sc = ifp->if_softc;
1014 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
1015 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
1016 1.1 dyoung struct ieee80211_channel *c;
1017 1.1 dyoung HAL_STATUS status;
1018 1.1 dyoung
1019 1.1 dyoung /*
1020 1.1 dyoung * Convert to a HAL channel description with the flags
1021 1.1 dyoung * constrained to reflect the current operating mode.
1022 1.1 dyoung */
1023 1.1 dyoung c = ic->ic_ibss_chan;
1024 1.1.1.4 dyoung sc->sc_curchan.channel = c->ic_freq;
1025 1.1.1.4 dyoung sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1026 1.1 dyoung
1027 1.1 dyoung ath_hal_intrset(ah, 0); /* disable interrupts */
1028 1.1 dyoung ath_draintxq(sc); /* stop xmit side */
1029 1.1 dyoung ath_stoprecv(sc); /* stop recv side */
1030 1.1 dyoung /* NB: indicate channel change so we do a full reset */
1031 1.1.1.4 dyoung if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1032 1.1 dyoung if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1033 1.1 dyoung __func__, status);
1034 1.1.1.4 dyoung ath_update_txpow(sc); /* update tx power state */
1035 1.1 dyoung if (ath_startrecv(sc) != 0) /* restart recv */
1036 1.1 dyoung if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1037 1.1.1.4 dyoung /*
1038 1.1.1.4 dyoung * We may be doing a reset in response to an ioctl
1039 1.1.1.4 dyoung * that changes the channel so update any state that
1040 1.1.1.4 dyoung * might change as a result.
1041 1.1.1.4 dyoung */
1042 1.1.1.4 dyoung ath_chan_change(sc, c);
1043 1.1 dyoung if (ic->ic_state == IEEE80211_S_RUN)
1044 1.1 dyoung ath_beacon_config(sc); /* restart beacons */
1045 1.1.1.4 dyoung ath_hal_intrset(ah, sc->sc_imask);
1046 1.1.1.4 dyoung
1047 1.1.1.4 dyoung ath_start(ifp); /* restart xmit */
1048 1.1.1.4 dyoung return 0;
1049 1.1 dyoung }
1050 1.1 dyoung
1051 1.1 dyoung static void
1052 1.1 dyoung ath_start(struct ifnet *ifp)
1053 1.1 dyoung {
1054 1.1 dyoung struct ath_softc *sc = ifp->if_softc;
1055 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
1056 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
1057 1.1 dyoung struct ieee80211_node *ni;
1058 1.1 dyoung struct ath_buf *bf;
1059 1.1 dyoung struct mbuf *m;
1060 1.1 dyoung struct ieee80211_frame *wh;
1061 1.1.1.4 dyoung struct ether_header *eh;
1062 1.1 dyoung
1063 1.1 dyoung if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1064 1.1 dyoung return;
1065 1.1 dyoung for (;;) {
1066 1.1 dyoung /*
1067 1.1 dyoung * Grab a TX buffer and associated resources.
1068 1.1 dyoung */
1069 1.1.1.2 dyoung ATH_TXBUF_LOCK(sc);
1070 1.1.1.4 dyoung bf = STAILQ_FIRST(&sc->sc_txbuf);
1071 1.1 dyoung if (bf != NULL)
1072 1.1.1.4 dyoung STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1073 1.1.1.2 dyoung ATH_TXBUF_UNLOCK(sc);
1074 1.1 dyoung if (bf == NULL) {
1075 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1076 1.1.1.4 dyoung __func__);
1077 1.1 dyoung sc->sc_stats.ast_tx_qstop++;
1078 1.1 dyoung ifp->if_flags |= IFF_OACTIVE;
1079 1.1 dyoung break;
1080 1.1 dyoung }
1081 1.1 dyoung /*
1082 1.1 dyoung * Poll the management queue for frames; they
1083 1.1 dyoung * have priority over normal data frames.
1084 1.1 dyoung */
1085 1.1 dyoung IF_DEQUEUE(&ic->ic_mgtq, m);
1086 1.1 dyoung if (m == NULL) {
1087 1.1 dyoung /*
1088 1.1 dyoung * No data frames go out unless we're associated.
1089 1.1 dyoung */
1090 1.1 dyoung if (ic->ic_state != IEEE80211_S_RUN) {
1091 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY,
1092 1.1.1.4 dyoung "%s: ignore data packet, state %u\n",
1093 1.1.1.4 dyoung __func__, ic->ic_state);
1094 1.1 dyoung sc->sc_stats.ast_tx_discard++;
1095 1.1.1.2 dyoung ATH_TXBUF_LOCK(sc);
1096 1.1.1.4 dyoung STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1097 1.1.1.2 dyoung ATH_TXBUF_UNLOCK(sc);
1098 1.1 dyoung break;
1099 1.1 dyoung }
1100 1.1.1.4 dyoung IFQ_DRV_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1101 1.1 dyoung if (m == NULL) {
1102 1.1.1.2 dyoung ATH_TXBUF_LOCK(sc);
1103 1.1.1.4 dyoung STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1104 1.1.1.2 dyoung ATH_TXBUF_UNLOCK(sc);
1105 1.1 dyoung break;
1106 1.1 dyoung }
1107 1.1.1.4 dyoung /*
1108 1.1.1.4 dyoung * Find the node for the destination so we can do
1109 1.1.1.4 dyoung * things like power save and fast frames aggregation.
1110 1.1.1.4 dyoung */
1111 1.1.1.4 dyoung if (m->m_len < sizeof(struct ether_header) &&
1112 1.1.1.4 dyoung (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1113 1.1.1.4 dyoung ic->ic_stats.is_tx_nobuf++; /* XXX */
1114 1.1.1.4 dyoung ni = NULL;
1115 1.1.1.4 dyoung goto bad;
1116 1.1.1.4 dyoung }
1117 1.1.1.4 dyoung eh = mtod(m, struct ether_header *);
1118 1.1.1.4 dyoung ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1119 1.1.1.4 dyoung if (ni == NULL) {
1120 1.1.1.4 dyoung /* NB: ieee80211_find_txnode does stat+msg */
1121 1.1.1.4 dyoung m_freem(m);
1122 1.1.1.4 dyoung goto bad;
1123 1.1.1.4 dyoung }
1124 1.1.1.4 dyoung if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1125 1.1.1.4 dyoung (m->m_flags & M_PWR_SAV) == 0) {
1126 1.1.1.4 dyoung /*
1127 1.1.1.4 dyoung * Station in power save mode; pass the frame
1128 1.1.1.4 dyoung * to the 802.11 layer and continue. We'll get
1129 1.1.1.4 dyoung * the frame back when the time is right.
1130 1.1.1.4 dyoung */
1131 1.1.1.4 dyoung ieee80211_pwrsave(ic, ni, m);
1132 1.1.1.4 dyoung goto reclaim;
1133 1.1.1.4 dyoung }
1134 1.1.1.4 dyoung /* calculate priority so we can find the tx queue */
1135 1.1.1.4 dyoung if (ieee80211_classify(ic, m, ni)) {
1136 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_XMIT,
1137 1.1.1.4 dyoung "%s: discard, classification failure\n",
1138 1.1.1.4 dyoung __func__);
1139 1.1.1.4 dyoung m_freem(m);
1140 1.1.1.4 dyoung goto bad;
1141 1.1.1.4 dyoung }
1142 1.1 dyoung ifp->if_opackets++;
1143 1.1 dyoung BPF_MTAP(ifp, m);
1144 1.1 dyoung /*
1145 1.1 dyoung * Encapsulate the packet in prep for transmission.
1146 1.1 dyoung */
1147 1.1.1.4 dyoung m = ieee80211_encap(ic, m, ni);
1148 1.1 dyoung if (m == NULL) {
1149 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY,
1150 1.1.1.4 dyoung "%s: encapsulation failure\n",
1151 1.1.1.4 dyoung __func__);
1152 1.1 dyoung sc->sc_stats.ast_tx_encap++;
1153 1.1 dyoung goto bad;
1154 1.1 dyoung }
1155 1.1 dyoung } else {
1156 1.1 dyoung /*
1157 1.1 dyoung * Hack! The referenced node pointer is in the
1158 1.1 dyoung * rcvif field of the packet header. This is
1159 1.1 dyoung * placed there by ieee80211_mgmt_output because
1160 1.1 dyoung * we need to hold the reference with the frame
1161 1.1 dyoung * and there's no other way (other than packet
1162 1.1 dyoung * tags which we consider too expensive to use)
1163 1.1 dyoung * to pass it along.
1164 1.1 dyoung */
1165 1.1 dyoung ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1166 1.1 dyoung m->m_pkthdr.rcvif = NULL;
1167 1.1 dyoung
1168 1.1 dyoung wh = mtod(m, struct ieee80211_frame *);
1169 1.1 dyoung if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1170 1.1 dyoung IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1171 1.1 dyoung /* fill time stamp */
1172 1.1 dyoung u_int64_t tsf;
1173 1.1 dyoung u_int32_t *tstamp;
1174 1.1 dyoung
1175 1.1 dyoung tsf = ath_hal_gettsf64(ah);
1176 1.1 dyoung /* XXX: adjust 100us delay to xmit */
1177 1.1 dyoung tsf += 100;
1178 1.1 dyoung tstamp = (u_int32_t *)&wh[1];
1179 1.1 dyoung tstamp[0] = htole32(tsf & 0xffffffff);
1180 1.1 dyoung tstamp[1] = htole32(tsf >> 32);
1181 1.1 dyoung }
1182 1.1 dyoung sc->sc_stats.ast_tx_mgmt++;
1183 1.1 dyoung }
1184 1.1 dyoung
1185 1.1 dyoung if (ath_tx_start(sc, ni, bf, m)) {
1186 1.1 dyoung bad:
1187 1.1.1.4 dyoung ifp->if_oerrors++;
1188 1.1.1.4 dyoung reclaim:
1189 1.1.1.2 dyoung ATH_TXBUF_LOCK(sc);
1190 1.1.1.4 dyoung STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1191 1.1.1.2 dyoung ATH_TXBUF_UNLOCK(sc);
1192 1.1.1.4 dyoung if (ni != NULL)
1193 1.1.1.4 dyoung ieee80211_free_node(ni);
1194 1.1 dyoung continue;
1195 1.1 dyoung }
1196 1.1 dyoung
1197 1.1 dyoung sc->sc_tx_timer = 5;
1198 1.1 dyoung ifp->if_timer = 1;
1199 1.1 dyoung }
1200 1.1 dyoung }
1201 1.1 dyoung
1202 1.1 dyoung static int
1203 1.1 dyoung ath_media_change(struct ifnet *ifp)
1204 1.1 dyoung {
1205 1.1.1.4 dyoung #define IS_UP(ifp) \
1206 1.1.1.4 dyoung ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1207 1.1 dyoung int error;
1208 1.1 dyoung
1209 1.1 dyoung error = ieee80211_media_change(ifp);
1210 1.1 dyoung if (error == ENETRESET) {
1211 1.1.1.4 dyoung if (IS_UP(ifp))
1212 1.1.1.5 dyoung ath_init(ifp->if_softc); /* XXX lose error */
1213 1.1 dyoung error = 0;
1214 1.1 dyoung }
1215 1.1 dyoung return error;
1216 1.1.1.4 dyoung #undef IS_UP
1217 1.1 dyoung }
1218 1.1 dyoung
1219 1.1.1.4 dyoung #ifdef AR_DEBUG
1220 1.1 dyoung static void
1221 1.1.1.4 dyoung ath_keyprint(const char *tag, u_int ix,
1222 1.1.1.4 dyoung const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1223 1.1 dyoung {
1224 1.1.1.4 dyoung static const char *ciphers[] = {
1225 1.1.1.4 dyoung "WEP",
1226 1.1.1.4 dyoung "AES-OCB",
1227 1.1.1.4 dyoung "AES-CCM",
1228 1.1.1.4 dyoung "CKIP",
1229 1.1.1.4 dyoung "TKIP",
1230 1.1.1.4 dyoung "CLR",
1231 1.1.1.4 dyoung };
1232 1.1.1.4 dyoung int i, n;
1233 1.1 dyoung
1234 1.1.1.4 dyoung printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1235 1.1.1.4 dyoung for (i = 0, n = hk->kv_len; i < n; i++)
1236 1.1.1.4 dyoung printf("%02x", hk->kv_val[i]);
1237 1.1.1.4 dyoung printf(" mac %s", ether_sprintf(mac));
1238 1.1.1.4 dyoung if (hk->kv_type == HAL_CIPHER_TKIP) {
1239 1.1.1.4 dyoung printf(" mic ");
1240 1.1.1.4 dyoung for (i = 0; i < sizeof(hk->kv_mic); i++)
1241 1.1.1.4 dyoung printf("%02x", hk->kv_mic[i]);
1242 1.1 dyoung }
1243 1.1.1.4 dyoung printf("\n");
1244 1.1 dyoung }
1245 1.1.1.4 dyoung #endif
1246 1.1 dyoung
1247 1.1.1.4 dyoung /*
1248 1.1.1.4 dyoung * Set a TKIP key into the hardware. This handles the
1249 1.1.1.4 dyoung * potential distribution of key state to multiple key
1250 1.1.1.4 dyoung * cache slots for TKIP.
1251 1.1.1.4 dyoung */
1252 1.1 dyoung static int
1253 1.1.1.4 dyoung ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1254 1.1.1.4 dyoung HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1255 1.1 dyoung {
1256 1.1.1.4 dyoung #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1257 1.1.1.4 dyoung static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1258 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
1259 1.1 dyoung
1260 1.1.1.4 dyoung KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1261 1.1.1.4 dyoung ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1262 1.1.1.4 dyoung KASSERT(sc->sc_splitmic, ("key cache !split"));
1263 1.1.1.4 dyoung if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1264 1.1 dyoung /*
1265 1.1.1.4 dyoung * TX key goes at first index, RX key at +32.
1266 1.1.1.4 dyoung * The hal handles the MIC keys at index+64.
1267 1.1 dyoung */
1268 1.1.1.4 dyoung memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1269 1.1.1.4 dyoung KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1270 1.1.1.4 dyoung if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1271 1.1.1.4 dyoung return 0;
1272 1.1.1.4 dyoung
1273 1.1.1.4 dyoung memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1274 1.1.1.4 dyoung KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1275 1.1.1.4 dyoung /* XXX delete tx key on failure? */
1276 1.1.1.4 dyoung return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1277 1.1.1.4 dyoung } else if (k->wk_flags & IEEE80211_KEY_XR) {
1278 1.1.1.4 dyoung /*
1279 1.1.1.4 dyoung * TX/RX key goes at first index.
1280 1.1.1.4 dyoung * The hal handles the MIC keys are index+64.
1281 1.1.1.4 dyoung */
1282 1.1.1.4 dyoung memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1283 1.1.1.4 dyoung k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1284 1.1.1.5 dyoung KEYPRINTF(sc, k->wk_keyix, hk, mac);
1285 1.1.1.5 dyoung return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1286 1.1.1.2 dyoung }
1287 1.1.1.4 dyoung return 0;
1288 1.1.1.4 dyoung #undef IEEE80211_KEY_XR
1289 1.1.1.4 dyoung }
1290 1.1.1.4 dyoung
1291 1.1.1.4 dyoung /*
1292 1.1.1.4 dyoung * Set a net80211 key into the hardware. This handles the
1293 1.1.1.4 dyoung * potential distribution of key state to multiple key
1294 1.1.1.4 dyoung * cache slots for TKIP with hardware MIC support.
1295 1.1.1.4 dyoung */
1296 1.1.1.4 dyoung static int
1297 1.1.1.4 dyoung ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1298 1.1.1.5 dyoung const u_int8_t mac0[IEEE80211_ADDR_LEN],
1299 1.1.1.5 dyoung struct ieee80211_node *bss)
1300 1.1.1.4 dyoung {
1301 1.1.1.4 dyoung #define N(a) (sizeof(a)/sizeof(a[0]))
1302 1.1.1.4 dyoung static const u_int8_t ciphermap[] = {
1303 1.1.1.4 dyoung HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1304 1.1.1.4 dyoung HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1305 1.1.1.4 dyoung HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1306 1.1.1.4 dyoung HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1307 1.1.1.4 dyoung (u_int8_t) -1, /* 4 is not allocated */
1308 1.1.1.4 dyoung HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1309 1.1.1.4 dyoung HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1310 1.1.1.4 dyoung };
1311 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
1312 1.1.1.4 dyoung const struct ieee80211_cipher *cip = k->wk_cipher;
1313 1.1.1.5 dyoung u_int8_t gmac[IEEE80211_ADDR_LEN];
1314 1.1.1.5 dyoung const u_int8_t *mac;
1315 1.1.1.4 dyoung HAL_KEYVAL hk;
1316 1.1.1.4 dyoung
1317 1.1.1.4 dyoung memset(&hk, 0, sizeof(hk));
1318 1.1.1.4 dyoung /*
1319 1.1.1.4 dyoung * Software crypto uses a "clear key" so non-crypto
1320 1.1.1.4 dyoung * state kept in the key cache are maintained and
1321 1.1.1.4 dyoung * so that rx frames have an entry to match.
1322 1.1.1.4 dyoung */
1323 1.1.1.4 dyoung if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1324 1.1.1.4 dyoung KASSERT(cip->ic_cipher < N(ciphermap),
1325 1.1.1.4 dyoung ("invalid cipher type %u", cip->ic_cipher));
1326 1.1.1.4 dyoung hk.kv_type = ciphermap[cip->ic_cipher];
1327 1.1.1.4 dyoung hk.kv_len = k->wk_keylen;
1328 1.1.1.4 dyoung memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1329 1.1.1.4 dyoung } else
1330 1.1.1.4 dyoung hk.kv_type = HAL_CIPHER_CLR;
1331 1.1.1.4 dyoung
1332 1.1.1.5 dyoung if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1333 1.1.1.5 dyoung /*
1334 1.1.1.5 dyoung * Group keys on hardware that supports multicast frame
1335 1.1.1.5 dyoung * key search use a mac that is the sender's address with
1336 1.1.1.5 dyoung * the high bit set instead of the app-specified address.
1337 1.1.1.5 dyoung */
1338 1.1.1.5 dyoung IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1339 1.1.1.5 dyoung gmac[0] |= 0x80;
1340 1.1.1.5 dyoung mac = gmac;
1341 1.1.1.5 dyoung } else
1342 1.1.1.5 dyoung mac = mac0;
1343 1.1.1.5 dyoung
1344 1.1.1.4 dyoung if (hk.kv_type == HAL_CIPHER_TKIP &&
1345 1.1.1.4 dyoung (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1346 1.1.1.4 dyoung sc->sc_splitmic) {
1347 1.1.1.4 dyoung return ath_keyset_tkip(sc, k, &hk, mac);
1348 1.1.1.4 dyoung } else {
1349 1.1.1.4 dyoung KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1350 1.1.1.4 dyoung return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1351 1.1 dyoung }
1352 1.1.1.4 dyoung #undef N
1353 1.1 dyoung }
1354 1.1 dyoung
1355 1.1 dyoung /*
1356 1.1.1.4 dyoung * Allocate tx/rx key slots for TKIP. We allocate two slots for
1357 1.1.1.4 dyoung * each key, one for decrypt/encrypt and the other for the MIC.
1358 1.1.1.4 dyoung */
1359 1.1.1.4 dyoung static u_int16_t
1360 1.1.1.4 dyoung key_alloc_2pair(struct ath_softc *sc)
1361 1.1.1.4 dyoung {
1362 1.1.1.4 dyoung #define N(a) (sizeof(a)/sizeof(a[0]))
1363 1.1.1.4 dyoung u_int i, keyix;
1364 1.1.1.4 dyoung
1365 1.1.1.4 dyoung KASSERT(sc->sc_splitmic, ("key cache !split"));
1366 1.1.1.4 dyoung /* XXX could optimize */
1367 1.1.1.4 dyoung for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1368 1.1.1.4 dyoung u_int8_t b = sc->sc_keymap[i];
1369 1.1.1.4 dyoung if (b != 0xff) {
1370 1.1.1.4 dyoung /*
1371 1.1.1.4 dyoung * One or more slots in this byte are free.
1372 1.1.1.4 dyoung */
1373 1.1.1.4 dyoung keyix = i*NBBY;
1374 1.1.1.4 dyoung while (b & 1) {
1375 1.1.1.4 dyoung again:
1376 1.1.1.4 dyoung keyix++;
1377 1.1.1.4 dyoung b >>= 1;
1378 1.1.1.4 dyoung }
1379 1.1.1.4 dyoung /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1380 1.1.1.4 dyoung if (isset(sc->sc_keymap, keyix+32) ||
1381 1.1.1.4 dyoung isset(sc->sc_keymap, keyix+64) ||
1382 1.1.1.4 dyoung isset(sc->sc_keymap, keyix+32+64)) {
1383 1.1.1.4 dyoung /* full pair unavailable */
1384 1.1.1.4 dyoung /* XXX statistic */
1385 1.1.1.4 dyoung if (keyix == (i+1)*NBBY) {
1386 1.1.1.4 dyoung /* no slots were appropriate, advance */
1387 1.1.1.4 dyoung continue;
1388 1.1.1.4 dyoung }
1389 1.1.1.4 dyoung goto again;
1390 1.1.1.4 dyoung }
1391 1.1.1.4 dyoung setbit(sc->sc_keymap, keyix);
1392 1.1.1.4 dyoung setbit(sc->sc_keymap, keyix+64);
1393 1.1.1.4 dyoung setbit(sc->sc_keymap, keyix+32);
1394 1.1.1.4 dyoung setbit(sc->sc_keymap, keyix+32+64);
1395 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1396 1.1.1.4 dyoung "%s: key pair %u,%u %u,%u\n",
1397 1.1.1.4 dyoung __func__, keyix, keyix+64,
1398 1.1.1.4 dyoung keyix+32, keyix+32+64);
1399 1.1.1.4 dyoung return keyix;
1400 1.1.1.4 dyoung }
1401 1.1.1.4 dyoung }
1402 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1403 1.1.1.4 dyoung return IEEE80211_KEYIX_NONE;
1404 1.1.1.4 dyoung #undef N
1405 1.1.1.4 dyoung }
1406 1.1.1.4 dyoung
1407 1.1.1.4 dyoung /*
1408 1.1.1.4 dyoung * Allocate a single key cache slot.
1409 1.1.1.4 dyoung */
1410 1.1.1.4 dyoung static u_int16_t
1411 1.1.1.4 dyoung key_alloc_single(struct ath_softc *sc)
1412 1.1.1.4 dyoung {
1413 1.1.1.4 dyoung #define N(a) (sizeof(a)/sizeof(a[0]))
1414 1.1.1.4 dyoung u_int i, keyix;
1415 1.1.1.4 dyoung
1416 1.1.1.4 dyoung /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1417 1.1.1.4 dyoung for (i = 0; i < N(sc->sc_keymap); i++) {
1418 1.1.1.4 dyoung u_int8_t b = sc->sc_keymap[i];
1419 1.1.1.4 dyoung if (b != 0xff) {
1420 1.1.1.4 dyoung /*
1421 1.1.1.4 dyoung * One or more slots are free.
1422 1.1.1.4 dyoung */
1423 1.1.1.4 dyoung keyix = i*NBBY;
1424 1.1.1.4 dyoung while (b & 1)
1425 1.1.1.4 dyoung keyix++, b >>= 1;
1426 1.1.1.4 dyoung setbit(sc->sc_keymap, keyix);
1427 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1428 1.1.1.4 dyoung __func__, keyix);
1429 1.1.1.4 dyoung return keyix;
1430 1.1.1.4 dyoung }
1431 1.1.1.4 dyoung }
1432 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1433 1.1.1.4 dyoung return IEEE80211_KEYIX_NONE;
1434 1.1.1.4 dyoung #undef N
1435 1.1.1.4 dyoung }
1436 1.1.1.4 dyoung
1437 1.1.1.4 dyoung /*
1438 1.1.1.4 dyoung * Allocate one or more key cache slots for a uniacst key. The
1439 1.1.1.4 dyoung * key itself is needed only to identify the cipher. For hardware
1440 1.1.1.4 dyoung * TKIP with split cipher+MIC keys we allocate two key cache slot
1441 1.1.1.4 dyoung * pairs so that we can setup separate TX and RX MIC keys. Note
1442 1.1.1.4 dyoung * that the MIC key for a TKIP key at slot i is assumed by the
1443 1.1.1.4 dyoung * hardware to be at slot i+64. This limits TKIP keys to the first
1444 1.1.1.4 dyoung * 64 entries.
1445 1.1.1.4 dyoung */
1446 1.1.1.4 dyoung static int
1447 1.1.1.4 dyoung ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1448 1.1.1.4 dyoung {
1449 1.1.1.4 dyoung struct ath_softc *sc = ic->ic_ifp->if_softc;
1450 1.1.1.4 dyoung
1451 1.1.1.4 dyoung /*
1452 1.1.1.4 dyoung * Group key allocation must be handled specially for
1453 1.1.1.4 dyoung * parts that do not support multicast key cache search
1454 1.1.1.4 dyoung * functionality. For those parts the key id must match
1455 1.1.1.4 dyoung * the h/w key index so lookups find the right key. On
1456 1.1.1.4 dyoung * parts w/ the key search facility we install the sender's
1457 1.1.1.4 dyoung * mac address (with the high bit set) and let the hardware
1458 1.1.1.4 dyoung * find the key w/o using the key id. This is preferred as
1459 1.1.1.4 dyoung * it permits us to support multiple users for adhoc and/or
1460 1.1.1.4 dyoung * multi-station operation.
1461 1.1.1.4 dyoung */
1462 1.1.1.4 dyoung if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1463 1.1.1.4 dyoung u_int keyix;
1464 1.1.1.4 dyoung
1465 1.1.1.4 dyoung if (!(&ic->ic_nw_keys[0] <= k &&
1466 1.1.1.4 dyoung k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1467 1.1.1.4 dyoung /* should not happen */
1468 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1469 1.1.1.4 dyoung "%s: bogus group key\n", __func__);
1470 1.1.1.4 dyoung return IEEE80211_KEYIX_NONE;
1471 1.1.1.4 dyoung }
1472 1.1.1.4 dyoung keyix = k - ic->ic_nw_keys;
1473 1.1.1.4 dyoung /*
1474 1.1.1.4 dyoung * XXX we pre-allocate the global keys so
1475 1.1.1.4 dyoung * have no way to check if they've already been allocated.
1476 1.1.1.4 dyoung */
1477 1.1.1.4 dyoung return keyix;
1478 1.1.1.4 dyoung }
1479 1.1.1.4 dyoung
1480 1.1.1.4 dyoung /*
1481 1.1.1.4 dyoung * We allocate two pair for TKIP when using the h/w to do
1482 1.1.1.4 dyoung * the MIC. For everything else, including software crypto,
1483 1.1.1.4 dyoung * we allocate a single entry. Note that s/w crypto requires
1484 1.1.1.4 dyoung * a pass-through slot on the 5211 and 5212. The 5210 does
1485 1.1.1.4 dyoung * not support pass-through cache entries and we map all
1486 1.1.1.4 dyoung * those requests to slot 0.
1487 1.1.1.4 dyoung */
1488 1.1.1.4 dyoung if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1489 1.1.1.4 dyoung return key_alloc_single(sc);
1490 1.1.1.4 dyoung } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1491 1.1.1.4 dyoung (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1492 1.1.1.4 dyoung return key_alloc_2pair(sc);
1493 1.1.1.4 dyoung } else {
1494 1.1.1.4 dyoung return key_alloc_single(sc);
1495 1.1.1.4 dyoung }
1496 1.1.1.4 dyoung }
1497 1.1.1.4 dyoung
1498 1.1.1.4 dyoung /*
1499 1.1.1.4 dyoung * Delete an entry in the key cache allocated by ath_key_alloc.
1500 1.1.1.4 dyoung */
1501 1.1.1.4 dyoung static int
1502 1.1.1.4 dyoung ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1503 1.1.1.4 dyoung {
1504 1.1.1.4 dyoung struct ath_softc *sc = ic->ic_ifp->if_softc;
1505 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
1506 1.1.1.4 dyoung const struct ieee80211_cipher *cip = k->wk_cipher;
1507 1.1.1.5 dyoung struct ieee80211_node *ni;
1508 1.1.1.4 dyoung u_int keyix = k->wk_keyix;
1509 1.1.1.4 dyoung
1510 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1511 1.1.1.4 dyoung
1512 1.1.1.4 dyoung ath_hal_keyreset(ah, keyix);
1513 1.1.1.4 dyoung /*
1514 1.1.1.5 dyoung * Check the key->node map and flush any ref.
1515 1.1.1.5 dyoung */
1516 1.1.1.5 dyoung ni = sc->sc_keyixmap[keyix];
1517 1.1.1.5 dyoung if (ni != NULL) {
1518 1.1.1.5 dyoung ieee80211_free_node(ni);
1519 1.1.1.5 dyoung sc->sc_keyixmap[keyix] = NULL;
1520 1.1.1.5 dyoung }
1521 1.1.1.5 dyoung /*
1522 1.1.1.4 dyoung * Handle split tx/rx keying required for TKIP with h/w MIC.
1523 1.1.1.4 dyoung */
1524 1.1.1.4 dyoung if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1525 1.1.1.5 dyoung (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1526 1.1.1.4 dyoung ath_hal_keyreset(ah, keyix+32); /* RX key */
1527 1.1.1.5 dyoung ni = sc->sc_keyixmap[keyix+32];
1528 1.1.1.5 dyoung if (ni != NULL) { /* as above... */
1529 1.1.1.5 dyoung ieee80211_free_node(ni);
1530 1.1.1.5 dyoung sc->sc_keyixmap[keyix+32] = NULL;
1531 1.1.1.5 dyoung }
1532 1.1.1.5 dyoung }
1533 1.1.1.4 dyoung if (keyix >= IEEE80211_WEP_NKID) {
1534 1.1.1.4 dyoung /*
1535 1.1.1.4 dyoung * Don't touch keymap entries for global keys so
1536 1.1.1.4 dyoung * they are never considered for dynamic allocation.
1537 1.1.1.4 dyoung */
1538 1.1.1.4 dyoung clrbit(sc->sc_keymap, keyix);
1539 1.1.1.4 dyoung if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1540 1.1.1.4 dyoung (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1541 1.1.1.4 dyoung sc->sc_splitmic) {
1542 1.1.1.4 dyoung clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1543 1.1.1.4 dyoung clrbit(sc->sc_keymap, keyix+32); /* RX key */
1544 1.1.1.4 dyoung clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1545 1.1.1.4 dyoung }
1546 1.1 dyoung }
1547 1.1.1.4 dyoung return 1;
1548 1.1.1.4 dyoung }
1549 1.1.1.4 dyoung
1550 1.1.1.4 dyoung /*
1551 1.1.1.4 dyoung * Set the key cache contents for the specified key. Key cache
1552 1.1.1.4 dyoung * slot(s) must already have been allocated by ath_key_alloc.
1553 1.1.1.4 dyoung */
1554 1.1.1.4 dyoung static int
1555 1.1.1.4 dyoung ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1556 1.1.1.4 dyoung const u_int8_t mac[IEEE80211_ADDR_LEN])
1557 1.1.1.4 dyoung {
1558 1.1.1.4 dyoung struct ath_softc *sc = ic->ic_ifp->if_softc;
1559 1.1.1.4 dyoung
1560 1.1.1.5 dyoung return ath_keyset(sc, k, mac, ic->ic_bss);
1561 1.1.1.4 dyoung }
1562 1.1.1.4 dyoung
1563 1.1.1.4 dyoung /*
1564 1.1.1.4 dyoung * Block/unblock tx+rx processing while a key change is done.
1565 1.1.1.4 dyoung * We assume the caller serializes key management operations
1566 1.1.1.4 dyoung * so we only need to worry about synchronization with other
1567 1.1.1.4 dyoung * uses that originate in the driver.
1568 1.1.1.4 dyoung */
1569 1.1.1.4 dyoung static void
1570 1.1.1.4 dyoung ath_key_update_begin(struct ieee80211com *ic)
1571 1.1.1.4 dyoung {
1572 1.1.1.4 dyoung struct ifnet *ifp = ic->ic_ifp;
1573 1.1.1.4 dyoung struct ath_softc *sc = ifp->if_softc;
1574 1.1.1.4 dyoung
1575 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1576 1.1.1.4 dyoung #if 0
1577 1.1.1.4 dyoung tasklet_disable(&sc->sc_rxtq);
1578 1.1.1.4 dyoung #endif
1579 1.1.1.4 dyoung IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1580 1.1.1.4 dyoung }
1581 1.1.1.4 dyoung
1582 1.1.1.4 dyoung static void
1583 1.1.1.4 dyoung ath_key_update_end(struct ieee80211com *ic)
1584 1.1.1.4 dyoung {
1585 1.1.1.4 dyoung struct ifnet *ifp = ic->ic_ifp;
1586 1.1.1.4 dyoung struct ath_softc *sc = ifp->if_softc;
1587 1.1.1.4 dyoung
1588 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1589 1.1.1.4 dyoung IF_UNLOCK(&ifp->if_snd);
1590 1.1.1.4 dyoung #if 0
1591 1.1.1.4 dyoung tasklet_enable(&sc->sc_rxtq);
1592 1.1.1.4 dyoung #endif
1593 1.1 dyoung }
1594 1.1 dyoung
1595 1.1.1.2 dyoung /*
1596 1.1.1.2 dyoung * Calculate the receive filter according to the
1597 1.1.1.2 dyoung * operating mode and state:
1598 1.1.1.2 dyoung *
1599 1.1.1.2 dyoung * o always accept unicast, broadcast, and multicast traffic
1600 1.1.1.4 dyoung * o maintain current state of phy error reception (the hal
1601 1.1.1.4 dyoung * may enable phy error frames for noise immunity work)
1602 1.1.1.2 dyoung * o probe request frames are accepted only when operating in
1603 1.1.1.2 dyoung * hostap, adhoc, or monitor modes
1604 1.1.1.2 dyoung * o enable promiscuous mode according to the interface state
1605 1.1.1.2 dyoung * o accept beacons:
1606 1.1.1.2 dyoung * - when operating in adhoc mode so the 802.11 layer creates
1607 1.1.1.2 dyoung * node table entries for peers,
1608 1.1.1.2 dyoung * - when operating in station mode for collecting rssi data when
1609 1.1.1.2 dyoung * the station is otherwise quiet, or
1610 1.1.1.2 dyoung * - when scanning
1611 1.1.1.2 dyoung */
1612 1.1.1.2 dyoung static u_int32_t
1613 1.1.1.4 dyoung ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1614 1.1 dyoung {
1615 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
1616 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
1617 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
1618 1.1.1.2 dyoung u_int32_t rfilt;
1619 1.1 dyoung
1620 1.1 dyoung rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1621 1.1 dyoung | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1622 1.1 dyoung if (ic->ic_opmode != IEEE80211_M_STA)
1623 1.1 dyoung rfilt |= HAL_RX_FILTER_PROBEREQ;
1624 1.1 dyoung if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1625 1.1 dyoung (ifp->if_flags & IFF_PROMISC))
1626 1.1 dyoung rfilt |= HAL_RX_FILTER_PROM;
1627 1.1.1.2 dyoung if (ic->ic_opmode == IEEE80211_M_STA ||
1628 1.1.1.2 dyoung ic->ic_opmode == IEEE80211_M_IBSS ||
1629 1.1.1.4 dyoung state == IEEE80211_S_SCAN)
1630 1.1 dyoung rfilt |= HAL_RX_FILTER_BEACON;
1631 1.1.1.2 dyoung return rfilt;
1632 1.1.1.2 dyoung }
1633 1.1.1.2 dyoung
1634 1.1.1.2 dyoung static void
1635 1.1.1.2 dyoung ath_mode_init(struct ath_softc *sc)
1636 1.1.1.2 dyoung {
1637 1.1.1.2 dyoung struct ieee80211com *ic = &sc->sc_ic;
1638 1.1.1.2 dyoung struct ath_hal *ah = sc->sc_ah;
1639 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
1640 1.1.1.2 dyoung u_int32_t rfilt, mfilt[2], val;
1641 1.1.1.2 dyoung u_int8_t pos;
1642 1.1.1.2 dyoung struct ifmultiaddr *ifma;
1643 1.1.1.2 dyoung
1644 1.1.1.2 dyoung /* configure rx filter */
1645 1.1.1.4 dyoung rfilt = ath_calcrxfilter(sc, ic->ic_state);
1646 1.1 dyoung ath_hal_setrxfilter(ah, rfilt);
1647 1.1 dyoung
1648 1.1.1.2 dyoung /* configure operational mode */
1649 1.1.1.4 dyoung ath_hal_setopmode(ah);
1650 1.1.1.4 dyoung
1651 1.1.1.4 dyoung /*
1652 1.1.1.4 dyoung * Handle any link-level address change. Note that we only
1653 1.1.1.4 dyoung * need to force ic_myaddr; any other addresses are handled
1654 1.1.1.4 dyoung * as a byproduct of the ifnet code marking the interface
1655 1.1.1.4 dyoung * down then up.
1656 1.1.1.4 dyoung *
1657 1.1.1.4 dyoung * XXX should get from lladdr instead of arpcom but that's more work
1658 1.1.1.4 dyoung */
1659 1.1.1.5 dyoung IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2ENADDR(ifp));
1660 1.1.1.4 dyoung ath_hal_setmac(ah, ic->ic_myaddr);
1661 1.1.1.2 dyoung
1662 1.1 dyoung /* calculate and install multicast filter */
1663 1.1 dyoung if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1664 1.1 dyoung mfilt[0] = mfilt[1] = 0;
1665 1.1 dyoung TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1666 1.1 dyoung caddr_t dl;
1667 1.1 dyoung
1668 1.1 dyoung /* calculate XOR of eight 6bit values */
1669 1.1 dyoung dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1670 1.1 dyoung val = LE_READ_4(dl + 0);
1671 1.1 dyoung pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1672 1.1 dyoung val = LE_READ_4(dl + 3);
1673 1.1 dyoung pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1674 1.1 dyoung pos &= 0x3f;
1675 1.1 dyoung mfilt[pos / 32] |= (1 << (pos % 32));
1676 1.1 dyoung }
1677 1.1 dyoung } else {
1678 1.1 dyoung mfilt[0] = mfilt[1] = ~0;
1679 1.1 dyoung }
1680 1.1 dyoung ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1681 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1682 1.1.1.4 dyoung __func__, rfilt, mfilt[0], mfilt[1]);
1683 1.1.1.4 dyoung }
1684 1.1.1.4 dyoung
1685 1.1.1.4 dyoung /*
1686 1.1.1.4 dyoung * Set the slot time based on the current setting.
1687 1.1.1.4 dyoung */
1688 1.1.1.4 dyoung static void
1689 1.1.1.4 dyoung ath_setslottime(struct ath_softc *sc)
1690 1.1.1.4 dyoung {
1691 1.1.1.4 dyoung struct ieee80211com *ic = &sc->sc_ic;
1692 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
1693 1.1.1.4 dyoung
1694 1.1.1.4 dyoung if (ic->ic_flags & IEEE80211_F_SHSLOT)
1695 1.1.1.4 dyoung ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1696 1.1.1.4 dyoung else
1697 1.1.1.4 dyoung ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1698 1.1.1.4 dyoung sc->sc_updateslot = OK;
1699 1.1 dyoung }
1700 1.1 dyoung
1701 1.1.1.4 dyoung /*
1702 1.1.1.4 dyoung * Callback from the 802.11 layer to update the
1703 1.1.1.4 dyoung * slot time based on the current setting.
1704 1.1.1.4 dyoung */
1705 1.1 dyoung static void
1706 1.1.1.4 dyoung ath_updateslot(struct ifnet *ifp)
1707 1.1.1.4 dyoung {
1708 1.1.1.4 dyoung struct ath_softc *sc = ifp->if_softc;
1709 1.1.1.4 dyoung struct ieee80211com *ic = &sc->sc_ic;
1710 1.1.1.4 dyoung
1711 1.1.1.4 dyoung /*
1712 1.1.1.4 dyoung * When not coordinating the BSS, change the hardware
1713 1.1.1.4 dyoung * immediately. For other operation we defer the change
1714 1.1.1.4 dyoung * until beacon updates have propagated to the stations.
1715 1.1.1.4 dyoung */
1716 1.1.1.4 dyoung if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1717 1.1.1.4 dyoung sc->sc_updateslot = UPDATE;
1718 1.1.1.4 dyoung else
1719 1.1.1.4 dyoung ath_setslottime(sc);
1720 1.1.1.4 dyoung }
1721 1.1.1.4 dyoung
1722 1.1.1.4 dyoung /*
1723 1.1.1.4 dyoung * Setup a h/w transmit queue for beacons.
1724 1.1.1.4 dyoung */
1725 1.1.1.4 dyoung static int
1726 1.1.1.4 dyoung ath_beaconq_setup(struct ath_hal *ah)
1727 1.1 dyoung {
1728 1.1.1.4 dyoung HAL_TXQ_INFO qi;
1729 1.1 dyoung
1730 1.1.1.4 dyoung memset(&qi, 0, sizeof(qi));
1731 1.1.1.4 dyoung qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1732 1.1.1.4 dyoung qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1733 1.1.1.4 dyoung qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1734 1.1.1.5 dyoung /* NB: for dynamic turbo, don't enable any other interrupts */
1735 1.1.1.5 dyoung qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1736 1.1.1.4 dyoung return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1737 1.1 dyoung }
1738 1.1 dyoung
1739 1.1.1.4 dyoung /*
1740 1.1.1.5 dyoung * Setup the transmit queue parameters for the beacon queue.
1741 1.1.1.5 dyoung */
1742 1.1.1.5 dyoung static int
1743 1.1.1.5 dyoung ath_beaconq_config(struct ath_softc *sc)
1744 1.1.1.5 dyoung {
1745 1.1.1.5 dyoung #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1746 1.1.1.5 dyoung struct ieee80211com *ic = &sc->sc_ic;
1747 1.1.1.5 dyoung struct ath_hal *ah = sc->sc_ah;
1748 1.1.1.5 dyoung HAL_TXQ_INFO qi;
1749 1.1.1.5 dyoung
1750 1.1.1.5 dyoung ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1751 1.1.1.5 dyoung if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1752 1.1.1.5 dyoung /*
1753 1.1.1.5 dyoung * Always burst out beacon and CAB traffic.
1754 1.1.1.5 dyoung */
1755 1.1.1.5 dyoung qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1756 1.1.1.5 dyoung qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1757 1.1.1.5 dyoung qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1758 1.1.1.5 dyoung } else {
1759 1.1.1.5 dyoung struct wmeParams *wmep =
1760 1.1.1.5 dyoung &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1761 1.1.1.5 dyoung /*
1762 1.1.1.5 dyoung * Adhoc mode; important thing is to use 2x cwmin.
1763 1.1.1.5 dyoung */
1764 1.1.1.5 dyoung qi.tqi_aifs = wmep->wmep_aifsn;
1765 1.1.1.5 dyoung qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1766 1.1.1.5 dyoung qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1767 1.1.1.5 dyoung }
1768 1.1.1.5 dyoung
1769 1.1.1.5 dyoung if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1770 1.1.1.5 dyoung device_printf(sc->sc_dev, "unable to update parameters for "
1771 1.1.1.5 dyoung "beacon hardware queue!\n");
1772 1.1.1.5 dyoung return 0;
1773 1.1.1.5 dyoung } else {
1774 1.1.1.5 dyoung ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1775 1.1.1.5 dyoung return 1;
1776 1.1.1.5 dyoung }
1777 1.1.1.5 dyoung #undef ATH_EXPONENT_TO_VALUE
1778 1.1.1.5 dyoung }
1779 1.1.1.5 dyoung
1780 1.1.1.5 dyoung /*
1781 1.1.1.4 dyoung * Allocate and setup an initial beacon frame.
1782 1.1.1.4 dyoung */
1783 1.1 dyoung static int
1784 1.1 dyoung ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1785 1.1 dyoung {
1786 1.1.1.4 dyoung struct ieee80211com *ic = ni->ni_ic;
1787 1.1 dyoung struct ath_buf *bf;
1788 1.1 dyoung struct mbuf *m;
1789 1.1.1.4 dyoung int error;
1790 1.1 dyoung
1791 1.1.1.4 dyoung bf = STAILQ_FIRST(&sc->sc_bbuf);
1792 1.1.1.4 dyoung if (bf == NULL) {
1793 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1794 1.1.1.4 dyoung sc->sc_stats.ast_be_nombuf++; /* XXX */
1795 1.1.1.4 dyoung return ENOMEM; /* XXX */
1796 1.1 dyoung }
1797 1.1 dyoung /*
1798 1.1 dyoung * NB: the beacon data buffer must be 32-bit aligned;
1799 1.1 dyoung * we assume the mbuf routines will return us something
1800 1.1 dyoung * with this alignment (perhaps should assert).
1801 1.1 dyoung */
1802 1.1.1.4 dyoung m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1803 1.1 dyoung if (m == NULL) {
1804 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1805 1.1.1.4 dyoung __func__);
1806 1.1 dyoung sc->sc_stats.ast_be_nombuf++;
1807 1.1 dyoung return ENOMEM;
1808 1.1 dyoung }
1809 1.1.1.4 dyoung error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1810 1.1.1.4 dyoung bf->bf_segs, &bf->bf_nseg,
1811 1.1 dyoung BUS_DMA_NOWAIT);
1812 1.1.1.4 dyoung if (error == 0) {
1813 1.1.1.4 dyoung bf->bf_m = m;
1814 1.1.1.4 dyoung bf->bf_node = ieee80211_ref_node(ni);
1815 1.1.1.4 dyoung } else {
1816 1.1 dyoung m_freem(m);
1817 1.1 dyoung }
1818 1.1.1.4 dyoung return error;
1819 1.1.1.4 dyoung }
1820 1.1.1.4 dyoung
1821 1.1.1.4 dyoung /*
1822 1.1.1.4 dyoung * Setup the beacon frame for transmit.
1823 1.1.1.4 dyoung */
1824 1.1.1.4 dyoung static void
1825 1.1.1.4 dyoung ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1826 1.1.1.4 dyoung {
1827 1.1.1.4 dyoung #define USE_SHPREAMBLE(_ic) \
1828 1.1.1.4 dyoung (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1829 1.1.1.4 dyoung == IEEE80211_F_SHPREAMBLE)
1830 1.1.1.4 dyoung struct ieee80211_node *ni = bf->bf_node;
1831 1.1.1.4 dyoung struct ieee80211com *ic = ni->ni_ic;
1832 1.1.1.4 dyoung struct mbuf *m = bf->bf_m;
1833 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
1834 1.1.1.4 dyoung struct ath_node *an = ATH_NODE(ni);
1835 1.1.1.4 dyoung struct ath_desc *ds;
1836 1.1.1.4 dyoung int flags, antenna;
1837 1.1.1.4 dyoung u_int8_t rate;
1838 1.1.1.4 dyoung
1839 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1840 1.1.1.4 dyoung __func__, m, m->m_len);
1841 1.1 dyoung
1842 1.1 dyoung /* setup descriptors */
1843 1.1 dyoung ds = bf->bf_desc;
1844 1.1 dyoung
1845 1.1.1.4 dyoung flags = HAL_TXDESC_NOACK;
1846 1.1.1.4 dyoung if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1847 1.1.1.4 dyoung ds->ds_link = bf->bf_daddr; /* self-linked */
1848 1.1.1.4 dyoung flags |= HAL_TXDESC_VEOL;
1849 1.1.1.4 dyoung /*
1850 1.1.1.4 dyoung * Let hardware handle antenna switching.
1851 1.1.1.4 dyoung */
1852 1.1.1.4 dyoung antenna = 0;
1853 1.1.1.4 dyoung } else {
1854 1.1.1.4 dyoung ds->ds_link = 0;
1855 1.1.1.4 dyoung /*
1856 1.1.1.4 dyoung * Switch antenna every 4 beacons.
1857 1.1.1.4 dyoung * XXX assumes two antenna
1858 1.1.1.4 dyoung */
1859 1.1.1.4 dyoung antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1860 1.1.1.4 dyoung }
1861 1.1.1.4 dyoung
1862 1.1.1.4 dyoung KASSERT(bf->bf_nseg == 1,
1863 1.1.1.4 dyoung ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1864 1.1 dyoung ds->ds_data = bf->bf_segs[0].ds_addr;
1865 1.1 dyoung /*
1866 1.1 dyoung * Calculate rate code.
1867 1.1 dyoung * XXX everything at min xmit rate
1868 1.1 dyoung */
1869 1.1.1.4 dyoung if (USE_SHPREAMBLE(ic))
1870 1.1.1.4 dyoung rate = an->an_tx_mgtratesp;
1871 1.1 dyoung else
1872 1.1.1.4 dyoung rate = an->an_tx_mgtrate;
1873 1.1 dyoung ath_hal_setuptxdesc(ah, ds
1874 1.1.1.4 dyoung , m->m_len + IEEE80211_CRC_LEN /* frame length */
1875 1.1.1.4 dyoung , sizeof(struct ieee80211_frame)/* header length */
1876 1.1 dyoung , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1877 1.1.1.4 dyoung , ni->ni_txpower /* txpower XXX */
1878 1.1 dyoung , rate, 1 /* series 0 rate/tries */
1879 1.1 dyoung , HAL_TXKEYIX_INVALID /* no encryption */
1880 1.1.1.4 dyoung , antenna /* antenna mode */
1881 1.1.1.4 dyoung , flags /* no ack, veol for beacons */
1882 1.1 dyoung , 0 /* rts/cts rate */
1883 1.1 dyoung , 0 /* rts/cts duration */
1884 1.1 dyoung );
1885 1.1 dyoung /* NB: beacon's BufLen must be a multiple of 4 bytes */
1886 1.1 dyoung ath_hal_filltxdesc(ah, ds
1887 1.1.1.4 dyoung , roundup(m->m_len, 4) /* buffer length */
1888 1.1.1.4 dyoung , AH_TRUE /* first segment */
1889 1.1.1.4 dyoung , AH_TRUE /* last segment */
1890 1.1.1.4 dyoung , ds /* first descriptor */
1891 1.1 dyoung );
1892 1.1.1.4 dyoung #undef USE_SHPREAMBLE
1893 1.1 dyoung }
1894 1.1 dyoung
1895 1.1.1.4 dyoung /*
1896 1.1.1.4 dyoung * Transmit a beacon frame at SWBA. Dynamic updates to the
1897 1.1.1.4 dyoung * frame contents are done as needed and the slot time is
1898 1.1.1.4 dyoung * also adjusted based on current state.
1899 1.1.1.4 dyoung */
1900 1.1 dyoung static void
1901 1.1 dyoung ath_beacon_proc(void *arg, int pending)
1902 1.1 dyoung {
1903 1.1 dyoung struct ath_softc *sc = arg;
1904 1.1.1.4 dyoung struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1905 1.1.1.4 dyoung struct ieee80211_node *ni = bf->bf_node;
1906 1.1.1.4 dyoung struct ieee80211com *ic = ni->ni_ic;
1907 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
1908 1.1.1.4 dyoung struct mbuf *m;
1909 1.1.1.4 dyoung int ncabq, error, otherant;
1910 1.1.1.4 dyoung
1911 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1912 1.1.1.4 dyoung __func__, pending);
1913 1.1 dyoung
1914 1.1 dyoung if (ic->ic_opmode == IEEE80211_M_STA ||
1915 1.1.1.4 dyoung ic->ic_opmode == IEEE80211_M_MONITOR ||
1916 1.1 dyoung bf == NULL || bf->bf_m == NULL) {
1917 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1918 1.1.1.4 dyoung __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1919 1.1 dyoung return;
1920 1.1 dyoung }
1921 1.1.1.4 dyoung /*
1922 1.1.1.4 dyoung * Check if the previous beacon has gone out. If
1923 1.1.1.4 dyoung * not don't don't try to post another, skip this
1924 1.1.1.4 dyoung * period and wait for the next. Missed beacons
1925 1.1.1.4 dyoung * indicate a problem and should not occur. If we
1926 1.1.1.4 dyoung * miss too many consecutive beacons reset the device.
1927 1.1.1.4 dyoung */
1928 1.1.1.4 dyoung if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1929 1.1.1.4 dyoung sc->sc_bmisscount++;
1930 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1931 1.1.1.4 dyoung "%s: missed %u consecutive beacons\n",
1932 1.1.1.4 dyoung __func__, sc->sc_bmisscount);
1933 1.1.1.4 dyoung if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
1934 1.1.1.4 dyoung taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1935 1.1.1.4 dyoung return;
1936 1.1.1.4 dyoung }
1937 1.1.1.4 dyoung if (sc->sc_bmisscount != 0) {
1938 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_BEACON,
1939 1.1.1.4 dyoung "%s: resume beacon xmit after %u misses\n",
1940 1.1.1.4 dyoung __func__, sc->sc_bmisscount);
1941 1.1.1.4 dyoung sc->sc_bmisscount = 0;
1942 1.1.1.4 dyoung }
1943 1.1.1.4 dyoung
1944 1.1.1.4 dyoung /*
1945 1.1.1.4 dyoung * Update dynamic beacon contents. If this returns
1946 1.1.1.4 dyoung * non-zero then we need to remap the memory because
1947 1.1.1.4 dyoung * the beacon frame changed size (probably because
1948 1.1.1.4 dyoung * of the TIM bitmap).
1949 1.1.1.4 dyoung */
1950 1.1.1.4 dyoung m = bf->bf_m;
1951 1.1.1.4 dyoung ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1952 1.1.1.4 dyoung if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1953 1.1.1.4 dyoung /* XXX too conservative? */
1954 1.1.1.4 dyoung bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1955 1.1.1.4 dyoung error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1956 1.1.1.4 dyoung bf->bf_segs, &bf->bf_nseg,
1957 1.1.1.4 dyoung BUS_DMA_NOWAIT);
1958 1.1.1.4 dyoung if (error != 0) {
1959 1.1.1.4 dyoung if_printf(ic->ic_ifp,
1960 1.1.1.4 dyoung "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1961 1.1.1.4 dyoung __func__, error);
1962 1.1.1.4 dyoung return;
1963 1.1.1.4 dyoung }
1964 1.1.1.4 dyoung }
1965 1.1.1.4 dyoung
1966 1.1.1.4 dyoung /*
1967 1.1.1.4 dyoung * Handle slot time change when a non-ERP station joins/leaves
1968 1.1.1.4 dyoung * an 11g network. The 802.11 layer notifies us via callback,
1969 1.1.1.4 dyoung * we mark updateslot, then wait one beacon before effecting
1970 1.1.1.4 dyoung * the change. This gives associated stations at least one
1971 1.1.1.4 dyoung * beacon interval to note the state change.
1972 1.1.1.4 dyoung */
1973 1.1.1.4 dyoung /* XXX locking */
1974 1.1.1.4 dyoung if (sc->sc_updateslot == UPDATE)
1975 1.1.1.4 dyoung sc->sc_updateslot = COMMIT; /* commit next beacon */
1976 1.1.1.4 dyoung else if (sc->sc_updateslot == COMMIT)
1977 1.1.1.4 dyoung ath_setslottime(sc); /* commit change to h/w */
1978 1.1.1.4 dyoung
1979 1.1.1.4 dyoung /*
1980 1.1.1.4 dyoung * Check recent per-antenna transmit statistics and flip
1981 1.1.1.4 dyoung * the default antenna if noticeably more frames went out
1982 1.1.1.4 dyoung * on the non-default antenna.
1983 1.1.1.4 dyoung * XXX assumes 2 anntenae
1984 1.1.1.4 dyoung */
1985 1.1.1.4 dyoung otherant = sc->sc_defant & 1 ? 2 : 1;
1986 1.1.1.4 dyoung if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1987 1.1.1.4 dyoung ath_setdefantenna(sc, otherant);
1988 1.1.1.4 dyoung sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1989 1.1.1.4 dyoung
1990 1.1.1.4 dyoung /*
1991 1.1.1.4 dyoung * Construct tx descriptor.
1992 1.1.1.4 dyoung */
1993 1.1.1.4 dyoung ath_beacon_setup(sc, bf);
1994 1.1.1.4 dyoung
1995 1.1.1.4 dyoung /*
1996 1.1.1.4 dyoung * Stop any current dma and put the new frame on the queue.
1997 1.1.1.4 dyoung * This should never fail since we check above that no frames
1998 1.1.1.4 dyoung * are still pending on the queue.
1999 1.1.1.4 dyoung */
2000 1.1 dyoung if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2001 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY,
2002 1.1.1.4 dyoung "%s: beacon queue %u did not stop?\n",
2003 1.1.1.4 dyoung __func__, sc->sc_bhalq);
2004 1.1 dyoung }
2005 1.1 dyoung bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2006 1.1 dyoung
2007 1.1.1.4 dyoung /*
2008 1.1.1.4 dyoung * Enable the CAB queue before the beacon queue to
2009 1.1.1.4 dyoung * insure cab frames are triggered by this beacon.
2010 1.1.1.4 dyoung */
2011 1.1.1.4 dyoung if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
2012 1.1.1.4 dyoung ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2013 1.1 dyoung ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2014 1.1 dyoung ath_hal_txstart(ah, sc->sc_bhalq);
2015 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2016 1.1.1.4 dyoung "%s: TXDP[%u] = %p (%p)\n", __func__,
2017 1.1.1.4 dyoung sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2018 1.1.1.4 dyoung
2019 1.1.1.4 dyoung sc->sc_stats.ast_be_xmit++;
2020 1.1.1.4 dyoung }
2021 1.1.1.4 dyoung
2022 1.1.1.4 dyoung /*
2023 1.1.1.4 dyoung * Reset the hardware after detecting beacons have stopped.
2024 1.1.1.4 dyoung */
2025 1.1.1.4 dyoung static void
2026 1.1.1.4 dyoung ath_bstuck_proc(void *arg, int pending)
2027 1.1.1.4 dyoung {
2028 1.1.1.4 dyoung struct ath_softc *sc = arg;
2029 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
2030 1.1.1.4 dyoung
2031 1.1.1.4 dyoung if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2032 1.1.1.4 dyoung sc->sc_bmisscount);
2033 1.1.1.4 dyoung ath_reset(ifp);
2034 1.1 dyoung }
2035 1.1 dyoung
2036 1.1.1.4 dyoung /*
2037 1.1.1.4 dyoung * Reclaim beacon resources.
2038 1.1.1.4 dyoung */
2039 1.1 dyoung static void
2040 1.1 dyoung ath_beacon_free(struct ath_softc *sc)
2041 1.1 dyoung {
2042 1.1.1.4 dyoung struct ath_buf *bf;
2043 1.1 dyoung
2044 1.1.1.4 dyoung STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2045 1.1.1.4 dyoung if (bf->bf_m != NULL) {
2046 1.1.1.4 dyoung bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2047 1.1.1.4 dyoung m_freem(bf->bf_m);
2048 1.1.1.4 dyoung bf->bf_m = NULL;
2049 1.1.1.4 dyoung }
2050 1.1.1.4 dyoung if (bf->bf_node != NULL) {
2051 1.1.1.4 dyoung ieee80211_free_node(bf->bf_node);
2052 1.1.1.4 dyoung bf->bf_node = NULL;
2053 1.1.1.4 dyoung }
2054 1.1 dyoung }
2055 1.1 dyoung }
2056 1.1 dyoung
2057 1.1 dyoung /*
2058 1.1 dyoung * Configure the beacon and sleep timers.
2059 1.1 dyoung *
2060 1.1 dyoung * When operating as an AP this resets the TSF and sets
2061 1.1 dyoung * up the hardware to notify us when we need to issue beacons.
2062 1.1 dyoung *
2063 1.1 dyoung * When operating in station mode this sets up the beacon
2064 1.1 dyoung * timers according to the timestamp of the last received
2065 1.1 dyoung * beacon and the current TSF, configures PCF and DTIM
2066 1.1 dyoung * handling, programs the sleep registers so the hardware
2067 1.1 dyoung * will wakeup in time to receive beacons, and configures
2068 1.1 dyoung * the beacon miss handling so we'll receive a BMISS
2069 1.1 dyoung * interrupt when we stop seeing beacons from the AP
2070 1.1 dyoung * we've associated with.
2071 1.1 dyoung */
2072 1.1 dyoung static void
2073 1.1 dyoung ath_beacon_config(struct ath_softc *sc)
2074 1.1 dyoung {
2075 1.1.1.5 dyoung #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10))
2076 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
2077 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
2078 1.1 dyoung struct ieee80211_node *ni = ic->ic_bss;
2079 1.1.1.4 dyoung u_int32_t nexttbtt, intval;
2080 1.1 dyoung
2081 1.1.1.5 dyoung /* extract tstamp from last beacon and convert to TU */
2082 1.1.1.5 dyoung nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2083 1.1.1.5 dyoung LE_READ_4(ni->ni_tstamp.data));
2084 1.1.1.5 dyoung /* NB: the beacon interval is kept internally in TU's */
2085 1.1.1.4 dyoung intval = ni->ni_intval & HAL_BEACON_PERIOD;
2086 1.1.1.4 dyoung if (nexttbtt == 0) /* e.g. for ap mode */
2087 1.1.1.4 dyoung nexttbtt = intval;
2088 1.1.1.4 dyoung else if (intval) /* NB: can be 0 for monitor mode */
2089 1.1.1.4 dyoung nexttbtt = roundup(nexttbtt, intval);
2090 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2091 1.1.1.4 dyoung __func__, nexttbtt, intval, ni->ni_intval);
2092 1.1 dyoung if (ic->ic_opmode == IEEE80211_M_STA) {
2093 1.1 dyoung HAL_BEACON_STATE bs;
2094 1.1.1.5 dyoung u_int64_t tsf;
2095 1.1.1.5 dyoung u_int32_t tsftu;
2096 1.1.1.5 dyoung int dtimperiod, dtimcount;
2097 1.1.1.5 dyoung int cfpperiod, cfpcount;
2098 1.1.1.5 dyoung
2099 1.1.1.5 dyoung /*
2100 1.1.1.5 dyoung * Setup dtim and cfp parameters according to
2101 1.1.1.5 dyoung * last beacon we received (which may be none).
2102 1.1.1.5 dyoung */
2103 1.1.1.5 dyoung dtimperiod = ni->ni_dtim_period;
2104 1.1.1.5 dyoung if (dtimperiod <= 0) /* NB: 0 if not known */
2105 1.1.1.5 dyoung dtimperiod = 1;
2106 1.1.1.5 dyoung dtimcount = ni->ni_dtim_count;
2107 1.1.1.5 dyoung if (dtimcount >= dtimperiod) /* NB: sanity check */
2108 1.1.1.5 dyoung dtimcount = 0; /* XXX? */
2109 1.1.1.5 dyoung cfpperiod = 1; /* NB: no PCF support yet */
2110 1.1.1.5 dyoung cfpcount = 0;
2111 1.1.1.5 dyoung #define FUDGE 2
2112 1.1.1.5 dyoung /*
2113 1.1.1.5 dyoung * Pull nexttbtt forward to reflect the current
2114 1.1.1.5 dyoung * TSF and calculate dtim+cfp state for the result.
2115 1.1.1.5 dyoung */
2116 1.1.1.5 dyoung tsf = ath_hal_gettsf64(ah);
2117 1.1.1.5 dyoung tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2118 1.1.1.5 dyoung do {
2119 1.1.1.5 dyoung nexttbtt += intval;
2120 1.1.1.5 dyoung if (--dtimcount < 0) {
2121 1.1.1.5 dyoung dtimcount = dtimperiod - 1;
2122 1.1.1.5 dyoung if (--cfpcount < 0)
2123 1.1.1.5 dyoung cfpcount = cfpperiod - 1;
2124 1.1.1.5 dyoung }
2125 1.1.1.5 dyoung } while (nexttbtt < tsftu);
2126 1.1.1.5 dyoung #undef FUDGE
2127 1.1 dyoung memset(&bs, 0, sizeof(bs));
2128 1.1.1.4 dyoung bs.bs_intval = intval;
2129 1.1 dyoung bs.bs_nexttbtt = nexttbtt;
2130 1.1.1.5 dyoung bs.bs_dtimperiod = dtimperiod*intval;
2131 1.1.1.5 dyoung bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2132 1.1.1.5 dyoung bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2133 1.1.1.5 dyoung bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2134 1.1.1.5 dyoung bs.bs_cfpmaxduration = 0;
2135 1.1.1.5 dyoung #if 0
2136 1.1 dyoung /*
2137 1.1.1.4 dyoung * The 802.11 layer records the offset to the DTIM
2138 1.1.1.4 dyoung * bitmap while receiving beacons; use it here to
2139 1.1.1.4 dyoung * enable h/w detection of our AID being marked in
2140 1.1.1.4 dyoung * the bitmap vector (to indicate frames for us are
2141 1.1.1.4 dyoung * pending at the AP).
2142 1.1.1.5 dyoung * XXX do DTIM handling in s/w to WAR old h/w bugs
2143 1.1.1.5 dyoung * XXX enable based on h/w rev for newer chips
2144 1.1.1.4 dyoung */
2145 1.1.1.4 dyoung bs.bs_timoffset = ni->ni_timoff;
2146 1.1.1.5 dyoung #endif
2147 1.1.1.4 dyoung /*
2148 1.1 dyoung * Calculate the number of consecutive beacons to miss
2149 1.1 dyoung * before taking a BMISS interrupt. The configuration
2150 1.1 dyoung * is specified in ms, so we need to convert that to
2151 1.1 dyoung * TU's and then calculate based on the beacon interval.
2152 1.1 dyoung * Note that we clamp the result to at most 10 beacons.
2153 1.1 dyoung */
2154 1.1.1.4 dyoung bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2155 1.1 dyoung if (bs.bs_bmissthreshold > 10)
2156 1.1 dyoung bs.bs_bmissthreshold = 10;
2157 1.1 dyoung else if (bs.bs_bmissthreshold <= 0)
2158 1.1 dyoung bs.bs_bmissthreshold = 1;
2159 1.1 dyoung
2160 1.1 dyoung /*
2161 1.1 dyoung * Calculate sleep duration. The configuration is
2162 1.1 dyoung * given in ms. We insure a multiple of the beacon
2163 1.1 dyoung * period is used. Also, if the sleep duration is
2164 1.1 dyoung * greater than the DTIM period then it makes senses
2165 1.1 dyoung * to make it a multiple of that.
2166 1.1 dyoung *
2167 1.1 dyoung * XXX fixed at 100ms
2168 1.1 dyoung */
2169 1.1 dyoung bs.bs_sleepduration =
2170 1.1.1.4 dyoung roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2171 1.1 dyoung if (bs.bs_sleepduration > bs.bs_dtimperiod)
2172 1.1 dyoung bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2173 1.1 dyoung
2174 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_BEACON,
2175 1.1.1.5 dyoung "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2176 1.1 dyoung , __func__
2177 1.1.1.5 dyoung , tsf, tsftu
2178 1.1 dyoung , bs.bs_intval
2179 1.1 dyoung , bs.bs_nexttbtt
2180 1.1 dyoung , bs.bs_dtimperiod
2181 1.1 dyoung , bs.bs_nextdtim
2182 1.1 dyoung , bs.bs_bmissthreshold
2183 1.1 dyoung , bs.bs_sleepduration
2184 1.1.1.4 dyoung , bs.bs_cfpperiod
2185 1.1.1.4 dyoung , bs.bs_cfpmaxduration
2186 1.1.1.4 dyoung , bs.bs_cfpnext
2187 1.1.1.4 dyoung , bs.bs_timoffset
2188 1.1.1.4 dyoung );
2189 1.1 dyoung ath_hal_intrset(ah, 0);
2190 1.1.1.4 dyoung ath_hal_beacontimers(ah, &bs);
2191 1.1 dyoung sc->sc_imask |= HAL_INT_BMISS;
2192 1.1 dyoung ath_hal_intrset(ah, sc->sc_imask);
2193 1.1 dyoung } else {
2194 1.1 dyoung ath_hal_intrset(ah, 0);
2195 1.1.1.4 dyoung if (nexttbtt == intval)
2196 1.1.1.4 dyoung intval |= HAL_BEACON_RESET_TSF;
2197 1.1.1.4 dyoung if (ic->ic_opmode == IEEE80211_M_IBSS) {
2198 1.1.1.4 dyoung /*
2199 1.1.1.4 dyoung * In IBSS mode enable the beacon timers but only
2200 1.1.1.4 dyoung * enable SWBA interrupts if we need to manually
2201 1.1.1.4 dyoung * prepare beacon frames. Otherwise we use a
2202 1.1.1.4 dyoung * self-linked tx descriptor and let the hardware
2203 1.1.1.4 dyoung * deal with things.
2204 1.1.1.4 dyoung */
2205 1.1.1.4 dyoung intval |= HAL_BEACON_ENA;
2206 1.1.1.4 dyoung if (!sc->sc_hasveol)
2207 1.1.1.4 dyoung sc->sc_imask |= HAL_INT_SWBA;
2208 1.1.1.5 dyoung ath_beaconq_config(sc);
2209 1.1.1.4 dyoung } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2210 1.1.1.4 dyoung /*
2211 1.1.1.4 dyoung * In AP mode we enable the beacon timers and
2212 1.1.1.4 dyoung * SWBA interrupts to prepare beacon frames.
2213 1.1.1.4 dyoung */
2214 1.1.1.4 dyoung intval |= HAL_BEACON_ENA;
2215 1.1 dyoung sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2216 1.1.1.5 dyoung ath_beaconq_config(sc);
2217 1.1.1.4 dyoung }
2218 1.1.1.4 dyoung ath_hal_beaconinit(ah, nexttbtt, intval);
2219 1.1.1.4 dyoung sc->sc_bmisscount = 0;
2220 1.1 dyoung ath_hal_intrset(ah, sc->sc_imask);
2221 1.1.1.4 dyoung /*
2222 1.1.1.4 dyoung * When using a self-linked beacon descriptor in
2223 1.1.1.4 dyoung * ibss mode load it once here.
2224 1.1.1.4 dyoung */
2225 1.1.1.4 dyoung if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2226 1.1.1.4 dyoung ath_beacon_proc(sc, 0);
2227 1.1 dyoung }
2228 1.1.1.5 dyoung #undef TSF_TO_TU
2229 1.1 dyoung }
2230 1.1 dyoung
2231 1.1 dyoung static void
2232 1.1 dyoung ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2233 1.1 dyoung {
2234 1.1 dyoung bus_addr_t *paddr = (bus_addr_t*) arg;
2235 1.1.1.4 dyoung KASSERT(error == 0, ("error %u on bus_dma callback", error));
2236 1.1 dyoung *paddr = segs->ds_addr;
2237 1.1 dyoung }
2238 1.1 dyoung
2239 1.1 dyoung static int
2240 1.1.1.4 dyoung ath_descdma_setup(struct ath_softc *sc,
2241 1.1.1.4 dyoung struct ath_descdma *dd, ath_bufhead *head,
2242 1.1.1.4 dyoung const char *name, int nbuf, int ndesc)
2243 1.1.1.4 dyoung {
2244 1.1.1.4 dyoung #define DS2PHYS(_dd, _ds) \
2245 1.1.1.4 dyoung ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2246 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
2247 1.1 dyoung struct ath_desc *ds;
2248 1.1 dyoung struct ath_buf *bf;
2249 1.1.1.4 dyoung int i, bsize, error;
2250 1.1 dyoung
2251 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2252 1.1.1.4 dyoung __func__, name, nbuf, ndesc);
2253 1.1.1.4 dyoung
2254 1.1.1.4 dyoung dd->dd_name = name;
2255 1.1.1.4 dyoung dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2256 1.1.1.4 dyoung
2257 1.1.1.4 dyoung /*
2258 1.1.1.4 dyoung * Setup DMA descriptor area.
2259 1.1.1.4 dyoung */
2260 1.1.1.4 dyoung error = bus_dma_tag_create(NULL, /* parent */
2261 1.1.1.4 dyoung PAGE_SIZE, 0, /* alignment, bounds */
2262 1.1.1.4 dyoung BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
2263 1.1.1.4 dyoung BUS_SPACE_MAXADDR, /* highaddr */
2264 1.1.1.4 dyoung NULL, NULL, /* filter, filterarg */
2265 1.1.1.4 dyoung dd->dd_desc_len, /* maxsize */
2266 1.1.1.4 dyoung 1, /* nsegments */
2267 1.1.1.4 dyoung BUS_SPACE_MAXADDR, /* maxsegsize */
2268 1.1.1.4 dyoung BUS_DMA_ALLOCNOW, /* flags */
2269 1.1.1.4 dyoung NULL, /* lockfunc */
2270 1.1.1.4 dyoung NULL, /* lockarg */
2271 1.1.1.4 dyoung &dd->dd_dmat);
2272 1.1.1.4 dyoung if (error != 0) {
2273 1.1.1.4 dyoung if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2274 1.1 dyoung return error;
2275 1.1.1.4 dyoung }
2276 1.1 dyoung
2277 1.1.1.4 dyoung /* allocate descriptors */
2278 1.1.1.4 dyoung error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2279 1.1.1.4 dyoung if (error != 0) {
2280 1.1.1.4 dyoung if_printf(ifp, "unable to create dmamap for %s descriptors, "
2281 1.1.1.4 dyoung "error %u\n", dd->dd_name, error);
2282 1.1 dyoung goto fail0;
2283 1.1.1.4 dyoung }
2284 1.1 dyoung
2285 1.1.1.4 dyoung error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2286 1.1.1.4 dyoung BUS_DMA_NOWAIT, &dd->dd_dmamap);
2287 1.1.1.4 dyoung if (error != 0) {
2288 1.1.1.4 dyoung if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2289 1.1.1.4 dyoung "error %u\n", nbuf * ndesc, dd->dd_name, error);
2290 1.1 dyoung goto fail1;
2291 1.1.1.4 dyoung }
2292 1.1 dyoung
2293 1.1.1.4 dyoung error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2294 1.1.1.4 dyoung dd->dd_desc, dd->dd_desc_len,
2295 1.1.1.4 dyoung ath_load_cb, &dd->dd_desc_paddr,
2296 1.1.1.4 dyoung BUS_DMA_NOWAIT);
2297 1.1.1.4 dyoung if (error != 0) {
2298 1.1.1.4 dyoung if_printf(ifp, "unable to map %s descriptors, error %u\n",
2299 1.1.1.4 dyoung dd->dd_name, error);
2300 1.1 dyoung goto fail2;
2301 1.1.1.4 dyoung }
2302 1.1 dyoung
2303 1.1.1.4 dyoung ds = dd->dd_desc;
2304 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2305 1.1.1.4 dyoung __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2306 1.1.1.4 dyoung (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2307 1.1.1.4 dyoung
2308 1.1.1.4 dyoung /* allocate rx buffers */
2309 1.1.1.4 dyoung bsize = sizeof(struct ath_buf) * nbuf;
2310 1.1.1.4 dyoung bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2311 1.1.1.4 dyoung if (bf == NULL) {
2312 1.1.1.4 dyoung if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2313 1.1.1.4 dyoung dd->dd_name, bsize);
2314 1.1.1.4 dyoung goto fail3;
2315 1.1 dyoung }
2316 1.1.1.4 dyoung dd->dd_bufptr = bf;
2317 1.1 dyoung
2318 1.1.1.4 dyoung STAILQ_INIT(head);
2319 1.1.1.4 dyoung for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2320 1.1 dyoung bf->bf_desc = ds;
2321 1.1.1.4 dyoung bf->bf_daddr = DS2PHYS(dd, ds);
2322 1.1 dyoung error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2323 1.1.1.4 dyoung &bf->bf_dmamap);
2324 1.1.1.4 dyoung if (error != 0) {
2325 1.1.1.4 dyoung if_printf(ifp, "unable to create dmamap for %s "
2326 1.1.1.4 dyoung "buffer %u, error %u\n", dd->dd_name, i, error);
2327 1.1.1.4 dyoung ath_descdma_cleanup(sc, dd, head);
2328 1.1.1.4 dyoung return error;
2329 1.1.1.4 dyoung }
2330 1.1.1.4 dyoung STAILQ_INSERT_TAIL(head, bf, bf_list);
2331 1.1 dyoung }
2332 1.1 dyoung return 0;
2333 1.1.1.4 dyoung fail3:
2334 1.1.1.4 dyoung bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2335 1.1 dyoung fail2:
2336 1.1.1.4 dyoung bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2337 1.1 dyoung fail1:
2338 1.1.1.4 dyoung bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2339 1.1 dyoung fail0:
2340 1.1.1.4 dyoung bus_dma_tag_destroy(dd->dd_dmat);
2341 1.1.1.4 dyoung memset(dd, 0, sizeof(*dd));
2342 1.1 dyoung return error;
2343 1.1.1.4 dyoung #undef DS2PHYS
2344 1.1 dyoung }
2345 1.1 dyoung
2346 1.1 dyoung static void
2347 1.1.1.4 dyoung ath_descdma_cleanup(struct ath_softc *sc,
2348 1.1.1.4 dyoung struct ath_descdma *dd, ath_bufhead *head)
2349 1.1 dyoung {
2350 1.1 dyoung struct ath_buf *bf;
2351 1.1.1.4 dyoung struct ieee80211_node *ni;
2352 1.1 dyoung
2353 1.1.1.4 dyoung bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2354 1.1.1.4 dyoung bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2355 1.1.1.4 dyoung bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2356 1.1.1.4 dyoung bus_dma_tag_destroy(dd->dd_dmat);
2357 1.1 dyoung
2358 1.1.1.4 dyoung STAILQ_FOREACH(bf, head, bf_list) {
2359 1.1 dyoung if (bf->bf_m) {
2360 1.1 dyoung m_freem(bf->bf_m);
2361 1.1 dyoung bf->bf_m = NULL;
2362 1.1 dyoung }
2363 1.1.1.4 dyoung if (bf->bf_dmamap != NULL) {
2364 1.1.1.4 dyoung bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2365 1.1.1.4 dyoung bf->bf_dmamap = NULL;
2366 1.1.1.4 dyoung }
2367 1.1.1.4 dyoung ni = bf->bf_node;
2368 1.1.1.4 dyoung bf->bf_node = NULL;
2369 1.1.1.4 dyoung if (ni != NULL) {
2370 1.1.1.4 dyoung /*
2371 1.1.1.4 dyoung * Reclaim node reference.
2372 1.1.1.4 dyoung */
2373 1.1.1.4 dyoung ieee80211_free_node(ni);
2374 1.1.1.4 dyoung }
2375 1.1 dyoung }
2376 1.1 dyoung
2377 1.1.1.4 dyoung STAILQ_INIT(head);
2378 1.1.1.4 dyoung free(dd->dd_bufptr, M_ATHDEV);
2379 1.1.1.4 dyoung memset(dd, 0, sizeof(*dd));
2380 1.1 dyoung }
2381 1.1 dyoung
2382 1.1.1.4 dyoung static int
2383 1.1.1.4 dyoung ath_desc_alloc(struct ath_softc *sc)
2384 1.1 dyoung {
2385 1.1.1.4 dyoung int error;
2386 1.1.1.4 dyoung
2387 1.1.1.4 dyoung error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2388 1.1.1.4 dyoung "rx", ATH_RXBUF, 1);
2389 1.1.1.4 dyoung if (error != 0)
2390 1.1.1.4 dyoung return error;
2391 1.1.1.4 dyoung
2392 1.1.1.4 dyoung error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2393 1.1.1.4 dyoung "tx", ATH_TXBUF, ATH_TXDESC);
2394 1.1.1.4 dyoung if (error != 0) {
2395 1.1.1.4 dyoung ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2396 1.1.1.4 dyoung return error;
2397 1.1.1.4 dyoung }
2398 1.1.1.4 dyoung
2399 1.1.1.4 dyoung error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2400 1.1.1.4 dyoung "beacon", 1, 1);
2401 1.1.1.4 dyoung if (error != 0) {
2402 1.1.1.4 dyoung ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2403 1.1.1.4 dyoung ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2404 1.1.1.4 dyoung return error;
2405 1.1.1.4 dyoung }
2406 1.1.1.4 dyoung return 0;
2407 1.1 dyoung }
2408 1.1 dyoung
2409 1.1 dyoung static void
2410 1.1.1.4 dyoung ath_desc_free(struct ath_softc *sc)
2411 1.1 dyoung {
2412 1.1 dyoung
2413 1.1.1.4 dyoung if (sc->sc_bdma.dd_desc_len != 0)
2414 1.1.1.4 dyoung ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2415 1.1.1.4 dyoung if (sc->sc_txdma.dd_desc_len != 0)
2416 1.1.1.4 dyoung ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2417 1.1.1.4 dyoung if (sc->sc_rxdma.dd_desc_len != 0)
2418 1.1.1.4 dyoung ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2419 1.1.1.4 dyoung }
2420 1.1.1.4 dyoung
2421 1.1.1.4 dyoung static struct ieee80211_node *
2422 1.1.1.4 dyoung ath_node_alloc(struct ieee80211_node_table *nt)
2423 1.1.1.4 dyoung {
2424 1.1.1.4 dyoung struct ieee80211com *ic = nt->nt_ic;
2425 1.1.1.4 dyoung struct ath_softc *sc = ic->ic_ifp->if_softc;
2426 1.1.1.4 dyoung const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2427 1.1.1.4 dyoung struct ath_node *an;
2428 1.1.1.4 dyoung
2429 1.1.1.4 dyoung an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2430 1.1.1.4 dyoung if (an == NULL) {
2431 1.1.1.4 dyoung /* XXX stat+msg */
2432 1.1.1.4 dyoung return NULL;
2433 1.1 dyoung }
2434 1.1.1.4 dyoung an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2435 1.1.1.4 dyoung an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2436 1.1.1.4 dyoung an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2437 1.1.1.4 dyoung an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2438 1.1.1.4 dyoung ath_rate_node_init(sc, an);
2439 1.1.1.4 dyoung
2440 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2441 1.1.1.4 dyoung return &an->an_node;
2442 1.1 dyoung }
2443 1.1 dyoung
2444 1.1 dyoung static void
2445 1.1.1.4 dyoung ath_node_free(struct ieee80211_node *ni)
2446 1.1 dyoung {
2447 1.1.1.4 dyoung struct ieee80211com *ic = ni->ni_ic;
2448 1.1.1.4 dyoung struct ath_softc *sc = ic->ic_ifp->if_softc;
2449 1.1.1.3 dyoung
2450 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2451 1.1 dyoung
2452 1.1.1.4 dyoung ath_rate_node_cleanup(sc, ATH_NODE(ni));
2453 1.1.1.4 dyoung sc->sc_node_free(ni);
2454 1.1.1.4 dyoung }
2455 1.1.1.2 dyoung
2456 1.1.1.2 dyoung static u_int8_t
2457 1.1.1.4 dyoung ath_node_getrssi(const struct ieee80211_node *ni)
2458 1.1.1.2 dyoung {
2459 1.1.1.4 dyoung #define HAL_EP_RND(x, mul) \
2460 1.1.1.4 dyoung ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2461 1.1.1.4 dyoung u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2462 1.1.1.4 dyoung int32_t rssi;
2463 1.1.1.2 dyoung
2464 1.1.1.2 dyoung /*
2465 1.1.1.4 dyoung * When only one frame is received there will be no state in
2466 1.1.1.4 dyoung * avgrssi so fallback on the value recorded by the 802.11 layer.
2467 1.1.1.2 dyoung */
2468 1.1.1.4 dyoung if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2469 1.1.1.4 dyoung rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2470 1.1.1.4 dyoung else
2471 1.1.1.4 dyoung rssi = ni->ni_rssi;
2472 1.1.1.4 dyoung /* NB: theoretically we shouldn't need this, but be paranoid */
2473 1.1.1.4 dyoung return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2474 1.1.1.4 dyoung #undef HAL_EP_RND
2475 1.1.1.2 dyoung }
2476 1.1.1.2 dyoung
2477 1.1 dyoung static int
2478 1.1 dyoung ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2479 1.1 dyoung {
2480 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
2481 1.1 dyoung int error;
2482 1.1 dyoung struct mbuf *m;
2483 1.1 dyoung struct ath_desc *ds;
2484 1.1 dyoung
2485 1.1 dyoung m = bf->bf_m;
2486 1.1 dyoung if (m == NULL) {
2487 1.1 dyoung /*
2488 1.1 dyoung * NB: by assigning a page to the rx dma buffer we
2489 1.1 dyoung * implicitly satisfy the Atheros requirement that
2490 1.1 dyoung * this buffer be cache-line-aligned and sized to be
2491 1.1 dyoung * multiple of the cache line size. Not doing this
2492 1.1 dyoung * causes weird stuff to happen (for the 5210 at least).
2493 1.1 dyoung */
2494 1.1 dyoung m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2495 1.1 dyoung if (m == NULL) {
2496 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY,
2497 1.1.1.4 dyoung "%s: no mbuf/cluster\n", __func__);
2498 1.1 dyoung sc->sc_stats.ast_rx_nombuf++;
2499 1.1 dyoung return ENOMEM;
2500 1.1 dyoung }
2501 1.1 dyoung bf->bf_m = m;
2502 1.1 dyoung m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2503 1.1 dyoung
2504 1.1.1.4 dyoung error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2505 1.1.1.4 dyoung bf->bf_dmamap, m,
2506 1.1.1.4 dyoung bf->bf_segs, &bf->bf_nseg,
2507 1.1 dyoung BUS_DMA_NOWAIT);
2508 1.1 dyoung if (error != 0) {
2509 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY,
2510 1.1.1.4 dyoung "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2511 1.1.1.4 dyoung __func__, error);
2512 1.1 dyoung sc->sc_stats.ast_rx_busdma++;
2513 1.1 dyoung return error;
2514 1.1 dyoung }
2515 1.1 dyoung KASSERT(bf->bf_nseg == 1,
2516 1.1.1.4 dyoung ("multi-segment packet; nseg %u", bf->bf_nseg));
2517 1.1 dyoung }
2518 1.1 dyoung bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2519 1.1 dyoung
2520 1.1.1.2 dyoung /*
2521 1.1.1.2 dyoung * Setup descriptors. For receive we always terminate
2522 1.1.1.2 dyoung * the descriptor list with a self-linked entry so we'll
2523 1.1.1.2 dyoung * not get overrun under high load (as can happen with a
2524 1.1.1.4 dyoung * 5212 when ANI processing enables PHY error frames).
2525 1.1.1.2 dyoung *
2526 1.1.1.2 dyoung * To insure the last descriptor is self-linked we create
2527 1.1.1.2 dyoung * each descriptor as self-linked and add it to the end. As
2528 1.1.1.2 dyoung * each additional descriptor is added the previous self-linked
2529 1.1.1.2 dyoung * entry is ``fixed'' naturally. This should be safe even
2530 1.1.1.2 dyoung * if DMA is happening. When processing RX interrupts we
2531 1.1.1.2 dyoung * never remove/process the last, self-linked, entry on the
2532 1.1.1.2 dyoung * descriptor list. This insures the hardware always has
2533 1.1.1.2 dyoung * someplace to write a new frame.
2534 1.1.1.2 dyoung */
2535 1.1 dyoung ds = bf->bf_desc;
2536 1.1.1.2 dyoung ds->ds_link = bf->bf_daddr; /* link to self */
2537 1.1 dyoung ds->ds_data = bf->bf_segs[0].ds_addr;
2538 1.1 dyoung ath_hal_setuprxdesc(ah, ds
2539 1.1 dyoung , m->m_len /* buffer size */
2540 1.1 dyoung , 0
2541 1.1 dyoung );
2542 1.1 dyoung
2543 1.1 dyoung if (sc->sc_rxlink != NULL)
2544 1.1 dyoung *sc->sc_rxlink = bf->bf_daddr;
2545 1.1 dyoung sc->sc_rxlink = &ds->ds_link;
2546 1.1 dyoung return 0;
2547 1.1 dyoung }
2548 1.1 dyoung
2549 1.1.1.4 dyoung /*
2550 1.1.1.4 dyoung * Extend 15-bit time stamp from rx descriptor to
2551 1.1.1.4 dyoung * a full 64-bit TSF using the current h/w TSF.
2552 1.1.1.4 dyoung */
2553 1.1.1.4 dyoung static __inline u_int64_t
2554 1.1.1.4 dyoung ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2555 1.1.1.4 dyoung {
2556 1.1.1.4 dyoung u_int64_t tsf;
2557 1.1.1.4 dyoung
2558 1.1.1.4 dyoung tsf = ath_hal_gettsf64(ah);
2559 1.1.1.4 dyoung if ((tsf & 0x7fff) < rstamp)
2560 1.1.1.4 dyoung tsf -= 0x8000;
2561 1.1.1.4 dyoung return ((tsf &~ 0x7fff) | rstamp);
2562 1.1.1.4 dyoung }
2563 1.1.1.4 dyoung
2564 1.1.1.4 dyoung /*
2565 1.1.1.4 dyoung * Intercept management frames to collect beacon rssi data
2566 1.1.1.4 dyoung * and to do ibss merges.
2567 1.1.1.4 dyoung */
2568 1.1.1.4 dyoung static void
2569 1.1.1.4 dyoung ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2570 1.1.1.4 dyoung struct ieee80211_node *ni,
2571 1.1.1.4 dyoung int subtype, int rssi, u_int32_t rstamp)
2572 1.1.1.4 dyoung {
2573 1.1.1.4 dyoung struct ath_softc *sc = ic->ic_ifp->if_softc;
2574 1.1.1.4 dyoung
2575 1.1.1.4 dyoung /*
2576 1.1.1.4 dyoung * Call up first so subsequent work can use information
2577 1.1.1.4 dyoung * potentially stored in the node (e.g. for ibss merge).
2578 1.1.1.4 dyoung */
2579 1.1.1.4 dyoung sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2580 1.1.1.4 dyoung switch (subtype) {
2581 1.1.1.4 dyoung case IEEE80211_FC0_SUBTYPE_BEACON:
2582 1.1.1.4 dyoung /* update rssi statistics for use by the hal */
2583 1.1.1.4 dyoung ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2584 1.1.1.4 dyoung /* fall thru... */
2585 1.1.1.4 dyoung case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2586 1.1.1.4 dyoung if (ic->ic_opmode == IEEE80211_M_IBSS &&
2587 1.1.1.4 dyoung ic->ic_state == IEEE80211_S_RUN) {
2588 1.1.1.4 dyoung u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2589 1.1.1.4 dyoung /*
2590 1.1.1.4 dyoung * Handle ibss merge as needed; check the tsf on the
2591 1.1.1.4 dyoung * frame before attempting the merge. The 802.11 spec
2592 1.1.1.4 dyoung * says the station should change it's bssid to match
2593 1.1.1.4 dyoung * the oldest station with the same ssid, where oldest
2594 1.1.1.4 dyoung * is determined by the tsf. Note that hardware
2595 1.1.1.4 dyoung * reconfiguration happens through callback to
2596 1.1.1.4 dyoung * ath_newstate as the state machine will go from
2597 1.1.1.4 dyoung * RUN -> RUN when this happens.
2598 1.1.1.4 dyoung */
2599 1.1.1.4 dyoung if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2600 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_STATE,
2601 1.1.1.4 dyoung "ibss merge, rstamp %u tsf %ju "
2602 1.1.1.4 dyoung "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2603 1.1.1.4 dyoung (uintmax_t)ni->ni_tstamp.tsf);
2604 1.1.1.4 dyoung (void) ieee80211_ibss_merge(ic, ni);
2605 1.1.1.4 dyoung }
2606 1.1.1.4 dyoung }
2607 1.1.1.4 dyoung break;
2608 1.1.1.4 dyoung }
2609 1.1.1.4 dyoung }
2610 1.1.1.4 dyoung
2611 1.1.1.4 dyoung /*
2612 1.1.1.4 dyoung * Set the default antenna.
2613 1.1.1.4 dyoung */
2614 1.1.1.4 dyoung static void
2615 1.1.1.4 dyoung ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2616 1.1.1.4 dyoung {
2617 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
2618 1.1.1.4 dyoung
2619 1.1.1.4 dyoung /* XXX block beacon interrupts */
2620 1.1.1.4 dyoung ath_hal_setdefantenna(ah, antenna);
2621 1.1.1.4 dyoung if (sc->sc_defant != antenna)
2622 1.1.1.4 dyoung sc->sc_stats.ast_ant_defswitch++;
2623 1.1.1.4 dyoung sc->sc_defant = antenna;
2624 1.1.1.4 dyoung sc->sc_rxotherant = 0;
2625 1.1.1.4 dyoung }
2626 1.1.1.4 dyoung
2627 1.1 dyoung static void
2628 1.1 dyoung ath_rx_proc(void *arg, int npending)
2629 1.1 dyoung {
2630 1.1.1.2 dyoung #define PA2DESC(_sc, _pa) \
2631 1.1.1.4 dyoung ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2632 1.1.1.4 dyoung ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2633 1.1 dyoung struct ath_softc *sc = arg;
2634 1.1 dyoung struct ath_buf *bf;
2635 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
2636 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
2637 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
2638 1.1 dyoung struct ath_desc *ds;
2639 1.1 dyoung struct mbuf *m;
2640 1.1 dyoung struct ieee80211_node *ni;
2641 1.1.1.2 dyoung struct ath_node *an;
2642 1.1.1.4 dyoung int len, type;
2643 1.1 dyoung u_int phyerr;
2644 1.1 dyoung HAL_STATUS status;
2645 1.1 dyoung
2646 1.1.1.4 dyoung NET_LOCK_GIANT(); /* XXX */
2647 1.1.1.4 dyoung
2648 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2649 1.1 dyoung do {
2650 1.1.1.4 dyoung bf = STAILQ_FIRST(&sc->sc_rxbuf);
2651 1.1 dyoung if (bf == NULL) { /* NB: shouldn't happen */
2652 1.1.1.4 dyoung if_printf(ifp, "%s: no buffer!\n", __func__);
2653 1.1 dyoung break;
2654 1.1 dyoung }
2655 1.1.1.2 dyoung ds = bf->bf_desc;
2656 1.1.1.2 dyoung if (ds->ds_link == bf->bf_daddr) {
2657 1.1.1.2 dyoung /* NB: never process the self-linked entry at the end */
2658 1.1.1.2 dyoung break;
2659 1.1.1.2 dyoung }
2660 1.1 dyoung m = bf->bf_m;
2661 1.1 dyoung if (m == NULL) { /* NB: shouldn't happen */
2662 1.1.1.4 dyoung if_printf(ifp, "%s: no mbuf!\n", __func__);
2663 1.1 dyoung continue;
2664 1.1 dyoung }
2665 1.1.1.2 dyoung /* XXX sync descriptor memory */
2666 1.1.1.2 dyoung /*
2667 1.1.1.2 dyoung * Must provide the virtual address of the current
2668 1.1.1.2 dyoung * descriptor, the physical address, and the virtual
2669 1.1.1.2 dyoung * address of the next descriptor in the h/w chain.
2670 1.1.1.2 dyoung * This allows the HAL to look ahead to see if the
2671 1.1.1.2 dyoung * hardware is done with a descriptor by checking the
2672 1.1.1.2 dyoung * done bit in the following descriptor and the address
2673 1.1.1.2 dyoung * of the current descriptor the DMA engine is working
2674 1.1.1.2 dyoung * on. All this is necessary because of our use of
2675 1.1.1.2 dyoung * a self-linked list to avoid rx overruns.
2676 1.1.1.2 dyoung */
2677 1.1.1.2 dyoung status = ath_hal_rxprocdesc(ah, ds,
2678 1.1.1.2 dyoung bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2679 1.1 dyoung #ifdef AR_DEBUG
2680 1.1.1.4 dyoung if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2681 1.1 dyoung ath_printrxbuf(bf, status == HAL_OK);
2682 1.1 dyoung #endif
2683 1.1 dyoung if (status == HAL_EINPROGRESS)
2684 1.1 dyoung break;
2685 1.1.1.4 dyoung STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2686 1.1.1.4 dyoung if (ds->ds_rxstat.rs_more) {
2687 1.1.1.4 dyoung /*
2688 1.1.1.4 dyoung * Frame spans multiple descriptors; this
2689 1.1.1.4 dyoung * cannot happen yet as we don't support
2690 1.1.1.4 dyoung * jumbograms. If not in monitor mode,
2691 1.1.1.4 dyoung * discard the frame.
2692 1.1.1.4 dyoung */
2693 1.1.1.4 dyoung if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2694 1.1.1.4 dyoung sc->sc_stats.ast_rx_toobig++;
2695 1.1.1.4 dyoung goto rx_next;
2696 1.1.1.4 dyoung }
2697 1.1.1.4 dyoung /* fall thru for monitor mode handling... */
2698 1.1.1.4 dyoung } else if (ds->ds_rxstat.rs_status != 0) {
2699 1.1 dyoung if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2700 1.1 dyoung sc->sc_stats.ast_rx_crcerr++;
2701 1.1 dyoung if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2702 1.1 dyoung sc->sc_stats.ast_rx_fifoerr++;
2703 1.1 dyoung if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2704 1.1 dyoung sc->sc_stats.ast_rx_phyerr++;
2705 1.1 dyoung phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2706 1.1 dyoung sc->sc_stats.ast_rx_phy[phyerr]++;
2707 1.1.1.4 dyoung goto rx_next;
2708 1.1.1.4 dyoung }
2709 1.1.1.4 dyoung if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2710 1.1.1.2 dyoung /*
2711 1.1.1.4 dyoung * Decrypt error. If the error occurred
2712 1.1.1.4 dyoung * because there was no hardware key, then
2713 1.1.1.4 dyoung * let the frame through so the upper layers
2714 1.1.1.4 dyoung * can process it. This is necessary for 5210
2715 1.1.1.4 dyoung * parts which have no way to setup a ``clear''
2716 1.1.1.4 dyoung * key cache entry.
2717 1.1.1.4 dyoung *
2718 1.1.1.4 dyoung * XXX do key cache faulting
2719 1.1.1.2 dyoung */
2720 1.1.1.4 dyoung if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2721 1.1.1.4 dyoung goto rx_accept;
2722 1.1.1.4 dyoung sc->sc_stats.ast_rx_badcrypt++;
2723 1.1 dyoung }
2724 1.1.1.4 dyoung if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2725 1.1.1.4 dyoung sc->sc_stats.ast_rx_badmic++;
2726 1.1.1.4 dyoung /*
2727 1.1.1.4 dyoung * Do minimal work required to hand off
2728 1.1.1.4 dyoung * the 802.11 header for notifcation.
2729 1.1.1.4 dyoung */
2730 1.1.1.4 dyoung /* XXX frag's and qos frames */
2731 1.1.1.4 dyoung len = ds->ds_rxstat.rs_datalen;
2732 1.1.1.4 dyoung if (len >= sizeof (struct ieee80211_frame)) {
2733 1.1.1.4 dyoung bus_dmamap_sync(sc->sc_dmat,
2734 1.1.1.4 dyoung bf->bf_dmamap,
2735 1.1.1.4 dyoung BUS_DMASYNC_POSTREAD);
2736 1.1.1.4 dyoung ieee80211_notify_michael_failure(ic,
2737 1.1.1.4 dyoung mtod(m, struct ieee80211_frame *),
2738 1.1.1.4 dyoung sc->sc_splitmic ?
2739 1.1.1.4 dyoung ds->ds_rxstat.rs_keyix-32 :
2740 1.1.1.4 dyoung ds->ds_rxstat.rs_keyix
2741 1.1.1.4 dyoung );
2742 1.1.1.4 dyoung }
2743 1.1.1.4 dyoung }
2744 1.1.1.4 dyoung ifp->if_ierrors++;
2745 1.1.1.4 dyoung /*
2746 1.1.1.4 dyoung * Reject error frames, we normally don't want
2747 1.1.1.4 dyoung * to see them in monitor mode (in monitor mode
2748 1.1.1.4 dyoung * allow through packets that have crypto problems).
2749 1.1.1.4 dyoung */
2750 1.1.1.4 dyoung if ((ds->ds_rxstat.rs_status &~
2751 1.1.1.4 dyoung (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2752 1.1.1.4 dyoung sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2753 1.1.1.4 dyoung goto rx_next;
2754 1.1 dyoung }
2755 1.1.1.4 dyoung rx_accept:
2756 1.1.1.4 dyoung /*
2757 1.1.1.4 dyoung * Sync and unmap the frame. At this point we're
2758 1.1.1.4 dyoung * committed to passing the mbuf somewhere so clear
2759 1.1.1.4 dyoung * bf_m; this means a new sk_buff must be allocated
2760 1.1.1.4 dyoung * when the rx descriptor is setup again to receive
2761 1.1.1.4 dyoung * another frame.
2762 1.1.1.4 dyoung */
2763 1.1.1.4 dyoung bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2764 1.1 dyoung BUS_DMASYNC_POSTREAD);
2765 1.1 dyoung bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2766 1.1 dyoung bf->bf_m = NULL;
2767 1.1.1.4 dyoung
2768 1.1 dyoung m->m_pkthdr.rcvif = ifp;
2769 1.1.1.4 dyoung len = ds->ds_rxstat.rs_datalen;
2770 1.1 dyoung m->m_pkthdr.len = m->m_len = len;
2771 1.1 dyoung
2772 1.1.1.4 dyoung sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2773 1.1.1.4 dyoung
2774 1.1 dyoung if (sc->sc_drvbpf) {
2775 1.1.1.4 dyoung u_int8_t rix;
2776 1.1.1.4 dyoung
2777 1.1.1.4 dyoung /*
2778 1.1.1.4 dyoung * Discard anything shorter than an ack or cts.
2779 1.1.1.4 dyoung */
2780 1.1.1.4 dyoung if (len < IEEE80211_ACK_LEN) {
2781 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_RECV,
2782 1.1.1.4 dyoung "%s: runt packet %d\n",
2783 1.1.1.4 dyoung __func__, len);
2784 1.1.1.4 dyoung sc->sc_stats.ast_rx_tooshort++;
2785 1.1.1.4 dyoung m_freem(m);
2786 1.1.1.4 dyoung goto rx_next;
2787 1.1.1.4 dyoung }
2788 1.1.1.4 dyoung rix = ds->ds_rxstat.rs_rate;
2789 1.1.1.4 dyoung sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2790 1.1.1.4 dyoung sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2791 1.1.1.3 dyoung sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2792 1.1.1.3 dyoung sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2793 1.1.1.3 dyoung /* XXX TSF */
2794 1.1 dyoung
2795 1.1.1.3 dyoung bpf_mtap2(sc->sc_drvbpf,
2796 1.1.1.3 dyoung &sc->sc_rx_th, sc->sc_rx_th_len, m);
2797 1.1 dyoung }
2798 1.1 dyoung
2799 1.1.1.4 dyoung /*
2800 1.1.1.4 dyoung * From this point on we assume the frame is at least
2801 1.1.1.4 dyoung * as large as ieee80211_frame_min; verify that.
2802 1.1.1.4 dyoung */
2803 1.1.1.4 dyoung if (len < IEEE80211_MIN_LEN) {
2804 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2805 1.1.1.4 dyoung __func__, len);
2806 1.1.1.4 dyoung sc->sc_stats.ast_rx_tooshort++;
2807 1.1.1.4 dyoung m_freem(m);
2808 1.1.1.4 dyoung goto rx_next;
2809 1.1.1.4 dyoung }
2810 1.1.1.4 dyoung
2811 1.1.1.4 dyoung if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2812 1.1.1.4 dyoung ieee80211_dump_pkt(mtod(m, caddr_t), len,
2813 1.1.1.4 dyoung sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2814 1.1.1.4 dyoung ds->ds_rxstat.rs_rssi);
2815 1.1 dyoung }
2816 1.1 dyoung
2817 1.1.1.4 dyoung m_adj(m, -IEEE80211_CRC_LEN);
2818 1.1.1.4 dyoung
2819 1.1 dyoung /*
2820 1.1.1.4 dyoung * Locate the node for sender, track state, and then
2821 1.1.1.4 dyoung * pass the (referenced) node up to the 802.11 layer
2822 1.1.1.5 dyoung * for its use. If the sender is unknown spam the
2823 1.1.1.5 dyoung * frame; it'll be dropped where it's not wanted.
2824 1.1 dyoung */
2825 1.1.1.5 dyoung if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID &&
2826 1.1.1.5 dyoung (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) {
2827 1.1.1.5 dyoung /*
2828 1.1.1.5 dyoung * Fast path: node is present in the key map;
2829 1.1.1.5 dyoung * grab a reference for processing the frame.
2830 1.1.1.5 dyoung */
2831 1.1.1.5 dyoung an = ATH_NODE(ieee80211_ref_node(ni));
2832 1.1.1.5 dyoung ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2833 1.1.1.5 dyoung type = ieee80211_input(ic, m, ni,
2834 1.1.1.5 dyoung ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2835 1.1.1.5 dyoung } else {
2836 1.1.1.5 dyoung /*
2837 1.1.1.5 dyoung * Locate the node for sender, track state, and then
2838 1.1.1.5 dyoung * pass the (referenced) node up to the 802.11 layer
2839 1.1.1.5 dyoung * for its use.
2840 1.1.1.5 dyoung */
2841 1.1.1.5 dyoung ni = ieee80211_find_rxnode(ic,
2842 1.1.1.5 dyoung mtod(m, const struct ieee80211_frame_min *));
2843 1.1.1.5 dyoung /*
2844 1.1.1.5 dyoung * Track rx rssi and do any rx antenna management.
2845 1.1.1.5 dyoung */
2846 1.1.1.5 dyoung an = ATH_NODE(ni);
2847 1.1.1.5 dyoung ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2848 1.1.1.5 dyoung /*
2849 1.1.1.5 dyoung * Send frame up for processing.
2850 1.1.1.5 dyoung */
2851 1.1.1.5 dyoung type = ieee80211_input(ic, m, ni,
2852 1.1.1.5 dyoung ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2853 1.1.1.5 dyoung if (ni != ic->ic_bss) {
2854 1.1.1.5 dyoung u_int16_t keyix;
2855 1.1.1.5 dyoung /*
2856 1.1.1.5 dyoung * If the station has a key cache slot assigned
2857 1.1.1.5 dyoung * update the key->node mapping table.
2858 1.1.1.5 dyoung */
2859 1.1.1.5 dyoung keyix = ni->ni_ucastkey.wk_keyix;
2860 1.1.1.5 dyoung if (keyix != IEEE80211_KEYIX_NONE &&
2861 1.1.1.5 dyoung sc->sc_keyixmap[keyix] == NULL)
2862 1.1.1.5 dyoung sc->sc_keyixmap[keyix] =
2863 1.1.1.5 dyoung ieee80211_ref_node(ni);
2864 1.1.1.5 dyoung }
2865 1.1.1.5 dyoung }
2866 1.1.1.5 dyoung ieee80211_free_node(ni);
2867 1.1.1.4 dyoung if (sc->sc_diversity) {
2868 1.1.1.4 dyoung /*
2869 1.1.1.4 dyoung * When using fast diversity, change the default rx
2870 1.1.1.4 dyoung * antenna if diversity chooses the other antenna 3
2871 1.1.1.4 dyoung * times in a row.
2872 1.1.1.4 dyoung */
2873 1.1.1.4 dyoung if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2874 1.1.1.4 dyoung if (++sc->sc_rxotherant >= 3)
2875 1.1.1.4 dyoung ath_setdefantenna(sc,
2876 1.1.1.4 dyoung ds->ds_rxstat.rs_antenna);
2877 1.1.1.4 dyoung } else
2878 1.1.1.4 dyoung sc->sc_rxotherant = 0;
2879 1.1.1.4 dyoung }
2880 1.1.1.4 dyoung if (sc->sc_softled) {
2881 1.1.1.4 dyoung /*
2882 1.1.1.4 dyoung * Blink for any data frame. Otherwise do a
2883 1.1.1.4 dyoung * heartbeat-style blink when idle. The latter
2884 1.1.1.4 dyoung * is mainly for station mode where we depend on
2885 1.1.1.4 dyoung * periodic beacon frames to trigger the poll event.
2886 1.1.1.4 dyoung */
2887 1.1.1.4 dyoung if (type == IEEE80211_FC0_TYPE_DATA) {
2888 1.1.1.4 dyoung sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2889 1.1.1.4 dyoung ath_led_event(sc, ATH_LED_RX);
2890 1.1.1.4 dyoung } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2891 1.1.1.4 dyoung ath_led_event(sc, ATH_LED_POLL);
2892 1.1.1.4 dyoung }
2893 1.1.1.4 dyoung rx_next:
2894 1.1.1.4 dyoung STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2895 1.1 dyoung } while (ath_rxbuf_init(sc, bf) == 0);
2896 1.1 dyoung
2897 1.1.1.4 dyoung /* rx signal state monitoring */
2898 1.1.1.4 dyoung ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2899 1.1.1.4 dyoung
2900 1.1.1.4 dyoung NET_UNLOCK_GIANT(); /* XXX */
2901 1.1.1.2 dyoung #undef PA2DESC
2902 1.1 dyoung }
2903 1.1 dyoung
2904 1.1 dyoung /*
2905 1.1.1.4 dyoung * Setup a h/w transmit queue.
2906 1.1.1.4 dyoung */
2907 1.1.1.4 dyoung static struct ath_txq *
2908 1.1.1.4 dyoung ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2909 1.1.1.4 dyoung {
2910 1.1.1.4 dyoung #define N(a) (sizeof(a)/sizeof(a[0]))
2911 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
2912 1.1.1.4 dyoung HAL_TXQ_INFO qi;
2913 1.1.1.4 dyoung int qnum;
2914 1.1.1.4 dyoung
2915 1.1.1.4 dyoung memset(&qi, 0, sizeof(qi));
2916 1.1.1.4 dyoung qi.tqi_subtype = subtype;
2917 1.1.1.4 dyoung qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2918 1.1.1.4 dyoung qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2919 1.1.1.4 dyoung qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2920 1.1.1.4 dyoung /*
2921 1.1.1.4 dyoung * Enable interrupts only for EOL and DESC conditions.
2922 1.1.1.4 dyoung * We mark tx descriptors to receive a DESC interrupt
2923 1.1.1.4 dyoung * when a tx queue gets deep; otherwise waiting for the
2924 1.1.1.4 dyoung * EOL to reap descriptors. Note that this is done to
2925 1.1.1.4 dyoung * reduce interrupt load and this only defers reaping
2926 1.1.1.4 dyoung * descriptors, never transmitting frames. Aside from
2927 1.1.1.4 dyoung * reducing interrupts this also permits more concurrency.
2928 1.1.1.4 dyoung * The only potential downside is if the tx queue backs
2929 1.1.1.4 dyoung * up in which case the top half of the kernel may backup
2930 1.1.1.4 dyoung * due to a lack of tx descriptors.
2931 1.1.1.4 dyoung */
2932 1.1.1.4 dyoung qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2933 1.1.1.4 dyoung qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2934 1.1.1.4 dyoung if (qnum == -1) {
2935 1.1.1.4 dyoung /*
2936 1.1.1.5 dyoung * NB: don't print a message, this happens
2937 1.1.1.4 dyoung * normally on parts with too few tx queues
2938 1.1.1.4 dyoung */
2939 1.1.1.4 dyoung return NULL;
2940 1.1.1.4 dyoung }
2941 1.1.1.4 dyoung if (qnum >= N(sc->sc_txq)) {
2942 1.1.1.4 dyoung device_printf(sc->sc_dev,
2943 1.1.1.4 dyoung "hal qnum %u out of range, max %zu!\n",
2944 1.1.1.4 dyoung qnum, N(sc->sc_txq));
2945 1.1.1.4 dyoung ath_hal_releasetxqueue(ah, qnum);
2946 1.1.1.4 dyoung return NULL;
2947 1.1.1.4 dyoung }
2948 1.1.1.4 dyoung if (!ATH_TXQ_SETUP(sc, qnum)) {
2949 1.1.1.4 dyoung struct ath_txq *txq = &sc->sc_txq[qnum];
2950 1.1.1.4 dyoung
2951 1.1.1.4 dyoung txq->axq_qnum = qnum;
2952 1.1.1.4 dyoung txq->axq_depth = 0;
2953 1.1.1.4 dyoung txq->axq_intrcnt = 0;
2954 1.1.1.4 dyoung txq->axq_link = NULL;
2955 1.1.1.4 dyoung STAILQ_INIT(&txq->axq_q);
2956 1.1.1.4 dyoung ATH_TXQ_LOCK_INIT(sc, txq);
2957 1.1.1.4 dyoung sc->sc_txqsetup |= 1<<qnum;
2958 1.1.1.4 dyoung }
2959 1.1.1.4 dyoung return &sc->sc_txq[qnum];
2960 1.1.1.4 dyoung #undef N
2961 1.1.1.4 dyoung }
2962 1.1.1.4 dyoung
2963 1.1.1.4 dyoung /*
2964 1.1.1.4 dyoung * Setup a hardware data transmit queue for the specified
2965 1.1.1.4 dyoung * access control. The hal may not support all requested
2966 1.1.1.4 dyoung * queues in which case it will return a reference to a
2967 1.1.1.4 dyoung * previously setup queue. We record the mapping from ac's
2968 1.1.1.4 dyoung * to h/w queues for use by ath_tx_start and also track
2969 1.1.1.4 dyoung * the set of h/w queues being used to optimize work in the
2970 1.1.1.4 dyoung * transmit interrupt handler and related routines.
2971 1.1 dyoung */
2972 1.1.1.4 dyoung static int
2973 1.1.1.4 dyoung ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2974 1.1.1.4 dyoung {
2975 1.1.1.4 dyoung #define N(a) (sizeof(a)/sizeof(a[0]))
2976 1.1.1.4 dyoung struct ath_txq *txq;
2977 1.1.1.4 dyoung
2978 1.1.1.4 dyoung if (ac >= N(sc->sc_ac2q)) {
2979 1.1.1.4 dyoung device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2980 1.1.1.4 dyoung ac, N(sc->sc_ac2q));
2981 1.1.1.4 dyoung return 0;
2982 1.1.1.4 dyoung }
2983 1.1.1.4 dyoung txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2984 1.1.1.4 dyoung if (txq != NULL) {
2985 1.1.1.4 dyoung sc->sc_ac2q[ac] = txq;
2986 1.1.1.4 dyoung return 1;
2987 1.1.1.4 dyoung } else
2988 1.1.1.4 dyoung return 0;
2989 1.1.1.4 dyoung #undef N
2990 1.1.1.4 dyoung }
2991 1.1 dyoung
2992 1.1.1.4 dyoung /*
2993 1.1.1.4 dyoung * Update WME parameters for a transmit queue.
2994 1.1.1.4 dyoung */
2995 1.1 dyoung static int
2996 1.1.1.4 dyoung ath_txq_update(struct ath_softc *sc, int ac)
2997 1.1 dyoung {
2998 1.1.1.4 dyoung #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
2999 1.1.1.4 dyoung #define ATH_TXOP_TO_US(v) (v<<5)
3000 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
3001 1.1.1.4 dyoung struct ath_txq *txq = sc->sc_ac2q[ac];
3002 1.1.1.4 dyoung struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3003 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
3004 1.1.1.4 dyoung HAL_TXQ_INFO qi;
3005 1.1 dyoung
3006 1.1.1.4 dyoung ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3007 1.1.1.4 dyoung qi.tqi_aifs = wmep->wmep_aifsn;
3008 1.1.1.4 dyoung qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3009 1.1.1.4 dyoung qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3010 1.1.1.4 dyoung qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3011 1.1.1.4 dyoung
3012 1.1.1.4 dyoung if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3013 1.1.1.4 dyoung device_printf(sc->sc_dev, "unable to update hardware queue "
3014 1.1.1.4 dyoung "parameters for %s traffic!\n",
3015 1.1.1.4 dyoung ieee80211_wme_acnames[ac]);
3016 1.1.1.4 dyoung return 0;
3017 1.1.1.4 dyoung } else {
3018 1.1.1.4 dyoung ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3019 1.1.1.4 dyoung return 1;
3020 1.1 dyoung }
3021 1.1.1.4 dyoung #undef ATH_TXOP_TO_US
3022 1.1.1.4 dyoung #undef ATH_EXPONENT_TO_VALUE
3023 1.1.1.4 dyoung }
3024 1.1.1.4 dyoung
3025 1.1.1.4 dyoung /*
3026 1.1.1.4 dyoung * Callback from the 802.11 layer to update WME parameters.
3027 1.1.1.4 dyoung */
3028 1.1.1.5 dyoung static int
3029 1.1.1.4 dyoung ath_wme_update(struct ieee80211com *ic)
3030 1.1.1.4 dyoung {
3031 1.1.1.4 dyoung struct ath_softc *sc = ic->ic_ifp->if_softc;
3032 1.1.1.4 dyoung
3033 1.1.1.4 dyoung return !ath_txq_update(sc, WME_AC_BE) ||
3034 1.1.1.4 dyoung !ath_txq_update(sc, WME_AC_BK) ||
3035 1.1.1.4 dyoung !ath_txq_update(sc, WME_AC_VI) ||
3036 1.1.1.4 dyoung !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3037 1.1.1.4 dyoung }
3038 1.1.1.4 dyoung
3039 1.1.1.4 dyoung /*
3040 1.1.1.4 dyoung * Reclaim resources for a setup queue.
3041 1.1.1.4 dyoung */
3042 1.1.1.4 dyoung static void
3043 1.1.1.4 dyoung ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3044 1.1.1.4 dyoung {
3045 1.1.1.4 dyoung
3046 1.1.1.4 dyoung ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3047 1.1.1.4 dyoung ATH_TXQ_LOCK_DESTROY(txq);
3048 1.1.1.4 dyoung sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3049 1.1.1.4 dyoung }
3050 1.1.1.4 dyoung
3051 1.1.1.4 dyoung /*
3052 1.1.1.4 dyoung * Reclaim all tx queue resources.
3053 1.1.1.4 dyoung */
3054 1.1.1.4 dyoung static void
3055 1.1.1.4 dyoung ath_tx_cleanup(struct ath_softc *sc)
3056 1.1.1.4 dyoung {
3057 1.1.1.4 dyoung int i;
3058 1.1.1.4 dyoung
3059 1.1.1.4 dyoung ATH_TXBUF_LOCK_DESTROY(sc);
3060 1.1.1.4 dyoung for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3061 1.1.1.4 dyoung if (ATH_TXQ_SETUP(sc, i))
3062 1.1.1.4 dyoung ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3063 1.1.1.4 dyoung }
3064 1.1.1.4 dyoung
3065 1.1.1.4 dyoung /*
3066 1.1.1.4 dyoung * Defragment an mbuf chain, returning at most maxfrags separate
3067 1.1.1.4 dyoung * mbufs+clusters. If this is not possible NULL is returned and
3068 1.1.1.4 dyoung * the original mbuf chain is left in it's present (potentially
3069 1.1.1.4 dyoung * modified) state. We use two techniques: collapsing consecutive
3070 1.1.1.4 dyoung * mbufs and replacing consecutive mbufs by a cluster.
3071 1.1.1.4 dyoung */
3072 1.1.1.4 dyoung static struct mbuf *
3073 1.1.1.4 dyoung ath_defrag(struct mbuf *m0, int how, int maxfrags)
3074 1.1.1.4 dyoung {
3075 1.1.1.4 dyoung struct mbuf *m, *n, *n2, **prev;
3076 1.1.1.4 dyoung u_int curfrags;
3077 1.1 dyoung
3078 1.1 dyoung /*
3079 1.1.1.4 dyoung * Calculate the current number of frags.
3080 1.1 dyoung */
3081 1.1.1.4 dyoung curfrags = 0;
3082 1.1.1.4 dyoung for (m = m0; m != NULL; m = m->m_next)
3083 1.1.1.4 dyoung curfrags++;
3084 1.1.1.4 dyoung /*
3085 1.1.1.4 dyoung * First, try to collapse mbufs. Note that we always collapse
3086 1.1.1.4 dyoung * towards the front so we don't need to deal with moving the
3087 1.1.1.4 dyoung * pkthdr. This may be suboptimal if the first mbuf has much
3088 1.1.1.4 dyoung * less data than the following.
3089 1.1.1.4 dyoung */
3090 1.1.1.4 dyoung m = m0;
3091 1.1.1.4 dyoung again:
3092 1.1.1.4 dyoung for (;;) {
3093 1.1.1.4 dyoung n = m->m_next;
3094 1.1.1.4 dyoung if (n == NULL)
3095 1.1.1.4 dyoung break;
3096 1.1.1.4 dyoung if ((m->m_flags & M_RDONLY) == 0 &&
3097 1.1.1.4 dyoung n->m_len < M_TRAILINGSPACE(m)) {
3098 1.1.1.4 dyoung bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3099 1.1.1.4 dyoung n->m_len);
3100 1.1.1.4 dyoung m->m_len += n->m_len;
3101 1.1.1.4 dyoung m->m_next = n->m_next;
3102 1.1.1.4 dyoung m_free(n);
3103 1.1.1.4 dyoung if (--curfrags <= maxfrags)
3104 1.1.1.4 dyoung return m0;
3105 1.1.1.4 dyoung } else
3106 1.1.1.4 dyoung m = n;
3107 1.1.1.4 dyoung }
3108 1.1.1.4 dyoung KASSERT(maxfrags > 1,
3109 1.1.1.4 dyoung ("maxfrags %u, but normal collapse failed", maxfrags));
3110 1.1.1.4 dyoung /*
3111 1.1.1.4 dyoung * Collapse consecutive mbufs to a cluster.
3112 1.1.1.4 dyoung */
3113 1.1.1.4 dyoung prev = &m0->m_next; /* NB: not the first mbuf */
3114 1.1.1.4 dyoung while ((n = *prev) != NULL) {
3115 1.1.1.4 dyoung if ((n2 = n->m_next) != NULL &&
3116 1.1.1.4 dyoung n->m_len + n2->m_len < MCLBYTES) {
3117 1.1.1.4 dyoung m = m_getcl(how, MT_DATA, 0);
3118 1.1.1.4 dyoung if (m == NULL)
3119 1.1.1.4 dyoung goto bad;
3120 1.1.1.4 dyoung bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3121 1.1.1.4 dyoung bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3122 1.1.1.4 dyoung n2->m_len);
3123 1.1.1.4 dyoung m->m_len = n->m_len + n2->m_len;
3124 1.1.1.4 dyoung m->m_next = n2->m_next;
3125 1.1.1.4 dyoung *prev = m;
3126 1.1.1.4 dyoung m_free(n);
3127 1.1.1.4 dyoung m_free(n2);
3128 1.1.1.4 dyoung if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3129 1.1.1.4 dyoung return m0;
3130 1.1.1.4 dyoung /*
3131 1.1.1.4 dyoung * Still not there, try the normal collapse
3132 1.1.1.4 dyoung * again before we allocate another cluster.
3133 1.1.1.4 dyoung */
3134 1.1.1.4 dyoung goto again;
3135 1.1.1.4 dyoung }
3136 1.1.1.4 dyoung prev = &n->m_next;
3137 1.1.1.4 dyoung }
3138 1.1.1.4 dyoung /*
3139 1.1.1.4 dyoung * No place where we can collapse to a cluster; punt.
3140 1.1.1.4 dyoung * This can occur if, for example, you request 2 frags
3141 1.1.1.4 dyoung * but the packet requires that both be clusters (we
3142 1.1.1.4 dyoung * never reallocate the first mbuf to avoid moving the
3143 1.1.1.4 dyoung * packet header).
3144 1.1.1.4 dyoung */
3145 1.1.1.4 dyoung bad:
3146 1.1.1.4 dyoung return NULL;
3147 1.1.1.4 dyoung }
3148 1.1.1.4 dyoung
3149 1.1.1.4 dyoung static int
3150 1.1.1.4 dyoung ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3151 1.1.1.4 dyoung struct mbuf *m0)
3152 1.1.1.4 dyoung {
3153 1.1.1.4 dyoung #define CTS_DURATION \
3154 1.1.1.4 dyoung ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3155 1.1.1.4 dyoung #define updateCTSForBursting(_ah, _ds, _txq) \
3156 1.1.1.4 dyoung ath_hal_updateCTSForBursting(_ah, _ds, \
3157 1.1.1.4 dyoung _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3158 1.1.1.4 dyoung _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3159 1.1.1.4 dyoung txopLimit, CTS_DURATION)
3160 1.1.1.4 dyoung struct ieee80211com *ic = &sc->sc_ic;
3161 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
3162 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
3163 1.1.1.4 dyoung const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3164 1.1.1.4 dyoung int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3165 1.1.1.4 dyoung u_int8_t rix, txrate, ctsrate;
3166 1.1.1.4 dyoung u_int8_t cix = 0xff; /* NB: silence compiler */
3167 1.1.1.4 dyoung struct ath_desc *ds, *ds0;
3168 1.1.1.4 dyoung struct ath_txq *txq;
3169 1.1.1.4 dyoung struct ieee80211_frame *wh;
3170 1.1.1.4 dyoung u_int subtype, flags, ctsduration;
3171 1.1.1.4 dyoung HAL_PKT_TYPE atype;
3172 1.1.1.4 dyoung const HAL_RATE_TABLE *rt;
3173 1.1.1.4 dyoung HAL_BOOL shortPreamble;
3174 1.1.1.4 dyoung struct ath_node *an;
3175 1.1.1.4 dyoung struct mbuf *m;
3176 1.1.1.4 dyoung u_int pri;
3177 1.1.1.4 dyoung
3178 1.1.1.4 dyoung wh = mtod(m0, struct ieee80211_frame *);
3179 1.1.1.4 dyoung iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3180 1.1.1.4 dyoung ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3181 1.1.1.4 dyoung hdrlen = ieee80211_anyhdrsize(wh);
3182 1.1.1.4 dyoung /*
3183 1.1.1.4 dyoung * Packet length must not include any
3184 1.1.1.4 dyoung * pad bytes; deduct them here.
3185 1.1.1.4 dyoung */
3186 1.1.1.4 dyoung pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3187 1.1.1.4 dyoung
3188 1.1.1.4 dyoung if (iswep) {
3189 1.1.1.4 dyoung const struct ieee80211_cipher *cip;
3190 1.1.1.4 dyoung struct ieee80211_key *k;
3191 1.1.1.4 dyoung
3192 1.1.1.4 dyoung /*
3193 1.1.1.4 dyoung * Construct the 802.11 header+trailer for an encrypted
3194 1.1.1.4 dyoung * frame. The only reason this can fail is because of an
3195 1.1.1.4 dyoung * unknown or unsupported cipher/key type.
3196 1.1.1.4 dyoung */
3197 1.1.1.4 dyoung k = ieee80211_crypto_encap(ic, ni, m0);
3198 1.1.1.4 dyoung if (k == NULL) {
3199 1.1.1.4 dyoung /*
3200 1.1.1.4 dyoung * This can happen when the key is yanked after the
3201 1.1.1.4 dyoung * frame was queued. Just discard the frame; the
3202 1.1.1.4 dyoung * 802.11 layer counts failures and provides
3203 1.1.1.4 dyoung * debugging/diagnostics.
3204 1.1.1.4 dyoung */
3205 1.1.1.4 dyoung m_freem(m0);
3206 1.1.1.4 dyoung return EIO;
3207 1.1.1.4 dyoung }
3208 1.1.1.4 dyoung /*
3209 1.1.1.4 dyoung * Adjust the packet + header lengths for the crypto
3210 1.1.1.4 dyoung * additions and calculate the h/w key index. When
3211 1.1.1.4 dyoung * a s/w mic is done the frame will have had any mic
3212 1.1.1.4 dyoung * added to it prior to entry so skb->len above will
3213 1.1.1.4 dyoung * account for it. Otherwise we need to add it to the
3214 1.1.1.4 dyoung * packet length.
3215 1.1.1.4 dyoung */
3216 1.1.1.4 dyoung cip = k->wk_cipher;
3217 1.1.1.4 dyoung hdrlen += cip->ic_header;
3218 1.1.1.4 dyoung pktlen += cip->ic_header + cip->ic_trailer;
3219 1.1.1.4 dyoung if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3220 1.1.1.4 dyoung pktlen += cip->ic_miclen;
3221 1.1.1.4 dyoung keyix = k->wk_keyix;
3222 1.1.1.4 dyoung
3223 1.1.1.4 dyoung /* packet header may have moved, reset our local pointer */
3224 1.1.1.4 dyoung wh = mtod(m0, struct ieee80211_frame *);
3225 1.1.1.5 dyoung } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3226 1.1.1.5 dyoung /*
3227 1.1.1.5 dyoung * Use station key cache slot, if assigned.
3228 1.1.1.5 dyoung */
3229 1.1.1.5 dyoung keyix = ni->ni_ucastkey.wk_keyix;
3230 1.1.1.5 dyoung if (keyix == IEEE80211_KEYIX_NONE)
3231 1.1.1.5 dyoung keyix = HAL_TXKEYIX_INVALID;
3232 1.1.1.4 dyoung } else
3233 1.1.1.4 dyoung keyix = HAL_TXKEYIX_INVALID;
3234 1.1.1.4 dyoung
3235 1.1.1.4 dyoung pktlen += IEEE80211_CRC_LEN;
3236 1.1.1.4 dyoung
3237 1.1.1.4 dyoung /*
3238 1.1.1.4 dyoung * Load the DMA map so any coalescing is done. This
3239 1.1.1.4 dyoung * also calculates the number of descriptors we need.
3240 1.1.1.4 dyoung */
3241 1.1.1.4 dyoung error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3242 1.1.1.4 dyoung bf->bf_segs, &bf->bf_nseg,
3243 1.1 dyoung BUS_DMA_NOWAIT);
3244 1.1.1.2 dyoung if (error == EFBIG) {
3245 1.1.1.2 dyoung /* XXX packet requires too many descriptors */
3246 1.1.1.2 dyoung bf->bf_nseg = ATH_TXDESC+1;
3247 1.1.1.2 dyoung } else if (error != 0) {
3248 1.1 dyoung sc->sc_stats.ast_tx_busdma++;
3249 1.1 dyoung m_freem(m0);
3250 1.1 dyoung return error;
3251 1.1 dyoung }
3252 1.1 dyoung /*
3253 1.1 dyoung * Discard null packets and check for packets that
3254 1.1 dyoung * require too many TX descriptors. We try to convert
3255 1.1 dyoung * the latter to a cluster.
3256 1.1 dyoung */
3257 1.1 dyoung if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
3258 1.1 dyoung sc->sc_stats.ast_tx_linear++;
3259 1.1.1.4 dyoung m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3260 1.1 dyoung if (m == NULL) {
3261 1.1 dyoung m_freem(m0);
3262 1.1.1.4 dyoung sc->sc_stats.ast_tx_nombuf++;
3263 1.1 dyoung return ENOMEM;
3264 1.1 dyoung }
3265 1.1 dyoung m0 = m;
3266 1.1.1.4 dyoung error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3267 1.1.1.4 dyoung bf->bf_segs, &bf->bf_nseg,
3268 1.1 dyoung BUS_DMA_NOWAIT);
3269 1.1 dyoung if (error != 0) {
3270 1.1 dyoung sc->sc_stats.ast_tx_busdma++;
3271 1.1 dyoung m_freem(m0);
3272 1.1 dyoung return error;
3273 1.1 dyoung }
3274 1.1.1.4 dyoung KASSERT(bf->bf_nseg <= ATH_TXDESC,
3275 1.1.1.4 dyoung ("too many segments after defrag; nseg %u", bf->bf_nseg));
3276 1.1 dyoung } else if (bf->bf_nseg == 0) { /* null packet, discard */
3277 1.1 dyoung sc->sc_stats.ast_tx_nodata++;
3278 1.1 dyoung m_freem(m0);
3279 1.1 dyoung return EIO;
3280 1.1 dyoung }
3281 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3282 1.1 dyoung bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3283 1.1 dyoung bf->bf_m = m0;
3284 1.1 dyoung bf->bf_node = ni; /* NB: held reference */
3285 1.1 dyoung
3286 1.1 dyoung /* setup descriptors */
3287 1.1 dyoung ds = bf->bf_desc;
3288 1.1 dyoung rt = sc->sc_currates;
3289 1.1 dyoung KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3290 1.1 dyoung
3291 1.1 dyoung /*
3292 1.1.1.4 dyoung * NB: the 802.11 layer marks whether or not we should
3293 1.1.1.4 dyoung * use short preamble based on the current mode and
3294 1.1.1.4 dyoung * negotiated parameters.
3295 1.1.1.4 dyoung */
3296 1.1.1.4 dyoung if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3297 1.1.1.4 dyoung (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3298 1.1.1.4 dyoung shortPreamble = AH_TRUE;
3299 1.1.1.4 dyoung sc->sc_stats.ast_tx_shortpre++;
3300 1.1.1.4 dyoung } else {
3301 1.1.1.4 dyoung shortPreamble = AH_FALSE;
3302 1.1.1.4 dyoung }
3303 1.1.1.4 dyoung
3304 1.1.1.4 dyoung an = ATH_NODE(ni);
3305 1.1.1.4 dyoung flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3306 1.1.1.4 dyoung /*
3307 1.1.1.4 dyoung * Calculate Atheros packet type from IEEE80211 packet header,
3308 1.1.1.4 dyoung * setup for rate calculations, and select h/w transmit queue.
3309 1.1 dyoung */
3310 1.1 dyoung switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3311 1.1 dyoung case IEEE80211_FC0_TYPE_MGT:
3312 1.1 dyoung subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3313 1.1 dyoung if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3314 1.1 dyoung atype = HAL_PKT_TYPE_BEACON;
3315 1.1 dyoung else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3316 1.1 dyoung atype = HAL_PKT_TYPE_PROBE_RESP;
3317 1.1 dyoung else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3318 1.1 dyoung atype = HAL_PKT_TYPE_ATIM;
3319 1.1.1.4 dyoung else
3320 1.1.1.4 dyoung atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3321 1.1 dyoung rix = 0; /* XXX lowest rate */
3322 1.1.1.4 dyoung try0 = ATH_TXMAXTRY;
3323 1.1.1.4 dyoung if (shortPreamble)
3324 1.1.1.4 dyoung txrate = an->an_tx_mgtratesp;
3325 1.1.1.4 dyoung else
3326 1.1.1.4 dyoung txrate = an->an_tx_mgtrate;
3327 1.1.1.4 dyoung /* NB: force all management frames to highest queue */
3328 1.1.1.4 dyoung if (ni->ni_flags & IEEE80211_NODE_QOS) {
3329 1.1.1.4 dyoung /* NB: force all management frames to highest queue */
3330 1.1.1.4 dyoung pri = WME_AC_VO;
3331 1.1.1.4 dyoung } else
3332 1.1.1.4 dyoung pri = WME_AC_BE;
3333 1.1.1.4 dyoung flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3334 1.1 dyoung break;
3335 1.1 dyoung case IEEE80211_FC0_TYPE_CTL:
3336 1.1.1.4 dyoung atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3337 1.1 dyoung rix = 0; /* XXX lowest rate */
3338 1.1.1.4 dyoung try0 = ATH_TXMAXTRY;
3339 1.1.1.4 dyoung if (shortPreamble)
3340 1.1.1.4 dyoung txrate = an->an_tx_mgtratesp;
3341 1.1.1.4 dyoung else
3342 1.1.1.4 dyoung txrate = an->an_tx_mgtrate;
3343 1.1.1.4 dyoung /* NB: force all ctl frames to highest queue */
3344 1.1.1.4 dyoung if (ni->ni_flags & IEEE80211_NODE_QOS) {
3345 1.1.1.4 dyoung /* NB: force all ctl frames to highest queue */
3346 1.1.1.4 dyoung pri = WME_AC_VO;
3347 1.1.1.4 dyoung } else
3348 1.1.1.4 dyoung pri = WME_AC_BE;
3349 1.1.1.4 dyoung flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3350 1.1 dyoung break;
3351 1.1.1.4 dyoung case IEEE80211_FC0_TYPE_DATA:
3352 1.1.1.4 dyoung atype = HAL_PKT_TYPE_NORMAL; /* default */
3353 1.1.1.4 dyoung /*
3354 1.1.1.4 dyoung * Data frames; consult the rate control module.
3355 1.1.1.4 dyoung */
3356 1.1.1.4 dyoung ath_rate_findrate(sc, an, shortPreamble, pktlen,
3357 1.1.1.4 dyoung &rix, &try0, &txrate);
3358 1.1.1.4 dyoung sc->sc_txrate = txrate; /* for LED blinking */
3359 1.1.1.4 dyoung /*
3360 1.1.1.4 dyoung * Default all non-QoS traffic to the background queue.
3361 1.1.1.4 dyoung */
3362 1.1.1.4 dyoung if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3363 1.1.1.4 dyoung pri = M_WME_GETAC(m0);
3364 1.1.1.4 dyoung if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3365 1.1.1.4 dyoung flags |= HAL_TXDESC_NOACK;
3366 1.1.1.4 dyoung sc->sc_stats.ast_tx_noack++;
3367 1.1.1.4 dyoung }
3368 1.1.1.4 dyoung } else
3369 1.1.1.4 dyoung pri = WME_AC_BE;
3370 1.1 dyoung break;
3371 1.1.1.4 dyoung default:
3372 1.1.1.4 dyoung if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3373 1.1.1.4 dyoung wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3374 1.1.1.4 dyoung /* XXX statistic */
3375 1.1.1.4 dyoung m_freem(m0);
3376 1.1.1.4 dyoung return EIO;
3377 1.1 dyoung }
3378 1.1.1.4 dyoung txq = sc->sc_ac2q[pri];
3379 1.1.1.4 dyoung
3380 1.1 dyoung /*
3381 1.1.1.4 dyoung * When servicing one or more stations in power-save mode
3382 1.1.1.4 dyoung * multicast frames must be buffered until after the beacon.
3383 1.1.1.4 dyoung * We use the CAB queue for that.
3384 1.1 dyoung */
3385 1.1.1.4 dyoung if (ismcast && ic->ic_ps_sta) {
3386 1.1.1.4 dyoung txq = sc->sc_cabq;
3387 1.1.1.4 dyoung /* XXX? more bit in 802.11 frame header */
3388 1.1 dyoung }
3389 1.1 dyoung
3390 1.1 dyoung /*
3391 1.1 dyoung * Calculate miscellaneous flags.
3392 1.1 dyoung */
3393 1.1.1.4 dyoung if (ismcast) {
3394 1.1 dyoung flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3395 1.1 dyoung sc->sc_stats.ast_tx_noack++;
3396 1.1 dyoung } else if (pktlen > ic->ic_rtsthreshold) {
3397 1.1 dyoung flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3398 1.1.1.4 dyoung cix = rt->info[rix].controlRate;
3399 1.1 dyoung sc->sc_stats.ast_tx_rts++;
3400 1.1 dyoung }
3401 1.1 dyoung
3402 1.1 dyoung /*
3403 1.1.1.4 dyoung * If 802.11g protection is enabled, determine whether
3404 1.1.1.4 dyoung * to use RTS/CTS or just CTS. Note that this is only
3405 1.1.1.4 dyoung * done for OFDM unicast frames.
3406 1.1.1.4 dyoung */
3407 1.1.1.4 dyoung if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3408 1.1.1.4 dyoung rt->info[rix].phy == IEEE80211_T_OFDM &&
3409 1.1.1.4 dyoung (flags & HAL_TXDESC_NOACK) == 0) {
3410 1.1.1.4 dyoung /* XXX fragments must use CCK rates w/ protection */
3411 1.1.1.4 dyoung if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3412 1.1.1.4 dyoung flags |= HAL_TXDESC_RTSENA;
3413 1.1.1.4 dyoung else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3414 1.1.1.4 dyoung flags |= HAL_TXDESC_CTSENA;
3415 1.1.1.4 dyoung cix = rt->info[sc->sc_protrix].controlRate;
3416 1.1.1.4 dyoung sc->sc_stats.ast_tx_protect++;
3417 1.1.1.4 dyoung }
3418 1.1.1.4 dyoung
3419 1.1.1.4 dyoung /*
3420 1.1.1.2 dyoung * Calculate duration. This logically belongs in the 802.11
3421 1.1.1.2 dyoung * layer but it lacks sufficient information to calculate it.
3422 1.1.1.2 dyoung */
3423 1.1.1.2 dyoung if ((flags & HAL_TXDESC_NOACK) == 0 &&
3424 1.1.1.2 dyoung (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3425 1.1.1.2 dyoung u_int16_t dur;
3426 1.1.1.2 dyoung /*
3427 1.1.1.2 dyoung * XXX not right with fragmentation.
3428 1.1.1.2 dyoung */
3429 1.1.1.4 dyoung if (shortPreamble)
3430 1.1.1.4 dyoung dur = rt->info[rix].spAckDuration;
3431 1.1.1.4 dyoung else
3432 1.1.1.4 dyoung dur = rt->info[rix].lpAckDuration;
3433 1.1.1.4 dyoung *(u_int16_t *)wh->i_dur = htole16(dur);
3434 1.1.1.2 dyoung }
3435 1.1.1.2 dyoung
3436 1.1.1.2 dyoung /*
3437 1.1 dyoung * Calculate RTS/CTS rate and duration if needed.
3438 1.1 dyoung */
3439 1.1 dyoung ctsduration = 0;
3440 1.1 dyoung if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3441 1.1 dyoung /*
3442 1.1 dyoung * CTS transmit rate is derived from the transmit rate
3443 1.1 dyoung * by looking in the h/w rate table. We must also factor
3444 1.1 dyoung * in whether or not a short preamble is to be used.
3445 1.1 dyoung */
3446 1.1.1.4 dyoung /* NB: cix is set above where RTS/CTS is enabled */
3447 1.1.1.4 dyoung KASSERT(cix != 0xff, ("cix not setup"));
3448 1.1 dyoung ctsrate = rt->info[cix].rateCode;
3449 1.1 dyoung /*
3450 1.1.1.4 dyoung * Compute the transmit duration based on the frame
3451 1.1.1.4 dyoung * size and the size of an ACK frame. We call into the
3452 1.1.1.4 dyoung * HAL to do the computation since it depends on the
3453 1.1.1.4 dyoung * characteristics of the actual PHY being used.
3454 1.1.1.4 dyoung *
3455 1.1.1.4 dyoung * NB: CTS is assumed the same size as an ACK so we can
3456 1.1.1.4 dyoung * use the precalculated ACK durations.
3457 1.1 dyoung */
3458 1.1.1.4 dyoung if (shortPreamble) {
3459 1.1.1.4 dyoung ctsrate |= rt->info[cix].shortPreamble;
3460 1.1.1.4 dyoung if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3461 1.1.1.4 dyoung ctsduration += rt->info[cix].spAckDuration;
3462 1.1 dyoung ctsduration += ath_hal_computetxtime(ah,
3463 1.1.1.4 dyoung rt, pktlen, rix, AH_TRUE);
3464 1.1.1.4 dyoung if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3465 1.1.1.4 dyoung ctsduration += rt->info[cix].spAckDuration;
3466 1.1.1.4 dyoung } else {
3467 1.1.1.4 dyoung if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3468 1.1.1.4 dyoung ctsduration += rt->info[cix].lpAckDuration;
3469 1.1 dyoung ctsduration += ath_hal_computetxtime(ah,
3470 1.1.1.4 dyoung rt, pktlen, rix, AH_FALSE);
3471 1.1.1.4 dyoung if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3472 1.1.1.4 dyoung ctsduration += rt->info[cix].lpAckDuration;
3473 1.1 dyoung }
3474 1.1.1.4 dyoung /*
3475 1.1.1.4 dyoung * Must disable multi-rate retry when using RTS/CTS.
3476 1.1.1.4 dyoung */
3477 1.1.1.4 dyoung try0 = ATH_TXMAXTRY;
3478 1.1 dyoung } else
3479 1.1 dyoung ctsrate = 0;
3480 1.1 dyoung
3481 1.1.1.4 dyoung if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3482 1.1.1.4 dyoung ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3483 1.1.1.4 dyoung sc->sc_hwmap[txrate].ieeerate, -1);
3484 1.1 dyoung
3485 1.1.1.3 dyoung if (ic->ic_rawbpf)
3486 1.1.1.3 dyoung bpf_mtap(ic->ic_rawbpf, m0);
3487 1.1.1.3 dyoung if (sc->sc_drvbpf) {
3488 1.1.1.4 dyoung sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3489 1.1.1.3 dyoung if (iswep)
3490 1.1.1.3 dyoung sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3491 1.1.1.4 dyoung sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3492 1.1.1.4 dyoung sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3493 1.1.1.4 dyoung sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3494 1.1.1.3 dyoung
3495 1.1.1.3 dyoung bpf_mtap2(sc->sc_drvbpf,
3496 1.1.1.3 dyoung &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3497 1.1.1.3 dyoung }
3498 1.1.1.3 dyoung
3499 1.1.1.4 dyoung /*
3500 1.1.1.4 dyoung * Determine if a tx interrupt should be generated for
3501 1.1.1.4 dyoung * this descriptor. We take a tx interrupt to reap
3502 1.1.1.4 dyoung * descriptors when the h/w hits an EOL condition or
3503 1.1.1.4 dyoung * when the descriptor is specifically marked to generate
3504 1.1.1.4 dyoung * an interrupt. We periodically mark descriptors in this
3505 1.1.1.4 dyoung * way to insure timely replenishing of the supply needed
3506 1.1.1.4 dyoung * for sending frames. Defering interrupts reduces system
3507 1.1.1.4 dyoung * load and potentially allows more concurrent work to be
3508 1.1.1.4 dyoung * done but if done to aggressively can cause senders to
3509 1.1.1.4 dyoung * backup.
3510 1.1.1.4 dyoung *
3511 1.1.1.4 dyoung * NB: use >= to deal with sc_txintrperiod changing
3512 1.1.1.4 dyoung * dynamically through sysctl.
3513 1.1.1.4 dyoung */
3514 1.1.1.4 dyoung if (flags & HAL_TXDESC_INTREQ) {
3515 1.1.1.4 dyoung txq->axq_intrcnt = 0;
3516 1.1.1.4 dyoung } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3517 1.1.1.4 dyoung flags |= HAL_TXDESC_INTREQ;
3518 1.1.1.4 dyoung txq->axq_intrcnt = 0;
3519 1.1.1.4 dyoung }
3520 1.1.1.4 dyoung
3521 1.1 dyoung /*
3522 1.1 dyoung * Formulate first tx descriptor with tx controls.
3523 1.1 dyoung */
3524 1.1 dyoung /* XXX check return value? */
3525 1.1 dyoung ath_hal_setuptxdesc(ah, ds
3526 1.1 dyoung , pktlen /* packet length */
3527 1.1 dyoung , hdrlen /* header length */
3528 1.1 dyoung , atype /* Atheros packet type */
3529 1.1.1.4 dyoung , ni->ni_txpower /* txpower */
3530 1.1.1.4 dyoung , txrate, try0 /* series 0 rate/tries */
3531 1.1.1.4 dyoung , keyix /* key cache index */
3532 1.1.1.4 dyoung , sc->sc_txantenna /* antenna mode */
3533 1.1 dyoung , flags /* flags */
3534 1.1 dyoung , ctsrate /* rts/cts rate */
3535 1.1 dyoung , ctsduration /* rts/cts duration */
3536 1.1 dyoung );
3537 1.1.1.5 dyoung bf->bf_flags = flags;
3538 1.1.1.4 dyoung /*
3539 1.1.1.4 dyoung * Setup the multi-rate retry state only when we're
3540 1.1.1.4 dyoung * going to use it. This assumes ath_hal_setuptxdesc
3541 1.1.1.4 dyoung * initializes the descriptors (so we don't have to)
3542 1.1.1.4 dyoung * when the hardware supports multi-rate retry and
3543 1.1.1.4 dyoung * we don't use it.
3544 1.1.1.4 dyoung */
3545 1.1.1.4 dyoung if (try0 != ATH_TXMAXTRY)
3546 1.1.1.4 dyoung ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3547 1.1.1.4 dyoung
3548 1.1 dyoung /*
3549 1.1 dyoung * Fillin the remainder of the descriptor info.
3550 1.1 dyoung */
3551 1.1.1.4 dyoung ds0 = ds;
3552 1.1 dyoung for (i = 0; i < bf->bf_nseg; i++, ds++) {
3553 1.1 dyoung ds->ds_data = bf->bf_segs[i].ds_addr;
3554 1.1 dyoung if (i == bf->bf_nseg - 1)
3555 1.1 dyoung ds->ds_link = 0;
3556 1.1 dyoung else
3557 1.1 dyoung ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3558 1.1 dyoung ath_hal_filltxdesc(ah, ds
3559 1.1 dyoung , bf->bf_segs[i].ds_len /* segment length */
3560 1.1 dyoung , i == 0 /* first segment */
3561 1.1 dyoung , i == bf->bf_nseg - 1 /* last segment */
3562 1.1.1.4 dyoung , ds0 /* first descriptor */
3563 1.1 dyoung );
3564 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_XMIT,
3565 1.1.1.4 dyoung "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3566 1.1.1.3 dyoung __func__, i, ds->ds_link, ds->ds_data,
3567 1.1.1.4 dyoung ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3568 1.1 dyoung }
3569 1.1 dyoung /*
3570 1.1 dyoung * Insert the frame on the outbound list and
3571 1.1 dyoung * pass it on to the hardware.
3572 1.1 dyoung */
3573 1.1.1.4 dyoung ATH_TXQ_LOCK(txq);
3574 1.1.1.4 dyoung if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3575 1.1.1.4 dyoung u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3576 1.1.1.4 dyoung cap->cap_wmeParams[pri].wmep_txopLimit);
3577 1.1.1.4 dyoung /*
3578 1.1.1.4 dyoung * When bursting, potentially extend the CTS duration
3579 1.1.1.4 dyoung * of a previously queued frame to cover this frame
3580 1.1.1.4 dyoung * and not exceed the txopLimit. If that can be done
3581 1.1.1.4 dyoung * then disable RTS/CTS on this frame since it's now
3582 1.1.1.4 dyoung * covered (burst extension). Otherwise we must terminate
3583 1.1.1.4 dyoung * the burst before this frame goes out so as not to
3584 1.1.1.4 dyoung * violate the WME parameters. All this is complicated
3585 1.1.1.4 dyoung * as we need to update the state of packets on the
3586 1.1.1.4 dyoung * (live) hardware queue. The logic is buried in the hal
3587 1.1.1.4 dyoung * because it's highly chip-specific.
3588 1.1.1.4 dyoung */
3589 1.1.1.4 dyoung if (txopLimit != 0) {
3590 1.1.1.4 dyoung sc->sc_stats.ast_tx_ctsburst++;
3591 1.1.1.4 dyoung if (updateCTSForBursting(ah, ds0, txq) == 0) {
3592 1.1.1.4 dyoung /*
3593 1.1.1.4 dyoung * This frame was not covered by RTS/CTS from
3594 1.1.1.4 dyoung * the previous frame in the burst; update the
3595 1.1.1.4 dyoung * descriptor pointers so this frame is now
3596 1.1.1.4 dyoung * treated as the last frame for extending a
3597 1.1.1.4 dyoung * burst.
3598 1.1.1.4 dyoung */
3599 1.1.1.4 dyoung txq->axq_lastdsWithCTS = ds0;
3600 1.1.1.4 dyoung /* set gating Desc to final desc */
3601 1.1.1.4 dyoung txq->axq_gatingds =
3602 1.1.1.4 dyoung (struct ath_desc *)txq->axq_link;
3603 1.1.1.4 dyoung } else
3604 1.1.1.4 dyoung sc->sc_stats.ast_tx_ctsext++;
3605 1.1.1.4 dyoung }
3606 1.1.1.4 dyoung }
3607 1.1.1.4 dyoung ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3608 1.1.1.4 dyoung if (txq->axq_link == NULL) {
3609 1.1.1.4 dyoung ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3610 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_XMIT,
3611 1.1.1.4 dyoung "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3612 1.1.1.4 dyoung txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3613 1.1.1.4 dyoung txq->axq_depth);
3614 1.1 dyoung } else {
3615 1.1.1.4 dyoung *txq->axq_link = bf->bf_daddr;
3616 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_XMIT,
3617 1.1.1.4 dyoung "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3618 1.1.1.4 dyoung txq->axq_qnum, txq->axq_link,
3619 1.1.1.4 dyoung (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3620 1.1 dyoung }
3621 1.1.1.4 dyoung txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3622 1.1.1.4 dyoung /*
3623 1.1.1.4 dyoung * The CAB queue is started from the SWBA handler since
3624 1.1.1.4 dyoung * frames only go out on DTIM and to avoid possible races.
3625 1.1.1.4 dyoung */
3626 1.1.1.4 dyoung if (txq != sc->sc_cabq)
3627 1.1.1.4 dyoung ath_hal_txstart(ah, txq->axq_qnum);
3628 1.1.1.4 dyoung ATH_TXQ_UNLOCK(txq);
3629 1.1 dyoung
3630 1.1 dyoung return 0;
3631 1.1.1.4 dyoung #undef updateCTSForBursting
3632 1.1.1.4 dyoung #undef CTS_DURATION
3633 1.1 dyoung }
3634 1.1 dyoung
3635 1.1.1.4 dyoung /*
3636 1.1.1.4 dyoung * Process completed xmit descriptors from the specified queue.
3637 1.1.1.4 dyoung */
3638 1.1 dyoung static void
3639 1.1.1.4 dyoung ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3640 1.1 dyoung {
3641 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
3642 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
3643 1.1.1.4 dyoung struct ath_buf *bf;
3644 1.1.1.4 dyoung struct ath_desc *ds, *ds0;
3645 1.1 dyoung struct ieee80211_node *ni;
3646 1.1 dyoung struct ath_node *an;
3647 1.1.1.4 dyoung int sr, lr, pri;
3648 1.1 dyoung HAL_STATUS status;
3649 1.1 dyoung
3650 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3651 1.1.1.4 dyoung __func__, txq->axq_qnum,
3652 1.1.1.4 dyoung (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3653 1.1.1.4 dyoung txq->axq_link);
3654 1.1 dyoung for (;;) {
3655 1.1.1.4 dyoung ATH_TXQ_LOCK(txq);
3656 1.1.1.4 dyoung txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3657 1.1.1.4 dyoung bf = STAILQ_FIRST(&txq->axq_q);
3658 1.1 dyoung if (bf == NULL) {
3659 1.1.1.4 dyoung txq->axq_link = NULL;
3660 1.1.1.4 dyoung ATH_TXQ_UNLOCK(txq);
3661 1.1 dyoung break;
3662 1.1 dyoung }
3663 1.1.1.4 dyoung ds0 = &bf->bf_desc[0];
3664 1.1 dyoung ds = &bf->bf_desc[bf->bf_nseg - 1];
3665 1.1 dyoung status = ath_hal_txprocdesc(ah, ds);
3666 1.1 dyoung #ifdef AR_DEBUG
3667 1.1.1.4 dyoung if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3668 1.1 dyoung ath_printtxbuf(bf, status == HAL_OK);
3669 1.1 dyoung #endif
3670 1.1 dyoung if (status == HAL_EINPROGRESS) {
3671 1.1.1.4 dyoung ATH_TXQ_UNLOCK(txq);
3672 1.1 dyoung break;
3673 1.1 dyoung }
3674 1.1.1.4 dyoung if (ds0 == txq->axq_lastdsWithCTS)
3675 1.1.1.4 dyoung txq->axq_lastdsWithCTS = NULL;
3676 1.1.1.4 dyoung if (ds == txq->axq_gatingds)
3677 1.1.1.4 dyoung txq->axq_gatingds = NULL;
3678 1.1.1.4 dyoung ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3679 1.1.1.4 dyoung ATH_TXQ_UNLOCK(txq);
3680 1.1 dyoung
3681 1.1 dyoung ni = bf->bf_node;
3682 1.1 dyoung if (ni != NULL) {
3683 1.1.1.4 dyoung an = ATH_NODE(ni);
3684 1.1 dyoung if (ds->ds_txstat.ts_status == 0) {
3685 1.1.1.4 dyoung u_int8_t txant = ds->ds_txstat.ts_antenna;
3686 1.1.1.4 dyoung sc->sc_stats.ast_ant_tx[txant]++;
3687 1.1.1.4 dyoung sc->sc_ant_tx[txant]++;
3688 1.1.1.4 dyoung if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3689 1.1.1.4 dyoung sc->sc_stats.ast_tx_altrate++;
3690 1.1.1.4 dyoung sc->sc_stats.ast_tx_rssi =
3691 1.1.1.4 dyoung ds->ds_txstat.ts_rssi;
3692 1.1.1.4 dyoung ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3693 1.1.1.4 dyoung ds->ds_txstat.ts_rssi);
3694 1.1.1.4 dyoung pri = M_WME_GETAC(bf->bf_m);
3695 1.1.1.4 dyoung if (pri >= WME_AC_VO)
3696 1.1.1.4 dyoung ic->ic_wme.wme_hipri_traffic++;
3697 1.1.1.4 dyoung ni->ni_inact = ni->ni_inact_reload;
3698 1.1 dyoung } else {
3699 1.1 dyoung if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3700 1.1 dyoung sc->sc_stats.ast_tx_xretries++;
3701 1.1 dyoung if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3702 1.1 dyoung sc->sc_stats.ast_tx_fifoerr++;
3703 1.1 dyoung if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3704 1.1 dyoung sc->sc_stats.ast_tx_filtered++;
3705 1.1 dyoung }
3706 1.1 dyoung sr = ds->ds_txstat.ts_shortretry;
3707 1.1 dyoung lr = ds->ds_txstat.ts_longretry;
3708 1.1 dyoung sc->sc_stats.ast_tx_shortretry += sr;
3709 1.1 dyoung sc->sc_stats.ast_tx_longretry += lr;
3710 1.1.1.4 dyoung /*
3711 1.1.1.4 dyoung * Hand the descriptor to the rate control algorithm.
3712 1.1.1.4 dyoung */
3713 1.1.1.5 dyoung if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3714 1.1.1.5 dyoung (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3715 1.1.1.5 dyoung ath_rate_tx_complete(sc, an, ds, ds0);
3716 1.1 dyoung /*
3717 1.1 dyoung * Reclaim reference to node.
3718 1.1 dyoung *
3719 1.1 dyoung * NB: the node may be reclaimed here if, for example
3720 1.1 dyoung * this is a DEAUTH message that was sent and the
3721 1.1 dyoung * node was timed out due to inactivity.
3722 1.1 dyoung */
3723 1.1.1.4 dyoung ieee80211_free_node(ni);
3724 1.1 dyoung }
3725 1.1 dyoung bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3726 1.1 dyoung BUS_DMASYNC_POSTWRITE);
3727 1.1 dyoung bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3728 1.1 dyoung m_freem(bf->bf_m);
3729 1.1 dyoung bf->bf_m = NULL;
3730 1.1 dyoung bf->bf_node = NULL;
3731 1.1 dyoung
3732 1.1.1.2 dyoung ATH_TXBUF_LOCK(sc);
3733 1.1.1.4 dyoung STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3734 1.1.1.2 dyoung ATH_TXBUF_UNLOCK(sc);
3735 1.1 dyoung }
3736 1.1.1.4 dyoung }
3737 1.1.1.4 dyoung
3738 1.1.1.4 dyoung /*
3739 1.1.1.4 dyoung * Deferred processing of transmit interrupt; special-cased
3740 1.1.1.4 dyoung * for a single hardware transmit queue (e.g. 5210 and 5211).
3741 1.1.1.4 dyoung */
3742 1.1.1.4 dyoung static void
3743 1.1.1.4 dyoung ath_tx_proc_q0(void *arg, int npending)
3744 1.1.1.4 dyoung {
3745 1.1.1.4 dyoung struct ath_softc *sc = arg;
3746 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
3747 1.1.1.4 dyoung
3748 1.1.1.4 dyoung ath_tx_processq(sc, &sc->sc_txq[0]);
3749 1.1.1.4 dyoung ath_tx_processq(sc, sc->sc_cabq);
3750 1.1 dyoung ifp->if_flags &= ~IFF_OACTIVE;
3751 1.1 dyoung sc->sc_tx_timer = 0;
3752 1.1 dyoung
3753 1.1.1.4 dyoung if (sc->sc_softled)
3754 1.1.1.4 dyoung ath_led_event(sc, ATH_LED_TX);
3755 1.1.1.4 dyoung
3756 1.1 dyoung ath_start(ifp);
3757 1.1 dyoung }
3758 1.1 dyoung
3759 1.1 dyoung /*
3760 1.1.1.4 dyoung * Deferred processing of transmit interrupt; special-cased
3761 1.1.1.4 dyoung * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3762 1.1 dyoung */
3763 1.1 dyoung static void
3764 1.1.1.4 dyoung ath_tx_proc_q0123(void *arg, int npending)
3765 1.1.1.4 dyoung {
3766 1.1.1.4 dyoung struct ath_softc *sc = arg;
3767 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
3768 1.1.1.4 dyoung
3769 1.1.1.4 dyoung /*
3770 1.1.1.4 dyoung * Process each active queue.
3771 1.1.1.4 dyoung */
3772 1.1.1.4 dyoung ath_tx_processq(sc, &sc->sc_txq[0]);
3773 1.1.1.4 dyoung ath_tx_processq(sc, &sc->sc_txq[1]);
3774 1.1.1.4 dyoung ath_tx_processq(sc, &sc->sc_txq[2]);
3775 1.1.1.4 dyoung ath_tx_processq(sc, &sc->sc_txq[3]);
3776 1.1.1.4 dyoung ath_tx_processq(sc, sc->sc_cabq);
3777 1.1.1.4 dyoung
3778 1.1.1.4 dyoung ifp->if_flags &= ~IFF_OACTIVE;
3779 1.1.1.4 dyoung sc->sc_tx_timer = 0;
3780 1.1.1.4 dyoung
3781 1.1.1.4 dyoung if (sc->sc_softled)
3782 1.1.1.4 dyoung ath_led_event(sc, ATH_LED_TX);
3783 1.1.1.4 dyoung
3784 1.1.1.4 dyoung ath_start(ifp);
3785 1.1.1.4 dyoung }
3786 1.1.1.4 dyoung
3787 1.1.1.4 dyoung /*
3788 1.1.1.4 dyoung * Deferred processing of transmit interrupt.
3789 1.1.1.4 dyoung */
3790 1.1.1.4 dyoung static void
3791 1.1.1.4 dyoung ath_tx_proc(void *arg, int npending)
3792 1.1.1.4 dyoung {
3793 1.1.1.4 dyoung struct ath_softc *sc = arg;
3794 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
3795 1.1.1.4 dyoung int i;
3796 1.1.1.4 dyoung
3797 1.1.1.4 dyoung /*
3798 1.1.1.4 dyoung * Process each active queue.
3799 1.1.1.4 dyoung */
3800 1.1.1.4 dyoung /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3801 1.1.1.4 dyoung for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3802 1.1.1.4 dyoung if (ATH_TXQ_SETUP(sc, i))
3803 1.1.1.4 dyoung ath_tx_processq(sc, &sc->sc_txq[i]);
3804 1.1.1.4 dyoung
3805 1.1.1.4 dyoung ifp->if_flags &= ~IFF_OACTIVE;
3806 1.1.1.4 dyoung sc->sc_tx_timer = 0;
3807 1.1.1.4 dyoung
3808 1.1.1.4 dyoung if (sc->sc_softled)
3809 1.1.1.4 dyoung ath_led_event(sc, ATH_LED_TX);
3810 1.1.1.4 dyoung
3811 1.1.1.4 dyoung ath_start(ifp);
3812 1.1.1.4 dyoung }
3813 1.1.1.4 dyoung
3814 1.1.1.4 dyoung static void
3815 1.1.1.4 dyoung ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3816 1.1 dyoung {
3817 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
3818 1.1.1.3 dyoung struct ieee80211_node *ni;
3819 1.1 dyoung struct ath_buf *bf;
3820 1.1 dyoung
3821 1.1.1.4 dyoung /*
3822 1.1.1.4 dyoung * NB: this assumes output has been stopped and
3823 1.1.1.4 dyoung * we do not need to block ath_tx_tasklet
3824 1.1.1.4 dyoung */
3825 1.1 dyoung for (;;) {
3826 1.1.1.4 dyoung ATH_TXQ_LOCK(txq);
3827 1.1.1.4 dyoung bf = STAILQ_FIRST(&txq->axq_q);
3828 1.1 dyoung if (bf == NULL) {
3829 1.1.1.4 dyoung txq->axq_link = NULL;
3830 1.1.1.4 dyoung ATH_TXQ_UNLOCK(txq);
3831 1.1 dyoung break;
3832 1.1 dyoung }
3833 1.1.1.4 dyoung ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3834 1.1.1.4 dyoung ATH_TXQ_UNLOCK(txq);
3835 1.1 dyoung #ifdef AR_DEBUG
3836 1.1.1.4 dyoung if (sc->sc_debug & ATH_DEBUG_RESET)
3837 1.1 dyoung ath_printtxbuf(bf,
3838 1.1 dyoung ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3839 1.1 dyoung #endif /* AR_DEBUG */
3840 1.1 dyoung bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3841 1.1 dyoung m_freem(bf->bf_m);
3842 1.1 dyoung bf->bf_m = NULL;
3843 1.1.1.3 dyoung ni = bf->bf_node;
3844 1.1 dyoung bf->bf_node = NULL;
3845 1.1.1.4 dyoung if (ni != NULL) {
3846 1.1.1.3 dyoung /*
3847 1.1.1.3 dyoung * Reclaim node reference.
3848 1.1.1.3 dyoung */
3849 1.1.1.4 dyoung ieee80211_free_node(ni);
3850 1.1.1.3 dyoung }
3851 1.1.1.2 dyoung ATH_TXBUF_LOCK(sc);
3852 1.1.1.4 dyoung STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3853 1.1.1.2 dyoung ATH_TXBUF_UNLOCK(sc);
3854 1.1 dyoung }
3855 1.1.1.4 dyoung }
3856 1.1.1.4 dyoung
3857 1.1.1.4 dyoung static void
3858 1.1.1.4 dyoung ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3859 1.1.1.4 dyoung {
3860 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
3861 1.1.1.4 dyoung
3862 1.1.1.4 dyoung (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3863 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3864 1.1.1.4 dyoung __func__, txq->axq_qnum,
3865 1.1.1.4 dyoung (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3866 1.1.1.4 dyoung txq->axq_link);
3867 1.1.1.4 dyoung }
3868 1.1.1.4 dyoung
3869 1.1.1.4 dyoung /*
3870 1.1.1.4 dyoung * Drain the transmit queues and reclaim resources.
3871 1.1.1.4 dyoung */
3872 1.1.1.4 dyoung static void
3873 1.1.1.4 dyoung ath_draintxq(struct ath_softc *sc)
3874 1.1.1.4 dyoung {
3875 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
3876 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
3877 1.1.1.4 dyoung int i;
3878 1.1.1.4 dyoung
3879 1.1.1.4 dyoung /* XXX return value */
3880 1.1.1.4 dyoung if (!sc->sc_invalid) {
3881 1.1.1.4 dyoung /* don't touch the hardware if marked invalid */
3882 1.1.1.4 dyoung (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3883 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_RESET,
3884 1.1.1.4 dyoung "%s: beacon queue %p\n", __func__,
3885 1.1.1.4 dyoung (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3886 1.1.1.4 dyoung for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3887 1.1.1.4 dyoung if (ATH_TXQ_SETUP(sc, i))
3888 1.1.1.4 dyoung ath_tx_stopdma(sc, &sc->sc_txq[i]);
3889 1.1.1.4 dyoung }
3890 1.1.1.4 dyoung for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3891 1.1.1.4 dyoung if (ATH_TXQ_SETUP(sc, i))
3892 1.1.1.4 dyoung ath_tx_draintxq(sc, &sc->sc_txq[i]);
3893 1.1 dyoung ifp->if_flags &= ~IFF_OACTIVE;
3894 1.1 dyoung sc->sc_tx_timer = 0;
3895 1.1 dyoung }
3896 1.1 dyoung
3897 1.1 dyoung /*
3898 1.1 dyoung * Disable the receive h/w in preparation for a reset.
3899 1.1 dyoung */
3900 1.1 dyoung static void
3901 1.1 dyoung ath_stoprecv(struct ath_softc *sc)
3902 1.1 dyoung {
3903 1.1.1.2 dyoung #define PA2DESC(_sc, _pa) \
3904 1.1.1.4 dyoung ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3905 1.1.1.4 dyoung ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3906 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
3907 1.1 dyoung
3908 1.1 dyoung ath_hal_stoppcurecv(ah); /* disable PCU */
3909 1.1 dyoung ath_hal_setrxfilter(ah, 0); /* clear recv filter */
3910 1.1 dyoung ath_hal_stopdmarecv(ah); /* disable DMA engine */
3911 1.1.1.4 dyoung DELAY(3000); /* 3ms is long enough for 1 frame */
3912 1.1 dyoung #ifdef AR_DEBUG
3913 1.1.1.4 dyoung if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3914 1.1 dyoung struct ath_buf *bf;
3915 1.1 dyoung
3916 1.1.1.3 dyoung printf("%s: rx queue %p, link %p\n", __func__,
3917 1.1.1.3 dyoung (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3918 1.1.1.4 dyoung STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3919 1.1.1.2 dyoung struct ath_desc *ds = bf->bf_desc;
3920 1.1.1.4 dyoung HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3921 1.1.1.4 dyoung bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3922 1.1.1.4 dyoung if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3923 1.1.1.4 dyoung ath_printrxbuf(bf, status == HAL_OK);
3924 1.1 dyoung }
3925 1.1 dyoung }
3926 1.1 dyoung #endif
3927 1.1 dyoung sc->sc_rxlink = NULL; /* just in case */
3928 1.1.1.2 dyoung #undef PA2DESC
3929 1.1 dyoung }
3930 1.1 dyoung
3931 1.1 dyoung /*
3932 1.1 dyoung * Enable the receive h/w following a reset.
3933 1.1 dyoung */
3934 1.1 dyoung static int
3935 1.1 dyoung ath_startrecv(struct ath_softc *sc)
3936 1.1 dyoung {
3937 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
3938 1.1 dyoung struct ath_buf *bf;
3939 1.1 dyoung
3940 1.1 dyoung sc->sc_rxlink = NULL;
3941 1.1.1.4 dyoung STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3942 1.1 dyoung int error = ath_rxbuf_init(sc, bf);
3943 1.1 dyoung if (error != 0) {
3944 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_RECV,
3945 1.1.1.4 dyoung "%s: ath_rxbuf_init failed %d\n",
3946 1.1.1.4 dyoung __func__, error);
3947 1.1 dyoung return error;
3948 1.1 dyoung }
3949 1.1 dyoung }
3950 1.1 dyoung
3951 1.1.1.4 dyoung bf = STAILQ_FIRST(&sc->sc_rxbuf);
3952 1.1 dyoung ath_hal_putrxbuf(ah, bf->bf_daddr);
3953 1.1 dyoung ath_hal_rxena(ah); /* enable recv descriptors */
3954 1.1 dyoung ath_mode_init(sc); /* set filters, etc. */
3955 1.1 dyoung ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
3956 1.1 dyoung return 0;
3957 1.1 dyoung }
3958 1.1 dyoung
3959 1.1.1.4 dyoung /*
3960 1.1.1.4 dyoung * Update internal state after a channel change.
3961 1.1.1.4 dyoung */
3962 1.1.1.4 dyoung static void
3963 1.1.1.4 dyoung ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3964 1.1.1.4 dyoung {
3965 1.1.1.4 dyoung struct ieee80211com *ic = &sc->sc_ic;
3966 1.1.1.4 dyoung enum ieee80211_phymode mode;
3967 1.1.1.4 dyoung u_int16_t flags;
3968 1.1.1.4 dyoung
3969 1.1.1.4 dyoung /*
3970 1.1.1.4 dyoung * Change channels and update the h/w rate map
3971 1.1.1.4 dyoung * if we're switching; e.g. 11a to 11b/g.
3972 1.1.1.4 dyoung */
3973 1.1.1.4 dyoung mode = ieee80211_chan2mode(ic, chan);
3974 1.1.1.4 dyoung if (mode != sc->sc_curmode)
3975 1.1.1.4 dyoung ath_setcurmode(sc, mode);
3976 1.1.1.4 dyoung /*
3977 1.1.1.4 dyoung * Update BPF state. NB: ethereal et. al. don't handle
3978 1.1.1.4 dyoung * merged flags well so pick a unique mode for their use.
3979 1.1.1.4 dyoung */
3980 1.1.1.4 dyoung if (IEEE80211_IS_CHAN_A(chan))
3981 1.1.1.4 dyoung flags = IEEE80211_CHAN_A;
3982 1.1.1.4 dyoung /* XXX 11g schizophrenia */
3983 1.1.1.4 dyoung else if (IEEE80211_IS_CHAN_G(chan) ||
3984 1.1.1.4 dyoung IEEE80211_IS_CHAN_PUREG(chan))
3985 1.1.1.4 dyoung flags = IEEE80211_CHAN_G;
3986 1.1.1.4 dyoung else
3987 1.1.1.4 dyoung flags = IEEE80211_CHAN_B;
3988 1.1.1.4 dyoung if (IEEE80211_IS_CHAN_T(chan))
3989 1.1.1.4 dyoung flags |= IEEE80211_CHAN_TURBO;
3990 1.1.1.4 dyoung sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3991 1.1.1.4 dyoung htole16(chan->ic_freq);
3992 1.1.1.4 dyoung sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3993 1.1.1.4 dyoung htole16(flags);
3994 1.1.1.4 dyoung }
3995 1.1.1.4 dyoung
3996 1.1 dyoung /*
3997 1.1 dyoung * Set/change channels. If the channel is really being changed,
3998 1.1.1.4 dyoung * it's done by reseting the chip. To accomplish this we must
3999 1.1 dyoung * first cleanup any pending DMA, then restart stuff after a la
4000 1.1 dyoung * ath_init.
4001 1.1 dyoung */
4002 1.1 dyoung static int
4003 1.1 dyoung ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4004 1.1 dyoung {
4005 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
4006 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
4007 1.1.1.4 dyoung HAL_CHANNEL hchan;
4008 1.1.1.4 dyoung
4009 1.1.1.4 dyoung /*
4010 1.1.1.4 dyoung * Convert to a HAL channel description with
4011 1.1.1.4 dyoung * the flags constrained to reflect the current
4012 1.1.1.4 dyoung * operating mode.
4013 1.1.1.4 dyoung */
4014 1.1.1.4 dyoung hchan.channel = chan->ic_freq;
4015 1.1.1.4 dyoung hchan.channelFlags = ath_chan2flags(ic, chan);
4016 1.1 dyoung
4017 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4018 1.1.1.4 dyoung __func__,
4019 1.1.1.4 dyoung ath_hal_mhz2ieee(sc->sc_curchan.channel,
4020 1.1.1.4 dyoung sc->sc_curchan.channelFlags),
4021 1.1.1.4 dyoung sc->sc_curchan.channel,
4022 1.1.1.4 dyoung ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4023 1.1.1.4 dyoung if (hchan.channel != sc->sc_curchan.channel ||
4024 1.1.1.4 dyoung hchan.channelFlags != sc->sc_curchan.channelFlags) {
4025 1.1 dyoung HAL_STATUS status;
4026 1.1 dyoung
4027 1.1 dyoung /*
4028 1.1 dyoung * To switch channels clear any pending DMA operations;
4029 1.1 dyoung * wait long enough for the RX fifo to drain, reset the
4030 1.1 dyoung * hardware at the new frequency, and then re-enable
4031 1.1 dyoung * the relevant bits of the h/w.
4032 1.1 dyoung */
4033 1.1 dyoung ath_hal_intrset(ah, 0); /* disable interrupts */
4034 1.1 dyoung ath_draintxq(sc); /* clear pending tx frames */
4035 1.1 dyoung ath_stoprecv(sc); /* turn off frame recv */
4036 1.1 dyoung if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4037 1.1.1.4 dyoung if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
4038 1.1 dyoung "channel %u (%u Mhz)\n",
4039 1.1 dyoung ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4040 1.1 dyoung return EIO;
4041 1.1 dyoung }
4042 1.1.1.4 dyoung sc->sc_curchan = hchan;
4043 1.1.1.4 dyoung ath_update_txpow(sc); /* update tx power state */
4044 1.1.1.4 dyoung
4045 1.1 dyoung /*
4046 1.1 dyoung * Re-enable rx framework.
4047 1.1 dyoung */
4048 1.1 dyoung if (ath_startrecv(sc) != 0) {
4049 1.1.1.4 dyoung if_printf(ic->ic_ifp,
4050 1.1 dyoung "ath_chan_set: unable to restart recv logic\n");
4051 1.1 dyoung return EIO;
4052 1.1 dyoung }
4053 1.1 dyoung
4054 1.1 dyoung /*
4055 1.1 dyoung * Change channels and update the h/w rate map
4056 1.1 dyoung * if we're switching; e.g. 11a to 11b/g.
4057 1.1 dyoung */
4058 1.1 dyoung ic->ic_ibss_chan = chan;
4059 1.1.1.4 dyoung ath_chan_change(sc, chan);
4060 1.1 dyoung
4061 1.1 dyoung /*
4062 1.1 dyoung * Re-enable interrupts.
4063 1.1 dyoung */
4064 1.1 dyoung ath_hal_intrset(ah, sc->sc_imask);
4065 1.1 dyoung }
4066 1.1 dyoung return 0;
4067 1.1 dyoung }
4068 1.1 dyoung
4069 1.1 dyoung static void
4070 1.1 dyoung ath_next_scan(void *arg)
4071 1.1 dyoung {
4072 1.1 dyoung struct ath_softc *sc = arg;
4073 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
4074 1.1 dyoung
4075 1.1 dyoung if (ic->ic_state == IEEE80211_S_SCAN)
4076 1.1.1.4 dyoung ieee80211_next_scan(ic);
4077 1.1 dyoung }
4078 1.1 dyoung
4079 1.1 dyoung /*
4080 1.1 dyoung * Periodically recalibrate the PHY to account
4081 1.1 dyoung * for temperature/environment changes.
4082 1.1 dyoung */
4083 1.1 dyoung static void
4084 1.1 dyoung ath_calibrate(void *arg)
4085 1.1 dyoung {
4086 1.1 dyoung struct ath_softc *sc = arg;
4087 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
4088 1.1 dyoung
4089 1.1 dyoung sc->sc_stats.ast_per_cal++;
4090 1.1 dyoung
4091 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4092 1.1.1.4 dyoung __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4093 1.1 dyoung
4094 1.1 dyoung if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4095 1.1 dyoung /*
4096 1.1 dyoung * Rfgain is out of bounds, reset the chip
4097 1.1 dyoung * to load new gain values.
4098 1.1 dyoung */
4099 1.1 dyoung sc->sc_stats.ast_per_rfgain++;
4100 1.1.1.5 dyoung ath_reset(sc->sc_ifp);
4101 1.1 dyoung }
4102 1.1.1.4 dyoung if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4103 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY,
4104 1.1.1.4 dyoung "%s: calibration of channel %u failed\n",
4105 1.1.1.4 dyoung __func__, sc->sc_curchan.channel);
4106 1.1 dyoung sc->sc_stats.ast_per_calfail++;
4107 1.1 dyoung }
4108 1.1.1.4 dyoung callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4109 1.1 dyoung }
4110 1.1 dyoung
4111 1.1 dyoung static int
4112 1.1 dyoung ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4113 1.1 dyoung {
4114 1.1.1.4 dyoung struct ifnet *ifp = ic->ic_ifp;
4115 1.1 dyoung struct ath_softc *sc = ifp->if_softc;
4116 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
4117 1.1 dyoung struct ieee80211_node *ni;
4118 1.1 dyoung int i, error;
4119 1.1.1.2 dyoung const u_int8_t *bssid;
4120 1.1 dyoung u_int32_t rfilt;
4121 1.1 dyoung static const HAL_LED_STATE leds[] = {
4122 1.1 dyoung HAL_LED_INIT, /* IEEE80211_S_INIT */
4123 1.1 dyoung HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4124 1.1 dyoung HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4125 1.1 dyoung HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4126 1.1 dyoung HAL_LED_RUN, /* IEEE80211_S_RUN */
4127 1.1 dyoung };
4128 1.1 dyoung
4129 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4130 1.1 dyoung ieee80211_state_name[ic->ic_state],
4131 1.1.1.4 dyoung ieee80211_state_name[nstate]);
4132 1.1 dyoung
4133 1.1.1.4 dyoung callout_stop(&sc->sc_scan_ch);
4134 1.1.1.4 dyoung callout_stop(&sc->sc_cal_ch);
4135 1.1 dyoung ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4136 1.1 dyoung
4137 1.1 dyoung if (nstate == IEEE80211_S_INIT) {
4138 1.1 dyoung sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4139 1.1.1.4 dyoung /*
4140 1.1.1.4 dyoung * NB: disable interrupts so we don't rx frames.
4141 1.1.1.4 dyoung */
4142 1.1.1.5 dyoung ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4143 1.1.1.4 dyoung /*
4144 1.1.1.4 dyoung * Notify the rate control algorithm.
4145 1.1.1.4 dyoung */
4146 1.1.1.4 dyoung ath_rate_newstate(sc, nstate);
4147 1.1.1.4 dyoung goto done;
4148 1.1 dyoung }
4149 1.1 dyoung ni = ic->ic_bss;
4150 1.1 dyoung error = ath_chan_set(sc, ni->ni_chan);
4151 1.1 dyoung if (error != 0)
4152 1.1 dyoung goto bad;
4153 1.1.1.4 dyoung rfilt = ath_calcrxfilter(sc, nstate);
4154 1.1.1.4 dyoung if (nstate == IEEE80211_S_SCAN)
4155 1.1 dyoung bssid = ifp->if_broadcastaddr;
4156 1.1.1.4 dyoung else
4157 1.1 dyoung bssid = ni->ni_bssid;
4158 1.1 dyoung ath_hal_setrxfilter(ah, rfilt);
4159 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4160 1.1.1.4 dyoung __func__, rfilt, ether_sprintf(bssid));
4161 1.1 dyoung
4162 1.1 dyoung if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4163 1.1 dyoung ath_hal_setassocid(ah, bssid, ni->ni_associd);
4164 1.1 dyoung else
4165 1.1 dyoung ath_hal_setassocid(ah, bssid, 0);
4166 1.1.1.4 dyoung if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4167 1.1 dyoung for (i = 0; i < IEEE80211_WEP_NKID; i++)
4168 1.1 dyoung if (ath_hal_keyisvalid(ah, i))
4169 1.1 dyoung ath_hal_keysetmac(ah, i, bssid);
4170 1.1 dyoung }
4171 1.1 dyoung
4172 1.1.1.4 dyoung /*
4173 1.1.1.4 dyoung * Notify the rate control algorithm so rates
4174 1.1.1.4 dyoung * are setup should ath_beacon_alloc be called.
4175 1.1.1.4 dyoung */
4176 1.1.1.4 dyoung ath_rate_newstate(sc, nstate);
4177 1.1.1.4 dyoung
4178 1.1.1.4 dyoung if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4179 1.1.1.4 dyoung /* nothing to do */;
4180 1.1.1.4 dyoung } else if (nstate == IEEE80211_S_RUN) {
4181 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_STATE,
4182 1.1.1.4 dyoung "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4183 1.1 dyoung "capinfo=0x%04x chan=%d\n"
4184 1.1 dyoung , __func__
4185 1.1 dyoung , ic->ic_flags
4186 1.1 dyoung , ni->ni_intval
4187 1.1 dyoung , ether_sprintf(ni->ni_bssid)
4188 1.1 dyoung , ni->ni_capinfo
4189 1.1.1.4 dyoung , ieee80211_chan2ieee(ic, ni->ni_chan));
4190 1.1 dyoung
4191 1.1.1.5 dyoung switch (ic->ic_opmode) {
4192 1.1.1.5 dyoung case IEEE80211_M_HOSTAP:
4193 1.1.1.5 dyoung case IEEE80211_M_IBSS:
4194 1.1.1.4 dyoung /*
4195 1.1.1.5 dyoung * Allocate and setup the beacon frame.
4196 1.1.1.5 dyoung *
4197 1.1.1.4 dyoung * Stop any previous beacon DMA. This may be
4198 1.1.1.4 dyoung * necessary, for example, when an ibss merge
4199 1.1.1.4 dyoung * causes reconfiguration; there will be a state
4200 1.1.1.4 dyoung * transition from RUN->RUN that means we may
4201 1.1.1.4 dyoung * be called with beacon transmission active.
4202 1.1.1.4 dyoung */
4203 1.1.1.4 dyoung ath_hal_stoptxdma(ah, sc->sc_bhalq);
4204 1.1.1.4 dyoung ath_beacon_free(sc);
4205 1.1 dyoung error = ath_beacon_alloc(sc, ni);
4206 1.1 dyoung if (error != 0)
4207 1.1 dyoung goto bad;
4208 1.1.1.5 dyoung break;
4209 1.1.1.5 dyoung case IEEE80211_M_STA:
4210 1.1.1.5 dyoung /*
4211 1.1.1.5 dyoung * Allocate a key cache slot to the station.
4212 1.1.1.5 dyoung */
4213 1.1.1.5 dyoung if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4214 1.1.1.5 dyoung sc->sc_hasclrkey &&
4215 1.1.1.5 dyoung ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4216 1.1.1.5 dyoung ath_setup_stationkey(ni);
4217 1.1.1.5 dyoung break;
4218 1.1.1.5 dyoung default:
4219 1.1.1.5 dyoung break;
4220 1.1 dyoung }
4221 1.1 dyoung
4222 1.1 dyoung /*
4223 1.1 dyoung * Configure the beacon and sleep timers.
4224 1.1 dyoung */
4225 1.1 dyoung ath_beacon_config(sc);
4226 1.1 dyoung } else {
4227 1.1.1.4 dyoung ath_hal_intrset(ah,
4228 1.1.1.4 dyoung sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4229 1.1 dyoung sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4230 1.1 dyoung }
4231 1.1.1.4 dyoung done:
4232 1.1 dyoung /*
4233 1.1.1.4 dyoung * Invoke the parent method to complete the work.
4234 1.1 dyoung */
4235 1.1.1.4 dyoung error = sc->sc_newstate(ic, nstate, arg);
4236 1.1 dyoung /*
4237 1.1.1.4 dyoung * Finally, start any timers.
4238 1.1 dyoung */
4239 1.1.1.4 dyoung if (nstate == IEEE80211_S_RUN) {
4240 1.1.1.4 dyoung /* start periodic recalibration timer */
4241 1.1.1.4 dyoung callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4242 1.1.1.4 dyoung ath_calibrate, sc);
4243 1.1.1.4 dyoung } else if (nstate == IEEE80211_S_SCAN) {
4244 1.1.1.4 dyoung /* start ap/neighbor scan timer */
4245 1.1.1.4 dyoung callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4246 1.1.1.4 dyoung ath_next_scan, sc);
4247 1.1.1.4 dyoung }
4248 1.1 dyoung bad:
4249 1.1 dyoung return error;
4250 1.1 dyoung }
4251 1.1 dyoung
4252 1.1 dyoung /*
4253 1.1.1.5 dyoung * Allocate a key cache slot to the station so we can
4254 1.1.1.5 dyoung * setup a mapping from key index to node. The key cache
4255 1.1.1.5 dyoung * slot is needed for managing antenna state and for
4256 1.1.1.5 dyoung * compression when stations do not use crypto. We do
4257 1.1.1.5 dyoung * it uniliaterally here; if crypto is employed this slot
4258 1.1.1.5 dyoung * will be reassigned.
4259 1.1.1.5 dyoung */
4260 1.1.1.5 dyoung static void
4261 1.1.1.5 dyoung ath_setup_stationkey(struct ieee80211_node *ni)
4262 1.1.1.5 dyoung {
4263 1.1.1.5 dyoung struct ieee80211com *ic = ni->ni_ic;
4264 1.1.1.5 dyoung struct ath_softc *sc = ic->ic_ifp->if_softc;
4265 1.1.1.5 dyoung u_int16_t keyix;
4266 1.1.1.5 dyoung
4267 1.1.1.5 dyoung keyix = ath_key_alloc(ic, &ni->ni_ucastkey);
4268 1.1.1.5 dyoung if (keyix == IEEE80211_KEYIX_NONE) {
4269 1.1.1.5 dyoung /*
4270 1.1.1.5 dyoung * Key cache is full; we'll fall back to doing
4271 1.1.1.5 dyoung * the more expensive lookup in software. Note
4272 1.1.1.5 dyoung * this also means no h/w compression.
4273 1.1.1.5 dyoung */
4274 1.1.1.5 dyoung /* XXX msg+statistic */
4275 1.1.1.5 dyoung } else {
4276 1.1.1.5 dyoung ni->ni_ucastkey.wk_keyix = keyix;
4277 1.1.1.5 dyoung /* NB: this will create a pass-thru key entry */
4278 1.1.1.5 dyoung ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4279 1.1.1.5 dyoung }
4280 1.1.1.5 dyoung }
4281 1.1.1.5 dyoung
4282 1.1.1.5 dyoung /*
4283 1.1 dyoung * Setup driver-specific state for a newly associated node.
4284 1.1 dyoung * Note that we're called also on a re-associate, the isnew
4285 1.1 dyoung * param tells us if this is the first time or not.
4286 1.1 dyoung */
4287 1.1 dyoung static void
4288 1.1 dyoung ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4289 1.1 dyoung {
4290 1.1.1.4 dyoung struct ath_softc *sc = ic->ic_ifp->if_softc;
4291 1.1 dyoung
4292 1.1.1.4 dyoung ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4293 1.1.1.5 dyoung if (isnew &&
4294 1.1.1.5 dyoung (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4295 1.1.1.5 dyoung KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4296 1.1.1.5 dyoung ("new assoc with a unicast key already setup (keyix %u)",
4297 1.1.1.5 dyoung ni->ni_ucastkey.wk_keyix));
4298 1.1.1.5 dyoung ath_setup_stationkey(ni);
4299 1.1.1.5 dyoung }
4300 1.1 dyoung }
4301 1.1 dyoung
4302 1.1 dyoung static int
4303 1.1.1.4 dyoung ath_getchannels(struct ath_softc *sc, u_int cc,
4304 1.1.1.4 dyoung HAL_BOOL outdoor, HAL_BOOL xchanmode)
4305 1.1 dyoung {
4306 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
4307 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
4308 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
4309 1.1 dyoung HAL_CHANNEL *chans;
4310 1.1 dyoung int i, ix, nchan;
4311 1.1 dyoung
4312 1.1 dyoung chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4313 1.1 dyoung M_TEMP, M_NOWAIT);
4314 1.1 dyoung if (chans == NULL) {
4315 1.1 dyoung if_printf(ifp, "unable to allocate channel table\n");
4316 1.1 dyoung return ENOMEM;
4317 1.1 dyoung }
4318 1.1 dyoung if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4319 1.1.1.4 dyoung cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4320 1.1.1.4 dyoung u_int32_t rd;
4321 1.1.1.4 dyoung
4322 1.1.1.4 dyoung ath_hal_getregdomain(ah, &rd);
4323 1.1.1.4 dyoung if_printf(ifp, "unable to collect channel list from hal; "
4324 1.1.1.4 dyoung "regdomain likely %u country code %u\n", rd, cc);
4325 1.1 dyoung free(chans, M_TEMP);
4326 1.1 dyoung return EINVAL;
4327 1.1 dyoung }
4328 1.1 dyoung
4329 1.1 dyoung /*
4330 1.1 dyoung * Convert HAL channels to ieee80211 ones and insert
4331 1.1 dyoung * them in the table according to their channel number.
4332 1.1 dyoung */
4333 1.1 dyoung for (i = 0; i < nchan; i++) {
4334 1.1 dyoung HAL_CHANNEL *c = &chans[i];
4335 1.1 dyoung ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4336 1.1 dyoung if (ix > IEEE80211_CHAN_MAX) {
4337 1.1 dyoung if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4338 1.1 dyoung ix, c->channel, c->channelFlags);
4339 1.1 dyoung continue;
4340 1.1 dyoung }
4341 1.1 dyoung /* NB: flags are known to be compatible */
4342 1.1 dyoung if (ic->ic_channels[ix].ic_freq == 0) {
4343 1.1 dyoung ic->ic_channels[ix].ic_freq = c->channel;
4344 1.1 dyoung ic->ic_channels[ix].ic_flags = c->channelFlags;
4345 1.1 dyoung } else {
4346 1.1 dyoung /* channels overlap; e.g. 11g and 11b */
4347 1.1 dyoung ic->ic_channels[ix].ic_flags |= c->channelFlags;
4348 1.1 dyoung }
4349 1.1 dyoung }
4350 1.1 dyoung free(chans, M_TEMP);
4351 1.1 dyoung return 0;
4352 1.1 dyoung }
4353 1.1 dyoung
4354 1.1.1.4 dyoung static void
4355 1.1.1.4 dyoung ath_led_done(void *arg)
4356 1.1.1.4 dyoung {
4357 1.1.1.4 dyoung struct ath_softc *sc = arg;
4358 1.1.1.4 dyoung
4359 1.1.1.4 dyoung sc->sc_blinking = 0;
4360 1.1.1.4 dyoung }
4361 1.1.1.4 dyoung
4362 1.1.1.4 dyoung /*
4363 1.1.1.4 dyoung * Turn the LED off: flip the pin and then set a timer so no
4364 1.1.1.4 dyoung * update will happen for the specified duration.
4365 1.1.1.4 dyoung */
4366 1.1.1.4 dyoung static void
4367 1.1.1.4 dyoung ath_led_off(void *arg)
4368 1.1.1.4 dyoung {
4369 1.1.1.4 dyoung struct ath_softc *sc = arg;
4370 1.1.1.4 dyoung
4371 1.1.1.4 dyoung ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4372 1.1.1.4 dyoung callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4373 1.1.1.4 dyoung }
4374 1.1.1.4 dyoung
4375 1.1.1.4 dyoung /*
4376 1.1.1.4 dyoung * Blink the LED according to the specified on/off times.
4377 1.1.1.4 dyoung */
4378 1.1.1.4 dyoung static void
4379 1.1.1.4 dyoung ath_led_blink(struct ath_softc *sc, int on, int off)
4380 1.1.1.4 dyoung {
4381 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4382 1.1.1.4 dyoung ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4383 1.1.1.4 dyoung sc->sc_blinking = 1;
4384 1.1.1.4 dyoung sc->sc_ledoff = off;
4385 1.1.1.4 dyoung callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4386 1.1.1.4 dyoung }
4387 1.1.1.4 dyoung
4388 1.1.1.4 dyoung static void
4389 1.1.1.4 dyoung ath_led_event(struct ath_softc *sc, int event)
4390 1.1.1.4 dyoung {
4391 1.1.1.4 dyoung
4392 1.1.1.4 dyoung sc->sc_ledevent = ticks; /* time of last event */
4393 1.1.1.4 dyoung if (sc->sc_blinking) /* don't interrupt active blink */
4394 1.1.1.4 dyoung return;
4395 1.1.1.4 dyoung switch (event) {
4396 1.1.1.4 dyoung case ATH_LED_POLL:
4397 1.1.1.4 dyoung ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4398 1.1.1.4 dyoung sc->sc_hwmap[0].ledoff);
4399 1.1.1.4 dyoung break;
4400 1.1.1.4 dyoung case ATH_LED_TX:
4401 1.1.1.4 dyoung ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4402 1.1.1.4 dyoung sc->sc_hwmap[sc->sc_txrate].ledoff);
4403 1.1.1.4 dyoung break;
4404 1.1.1.4 dyoung case ATH_LED_RX:
4405 1.1.1.4 dyoung ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4406 1.1.1.4 dyoung sc->sc_hwmap[sc->sc_rxrate].ledoff);
4407 1.1.1.4 dyoung break;
4408 1.1.1.4 dyoung }
4409 1.1.1.4 dyoung }
4410 1.1.1.4 dyoung
4411 1.1.1.4 dyoung static void
4412 1.1.1.4 dyoung ath_update_txpow(struct ath_softc *sc)
4413 1.1.1.4 dyoung {
4414 1.1.1.4 dyoung struct ieee80211com *ic = &sc->sc_ic;
4415 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
4416 1.1.1.4 dyoung u_int32_t txpow;
4417 1.1.1.4 dyoung
4418 1.1.1.4 dyoung if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4419 1.1.1.4 dyoung ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4420 1.1.1.4 dyoung /* read back in case value is clamped */
4421 1.1.1.4 dyoung ath_hal_gettxpowlimit(ah, &txpow);
4422 1.1.1.4 dyoung ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4423 1.1.1.4 dyoung }
4424 1.1.1.4 dyoung /*
4425 1.1.1.4 dyoung * Fetch max tx power level for status requests.
4426 1.1.1.4 dyoung */
4427 1.1.1.4 dyoung ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4428 1.1.1.4 dyoung ic->ic_bss->ni_txpower = txpow;
4429 1.1.1.4 dyoung }
4430 1.1.1.4 dyoung
4431 1.1 dyoung static int
4432 1.1 dyoung ath_rate_setup(struct ath_softc *sc, u_int mode)
4433 1.1 dyoung {
4434 1.1 dyoung struct ath_hal *ah = sc->sc_ah;
4435 1.1 dyoung struct ieee80211com *ic = &sc->sc_ic;
4436 1.1 dyoung const HAL_RATE_TABLE *rt;
4437 1.1 dyoung struct ieee80211_rateset *rs;
4438 1.1 dyoung int i, maxrates;
4439 1.1 dyoung
4440 1.1 dyoung switch (mode) {
4441 1.1 dyoung case IEEE80211_MODE_11A:
4442 1.1 dyoung sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4443 1.1 dyoung break;
4444 1.1 dyoung case IEEE80211_MODE_11B:
4445 1.1 dyoung sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4446 1.1 dyoung break;
4447 1.1 dyoung case IEEE80211_MODE_11G:
4448 1.1 dyoung sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4449 1.1 dyoung break;
4450 1.1.1.4 dyoung case IEEE80211_MODE_TURBO_A:
4451 1.1 dyoung sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4452 1.1 dyoung break;
4453 1.1.1.4 dyoung case IEEE80211_MODE_TURBO_G:
4454 1.1.1.4 dyoung sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4455 1.1.1.4 dyoung break;
4456 1.1 dyoung default:
4457 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4458 1.1.1.4 dyoung __func__, mode);
4459 1.1 dyoung return 0;
4460 1.1 dyoung }
4461 1.1 dyoung rt = sc->sc_rates[mode];
4462 1.1 dyoung if (rt == NULL)
4463 1.1 dyoung return 0;
4464 1.1 dyoung if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4465 1.1.1.4 dyoung DPRINTF(sc, ATH_DEBUG_ANY,
4466 1.1.1.4 dyoung "%s: rate table too small (%u > %u)\n",
4467 1.1.1.4 dyoung __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4468 1.1 dyoung maxrates = IEEE80211_RATE_MAXSIZE;
4469 1.1 dyoung } else
4470 1.1 dyoung maxrates = rt->rateCount;
4471 1.1 dyoung rs = &ic->ic_sup_rates[mode];
4472 1.1 dyoung for (i = 0; i < maxrates; i++)
4473 1.1 dyoung rs->rs_rates[i] = rt->info[i].dot11Rate;
4474 1.1 dyoung rs->rs_nrates = maxrates;
4475 1.1 dyoung return 1;
4476 1.1 dyoung }
4477 1.1 dyoung
4478 1.1 dyoung static void
4479 1.1 dyoung ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4480 1.1 dyoung {
4481 1.1.1.4 dyoung #define N(a) (sizeof(a)/sizeof(a[0]))
4482 1.1.1.4 dyoung /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4483 1.1.1.4 dyoung static const struct {
4484 1.1.1.4 dyoung u_int rate; /* tx/rx 802.11 rate */
4485 1.1.1.4 dyoung u_int16_t timeOn; /* LED on time (ms) */
4486 1.1.1.4 dyoung u_int16_t timeOff; /* LED off time (ms) */
4487 1.1.1.4 dyoung } blinkrates[] = {
4488 1.1.1.4 dyoung { 108, 40, 10 },
4489 1.1.1.4 dyoung { 96, 44, 11 },
4490 1.1.1.4 dyoung { 72, 50, 13 },
4491 1.1.1.4 dyoung { 48, 57, 14 },
4492 1.1.1.4 dyoung { 36, 67, 16 },
4493 1.1.1.4 dyoung { 24, 80, 20 },
4494 1.1.1.4 dyoung { 22, 100, 25 },
4495 1.1.1.4 dyoung { 18, 133, 34 },
4496 1.1.1.4 dyoung { 12, 160, 40 },
4497 1.1.1.4 dyoung { 10, 200, 50 },
4498 1.1.1.4 dyoung { 6, 240, 58 },
4499 1.1.1.4 dyoung { 4, 267, 66 },
4500 1.1.1.4 dyoung { 2, 400, 100 },
4501 1.1.1.4 dyoung { 0, 500, 130 },
4502 1.1.1.4 dyoung };
4503 1.1 dyoung const HAL_RATE_TABLE *rt;
4504 1.1.1.4 dyoung int i, j;
4505 1.1 dyoung
4506 1.1 dyoung memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4507 1.1 dyoung rt = sc->sc_rates[mode];
4508 1.1 dyoung KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4509 1.1 dyoung for (i = 0; i < rt->rateCount; i++)
4510 1.1 dyoung sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4511 1.1 dyoung memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4512 1.1.1.4 dyoung for (i = 0; i < 32; i++) {
4513 1.1.1.4 dyoung u_int8_t ix = rt->rateCodeToIndex[i];
4514 1.1.1.4 dyoung if (ix == 0xff) {
4515 1.1.1.4 dyoung sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4516 1.1.1.4 dyoung sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4517 1.1.1.4 dyoung continue;
4518 1.1.1.4 dyoung }
4519 1.1.1.4 dyoung sc->sc_hwmap[i].ieeerate =
4520 1.1.1.4 dyoung rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4521 1.1.1.4 dyoung sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4522 1.1.1.4 dyoung if (rt->info[ix].shortPreamble ||
4523 1.1.1.4 dyoung rt->info[ix].phy == IEEE80211_T_OFDM)
4524 1.1.1.4 dyoung sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4525 1.1.1.4 dyoung /* NB: receive frames include FCS */
4526 1.1.1.4 dyoung sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4527 1.1.1.4 dyoung IEEE80211_RADIOTAP_F_FCS;
4528 1.1.1.4 dyoung /* setup blink rate table to avoid per-packet lookup */
4529 1.1.1.4 dyoung for (j = 0; j < N(blinkrates)-1; j++)
4530 1.1.1.4 dyoung if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4531 1.1.1.4 dyoung break;
4532 1.1.1.4 dyoung /* NB: this uses the last entry if the rate isn't found */
4533 1.1.1.4 dyoung /* XXX beware of overlow */
4534 1.1.1.4 dyoung sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4535 1.1.1.4 dyoung sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4536 1.1.1.4 dyoung }
4537 1.1 dyoung sc->sc_currates = rt;
4538 1.1 dyoung sc->sc_curmode = mode;
4539 1.1.1.4 dyoung /*
4540 1.1.1.4 dyoung * All protection frames are transmited at 2Mb/s for
4541 1.1.1.4 dyoung * 11g, otherwise at 1Mb/s.
4542 1.1.1.4 dyoung * XXX select protection rate index from rate table.
4543 1.1.1.4 dyoung */
4544 1.1.1.4 dyoung sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4545 1.1.1.4 dyoung /* NB: caller is responsible for reseting rate control state */
4546 1.1.1.4 dyoung #undef N
4547 1.1 dyoung }
4548 1.1 dyoung
4549 1.1.1.4 dyoung #ifdef AR_DEBUG
4550 1.1 dyoung static void
4551 1.1.1.4 dyoung ath_printrxbuf(struct ath_buf *bf, int done)
4552 1.1 dyoung {
4553 1.1.1.4 dyoung struct ath_desc *ds;
4554 1.1.1.4 dyoung int i;
4555 1.1 dyoung
4556 1.1.1.4 dyoung for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4557 1.1.1.4 dyoung printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4558 1.1.1.4 dyoung i, ds, (struct ath_desc *)bf->bf_daddr + i,
4559 1.1.1.4 dyoung ds->ds_link, ds->ds_data,
4560 1.1.1.4 dyoung ds->ds_ctl0, ds->ds_ctl1,
4561 1.1.1.4 dyoung ds->ds_hw[0], ds->ds_hw[1],
4562 1.1.1.4 dyoung !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4563 1.1.1.2 dyoung }
4564 1.1 dyoung }
4565 1.1 dyoung
4566 1.1 dyoung static void
4567 1.1.1.4 dyoung ath_printtxbuf(struct ath_buf *bf, int done)
4568 1.1 dyoung {
4569 1.1.1.4 dyoung struct ath_desc *ds;
4570 1.1.1.4 dyoung int i;
4571 1.1 dyoung
4572 1.1.1.4 dyoung for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4573 1.1.1.4 dyoung printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4574 1.1.1.4 dyoung i, ds, (struct ath_desc *)bf->bf_daddr + i,
4575 1.1.1.4 dyoung ds->ds_link, ds->ds_data,
4576 1.1.1.4 dyoung ds->ds_ctl0, ds->ds_ctl1,
4577 1.1.1.4 dyoung ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4578 1.1.1.4 dyoung !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4579 1.1.1.4 dyoung }
4580 1.1.1.4 dyoung }
4581 1.1.1.4 dyoung #endif /* AR_DEBUG */
4582 1.1 dyoung
4583 1.1.1.4 dyoung static void
4584 1.1.1.4 dyoung ath_watchdog(struct ifnet *ifp)
4585 1.1.1.4 dyoung {
4586 1.1.1.4 dyoung struct ath_softc *sc = ifp->if_softc;
4587 1.1.1.4 dyoung struct ieee80211com *ic = &sc->sc_ic;
4588 1.1.1.4 dyoung
4589 1.1.1.4 dyoung ifp->if_timer = 0;
4590 1.1.1.4 dyoung if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4591 1.1.1.4 dyoung return;
4592 1.1.1.4 dyoung if (sc->sc_tx_timer) {
4593 1.1.1.4 dyoung if (--sc->sc_tx_timer == 0) {
4594 1.1.1.4 dyoung if_printf(ifp, "device timeout\n");
4595 1.1.1.4 dyoung ath_reset(ifp);
4596 1.1.1.4 dyoung ifp->if_oerrors++;
4597 1.1.1.4 dyoung sc->sc_stats.ast_watchdog++;
4598 1.1.1.4 dyoung } else
4599 1.1.1.4 dyoung ifp->if_timer = 1;
4600 1.1.1.4 dyoung }
4601 1.1.1.4 dyoung ieee80211_watchdog(ic);
4602 1.1.1.4 dyoung }
4603 1.1 dyoung
4604 1.1.1.4 dyoung /*
4605 1.1.1.4 dyoung * Diagnostic interface to the HAL. This is used by various
4606 1.1.1.4 dyoung * tools to do things like retrieve register contents for
4607 1.1.1.4 dyoung * debugging. The mechanism is intentionally opaque so that
4608 1.1.1.4 dyoung * it can change frequently w/o concern for compatiblity.
4609 1.1.1.4 dyoung */
4610 1.1.1.4 dyoung static int
4611 1.1.1.4 dyoung ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4612 1.1.1.4 dyoung {
4613 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
4614 1.1.1.4 dyoung u_int id = ad->ad_id & ATH_DIAG_ID;
4615 1.1.1.4 dyoung void *indata = NULL;
4616 1.1.1.4 dyoung void *outdata = NULL;
4617 1.1.1.4 dyoung u_int32_t insize = ad->ad_in_size;
4618 1.1.1.4 dyoung u_int32_t outsize = ad->ad_out_size;
4619 1.1.1.4 dyoung int error = 0;
4620 1.1 dyoung
4621 1.1.1.4 dyoung if (ad->ad_id & ATH_DIAG_IN) {
4622 1.1.1.4 dyoung /*
4623 1.1.1.4 dyoung * Copy in data.
4624 1.1.1.4 dyoung */
4625 1.1.1.4 dyoung indata = malloc(insize, M_TEMP, M_NOWAIT);
4626 1.1.1.4 dyoung if (indata == NULL) {
4627 1.1.1.4 dyoung error = ENOMEM;
4628 1.1.1.4 dyoung goto bad;
4629 1.1.1.4 dyoung }
4630 1.1.1.4 dyoung error = copyin(ad->ad_in_data, indata, insize);
4631 1.1.1.4 dyoung if (error)
4632 1.1.1.4 dyoung goto bad;
4633 1.1.1.4 dyoung }
4634 1.1.1.4 dyoung if (ad->ad_id & ATH_DIAG_DYN) {
4635 1.1.1.4 dyoung /*
4636 1.1.1.4 dyoung * Allocate a buffer for the results (otherwise the HAL
4637 1.1.1.4 dyoung * returns a pointer to a buffer where we can read the
4638 1.1.1.4 dyoung * results). Note that we depend on the HAL leaving this
4639 1.1.1.4 dyoung * pointer for us to use below in reclaiming the buffer;
4640 1.1.1.4 dyoung * may want to be more defensive.
4641 1.1.1.4 dyoung */
4642 1.1.1.4 dyoung outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4643 1.1.1.4 dyoung if (outdata == NULL) {
4644 1.1.1.4 dyoung error = ENOMEM;
4645 1.1.1.4 dyoung goto bad;
4646 1.1.1.4 dyoung }
4647 1.1.1.4 dyoung }
4648 1.1.1.4 dyoung if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4649 1.1.1.4 dyoung if (outsize < ad->ad_out_size)
4650 1.1.1.4 dyoung ad->ad_out_size = outsize;
4651 1.1.1.4 dyoung if (outdata != NULL)
4652 1.1.1.4 dyoung error = copyout(outdata, ad->ad_out_data,
4653 1.1.1.4 dyoung ad->ad_out_size);
4654 1.1.1.4 dyoung } else {
4655 1.1.1.4 dyoung error = EINVAL;
4656 1.1.1.4 dyoung }
4657 1.1.1.4 dyoung bad:
4658 1.1.1.4 dyoung if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4659 1.1.1.4 dyoung free(indata, M_TEMP);
4660 1.1.1.4 dyoung if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4661 1.1.1.4 dyoung free(outdata, M_TEMP);
4662 1.1.1.4 dyoung return error;
4663 1.1.1.4 dyoung }
4664 1.1 dyoung
4665 1.1.1.4 dyoung static int
4666 1.1.1.4 dyoung ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4667 1.1.1.4 dyoung {
4668 1.1.1.4 dyoung #define IS_RUNNING(ifp) \
4669 1.1.1.4 dyoung ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4670 1.1.1.4 dyoung struct ath_softc *sc = ifp->if_softc;
4671 1.1.1.4 dyoung struct ieee80211com *ic = &sc->sc_ic;
4672 1.1.1.4 dyoung struct ifreq *ifr = (struct ifreq *)data;
4673 1.1.1.4 dyoung int error = 0;
4674 1.1 dyoung
4675 1.1.1.4 dyoung ATH_LOCK(sc);
4676 1.1.1.4 dyoung switch (cmd) {
4677 1.1.1.4 dyoung case SIOCSIFFLAGS:
4678 1.1.1.4 dyoung if (IS_RUNNING(ifp)) {
4679 1.1.1.4 dyoung /*
4680 1.1.1.4 dyoung * To avoid rescanning another access point,
4681 1.1.1.4 dyoung * do not call ath_init() here. Instead,
4682 1.1.1.4 dyoung * only reflect promisc mode settings.
4683 1.1.1.4 dyoung */
4684 1.1.1.4 dyoung ath_mode_init(sc);
4685 1.1.1.4 dyoung } else if (ifp->if_flags & IFF_UP) {
4686 1.1.1.4 dyoung /*
4687 1.1.1.4 dyoung * Beware of being called during attach/detach
4688 1.1.1.4 dyoung * to reset promiscuous mode. In that case we
4689 1.1.1.4 dyoung * will still be marked UP but not RUNNING.
4690 1.1.1.4 dyoung * However trying to re-init the interface
4691 1.1.1.4 dyoung * is the wrong thing to do as we've already
4692 1.1.1.4 dyoung * torn down much of our state. There's
4693 1.1.1.4 dyoung * probably a better way to deal with this.
4694 1.1.1.4 dyoung */
4695 1.1.1.4 dyoung if (!sc->sc_invalid && ic->ic_bss != NULL)
4696 1.1.1.5 dyoung ath_init(sc); /* XXX lose error */
4697 1.1.1.4 dyoung } else
4698 1.1.1.4 dyoung ath_stop_locked(ifp);
4699 1.1 dyoung break;
4700 1.1.1.4 dyoung case SIOCADDMULTI:
4701 1.1.1.4 dyoung case SIOCDELMULTI:
4702 1.1.1.4 dyoung /*
4703 1.1.1.4 dyoung * The upper layer has already installed/removed
4704 1.1.1.4 dyoung * the multicast address(es), just recalculate the
4705 1.1.1.4 dyoung * multicast filter for the card.
4706 1.1.1.4 dyoung */
4707 1.1.1.4 dyoung if (ifp->if_flags & IFF_RUNNING)
4708 1.1.1.4 dyoung ath_mode_init(sc);
4709 1.1 dyoung break;
4710 1.1.1.4 dyoung case SIOCGATHSTATS:
4711 1.1.1.4 dyoung /* NB: embed these numbers to get a consistent view */
4712 1.1.1.4 dyoung sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4713 1.1.1.4 dyoung sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4714 1.1.1.4 dyoung sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4715 1.1.1.4 dyoung ATH_UNLOCK(sc);
4716 1.1.1.4 dyoung /*
4717 1.1.1.4 dyoung * NB: Drop the softc lock in case of a page fault;
4718 1.1.1.4 dyoung * we'll accept any potential inconsisentcy in the
4719 1.1.1.4 dyoung * statistics. The alternative is to copy the data
4720 1.1.1.4 dyoung * to a local structure.
4721 1.1.1.4 dyoung */
4722 1.1.1.4 dyoung return copyout(&sc->sc_stats,
4723 1.1.1.4 dyoung ifr->ifr_data, sizeof (sc->sc_stats));
4724 1.1.1.4 dyoung case SIOCGATHDIAG:
4725 1.1.1.4 dyoung error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4726 1.1.1.4 dyoung break;
4727 1.1.1.4 dyoung default:
4728 1.1.1.4 dyoung error = ieee80211_ioctl(ic, cmd, data);
4729 1.1.1.4 dyoung if (error == ENETRESET) {
4730 1.1.1.4 dyoung if (IS_RUNNING(ifp) &&
4731 1.1.1.4 dyoung ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4732 1.1.1.5 dyoung ath_init(sc); /* XXX lose error */
4733 1.1.1.4 dyoung error = 0;
4734 1.1 dyoung }
4735 1.1.1.4 dyoung if (error == ERESTART)
4736 1.1.1.4 dyoung error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4737 1.1 dyoung break;
4738 1.1 dyoung }
4739 1.1.1.4 dyoung ATH_UNLOCK(sc);
4740 1.1.1.4 dyoung return error;
4741 1.1.1.4 dyoung #undef IS_RUNNING
4742 1.1.1.4 dyoung }
4743 1.1 dyoung
4744 1.1.1.4 dyoung static int
4745 1.1.1.4 dyoung ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4746 1.1.1.4 dyoung {
4747 1.1.1.4 dyoung struct ath_softc *sc = arg1;
4748 1.1.1.4 dyoung u_int slottime = ath_hal_getslottime(sc->sc_ah);
4749 1.1.1.4 dyoung int error;
4750 1.1.1.4 dyoung
4751 1.1.1.4 dyoung error = sysctl_handle_int(oidp, &slottime, 0, req);
4752 1.1.1.4 dyoung if (error || !req->newptr)
4753 1.1.1.4 dyoung return error;
4754 1.1.1.4 dyoung return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4755 1.1 dyoung }
4756 1.1 dyoung
4757 1.1 dyoung static int
4758 1.1.1.4 dyoung ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4759 1.1 dyoung {
4760 1.1.1.4 dyoung struct ath_softc *sc = arg1;
4761 1.1.1.4 dyoung u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4762 1.1 dyoung int error;
4763 1.1 dyoung
4764 1.1.1.4 dyoung error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4765 1.1.1.4 dyoung if (error || !req->newptr)
4766 1.1.1.4 dyoung return error;
4767 1.1.1.4 dyoung return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4768 1.1.1.4 dyoung }
4769 1.1.1.4 dyoung
4770 1.1.1.4 dyoung static int
4771 1.1.1.4 dyoung ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4772 1.1.1.4 dyoung {
4773 1.1.1.4 dyoung struct ath_softc *sc = arg1;
4774 1.1.1.4 dyoung u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4775 1.1.1.4 dyoung int error;
4776 1.1.1.4 dyoung
4777 1.1.1.4 dyoung error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4778 1.1.1.4 dyoung if (error || !req->newptr)
4779 1.1.1.4 dyoung return error;
4780 1.1.1.4 dyoung return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4781 1.1.1.4 dyoung }
4782 1.1.1.4 dyoung
4783 1.1.1.4 dyoung static int
4784 1.1.1.4 dyoung ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4785 1.1.1.4 dyoung {
4786 1.1.1.4 dyoung struct ath_softc *sc = arg1;
4787 1.1.1.4 dyoung int softled = sc->sc_softled;
4788 1.1.1.4 dyoung int error;
4789 1.1.1.4 dyoung
4790 1.1.1.4 dyoung error = sysctl_handle_int(oidp, &softled, 0, req);
4791 1.1.1.4 dyoung if (error || !req->newptr)
4792 1.1.1.4 dyoung return error;
4793 1.1.1.4 dyoung softled = (softled != 0);
4794 1.1.1.4 dyoung if (softled != sc->sc_softled) {
4795 1.1.1.4 dyoung if (softled) {
4796 1.1.1.4 dyoung /* NB: handle any sc_ledpin change */
4797 1.1.1.4 dyoung ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4798 1.1.1.4 dyoung ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4799 1.1.1.4 dyoung !sc->sc_ledon);
4800 1.1.1.4 dyoung }
4801 1.1.1.4 dyoung sc->sc_softled = softled;
4802 1.1 dyoung }
4803 1.1.1.4 dyoung return 0;
4804 1.1.1.4 dyoung }
4805 1.1.1.4 dyoung
4806 1.1.1.4 dyoung static int
4807 1.1.1.4 dyoung ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4808 1.1.1.4 dyoung {
4809 1.1.1.4 dyoung struct ath_softc *sc = arg1;
4810 1.1.1.4 dyoung u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4811 1.1.1.4 dyoung int error;
4812 1.1.1.4 dyoung
4813 1.1.1.4 dyoung error = sysctl_handle_int(oidp, &defantenna, 0, req);
4814 1.1.1.4 dyoung if (!error && req->newptr)
4815 1.1.1.4 dyoung ath_hal_setdefantenna(sc->sc_ah, defantenna);
4816 1.1 dyoung return error;
4817 1.1 dyoung }
4818 1.1.1.4 dyoung
4819 1.1.1.4 dyoung static int
4820 1.1.1.4 dyoung ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4821 1.1.1.4 dyoung {
4822 1.1.1.4 dyoung struct ath_softc *sc = arg1;
4823 1.1.1.4 dyoung u_int diversity = sc->sc_diversity;
4824 1.1.1.4 dyoung int error;
4825 1.1.1.4 dyoung
4826 1.1.1.4 dyoung error = sysctl_handle_int(oidp, &diversity, 0, req);
4827 1.1.1.4 dyoung if (error || !req->newptr)
4828 1.1.1.4 dyoung return error;
4829 1.1.1.4 dyoung sc->sc_diversity = diversity;
4830 1.1.1.4 dyoung return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4831 1.1.1.4 dyoung }
4832 1.1.1.4 dyoung
4833 1.1.1.4 dyoung static int
4834 1.1.1.4 dyoung ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4835 1.1.1.4 dyoung {
4836 1.1.1.4 dyoung struct ath_softc *sc = arg1;
4837 1.1.1.4 dyoung u_int32_t diag;
4838 1.1.1.4 dyoung int error;
4839 1.1.1.4 dyoung
4840 1.1.1.4 dyoung if (!ath_hal_getdiag(sc->sc_ah, &diag))
4841 1.1.1.4 dyoung return EINVAL;
4842 1.1.1.4 dyoung error = sysctl_handle_int(oidp, &diag, 0, req);
4843 1.1.1.4 dyoung if (error || !req->newptr)
4844 1.1.1.4 dyoung return error;
4845 1.1.1.4 dyoung return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4846 1.1.1.4 dyoung }
4847 1.1.1.4 dyoung
4848 1.1.1.4 dyoung static int
4849 1.1.1.4 dyoung ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4850 1.1.1.4 dyoung {
4851 1.1.1.4 dyoung struct ath_softc *sc = arg1;
4852 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
4853 1.1.1.4 dyoung u_int32_t scale;
4854 1.1.1.4 dyoung int error;
4855 1.1.1.4 dyoung
4856 1.1.1.4 dyoung ath_hal_gettpscale(sc->sc_ah, &scale);
4857 1.1.1.4 dyoung error = sysctl_handle_int(oidp, &scale, 0, req);
4858 1.1.1.4 dyoung if (error || !req->newptr)
4859 1.1.1.4 dyoung return error;
4860 1.1.1.4 dyoung return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4861 1.1.1.4 dyoung }
4862 1.1.1.4 dyoung
4863 1.1.1.4 dyoung static int
4864 1.1.1.4 dyoung ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4865 1.1.1.4 dyoung {
4866 1.1.1.4 dyoung struct ath_softc *sc = arg1;
4867 1.1.1.4 dyoung u_int tpc = ath_hal_gettpc(sc->sc_ah);
4868 1.1.1.4 dyoung int error;
4869 1.1.1.4 dyoung
4870 1.1.1.4 dyoung error = sysctl_handle_int(oidp, &tpc, 0, req);
4871 1.1.1.4 dyoung if (error || !req->newptr)
4872 1.1.1.4 dyoung return error;
4873 1.1.1.4 dyoung return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4874 1.1.1.4 dyoung }
4875 1.1 dyoung
4876 1.1 dyoung static void
4877 1.1.1.4 dyoung ath_sysctlattach(struct ath_softc *sc)
4878 1.1 dyoung {
4879 1.1.1.4 dyoung struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4880 1.1.1.4 dyoung struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4881 1.1 dyoung
4882 1.1.1.4 dyoung ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4883 1.1.1.4 dyoung SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4884 1.1.1.4 dyoung "countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4885 1.1.1.4 dyoung "EEPROM country code");
4886 1.1.1.4 dyoung ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4887 1.1.1.4 dyoung SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4888 1.1.1.4 dyoung "regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4889 1.1.1.4 dyoung "EEPROM regdomain code");
4890 1.1.1.4 dyoung sc->sc_debug = ath_debug;
4891 1.1.1.4 dyoung SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4892 1.1.1.4 dyoung "debug", CTLFLAG_RW, &sc->sc_debug, 0,
4893 1.1.1.4 dyoung "control debugging printfs");
4894 1.1.1.4 dyoung
4895 1.1.1.4 dyoung SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4896 1.1.1.4 dyoung "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4897 1.1.1.4 dyoung ath_sysctl_slottime, "I", "802.11 slot time (us)");
4898 1.1.1.4 dyoung SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4899 1.1.1.4 dyoung "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4900 1.1.1.4 dyoung ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4901 1.1.1.4 dyoung SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4902 1.1.1.4 dyoung "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4903 1.1.1.4 dyoung ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4904 1.1.1.4 dyoung SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4905 1.1.1.4 dyoung "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4906 1.1.1.4 dyoung ath_sysctl_softled, "I", "enable/disable software LED support");
4907 1.1.1.4 dyoung SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4908 1.1.1.4 dyoung "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4909 1.1.1.4 dyoung "GPIO pin connected to LED");
4910 1.1.1.4 dyoung SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4911 1.1.1.4 dyoung "ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4912 1.1.1.4 dyoung "setting to turn LED on");
4913 1.1.1.4 dyoung SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4914 1.1.1.4 dyoung "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4915 1.1.1.4 dyoung "idle time for inactivity LED (ticks)");
4916 1.1.1.4 dyoung SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4917 1.1.1.4 dyoung "txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4918 1.1.1.4 dyoung "tx antenna (0=auto)");
4919 1.1.1.4 dyoung SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4920 1.1.1.4 dyoung "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4921 1.1.1.4 dyoung ath_sysctl_rxantenna, "I", "default/rx antenna");
4922 1.1.1.4 dyoung if (sc->sc_hasdiversity)
4923 1.1.1.4 dyoung SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4924 1.1.1.4 dyoung "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4925 1.1.1.4 dyoung ath_sysctl_diversity, "I", "antenna diversity");
4926 1.1.1.4 dyoung sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4927 1.1.1.4 dyoung SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4928 1.1.1.4 dyoung "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4929 1.1.1.4 dyoung "tx descriptor batching");
4930 1.1.1.4 dyoung SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4931 1.1.1.4 dyoung "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4932 1.1.1.4 dyoung ath_sysctl_diag, "I", "h/w diagnostic control");
4933 1.1.1.4 dyoung SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4934 1.1.1.4 dyoung "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4935 1.1.1.4 dyoung ath_sysctl_tpscale, "I", "tx power scaling");
4936 1.1.1.4 dyoung if (sc->sc_hastpc)
4937 1.1.1.4 dyoung SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4938 1.1.1.4 dyoung "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4939 1.1.1.4 dyoung ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4940 1.1 dyoung }
4941 1.1 dyoung
4942 1.1 dyoung static void
4943 1.1.1.4 dyoung ath_bpfattach(struct ath_softc *sc)
4944 1.1 dyoung {
4945 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
4946 1.1 dyoung
4947 1.1.1.4 dyoung bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4948 1.1.1.4 dyoung sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4949 1.1.1.4 dyoung &sc->sc_drvbpf);
4950 1.1.1.4 dyoung /*
4951 1.1.1.4 dyoung * Initialize constant fields.
4952 1.1.1.4 dyoung * XXX make header lengths a multiple of 32-bits so subsequent
4953 1.1.1.4 dyoung * headers are properly aligned; this is a kludge to keep
4954 1.1.1.4 dyoung * certain applications happy.
4955 1.1.1.4 dyoung *
4956 1.1.1.4 dyoung * NB: the channel is setup each time we transition to the
4957 1.1.1.4 dyoung * RUN state to avoid filling it in for each frame.
4958 1.1.1.4 dyoung */
4959 1.1.1.4 dyoung sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4960 1.1.1.4 dyoung sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4961 1.1.1.4 dyoung sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4962 1.1.1.4 dyoung
4963 1.1.1.4 dyoung sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4964 1.1.1.4 dyoung sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4965 1.1.1.4 dyoung sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4966 1.1.1.4 dyoung }
4967 1.1.1.4 dyoung
4968 1.1.1.4 dyoung /*
4969 1.1.1.4 dyoung * Announce various information on device/driver attach.
4970 1.1.1.4 dyoung */
4971 1.1.1.4 dyoung static void
4972 1.1.1.4 dyoung ath_announce(struct ath_softc *sc)
4973 1.1.1.4 dyoung {
4974 1.1.1.4 dyoung #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
4975 1.1.1.5 dyoung struct ifnet *ifp = sc->sc_ifp;
4976 1.1.1.4 dyoung struct ath_hal *ah = sc->sc_ah;
4977 1.1.1.4 dyoung u_int modes, cc;
4978 1.1.1.4 dyoung
4979 1.1.1.4 dyoung if_printf(ifp, "mac %d.%d phy %d.%d",
4980 1.1.1.4 dyoung ah->ah_macVersion, ah->ah_macRev,
4981 1.1.1.4 dyoung ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4982 1.1.1.4 dyoung /*
4983 1.1.1.4 dyoung * Print radio revision(s). We check the wireless modes
4984 1.1.1.4 dyoung * to avoid falsely printing revs for inoperable parts.
4985 1.1.1.4 dyoung * Dual-band radio revs are returned in the 5Ghz rev number.
4986 1.1.1.4 dyoung */
4987 1.1.1.4 dyoung ath_hal_getcountrycode(ah, &cc);
4988 1.1.1.4 dyoung modes = ath_hal_getwirelessmodes(ah, cc);
4989 1.1.1.4 dyoung if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4990 1.1.1.4 dyoung if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4991 1.1.1.4 dyoung printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4992 1.1.1.4 dyoung ah->ah_analog5GhzRev >> 4,
4993 1.1.1.4 dyoung ah->ah_analog5GhzRev & 0xf,
4994 1.1.1.4 dyoung ah->ah_analog2GhzRev >> 4,
4995 1.1.1.4 dyoung ah->ah_analog2GhzRev & 0xf);
4996 1.1.1.4 dyoung else
4997 1.1.1.4 dyoung printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4998 1.1.1.4 dyoung ah->ah_analog5GhzRev & 0xf);
4999 1.1.1.4 dyoung } else
5000 1.1.1.4 dyoung printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5001 1.1.1.4 dyoung ah->ah_analog5GhzRev & 0xf);
5002 1.1.1.4 dyoung printf("\n");
5003 1.1.1.4 dyoung if (bootverbose) {
5004 1.1.1.4 dyoung int i;
5005 1.1.1.4 dyoung for (i = 0; i <= WME_AC_VO; i++) {
5006 1.1.1.4 dyoung struct ath_txq *txq = sc->sc_ac2q[i];
5007 1.1.1.4 dyoung if_printf(ifp, "Use hw queue %u for %s traffic\n",
5008 1.1.1.4 dyoung txq->axq_qnum, ieee80211_wme_acnames[i]);
5009 1.1.1.4 dyoung }
5010 1.1.1.4 dyoung if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5011 1.1.1.4 dyoung sc->sc_cabq->axq_qnum);
5012 1.1.1.4 dyoung if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5013 1.1 dyoung }
5014 1.1.1.4 dyoung #undef HAL_MODE_DUALBAND
5015 1.1 dyoung }
5016