Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.1.1.6
      1      1.1  dyoung /*-
      2  1.1.1.4  dyoung  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      3      1.1  dyoung  * All rights reserved.
      4      1.1  dyoung  *
      5      1.1  dyoung  * Redistribution and use in source and binary forms, with or without
      6      1.1  dyoung  * modification, are permitted provided that the following conditions
      7      1.1  dyoung  * are met:
      8      1.1  dyoung  * 1. Redistributions of source code must retain the above copyright
      9      1.1  dyoung  *    notice, this list of conditions and the following disclaimer,
     10      1.1  dyoung  *    without modification.
     11      1.1  dyoung  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     12      1.1  dyoung  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     13      1.1  dyoung  *    redistribution must be conditioned upon including a substantially
     14      1.1  dyoung  *    similar Disclaimer requirement for further binary redistribution.
     15      1.1  dyoung  * 3. Neither the names of the above-listed copyright holders nor the names
     16      1.1  dyoung  *    of any contributors may be used to endorse or promote products derived
     17      1.1  dyoung  *    from this software without specific prior written permission.
     18      1.1  dyoung  *
     19      1.1  dyoung  * Alternatively, this software may be distributed under the terms of the
     20      1.1  dyoung  * GNU General Public License ("GPL") version 2 as published by the Free
     21      1.1  dyoung  * Software Foundation.
     22      1.1  dyoung  *
     23      1.1  dyoung  * NO WARRANTY
     24      1.1  dyoung  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     25      1.1  dyoung  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     26      1.1  dyoung  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     27      1.1  dyoung  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     28      1.1  dyoung  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     29      1.1  dyoung  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30      1.1  dyoung  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31      1.1  dyoung  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     32      1.1  dyoung  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33      1.1  dyoung  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     34      1.1  dyoung  * THE POSSIBILITY OF SUCH DAMAGES.
     35      1.1  dyoung  */
     36      1.1  dyoung 
     37      1.1  dyoung #include <sys/cdefs.h>
     38  1.1.1.6   skrll __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     39      1.1  dyoung 
     40      1.1  dyoung /*
     41      1.1  dyoung  * Driver for the Atheros Wireless LAN controller.
     42      1.1  dyoung  *
     43      1.1  dyoung  * This software is derived from work of Atsushi Onoe; his contribution
     44      1.1  dyoung  * is greatly appreciated.
     45      1.1  dyoung  */
     46      1.1  dyoung 
     47      1.1  dyoung #include "opt_inet.h"
     48      1.1  dyoung 
     49      1.1  dyoung #include <sys/param.h>
     50      1.1  dyoung #include <sys/systm.h>
     51      1.1  dyoung #include <sys/sysctl.h>
     52      1.1  dyoung #include <sys/mbuf.h>
     53      1.1  dyoung #include <sys/malloc.h>
     54      1.1  dyoung #include <sys/lock.h>
     55      1.1  dyoung #include <sys/mutex.h>
     56      1.1  dyoung #include <sys/kernel.h>
     57      1.1  dyoung #include <sys/socket.h>
     58      1.1  dyoung #include <sys/sockio.h>
     59      1.1  dyoung #include <sys/errno.h>
     60      1.1  dyoung #include <sys/callout.h>
     61      1.1  dyoung #include <sys/bus.h>
     62      1.1  dyoung #include <sys/endian.h>
     63      1.1  dyoung 
     64      1.1  dyoung #include <machine/bus.h>
     65      1.1  dyoung 
     66      1.1  dyoung #include <net/if.h>
     67      1.1  dyoung #include <net/if_dl.h>
     68      1.1  dyoung #include <net/if_media.h>
     69  1.1.1.5  dyoung #include <net/if_types.h>
     70      1.1  dyoung #include <net/if_arp.h>
     71      1.1  dyoung #include <net/ethernet.h>
     72      1.1  dyoung #include <net/if_llc.h>
     73      1.1  dyoung 
     74      1.1  dyoung #include <net80211/ieee80211_var.h>
     75      1.1  dyoung 
     76      1.1  dyoung #include <net/bpf.h>
     77      1.1  dyoung 
     78      1.1  dyoung #ifdef INET
     79      1.1  dyoung #include <netinet/in.h>
     80      1.1  dyoung #include <netinet/if_ether.h>
     81      1.1  dyoung #endif
     82      1.1  dyoung 
     83      1.1  dyoung #define	AR_DEBUG
     84      1.1  dyoung #include <dev/ath/if_athvar.h>
     85      1.1  dyoung #include <contrib/dev/ath/ah_desc.h>
     86  1.1.1.4  dyoung #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
     87      1.1  dyoung 
     88  1.1.1.5  dyoung /* unaligned little endian access */
     89      1.1  dyoung #define LE_READ_2(p)							\
     90      1.1  dyoung 	((u_int16_t)							\
     91      1.1  dyoung 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
     92      1.1  dyoung #define LE_READ_4(p)							\
     93      1.1  dyoung 	((u_int32_t)							\
     94      1.1  dyoung 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
     95      1.1  dyoung 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
     96      1.1  dyoung 
     97  1.1.1.4  dyoung enum {
     98  1.1.1.4  dyoung 	ATH_LED_TX,
     99  1.1.1.4  dyoung 	ATH_LED_RX,
    100  1.1.1.4  dyoung 	ATH_LED_POLL,
    101  1.1.1.4  dyoung };
    102  1.1.1.4  dyoung 
    103      1.1  dyoung static void	ath_init(void *);
    104  1.1.1.4  dyoung static void	ath_stop_locked(struct ifnet *);
    105      1.1  dyoung static void	ath_stop(struct ifnet *);
    106      1.1  dyoung static void	ath_start(struct ifnet *);
    107  1.1.1.4  dyoung static int	ath_reset(struct ifnet *);
    108      1.1  dyoung static int	ath_media_change(struct ifnet *);
    109      1.1  dyoung static void	ath_watchdog(struct ifnet *);
    110      1.1  dyoung static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    111      1.1  dyoung static void	ath_fatal_proc(void *, int);
    112      1.1  dyoung static void	ath_rxorn_proc(void *, int);
    113      1.1  dyoung static void	ath_bmiss_proc(void *, int);
    114  1.1.1.4  dyoung static int	ath_key_alloc(struct ieee80211com *,
    115  1.1.1.6   skrll 			const struct ieee80211_key *,
    116  1.1.1.6   skrll 			ieee80211_keyix *, ieee80211_keyix *);
    117  1.1.1.4  dyoung static int	ath_key_delete(struct ieee80211com *,
    118  1.1.1.4  dyoung 			const struct ieee80211_key *);
    119  1.1.1.4  dyoung static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    120  1.1.1.4  dyoung 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    121  1.1.1.4  dyoung static void	ath_key_update_begin(struct ieee80211com *);
    122  1.1.1.4  dyoung static void	ath_key_update_end(struct ieee80211com *);
    123      1.1  dyoung static void	ath_mode_init(struct ath_softc *);
    124  1.1.1.4  dyoung static void	ath_setslottime(struct ath_softc *);
    125  1.1.1.4  dyoung static void	ath_updateslot(struct ifnet *);
    126  1.1.1.4  dyoung static int	ath_beaconq_setup(struct ath_hal *);
    127      1.1  dyoung static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    128  1.1.1.4  dyoung static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    129      1.1  dyoung static void	ath_beacon_proc(void *, int);
    130  1.1.1.4  dyoung static void	ath_bstuck_proc(void *, int);
    131      1.1  dyoung static void	ath_beacon_free(struct ath_softc *);
    132      1.1  dyoung static void	ath_beacon_config(struct ath_softc *);
    133  1.1.1.4  dyoung static void	ath_descdma_cleanup(struct ath_softc *sc,
    134  1.1.1.4  dyoung 			struct ath_descdma *, ath_bufhead *);
    135      1.1  dyoung static int	ath_desc_alloc(struct ath_softc *);
    136      1.1  dyoung static void	ath_desc_free(struct ath_softc *);
    137  1.1.1.4  dyoung static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    138  1.1.1.4  dyoung static void	ath_node_free(struct ieee80211_node *);
    139  1.1.1.4  dyoung static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    140      1.1  dyoung static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    141  1.1.1.4  dyoung static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    142  1.1.1.4  dyoung 			struct ieee80211_node *ni,
    143  1.1.1.4  dyoung 			int subtype, int rssi, u_int32_t rstamp);
    144  1.1.1.4  dyoung static void	ath_setdefantenna(struct ath_softc *, u_int);
    145      1.1  dyoung static void	ath_rx_proc(void *, int);
    146  1.1.1.4  dyoung static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    147  1.1.1.4  dyoung static int	ath_tx_setup(struct ath_softc *, int, int);
    148  1.1.1.4  dyoung static int	ath_wme_update(struct ieee80211com *);
    149  1.1.1.4  dyoung static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    150  1.1.1.4  dyoung static void	ath_tx_cleanup(struct ath_softc *);
    151      1.1  dyoung static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    152      1.1  dyoung 			     struct ath_buf *, struct mbuf *);
    153  1.1.1.4  dyoung static void	ath_tx_proc_q0(void *, int);
    154  1.1.1.4  dyoung static void	ath_tx_proc_q0123(void *, int);
    155      1.1  dyoung static void	ath_tx_proc(void *, int);
    156      1.1  dyoung static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    157      1.1  dyoung static void	ath_draintxq(struct ath_softc *);
    158      1.1  dyoung static void	ath_stoprecv(struct ath_softc *);
    159      1.1  dyoung static int	ath_startrecv(struct ath_softc *);
    160  1.1.1.4  dyoung static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    161      1.1  dyoung static void	ath_next_scan(void *);
    162      1.1  dyoung static void	ath_calibrate(void *);
    163      1.1  dyoung static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    164  1.1.1.5  dyoung static void	ath_setup_stationkey(struct ieee80211_node *);
    165  1.1.1.6   skrll static void	ath_newassoc(struct ieee80211_node *, int);
    166  1.1.1.4  dyoung static int	ath_getchannels(struct ath_softc *, u_int cc,
    167  1.1.1.4  dyoung 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    168  1.1.1.4  dyoung static void	ath_led_event(struct ath_softc *, int);
    169  1.1.1.4  dyoung static void	ath_update_txpow(struct ath_softc *);
    170      1.1  dyoung 
    171  1.1.1.4  dyoung static int	ath_rate_setup(struct ath_softc *, u_int mode);
    172      1.1  dyoung static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    173  1.1.1.4  dyoung 
    174  1.1.1.4  dyoung static void	ath_sysctlattach(struct ath_softc *);
    175  1.1.1.4  dyoung static void	ath_bpfattach(struct ath_softc *);
    176  1.1.1.4  dyoung static void	ath_announce(struct ath_softc *);
    177      1.1  dyoung 
    178      1.1  dyoung SYSCTL_DECL(_hw_ath);
    179      1.1  dyoung 
    180      1.1  dyoung /* XXX validate sysctl values */
    181      1.1  dyoung static	int ath_dwelltime = 200;		/* 5 channels/second */
    182      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
    183      1.1  dyoung 	    0, "channel dwell time (ms) for AP/station scanning");
    184      1.1  dyoung static	int ath_calinterval = 30;		/* calibrate every 30 secs */
    185      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
    186      1.1  dyoung 	    0, "chip calibration interval (secs)");
    187      1.1  dyoung static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
    188      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
    189  1.1.1.4  dyoung 	    0, "outdoor operation");
    190  1.1.1.3  dyoung TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
    191  1.1.1.4  dyoung static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
    192  1.1.1.4  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
    193  1.1.1.4  dyoung 	    0, "extended channel mode");
    194  1.1.1.4  dyoung TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
    195      1.1  dyoung static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
    196      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
    197      1.1  dyoung 	    0, "country code");
    198  1.1.1.3  dyoung TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
    199      1.1  dyoung static	int ath_regdomain = 0;			/* regulatory domain */
    200      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
    201      1.1  dyoung 	    0, "regulatory domain");
    202      1.1  dyoung 
    203      1.1  dyoung #ifdef AR_DEBUG
    204  1.1.1.4  dyoung static	int ath_debug = 0;
    205      1.1  dyoung SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
    206      1.1  dyoung 	    0, "control debugging printfs");
    207  1.1.1.3  dyoung TUNABLE_INT("hw.ath.debug", &ath_debug);
    208  1.1.1.3  dyoung enum {
    209  1.1.1.3  dyoung 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    210  1.1.1.3  dyoung 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    211  1.1.1.3  dyoung 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    212  1.1.1.3  dyoung 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    213  1.1.1.3  dyoung 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    214  1.1.1.3  dyoung 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    215  1.1.1.3  dyoung 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    216  1.1.1.3  dyoung 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    217  1.1.1.3  dyoung 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    218  1.1.1.3  dyoung 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    219  1.1.1.3  dyoung 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    220  1.1.1.3  dyoung 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    221  1.1.1.3  dyoung 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    222  1.1.1.3  dyoung 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    223  1.1.1.4  dyoung 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    224  1.1.1.4  dyoung 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    225  1.1.1.4  dyoung 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    226  1.1.1.4  dyoung 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    227  1.1.1.4  dyoung 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    228  1.1.1.3  dyoung 	ATH_DEBUG_ANY		= 0xffffffff
    229  1.1.1.3  dyoung };
    230  1.1.1.4  dyoung #define	IFF_DUMPPKTS(sc, m) \
    231  1.1.1.4  dyoung 	((sc->sc_debug & (m)) || \
    232  1.1.1.5  dyoung 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    233  1.1.1.4  dyoung #define	DPRINTF(sc, m, fmt, ...) do {				\
    234  1.1.1.4  dyoung 	if (sc->sc_debug & (m))					\
    235  1.1.1.4  dyoung 		printf(fmt, __VA_ARGS__);			\
    236  1.1.1.4  dyoung } while (0)
    237  1.1.1.4  dyoung #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    238  1.1.1.4  dyoung 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    239  1.1.1.4  dyoung 		ath_keyprint(__func__, ix, hk, mac);		\
    240  1.1.1.4  dyoung } while (0)
    241  1.1.1.4  dyoung static	void ath_printrxbuf(struct ath_buf *bf, int);
    242  1.1.1.4  dyoung static	void ath_printtxbuf(struct ath_buf *bf, int);
    243      1.1  dyoung #else
    244  1.1.1.4  dyoung #define	IFF_DUMPPKTS(sc, m) \
    245  1.1.1.5  dyoung 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    246  1.1.1.4  dyoung #define	DPRINTF(m, fmt, ...)
    247  1.1.1.4  dyoung #define	KEYPRINTF(sc, k, ix, mac)
    248      1.1  dyoung #endif
    249      1.1  dyoung 
    250  1.1.1.4  dyoung MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    251  1.1.1.4  dyoung 
    252      1.1  dyoung int
    253      1.1  dyoung ath_attach(u_int16_t devid, struct ath_softc *sc)
    254      1.1  dyoung {
    255  1.1.1.5  dyoung 	struct ifnet *ifp;
    256      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
    257  1.1.1.5  dyoung 	struct ath_hal *ah = NULL;
    258      1.1  dyoung 	HAL_STATUS status;
    259  1.1.1.4  dyoung 	int error = 0, i;
    260      1.1  dyoung 
    261  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    262      1.1  dyoung 
    263  1.1.1.5  dyoung 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
    264  1.1.1.5  dyoung 	if (ifp == NULL) {
    265  1.1.1.5  dyoung 		device_printf(sc->sc_dev, "can not if_alloc()\n");
    266  1.1.1.5  dyoung 		error = ENOSPC;
    267  1.1.1.5  dyoung 		goto bad;
    268  1.1.1.5  dyoung 	}
    269  1.1.1.5  dyoung 
    270      1.1  dyoung 	/* set these up early for if_printf use */
    271  1.1.1.2  dyoung 	if_initname(ifp, device_get_name(sc->sc_dev),
    272  1.1.1.4  dyoung 		device_get_unit(sc->sc_dev));
    273      1.1  dyoung 
    274      1.1  dyoung 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    275      1.1  dyoung 	if (ah == NULL) {
    276      1.1  dyoung 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    277      1.1  dyoung 			status);
    278      1.1  dyoung 		error = ENXIO;
    279      1.1  dyoung 		goto bad;
    280      1.1  dyoung 	}
    281  1.1.1.2  dyoung 	if (ah->ah_abi != HAL_ABI_VERSION) {
    282  1.1.1.4  dyoung 		if_printf(ifp, "HAL ABI mismatch detected "
    283  1.1.1.4  dyoung 			"(HAL:0x%x != driver:0x%x)\n",
    284  1.1.1.2  dyoung 			ah->ah_abi, HAL_ABI_VERSION);
    285  1.1.1.2  dyoung 		error = ENXIO;
    286  1.1.1.2  dyoung 		goto bad;
    287  1.1.1.2  dyoung 	}
    288      1.1  dyoung 	sc->sc_ah = ah;
    289      1.1  dyoung 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    290      1.1  dyoung 
    291      1.1  dyoung 	/*
    292  1.1.1.4  dyoung 	 * Check if the MAC has multi-rate retry support.
    293  1.1.1.4  dyoung 	 * We do this by trying to setup a fake extended
    294  1.1.1.4  dyoung 	 * descriptor.  MAC's that don't have support will
    295  1.1.1.4  dyoung 	 * return false w/o doing anything.  MAC's that do
    296  1.1.1.4  dyoung 	 * support it will return true w/o doing anything.
    297  1.1.1.4  dyoung 	 */
    298  1.1.1.4  dyoung 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    299  1.1.1.4  dyoung 
    300  1.1.1.4  dyoung 	/*
    301  1.1.1.4  dyoung 	 * Check if the device has hardware counters for PHY
    302  1.1.1.4  dyoung 	 * errors.  If so we need to enable the MIB interrupt
    303  1.1.1.4  dyoung 	 * so we can act on stat triggers.
    304  1.1.1.4  dyoung 	 */
    305  1.1.1.4  dyoung 	if (ath_hal_hwphycounters(ah))
    306  1.1.1.4  dyoung 		sc->sc_needmib = 1;
    307  1.1.1.4  dyoung 
    308  1.1.1.4  dyoung 	/*
    309  1.1.1.4  dyoung 	 * Get the hardware key cache size.
    310  1.1.1.4  dyoung 	 */
    311  1.1.1.4  dyoung 	sc->sc_keymax = ath_hal_keycachesize(ah);
    312  1.1.1.5  dyoung 	if (sc->sc_keymax > ATH_KEYMAX) {
    313  1.1.1.5  dyoung 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    314  1.1.1.5  dyoung 			ATH_KEYMAX, sc->sc_keymax);
    315  1.1.1.5  dyoung 		sc->sc_keymax = ATH_KEYMAX;
    316  1.1.1.4  dyoung 	}
    317  1.1.1.4  dyoung 	/*
    318  1.1.1.4  dyoung 	 * Reset the key cache since some parts do not
    319  1.1.1.4  dyoung 	 * reset the contents on initial power up.
    320  1.1.1.4  dyoung 	 */
    321  1.1.1.4  dyoung 	for (i = 0; i < sc->sc_keymax; i++)
    322  1.1.1.4  dyoung 		ath_hal_keyreset(ah, i);
    323  1.1.1.4  dyoung 	/*
    324  1.1.1.4  dyoung 	 * Mark key cache slots associated with global keys
    325  1.1.1.4  dyoung 	 * as in use.  If we knew TKIP was not to be used we
    326  1.1.1.4  dyoung 	 * could leave the +32, +64, and +32+64 slots free.
    327  1.1.1.4  dyoung 	 * XXX only for splitmic.
    328  1.1.1.4  dyoung 	 */
    329  1.1.1.4  dyoung 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    330  1.1.1.4  dyoung 		setbit(sc->sc_keymap, i);
    331  1.1.1.4  dyoung 		setbit(sc->sc_keymap, i+32);
    332  1.1.1.4  dyoung 		setbit(sc->sc_keymap, i+64);
    333  1.1.1.4  dyoung 		setbit(sc->sc_keymap, i+32+64);
    334  1.1.1.4  dyoung 	}
    335  1.1.1.4  dyoung 
    336  1.1.1.4  dyoung 	/*
    337      1.1  dyoung 	 * Collect the channel list using the default country
    338      1.1  dyoung 	 * code and including outdoor channels.  The 802.11 layer
    339      1.1  dyoung 	 * is resposible for filtering this list based on settings
    340      1.1  dyoung 	 * like the phy mode.
    341      1.1  dyoung 	 */
    342  1.1.1.4  dyoung 	error = ath_getchannels(sc, ath_countrycode,
    343  1.1.1.4  dyoung 			ath_outdoor, ath_xchanmode);
    344      1.1  dyoung 	if (error != 0)
    345      1.1  dyoung 		goto bad;
    346      1.1  dyoung 
    347      1.1  dyoung 	/*
    348      1.1  dyoung 	 * Setup rate tables for all potential media types.
    349      1.1  dyoung 	 */
    350      1.1  dyoung 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    351      1.1  dyoung 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    352      1.1  dyoung 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    353  1.1.1.4  dyoung 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    354  1.1.1.4  dyoung 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    355  1.1.1.4  dyoung 	/* NB: setup here so ath_rate_update is happy */
    356  1.1.1.4  dyoung 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    357      1.1  dyoung 
    358  1.1.1.4  dyoung 	/*
    359  1.1.1.4  dyoung 	 * Allocate tx+rx descriptors and populate the lists.
    360  1.1.1.4  dyoung 	 */
    361      1.1  dyoung 	error = ath_desc_alloc(sc);
    362      1.1  dyoung 	if (error != 0) {
    363      1.1  dyoung 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    364      1.1  dyoung 		goto bad;
    365      1.1  dyoung 	}
    366  1.1.1.4  dyoung 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    367      1.1  dyoung 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    368      1.1  dyoung 
    369  1.1.1.2  dyoung 	ATH_TXBUF_LOCK_INIT(sc);
    370      1.1  dyoung 
    371      1.1  dyoung 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    372      1.1  dyoung 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    373      1.1  dyoung 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    374      1.1  dyoung 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    375  1.1.1.4  dyoung 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
    376      1.1  dyoung 
    377      1.1  dyoung 	/*
    378  1.1.1.4  dyoung 	 * Allocate hardware transmit queues: one queue for
    379  1.1.1.4  dyoung 	 * beacon frames and one data queue for each QoS
    380  1.1.1.4  dyoung 	 * priority.  Note that the hal handles reseting
    381  1.1.1.4  dyoung 	 * these queues at the needed time.
    382  1.1.1.4  dyoung 	 *
    383  1.1.1.4  dyoung 	 * XXX PS-Poll
    384  1.1.1.4  dyoung 	 */
    385  1.1.1.4  dyoung 	sc->sc_bhalq = ath_beaconq_setup(ah);
    386      1.1  dyoung 	if (sc->sc_bhalq == (u_int) -1) {
    387      1.1  dyoung 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    388  1.1.1.4  dyoung 		error = EIO;
    389  1.1.1.4  dyoung 		goto bad2;
    390  1.1.1.4  dyoung 	}
    391  1.1.1.4  dyoung 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    392  1.1.1.4  dyoung 	if (sc->sc_cabq == NULL) {
    393  1.1.1.4  dyoung 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    394  1.1.1.4  dyoung 		error = EIO;
    395  1.1.1.4  dyoung 		goto bad2;
    396  1.1.1.4  dyoung 	}
    397  1.1.1.4  dyoung 	/* NB: insure BK queue is the lowest priority h/w queue */
    398  1.1.1.4  dyoung 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    399  1.1.1.4  dyoung 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    400  1.1.1.4  dyoung 			ieee80211_wme_acnames[WME_AC_BK]);
    401  1.1.1.4  dyoung 		error = EIO;
    402  1.1.1.4  dyoung 		goto bad2;
    403  1.1.1.4  dyoung 	}
    404  1.1.1.4  dyoung 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    405  1.1.1.4  dyoung 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    406  1.1.1.4  dyoung 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    407  1.1.1.4  dyoung 		/*
    408  1.1.1.4  dyoung 		 * Not enough hardware tx queues to properly do WME;
    409  1.1.1.4  dyoung 		 * just punt and assign them all to the same h/w queue.
    410  1.1.1.4  dyoung 		 * We could do a better job of this if, for example,
    411  1.1.1.4  dyoung 		 * we allocate queues when we switch from station to
    412  1.1.1.4  dyoung 		 * AP mode.
    413  1.1.1.4  dyoung 		 */
    414  1.1.1.4  dyoung 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    415  1.1.1.4  dyoung 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    416  1.1.1.4  dyoung 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    417  1.1.1.4  dyoung 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    418  1.1.1.4  dyoung 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    419  1.1.1.4  dyoung 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    420  1.1.1.4  dyoung 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    421  1.1.1.4  dyoung 	}
    422  1.1.1.4  dyoung 
    423  1.1.1.4  dyoung 	/*
    424  1.1.1.4  dyoung 	 * Special case certain configurations.  Note the
    425  1.1.1.4  dyoung 	 * CAB queue is handled by these specially so don't
    426  1.1.1.4  dyoung 	 * include them when checking the txq setup mask.
    427  1.1.1.4  dyoung 	 */
    428  1.1.1.4  dyoung 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    429  1.1.1.4  dyoung 	case 0x01:
    430  1.1.1.4  dyoung 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    431  1.1.1.4  dyoung 		break;
    432  1.1.1.4  dyoung 	case 0x0f:
    433  1.1.1.4  dyoung 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    434  1.1.1.4  dyoung 		break;
    435  1.1.1.4  dyoung 	default:
    436  1.1.1.4  dyoung 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    437  1.1.1.4  dyoung 		break;
    438  1.1.1.4  dyoung 	}
    439  1.1.1.4  dyoung 
    440  1.1.1.4  dyoung 	/*
    441  1.1.1.4  dyoung 	 * Setup rate control.  Some rate control modules
    442  1.1.1.4  dyoung 	 * call back to change the anntena state so expose
    443  1.1.1.4  dyoung 	 * the necessary entry points.
    444  1.1.1.4  dyoung 	 * XXX maybe belongs in struct ath_ratectrl?
    445  1.1.1.4  dyoung 	 */
    446  1.1.1.4  dyoung 	sc->sc_setdefantenna = ath_setdefantenna;
    447  1.1.1.4  dyoung 	sc->sc_rc = ath_rate_attach(sc);
    448  1.1.1.4  dyoung 	if (sc->sc_rc == NULL) {
    449  1.1.1.4  dyoung 		error = EIO;
    450  1.1.1.3  dyoung 		goto bad2;
    451      1.1  dyoung 	}
    452      1.1  dyoung 
    453  1.1.1.4  dyoung 	sc->sc_blinking = 0;
    454  1.1.1.4  dyoung 	sc->sc_ledstate = 1;
    455  1.1.1.4  dyoung 	sc->sc_ledon = 0;			/* low true */
    456  1.1.1.4  dyoung 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    457  1.1.1.4  dyoung 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    458  1.1.1.4  dyoung 	/*
    459  1.1.1.4  dyoung 	 * Auto-enable soft led processing for IBM cards and for
    460  1.1.1.4  dyoung 	 * 5211 minipci cards.  Users can also manually enable/disable
    461  1.1.1.4  dyoung 	 * support with a sysctl.
    462  1.1.1.4  dyoung 	 */
    463  1.1.1.4  dyoung 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    464  1.1.1.4  dyoung 	if (sc->sc_softled) {
    465  1.1.1.4  dyoung 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    466  1.1.1.4  dyoung 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    467  1.1.1.4  dyoung 	}
    468  1.1.1.4  dyoung 
    469      1.1  dyoung 	ifp->if_softc = sc;
    470      1.1  dyoung 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    471      1.1  dyoung 	ifp->if_start = ath_start;
    472      1.1  dyoung 	ifp->if_watchdog = ath_watchdog;
    473      1.1  dyoung 	ifp->if_ioctl = ath_ioctl;
    474      1.1  dyoung 	ifp->if_init = ath_init;
    475  1.1.1.4  dyoung 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    476  1.1.1.4  dyoung 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
    477  1.1.1.4  dyoung 	IFQ_SET_READY(&ifp->if_snd);
    478      1.1  dyoung 
    479  1.1.1.4  dyoung 	ic->ic_ifp = ifp;
    480  1.1.1.4  dyoung 	ic->ic_reset = ath_reset;
    481      1.1  dyoung 	ic->ic_newassoc = ath_newassoc;
    482  1.1.1.4  dyoung 	ic->ic_updateslot = ath_updateslot;
    483  1.1.1.4  dyoung 	ic->ic_wme.wme_update = ath_wme_update;
    484      1.1  dyoung 	/* XXX not right but it's not used anywhere important */
    485      1.1  dyoung 	ic->ic_phytype = IEEE80211_T_OFDM;
    486      1.1  dyoung 	ic->ic_opmode = IEEE80211_M_STA;
    487  1.1.1.4  dyoung 	ic->ic_caps =
    488  1.1.1.4  dyoung 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    489  1.1.1.2  dyoung 		| IEEE80211_C_HOSTAP		/* hostap mode */
    490  1.1.1.2  dyoung 		| IEEE80211_C_MONITOR		/* monitor mode */
    491  1.1.1.2  dyoung 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    492  1.1.1.4  dyoung 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    493  1.1.1.4  dyoung 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    494  1.1.1.3  dyoung 		;
    495  1.1.1.4  dyoung 	/*
    496  1.1.1.4  dyoung 	 * Query the hal to figure out h/w crypto support.
    497  1.1.1.4  dyoung 	 */
    498  1.1.1.4  dyoung 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    499  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_WEP;
    500  1.1.1.4  dyoung 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    501  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_AES;
    502  1.1.1.4  dyoung 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    503  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    504  1.1.1.4  dyoung 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    505  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_CKIP;
    506  1.1.1.4  dyoung 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    507  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_TKIP;
    508  1.1.1.4  dyoung 		/*
    509  1.1.1.4  dyoung 		 * Check if h/w does the MIC and/or whether the
    510  1.1.1.4  dyoung 		 * separate key cache entries are required to
    511  1.1.1.4  dyoung 		 * handle both tx+rx MIC keys.
    512  1.1.1.4  dyoung 		 */
    513  1.1.1.4  dyoung 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    514  1.1.1.4  dyoung 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    515  1.1.1.4  dyoung 		if (ath_hal_tkipsplit(ah))
    516  1.1.1.4  dyoung 			sc->sc_splitmic = 1;
    517  1.1.1.4  dyoung 	}
    518  1.1.1.5  dyoung 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    519  1.1.1.5  dyoung 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    520  1.1.1.4  dyoung 	/*
    521  1.1.1.4  dyoung 	 * TPC support can be done either with a global cap or
    522  1.1.1.4  dyoung 	 * per-packet support.  The latter is not available on
    523  1.1.1.4  dyoung 	 * all parts.  We're a bit pedantic here as all parts
    524  1.1.1.4  dyoung 	 * support a global cap.
    525  1.1.1.4  dyoung 	 */
    526  1.1.1.6   skrll 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    527  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    528  1.1.1.4  dyoung 
    529  1.1.1.4  dyoung 	/*
    530  1.1.1.4  dyoung 	 * Mark WME capability only if we have sufficient
    531  1.1.1.4  dyoung 	 * hardware queues to do proper priority scheduling.
    532  1.1.1.4  dyoung 	 */
    533  1.1.1.4  dyoung 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    534  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_WME;
    535  1.1.1.4  dyoung 	/*
    536  1.1.1.5  dyoung 	 * Check for misc other capabilities.
    537  1.1.1.4  dyoung 	 */
    538  1.1.1.4  dyoung 	if (ath_hal_hasbursting(ah))
    539  1.1.1.4  dyoung 		ic->ic_caps |= IEEE80211_C_BURST;
    540  1.1.1.4  dyoung 
    541  1.1.1.4  dyoung 	/*
    542  1.1.1.4  dyoung 	 * Indicate we need the 802.11 header padded to a
    543  1.1.1.4  dyoung 	 * 32-bit boundary for 4-address and QoS frames.
    544  1.1.1.4  dyoung 	 */
    545  1.1.1.4  dyoung 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    546  1.1.1.4  dyoung 
    547  1.1.1.4  dyoung 	/*
    548  1.1.1.4  dyoung 	 * Query the hal about antenna support.
    549  1.1.1.4  dyoung 	 */
    550  1.1.1.4  dyoung 	sc->sc_defant = ath_hal_getdefantenna(ah);
    551  1.1.1.4  dyoung 
    552  1.1.1.4  dyoung 	/*
    553  1.1.1.4  dyoung 	 * Not all chips have the VEOL support we want to
    554  1.1.1.4  dyoung 	 * use with IBSS beacons; check here for it.
    555  1.1.1.4  dyoung 	 */
    556  1.1.1.4  dyoung 	sc->sc_hasveol = ath_hal_hasveol(ah);
    557      1.1  dyoung 
    558      1.1  dyoung 	/* get mac address from hardware */
    559      1.1  dyoung 	ath_hal_getmac(ah, ic->ic_myaddr);
    560      1.1  dyoung 
    561      1.1  dyoung 	/* call MI attach routine. */
    562  1.1.1.4  dyoung 	ieee80211_ifattach(ic);
    563      1.1  dyoung 	/* override default methods */
    564      1.1  dyoung 	ic->ic_node_alloc = ath_node_alloc;
    565  1.1.1.3  dyoung 	sc->sc_node_free = ic->ic_node_free;
    566      1.1  dyoung 	ic->ic_node_free = ath_node_free;
    567  1.1.1.2  dyoung 	ic->ic_node_getrssi = ath_node_getrssi;
    568  1.1.1.4  dyoung 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    569  1.1.1.4  dyoung 	ic->ic_recv_mgmt = ath_recv_mgmt;
    570      1.1  dyoung 	sc->sc_newstate = ic->ic_newstate;
    571      1.1  dyoung 	ic->ic_newstate = ath_newstate;
    572  1.1.1.6   skrll 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    573  1.1.1.4  dyoung 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    574  1.1.1.4  dyoung 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    575  1.1.1.4  dyoung 	ic->ic_crypto.cs_key_set = ath_key_set;
    576  1.1.1.4  dyoung 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    577  1.1.1.4  dyoung 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    578      1.1  dyoung 	/* complete initialization */
    579  1.1.1.4  dyoung 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    580  1.1.1.3  dyoung 
    581  1.1.1.4  dyoung 	ath_bpfattach(sc);
    582  1.1.1.6   skrll 	/*
    583  1.1.1.6   skrll 	 * Setup dynamic sysctl's now that country code and
    584  1.1.1.6   skrll 	 * regdomain are available from the hal.
    585  1.1.1.6   skrll 	 */
    586  1.1.1.6   skrll 	ath_sysctlattach(sc);
    587      1.1  dyoung 
    588  1.1.1.4  dyoung 	if (bootverbose)
    589  1.1.1.4  dyoung 		ieee80211_announce(ic);
    590  1.1.1.4  dyoung 	ath_announce(sc);
    591      1.1  dyoung 	return 0;
    592  1.1.1.3  dyoung bad2:
    593  1.1.1.4  dyoung 	ath_tx_cleanup(sc);
    594  1.1.1.3  dyoung 	ath_desc_free(sc);
    595      1.1  dyoung bad:
    596      1.1  dyoung 	if (ah)
    597      1.1  dyoung 		ath_hal_detach(ah);
    598  1.1.1.5  dyoung 	if (ifp != NULL)
    599  1.1.1.5  dyoung 		if_free(ifp);
    600      1.1  dyoung 	sc->sc_invalid = 1;
    601      1.1  dyoung 	return error;
    602      1.1  dyoung }
    603      1.1  dyoung 
    604      1.1  dyoung int
    605      1.1  dyoung ath_detach(struct ath_softc *sc)
    606      1.1  dyoung {
    607  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    608      1.1  dyoung 
    609  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    610  1.1.1.4  dyoung 		__func__, ifp->if_flags);
    611      1.1  dyoung 
    612      1.1  dyoung 	ath_stop(ifp);
    613      1.1  dyoung 	bpfdetach(ifp);
    614  1.1.1.4  dyoung 	/*
    615  1.1.1.4  dyoung 	 * NB: the order of these is important:
    616  1.1.1.4  dyoung 	 * o call the 802.11 layer before detaching the hal to
    617  1.1.1.4  dyoung 	 *   insure callbacks into the driver to delete global
    618  1.1.1.4  dyoung 	 *   key cache entries can be handled
    619  1.1.1.4  dyoung 	 * o reclaim the tx queue data structures after calling
    620  1.1.1.4  dyoung 	 *   the 802.11 layer as we'll get called back to reclaim
    621  1.1.1.4  dyoung 	 *   node state and potentially want to use them
    622  1.1.1.4  dyoung 	 * o to cleanup the tx queues the hal is called, so detach
    623  1.1.1.4  dyoung 	 *   it last
    624  1.1.1.4  dyoung 	 * Other than that, it's straightforward...
    625  1.1.1.4  dyoung 	 */
    626  1.1.1.4  dyoung 	ieee80211_ifdetach(&sc->sc_ic);
    627  1.1.1.4  dyoung 	ath_rate_detach(sc->sc_rc);
    628      1.1  dyoung 	ath_desc_free(sc);
    629  1.1.1.4  dyoung 	ath_tx_cleanup(sc);
    630      1.1  dyoung 	ath_hal_detach(sc->sc_ah);
    631  1.1.1.6   skrll 	if_free(ifp);
    632  1.1.1.2  dyoung 
    633      1.1  dyoung 	return 0;
    634      1.1  dyoung }
    635      1.1  dyoung 
    636      1.1  dyoung void
    637      1.1  dyoung ath_suspend(struct ath_softc *sc)
    638      1.1  dyoung {
    639  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    640      1.1  dyoung 
    641  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    642  1.1.1.4  dyoung 		__func__, ifp->if_flags);
    643      1.1  dyoung 
    644      1.1  dyoung 	ath_stop(ifp);
    645      1.1  dyoung }
    646      1.1  dyoung 
    647      1.1  dyoung void
    648      1.1  dyoung ath_resume(struct ath_softc *sc)
    649      1.1  dyoung {
    650  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    651      1.1  dyoung 
    652  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    653  1.1.1.4  dyoung 		__func__, ifp->if_flags);
    654      1.1  dyoung 
    655      1.1  dyoung 	if (ifp->if_flags & IFF_UP) {
    656  1.1.1.5  dyoung 		ath_init(sc);
    657  1.1.1.6   skrll 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
    658      1.1  dyoung 			ath_start(ifp);
    659      1.1  dyoung 	}
    660  1.1.1.5  dyoung 	if (sc->sc_softled) {
    661  1.1.1.5  dyoung 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    662  1.1.1.5  dyoung 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    663  1.1.1.5  dyoung 	}
    664      1.1  dyoung }
    665      1.1  dyoung 
    666      1.1  dyoung void
    667      1.1  dyoung ath_shutdown(struct ath_softc *sc)
    668      1.1  dyoung {
    669  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    670      1.1  dyoung 
    671  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    672  1.1.1.4  dyoung 		__func__, ifp->if_flags);
    673      1.1  dyoung 
    674      1.1  dyoung 	ath_stop(ifp);
    675      1.1  dyoung }
    676      1.1  dyoung 
    677  1.1.1.4  dyoung /*
    678  1.1.1.4  dyoung  * Interrupt handler.  Most of the actual processing is deferred.
    679  1.1.1.4  dyoung  */
    680      1.1  dyoung void
    681      1.1  dyoung ath_intr(void *arg)
    682      1.1  dyoung {
    683      1.1  dyoung 	struct ath_softc *sc = arg;
    684  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    685      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
    686      1.1  dyoung 	HAL_INT status;
    687      1.1  dyoung 
    688      1.1  dyoung 	if (sc->sc_invalid) {
    689      1.1  dyoung 		/*
    690      1.1  dyoung 		 * The hardware is not ready/present, don't touch anything.
    691      1.1  dyoung 		 * Note this can happen early on if the IRQ is shared.
    692      1.1  dyoung 		 */
    693  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    694      1.1  dyoung 		return;
    695      1.1  dyoung 	}
    696  1.1.1.3  dyoung 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    697  1.1.1.3  dyoung 		return;
    698  1.1.1.6   skrll 	if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
    699  1.1.1.6   skrll 	    IFF_DRV_RUNNING))) {
    700  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    701  1.1.1.4  dyoung 			__func__, ifp->if_flags);
    702      1.1  dyoung 		ath_hal_getisr(ah, &status);	/* clear ISR */
    703      1.1  dyoung 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    704      1.1  dyoung 		return;
    705      1.1  dyoung 	}
    706  1.1.1.4  dyoung 	/*
    707  1.1.1.4  dyoung 	 * Figure out the reason(s) for the interrupt.  Note
    708  1.1.1.4  dyoung 	 * that the hal returns a pseudo-ISR that may include
    709  1.1.1.4  dyoung 	 * bits we haven't explicitly enabled so we mask the
    710  1.1.1.4  dyoung 	 * value to insure we only process bits we requested.
    711  1.1.1.4  dyoung 	 */
    712      1.1  dyoung 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    713  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    714  1.1.1.2  dyoung 	status &= sc->sc_imask;			/* discard unasked for bits */
    715      1.1  dyoung 	if (status & HAL_INT_FATAL) {
    716  1.1.1.4  dyoung 		/*
    717  1.1.1.4  dyoung 		 * Fatal errors are unrecoverable.  Typically
    718  1.1.1.4  dyoung 		 * these are caused by DMA errors.  Unfortunately
    719  1.1.1.4  dyoung 		 * the exact reason is not (presently) returned
    720  1.1.1.4  dyoung 		 * by the hal.
    721  1.1.1.4  dyoung 		 */
    722      1.1  dyoung 		sc->sc_stats.ast_hardware++;
    723      1.1  dyoung 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    724      1.1  dyoung 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
    725      1.1  dyoung 	} else if (status & HAL_INT_RXORN) {
    726      1.1  dyoung 		sc->sc_stats.ast_rxorn++;
    727      1.1  dyoung 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    728      1.1  dyoung 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
    729      1.1  dyoung 	} else {
    730  1.1.1.4  dyoung 		if (status & HAL_INT_SWBA) {
    731  1.1.1.4  dyoung 			/*
    732  1.1.1.4  dyoung 			 * Software beacon alert--time to send a beacon.
    733  1.1.1.4  dyoung 			 * Handle beacon transmission directly; deferring
    734  1.1.1.4  dyoung 			 * this is too slow to meet timing constraints
    735  1.1.1.4  dyoung 			 * under load.
    736  1.1.1.4  dyoung 			 */
    737  1.1.1.4  dyoung 			ath_beacon_proc(sc, 0);
    738  1.1.1.4  dyoung 		}
    739      1.1  dyoung 		if (status & HAL_INT_RXEOL) {
    740      1.1  dyoung 			/*
    741      1.1  dyoung 			 * NB: the hardware should re-read the link when
    742      1.1  dyoung 			 *     RXE bit is written, but it doesn't work at
    743      1.1  dyoung 			 *     least on older hardware revs.
    744      1.1  dyoung 			 */
    745      1.1  dyoung 			sc->sc_stats.ast_rxeol++;
    746      1.1  dyoung 			sc->sc_rxlink = NULL;
    747      1.1  dyoung 		}
    748      1.1  dyoung 		if (status & HAL_INT_TXURN) {
    749      1.1  dyoung 			sc->sc_stats.ast_txurn++;
    750      1.1  dyoung 			/* bump tx trigger level */
    751      1.1  dyoung 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    752      1.1  dyoung 		}
    753      1.1  dyoung 		if (status & HAL_INT_RX)
    754      1.1  dyoung 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
    755      1.1  dyoung 		if (status & HAL_INT_TX)
    756      1.1  dyoung 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
    757      1.1  dyoung 		if (status & HAL_INT_BMISS) {
    758      1.1  dyoung 			sc->sc_stats.ast_bmiss++;
    759      1.1  dyoung 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
    760      1.1  dyoung 		}
    761  1.1.1.4  dyoung 		if (status & HAL_INT_MIB) {
    762  1.1.1.4  dyoung 			sc->sc_stats.ast_mib++;
    763  1.1.1.4  dyoung 			/*
    764  1.1.1.4  dyoung 			 * Disable interrupts until we service the MIB
    765  1.1.1.4  dyoung 			 * interrupt; otherwise it will continue to fire.
    766  1.1.1.4  dyoung 			 */
    767  1.1.1.4  dyoung 			ath_hal_intrset(ah, 0);
    768  1.1.1.4  dyoung 			/*
    769  1.1.1.4  dyoung 			 * Let the hal handle the event.  We assume it will
    770  1.1.1.4  dyoung 			 * clear whatever condition caused the interrupt.
    771  1.1.1.4  dyoung 			 */
    772  1.1.1.4  dyoung 			ath_hal_mibevent(ah,
    773  1.1.1.4  dyoung 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
    774  1.1.1.4  dyoung 			ath_hal_intrset(ah, sc->sc_imask);
    775  1.1.1.4  dyoung 		}
    776      1.1  dyoung 	}
    777      1.1  dyoung }
    778      1.1  dyoung 
    779      1.1  dyoung static void
    780      1.1  dyoung ath_fatal_proc(void *arg, int pending)
    781      1.1  dyoung {
    782      1.1  dyoung 	struct ath_softc *sc = arg;
    783  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    784      1.1  dyoung 
    785  1.1.1.4  dyoung 	if_printf(ifp, "hardware error; resetting\n");
    786  1.1.1.4  dyoung 	ath_reset(ifp);
    787      1.1  dyoung }
    788      1.1  dyoung 
    789      1.1  dyoung static void
    790      1.1  dyoung ath_rxorn_proc(void *arg, int pending)
    791      1.1  dyoung {
    792      1.1  dyoung 	struct ath_softc *sc = arg;
    793  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    794      1.1  dyoung 
    795  1.1.1.4  dyoung 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    796  1.1.1.4  dyoung 	ath_reset(ifp);
    797      1.1  dyoung }
    798      1.1  dyoung 
    799      1.1  dyoung static void
    800      1.1  dyoung ath_bmiss_proc(void *arg, int pending)
    801      1.1  dyoung {
    802      1.1  dyoung 	struct ath_softc *sc = arg;
    803      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
    804      1.1  dyoung 
    805  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    806      1.1  dyoung 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    807      1.1  dyoung 		("unexpect operating mode %u", ic->ic_opmode));
    808  1.1.1.2  dyoung 	if (ic->ic_state == IEEE80211_S_RUN) {
    809  1.1.1.2  dyoung 		/*
    810  1.1.1.2  dyoung 		 * Rather than go directly to scan state, try to
    811  1.1.1.2  dyoung 		 * reassociate first.  If that fails then the state
    812  1.1.1.2  dyoung 		 * machine will drop us into scanning after timing
    813  1.1.1.2  dyoung 		 * out waiting for a probe response.
    814  1.1.1.2  dyoung 		 */
    815  1.1.1.4  dyoung 		NET_LOCK_GIANT();
    816  1.1.1.2  dyoung 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
    817  1.1.1.4  dyoung 		NET_UNLOCK_GIANT();
    818  1.1.1.2  dyoung 	}
    819      1.1  dyoung }
    820      1.1  dyoung 
    821      1.1  dyoung static u_int
    822      1.1  dyoung ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    823      1.1  dyoung {
    824  1.1.1.4  dyoung #define	N(a)	(sizeof(a) / sizeof(a[0]))
    825      1.1  dyoung 	static const u_int modeflags[] = {
    826      1.1  dyoung 		0,			/* IEEE80211_MODE_AUTO */
    827      1.1  dyoung 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    828      1.1  dyoung 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    829      1.1  dyoung 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    830  1.1.1.4  dyoung 		0,			/* IEEE80211_MODE_FH */
    831  1.1.1.4  dyoung 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
    832  1.1.1.4  dyoung 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    833      1.1  dyoung 	};
    834  1.1.1.4  dyoung 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    835  1.1.1.4  dyoung 
    836  1.1.1.4  dyoung 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    837  1.1.1.4  dyoung 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    838  1.1.1.4  dyoung 	return modeflags[mode];
    839  1.1.1.4  dyoung #undef N
    840      1.1  dyoung }
    841      1.1  dyoung 
    842      1.1  dyoung static void
    843      1.1  dyoung ath_init(void *arg)
    844      1.1  dyoung {
    845      1.1  dyoung 	struct ath_softc *sc = (struct ath_softc *) arg;
    846      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
    847  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
    848      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
    849      1.1  dyoung 	HAL_STATUS status;
    850      1.1  dyoung 
    851  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    852  1.1.1.4  dyoung 		__func__, ifp->if_flags);
    853      1.1  dyoung 
    854  1.1.1.2  dyoung 	ATH_LOCK(sc);
    855      1.1  dyoung 	/*
    856      1.1  dyoung 	 * Stop anything previously setup.  This is safe
    857      1.1  dyoung 	 * whether this is the first time through or not.
    858      1.1  dyoung 	 */
    859  1.1.1.4  dyoung 	ath_stop_locked(ifp);
    860      1.1  dyoung 
    861      1.1  dyoung 	/*
    862      1.1  dyoung 	 * The basic interface to setting the hardware in a good
    863      1.1  dyoung 	 * state is ``reset''.  On return the hardware is known to
    864      1.1  dyoung 	 * be powered up and with interrupts disabled.  This must
    865      1.1  dyoung 	 * be followed by initialization of the appropriate bits
    866      1.1  dyoung 	 * and then setup of the interrupt mask.
    867      1.1  dyoung 	 */
    868  1.1.1.6   skrll 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
    869  1.1.1.6   skrll 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
    870  1.1.1.4  dyoung 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    871      1.1  dyoung 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    872      1.1  dyoung 			status);
    873      1.1  dyoung 		goto done;
    874      1.1  dyoung 	}
    875      1.1  dyoung 
    876      1.1  dyoung 	/*
    877  1.1.1.4  dyoung 	 * This is needed only to setup initial state
    878  1.1.1.4  dyoung 	 * but it's best done after a reset.
    879  1.1.1.4  dyoung 	 */
    880  1.1.1.4  dyoung 	ath_update_txpow(sc);
    881  1.1.1.6   skrll 	/*
    882  1.1.1.6   skrll 	 * Likewise this is set during reset so update
    883  1.1.1.6   skrll 	 * state cached in the driver.
    884  1.1.1.6   skrll 	 */
    885  1.1.1.6   skrll 	sc->sc_diversity = ath_hal_getdiversity(ah);
    886  1.1.1.4  dyoung 
    887  1.1.1.4  dyoung 	/*
    888      1.1  dyoung 	 * Setup the hardware after reset: the key cache
    889      1.1  dyoung 	 * is filled as needed and the receive engine is
    890      1.1  dyoung 	 * set going.  Frame transmit is handled entirely
    891      1.1  dyoung 	 * in the frame output path; there's nothing to do
    892      1.1  dyoung 	 * here except setup the interrupt mask.
    893      1.1  dyoung 	 */
    894      1.1  dyoung 	if (ath_startrecv(sc) != 0) {
    895      1.1  dyoung 		if_printf(ifp, "unable to start recv logic\n");
    896      1.1  dyoung 		goto done;
    897      1.1  dyoung 	}
    898      1.1  dyoung 
    899      1.1  dyoung 	/*
    900      1.1  dyoung 	 * Enable interrupts.
    901      1.1  dyoung 	 */
    902      1.1  dyoung 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
    903      1.1  dyoung 		  | HAL_INT_RXEOL | HAL_INT_RXORN
    904      1.1  dyoung 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
    905  1.1.1.4  dyoung 	/*
    906  1.1.1.4  dyoung 	 * Enable MIB interrupts when there are hardware phy counters.
    907  1.1.1.4  dyoung 	 * Note we only do this (at the moment) for station mode.
    908  1.1.1.4  dyoung 	 */
    909  1.1.1.4  dyoung 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
    910  1.1.1.4  dyoung 		sc->sc_imask |= HAL_INT_MIB;
    911      1.1  dyoung 	ath_hal_intrset(ah, sc->sc_imask);
    912      1.1  dyoung 
    913  1.1.1.6   skrll 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
    914      1.1  dyoung 	ic->ic_state = IEEE80211_S_INIT;
    915      1.1  dyoung 
    916      1.1  dyoung 	/*
    917      1.1  dyoung 	 * The hardware should be ready to go now so it's safe
    918      1.1  dyoung 	 * to kick the 802.11 state machine as it's likely to
    919      1.1  dyoung 	 * immediately call back to us to send mgmt frames.
    920      1.1  dyoung 	 */
    921  1.1.1.6   skrll 	ath_chan_change(sc, ic->ic_curchan);
    922  1.1.1.4  dyoung 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    923  1.1.1.4  dyoung 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
    924  1.1.1.4  dyoung 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
    925  1.1.1.4  dyoung 	} else
    926      1.1  dyoung 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
    927      1.1  dyoung done:
    928  1.1.1.2  dyoung 	ATH_UNLOCK(sc);
    929      1.1  dyoung }
    930      1.1  dyoung 
    931      1.1  dyoung static void
    932  1.1.1.4  dyoung ath_stop_locked(struct ifnet *ifp)
    933      1.1  dyoung {
    934      1.1  dyoung 	struct ath_softc *sc = ifp->if_softc;
    935  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
    936      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
    937      1.1  dyoung 
    938  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
    939  1.1.1.4  dyoung 		__func__, sc->sc_invalid, ifp->if_flags);
    940      1.1  dyoung 
    941  1.1.1.4  dyoung 	ATH_LOCK_ASSERT(sc);
    942  1.1.1.6   skrll 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
    943      1.1  dyoung 		/*
    944      1.1  dyoung 		 * Shutdown the hardware and driver:
    945  1.1.1.4  dyoung 		 *    reset 802.11 state machine
    946      1.1  dyoung 		 *    turn off timers
    947  1.1.1.4  dyoung 		 *    disable interrupts
    948  1.1.1.4  dyoung 		 *    turn off the radio
    949      1.1  dyoung 		 *    clear transmit machinery
    950      1.1  dyoung 		 *    clear receive machinery
    951      1.1  dyoung 		 *    drain and release tx queues
    952      1.1  dyoung 		 *    reclaim beacon resources
    953      1.1  dyoung 		 *    power down hardware
    954      1.1  dyoung 		 *
    955      1.1  dyoung 		 * Note that some of this work is not possible if the
    956      1.1  dyoung 		 * hardware is gone (invalid).
    957      1.1  dyoung 		 */
    958  1.1.1.4  dyoung 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
    959  1.1.1.6   skrll 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
    960      1.1  dyoung 		ifp->if_timer = 0;
    961  1.1.1.4  dyoung 		if (!sc->sc_invalid) {
    962  1.1.1.4  dyoung 			if (sc->sc_softled) {
    963  1.1.1.4  dyoung 				callout_stop(&sc->sc_ledtimer);
    964  1.1.1.4  dyoung 				ath_hal_gpioset(ah, sc->sc_ledpin,
    965  1.1.1.4  dyoung 					!sc->sc_ledon);
    966  1.1.1.4  dyoung 				sc->sc_blinking = 0;
    967  1.1.1.4  dyoung 			}
    968      1.1  dyoung 			ath_hal_intrset(ah, 0);
    969  1.1.1.4  dyoung 		}
    970      1.1  dyoung 		ath_draintxq(sc);
    971  1.1.1.4  dyoung 		if (!sc->sc_invalid) {
    972      1.1  dyoung 			ath_stoprecv(sc);
    973  1.1.1.4  dyoung 			ath_hal_phydisable(ah);
    974  1.1.1.4  dyoung 		} else
    975      1.1  dyoung 			sc->sc_rxlink = NULL;
    976  1.1.1.4  dyoung 		IFQ_DRV_PURGE(&ifp->if_snd);
    977      1.1  dyoung 		ath_beacon_free(sc);
    978  1.1.1.4  dyoung 	}
    979  1.1.1.4  dyoung }
    980  1.1.1.4  dyoung 
    981  1.1.1.4  dyoung static void
    982  1.1.1.4  dyoung ath_stop(struct ifnet *ifp)
    983  1.1.1.4  dyoung {
    984  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
    985  1.1.1.4  dyoung 
    986  1.1.1.4  dyoung 	ATH_LOCK(sc);
    987  1.1.1.4  dyoung 	ath_stop_locked(ifp);
    988  1.1.1.4  dyoung 	if (!sc->sc_invalid) {
    989  1.1.1.4  dyoung 		/*
    990  1.1.1.4  dyoung 		 * Set the chip in full sleep mode.  Note that we are
    991  1.1.1.4  dyoung 		 * careful to do this only when bringing the interface
    992  1.1.1.4  dyoung 		 * completely to a stop.  When the chip is in this state
    993  1.1.1.4  dyoung 		 * it must be carefully woken up or references to
    994  1.1.1.4  dyoung 		 * registers in the PCI clock domain may freeze the bus
    995  1.1.1.4  dyoung 		 * (and system).  This varies by chip and is mostly an
    996  1.1.1.4  dyoung 		 * issue with newer parts that go to sleep more quickly.
    997  1.1.1.4  dyoung 		 */
    998  1.1.1.4  dyoung 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
    999      1.1  dyoung 	}
   1000  1.1.1.2  dyoung 	ATH_UNLOCK(sc);
   1001      1.1  dyoung }
   1002      1.1  dyoung 
   1003      1.1  dyoung /*
   1004      1.1  dyoung  * Reset the hardware w/o losing operational state.  This is
   1005      1.1  dyoung  * basically a more efficient way of doing ath_stop, ath_init,
   1006      1.1  dyoung  * followed by state transitions to the current 802.11
   1007  1.1.1.4  dyoung  * operational state.  Used to recover from various errors and
   1008  1.1.1.4  dyoung  * to reset or reload hardware state.
   1009      1.1  dyoung  */
   1010  1.1.1.4  dyoung static int
   1011  1.1.1.4  dyoung ath_reset(struct ifnet *ifp)
   1012      1.1  dyoung {
   1013  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   1014      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1015      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1016      1.1  dyoung 	struct ieee80211_channel *c;
   1017      1.1  dyoung 	HAL_STATUS status;
   1018      1.1  dyoung 
   1019      1.1  dyoung 	/*
   1020      1.1  dyoung 	 * Convert to a HAL channel description with the flags
   1021      1.1  dyoung 	 * constrained to reflect the current operating mode.
   1022      1.1  dyoung 	 */
   1023  1.1.1.6   skrll 	c = ic->ic_curchan;
   1024  1.1.1.4  dyoung 	sc->sc_curchan.channel = c->ic_freq;
   1025  1.1.1.4  dyoung 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1026      1.1  dyoung 
   1027      1.1  dyoung 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1028      1.1  dyoung 	ath_draintxq(sc);		/* stop xmit side */
   1029      1.1  dyoung 	ath_stoprecv(sc);		/* stop recv side */
   1030      1.1  dyoung 	/* NB: indicate channel change so we do a full reset */
   1031  1.1.1.4  dyoung 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1032      1.1  dyoung 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1033      1.1  dyoung 			__func__, status);
   1034  1.1.1.4  dyoung 	ath_update_txpow(sc);		/* update tx power state */
   1035  1.1.1.6   skrll 	sc->sc_diversity = ath_hal_getdiversity(ah);
   1036      1.1  dyoung 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1037      1.1  dyoung 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1038  1.1.1.4  dyoung 	/*
   1039  1.1.1.4  dyoung 	 * We may be doing a reset in response to an ioctl
   1040  1.1.1.4  dyoung 	 * that changes the channel so update any state that
   1041  1.1.1.4  dyoung 	 * might change as a result.
   1042  1.1.1.4  dyoung 	 */
   1043  1.1.1.4  dyoung 	ath_chan_change(sc, c);
   1044      1.1  dyoung 	if (ic->ic_state == IEEE80211_S_RUN)
   1045      1.1  dyoung 		ath_beacon_config(sc);	/* restart beacons */
   1046  1.1.1.4  dyoung 	ath_hal_intrset(ah, sc->sc_imask);
   1047  1.1.1.4  dyoung 
   1048  1.1.1.4  dyoung 	ath_start(ifp);			/* restart xmit */
   1049  1.1.1.4  dyoung 	return 0;
   1050      1.1  dyoung }
   1051      1.1  dyoung 
   1052      1.1  dyoung static void
   1053      1.1  dyoung ath_start(struct ifnet *ifp)
   1054      1.1  dyoung {
   1055      1.1  dyoung 	struct ath_softc *sc = ifp->if_softc;
   1056      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1057      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1058      1.1  dyoung 	struct ieee80211_node *ni;
   1059      1.1  dyoung 	struct ath_buf *bf;
   1060      1.1  dyoung 	struct mbuf *m;
   1061      1.1  dyoung 	struct ieee80211_frame *wh;
   1062  1.1.1.4  dyoung 	struct ether_header *eh;
   1063      1.1  dyoung 
   1064  1.1.1.6   skrll 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
   1065      1.1  dyoung 		return;
   1066      1.1  dyoung 	for (;;) {
   1067      1.1  dyoung 		/*
   1068      1.1  dyoung 		 * Grab a TX buffer and associated resources.
   1069      1.1  dyoung 		 */
   1070  1.1.1.2  dyoung 		ATH_TXBUF_LOCK(sc);
   1071  1.1.1.4  dyoung 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1072      1.1  dyoung 		if (bf != NULL)
   1073  1.1.1.4  dyoung 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1074  1.1.1.2  dyoung 		ATH_TXBUF_UNLOCK(sc);
   1075      1.1  dyoung 		if (bf == NULL) {
   1076  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
   1077  1.1.1.4  dyoung 				__func__);
   1078      1.1  dyoung 			sc->sc_stats.ast_tx_qstop++;
   1079  1.1.1.6   skrll 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
   1080      1.1  dyoung 			break;
   1081      1.1  dyoung 		}
   1082      1.1  dyoung 		/*
   1083      1.1  dyoung 		 * Poll the management queue for frames; they
   1084      1.1  dyoung 		 * have priority over normal data frames.
   1085      1.1  dyoung 		 */
   1086      1.1  dyoung 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1087      1.1  dyoung 		if (m == NULL) {
   1088      1.1  dyoung 			/*
   1089      1.1  dyoung 			 * No data frames go out unless we're associated.
   1090      1.1  dyoung 			 */
   1091      1.1  dyoung 			if (ic->ic_state != IEEE80211_S_RUN) {
   1092  1.1.1.4  dyoung 				DPRINTF(sc, ATH_DEBUG_ANY,
   1093  1.1.1.4  dyoung 					"%s: ignore data packet, state %u\n",
   1094  1.1.1.4  dyoung 					__func__, ic->ic_state);
   1095      1.1  dyoung 				sc->sc_stats.ast_tx_discard++;
   1096  1.1.1.2  dyoung 				ATH_TXBUF_LOCK(sc);
   1097  1.1.1.4  dyoung 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1098  1.1.1.2  dyoung 				ATH_TXBUF_UNLOCK(sc);
   1099      1.1  dyoung 				break;
   1100      1.1  dyoung 			}
   1101  1.1.1.4  dyoung 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1102      1.1  dyoung 			if (m == NULL) {
   1103  1.1.1.2  dyoung 				ATH_TXBUF_LOCK(sc);
   1104  1.1.1.4  dyoung 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1105  1.1.1.2  dyoung 				ATH_TXBUF_UNLOCK(sc);
   1106      1.1  dyoung 				break;
   1107      1.1  dyoung 			}
   1108  1.1.1.4  dyoung 			/*
   1109  1.1.1.4  dyoung 			 * Find the node for the destination so we can do
   1110  1.1.1.4  dyoung 			 * things like power save and fast frames aggregation.
   1111  1.1.1.4  dyoung 			 */
   1112  1.1.1.4  dyoung 			if (m->m_len < sizeof(struct ether_header) &&
   1113  1.1.1.4  dyoung 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1114  1.1.1.4  dyoung 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1115  1.1.1.4  dyoung 				ni = NULL;
   1116  1.1.1.4  dyoung 				goto bad;
   1117  1.1.1.4  dyoung 			}
   1118  1.1.1.4  dyoung 			eh = mtod(m, struct ether_header *);
   1119  1.1.1.4  dyoung 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1120  1.1.1.4  dyoung 			if (ni == NULL) {
   1121  1.1.1.4  dyoung 				/* NB: ieee80211_find_txnode does stat+msg */
   1122  1.1.1.4  dyoung 				m_freem(m);
   1123  1.1.1.4  dyoung 				goto bad;
   1124  1.1.1.4  dyoung 			}
   1125  1.1.1.4  dyoung 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1126  1.1.1.4  dyoung 			    (m->m_flags & M_PWR_SAV) == 0) {
   1127  1.1.1.4  dyoung 				/*
   1128  1.1.1.4  dyoung 				 * Station in power save mode; pass the frame
   1129  1.1.1.4  dyoung 				 * to the 802.11 layer and continue.  We'll get
   1130  1.1.1.4  dyoung 				 * the frame back when the time is right.
   1131  1.1.1.4  dyoung 				 */
   1132  1.1.1.4  dyoung 				ieee80211_pwrsave(ic, ni, m);
   1133  1.1.1.4  dyoung 				goto reclaim;
   1134  1.1.1.4  dyoung 			}
   1135  1.1.1.4  dyoung 			/* calculate priority so we can find the tx queue */
   1136  1.1.1.4  dyoung 			if (ieee80211_classify(ic, m, ni)) {
   1137  1.1.1.4  dyoung 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1138  1.1.1.4  dyoung 					"%s: discard, classification failure\n",
   1139  1.1.1.4  dyoung 					__func__);
   1140  1.1.1.4  dyoung 				m_freem(m);
   1141  1.1.1.4  dyoung 				goto bad;
   1142  1.1.1.4  dyoung 			}
   1143      1.1  dyoung 			ifp->if_opackets++;
   1144      1.1  dyoung 			BPF_MTAP(ifp, m);
   1145      1.1  dyoung 			/*
   1146      1.1  dyoung 			 * Encapsulate the packet in prep for transmission.
   1147      1.1  dyoung 			 */
   1148  1.1.1.4  dyoung 			m = ieee80211_encap(ic, m, ni);
   1149      1.1  dyoung 			if (m == NULL) {
   1150  1.1.1.4  dyoung 				DPRINTF(sc, ATH_DEBUG_ANY,
   1151  1.1.1.4  dyoung 					"%s: encapsulation failure\n",
   1152  1.1.1.4  dyoung 					__func__);
   1153      1.1  dyoung 				sc->sc_stats.ast_tx_encap++;
   1154      1.1  dyoung 				goto bad;
   1155      1.1  dyoung 			}
   1156      1.1  dyoung 		} else {
   1157      1.1  dyoung 			/*
   1158      1.1  dyoung 			 * Hack!  The referenced node pointer is in the
   1159      1.1  dyoung 			 * rcvif field of the packet header.  This is
   1160      1.1  dyoung 			 * placed there by ieee80211_mgmt_output because
   1161      1.1  dyoung 			 * we need to hold the reference with the frame
   1162      1.1  dyoung 			 * and there's no other way (other than packet
   1163      1.1  dyoung 			 * tags which we consider too expensive to use)
   1164      1.1  dyoung 			 * to pass it along.
   1165      1.1  dyoung 			 */
   1166      1.1  dyoung 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1167      1.1  dyoung 			m->m_pkthdr.rcvif = NULL;
   1168      1.1  dyoung 
   1169      1.1  dyoung 			wh = mtod(m, struct ieee80211_frame *);
   1170      1.1  dyoung 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1171      1.1  dyoung 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1172      1.1  dyoung 				/* fill time stamp */
   1173      1.1  dyoung 				u_int64_t tsf;
   1174      1.1  dyoung 				u_int32_t *tstamp;
   1175      1.1  dyoung 
   1176      1.1  dyoung 				tsf = ath_hal_gettsf64(ah);
   1177      1.1  dyoung 				/* XXX: adjust 100us delay to xmit */
   1178      1.1  dyoung 				tsf += 100;
   1179      1.1  dyoung 				tstamp = (u_int32_t *)&wh[1];
   1180      1.1  dyoung 				tstamp[0] = htole32(tsf & 0xffffffff);
   1181      1.1  dyoung 				tstamp[1] = htole32(tsf >> 32);
   1182      1.1  dyoung 			}
   1183      1.1  dyoung 			sc->sc_stats.ast_tx_mgmt++;
   1184      1.1  dyoung 		}
   1185      1.1  dyoung 
   1186      1.1  dyoung 		if (ath_tx_start(sc, ni, bf, m)) {
   1187      1.1  dyoung 	bad:
   1188  1.1.1.4  dyoung 			ifp->if_oerrors++;
   1189  1.1.1.4  dyoung 	reclaim:
   1190  1.1.1.2  dyoung 			ATH_TXBUF_LOCK(sc);
   1191  1.1.1.4  dyoung 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1192  1.1.1.2  dyoung 			ATH_TXBUF_UNLOCK(sc);
   1193  1.1.1.4  dyoung 			if (ni != NULL)
   1194  1.1.1.4  dyoung 				ieee80211_free_node(ni);
   1195      1.1  dyoung 			continue;
   1196      1.1  dyoung 		}
   1197      1.1  dyoung 
   1198      1.1  dyoung 		sc->sc_tx_timer = 5;
   1199      1.1  dyoung 		ifp->if_timer = 1;
   1200      1.1  dyoung 	}
   1201      1.1  dyoung }
   1202      1.1  dyoung 
   1203      1.1  dyoung static int
   1204      1.1  dyoung ath_media_change(struct ifnet *ifp)
   1205      1.1  dyoung {
   1206  1.1.1.4  dyoung #define	IS_UP(ifp) \
   1207  1.1.1.6   skrll 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
   1208      1.1  dyoung 	int error;
   1209      1.1  dyoung 
   1210      1.1  dyoung 	error = ieee80211_media_change(ifp);
   1211      1.1  dyoung 	if (error == ENETRESET) {
   1212  1.1.1.4  dyoung 		if (IS_UP(ifp))
   1213  1.1.1.5  dyoung 			ath_init(ifp->if_softc);	/* XXX lose error */
   1214      1.1  dyoung 		error = 0;
   1215      1.1  dyoung 	}
   1216      1.1  dyoung 	return error;
   1217  1.1.1.4  dyoung #undef IS_UP
   1218      1.1  dyoung }
   1219      1.1  dyoung 
   1220  1.1.1.4  dyoung #ifdef AR_DEBUG
   1221      1.1  dyoung static void
   1222  1.1.1.4  dyoung ath_keyprint(const char *tag, u_int ix,
   1223  1.1.1.4  dyoung 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1224      1.1  dyoung {
   1225  1.1.1.4  dyoung 	static const char *ciphers[] = {
   1226  1.1.1.4  dyoung 		"WEP",
   1227  1.1.1.4  dyoung 		"AES-OCB",
   1228  1.1.1.4  dyoung 		"AES-CCM",
   1229  1.1.1.4  dyoung 		"CKIP",
   1230  1.1.1.4  dyoung 		"TKIP",
   1231  1.1.1.4  dyoung 		"CLR",
   1232  1.1.1.4  dyoung 	};
   1233  1.1.1.4  dyoung 	int i, n;
   1234      1.1  dyoung 
   1235  1.1.1.4  dyoung 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1236  1.1.1.4  dyoung 	for (i = 0, n = hk->kv_len; i < n; i++)
   1237  1.1.1.4  dyoung 		printf("%02x", hk->kv_val[i]);
   1238  1.1.1.4  dyoung 	printf(" mac %s", ether_sprintf(mac));
   1239  1.1.1.4  dyoung 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1240  1.1.1.4  dyoung 		printf(" mic ");
   1241  1.1.1.4  dyoung 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1242  1.1.1.4  dyoung 			printf("%02x", hk->kv_mic[i]);
   1243      1.1  dyoung 	}
   1244  1.1.1.4  dyoung 	printf("\n");
   1245      1.1  dyoung }
   1246  1.1.1.4  dyoung #endif
   1247      1.1  dyoung 
   1248  1.1.1.4  dyoung /*
   1249  1.1.1.4  dyoung  * Set a TKIP key into the hardware.  This handles the
   1250  1.1.1.4  dyoung  * potential distribution of key state to multiple key
   1251  1.1.1.4  dyoung  * cache slots for TKIP.
   1252  1.1.1.4  dyoung  */
   1253      1.1  dyoung static int
   1254  1.1.1.4  dyoung ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1255  1.1.1.4  dyoung 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1256      1.1  dyoung {
   1257  1.1.1.4  dyoung #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1258  1.1.1.4  dyoung 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1259  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1260      1.1  dyoung 
   1261  1.1.1.4  dyoung 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1262  1.1.1.4  dyoung 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1263  1.1.1.4  dyoung 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1264  1.1.1.4  dyoung 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1265      1.1  dyoung 		/*
   1266  1.1.1.6   skrll 		 * TX key goes at first index, RX key at the rx index.
   1267  1.1.1.4  dyoung 		 * The hal handles the MIC keys at index+64.
   1268      1.1  dyoung 		 */
   1269  1.1.1.4  dyoung 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1270  1.1.1.4  dyoung 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1271  1.1.1.4  dyoung 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
   1272  1.1.1.4  dyoung 			return 0;
   1273  1.1.1.4  dyoung 
   1274  1.1.1.4  dyoung 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1275  1.1.1.4  dyoung 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1276  1.1.1.4  dyoung 		/* XXX delete tx key on failure? */
   1277  1.1.1.4  dyoung 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
   1278  1.1.1.4  dyoung 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1279  1.1.1.4  dyoung 		/*
   1280  1.1.1.4  dyoung 		 * TX/RX key goes at first index.
   1281  1.1.1.4  dyoung 		 * The hal handles the MIC keys are index+64.
   1282  1.1.1.4  dyoung 		 */
   1283  1.1.1.4  dyoung 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1284  1.1.1.4  dyoung 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1285  1.1.1.5  dyoung 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1286  1.1.1.5  dyoung 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1287  1.1.1.2  dyoung 	}
   1288  1.1.1.4  dyoung 	return 0;
   1289  1.1.1.4  dyoung #undef IEEE80211_KEY_XR
   1290  1.1.1.4  dyoung }
   1291  1.1.1.4  dyoung 
   1292  1.1.1.4  dyoung /*
   1293  1.1.1.4  dyoung  * Set a net80211 key into the hardware.  This handles the
   1294  1.1.1.4  dyoung  * potential distribution of key state to multiple key
   1295  1.1.1.4  dyoung  * cache slots for TKIP with hardware MIC support.
   1296  1.1.1.4  dyoung  */
   1297  1.1.1.4  dyoung static int
   1298  1.1.1.4  dyoung ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1299  1.1.1.5  dyoung 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1300  1.1.1.5  dyoung 	struct ieee80211_node *bss)
   1301  1.1.1.4  dyoung {
   1302  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1303  1.1.1.4  dyoung 	static const u_int8_t ciphermap[] = {
   1304  1.1.1.4  dyoung 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1305  1.1.1.4  dyoung 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1306  1.1.1.4  dyoung 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1307  1.1.1.4  dyoung 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1308  1.1.1.4  dyoung 		(u_int8_t) -1,		/* 4 is not allocated */
   1309  1.1.1.4  dyoung 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1310  1.1.1.4  dyoung 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1311  1.1.1.4  dyoung 	};
   1312  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1313  1.1.1.4  dyoung 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1314  1.1.1.5  dyoung 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1315  1.1.1.5  dyoung 	const u_int8_t *mac;
   1316  1.1.1.4  dyoung 	HAL_KEYVAL hk;
   1317  1.1.1.4  dyoung 
   1318  1.1.1.4  dyoung 	memset(&hk, 0, sizeof(hk));
   1319  1.1.1.4  dyoung 	/*
   1320  1.1.1.4  dyoung 	 * Software crypto uses a "clear key" so non-crypto
   1321  1.1.1.4  dyoung 	 * state kept in the key cache are maintained and
   1322  1.1.1.4  dyoung 	 * so that rx frames have an entry to match.
   1323  1.1.1.4  dyoung 	 */
   1324  1.1.1.4  dyoung 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1325  1.1.1.4  dyoung 		KASSERT(cip->ic_cipher < N(ciphermap),
   1326  1.1.1.4  dyoung 			("invalid cipher type %u", cip->ic_cipher));
   1327  1.1.1.4  dyoung 		hk.kv_type = ciphermap[cip->ic_cipher];
   1328  1.1.1.4  dyoung 		hk.kv_len = k->wk_keylen;
   1329  1.1.1.4  dyoung 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1330  1.1.1.4  dyoung 	} else
   1331  1.1.1.4  dyoung 		hk.kv_type = HAL_CIPHER_CLR;
   1332  1.1.1.4  dyoung 
   1333  1.1.1.5  dyoung 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1334  1.1.1.5  dyoung 		/*
   1335  1.1.1.5  dyoung 		 * Group keys on hardware that supports multicast frame
   1336  1.1.1.5  dyoung 		 * key search use a mac that is the sender's address with
   1337  1.1.1.5  dyoung 		 * the high bit set instead of the app-specified address.
   1338  1.1.1.5  dyoung 		 */
   1339  1.1.1.5  dyoung 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1340  1.1.1.5  dyoung 		gmac[0] |= 0x80;
   1341  1.1.1.5  dyoung 		mac = gmac;
   1342  1.1.1.5  dyoung 	} else
   1343  1.1.1.5  dyoung 		mac = mac0;
   1344  1.1.1.5  dyoung 
   1345  1.1.1.4  dyoung 	if (hk.kv_type == HAL_CIPHER_TKIP &&
   1346  1.1.1.4  dyoung 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1347  1.1.1.4  dyoung 	    sc->sc_splitmic) {
   1348  1.1.1.4  dyoung 		return ath_keyset_tkip(sc, k, &hk, mac);
   1349  1.1.1.4  dyoung 	} else {
   1350  1.1.1.4  dyoung 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1351  1.1.1.4  dyoung 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
   1352      1.1  dyoung 	}
   1353  1.1.1.4  dyoung #undef N
   1354      1.1  dyoung }
   1355      1.1  dyoung 
   1356      1.1  dyoung /*
   1357  1.1.1.4  dyoung  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1358  1.1.1.4  dyoung  * each key, one for decrypt/encrypt and the other for the MIC.
   1359  1.1.1.4  dyoung  */
   1360  1.1.1.4  dyoung static u_int16_t
   1361  1.1.1.6   skrll key_alloc_2pair(struct ath_softc *sc,
   1362  1.1.1.6   skrll 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1363  1.1.1.4  dyoung {
   1364  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1365  1.1.1.4  dyoung 	u_int i, keyix;
   1366  1.1.1.4  dyoung 
   1367  1.1.1.4  dyoung 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1368  1.1.1.4  dyoung 	/* XXX could optimize */
   1369  1.1.1.4  dyoung 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1370  1.1.1.4  dyoung 		u_int8_t b = sc->sc_keymap[i];
   1371  1.1.1.4  dyoung 		if (b != 0xff) {
   1372  1.1.1.4  dyoung 			/*
   1373  1.1.1.4  dyoung 			 * One or more slots in this byte are free.
   1374  1.1.1.4  dyoung 			 */
   1375  1.1.1.4  dyoung 			keyix = i*NBBY;
   1376  1.1.1.4  dyoung 			while (b & 1) {
   1377  1.1.1.4  dyoung 		again:
   1378  1.1.1.4  dyoung 				keyix++;
   1379  1.1.1.4  dyoung 				b >>= 1;
   1380  1.1.1.4  dyoung 			}
   1381  1.1.1.4  dyoung 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1382  1.1.1.4  dyoung 			if (isset(sc->sc_keymap, keyix+32) ||
   1383  1.1.1.4  dyoung 			    isset(sc->sc_keymap, keyix+64) ||
   1384  1.1.1.4  dyoung 			    isset(sc->sc_keymap, keyix+32+64)) {
   1385  1.1.1.4  dyoung 				/* full pair unavailable */
   1386  1.1.1.4  dyoung 				/* XXX statistic */
   1387  1.1.1.4  dyoung 				if (keyix == (i+1)*NBBY) {
   1388  1.1.1.4  dyoung 					/* no slots were appropriate, advance */
   1389  1.1.1.4  dyoung 					continue;
   1390  1.1.1.4  dyoung 				}
   1391  1.1.1.4  dyoung 				goto again;
   1392  1.1.1.4  dyoung 			}
   1393  1.1.1.4  dyoung 			setbit(sc->sc_keymap, keyix);
   1394  1.1.1.4  dyoung 			setbit(sc->sc_keymap, keyix+64);
   1395  1.1.1.4  dyoung 			setbit(sc->sc_keymap, keyix+32);
   1396  1.1.1.4  dyoung 			setbit(sc->sc_keymap, keyix+32+64);
   1397  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1398  1.1.1.4  dyoung 				"%s: key pair %u,%u %u,%u\n",
   1399  1.1.1.4  dyoung 				__func__, keyix, keyix+64,
   1400  1.1.1.4  dyoung 				keyix+32, keyix+32+64);
   1401  1.1.1.6   skrll 			*txkeyix = keyix;
   1402  1.1.1.6   skrll 			*rxkeyix = keyix+32;
   1403  1.1.1.6   skrll 			return 1;
   1404  1.1.1.4  dyoung 		}
   1405  1.1.1.4  dyoung 	}
   1406  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1407  1.1.1.6   skrll 	return 0;
   1408  1.1.1.4  dyoung #undef N
   1409  1.1.1.4  dyoung }
   1410  1.1.1.4  dyoung 
   1411  1.1.1.4  dyoung /*
   1412  1.1.1.4  dyoung  * Allocate a single key cache slot.
   1413  1.1.1.4  dyoung  */
   1414  1.1.1.6   skrll static int
   1415  1.1.1.6   skrll key_alloc_single(struct ath_softc *sc,
   1416  1.1.1.6   skrll 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1417  1.1.1.4  dyoung {
   1418  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1419  1.1.1.4  dyoung 	u_int i, keyix;
   1420  1.1.1.4  dyoung 
   1421  1.1.1.4  dyoung 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1422  1.1.1.4  dyoung 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1423  1.1.1.4  dyoung 		u_int8_t b = sc->sc_keymap[i];
   1424  1.1.1.4  dyoung 		if (b != 0xff) {
   1425  1.1.1.4  dyoung 			/*
   1426  1.1.1.4  dyoung 			 * One or more slots are free.
   1427  1.1.1.4  dyoung 			 */
   1428  1.1.1.4  dyoung 			keyix = i*NBBY;
   1429  1.1.1.4  dyoung 			while (b & 1)
   1430  1.1.1.4  dyoung 				keyix++, b >>= 1;
   1431  1.1.1.4  dyoung 			setbit(sc->sc_keymap, keyix);
   1432  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1433  1.1.1.4  dyoung 				__func__, keyix);
   1434  1.1.1.6   skrll 			*txkeyix = *rxkeyix = keyix;
   1435  1.1.1.6   skrll 			return 1;
   1436  1.1.1.4  dyoung 		}
   1437  1.1.1.4  dyoung 	}
   1438  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1439  1.1.1.6   skrll 	return 0;
   1440  1.1.1.4  dyoung #undef N
   1441  1.1.1.4  dyoung }
   1442  1.1.1.4  dyoung 
   1443  1.1.1.4  dyoung /*
   1444  1.1.1.4  dyoung  * Allocate one or more key cache slots for a uniacst key.  The
   1445  1.1.1.4  dyoung  * key itself is needed only to identify the cipher.  For hardware
   1446  1.1.1.4  dyoung  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1447  1.1.1.4  dyoung  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1448  1.1.1.4  dyoung  * that the MIC key for a TKIP key at slot i is assumed by the
   1449  1.1.1.4  dyoung  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1450  1.1.1.4  dyoung  * 64 entries.
   1451  1.1.1.4  dyoung  */
   1452  1.1.1.4  dyoung static int
   1453  1.1.1.6   skrll ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1454  1.1.1.6   skrll 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1455  1.1.1.4  dyoung {
   1456  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1457  1.1.1.4  dyoung 
   1458  1.1.1.4  dyoung 	/*
   1459  1.1.1.4  dyoung 	 * Group key allocation must be handled specially for
   1460  1.1.1.4  dyoung 	 * parts that do not support multicast key cache search
   1461  1.1.1.4  dyoung 	 * functionality.  For those parts the key id must match
   1462  1.1.1.4  dyoung 	 * the h/w key index so lookups find the right key.  On
   1463  1.1.1.4  dyoung 	 * parts w/ the key search facility we install the sender's
   1464  1.1.1.4  dyoung 	 * mac address (with the high bit set) and let the hardware
   1465  1.1.1.4  dyoung 	 * find the key w/o using the key id.  This is preferred as
   1466  1.1.1.4  dyoung 	 * it permits us to support multiple users for adhoc and/or
   1467  1.1.1.4  dyoung 	 * multi-station operation.
   1468  1.1.1.4  dyoung 	 */
   1469  1.1.1.4  dyoung 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1470  1.1.1.4  dyoung 		if (!(&ic->ic_nw_keys[0] <= k &&
   1471  1.1.1.4  dyoung 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1472  1.1.1.4  dyoung 			/* should not happen */
   1473  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1474  1.1.1.4  dyoung 				"%s: bogus group key\n", __func__);
   1475  1.1.1.6   skrll 			return 0;
   1476  1.1.1.4  dyoung 		}
   1477  1.1.1.4  dyoung 		/*
   1478  1.1.1.4  dyoung 		 * XXX we pre-allocate the global keys so
   1479  1.1.1.4  dyoung 		 * have no way to check if they've already been allocated.
   1480  1.1.1.4  dyoung 		 */
   1481  1.1.1.6   skrll 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1482  1.1.1.6   skrll 		return 1;
   1483  1.1.1.4  dyoung 	}
   1484  1.1.1.4  dyoung 
   1485  1.1.1.4  dyoung 	/*
   1486  1.1.1.4  dyoung 	 * We allocate two pair for TKIP when using the h/w to do
   1487  1.1.1.4  dyoung 	 * the MIC.  For everything else, including software crypto,
   1488  1.1.1.4  dyoung 	 * we allocate a single entry.  Note that s/w crypto requires
   1489  1.1.1.4  dyoung 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1490  1.1.1.4  dyoung 	 * not support pass-through cache entries and we map all
   1491  1.1.1.4  dyoung 	 * those requests to slot 0.
   1492  1.1.1.4  dyoung 	 */
   1493  1.1.1.4  dyoung 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1494  1.1.1.6   skrll 		return key_alloc_single(sc, keyix, rxkeyix);
   1495  1.1.1.4  dyoung 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1496  1.1.1.4  dyoung 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1497  1.1.1.6   skrll 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1498  1.1.1.4  dyoung 	} else {
   1499  1.1.1.6   skrll 		return key_alloc_single(sc, keyix, rxkeyix);
   1500  1.1.1.4  dyoung 	}
   1501  1.1.1.4  dyoung }
   1502  1.1.1.4  dyoung 
   1503  1.1.1.4  dyoung /*
   1504  1.1.1.4  dyoung  * Delete an entry in the key cache allocated by ath_key_alloc.
   1505  1.1.1.4  dyoung  */
   1506  1.1.1.4  dyoung static int
   1507  1.1.1.4  dyoung ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1508  1.1.1.4  dyoung {
   1509  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1510  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1511  1.1.1.4  dyoung 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1512  1.1.1.4  dyoung 	u_int keyix = k->wk_keyix;
   1513  1.1.1.4  dyoung 
   1514  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1515  1.1.1.4  dyoung 
   1516  1.1.1.4  dyoung 	ath_hal_keyreset(ah, keyix);
   1517  1.1.1.4  dyoung 	/*
   1518  1.1.1.4  dyoung 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1519  1.1.1.4  dyoung 	 */
   1520  1.1.1.4  dyoung 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1521  1.1.1.6   skrll 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1522  1.1.1.4  dyoung 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1523  1.1.1.4  dyoung 	if (keyix >= IEEE80211_WEP_NKID) {
   1524  1.1.1.4  dyoung 		/*
   1525  1.1.1.4  dyoung 		 * Don't touch keymap entries for global keys so
   1526  1.1.1.4  dyoung 		 * they are never considered for dynamic allocation.
   1527  1.1.1.4  dyoung 		 */
   1528  1.1.1.4  dyoung 		clrbit(sc->sc_keymap, keyix);
   1529  1.1.1.4  dyoung 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1530  1.1.1.4  dyoung 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1531  1.1.1.4  dyoung 		    sc->sc_splitmic) {
   1532  1.1.1.4  dyoung 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1533  1.1.1.4  dyoung 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1534  1.1.1.4  dyoung 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1535  1.1.1.4  dyoung 		}
   1536      1.1  dyoung 	}
   1537  1.1.1.4  dyoung 	return 1;
   1538  1.1.1.4  dyoung }
   1539  1.1.1.4  dyoung 
   1540  1.1.1.4  dyoung /*
   1541  1.1.1.4  dyoung  * Set the key cache contents for the specified key.  Key cache
   1542  1.1.1.4  dyoung  * slot(s) must already have been allocated by ath_key_alloc.
   1543  1.1.1.4  dyoung  */
   1544  1.1.1.4  dyoung static int
   1545  1.1.1.4  dyoung ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1546  1.1.1.4  dyoung 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1547  1.1.1.4  dyoung {
   1548  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1549  1.1.1.4  dyoung 
   1550  1.1.1.5  dyoung 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1551  1.1.1.4  dyoung }
   1552  1.1.1.4  dyoung 
   1553  1.1.1.4  dyoung /*
   1554  1.1.1.4  dyoung  * Block/unblock tx+rx processing while a key change is done.
   1555  1.1.1.4  dyoung  * We assume the caller serializes key management operations
   1556  1.1.1.4  dyoung  * so we only need to worry about synchronization with other
   1557  1.1.1.4  dyoung  * uses that originate in the driver.
   1558  1.1.1.4  dyoung  */
   1559  1.1.1.4  dyoung static void
   1560  1.1.1.4  dyoung ath_key_update_begin(struct ieee80211com *ic)
   1561  1.1.1.4  dyoung {
   1562  1.1.1.4  dyoung 	struct ifnet *ifp = ic->ic_ifp;
   1563  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   1564  1.1.1.4  dyoung 
   1565  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1566  1.1.1.4  dyoung #if 0
   1567  1.1.1.4  dyoung 	tasklet_disable(&sc->sc_rxtq);
   1568  1.1.1.4  dyoung #endif
   1569  1.1.1.4  dyoung 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1570  1.1.1.4  dyoung }
   1571  1.1.1.4  dyoung 
   1572  1.1.1.4  dyoung static void
   1573  1.1.1.4  dyoung ath_key_update_end(struct ieee80211com *ic)
   1574  1.1.1.4  dyoung {
   1575  1.1.1.4  dyoung 	struct ifnet *ifp = ic->ic_ifp;
   1576  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   1577  1.1.1.4  dyoung 
   1578  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1579  1.1.1.4  dyoung 	IF_UNLOCK(&ifp->if_snd);
   1580  1.1.1.4  dyoung #if 0
   1581  1.1.1.4  dyoung 	tasklet_enable(&sc->sc_rxtq);
   1582  1.1.1.4  dyoung #endif
   1583      1.1  dyoung }
   1584      1.1  dyoung 
   1585  1.1.1.2  dyoung /*
   1586  1.1.1.2  dyoung  * Calculate the receive filter according to the
   1587  1.1.1.2  dyoung  * operating mode and state:
   1588  1.1.1.2  dyoung  *
   1589  1.1.1.2  dyoung  * o always accept unicast, broadcast, and multicast traffic
   1590  1.1.1.4  dyoung  * o maintain current state of phy error reception (the hal
   1591  1.1.1.4  dyoung  *   may enable phy error frames for noise immunity work)
   1592  1.1.1.2  dyoung  * o probe request frames are accepted only when operating in
   1593  1.1.1.2  dyoung  *   hostap, adhoc, or monitor modes
   1594  1.1.1.2  dyoung  * o enable promiscuous mode according to the interface state
   1595  1.1.1.2  dyoung  * o accept beacons:
   1596  1.1.1.2  dyoung  *   - when operating in adhoc mode so the 802.11 layer creates
   1597  1.1.1.2  dyoung  *     node table entries for peers,
   1598  1.1.1.2  dyoung  *   - when operating in station mode for collecting rssi data when
   1599  1.1.1.2  dyoung  *     the station is otherwise quiet, or
   1600  1.1.1.2  dyoung  *   - when scanning
   1601  1.1.1.2  dyoung  */
   1602  1.1.1.2  dyoung static u_int32_t
   1603  1.1.1.4  dyoung ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1604      1.1  dyoung {
   1605      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1606      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1607  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   1608  1.1.1.2  dyoung 	u_int32_t rfilt;
   1609      1.1  dyoung 
   1610      1.1  dyoung 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1611      1.1  dyoung 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1612      1.1  dyoung 	if (ic->ic_opmode != IEEE80211_M_STA)
   1613      1.1  dyoung 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1614      1.1  dyoung 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1615      1.1  dyoung 	    (ifp->if_flags & IFF_PROMISC))
   1616      1.1  dyoung 		rfilt |= HAL_RX_FILTER_PROM;
   1617  1.1.1.2  dyoung 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1618  1.1.1.2  dyoung 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1619  1.1.1.4  dyoung 	    state == IEEE80211_S_SCAN)
   1620      1.1  dyoung 		rfilt |= HAL_RX_FILTER_BEACON;
   1621  1.1.1.2  dyoung 	return rfilt;
   1622  1.1.1.2  dyoung }
   1623  1.1.1.2  dyoung 
   1624  1.1.1.2  dyoung static void
   1625  1.1.1.2  dyoung ath_mode_init(struct ath_softc *sc)
   1626  1.1.1.2  dyoung {
   1627  1.1.1.2  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1628  1.1.1.2  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1629  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   1630  1.1.1.2  dyoung 	u_int32_t rfilt, mfilt[2], val;
   1631  1.1.1.2  dyoung 	u_int8_t pos;
   1632  1.1.1.2  dyoung 	struct ifmultiaddr *ifma;
   1633  1.1.1.2  dyoung 
   1634  1.1.1.2  dyoung 	/* configure rx filter */
   1635  1.1.1.4  dyoung 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1636      1.1  dyoung 	ath_hal_setrxfilter(ah, rfilt);
   1637      1.1  dyoung 
   1638  1.1.1.2  dyoung 	/* configure operational mode */
   1639  1.1.1.4  dyoung 	ath_hal_setopmode(ah);
   1640  1.1.1.4  dyoung 
   1641  1.1.1.4  dyoung 	/*
   1642  1.1.1.4  dyoung 	 * Handle any link-level address change.  Note that we only
   1643  1.1.1.4  dyoung 	 * need to force ic_myaddr; any other addresses are handled
   1644  1.1.1.4  dyoung 	 * as a byproduct of the ifnet code marking the interface
   1645  1.1.1.4  dyoung 	 * down then up.
   1646  1.1.1.4  dyoung 	 *
   1647  1.1.1.4  dyoung 	 * XXX should get from lladdr instead of arpcom but that's more work
   1648  1.1.1.4  dyoung 	 */
   1649  1.1.1.5  dyoung 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2ENADDR(ifp));
   1650  1.1.1.4  dyoung 	ath_hal_setmac(ah, ic->ic_myaddr);
   1651  1.1.1.2  dyoung 
   1652      1.1  dyoung 	/* calculate and install multicast filter */
   1653      1.1  dyoung 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1654      1.1  dyoung 		mfilt[0] = mfilt[1] = 0;
   1655  1.1.1.6   skrll 		IF_ADDR_LOCK(ifp);
   1656      1.1  dyoung 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1657      1.1  dyoung 			caddr_t dl;
   1658      1.1  dyoung 
   1659      1.1  dyoung 			/* calculate XOR of eight 6bit values */
   1660      1.1  dyoung 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1661      1.1  dyoung 			val = LE_READ_4(dl + 0);
   1662      1.1  dyoung 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1663      1.1  dyoung 			val = LE_READ_4(dl + 3);
   1664      1.1  dyoung 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1665      1.1  dyoung 			pos &= 0x3f;
   1666      1.1  dyoung 			mfilt[pos / 32] |= (1 << (pos % 32));
   1667      1.1  dyoung 		}
   1668  1.1.1.6   skrll 		IF_ADDR_UNLOCK(ifp);
   1669      1.1  dyoung 	} else {
   1670      1.1  dyoung 		mfilt[0] = mfilt[1] = ~0;
   1671      1.1  dyoung 	}
   1672      1.1  dyoung 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1673  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1674  1.1.1.4  dyoung 		__func__, rfilt, mfilt[0], mfilt[1]);
   1675  1.1.1.4  dyoung }
   1676  1.1.1.4  dyoung 
   1677  1.1.1.4  dyoung /*
   1678  1.1.1.4  dyoung  * Set the slot time based on the current setting.
   1679  1.1.1.4  dyoung  */
   1680  1.1.1.4  dyoung static void
   1681  1.1.1.4  dyoung ath_setslottime(struct ath_softc *sc)
   1682  1.1.1.4  dyoung {
   1683  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1684  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1685  1.1.1.4  dyoung 
   1686  1.1.1.4  dyoung 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1687  1.1.1.4  dyoung 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1688  1.1.1.4  dyoung 	else
   1689  1.1.1.4  dyoung 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1690  1.1.1.4  dyoung 	sc->sc_updateslot = OK;
   1691      1.1  dyoung }
   1692      1.1  dyoung 
   1693  1.1.1.4  dyoung /*
   1694  1.1.1.4  dyoung  * Callback from the 802.11 layer to update the
   1695  1.1.1.4  dyoung  * slot time based on the current setting.
   1696  1.1.1.4  dyoung  */
   1697      1.1  dyoung static void
   1698  1.1.1.4  dyoung ath_updateslot(struct ifnet *ifp)
   1699  1.1.1.4  dyoung {
   1700  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   1701  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1702  1.1.1.4  dyoung 
   1703  1.1.1.4  dyoung 	/*
   1704  1.1.1.4  dyoung 	 * When not coordinating the BSS, change the hardware
   1705  1.1.1.4  dyoung 	 * immediately.  For other operation we defer the change
   1706  1.1.1.4  dyoung 	 * until beacon updates have propagated to the stations.
   1707  1.1.1.4  dyoung 	 */
   1708  1.1.1.4  dyoung 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1709  1.1.1.4  dyoung 		sc->sc_updateslot = UPDATE;
   1710  1.1.1.4  dyoung 	else
   1711  1.1.1.4  dyoung 		ath_setslottime(sc);
   1712  1.1.1.4  dyoung }
   1713  1.1.1.4  dyoung 
   1714  1.1.1.4  dyoung /*
   1715  1.1.1.4  dyoung  * Setup a h/w transmit queue for beacons.
   1716  1.1.1.4  dyoung  */
   1717  1.1.1.4  dyoung static int
   1718  1.1.1.4  dyoung ath_beaconq_setup(struct ath_hal *ah)
   1719      1.1  dyoung {
   1720  1.1.1.4  dyoung 	HAL_TXQ_INFO qi;
   1721      1.1  dyoung 
   1722  1.1.1.4  dyoung 	memset(&qi, 0, sizeof(qi));
   1723  1.1.1.4  dyoung 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1724  1.1.1.4  dyoung 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1725  1.1.1.4  dyoung 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1726  1.1.1.5  dyoung 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1727  1.1.1.5  dyoung 	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
   1728  1.1.1.4  dyoung 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1729      1.1  dyoung }
   1730      1.1  dyoung 
   1731  1.1.1.4  dyoung /*
   1732  1.1.1.5  dyoung  * Setup the transmit queue parameters for the beacon queue.
   1733  1.1.1.5  dyoung  */
   1734  1.1.1.5  dyoung static int
   1735  1.1.1.5  dyoung ath_beaconq_config(struct ath_softc *sc)
   1736  1.1.1.5  dyoung {
   1737  1.1.1.5  dyoung #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   1738  1.1.1.5  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   1739  1.1.1.5  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1740  1.1.1.5  dyoung 	HAL_TXQ_INFO qi;
   1741  1.1.1.5  dyoung 
   1742  1.1.1.5  dyoung 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   1743  1.1.1.5  dyoung 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   1744  1.1.1.5  dyoung 		/*
   1745  1.1.1.5  dyoung 		 * Always burst out beacon and CAB traffic.
   1746  1.1.1.5  dyoung 		 */
   1747  1.1.1.5  dyoung 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   1748  1.1.1.5  dyoung 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   1749  1.1.1.5  dyoung 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   1750  1.1.1.5  dyoung 	} else {
   1751  1.1.1.5  dyoung 		struct wmeParams *wmep =
   1752  1.1.1.5  dyoung 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   1753  1.1.1.5  dyoung 		/*
   1754  1.1.1.5  dyoung 		 * Adhoc mode; important thing is to use 2x cwmin.
   1755  1.1.1.5  dyoung 		 */
   1756  1.1.1.5  dyoung 		qi.tqi_aifs = wmep->wmep_aifsn;
   1757  1.1.1.5  dyoung 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   1758  1.1.1.5  dyoung 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   1759  1.1.1.5  dyoung 	}
   1760  1.1.1.5  dyoung 
   1761  1.1.1.5  dyoung 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   1762  1.1.1.5  dyoung 		device_printf(sc->sc_dev, "unable to update parameters for "
   1763  1.1.1.5  dyoung 			"beacon hardware queue!\n");
   1764  1.1.1.5  dyoung 		return 0;
   1765  1.1.1.5  dyoung 	} else {
   1766  1.1.1.5  dyoung 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   1767  1.1.1.5  dyoung 		return 1;
   1768  1.1.1.5  dyoung 	}
   1769  1.1.1.5  dyoung #undef ATH_EXPONENT_TO_VALUE
   1770  1.1.1.5  dyoung }
   1771  1.1.1.5  dyoung 
   1772  1.1.1.5  dyoung /*
   1773  1.1.1.4  dyoung  * Allocate and setup an initial beacon frame.
   1774  1.1.1.4  dyoung  */
   1775      1.1  dyoung static int
   1776      1.1  dyoung ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   1777      1.1  dyoung {
   1778  1.1.1.4  dyoung 	struct ieee80211com *ic = ni->ni_ic;
   1779      1.1  dyoung 	struct ath_buf *bf;
   1780      1.1  dyoung 	struct mbuf *m;
   1781  1.1.1.4  dyoung 	int error;
   1782      1.1  dyoung 
   1783  1.1.1.4  dyoung 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   1784  1.1.1.4  dyoung 	if (bf == NULL) {
   1785  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   1786  1.1.1.4  dyoung 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   1787  1.1.1.4  dyoung 		return ENOMEM;			/* XXX */
   1788      1.1  dyoung 	}
   1789      1.1  dyoung 	/*
   1790      1.1  dyoung 	 * NB: the beacon data buffer must be 32-bit aligned;
   1791      1.1  dyoung 	 * we assume the mbuf routines will return us something
   1792      1.1  dyoung 	 * with this alignment (perhaps should assert).
   1793      1.1  dyoung 	 */
   1794  1.1.1.4  dyoung 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   1795      1.1  dyoung 	if (m == NULL) {
   1796  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   1797  1.1.1.4  dyoung 			__func__);
   1798      1.1  dyoung 		sc->sc_stats.ast_be_nombuf++;
   1799      1.1  dyoung 		return ENOMEM;
   1800      1.1  dyoung 	}
   1801  1.1.1.4  dyoung 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
   1802  1.1.1.4  dyoung 				     bf->bf_segs, &bf->bf_nseg,
   1803      1.1  dyoung 				     BUS_DMA_NOWAIT);
   1804  1.1.1.4  dyoung 	if (error == 0) {
   1805  1.1.1.4  dyoung 		bf->bf_m = m;
   1806  1.1.1.4  dyoung 		bf->bf_node = ieee80211_ref_node(ni);
   1807  1.1.1.4  dyoung 	} else {
   1808      1.1  dyoung 		m_freem(m);
   1809      1.1  dyoung 	}
   1810  1.1.1.4  dyoung 	return error;
   1811  1.1.1.4  dyoung }
   1812  1.1.1.4  dyoung 
   1813  1.1.1.4  dyoung /*
   1814  1.1.1.4  dyoung  * Setup the beacon frame for transmit.
   1815  1.1.1.4  dyoung  */
   1816  1.1.1.4  dyoung static void
   1817  1.1.1.4  dyoung ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   1818  1.1.1.4  dyoung {
   1819  1.1.1.4  dyoung #define	USE_SHPREAMBLE(_ic) \
   1820  1.1.1.4  dyoung 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   1821  1.1.1.4  dyoung 		== IEEE80211_F_SHPREAMBLE)
   1822  1.1.1.4  dyoung 	struct ieee80211_node *ni = bf->bf_node;
   1823  1.1.1.4  dyoung 	struct ieee80211com *ic = ni->ni_ic;
   1824  1.1.1.4  dyoung 	struct mbuf *m = bf->bf_m;
   1825  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1826  1.1.1.4  dyoung 	struct ath_node *an = ATH_NODE(ni);
   1827  1.1.1.4  dyoung 	struct ath_desc *ds;
   1828  1.1.1.4  dyoung 	int flags, antenna;
   1829  1.1.1.4  dyoung 	u_int8_t rate;
   1830  1.1.1.4  dyoung 
   1831  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   1832  1.1.1.4  dyoung 		__func__, m, m->m_len);
   1833      1.1  dyoung 
   1834      1.1  dyoung 	/* setup descriptors */
   1835      1.1  dyoung 	ds = bf->bf_desc;
   1836      1.1  dyoung 
   1837  1.1.1.4  dyoung 	flags = HAL_TXDESC_NOACK;
   1838  1.1.1.4  dyoung 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   1839  1.1.1.4  dyoung 		ds->ds_link = bf->bf_daddr;	/* self-linked */
   1840  1.1.1.4  dyoung 		flags |= HAL_TXDESC_VEOL;
   1841  1.1.1.4  dyoung 		/*
   1842  1.1.1.4  dyoung 		 * Let hardware handle antenna switching.
   1843  1.1.1.4  dyoung 		 */
   1844  1.1.1.6   skrll 		antenna = sc->sc_txantenna;
   1845  1.1.1.4  dyoung 	} else {
   1846  1.1.1.4  dyoung 		ds->ds_link = 0;
   1847  1.1.1.4  dyoung 		/*
   1848  1.1.1.4  dyoung 		 * Switch antenna every 4 beacons.
   1849  1.1.1.4  dyoung 		 * XXX assumes two antenna
   1850  1.1.1.4  dyoung 		 */
   1851  1.1.1.4  dyoung 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   1852  1.1.1.4  dyoung 	}
   1853  1.1.1.4  dyoung 
   1854  1.1.1.4  dyoung 	KASSERT(bf->bf_nseg == 1,
   1855  1.1.1.4  dyoung 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   1856      1.1  dyoung 	ds->ds_data = bf->bf_segs[0].ds_addr;
   1857      1.1  dyoung 	/*
   1858      1.1  dyoung 	 * Calculate rate code.
   1859      1.1  dyoung 	 * XXX everything at min xmit rate
   1860      1.1  dyoung 	 */
   1861  1.1.1.4  dyoung 	if (USE_SHPREAMBLE(ic))
   1862  1.1.1.4  dyoung 		rate = an->an_tx_mgtratesp;
   1863      1.1  dyoung 	else
   1864  1.1.1.4  dyoung 		rate = an->an_tx_mgtrate;
   1865      1.1  dyoung 	ath_hal_setuptxdesc(ah, ds
   1866  1.1.1.4  dyoung 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   1867  1.1.1.4  dyoung 		, sizeof(struct ieee80211_frame)/* header length */
   1868      1.1  dyoung 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   1869  1.1.1.4  dyoung 		, ni->ni_txpower		/* txpower XXX */
   1870      1.1  dyoung 		, rate, 1			/* series 0 rate/tries */
   1871      1.1  dyoung 		, HAL_TXKEYIX_INVALID		/* no encryption */
   1872  1.1.1.4  dyoung 		, antenna			/* antenna mode */
   1873  1.1.1.4  dyoung 		, flags				/* no ack, veol for beacons */
   1874      1.1  dyoung 		, 0				/* rts/cts rate */
   1875      1.1  dyoung 		, 0				/* rts/cts duration */
   1876      1.1  dyoung 	);
   1877      1.1  dyoung 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   1878      1.1  dyoung 	ath_hal_filltxdesc(ah, ds
   1879  1.1.1.4  dyoung 		, roundup(m->m_len, 4)		/* buffer length */
   1880  1.1.1.4  dyoung 		, AH_TRUE			/* first segment */
   1881  1.1.1.4  dyoung 		, AH_TRUE			/* last segment */
   1882  1.1.1.4  dyoung 		, ds				/* first descriptor */
   1883      1.1  dyoung 	);
   1884  1.1.1.4  dyoung #undef USE_SHPREAMBLE
   1885      1.1  dyoung }
   1886      1.1  dyoung 
   1887  1.1.1.4  dyoung /*
   1888  1.1.1.4  dyoung  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   1889  1.1.1.4  dyoung  * frame contents are done as needed and the slot time is
   1890  1.1.1.4  dyoung  * also adjusted based on current state.
   1891  1.1.1.4  dyoung  */
   1892      1.1  dyoung static void
   1893      1.1  dyoung ath_beacon_proc(void *arg, int pending)
   1894      1.1  dyoung {
   1895      1.1  dyoung 	struct ath_softc *sc = arg;
   1896  1.1.1.4  dyoung 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   1897  1.1.1.4  dyoung 	struct ieee80211_node *ni = bf->bf_node;
   1898  1.1.1.4  dyoung 	struct ieee80211com *ic = ni->ni_ic;
   1899      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   1900  1.1.1.4  dyoung 	struct mbuf *m;
   1901  1.1.1.4  dyoung 	int ncabq, error, otherant;
   1902  1.1.1.4  dyoung 
   1903  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   1904  1.1.1.4  dyoung 		__func__, pending);
   1905      1.1  dyoung 
   1906      1.1  dyoung 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1907  1.1.1.4  dyoung 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   1908      1.1  dyoung 	    bf == NULL || bf->bf_m == NULL) {
   1909  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   1910  1.1.1.4  dyoung 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   1911      1.1  dyoung 		return;
   1912      1.1  dyoung 	}
   1913  1.1.1.4  dyoung 	/*
   1914  1.1.1.4  dyoung 	 * Check if the previous beacon has gone out.  If
   1915  1.1.1.4  dyoung 	 * not don't don't try to post another, skip this
   1916  1.1.1.4  dyoung 	 * period and wait for the next.  Missed beacons
   1917  1.1.1.4  dyoung 	 * indicate a problem and should not occur.  If we
   1918  1.1.1.4  dyoung 	 * miss too many consecutive beacons reset the device.
   1919  1.1.1.4  dyoung 	 */
   1920  1.1.1.4  dyoung 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   1921  1.1.1.4  dyoung 		sc->sc_bmisscount++;
   1922  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   1923  1.1.1.4  dyoung 			"%s: missed %u consecutive beacons\n",
   1924  1.1.1.4  dyoung 			__func__, sc->sc_bmisscount);
   1925  1.1.1.4  dyoung 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   1926  1.1.1.4  dyoung 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
   1927  1.1.1.4  dyoung 		return;
   1928  1.1.1.4  dyoung 	}
   1929  1.1.1.4  dyoung 	if (sc->sc_bmisscount != 0) {
   1930  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_BEACON,
   1931  1.1.1.4  dyoung 			"%s: resume beacon xmit after %u misses\n",
   1932  1.1.1.4  dyoung 			__func__, sc->sc_bmisscount);
   1933  1.1.1.4  dyoung 		sc->sc_bmisscount = 0;
   1934  1.1.1.4  dyoung 	}
   1935  1.1.1.4  dyoung 
   1936  1.1.1.4  dyoung 	/*
   1937  1.1.1.4  dyoung 	 * Update dynamic beacon contents.  If this returns
   1938  1.1.1.4  dyoung 	 * non-zero then we need to remap the memory because
   1939  1.1.1.4  dyoung 	 * the beacon frame changed size (probably because
   1940  1.1.1.4  dyoung 	 * of the TIM bitmap).
   1941  1.1.1.4  dyoung 	 */
   1942  1.1.1.4  dyoung 	m = bf->bf_m;
   1943  1.1.1.4  dyoung 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   1944  1.1.1.4  dyoung 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   1945  1.1.1.4  dyoung 		/* XXX too conservative? */
   1946  1.1.1.4  dyoung 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   1947  1.1.1.4  dyoung 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
   1948  1.1.1.4  dyoung 					     bf->bf_segs, &bf->bf_nseg,
   1949  1.1.1.4  dyoung 					     BUS_DMA_NOWAIT);
   1950  1.1.1.4  dyoung 		if (error != 0) {
   1951  1.1.1.4  dyoung 			if_printf(ic->ic_ifp,
   1952  1.1.1.4  dyoung 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
   1953  1.1.1.4  dyoung 			    __func__, error);
   1954  1.1.1.4  dyoung 			return;
   1955  1.1.1.4  dyoung 		}
   1956  1.1.1.4  dyoung 	}
   1957  1.1.1.4  dyoung 
   1958  1.1.1.4  dyoung 	/*
   1959  1.1.1.4  dyoung 	 * Handle slot time change when a non-ERP station joins/leaves
   1960  1.1.1.4  dyoung 	 * an 11g network.  The 802.11 layer notifies us via callback,
   1961  1.1.1.4  dyoung 	 * we mark updateslot, then wait one beacon before effecting
   1962  1.1.1.4  dyoung 	 * the change.  This gives associated stations at least one
   1963  1.1.1.4  dyoung 	 * beacon interval to note the state change.
   1964  1.1.1.4  dyoung 	 */
   1965  1.1.1.4  dyoung 	/* XXX locking */
   1966  1.1.1.4  dyoung 	if (sc->sc_updateslot == UPDATE)
   1967  1.1.1.4  dyoung 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   1968  1.1.1.4  dyoung 	else if (sc->sc_updateslot == COMMIT)
   1969  1.1.1.4  dyoung 		ath_setslottime(sc);		/* commit change to h/w */
   1970  1.1.1.4  dyoung 
   1971  1.1.1.4  dyoung 	/*
   1972  1.1.1.4  dyoung 	 * Check recent per-antenna transmit statistics and flip
   1973  1.1.1.4  dyoung 	 * the default antenna if noticeably more frames went out
   1974  1.1.1.4  dyoung 	 * on the non-default antenna.
   1975  1.1.1.4  dyoung 	 * XXX assumes 2 anntenae
   1976  1.1.1.4  dyoung 	 */
   1977  1.1.1.4  dyoung 	otherant = sc->sc_defant & 1 ? 2 : 1;
   1978  1.1.1.4  dyoung 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   1979  1.1.1.4  dyoung 		ath_setdefantenna(sc, otherant);
   1980  1.1.1.4  dyoung 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   1981  1.1.1.4  dyoung 
   1982  1.1.1.4  dyoung 	/*
   1983  1.1.1.4  dyoung 	 * Construct tx descriptor.
   1984  1.1.1.4  dyoung 	 */
   1985  1.1.1.4  dyoung 	ath_beacon_setup(sc, bf);
   1986  1.1.1.4  dyoung 
   1987  1.1.1.4  dyoung 	/*
   1988  1.1.1.4  dyoung 	 * Stop any current dma and put the new frame on the queue.
   1989  1.1.1.4  dyoung 	 * This should never fail since we check above that no frames
   1990  1.1.1.4  dyoung 	 * are still pending on the queue.
   1991  1.1.1.4  dyoung 	 */
   1992      1.1  dyoung 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   1993  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY,
   1994  1.1.1.4  dyoung 			"%s: beacon queue %u did not stop?\n",
   1995  1.1.1.4  dyoung 			__func__, sc->sc_bhalq);
   1996      1.1  dyoung 	}
   1997      1.1  dyoung 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
   1998      1.1  dyoung 
   1999  1.1.1.4  dyoung 	/*
   2000  1.1.1.4  dyoung 	 * Enable the CAB queue before the beacon queue to
   2001  1.1.1.4  dyoung 	 * insure cab frames are triggered by this beacon.
   2002  1.1.1.4  dyoung 	 */
   2003  1.1.1.4  dyoung 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
   2004  1.1.1.4  dyoung 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2005      1.1  dyoung 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2006      1.1  dyoung 	ath_hal_txstart(ah, sc->sc_bhalq);
   2007  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2008  1.1.1.4  dyoung 		"%s: TXDP[%u] = %p (%p)\n", __func__,
   2009  1.1.1.4  dyoung 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
   2010  1.1.1.4  dyoung 
   2011  1.1.1.4  dyoung 	sc->sc_stats.ast_be_xmit++;
   2012  1.1.1.4  dyoung }
   2013  1.1.1.4  dyoung 
   2014  1.1.1.4  dyoung /*
   2015  1.1.1.4  dyoung  * Reset the hardware after detecting beacons have stopped.
   2016  1.1.1.4  dyoung  */
   2017  1.1.1.4  dyoung static void
   2018  1.1.1.4  dyoung ath_bstuck_proc(void *arg, int pending)
   2019  1.1.1.4  dyoung {
   2020  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   2021  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   2022  1.1.1.4  dyoung 
   2023  1.1.1.4  dyoung 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2024  1.1.1.4  dyoung 		sc->sc_bmisscount);
   2025  1.1.1.4  dyoung 	ath_reset(ifp);
   2026      1.1  dyoung }
   2027      1.1  dyoung 
   2028  1.1.1.4  dyoung /*
   2029  1.1.1.4  dyoung  * Reclaim beacon resources.
   2030  1.1.1.4  dyoung  */
   2031      1.1  dyoung static void
   2032      1.1  dyoung ath_beacon_free(struct ath_softc *sc)
   2033      1.1  dyoung {
   2034  1.1.1.4  dyoung 	struct ath_buf *bf;
   2035      1.1  dyoung 
   2036  1.1.1.4  dyoung 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2037  1.1.1.4  dyoung 		if (bf->bf_m != NULL) {
   2038  1.1.1.4  dyoung 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2039  1.1.1.4  dyoung 			m_freem(bf->bf_m);
   2040  1.1.1.4  dyoung 			bf->bf_m = NULL;
   2041  1.1.1.4  dyoung 		}
   2042  1.1.1.4  dyoung 		if (bf->bf_node != NULL) {
   2043  1.1.1.4  dyoung 			ieee80211_free_node(bf->bf_node);
   2044  1.1.1.4  dyoung 			bf->bf_node = NULL;
   2045  1.1.1.4  dyoung 		}
   2046      1.1  dyoung 	}
   2047      1.1  dyoung }
   2048      1.1  dyoung 
   2049      1.1  dyoung /*
   2050      1.1  dyoung  * Configure the beacon and sleep timers.
   2051      1.1  dyoung  *
   2052      1.1  dyoung  * When operating as an AP this resets the TSF and sets
   2053      1.1  dyoung  * up the hardware to notify us when we need to issue beacons.
   2054      1.1  dyoung  *
   2055      1.1  dyoung  * When operating in station mode this sets up the beacon
   2056      1.1  dyoung  * timers according to the timestamp of the last received
   2057      1.1  dyoung  * beacon and the current TSF, configures PCF and DTIM
   2058      1.1  dyoung  * handling, programs the sleep registers so the hardware
   2059      1.1  dyoung  * will wakeup in time to receive beacons, and configures
   2060      1.1  dyoung  * the beacon miss handling so we'll receive a BMISS
   2061      1.1  dyoung  * interrupt when we stop seeing beacons from the AP
   2062      1.1  dyoung  * we've associated with.
   2063      1.1  dyoung  */
   2064      1.1  dyoung static void
   2065      1.1  dyoung ath_beacon_config(struct ath_softc *sc)
   2066      1.1  dyoung {
   2067  1.1.1.5  dyoung #define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
   2068      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2069      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   2070      1.1  dyoung 	struct ieee80211_node *ni = ic->ic_bss;
   2071  1.1.1.4  dyoung 	u_int32_t nexttbtt, intval;
   2072      1.1  dyoung 
   2073  1.1.1.5  dyoung 	/* extract tstamp from last beacon and convert to TU */
   2074  1.1.1.5  dyoung 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2075  1.1.1.5  dyoung 			     LE_READ_4(ni->ni_tstamp.data));
   2076  1.1.1.5  dyoung 	/* NB: the beacon interval is kept internally in TU's */
   2077  1.1.1.4  dyoung 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2078  1.1.1.4  dyoung 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2079  1.1.1.4  dyoung 		nexttbtt = intval;
   2080  1.1.1.4  dyoung 	else if (intval)		/* NB: can be 0 for monitor mode */
   2081  1.1.1.4  dyoung 		nexttbtt = roundup(nexttbtt, intval);
   2082  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2083  1.1.1.4  dyoung 		__func__, nexttbtt, intval, ni->ni_intval);
   2084      1.1  dyoung 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2085      1.1  dyoung 		HAL_BEACON_STATE bs;
   2086  1.1.1.5  dyoung 		u_int64_t tsf;
   2087  1.1.1.5  dyoung 		u_int32_t tsftu;
   2088  1.1.1.5  dyoung 		int dtimperiod, dtimcount;
   2089  1.1.1.5  dyoung 		int cfpperiod, cfpcount;
   2090  1.1.1.5  dyoung 
   2091  1.1.1.5  dyoung 		/*
   2092  1.1.1.5  dyoung 		 * Setup dtim and cfp parameters according to
   2093  1.1.1.5  dyoung 		 * last beacon we received (which may be none).
   2094  1.1.1.5  dyoung 		 */
   2095  1.1.1.5  dyoung 		dtimperiod = ni->ni_dtim_period;
   2096  1.1.1.5  dyoung 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2097  1.1.1.5  dyoung 			dtimperiod = 1;
   2098  1.1.1.5  dyoung 		dtimcount = ni->ni_dtim_count;
   2099  1.1.1.5  dyoung 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2100  1.1.1.5  dyoung 			dtimcount = 0;		/* XXX? */
   2101  1.1.1.5  dyoung 		cfpperiod = 1;			/* NB: no PCF support yet */
   2102  1.1.1.5  dyoung 		cfpcount = 0;
   2103  1.1.1.5  dyoung #define	FUDGE	2
   2104  1.1.1.5  dyoung 		/*
   2105  1.1.1.5  dyoung 		 * Pull nexttbtt forward to reflect the current
   2106  1.1.1.5  dyoung 		 * TSF and calculate dtim+cfp state for the result.
   2107  1.1.1.5  dyoung 		 */
   2108  1.1.1.5  dyoung 		tsf = ath_hal_gettsf64(ah);
   2109  1.1.1.5  dyoung 		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
   2110  1.1.1.5  dyoung 		do {
   2111  1.1.1.5  dyoung 			nexttbtt += intval;
   2112  1.1.1.5  dyoung 			if (--dtimcount < 0) {
   2113  1.1.1.5  dyoung 				dtimcount = dtimperiod - 1;
   2114  1.1.1.5  dyoung 				if (--cfpcount < 0)
   2115  1.1.1.5  dyoung 					cfpcount = cfpperiod - 1;
   2116  1.1.1.5  dyoung 			}
   2117  1.1.1.5  dyoung 		} while (nexttbtt < tsftu);
   2118  1.1.1.5  dyoung #undef FUDGE
   2119      1.1  dyoung 		memset(&bs, 0, sizeof(bs));
   2120  1.1.1.4  dyoung 		bs.bs_intval = intval;
   2121      1.1  dyoung 		bs.bs_nexttbtt = nexttbtt;
   2122  1.1.1.5  dyoung 		bs.bs_dtimperiod = dtimperiod*intval;
   2123  1.1.1.5  dyoung 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2124  1.1.1.5  dyoung 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2125  1.1.1.5  dyoung 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2126  1.1.1.5  dyoung 		bs.bs_cfpmaxduration = 0;
   2127  1.1.1.5  dyoung #if 0
   2128      1.1  dyoung 		/*
   2129  1.1.1.4  dyoung 		 * The 802.11 layer records the offset to the DTIM
   2130  1.1.1.4  dyoung 		 * bitmap while receiving beacons; use it here to
   2131  1.1.1.4  dyoung 		 * enable h/w detection of our AID being marked in
   2132  1.1.1.4  dyoung 		 * the bitmap vector (to indicate frames for us are
   2133  1.1.1.4  dyoung 		 * pending at the AP).
   2134  1.1.1.5  dyoung 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2135  1.1.1.5  dyoung 		 * XXX enable based on h/w rev for newer chips
   2136  1.1.1.4  dyoung 		 */
   2137  1.1.1.4  dyoung 		bs.bs_timoffset = ni->ni_timoff;
   2138  1.1.1.5  dyoung #endif
   2139  1.1.1.4  dyoung 		/*
   2140      1.1  dyoung 		 * Calculate the number of consecutive beacons to miss
   2141      1.1  dyoung 		 * before taking a BMISS interrupt.  The configuration
   2142      1.1  dyoung 		 * is specified in ms, so we need to convert that to
   2143      1.1  dyoung 		 * TU's and then calculate based on the beacon interval.
   2144      1.1  dyoung 		 * Note that we clamp the result to at most 10 beacons.
   2145      1.1  dyoung 		 */
   2146  1.1.1.4  dyoung 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2147      1.1  dyoung 		if (bs.bs_bmissthreshold > 10)
   2148      1.1  dyoung 			bs.bs_bmissthreshold = 10;
   2149      1.1  dyoung 		else if (bs.bs_bmissthreshold <= 0)
   2150      1.1  dyoung 			bs.bs_bmissthreshold = 1;
   2151      1.1  dyoung 
   2152      1.1  dyoung 		/*
   2153      1.1  dyoung 		 * Calculate sleep duration.  The configuration is
   2154      1.1  dyoung 		 * given in ms.  We insure a multiple of the beacon
   2155      1.1  dyoung 		 * period is used.  Also, if the sleep duration is
   2156      1.1  dyoung 		 * greater than the DTIM period then it makes senses
   2157      1.1  dyoung 		 * to make it a multiple of that.
   2158      1.1  dyoung 		 *
   2159      1.1  dyoung 		 * XXX fixed at 100ms
   2160      1.1  dyoung 		 */
   2161      1.1  dyoung 		bs.bs_sleepduration =
   2162  1.1.1.4  dyoung 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2163      1.1  dyoung 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2164      1.1  dyoung 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2165      1.1  dyoung 
   2166  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2167  1.1.1.5  dyoung 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2168      1.1  dyoung 			, __func__
   2169  1.1.1.5  dyoung 			, tsf, tsftu
   2170      1.1  dyoung 			, bs.bs_intval
   2171      1.1  dyoung 			, bs.bs_nexttbtt
   2172      1.1  dyoung 			, bs.bs_dtimperiod
   2173      1.1  dyoung 			, bs.bs_nextdtim
   2174      1.1  dyoung 			, bs.bs_bmissthreshold
   2175      1.1  dyoung 			, bs.bs_sleepduration
   2176  1.1.1.4  dyoung 			, bs.bs_cfpperiod
   2177  1.1.1.4  dyoung 			, bs.bs_cfpmaxduration
   2178  1.1.1.4  dyoung 			, bs.bs_cfpnext
   2179  1.1.1.4  dyoung 			, bs.bs_timoffset
   2180  1.1.1.4  dyoung 		);
   2181      1.1  dyoung 		ath_hal_intrset(ah, 0);
   2182  1.1.1.4  dyoung 		ath_hal_beacontimers(ah, &bs);
   2183      1.1  dyoung 		sc->sc_imask |= HAL_INT_BMISS;
   2184      1.1  dyoung 		ath_hal_intrset(ah, sc->sc_imask);
   2185      1.1  dyoung 	} else {
   2186      1.1  dyoung 		ath_hal_intrset(ah, 0);
   2187  1.1.1.4  dyoung 		if (nexttbtt == intval)
   2188  1.1.1.4  dyoung 			intval |= HAL_BEACON_RESET_TSF;
   2189  1.1.1.4  dyoung 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2190  1.1.1.4  dyoung 			/*
   2191  1.1.1.4  dyoung 			 * In IBSS mode enable the beacon timers but only
   2192  1.1.1.4  dyoung 			 * enable SWBA interrupts if we need to manually
   2193  1.1.1.4  dyoung 			 * prepare beacon frames.  Otherwise we use a
   2194  1.1.1.4  dyoung 			 * self-linked tx descriptor and let the hardware
   2195  1.1.1.4  dyoung 			 * deal with things.
   2196  1.1.1.4  dyoung 			 */
   2197  1.1.1.4  dyoung 			intval |= HAL_BEACON_ENA;
   2198  1.1.1.4  dyoung 			if (!sc->sc_hasveol)
   2199  1.1.1.4  dyoung 				sc->sc_imask |= HAL_INT_SWBA;
   2200  1.1.1.5  dyoung 			ath_beaconq_config(sc);
   2201  1.1.1.4  dyoung 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2202  1.1.1.4  dyoung 			/*
   2203  1.1.1.4  dyoung 			 * In AP mode we enable the beacon timers and
   2204  1.1.1.4  dyoung 			 * SWBA interrupts to prepare beacon frames.
   2205  1.1.1.4  dyoung 			 */
   2206  1.1.1.4  dyoung 			intval |= HAL_BEACON_ENA;
   2207      1.1  dyoung 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2208  1.1.1.5  dyoung 			ath_beaconq_config(sc);
   2209  1.1.1.4  dyoung 		}
   2210  1.1.1.4  dyoung 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2211  1.1.1.4  dyoung 		sc->sc_bmisscount = 0;
   2212      1.1  dyoung 		ath_hal_intrset(ah, sc->sc_imask);
   2213  1.1.1.4  dyoung 		/*
   2214  1.1.1.4  dyoung 		 * When using a self-linked beacon descriptor in
   2215  1.1.1.4  dyoung 		 * ibss mode load it once here.
   2216  1.1.1.4  dyoung 		 */
   2217  1.1.1.4  dyoung 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2218  1.1.1.4  dyoung 			ath_beacon_proc(sc, 0);
   2219      1.1  dyoung 	}
   2220  1.1.1.5  dyoung #undef TSF_TO_TU
   2221      1.1  dyoung }
   2222      1.1  dyoung 
   2223      1.1  dyoung static void
   2224      1.1  dyoung ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
   2225      1.1  dyoung {
   2226      1.1  dyoung 	bus_addr_t *paddr = (bus_addr_t*) arg;
   2227  1.1.1.4  dyoung 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
   2228      1.1  dyoung 	*paddr = segs->ds_addr;
   2229      1.1  dyoung }
   2230      1.1  dyoung 
   2231      1.1  dyoung static int
   2232  1.1.1.4  dyoung ath_descdma_setup(struct ath_softc *sc,
   2233  1.1.1.4  dyoung 	struct ath_descdma *dd, ath_bufhead *head,
   2234  1.1.1.4  dyoung 	const char *name, int nbuf, int ndesc)
   2235  1.1.1.4  dyoung {
   2236  1.1.1.4  dyoung #define	DS2PHYS(_dd, _ds) \
   2237  1.1.1.4  dyoung 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
   2238  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   2239      1.1  dyoung 	struct ath_desc *ds;
   2240      1.1  dyoung 	struct ath_buf *bf;
   2241  1.1.1.4  dyoung 	int i, bsize, error;
   2242      1.1  dyoung 
   2243  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2244  1.1.1.4  dyoung 	    __func__, name, nbuf, ndesc);
   2245  1.1.1.4  dyoung 
   2246  1.1.1.4  dyoung 	dd->dd_name = name;
   2247  1.1.1.4  dyoung 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2248  1.1.1.4  dyoung 
   2249  1.1.1.4  dyoung 	/*
   2250  1.1.1.4  dyoung 	 * Setup DMA descriptor area.
   2251  1.1.1.4  dyoung 	 */
   2252  1.1.1.4  dyoung 	error = bus_dma_tag_create(NULL,	/* parent */
   2253  1.1.1.4  dyoung 		       PAGE_SIZE, 0,		/* alignment, bounds */
   2254  1.1.1.4  dyoung 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
   2255  1.1.1.4  dyoung 		       BUS_SPACE_MAXADDR,	/* highaddr */
   2256  1.1.1.4  dyoung 		       NULL, NULL,		/* filter, filterarg */
   2257  1.1.1.4  dyoung 		       dd->dd_desc_len,		/* maxsize */
   2258  1.1.1.4  dyoung 		       1,			/* nsegments */
   2259  1.1.1.4  dyoung 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
   2260  1.1.1.4  dyoung 		       BUS_DMA_ALLOCNOW,	/* flags */
   2261  1.1.1.4  dyoung 		       NULL,			/* lockfunc */
   2262  1.1.1.4  dyoung 		       NULL,			/* lockarg */
   2263  1.1.1.4  dyoung 		       &dd->dd_dmat);
   2264  1.1.1.4  dyoung 	if (error != 0) {
   2265  1.1.1.4  dyoung 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
   2266      1.1  dyoung 		return error;
   2267  1.1.1.4  dyoung 	}
   2268      1.1  dyoung 
   2269  1.1.1.4  dyoung 	/* allocate descriptors */
   2270  1.1.1.4  dyoung 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2271  1.1.1.4  dyoung 	if (error != 0) {
   2272  1.1.1.4  dyoung 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2273  1.1.1.4  dyoung 			"error %u\n", dd->dd_name, error);
   2274      1.1  dyoung 		goto fail0;
   2275  1.1.1.4  dyoung 	}
   2276      1.1  dyoung 
   2277  1.1.1.4  dyoung 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
   2278  1.1.1.4  dyoung 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2279  1.1.1.4  dyoung 	if (error != 0) {
   2280  1.1.1.4  dyoung 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2281  1.1.1.4  dyoung 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2282      1.1  dyoung 		goto fail1;
   2283  1.1.1.4  dyoung 	}
   2284      1.1  dyoung 
   2285  1.1.1.4  dyoung 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
   2286  1.1.1.4  dyoung 				dd->dd_desc, dd->dd_desc_len,
   2287  1.1.1.4  dyoung 				ath_load_cb, &dd->dd_desc_paddr,
   2288  1.1.1.4  dyoung 				BUS_DMA_NOWAIT);
   2289  1.1.1.4  dyoung 	if (error != 0) {
   2290  1.1.1.4  dyoung 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2291  1.1.1.4  dyoung 			dd->dd_name, error);
   2292      1.1  dyoung 		goto fail2;
   2293  1.1.1.4  dyoung 	}
   2294      1.1  dyoung 
   2295  1.1.1.4  dyoung 	ds = dd->dd_desc;
   2296  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
   2297  1.1.1.4  dyoung 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2298  1.1.1.4  dyoung 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2299  1.1.1.4  dyoung 
   2300  1.1.1.4  dyoung 	/* allocate rx buffers */
   2301  1.1.1.4  dyoung 	bsize = sizeof(struct ath_buf) * nbuf;
   2302  1.1.1.4  dyoung 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2303  1.1.1.4  dyoung 	if (bf == NULL) {
   2304  1.1.1.4  dyoung 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2305  1.1.1.4  dyoung 			dd->dd_name, bsize);
   2306  1.1.1.4  dyoung 		goto fail3;
   2307      1.1  dyoung 	}
   2308  1.1.1.4  dyoung 	dd->dd_bufptr = bf;
   2309      1.1  dyoung 
   2310  1.1.1.4  dyoung 	STAILQ_INIT(head);
   2311  1.1.1.4  dyoung 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2312      1.1  dyoung 		bf->bf_desc = ds;
   2313  1.1.1.4  dyoung 		bf->bf_daddr = DS2PHYS(dd, ds);
   2314      1.1  dyoung 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
   2315  1.1.1.4  dyoung 				&bf->bf_dmamap);
   2316  1.1.1.4  dyoung 		if (error != 0) {
   2317  1.1.1.4  dyoung 			if_printf(ifp, "unable to create dmamap for %s "
   2318  1.1.1.4  dyoung 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2319  1.1.1.4  dyoung 			ath_descdma_cleanup(sc, dd, head);
   2320  1.1.1.4  dyoung 			return error;
   2321  1.1.1.4  dyoung 		}
   2322  1.1.1.4  dyoung 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2323      1.1  dyoung 	}
   2324      1.1  dyoung 	return 0;
   2325  1.1.1.4  dyoung fail3:
   2326  1.1.1.4  dyoung 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2327      1.1  dyoung fail2:
   2328  1.1.1.4  dyoung 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
   2329      1.1  dyoung fail1:
   2330  1.1.1.4  dyoung 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2331      1.1  dyoung fail0:
   2332  1.1.1.4  dyoung 	bus_dma_tag_destroy(dd->dd_dmat);
   2333  1.1.1.4  dyoung 	memset(dd, 0, sizeof(*dd));
   2334      1.1  dyoung 	return error;
   2335  1.1.1.4  dyoung #undef DS2PHYS
   2336      1.1  dyoung }
   2337      1.1  dyoung 
   2338      1.1  dyoung static void
   2339  1.1.1.4  dyoung ath_descdma_cleanup(struct ath_softc *sc,
   2340  1.1.1.4  dyoung 	struct ath_descdma *dd, ath_bufhead *head)
   2341      1.1  dyoung {
   2342      1.1  dyoung 	struct ath_buf *bf;
   2343  1.1.1.4  dyoung 	struct ieee80211_node *ni;
   2344      1.1  dyoung 
   2345  1.1.1.4  dyoung 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2346  1.1.1.4  dyoung 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
   2347  1.1.1.4  dyoung 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2348  1.1.1.4  dyoung 	bus_dma_tag_destroy(dd->dd_dmat);
   2349      1.1  dyoung 
   2350  1.1.1.4  dyoung 	STAILQ_FOREACH(bf, head, bf_list) {
   2351      1.1  dyoung 		if (bf->bf_m) {
   2352      1.1  dyoung 			m_freem(bf->bf_m);
   2353      1.1  dyoung 			bf->bf_m = NULL;
   2354      1.1  dyoung 		}
   2355  1.1.1.4  dyoung 		if (bf->bf_dmamap != NULL) {
   2356  1.1.1.4  dyoung 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2357  1.1.1.4  dyoung 			bf->bf_dmamap = NULL;
   2358  1.1.1.4  dyoung 		}
   2359  1.1.1.4  dyoung 		ni = bf->bf_node;
   2360  1.1.1.4  dyoung 		bf->bf_node = NULL;
   2361  1.1.1.4  dyoung 		if (ni != NULL) {
   2362  1.1.1.4  dyoung 			/*
   2363  1.1.1.4  dyoung 			 * Reclaim node reference.
   2364  1.1.1.4  dyoung 			 */
   2365  1.1.1.4  dyoung 			ieee80211_free_node(ni);
   2366  1.1.1.4  dyoung 		}
   2367      1.1  dyoung 	}
   2368      1.1  dyoung 
   2369  1.1.1.4  dyoung 	STAILQ_INIT(head);
   2370  1.1.1.4  dyoung 	free(dd->dd_bufptr, M_ATHDEV);
   2371  1.1.1.4  dyoung 	memset(dd, 0, sizeof(*dd));
   2372      1.1  dyoung }
   2373      1.1  dyoung 
   2374  1.1.1.4  dyoung static int
   2375  1.1.1.4  dyoung ath_desc_alloc(struct ath_softc *sc)
   2376      1.1  dyoung {
   2377  1.1.1.4  dyoung 	int error;
   2378  1.1.1.4  dyoung 
   2379  1.1.1.4  dyoung 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2380  1.1.1.4  dyoung 			"rx", ATH_RXBUF, 1);
   2381  1.1.1.4  dyoung 	if (error != 0)
   2382  1.1.1.4  dyoung 		return error;
   2383  1.1.1.4  dyoung 
   2384  1.1.1.4  dyoung 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2385  1.1.1.4  dyoung 			"tx", ATH_TXBUF, ATH_TXDESC);
   2386  1.1.1.4  dyoung 	if (error != 0) {
   2387  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2388  1.1.1.4  dyoung 		return error;
   2389  1.1.1.4  dyoung 	}
   2390  1.1.1.4  dyoung 
   2391  1.1.1.4  dyoung 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2392  1.1.1.4  dyoung 			"beacon", 1, 1);
   2393  1.1.1.4  dyoung 	if (error != 0) {
   2394  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2395  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2396  1.1.1.4  dyoung 		return error;
   2397  1.1.1.4  dyoung 	}
   2398  1.1.1.4  dyoung 	return 0;
   2399      1.1  dyoung }
   2400      1.1  dyoung 
   2401      1.1  dyoung static void
   2402  1.1.1.4  dyoung ath_desc_free(struct ath_softc *sc)
   2403      1.1  dyoung {
   2404      1.1  dyoung 
   2405  1.1.1.4  dyoung 	if (sc->sc_bdma.dd_desc_len != 0)
   2406  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2407  1.1.1.4  dyoung 	if (sc->sc_txdma.dd_desc_len != 0)
   2408  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2409  1.1.1.4  dyoung 	if (sc->sc_rxdma.dd_desc_len != 0)
   2410  1.1.1.4  dyoung 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2411  1.1.1.4  dyoung }
   2412  1.1.1.4  dyoung 
   2413  1.1.1.4  dyoung static struct ieee80211_node *
   2414  1.1.1.4  dyoung ath_node_alloc(struct ieee80211_node_table *nt)
   2415  1.1.1.4  dyoung {
   2416  1.1.1.4  dyoung 	struct ieee80211com *ic = nt->nt_ic;
   2417  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2418  1.1.1.4  dyoung 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2419  1.1.1.4  dyoung 	struct ath_node *an;
   2420  1.1.1.4  dyoung 
   2421  1.1.1.4  dyoung 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2422  1.1.1.4  dyoung 	if (an == NULL) {
   2423  1.1.1.4  dyoung 		/* XXX stat+msg */
   2424  1.1.1.4  dyoung 		return NULL;
   2425      1.1  dyoung 	}
   2426  1.1.1.4  dyoung 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2427  1.1.1.4  dyoung 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   2428  1.1.1.4  dyoung 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2429  1.1.1.4  dyoung 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   2430  1.1.1.4  dyoung 	ath_rate_node_init(sc, an);
   2431  1.1.1.4  dyoung 
   2432  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2433  1.1.1.4  dyoung 	return &an->an_node;
   2434      1.1  dyoung }
   2435      1.1  dyoung 
   2436      1.1  dyoung static void
   2437  1.1.1.4  dyoung ath_node_free(struct ieee80211_node *ni)
   2438      1.1  dyoung {
   2439  1.1.1.4  dyoung 	struct ieee80211com *ic = ni->ni_ic;
   2440  1.1.1.4  dyoung         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2441  1.1.1.3  dyoung 
   2442  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2443      1.1  dyoung 
   2444  1.1.1.4  dyoung 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2445  1.1.1.4  dyoung 	sc->sc_node_free(ni);
   2446  1.1.1.4  dyoung }
   2447  1.1.1.2  dyoung 
   2448  1.1.1.2  dyoung static u_int8_t
   2449  1.1.1.4  dyoung ath_node_getrssi(const struct ieee80211_node *ni)
   2450  1.1.1.2  dyoung {
   2451  1.1.1.4  dyoung #define	HAL_EP_RND(x, mul) \
   2452  1.1.1.4  dyoung 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2453  1.1.1.4  dyoung 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2454  1.1.1.4  dyoung 	int32_t rssi;
   2455  1.1.1.2  dyoung 
   2456  1.1.1.2  dyoung 	/*
   2457  1.1.1.4  dyoung 	 * When only one frame is received there will be no state in
   2458  1.1.1.4  dyoung 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2459  1.1.1.2  dyoung 	 */
   2460  1.1.1.4  dyoung 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2461  1.1.1.4  dyoung 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2462  1.1.1.4  dyoung 	else
   2463  1.1.1.4  dyoung 		rssi = ni->ni_rssi;
   2464  1.1.1.4  dyoung 	/* NB: theoretically we shouldn't need this, but be paranoid */
   2465  1.1.1.4  dyoung 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2466  1.1.1.4  dyoung #undef HAL_EP_RND
   2467  1.1.1.2  dyoung }
   2468  1.1.1.2  dyoung 
   2469      1.1  dyoung static int
   2470      1.1  dyoung ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2471      1.1  dyoung {
   2472      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2473      1.1  dyoung 	int error;
   2474      1.1  dyoung 	struct mbuf *m;
   2475      1.1  dyoung 	struct ath_desc *ds;
   2476      1.1  dyoung 
   2477      1.1  dyoung 	m = bf->bf_m;
   2478      1.1  dyoung 	if (m == NULL) {
   2479      1.1  dyoung 		/*
   2480      1.1  dyoung 		 * NB: by assigning a page to the rx dma buffer we
   2481      1.1  dyoung 		 * implicitly satisfy the Atheros requirement that
   2482      1.1  dyoung 		 * this buffer be cache-line-aligned and sized to be
   2483      1.1  dyoung 		 * multiple of the cache line size.  Not doing this
   2484      1.1  dyoung 		 * causes weird stuff to happen (for the 5210 at least).
   2485      1.1  dyoung 		 */
   2486      1.1  dyoung 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2487      1.1  dyoung 		if (m == NULL) {
   2488  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_ANY,
   2489  1.1.1.4  dyoung 				"%s: no mbuf/cluster\n", __func__);
   2490      1.1  dyoung 			sc->sc_stats.ast_rx_nombuf++;
   2491      1.1  dyoung 			return ENOMEM;
   2492      1.1  dyoung 		}
   2493      1.1  dyoung 		bf->bf_m = m;
   2494      1.1  dyoung 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2495      1.1  dyoung 
   2496  1.1.1.4  dyoung 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
   2497  1.1.1.4  dyoung 					     bf->bf_dmamap, m,
   2498  1.1.1.4  dyoung 					     bf->bf_segs, &bf->bf_nseg,
   2499      1.1  dyoung 					     BUS_DMA_NOWAIT);
   2500      1.1  dyoung 		if (error != 0) {
   2501  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_ANY,
   2502  1.1.1.4  dyoung 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
   2503  1.1.1.4  dyoung 			    __func__, error);
   2504      1.1  dyoung 			sc->sc_stats.ast_rx_busdma++;
   2505      1.1  dyoung 			return error;
   2506      1.1  dyoung 		}
   2507      1.1  dyoung 		KASSERT(bf->bf_nseg == 1,
   2508  1.1.1.4  dyoung 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2509      1.1  dyoung 	}
   2510      1.1  dyoung 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
   2511      1.1  dyoung 
   2512  1.1.1.2  dyoung 	/*
   2513  1.1.1.2  dyoung 	 * Setup descriptors.  For receive we always terminate
   2514  1.1.1.2  dyoung 	 * the descriptor list with a self-linked entry so we'll
   2515  1.1.1.2  dyoung 	 * not get overrun under high load (as can happen with a
   2516  1.1.1.4  dyoung 	 * 5212 when ANI processing enables PHY error frames).
   2517  1.1.1.2  dyoung 	 *
   2518  1.1.1.2  dyoung 	 * To insure the last descriptor is self-linked we create
   2519  1.1.1.2  dyoung 	 * each descriptor as self-linked and add it to the end.  As
   2520  1.1.1.2  dyoung 	 * each additional descriptor is added the previous self-linked
   2521  1.1.1.2  dyoung 	 * entry is ``fixed'' naturally.  This should be safe even
   2522  1.1.1.2  dyoung 	 * if DMA is happening.  When processing RX interrupts we
   2523  1.1.1.2  dyoung 	 * never remove/process the last, self-linked, entry on the
   2524  1.1.1.2  dyoung 	 * descriptor list.  This insures the hardware always has
   2525  1.1.1.2  dyoung 	 * someplace to write a new frame.
   2526  1.1.1.2  dyoung 	 */
   2527      1.1  dyoung 	ds = bf->bf_desc;
   2528  1.1.1.2  dyoung 	ds->ds_link = bf->bf_daddr;	/* link to self */
   2529      1.1  dyoung 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2530      1.1  dyoung 	ath_hal_setuprxdesc(ah, ds
   2531      1.1  dyoung 		, m->m_len		/* buffer size */
   2532      1.1  dyoung 		, 0
   2533      1.1  dyoung 	);
   2534      1.1  dyoung 
   2535      1.1  dyoung 	if (sc->sc_rxlink != NULL)
   2536      1.1  dyoung 		*sc->sc_rxlink = bf->bf_daddr;
   2537      1.1  dyoung 	sc->sc_rxlink = &ds->ds_link;
   2538      1.1  dyoung 	return 0;
   2539      1.1  dyoung }
   2540      1.1  dyoung 
   2541  1.1.1.4  dyoung /*
   2542  1.1.1.4  dyoung  * Extend 15-bit time stamp from rx descriptor to
   2543  1.1.1.4  dyoung  * a full 64-bit TSF using the current h/w TSF.
   2544  1.1.1.4  dyoung  */
   2545  1.1.1.4  dyoung static __inline u_int64_t
   2546  1.1.1.4  dyoung ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
   2547  1.1.1.4  dyoung {
   2548  1.1.1.4  dyoung 	u_int64_t tsf;
   2549  1.1.1.4  dyoung 
   2550  1.1.1.4  dyoung 	tsf = ath_hal_gettsf64(ah);
   2551  1.1.1.4  dyoung 	if ((tsf & 0x7fff) < rstamp)
   2552  1.1.1.4  dyoung 		tsf -= 0x8000;
   2553  1.1.1.4  dyoung 	return ((tsf &~ 0x7fff) | rstamp);
   2554  1.1.1.4  dyoung }
   2555  1.1.1.4  dyoung 
   2556  1.1.1.4  dyoung /*
   2557  1.1.1.4  dyoung  * Intercept management frames to collect beacon rssi data
   2558  1.1.1.4  dyoung  * and to do ibss merges.
   2559  1.1.1.4  dyoung  */
   2560  1.1.1.4  dyoung static void
   2561  1.1.1.4  dyoung ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2562  1.1.1.4  dyoung 	struct ieee80211_node *ni,
   2563  1.1.1.4  dyoung 	int subtype, int rssi, u_int32_t rstamp)
   2564  1.1.1.4  dyoung {
   2565  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2566  1.1.1.4  dyoung 
   2567  1.1.1.4  dyoung 	/*
   2568  1.1.1.4  dyoung 	 * Call up first so subsequent work can use information
   2569  1.1.1.4  dyoung 	 * potentially stored in the node (e.g. for ibss merge).
   2570  1.1.1.4  dyoung 	 */
   2571  1.1.1.4  dyoung 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2572  1.1.1.4  dyoung 	switch (subtype) {
   2573  1.1.1.4  dyoung 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2574  1.1.1.4  dyoung 		/* update rssi statistics for use by the hal */
   2575  1.1.1.4  dyoung 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
   2576  1.1.1.4  dyoung 		/* fall thru... */
   2577  1.1.1.4  dyoung 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2578  1.1.1.4  dyoung 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2579  1.1.1.4  dyoung 		    ic->ic_state == IEEE80211_S_RUN) {
   2580  1.1.1.4  dyoung 			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
   2581  1.1.1.4  dyoung 			/*
   2582  1.1.1.4  dyoung 			 * Handle ibss merge as needed; check the tsf on the
   2583  1.1.1.4  dyoung 			 * frame before attempting the merge.  The 802.11 spec
   2584  1.1.1.4  dyoung 			 * says the station should change it's bssid to match
   2585  1.1.1.4  dyoung 			 * the oldest station with the same ssid, where oldest
   2586  1.1.1.4  dyoung 			 * is determined by the tsf.  Note that hardware
   2587  1.1.1.4  dyoung 			 * reconfiguration happens through callback to
   2588  1.1.1.4  dyoung 			 * ath_newstate as the state machine will go from
   2589  1.1.1.4  dyoung 			 * RUN -> RUN when this happens.
   2590  1.1.1.4  dyoung 			 */
   2591  1.1.1.4  dyoung 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2592  1.1.1.4  dyoung 				DPRINTF(sc, ATH_DEBUG_STATE,
   2593  1.1.1.4  dyoung 				    "ibss merge, rstamp %u tsf %ju "
   2594  1.1.1.4  dyoung 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2595  1.1.1.4  dyoung 				    (uintmax_t)ni->ni_tstamp.tsf);
   2596  1.1.1.6   skrll 				(void) ieee80211_ibss_merge(ni);
   2597  1.1.1.4  dyoung 			}
   2598  1.1.1.4  dyoung 		}
   2599  1.1.1.4  dyoung 		break;
   2600  1.1.1.4  dyoung 	}
   2601  1.1.1.4  dyoung }
   2602  1.1.1.4  dyoung 
   2603  1.1.1.4  dyoung /*
   2604  1.1.1.4  dyoung  * Set the default antenna.
   2605  1.1.1.4  dyoung  */
   2606  1.1.1.4  dyoung static void
   2607  1.1.1.4  dyoung ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2608  1.1.1.4  dyoung {
   2609  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2610  1.1.1.4  dyoung 
   2611  1.1.1.4  dyoung 	/* XXX block beacon interrupts */
   2612  1.1.1.4  dyoung 	ath_hal_setdefantenna(ah, antenna);
   2613  1.1.1.4  dyoung 	if (sc->sc_defant != antenna)
   2614  1.1.1.4  dyoung 		sc->sc_stats.ast_ant_defswitch++;
   2615  1.1.1.4  dyoung 	sc->sc_defant = antenna;
   2616  1.1.1.4  dyoung 	sc->sc_rxotherant = 0;
   2617  1.1.1.4  dyoung }
   2618  1.1.1.4  dyoung 
   2619      1.1  dyoung static void
   2620      1.1  dyoung ath_rx_proc(void *arg, int npending)
   2621      1.1  dyoung {
   2622  1.1.1.2  dyoung #define	PA2DESC(_sc, _pa) \
   2623  1.1.1.4  dyoung 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   2624  1.1.1.4  dyoung 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2625      1.1  dyoung 	struct ath_softc *sc = arg;
   2626      1.1  dyoung 	struct ath_buf *bf;
   2627      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   2628  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   2629      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2630      1.1  dyoung 	struct ath_desc *ds;
   2631      1.1  dyoung 	struct mbuf *m;
   2632      1.1  dyoung 	struct ieee80211_node *ni;
   2633  1.1.1.2  dyoung 	struct ath_node *an;
   2634  1.1.1.4  dyoung 	int len, type;
   2635      1.1  dyoung 	u_int phyerr;
   2636      1.1  dyoung 	HAL_STATUS status;
   2637      1.1  dyoung 
   2638  1.1.1.4  dyoung 	NET_LOCK_GIANT();		/* XXX */
   2639  1.1.1.4  dyoung 
   2640  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2641      1.1  dyoung 	do {
   2642  1.1.1.4  dyoung 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2643      1.1  dyoung 		if (bf == NULL) {		/* NB: shouldn't happen */
   2644  1.1.1.4  dyoung 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2645      1.1  dyoung 			break;
   2646      1.1  dyoung 		}
   2647  1.1.1.2  dyoung 		ds = bf->bf_desc;
   2648  1.1.1.2  dyoung 		if (ds->ds_link == bf->bf_daddr) {
   2649  1.1.1.2  dyoung 			/* NB: never process the self-linked entry at the end */
   2650  1.1.1.2  dyoung 			break;
   2651  1.1.1.2  dyoung 		}
   2652      1.1  dyoung 		m = bf->bf_m;
   2653      1.1  dyoung 		if (m == NULL) {		/* NB: shouldn't happen */
   2654  1.1.1.4  dyoung 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2655      1.1  dyoung 			continue;
   2656      1.1  dyoung 		}
   2657  1.1.1.2  dyoung 		/* XXX sync descriptor memory */
   2658  1.1.1.2  dyoung 		/*
   2659  1.1.1.2  dyoung 		 * Must provide the virtual address of the current
   2660  1.1.1.2  dyoung 		 * descriptor, the physical address, and the virtual
   2661  1.1.1.2  dyoung 		 * address of the next descriptor in the h/w chain.
   2662  1.1.1.2  dyoung 		 * This allows the HAL to look ahead to see if the
   2663  1.1.1.2  dyoung 		 * hardware is done with a descriptor by checking the
   2664  1.1.1.2  dyoung 		 * done bit in the following descriptor and the address
   2665  1.1.1.2  dyoung 		 * of the current descriptor the DMA engine is working
   2666  1.1.1.2  dyoung 		 * on.  All this is necessary because of our use of
   2667  1.1.1.2  dyoung 		 * a self-linked list to avoid rx overruns.
   2668  1.1.1.2  dyoung 		 */
   2669  1.1.1.2  dyoung 		status = ath_hal_rxprocdesc(ah, ds,
   2670  1.1.1.2  dyoung 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2671      1.1  dyoung #ifdef AR_DEBUG
   2672  1.1.1.4  dyoung 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2673      1.1  dyoung 			ath_printrxbuf(bf, status == HAL_OK);
   2674      1.1  dyoung #endif
   2675      1.1  dyoung 		if (status == HAL_EINPROGRESS)
   2676      1.1  dyoung 			break;
   2677  1.1.1.4  dyoung 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2678  1.1.1.4  dyoung 		if (ds->ds_rxstat.rs_more) {
   2679  1.1.1.4  dyoung 			/*
   2680  1.1.1.4  dyoung 			 * Frame spans multiple descriptors; this
   2681  1.1.1.4  dyoung 			 * cannot happen yet as we don't support
   2682  1.1.1.4  dyoung 			 * jumbograms.  If not in monitor mode,
   2683  1.1.1.4  dyoung 			 * discard the frame.
   2684  1.1.1.4  dyoung 			 */
   2685  1.1.1.4  dyoung 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2686  1.1.1.4  dyoung 				sc->sc_stats.ast_rx_toobig++;
   2687  1.1.1.4  dyoung 				goto rx_next;
   2688  1.1.1.4  dyoung 			}
   2689  1.1.1.4  dyoung 			/* fall thru for monitor mode handling... */
   2690  1.1.1.4  dyoung 		} else if (ds->ds_rxstat.rs_status != 0) {
   2691      1.1  dyoung 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2692      1.1  dyoung 				sc->sc_stats.ast_rx_crcerr++;
   2693      1.1  dyoung 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2694      1.1  dyoung 				sc->sc_stats.ast_rx_fifoerr++;
   2695      1.1  dyoung 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2696      1.1  dyoung 				sc->sc_stats.ast_rx_phyerr++;
   2697      1.1  dyoung 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2698      1.1  dyoung 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2699  1.1.1.4  dyoung 				goto rx_next;
   2700  1.1.1.4  dyoung 			}
   2701  1.1.1.4  dyoung 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   2702  1.1.1.2  dyoung 				/*
   2703  1.1.1.4  dyoung 				 * Decrypt error.  If the error occurred
   2704  1.1.1.4  dyoung 				 * because there was no hardware key, then
   2705  1.1.1.4  dyoung 				 * let the frame through so the upper layers
   2706  1.1.1.4  dyoung 				 * can process it.  This is necessary for 5210
   2707  1.1.1.4  dyoung 				 * parts which have no way to setup a ``clear''
   2708  1.1.1.4  dyoung 				 * key cache entry.
   2709  1.1.1.4  dyoung 				 *
   2710  1.1.1.4  dyoung 				 * XXX do key cache faulting
   2711  1.1.1.2  dyoung 				 */
   2712  1.1.1.4  dyoung 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   2713  1.1.1.4  dyoung 					goto rx_accept;
   2714  1.1.1.4  dyoung 				sc->sc_stats.ast_rx_badcrypt++;
   2715      1.1  dyoung 			}
   2716  1.1.1.4  dyoung 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   2717  1.1.1.4  dyoung 				sc->sc_stats.ast_rx_badmic++;
   2718  1.1.1.4  dyoung 				/*
   2719  1.1.1.4  dyoung 				 * Do minimal work required to hand off
   2720  1.1.1.4  dyoung 				 * the 802.11 header for notifcation.
   2721  1.1.1.4  dyoung 				 */
   2722  1.1.1.4  dyoung 				/* XXX frag's and qos frames */
   2723  1.1.1.4  dyoung 				len = ds->ds_rxstat.rs_datalen;
   2724  1.1.1.4  dyoung 				if (len >= sizeof (struct ieee80211_frame)) {
   2725  1.1.1.4  dyoung 					bus_dmamap_sync(sc->sc_dmat,
   2726  1.1.1.4  dyoung 					    bf->bf_dmamap,
   2727  1.1.1.4  dyoung 					    BUS_DMASYNC_POSTREAD);
   2728  1.1.1.4  dyoung 					ieee80211_notify_michael_failure(ic,
   2729  1.1.1.4  dyoung 					    mtod(m, struct ieee80211_frame *),
   2730  1.1.1.4  dyoung 					    sc->sc_splitmic ?
   2731  1.1.1.4  dyoung 					        ds->ds_rxstat.rs_keyix-32 :
   2732  1.1.1.4  dyoung 					        ds->ds_rxstat.rs_keyix
   2733  1.1.1.4  dyoung 					);
   2734  1.1.1.4  dyoung 				}
   2735  1.1.1.4  dyoung 			}
   2736  1.1.1.4  dyoung 			ifp->if_ierrors++;
   2737  1.1.1.4  dyoung 			/*
   2738  1.1.1.4  dyoung 			 * Reject error frames, we normally don't want
   2739  1.1.1.4  dyoung 			 * to see them in monitor mode (in monitor mode
   2740  1.1.1.4  dyoung 			 * allow through packets that have crypto problems).
   2741  1.1.1.4  dyoung 			 */
   2742  1.1.1.4  dyoung 			if ((ds->ds_rxstat.rs_status &~
   2743  1.1.1.4  dyoung 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
   2744  1.1.1.4  dyoung 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
   2745  1.1.1.4  dyoung 				goto rx_next;
   2746      1.1  dyoung 		}
   2747  1.1.1.4  dyoung rx_accept:
   2748  1.1.1.4  dyoung 		/*
   2749  1.1.1.4  dyoung 		 * Sync and unmap the frame.  At this point we're
   2750  1.1.1.4  dyoung 		 * committed to passing the mbuf somewhere so clear
   2751  1.1.1.4  dyoung 		 * bf_m; this means a new sk_buff must be allocated
   2752  1.1.1.4  dyoung 		 * when the rx descriptor is setup again to receive
   2753  1.1.1.4  dyoung 		 * another frame.
   2754  1.1.1.4  dyoung 		 */
   2755  1.1.1.4  dyoung 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   2756      1.1  dyoung 		    BUS_DMASYNC_POSTREAD);
   2757      1.1  dyoung 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2758      1.1  dyoung 		bf->bf_m = NULL;
   2759  1.1.1.4  dyoung 
   2760      1.1  dyoung 		m->m_pkthdr.rcvif = ifp;
   2761  1.1.1.4  dyoung 		len = ds->ds_rxstat.rs_datalen;
   2762      1.1  dyoung 		m->m_pkthdr.len = m->m_len = len;
   2763      1.1  dyoung 
   2764  1.1.1.4  dyoung 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   2765  1.1.1.4  dyoung 
   2766      1.1  dyoung 		if (sc->sc_drvbpf) {
   2767  1.1.1.4  dyoung 			u_int8_t rix;
   2768  1.1.1.4  dyoung 
   2769  1.1.1.4  dyoung 			/*
   2770  1.1.1.4  dyoung 			 * Discard anything shorter than an ack or cts.
   2771  1.1.1.4  dyoung 			 */
   2772  1.1.1.4  dyoung 			if (len < IEEE80211_ACK_LEN) {
   2773  1.1.1.4  dyoung 				DPRINTF(sc, ATH_DEBUG_RECV,
   2774  1.1.1.4  dyoung 					"%s: runt packet %d\n",
   2775  1.1.1.4  dyoung 					__func__, len);
   2776  1.1.1.4  dyoung 				sc->sc_stats.ast_rx_tooshort++;
   2777  1.1.1.4  dyoung 				m_freem(m);
   2778  1.1.1.4  dyoung 				goto rx_next;
   2779  1.1.1.4  dyoung 			}
   2780  1.1.1.4  dyoung 			rix = ds->ds_rxstat.rs_rate;
   2781  1.1.1.4  dyoung 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   2782  1.1.1.4  dyoung 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   2783  1.1.1.3  dyoung 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
   2784  1.1.1.3  dyoung 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   2785  1.1.1.3  dyoung 			/* XXX TSF */
   2786      1.1  dyoung 
   2787  1.1.1.3  dyoung 			bpf_mtap2(sc->sc_drvbpf,
   2788  1.1.1.3  dyoung 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   2789      1.1  dyoung 		}
   2790      1.1  dyoung 
   2791  1.1.1.4  dyoung 		/*
   2792  1.1.1.4  dyoung 		 * From this point on we assume the frame is at least
   2793  1.1.1.4  dyoung 		 * as large as ieee80211_frame_min; verify that.
   2794  1.1.1.4  dyoung 		 */
   2795  1.1.1.4  dyoung 		if (len < IEEE80211_MIN_LEN) {
   2796  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   2797  1.1.1.4  dyoung 				__func__, len);
   2798  1.1.1.4  dyoung 			sc->sc_stats.ast_rx_tooshort++;
   2799  1.1.1.4  dyoung 			m_freem(m);
   2800  1.1.1.4  dyoung 			goto rx_next;
   2801  1.1.1.4  dyoung 		}
   2802  1.1.1.4  dyoung 
   2803  1.1.1.4  dyoung 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   2804  1.1.1.4  dyoung 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
   2805  1.1.1.4  dyoung 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   2806  1.1.1.4  dyoung 				   ds->ds_rxstat.rs_rssi);
   2807      1.1  dyoung 		}
   2808      1.1  dyoung 
   2809  1.1.1.4  dyoung 		m_adj(m, -IEEE80211_CRC_LEN);
   2810  1.1.1.4  dyoung 
   2811      1.1  dyoung 		/*
   2812  1.1.1.4  dyoung 		 * Locate the node for sender, track state, and then
   2813  1.1.1.4  dyoung 		 * pass the (referenced) node up to the 802.11 layer
   2814  1.1.1.6   skrll 		 * for its use.
   2815      1.1  dyoung 		 */
   2816  1.1.1.6   skrll 		ni = ieee80211_find_rxnode_withkey(ic,
   2817  1.1.1.6   skrll 			mtod(m, const struct ieee80211_frame_min *),
   2818  1.1.1.6   skrll 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   2819  1.1.1.6   skrll 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   2820  1.1.1.6   skrll 		/*
   2821  1.1.1.6   skrll 		 * Track rx rssi and do any rx antenna management.
   2822  1.1.1.6   skrll 		 */
   2823  1.1.1.6   skrll 		an = ATH_NODE(ni);
   2824  1.1.1.6   skrll 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   2825  1.1.1.6   skrll 		/*
   2826  1.1.1.6   skrll 		 * Send frame up for processing.
   2827  1.1.1.6   skrll 		 */
   2828  1.1.1.6   skrll 		type = ieee80211_input(ic, m, ni,
   2829  1.1.1.6   skrll 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   2830  1.1.1.5  dyoung 		ieee80211_free_node(ni);
   2831  1.1.1.4  dyoung 		if (sc->sc_diversity) {
   2832  1.1.1.4  dyoung 			/*
   2833  1.1.1.4  dyoung 			 * When using fast diversity, change the default rx
   2834  1.1.1.4  dyoung 			 * antenna if diversity chooses the other antenna 3
   2835  1.1.1.4  dyoung 			 * times in a row.
   2836  1.1.1.4  dyoung 			 */
   2837  1.1.1.4  dyoung 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   2838  1.1.1.4  dyoung 				if (++sc->sc_rxotherant >= 3)
   2839  1.1.1.4  dyoung 					ath_setdefantenna(sc,
   2840  1.1.1.4  dyoung 						ds->ds_rxstat.rs_antenna);
   2841  1.1.1.4  dyoung 			} else
   2842  1.1.1.4  dyoung 				sc->sc_rxotherant = 0;
   2843  1.1.1.4  dyoung 		}
   2844  1.1.1.4  dyoung 		if (sc->sc_softled) {
   2845  1.1.1.4  dyoung 			/*
   2846  1.1.1.4  dyoung 			 * Blink for any data frame.  Otherwise do a
   2847  1.1.1.4  dyoung 			 * heartbeat-style blink when idle.  The latter
   2848  1.1.1.4  dyoung 			 * is mainly for station mode where we depend on
   2849  1.1.1.4  dyoung 			 * periodic beacon frames to trigger the poll event.
   2850  1.1.1.4  dyoung 			 */
   2851  1.1.1.4  dyoung 			if (type == IEEE80211_FC0_TYPE_DATA) {
   2852  1.1.1.4  dyoung 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   2853  1.1.1.4  dyoung 				ath_led_event(sc, ATH_LED_RX);
   2854  1.1.1.4  dyoung 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   2855  1.1.1.4  dyoung 				ath_led_event(sc, ATH_LED_POLL);
   2856  1.1.1.4  dyoung 		}
   2857  1.1.1.4  dyoung rx_next:
   2858  1.1.1.4  dyoung 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   2859      1.1  dyoung 	} while (ath_rxbuf_init(sc, bf) == 0);
   2860      1.1  dyoung 
   2861  1.1.1.4  dyoung 	/* rx signal state monitoring */
   2862  1.1.1.4  dyoung 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
   2863  1.1.1.4  dyoung 
   2864  1.1.1.4  dyoung 	NET_UNLOCK_GIANT();		/* XXX */
   2865  1.1.1.2  dyoung #undef PA2DESC
   2866      1.1  dyoung }
   2867      1.1  dyoung 
   2868      1.1  dyoung /*
   2869  1.1.1.4  dyoung  * Setup a h/w transmit queue.
   2870  1.1.1.4  dyoung  */
   2871  1.1.1.4  dyoung static struct ath_txq *
   2872  1.1.1.4  dyoung ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   2873  1.1.1.4  dyoung {
   2874  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   2875  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2876  1.1.1.4  dyoung 	HAL_TXQ_INFO qi;
   2877  1.1.1.4  dyoung 	int qnum;
   2878  1.1.1.4  dyoung 
   2879  1.1.1.4  dyoung 	memset(&qi, 0, sizeof(qi));
   2880  1.1.1.4  dyoung 	qi.tqi_subtype = subtype;
   2881  1.1.1.4  dyoung 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2882  1.1.1.4  dyoung 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2883  1.1.1.4  dyoung 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2884  1.1.1.4  dyoung 	/*
   2885  1.1.1.4  dyoung 	 * Enable interrupts only for EOL and DESC conditions.
   2886  1.1.1.4  dyoung 	 * We mark tx descriptors to receive a DESC interrupt
   2887  1.1.1.4  dyoung 	 * when a tx queue gets deep; otherwise waiting for the
   2888  1.1.1.4  dyoung 	 * EOL to reap descriptors.  Note that this is done to
   2889  1.1.1.4  dyoung 	 * reduce interrupt load and this only defers reaping
   2890  1.1.1.4  dyoung 	 * descriptors, never transmitting frames.  Aside from
   2891  1.1.1.4  dyoung 	 * reducing interrupts this also permits more concurrency.
   2892  1.1.1.4  dyoung 	 * The only potential downside is if the tx queue backs
   2893  1.1.1.4  dyoung 	 * up in which case the top half of the kernel may backup
   2894  1.1.1.4  dyoung 	 * due to a lack of tx descriptors.
   2895  1.1.1.4  dyoung 	 */
   2896  1.1.1.4  dyoung 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
   2897  1.1.1.4  dyoung 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   2898  1.1.1.4  dyoung 	if (qnum == -1) {
   2899  1.1.1.4  dyoung 		/*
   2900  1.1.1.5  dyoung 		 * NB: don't print a message, this happens
   2901  1.1.1.4  dyoung 		 * normally on parts with too few tx queues
   2902  1.1.1.4  dyoung 		 */
   2903  1.1.1.4  dyoung 		return NULL;
   2904  1.1.1.4  dyoung 	}
   2905  1.1.1.4  dyoung 	if (qnum >= N(sc->sc_txq)) {
   2906  1.1.1.4  dyoung 		device_printf(sc->sc_dev,
   2907  1.1.1.4  dyoung 			"hal qnum %u out of range, max %zu!\n",
   2908  1.1.1.4  dyoung 			qnum, N(sc->sc_txq));
   2909  1.1.1.4  dyoung 		ath_hal_releasetxqueue(ah, qnum);
   2910  1.1.1.4  dyoung 		return NULL;
   2911  1.1.1.4  dyoung 	}
   2912  1.1.1.4  dyoung 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   2913  1.1.1.4  dyoung 		struct ath_txq *txq = &sc->sc_txq[qnum];
   2914  1.1.1.4  dyoung 
   2915  1.1.1.4  dyoung 		txq->axq_qnum = qnum;
   2916  1.1.1.4  dyoung 		txq->axq_depth = 0;
   2917  1.1.1.4  dyoung 		txq->axq_intrcnt = 0;
   2918  1.1.1.4  dyoung 		txq->axq_link = NULL;
   2919  1.1.1.4  dyoung 		STAILQ_INIT(&txq->axq_q);
   2920  1.1.1.4  dyoung 		ATH_TXQ_LOCK_INIT(sc, txq);
   2921  1.1.1.4  dyoung 		sc->sc_txqsetup |= 1<<qnum;
   2922  1.1.1.4  dyoung 	}
   2923  1.1.1.4  dyoung 	return &sc->sc_txq[qnum];
   2924  1.1.1.4  dyoung #undef N
   2925  1.1.1.4  dyoung }
   2926  1.1.1.4  dyoung 
   2927  1.1.1.4  dyoung /*
   2928  1.1.1.4  dyoung  * Setup a hardware data transmit queue for the specified
   2929  1.1.1.4  dyoung  * access control.  The hal may not support all requested
   2930  1.1.1.4  dyoung  * queues in which case it will return a reference to a
   2931  1.1.1.4  dyoung  * previously setup queue.  We record the mapping from ac's
   2932  1.1.1.4  dyoung  * to h/w queues for use by ath_tx_start and also track
   2933  1.1.1.4  dyoung  * the set of h/w queues being used to optimize work in the
   2934  1.1.1.4  dyoung  * transmit interrupt handler and related routines.
   2935      1.1  dyoung  */
   2936  1.1.1.4  dyoung static int
   2937  1.1.1.4  dyoung ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   2938  1.1.1.4  dyoung {
   2939  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   2940  1.1.1.4  dyoung 	struct ath_txq *txq;
   2941  1.1.1.4  dyoung 
   2942  1.1.1.4  dyoung 	if (ac >= N(sc->sc_ac2q)) {
   2943  1.1.1.4  dyoung 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   2944  1.1.1.4  dyoung 			ac, N(sc->sc_ac2q));
   2945  1.1.1.4  dyoung 		return 0;
   2946  1.1.1.4  dyoung 	}
   2947  1.1.1.4  dyoung 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   2948  1.1.1.4  dyoung 	if (txq != NULL) {
   2949  1.1.1.4  dyoung 		sc->sc_ac2q[ac] = txq;
   2950  1.1.1.4  dyoung 		return 1;
   2951  1.1.1.4  dyoung 	} else
   2952  1.1.1.4  dyoung 		return 0;
   2953  1.1.1.4  dyoung #undef N
   2954  1.1.1.4  dyoung }
   2955      1.1  dyoung 
   2956  1.1.1.4  dyoung /*
   2957  1.1.1.4  dyoung  * Update WME parameters for a transmit queue.
   2958  1.1.1.4  dyoung  */
   2959      1.1  dyoung static int
   2960  1.1.1.4  dyoung ath_txq_update(struct ath_softc *sc, int ac)
   2961      1.1  dyoung {
   2962  1.1.1.4  dyoung #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   2963  1.1.1.4  dyoung #define	ATH_TXOP_TO_US(v)		(v<<5)
   2964      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   2965  1.1.1.4  dyoung 	struct ath_txq *txq = sc->sc_ac2q[ac];
   2966  1.1.1.4  dyoung 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2967      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   2968  1.1.1.4  dyoung 	HAL_TXQ_INFO qi;
   2969      1.1  dyoung 
   2970  1.1.1.4  dyoung 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   2971  1.1.1.4  dyoung 	qi.tqi_aifs = wmep->wmep_aifsn;
   2972  1.1.1.4  dyoung 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2973  1.1.1.4  dyoung 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2974  1.1.1.4  dyoung 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   2975  1.1.1.4  dyoung 
   2976  1.1.1.4  dyoung 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   2977  1.1.1.4  dyoung 		device_printf(sc->sc_dev, "unable to update hardware queue "
   2978  1.1.1.4  dyoung 			"parameters for %s traffic!\n",
   2979  1.1.1.4  dyoung 			ieee80211_wme_acnames[ac]);
   2980  1.1.1.4  dyoung 		return 0;
   2981  1.1.1.4  dyoung 	} else {
   2982  1.1.1.4  dyoung 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   2983  1.1.1.4  dyoung 		return 1;
   2984      1.1  dyoung 	}
   2985  1.1.1.4  dyoung #undef ATH_TXOP_TO_US
   2986  1.1.1.4  dyoung #undef ATH_EXPONENT_TO_VALUE
   2987  1.1.1.4  dyoung }
   2988  1.1.1.4  dyoung 
   2989  1.1.1.4  dyoung /*
   2990  1.1.1.4  dyoung  * Callback from the 802.11 layer to update WME parameters.
   2991  1.1.1.4  dyoung  */
   2992  1.1.1.5  dyoung static int
   2993  1.1.1.4  dyoung ath_wme_update(struct ieee80211com *ic)
   2994  1.1.1.4  dyoung {
   2995  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2996  1.1.1.4  dyoung 
   2997  1.1.1.4  dyoung 	return !ath_txq_update(sc, WME_AC_BE) ||
   2998  1.1.1.4  dyoung 	    !ath_txq_update(sc, WME_AC_BK) ||
   2999  1.1.1.4  dyoung 	    !ath_txq_update(sc, WME_AC_VI) ||
   3000  1.1.1.4  dyoung 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3001  1.1.1.4  dyoung }
   3002  1.1.1.4  dyoung 
   3003  1.1.1.4  dyoung /*
   3004  1.1.1.4  dyoung  * Reclaim resources for a setup queue.
   3005  1.1.1.4  dyoung  */
   3006  1.1.1.4  dyoung static void
   3007  1.1.1.4  dyoung ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3008  1.1.1.4  dyoung {
   3009  1.1.1.4  dyoung 
   3010  1.1.1.4  dyoung 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3011  1.1.1.4  dyoung 	ATH_TXQ_LOCK_DESTROY(txq);
   3012  1.1.1.4  dyoung 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3013  1.1.1.4  dyoung }
   3014  1.1.1.4  dyoung 
   3015  1.1.1.4  dyoung /*
   3016  1.1.1.4  dyoung  * Reclaim all tx queue resources.
   3017  1.1.1.4  dyoung  */
   3018  1.1.1.4  dyoung static void
   3019  1.1.1.4  dyoung ath_tx_cleanup(struct ath_softc *sc)
   3020  1.1.1.4  dyoung {
   3021  1.1.1.4  dyoung 	int i;
   3022  1.1.1.4  dyoung 
   3023  1.1.1.4  dyoung 	ATH_TXBUF_LOCK_DESTROY(sc);
   3024  1.1.1.4  dyoung 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3025  1.1.1.4  dyoung 		if (ATH_TXQ_SETUP(sc, i))
   3026  1.1.1.4  dyoung 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3027  1.1.1.4  dyoung }
   3028  1.1.1.4  dyoung 
   3029  1.1.1.4  dyoung /*
   3030  1.1.1.4  dyoung  * Defragment an mbuf chain, returning at most maxfrags separate
   3031  1.1.1.4  dyoung  * mbufs+clusters.  If this is not possible NULL is returned and
   3032  1.1.1.4  dyoung  * the original mbuf chain is left in it's present (potentially
   3033  1.1.1.4  dyoung  * modified) state.  We use two techniques: collapsing consecutive
   3034  1.1.1.4  dyoung  * mbufs and replacing consecutive mbufs by a cluster.
   3035  1.1.1.4  dyoung  */
   3036  1.1.1.4  dyoung static struct mbuf *
   3037  1.1.1.4  dyoung ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3038  1.1.1.4  dyoung {
   3039  1.1.1.4  dyoung 	struct mbuf *m, *n, *n2, **prev;
   3040  1.1.1.4  dyoung 	u_int curfrags;
   3041      1.1  dyoung 
   3042      1.1  dyoung 	/*
   3043  1.1.1.4  dyoung 	 * Calculate the current number of frags.
   3044      1.1  dyoung 	 */
   3045  1.1.1.4  dyoung 	curfrags = 0;
   3046  1.1.1.4  dyoung 	for (m = m0; m != NULL; m = m->m_next)
   3047  1.1.1.4  dyoung 		curfrags++;
   3048  1.1.1.4  dyoung 	/*
   3049  1.1.1.4  dyoung 	 * First, try to collapse mbufs.  Note that we always collapse
   3050  1.1.1.4  dyoung 	 * towards the front so we don't need to deal with moving the
   3051  1.1.1.4  dyoung 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3052  1.1.1.4  dyoung 	 * less data than the following.
   3053  1.1.1.4  dyoung 	 */
   3054  1.1.1.4  dyoung 	m = m0;
   3055  1.1.1.4  dyoung again:
   3056  1.1.1.4  dyoung 	for (;;) {
   3057  1.1.1.4  dyoung 		n = m->m_next;
   3058  1.1.1.4  dyoung 		if (n == NULL)
   3059  1.1.1.4  dyoung 			break;
   3060  1.1.1.4  dyoung 		if ((m->m_flags & M_RDONLY) == 0 &&
   3061  1.1.1.4  dyoung 		    n->m_len < M_TRAILINGSPACE(m)) {
   3062  1.1.1.4  dyoung 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
   3063  1.1.1.4  dyoung 				n->m_len);
   3064  1.1.1.4  dyoung 			m->m_len += n->m_len;
   3065  1.1.1.4  dyoung 			m->m_next = n->m_next;
   3066  1.1.1.4  dyoung 			m_free(n);
   3067  1.1.1.4  dyoung 			if (--curfrags <= maxfrags)
   3068  1.1.1.4  dyoung 				return m0;
   3069  1.1.1.4  dyoung 		} else
   3070  1.1.1.4  dyoung 			m = n;
   3071  1.1.1.4  dyoung 	}
   3072  1.1.1.4  dyoung 	KASSERT(maxfrags > 1,
   3073  1.1.1.4  dyoung 		("maxfrags %u, but normal collapse failed", maxfrags));
   3074  1.1.1.4  dyoung 	/*
   3075  1.1.1.4  dyoung 	 * Collapse consecutive mbufs to a cluster.
   3076  1.1.1.4  dyoung 	 */
   3077  1.1.1.4  dyoung 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3078  1.1.1.4  dyoung 	while ((n = *prev) != NULL) {
   3079  1.1.1.4  dyoung 		if ((n2 = n->m_next) != NULL &&
   3080  1.1.1.4  dyoung 		    n->m_len + n2->m_len < MCLBYTES) {
   3081  1.1.1.4  dyoung 			m = m_getcl(how, MT_DATA, 0);
   3082  1.1.1.4  dyoung 			if (m == NULL)
   3083  1.1.1.4  dyoung 				goto bad;
   3084  1.1.1.4  dyoung 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3085  1.1.1.4  dyoung 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3086  1.1.1.4  dyoung 				n2->m_len);
   3087  1.1.1.4  dyoung 			m->m_len = n->m_len + n2->m_len;
   3088  1.1.1.4  dyoung 			m->m_next = n2->m_next;
   3089  1.1.1.4  dyoung 			*prev = m;
   3090  1.1.1.4  dyoung 			m_free(n);
   3091  1.1.1.4  dyoung 			m_free(n2);
   3092  1.1.1.4  dyoung 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3093  1.1.1.4  dyoung 				return m0;
   3094  1.1.1.4  dyoung 			/*
   3095  1.1.1.4  dyoung 			 * Still not there, try the normal collapse
   3096  1.1.1.4  dyoung 			 * again before we allocate another cluster.
   3097  1.1.1.4  dyoung 			 */
   3098  1.1.1.4  dyoung 			goto again;
   3099  1.1.1.4  dyoung 		}
   3100  1.1.1.4  dyoung 		prev = &n->m_next;
   3101  1.1.1.4  dyoung 	}
   3102  1.1.1.4  dyoung 	/*
   3103  1.1.1.4  dyoung 	 * No place where we can collapse to a cluster; punt.
   3104  1.1.1.4  dyoung 	 * This can occur if, for example, you request 2 frags
   3105  1.1.1.4  dyoung 	 * but the packet requires that both be clusters (we
   3106  1.1.1.4  dyoung 	 * never reallocate the first mbuf to avoid moving the
   3107  1.1.1.4  dyoung 	 * packet header).
   3108  1.1.1.4  dyoung 	 */
   3109  1.1.1.4  dyoung bad:
   3110  1.1.1.4  dyoung 	return NULL;
   3111  1.1.1.4  dyoung }
   3112  1.1.1.4  dyoung 
   3113  1.1.1.4  dyoung static int
   3114  1.1.1.4  dyoung ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3115  1.1.1.4  dyoung     struct mbuf *m0)
   3116  1.1.1.4  dyoung {
   3117  1.1.1.4  dyoung #define	CTS_DURATION \
   3118  1.1.1.4  dyoung 	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
   3119  1.1.1.4  dyoung #define	updateCTSForBursting(_ah, _ds, _txq) \
   3120  1.1.1.4  dyoung 	ath_hal_updateCTSForBursting(_ah, _ds, \
   3121  1.1.1.4  dyoung 	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
   3122  1.1.1.4  dyoung 	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
   3123  1.1.1.4  dyoung 	    txopLimit, CTS_DURATION)
   3124  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   3125  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3126  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   3127  1.1.1.4  dyoung 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3128  1.1.1.4  dyoung 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
   3129  1.1.1.4  dyoung 	u_int8_t rix, txrate, ctsrate;
   3130  1.1.1.4  dyoung 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3131  1.1.1.4  dyoung 	struct ath_desc *ds, *ds0;
   3132  1.1.1.4  dyoung 	struct ath_txq *txq;
   3133  1.1.1.4  dyoung 	struct ieee80211_frame *wh;
   3134  1.1.1.4  dyoung 	u_int subtype, flags, ctsduration;
   3135  1.1.1.4  dyoung 	HAL_PKT_TYPE atype;
   3136  1.1.1.4  dyoung 	const HAL_RATE_TABLE *rt;
   3137  1.1.1.4  dyoung 	HAL_BOOL shortPreamble;
   3138  1.1.1.4  dyoung 	struct ath_node *an;
   3139  1.1.1.4  dyoung 	struct mbuf *m;
   3140  1.1.1.4  dyoung 	u_int pri;
   3141  1.1.1.4  dyoung 
   3142  1.1.1.4  dyoung 	wh = mtod(m0, struct ieee80211_frame *);
   3143  1.1.1.4  dyoung 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3144  1.1.1.4  dyoung 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3145  1.1.1.4  dyoung 	hdrlen = ieee80211_anyhdrsize(wh);
   3146  1.1.1.4  dyoung 	/*
   3147  1.1.1.4  dyoung 	 * Packet length must not include any
   3148  1.1.1.4  dyoung 	 * pad bytes; deduct them here.
   3149  1.1.1.4  dyoung 	 */
   3150  1.1.1.4  dyoung 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
   3151  1.1.1.4  dyoung 
   3152  1.1.1.4  dyoung 	if (iswep) {
   3153  1.1.1.4  dyoung 		const struct ieee80211_cipher *cip;
   3154  1.1.1.4  dyoung 		struct ieee80211_key *k;
   3155  1.1.1.4  dyoung 
   3156  1.1.1.4  dyoung 		/*
   3157  1.1.1.4  dyoung 		 * Construct the 802.11 header+trailer for an encrypted
   3158  1.1.1.4  dyoung 		 * frame. The only reason this can fail is because of an
   3159  1.1.1.4  dyoung 		 * unknown or unsupported cipher/key type.
   3160  1.1.1.4  dyoung 		 */
   3161  1.1.1.4  dyoung 		k = ieee80211_crypto_encap(ic, ni, m0);
   3162  1.1.1.4  dyoung 		if (k == NULL) {
   3163  1.1.1.4  dyoung 			/*
   3164  1.1.1.4  dyoung 			 * This can happen when the key is yanked after the
   3165  1.1.1.4  dyoung 			 * frame was queued.  Just discard the frame; the
   3166  1.1.1.4  dyoung 			 * 802.11 layer counts failures and provides
   3167  1.1.1.4  dyoung 			 * debugging/diagnostics.
   3168  1.1.1.4  dyoung 			 */
   3169  1.1.1.4  dyoung 			m_freem(m0);
   3170  1.1.1.4  dyoung 			return EIO;
   3171  1.1.1.4  dyoung 		}
   3172  1.1.1.4  dyoung 		/*
   3173  1.1.1.4  dyoung 		 * Adjust the packet + header lengths for the crypto
   3174  1.1.1.4  dyoung 		 * additions and calculate the h/w key index.  When
   3175  1.1.1.4  dyoung 		 * a s/w mic is done the frame will have had any mic
   3176  1.1.1.4  dyoung 		 * added to it prior to entry so skb->len above will
   3177  1.1.1.4  dyoung 		 * account for it. Otherwise we need to add it to the
   3178  1.1.1.4  dyoung 		 * packet length.
   3179  1.1.1.4  dyoung 		 */
   3180  1.1.1.4  dyoung 		cip = k->wk_cipher;
   3181  1.1.1.4  dyoung 		hdrlen += cip->ic_header;
   3182  1.1.1.4  dyoung 		pktlen += cip->ic_header + cip->ic_trailer;
   3183  1.1.1.4  dyoung 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
   3184  1.1.1.4  dyoung 			pktlen += cip->ic_miclen;
   3185  1.1.1.4  dyoung 		keyix = k->wk_keyix;
   3186  1.1.1.4  dyoung 
   3187  1.1.1.4  dyoung 		/* packet header may have moved, reset our local pointer */
   3188  1.1.1.4  dyoung 		wh = mtod(m0, struct ieee80211_frame *);
   3189  1.1.1.5  dyoung 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3190  1.1.1.5  dyoung 		/*
   3191  1.1.1.5  dyoung 		 * Use station key cache slot, if assigned.
   3192  1.1.1.5  dyoung 		 */
   3193  1.1.1.5  dyoung 		keyix = ni->ni_ucastkey.wk_keyix;
   3194  1.1.1.5  dyoung 		if (keyix == IEEE80211_KEYIX_NONE)
   3195  1.1.1.5  dyoung 			keyix = HAL_TXKEYIX_INVALID;
   3196  1.1.1.4  dyoung 	} else
   3197  1.1.1.4  dyoung 		keyix = HAL_TXKEYIX_INVALID;
   3198  1.1.1.4  dyoung 
   3199  1.1.1.4  dyoung 	pktlen += IEEE80211_CRC_LEN;
   3200  1.1.1.4  dyoung 
   3201  1.1.1.4  dyoung 	/*
   3202  1.1.1.4  dyoung 	 * Load the DMA map so any coalescing is done.  This
   3203  1.1.1.4  dyoung 	 * also calculates the number of descriptors we need.
   3204  1.1.1.4  dyoung 	 */
   3205  1.1.1.4  dyoung 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
   3206  1.1.1.4  dyoung 				     bf->bf_segs, &bf->bf_nseg,
   3207      1.1  dyoung 				     BUS_DMA_NOWAIT);
   3208  1.1.1.2  dyoung 	if (error == EFBIG) {
   3209  1.1.1.2  dyoung 		/* XXX packet requires too many descriptors */
   3210  1.1.1.2  dyoung 		bf->bf_nseg = ATH_TXDESC+1;
   3211  1.1.1.2  dyoung 	} else if (error != 0) {
   3212      1.1  dyoung 		sc->sc_stats.ast_tx_busdma++;
   3213      1.1  dyoung 		m_freem(m0);
   3214      1.1  dyoung 		return error;
   3215      1.1  dyoung 	}
   3216      1.1  dyoung 	/*
   3217      1.1  dyoung 	 * Discard null packets and check for packets that
   3218      1.1  dyoung 	 * require too many TX descriptors.  We try to convert
   3219      1.1  dyoung 	 * the latter to a cluster.
   3220      1.1  dyoung 	 */
   3221      1.1  dyoung 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
   3222      1.1  dyoung 		sc->sc_stats.ast_tx_linear++;
   3223  1.1.1.4  dyoung 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3224      1.1  dyoung 		if (m == NULL) {
   3225      1.1  dyoung 			m_freem(m0);
   3226  1.1.1.4  dyoung 			sc->sc_stats.ast_tx_nombuf++;
   3227      1.1  dyoung 			return ENOMEM;
   3228      1.1  dyoung 		}
   3229      1.1  dyoung 		m0 = m;
   3230  1.1.1.4  dyoung 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
   3231  1.1.1.4  dyoung 					     bf->bf_segs, &bf->bf_nseg,
   3232      1.1  dyoung 					     BUS_DMA_NOWAIT);
   3233      1.1  dyoung 		if (error != 0) {
   3234      1.1  dyoung 			sc->sc_stats.ast_tx_busdma++;
   3235      1.1  dyoung 			m_freem(m0);
   3236      1.1  dyoung 			return error;
   3237      1.1  dyoung 		}
   3238  1.1.1.4  dyoung 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3239  1.1.1.4  dyoung 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3240      1.1  dyoung 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3241      1.1  dyoung 		sc->sc_stats.ast_tx_nodata++;
   3242      1.1  dyoung 		m_freem(m0);
   3243      1.1  dyoung 		return EIO;
   3244      1.1  dyoung 	}
   3245  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3246      1.1  dyoung 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
   3247      1.1  dyoung 	bf->bf_m = m0;
   3248      1.1  dyoung 	bf->bf_node = ni;			/* NB: held reference */
   3249      1.1  dyoung 
   3250      1.1  dyoung 	/* setup descriptors */
   3251      1.1  dyoung 	ds = bf->bf_desc;
   3252      1.1  dyoung 	rt = sc->sc_currates;
   3253      1.1  dyoung 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3254      1.1  dyoung 
   3255      1.1  dyoung 	/*
   3256  1.1.1.4  dyoung 	 * NB: the 802.11 layer marks whether or not we should
   3257  1.1.1.4  dyoung 	 * use short preamble based on the current mode and
   3258  1.1.1.4  dyoung 	 * negotiated parameters.
   3259  1.1.1.4  dyoung 	 */
   3260  1.1.1.4  dyoung 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3261  1.1.1.4  dyoung 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
   3262  1.1.1.4  dyoung 		shortPreamble = AH_TRUE;
   3263  1.1.1.4  dyoung 		sc->sc_stats.ast_tx_shortpre++;
   3264  1.1.1.4  dyoung 	} else {
   3265  1.1.1.4  dyoung 		shortPreamble = AH_FALSE;
   3266  1.1.1.4  dyoung 	}
   3267  1.1.1.4  dyoung 
   3268  1.1.1.4  dyoung 	an = ATH_NODE(ni);
   3269  1.1.1.4  dyoung 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3270  1.1.1.4  dyoung 	/*
   3271  1.1.1.4  dyoung 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3272  1.1.1.4  dyoung 	 * setup for rate calculations, and select h/w transmit queue.
   3273      1.1  dyoung 	 */
   3274      1.1  dyoung 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3275      1.1  dyoung 	case IEEE80211_FC0_TYPE_MGT:
   3276      1.1  dyoung 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3277      1.1  dyoung 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3278      1.1  dyoung 			atype = HAL_PKT_TYPE_BEACON;
   3279      1.1  dyoung 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3280      1.1  dyoung 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3281      1.1  dyoung 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3282      1.1  dyoung 			atype = HAL_PKT_TYPE_ATIM;
   3283  1.1.1.4  dyoung 		else
   3284  1.1.1.4  dyoung 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3285      1.1  dyoung 		rix = 0;			/* XXX lowest rate */
   3286  1.1.1.4  dyoung 		try0 = ATH_TXMAXTRY;
   3287  1.1.1.4  dyoung 		if (shortPreamble)
   3288  1.1.1.4  dyoung 			txrate = an->an_tx_mgtratesp;
   3289  1.1.1.4  dyoung 		else
   3290  1.1.1.4  dyoung 			txrate = an->an_tx_mgtrate;
   3291  1.1.1.4  dyoung 		/* NB: force all management frames to highest queue */
   3292  1.1.1.4  dyoung 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3293  1.1.1.4  dyoung 			/* NB: force all management frames to highest queue */
   3294  1.1.1.4  dyoung 			pri = WME_AC_VO;
   3295  1.1.1.4  dyoung 		} else
   3296  1.1.1.4  dyoung 			pri = WME_AC_BE;
   3297  1.1.1.4  dyoung 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3298      1.1  dyoung 		break;
   3299      1.1  dyoung 	case IEEE80211_FC0_TYPE_CTL:
   3300  1.1.1.4  dyoung 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3301      1.1  dyoung 		rix = 0;			/* XXX lowest rate */
   3302  1.1.1.4  dyoung 		try0 = ATH_TXMAXTRY;
   3303  1.1.1.4  dyoung 		if (shortPreamble)
   3304  1.1.1.4  dyoung 			txrate = an->an_tx_mgtratesp;
   3305  1.1.1.4  dyoung 		else
   3306  1.1.1.4  dyoung 			txrate = an->an_tx_mgtrate;
   3307  1.1.1.4  dyoung 		/* NB: force all ctl frames to highest queue */
   3308  1.1.1.4  dyoung 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3309  1.1.1.4  dyoung 			/* NB: force all ctl frames to highest queue */
   3310  1.1.1.4  dyoung 			pri = WME_AC_VO;
   3311  1.1.1.4  dyoung 		} else
   3312  1.1.1.4  dyoung 			pri = WME_AC_BE;
   3313  1.1.1.4  dyoung 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3314      1.1  dyoung 		break;
   3315  1.1.1.4  dyoung 	case IEEE80211_FC0_TYPE_DATA:
   3316  1.1.1.4  dyoung 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3317  1.1.1.4  dyoung 		/*
   3318  1.1.1.4  dyoung 		 * Data frames; consult the rate control module.
   3319  1.1.1.4  dyoung 		 */
   3320  1.1.1.4  dyoung 		ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3321  1.1.1.4  dyoung 			&rix, &try0, &txrate);
   3322  1.1.1.4  dyoung 		sc->sc_txrate = txrate;			/* for LED blinking */
   3323  1.1.1.4  dyoung 		/*
   3324  1.1.1.4  dyoung 		 * Default all non-QoS traffic to the background queue.
   3325  1.1.1.4  dyoung 		 */
   3326  1.1.1.4  dyoung 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
   3327  1.1.1.4  dyoung 			pri = M_WME_GETAC(m0);
   3328  1.1.1.4  dyoung 			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
   3329  1.1.1.4  dyoung 				flags |= HAL_TXDESC_NOACK;
   3330  1.1.1.4  dyoung 				sc->sc_stats.ast_tx_noack++;
   3331  1.1.1.4  dyoung 			}
   3332  1.1.1.4  dyoung 		} else
   3333  1.1.1.4  dyoung 			pri = WME_AC_BE;
   3334      1.1  dyoung 		break;
   3335  1.1.1.4  dyoung 	default:
   3336  1.1.1.4  dyoung 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3337  1.1.1.4  dyoung 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3338  1.1.1.4  dyoung 		/* XXX statistic */
   3339  1.1.1.4  dyoung 		m_freem(m0);
   3340  1.1.1.4  dyoung 		return EIO;
   3341      1.1  dyoung 	}
   3342  1.1.1.4  dyoung 	txq = sc->sc_ac2q[pri];
   3343  1.1.1.4  dyoung 
   3344      1.1  dyoung 	/*
   3345  1.1.1.4  dyoung 	 * When servicing one or more stations in power-save mode
   3346  1.1.1.4  dyoung 	 * multicast frames must be buffered until after the beacon.
   3347  1.1.1.4  dyoung 	 * We use the CAB queue for that.
   3348      1.1  dyoung 	 */
   3349  1.1.1.4  dyoung 	if (ismcast && ic->ic_ps_sta) {
   3350  1.1.1.4  dyoung 		txq = sc->sc_cabq;
   3351  1.1.1.4  dyoung 		/* XXX? more bit in 802.11 frame header */
   3352      1.1  dyoung 	}
   3353      1.1  dyoung 
   3354      1.1  dyoung 	/*
   3355      1.1  dyoung 	 * Calculate miscellaneous flags.
   3356      1.1  dyoung 	 */
   3357  1.1.1.4  dyoung 	if (ismcast) {
   3358      1.1  dyoung 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3359      1.1  dyoung 		sc->sc_stats.ast_tx_noack++;
   3360      1.1  dyoung 	} else if (pktlen > ic->ic_rtsthreshold) {
   3361      1.1  dyoung 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3362  1.1.1.4  dyoung 		cix = rt->info[rix].controlRate;
   3363      1.1  dyoung 		sc->sc_stats.ast_tx_rts++;
   3364      1.1  dyoung 	}
   3365      1.1  dyoung 
   3366      1.1  dyoung 	/*
   3367  1.1.1.4  dyoung 	 * If 802.11g protection is enabled, determine whether
   3368  1.1.1.4  dyoung 	 * to use RTS/CTS or just CTS.  Note that this is only
   3369  1.1.1.4  dyoung 	 * done for OFDM unicast frames.
   3370  1.1.1.4  dyoung 	 */
   3371  1.1.1.4  dyoung 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3372  1.1.1.4  dyoung 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3373  1.1.1.4  dyoung 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3374  1.1.1.4  dyoung 		/* XXX fragments must use CCK rates w/ protection */
   3375  1.1.1.4  dyoung 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3376  1.1.1.4  dyoung 			flags |= HAL_TXDESC_RTSENA;
   3377  1.1.1.4  dyoung 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3378  1.1.1.4  dyoung 			flags |= HAL_TXDESC_CTSENA;
   3379  1.1.1.4  dyoung 		cix = rt->info[sc->sc_protrix].controlRate;
   3380  1.1.1.4  dyoung 		sc->sc_stats.ast_tx_protect++;
   3381  1.1.1.4  dyoung 	}
   3382  1.1.1.4  dyoung 
   3383  1.1.1.4  dyoung 	/*
   3384  1.1.1.2  dyoung 	 * Calculate duration.  This logically belongs in the 802.11
   3385  1.1.1.2  dyoung 	 * layer but it lacks sufficient information to calculate it.
   3386  1.1.1.2  dyoung 	 */
   3387  1.1.1.2  dyoung 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3388  1.1.1.2  dyoung 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3389  1.1.1.2  dyoung 		u_int16_t dur;
   3390  1.1.1.2  dyoung 		/*
   3391  1.1.1.2  dyoung 		 * XXX not right with fragmentation.
   3392  1.1.1.2  dyoung 		 */
   3393  1.1.1.4  dyoung 		if (shortPreamble)
   3394  1.1.1.4  dyoung 			dur = rt->info[rix].spAckDuration;
   3395  1.1.1.4  dyoung 		else
   3396  1.1.1.4  dyoung 			dur = rt->info[rix].lpAckDuration;
   3397  1.1.1.4  dyoung 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3398  1.1.1.2  dyoung 	}
   3399  1.1.1.2  dyoung 
   3400  1.1.1.2  dyoung 	/*
   3401      1.1  dyoung 	 * Calculate RTS/CTS rate and duration if needed.
   3402      1.1  dyoung 	 */
   3403      1.1  dyoung 	ctsduration = 0;
   3404      1.1  dyoung 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3405      1.1  dyoung 		/*
   3406      1.1  dyoung 		 * CTS transmit rate is derived from the transmit rate
   3407      1.1  dyoung 		 * by looking in the h/w rate table.  We must also factor
   3408      1.1  dyoung 		 * in whether or not a short preamble is to be used.
   3409      1.1  dyoung 		 */
   3410  1.1.1.4  dyoung 		/* NB: cix is set above where RTS/CTS is enabled */
   3411  1.1.1.4  dyoung 		KASSERT(cix != 0xff, ("cix not setup"));
   3412      1.1  dyoung 		ctsrate = rt->info[cix].rateCode;
   3413      1.1  dyoung 		/*
   3414  1.1.1.4  dyoung 		 * Compute the transmit duration based on the frame
   3415  1.1.1.4  dyoung 		 * size and the size of an ACK frame.  We call into the
   3416  1.1.1.4  dyoung 		 * HAL to do the computation since it depends on the
   3417  1.1.1.4  dyoung 		 * characteristics of the actual PHY being used.
   3418  1.1.1.4  dyoung 		 *
   3419  1.1.1.4  dyoung 		 * NB: CTS is assumed the same size as an ACK so we can
   3420  1.1.1.4  dyoung 		 *     use the precalculated ACK durations.
   3421      1.1  dyoung 		 */
   3422  1.1.1.4  dyoung 		if (shortPreamble) {
   3423  1.1.1.4  dyoung 			ctsrate |= rt->info[cix].shortPreamble;
   3424  1.1.1.4  dyoung 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3425  1.1.1.4  dyoung 				ctsduration += rt->info[cix].spAckDuration;
   3426      1.1  dyoung 			ctsduration += ath_hal_computetxtime(ah,
   3427  1.1.1.4  dyoung 				rt, pktlen, rix, AH_TRUE);
   3428  1.1.1.4  dyoung 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3429  1.1.1.6   skrll 				ctsduration += rt->info[rix].spAckDuration;
   3430  1.1.1.4  dyoung 		} else {
   3431  1.1.1.4  dyoung 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3432  1.1.1.4  dyoung 				ctsduration += rt->info[cix].lpAckDuration;
   3433      1.1  dyoung 			ctsduration += ath_hal_computetxtime(ah,
   3434  1.1.1.4  dyoung 				rt, pktlen, rix, AH_FALSE);
   3435  1.1.1.4  dyoung 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3436  1.1.1.6   skrll 				ctsduration += rt->info[rix].lpAckDuration;
   3437      1.1  dyoung 		}
   3438  1.1.1.4  dyoung 		/*
   3439  1.1.1.4  dyoung 		 * Must disable multi-rate retry when using RTS/CTS.
   3440  1.1.1.4  dyoung 		 */
   3441  1.1.1.4  dyoung 		try0 = ATH_TXMAXTRY;
   3442      1.1  dyoung 	} else
   3443      1.1  dyoung 		ctsrate = 0;
   3444      1.1  dyoung 
   3445  1.1.1.4  dyoung 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3446  1.1.1.4  dyoung 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
   3447  1.1.1.4  dyoung 			sc->sc_hwmap[txrate].ieeerate, -1);
   3448      1.1  dyoung 
   3449  1.1.1.3  dyoung 	if (ic->ic_rawbpf)
   3450  1.1.1.3  dyoung 		bpf_mtap(ic->ic_rawbpf, m0);
   3451  1.1.1.3  dyoung 	if (sc->sc_drvbpf) {
   3452  1.1.1.4  dyoung 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3453  1.1.1.3  dyoung 		if (iswep)
   3454  1.1.1.3  dyoung 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3455  1.1.1.4  dyoung 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3456  1.1.1.4  dyoung 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3457  1.1.1.4  dyoung 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3458  1.1.1.3  dyoung 
   3459  1.1.1.3  dyoung 		bpf_mtap2(sc->sc_drvbpf,
   3460  1.1.1.3  dyoung 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3461  1.1.1.3  dyoung 	}
   3462  1.1.1.3  dyoung 
   3463  1.1.1.4  dyoung 	/*
   3464  1.1.1.4  dyoung 	 * Determine if a tx interrupt should be generated for
   3465  1.1.1.4  dyoung 	 * this descriptor.  We take a tx interrupt to reap
   3466  1.1.1.4  dyoung 	 * descriptors when the h/w hits an EOL condition or
   3467  1.1.1.4  dyoung 	 * when the descriptor is specifically marked to generate
   3468  1.1.1.4  dyoung 	 * an interrupt.  We periodically mark descriptors in this
   3469  1.1.1.4  dyoung 	 * way to insure timely replenishing of the supply needed
   3470  1.1.1.4  dyoung 	 * for sending frames.  Defering interrupts reduces system
   3471  1.1.1.4  dyoung 	 * load and potentially allows more concurrent work to be
   3472  1.1.1.4  dyoung 	 * done but if done to aggressively can cause senders to
   3473  1.1.1.4  dyoung 	 * backup.
   3474  1.1.1.4  dyoung 	 *
   3475  1.1.1.4  dyoung 	 * NB: use >= to deal with sc_txintrperiod changing
   3476  1.1.1.4  dyoung 	 *     dynamically through sysctl.
   3477  1.1.1.4  dyoung 	 */
   3478  1.1.1.4  dyoung 	if (flags & HAL_TXDESC_INTREQ) {
   3479  1.1.1.4  dyoung 		txq->axq_intrcnt = 0;
   3480  1.1.1.4  dyoung 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3481  1.1.1.4  dyoung 		flags |= HAL_TXDESC_INTREQ;
   3482  1.1.1.4  dyoung 		txq->axq_intrcnt = 0;
   3483  1.1.1.4  dyoung 	}
   3484  1.1.1.4  dyoung 
   3485      1.1  dyoung 	/*
   3486      1.1  dyoung 	 * Formulate first tx descriptor with tx controls.
   3487      1.1  dyoung 	 */
   3488      1.1  dyoung 	/* XXX check return value? */
   3489      1.1  dyoung 	ath_hal_setuptxdesc(ah, ds
   3490      1.1  dyoung 		, pktlen		/* packet length */
   3491      1.1  dyoung 		, hdrlen		/* header length */
   3492      1.1  dyoung 		, atype			/* Atheros packet type */
   3493  1.1.1.4  dyoung 		, ni->ni_txpower	/* txpower */
   3494  1.1.1.4  dyoung 		, txrate, try0		/* series 0 rate/tries */
   3495  1.1.1.4  dyoung 		, keyix			/* key cache index */
   3496  1.1.1.4  dyoung 		, sc->sc_txantenna	/* antenna mode */
   3497      1.1  dyoung 		, flags			/* flags */
   3498      1.1  dyoung 		, ctsrate		/* rts/cts rate */
   3499      1.1  dyoung 		, ctsduration		/* rts/cts duration */
   3500      1.1  dyoung 	);
   3501  1.1.1.5  dyoung 	bf->bf_flags = flags;
   3502  1.1.1.4  dyoung 	/*
   3503  1.1.1.4  dyoung 	 * Setup the multi-rate retry state only when we're
   3504  1.1.1.4  dyoung 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3505  1.1.1.4  dyoung 	 * initializes the descriptors (so we don't have to)
   3506  1.1.1.4  dyoung 	 * when the hardware supports multi-rate retry and
   3507  1.1.1.4  dyoung 	 * we don't use it.
   3508  1.1.1.4  dyoung 	 */
   3509  1.1.1.4  dyoung 	if (try0 != ATH_TXMAXTRY)
   3510  1.1.1.4  dyoung 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3511  1.1.1.4  dyoung 
   3512      1.1  dyoung 	/*
   3513      1.1  dyoung 	 * Fillin the remainder of the descriptor info.
   3514      1.1  dyoung 	 */
   3515  1.1.1.4  dyoung 	ds0 = ds;
   3516      1.1  dyoung 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3517      1.1  dyoung 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3518      1.1  dyoung 		if (i == bf->bf_nseg - 1)
   3519      1.1  dyoung 			ds->ds_link = 0;
   3520      1.1  dyoung 		else
   3521      1.1  dyoung 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3522      1.1  dyoung 		ath_hal_filltxdesc(ah, ds
   3523      1.1  dyoung 			, bf->bf_segs[i].ds_len	/* segment length */
   3524      1.1  dyoung 			, i == 0		/* first segment */
   3525      1.1  dyoung 			, i == bf->bf_nseg - 1	/* last segment */
   3526  1.1.1.4  dyoung 			, ds0			/* first descriptor */
   3527      1.1  dyoung 		);
   3528  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3529  1.1.1.4  dyoung 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3530  1.1.1.3  dyoung 			__func__, i, ds->ds_link, ds->ds_data,
   3531  1.1.1.4  dyoung 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3532      1.1  dyoung 	}
   3533      1.1  dyoung 	/*
   3534      1.1  dyoung 	 * Insert the frame on the outbound list and
   3535      1.1  dyoung 	 * pass it on to the hardware.
   3536      1.1  dyoung 	 */
   3537  1.1.1.4  dyoung 	ATH_TXQ_LOCK(txq);
   3538  1.1.1.4  dyoung 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
   3539  1.1.1.4  dyoung 		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
   3540  1.1.1.4  dyoung 			cap->cap_wmeParams[pri].wmep_txopLimit);
   3541  1.1.1.4  dyoung 		/*
   3542  1.1.1.4  dyoung 		 * When bursting, potentially extend the CTS duration
   3543  1.1.1.4  dyoung 		 * of a previously queued frame to cover this frame
   3544  1.1.1.4  dyoung 		 * and not exceed the txopLimit.  If that can be done
   3545  1.1.1.4  dyoung 		 * then disable RTS/CTS on this frame since it's now
   3546  1.1.1.4  dyoung 		 * covered (burst extension).  Otherwise we must terminate
   3547  1.1.1.4  dyoung 		 * the burst before this frame goes out so as not to
   3548  1.1.1.4  dyoung 		 * violate the WME parameters.  All this is complicated
   3549  1.1.1.4  dyoung 		 * as we need to update the state of packets on the
   3550  1.1.1.4  dyoung 		 * (live) hardware queue.  The logic is buried in the hal
   3551  1.1.1.4  dyoung 		 * because it's highly chip-specific.
   3552  1.1.1.4  dyoung 		 */
   3553  1.1.1.4  dyoung 		if (txopLimit != 0) {
   3554  1.1.1.4  dyoung 			sc->sc_stats.ast_tx_ctsburst++;
   3555  1.1.1.4  dyoung 			if (updateCTSForBursting(ah, ds0, txq) == 0) {
   3556  1.1.1.4  dyoung 				/*
   3557  1.1.1.4  dyoung 				 * This frame was not covered by RTS/CTS from
   3558  1.1.1.4  dyoung 				 * the previous frame in the burst; update the
   3559  1.1.1.4  dyoung 				 * descriptor pointers so this frame is now
   3560  1.1.1.4  dyoung 				 * treated as the last frame for extending a
   3561  1.1.1.4  dyoung 				 * burst.
   3562  1.1.1.4  dyoung 				 */
   3563  1.1.1.4  dyoung 				txq->axq_lastdsWithCTS = ds0;
   3564  1.1.1.4  dyoung 				/* set gating Desc to final desc */
   3565  1.1.1.4  dyoung 				txq->axq_gatingds =
   3566  1.1.1.4  dyoung 					(struct ath_desc *)txq->axq_link;
   3567  1.1.1.4  dyoung 			} else
   3568  1.1.1.4  dyoung 				sc->sc_stats.ast_tx_ctsext++;
   3569  1.1.1.4  dyoung 		}
   3570  1.1.1.4  dyoung 	}
   3571  1.1.1.4  dyoung 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3572  1.1.1.4  dyoung 	if (txq->axq_link == NULL) {
   3573  1.1.1.4  dyoung 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3574  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3575  1.1.1.4  dyoung 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
   3576  1.1.1.4  dyoung 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
   3577  1.1.1.4  dyoung 			txq->axq_depth);
   3578      1.1  dyoung 	} else {
   3579  1.1.1.4  dyoung 		*txq->axq_link = bf->bf_daddr;
   3580  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3581  1.1.1.4  dyoung 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
   3582  1.1.1.4  dyoung 			txq->axq_qnum, txq->axq_link,
   3583  1.1.1.4  dyoung 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3584      1.1  dyoung 	}
   3585  1.1.1.4  dyoung 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3586  1.1.1.4  dyoung 	/*
   3587  1.1.1.4  dyoung 	 * The CAB queue is started from the SWBA handler since
   3588  1.1.1.4  dyoung 	 * frames only go out on DTIM and to avoid possible races.
   3589  1.1.1.4  dyoung 	 */
   3590  1.1.1.4  dyoung 	if (txq != sc->sc_cabq)
   3591  1.1.1.4  dyoung 		ath_hal_txstart(ah, txq->axq_qnum);
   3592  1.1.1.4  dyoung 	ATH_TXQ_UNLOCK(txq);
   3593      1.1  dyoung 
   3594      1.1  dyoung 	return 0;
   3595  1.1.1.4  dyoung #undef updateCTSForBursting
   3596  1.1.1.4  dyoung #undef CTS_DURATION
   3597      1.1  dyoung }
   3598      1.1  dyoung 
   3599  1.1.1.4  dyoung /*
   3600  1.1.1.4  dyoung  * Process completed xmit descriptors from the specified queue.
   3601  1.1.1.4  dyoung  */
   3602      1.1  dyoung static void
   3603  1.1.1.4  dyoung ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   3604      1.1  dyoung {
   3605      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3606      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   3607  1.1.1.4  dyoung 	struct ath_buf *bf;
   3608  1.1.1.4  dyoung 	struct ath_desc *ds, *ds0;
   3609      1.1  dyoung 	struct ieee80211_node *ni;
   3610      1.1  dyoung 	struct ath_node *an;
   3611  1.1.1.4  dyoung 	int sr, lr, pri;
   3612      1.1  dyoung 	HAL_STATUS status;
   3613      1.1  dyoung 
   3614  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   3615  1.1.1.4  dyoung 		__func__, txq->axq_qnum,
   3616  1.1.1.4  dyoung 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   3617  1.1.1.4  dyoung 		txq->axq_link);
   3618      1.1  dyoung 	for (;;) {
   3619  1.1.1.4  dyoung 		ATH_TXQ_LOCK(txq);
   3620  1.1.1.4  dyoung 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   3621  1.1.1.4  dyoung 		bf = STAILQ_FIRST(&txq->axq_q);
   3622      1.1  dyoung 		if (bf == NULL) {
   3623  1.1.1.4  dyoung 			txq->axq_link = NULL;
   3624  1.1.1.4  dyoung 			ATH_TXQ_UNLOCK(txq);
   3625      1.1  dyoung 			break;
   3626      1.1  dyoung 		}
   3627  1.1.1.4  dyoung 		ds0 = &bf->bf_desc[0];
   3628      1.1  dyoung 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   3629      1.1  dyoung 		status = ath_hal_txprocdesc(ah, ds);
   3630      1.1  dyoung #ifdef AR_DEBUG
   3631  1.1.1.4  dyoung 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   3632      1.1  dyoung 			ath_printtxbuf(bf, status == HAL_OK);
   3633      1.1  dyoung #endif
   3634      1.1  dyoung 		if (status == HAL_EINPROGRESS) {
   3635  1.1.1.4  dyoung 			ATH_TXQ_UNLOCK(txq);
   3636      1.1  dyoung 			break;
   3637      1.1  dyoung 		}
   3638  1.1.1.4  dyoung 		if (ds0 == txq->axq_lastdsWithCTS)
   3639  1.1.1.4  dyoung 			txq->axq_lastdsWithCTS = NULL;
   3640  1.1.1.4  dyoung 		if (ds == txq->axq_gatingds)
   3641  1.1.1.4  dyoung 			txq->axq_gatingds = NULL;
   3642  1.1.1.4  dyoung 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3643  1.1.1.4  dyoung 		ATH_TXQ_UNLOCK(txq);
   3644      1.1  dyoung 
   3645      1.1  dyoung 		ni = bf->bf_node;
   3646      1.1  dyoung 		if (ni != NULL) {
   3647  1.1.1.4  dyoung 			an = ATH_NODE(ni);
   3648      1.1  dyoung 			if (ds->ds_txstat.ts_status == 0) {
   3649  1.1.1.4  dyoung 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   3650  1.1.1.4  dyoung 				sc->sc_stats.ast_ant_tx[txant]++;
   3651  1.1.1.4  dyoung 				sc->sc_ant_tx[txant]++;
   3652  1.1.1.4  dyoung 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   3653  1.1.1.4  dyoung 					sc->sc_stats.ast_tx_altrate++;
   3654  1.1.1.4  dyoung 				sc->sc_stats.ast_tx_rssi =
   3655  1.1.1.4  dyoung 					ds->ds_txstat.ts_rssi;
   3656  1.1.1.4  dyoung 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
   3657  1.1.1.4  dyoung 					ds->ds_txstat.ts_rssi);
   3658  1.1.1.4  dyoung 				pri = M_WME_GETAC(bf->bf_m);
   3659  1.1.1.4  dyoung 				if (pri >= WME_AC_VO)
   3660  1.1.1.4  dyoung 					ic->ic_wme.wme_hipri_traffic++;
   3661  1.1.1.4  dyoung 				ni->ni_inact = ni->ni_inact_reload;
   3662      1.1  dyoung 			} else {
   3663      1.1  dyoung 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   3664      1.1  dyoung 					sc->sc_stats.ast_tx_xretries++;
   3665      1.1  dyoung 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   3666      1.1  dyoung 					sc->sc_stats.ast_tx_fifoerr++;
   3667      1.1  dyoung 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   3668      1.1  dyoung 					sc->sc_stats.ast_tx_filtered++;
   3669      1.1  dyoung 			}
   3670      1.1  dyoung 			sr = ds->ds_txstat.ts_shortretry;
   3671      1.1  dyoung 			lr = ds->ds_txstat.ts_longretry;
   3672      1.1  dyoung 			sc->sc_stats.ast_tx_shortretry += sr;
   3673      1.1  dyoung 			sc->sc_stats.ast_tx_longretry += lr;
   3674  1.1.1.4  dyoung 			/*
   3675  1.1.1.4  dyoung 			 * Hand the descriptor to the rate control algorithm.
   3676  1.1.1.4  dyoung 			 */
   3677  1.1.1.5  dyoung 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   3678  1.1.1.5  dyoung 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
   3679  1.1.1.5  dyoung 				ath_rate_tx_complete(sc, an, ds, ds0);
   3680      1.1  dyoung 			/*
   3681      1.1  dyoung 			 * Reclaim reference to node.
   3682      1.1  dyoung 			 *
   3683      1.1  dyoung 			 * NB: the node may be reclaimed here if, for example
   3684      1.1  dyoung 			 *     this is a DEAUTH message that was sent and the
   3685      1.1  dyoung 			 *     node was timed out due to inactivity.
   3686      1.1  dyoung 			 */
   3687  1.1.1.4  dyoung 			ieee80211_free_node(ni);
   3688      1.1  dyoung 		}
   3689      1.1  dyoung 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3690      1.1  dyoung 		    BUS_DMASYNC_POSTWRITE);
   3691      1.1  dyoung 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3692      1.1  dyoung 		m_freem(bf->bf_m);
   3693      1.1  dyoung 		bf->bf_m = NULL;
   3694      1.1  dyoung 		bf->bf_node = NULL;
   3695      1.1  dyoung 
   3696  1.1.1.2  dyoung 		ATH_TXBUF_LOCK(sc);
   3697  1.1.1.4  dyoung 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3698  1.1.1.2  dyoung 		ATH_TXBUF_UNLOCK(sc);
   3699      1.1  dyoung 	}
   3700  1.1.1.4  dyoung }
   3701  1.1.1.4  dyoung 
   3702  1.1.1.4  dyoung /*
   3703  1.1.1.4  dyoung  * Deferred processing of transmit interrupt; special-cased
   3704  1.1.1.4  dyoung  * for a single hardware transmit queue (e.g. 5210 and 5211).
   3705  1.1.1.4  dyoung  */
   3706  1.1.1.4  dyoung static void
   3707  1.1.1.4  dyoung ath_tx_proc_q0(void *arg, int npending)
   3708  1.1.1.4  dyoung {
   3709  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   3710  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   3711  1.1.1.4  dyoung 
   3712  1.1.1.4  dyoung 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3713  1.1.1.4  dyoung 	ath_tx_processq(sc, sc->sc_cabq);
   3714  1.1.1.6   skrll 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
   3715      1.1  dyoung 	sc->sc_tx_timer = 0;
   3716      1.1  dyoung 
   3717  1.1.1.4  dyoung 	if (sc->sc_softled)
   3718  1.1.1.4  dyoung 		ath_led_event(sc, ATH_LED_TX);
   3719  1.1.1.4  dyoung 
   3720      1.1  dyoung 	ath_start(ifp);
   3721      1.1  dyoung }
   3722      1.1  dyoung 
   3723      1.1  dyoung /*
   3724  1.1.1.4  dyoung  * Deferred processing of transmit interrupt; special-cased
   3725  1.1.1.4  dyoung  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   3726      1.1  dyoung  */
   3727      1.1  dyoung static void
   3728  1.1.1.4  dyoung ath_tx_proc_q0123(void *arg, int npending)
   3729  1.1.1.4  dyoung {
   3730  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   3731  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   3732  1.1.1.4  dyoung 
   3733  1.1.1.4  dyoung 	/*
   3734  1.1.1.4  dyoung 	 * Process each active queue.
   3735  1.1.1.4  dyoung 	 */
   3736  1.1.1.4  dyoung 	ath_tx_processq(sc, &sc->sc_txq[0]);
   3737  1.1.1.4  dyoung 	ath_tx_processq(sc, &sc->sc_txq[1]);
   3738  1.1.1.4  dyoung 	ath_tx_processq(sc, &sc->sc_txq[2]);
   3739  1.1.1.4  dyoung 	ath_tx_processq(sc, &sc->sc_txq[3]);
   3740  1.1.1.4  dyoung 	ath_tx_processq(sc, sc->sc_cabq);
   3741  1.1.1.4  dyoung 
   3742  1.1.1.6   skrll 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
   3743  1.1.1.4  dyoung 	sc->sc_tx_timer = 0;
   3744  1.1.1.4  dyoung 
   3745  1.1.1.4  dyoung 	if (sc->sc_softled)
   3746  1.1.1.4  dyoung 		ath_led_event(sc, ATH_LED_TX);
   3747  1.1.1.4  dyoung 
   3748  1.1.1.4  dyoung 	ath_start(ifp);
   3749  1.1.1.4  dyoung }
   3750  1.1.1.4  dyoung 
   3751  1.1.1.4  dyoung /*
   3752  1.1.1.4  dyoung  * Deferred processing of transmit interrupt.
   3753  1.1.1.4  dyoung  */
   3754  1.1.1.4  dyoung static void
   3755  1.1.1.4  dyoung ath_tx_proc(void *arg, int npending)
   3756  1.1.1.4  dyoung {
   3757  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   3758  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   3759  1.1.1.4  dyoung 	int i;
   3760  1.1.1.4  dyoung 
   3761  1.1.1.4  dyoung 	/*
   3762  1.1.1.4  dyoung 	 * Process each active queue.
   3763  1.1.1.4  dyoung 	 */
   3764  1.1.1.4  dyoung 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
   3765  1.1.1.4  dyoung 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3766  1.1.1.4  dyoung 		if (ATH_TXQ_SETUP(sc, i))
   3767  1.1.1.4  dyoung 			ath_tx_processq(sc, &sc->sc_txq[i]);
   3768  1.1.1.4  dyoung 
   3769  1.1.1.6   skrll 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
   3770  1.1.1.4  dyoung 	sc->sc_tx_timer = 0;
   3771  1.1.1.4  dyoung 
   3772  1.1.1.4  dyoung 	if (sc->sc_softled)
   3773  1.1.1.4  dyoung 		ath_led_event(sc, ATH_LED_TX);
   3774  1.1.1.4  dyoung 
   3775  1.1.1.4  dyoung 	ath_start(ifp);
   3776  1.1.1.4  dyoung }
   3777  1.1.1.4  dyoung 
   3778  1.1.1.4  dyoung static void
   3779  1.1.1.4  dyoung ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   3780      1.1  dyoung {
   3781      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3782  1.1.1.3  dyoung 	struct ieee80211_node *ni;
   3783      1.1  dyoung 	struct ath_buf *bf;
   3784      1.1  dyoung 
   3785  1.1.1.4  dyoung 	/*
   3786  1.1.1.4  dyoung 	 * NB: this assumes output has been stopped and
   3787  1.1.1.4  dyoung 	 *     we do not need to block ath_tx_tasklet
   3788  1.1.1.4  dyoung 	 */
   3789      1.1  dyoung 	for (;;) {
   3790  1.1.1.4  dyoung 		ATH_TXQ_LOCK(txq);
   3791  1.1.1.4  dyoung 		bf = STAILQ_FIRST(&txq->axq_q);
   3792      1.1  dyoung 		if (bf == NULL) {
   3793  1.1.1.4  dyoung 			txq->axq_link = NULL;
   3794  1.1.1.4  dyoung 			ATH_TXQ_UNLOCK(txq);
   3795      1.1  dyoung 			break;
   3796      1.1  dyoung 		}
   3797  1.1.1.4  dyoung 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   3798  1.1.1.4  dyoung 		ATH_TXQ_UNLOCK(txq);
   3799      1.1  dyoung #ifdef AR_DEBUG
   3800  1.1.1.4  dyoung 		if (sc->sc_debug & ATH_DEBUG_RESET)
   3801      1.1  dyoung 			ath_printtxbuf(bf,
   3802      1.1  dyoung 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   3803      1.1  dyoung #endif /* AR_DEBUG */
   3804      1.1  dyoung 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3805      1.1  dyoung 		m_freem(bf->bf_m);
   3806      1.1  dyoung 		bf->bf_m = NULL;
   3807  1.1.1.3  dyoung 		ni = bf->bf_node;
   3808      1.1  dyoung 		bf->bf_node = NULL;
   3809  1.1.1.4  dyoung 		if (ni != NULL) {
   3810  1.1.1.3  dyoung 			/*
   3811  1.1.1.3  dyoung 			 * Reclaim node reference.
   3812  1.1.1.3  dyoung 			 */
   3813  1.1.1.4  dyoung 			ieee80211_free_node(ni);
   3814  1.1.1.3  dyoung 		}
   3815  1.1.1.2  dyoung 		ATH_TXBUF_LOCK(sc);
   3816  1.1.1.4  dyoung 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   3817  1.1.1.2  dyoung 		ATH_TXBUF_UNLOCK(sc);
   3818      1.1  dyoung 	}
   3819  1.1.1.4  dyoung }
   3820  1.1.1.4  dyoung 
   3821  1.1.1.4  dyoung static void
   3822  1.1.1.4  dyoung ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   3823  1.1.1.4  dyoung {
   3824  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3825  1.1.1.4  dyoung 
   3826  1.1.1.4  dyoung 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   3827  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   3828  1.1.1.4  dyoung 	    __func__, txq->axq_qnum,
   3829  1.1.1.4  dyoung 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   3830  1.1.1.4  dyoung 	    txq->axq_link);
   3831  1.1.1.4  dyoung }
   3832  1.1.1.4  dyoung 
   3833  1.1.1.4  dyoung /*
   3834  1.1.1.4  dyoung  * Drain the transmit queues and reclaim resources.
   3835  1.1.1.4  dyoung  */
   3836  1.1.1.4  dyoung static void
   3837  1.1.1.4  dyoung ath_draintxq(struct ath_softc *sc)
   3838  1.1.1.4  dyoung {
   3839  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3840  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   3841  1.1.1.4  dyoung 	int i;
   3842  1.1.1.4  dyoung 
   3843  1.1.1.4  dyoung 	/* XXX return value */
   3844  1.1.1.4  dyoung 	if (!sc->sc_invalid) {
   3845  1.1.1.4  dyoung 		/* don't touch the hardware if marked invalid */
   3846  1.1.1.4  dyoung 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   3847  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_RESET,
   3848  1.1.1.4  dyoung 		    "%s: beacon queue %p\n", __func__,
   3849  1.1.1.4  dyoung 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   3850  1.1.1.4  dyoung 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3851  1.1.1.4  dyoung 			if (ATH_TXQ_SETUP(sc, i))
   3852  1.1.1.4  dyoung 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   3853  1.1.1.4  dyoung 	}
   3854  1.1.1.4  dyoung 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3855  1.1.1.4  dyoung 		if (ATH_TXQ_SETUP(sc, i))
   3856  1.1.1.4  dyoung 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   3857  1.1.1.6   skrll 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
   3858      1.1  dyoung 	sc->sc_tx_timer = 0;
   3859      1.1  dyoung }
   3860      1.1  dyoung 
   3861      1.1  dyoung /*
   3862      1.1  dyoung  * Disable the receive h/w in preparation for a reset.
   3863      1.1  dyoung  */
   3864      1.1  dyoung static void
   3865      1.1  dyoung ath_stoprecv(struct ath_softc *sc)
   3866      1.1  dyoung {
   3867  1.1.1.2  dyoung #define	PA2DESC(_sc, _pa) \
   3868  1.1.1.4  dyoung 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
   3869  1.1.1.4  dyoung 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   3870      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3871      1.1  dyoung 
   3872      1.1  dyoung 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   3873      1.1  dyoung 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   3874      1.1  dyoung 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   3875  1.1.1.4  dyoung 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   3876      1.1  dyoung #ifdef AR_DEBUG
   3877  1.1.1.4  dyoung 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   3878      1.1  dyoung 		struct ath_buf *bf;
   3879      1.1  dyoung 
   3880  1.1.1.3  dyoung 		printf("%s: rx queue %p, link %p\n", __func__,
   3881  1.1.1.3  dyoung 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   3882  1.1.1.4  dyoung 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   3883  1.1.1.2  dyoung 			struct ath_desc *ds = bf->bf_desc;
   3884  1.1.1.4  dyoung 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   3885  1.1.1.4  dyoung 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   3886  1.1.1.4  dyoung 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   3887  1.1.1.4  dyoung 				ath_printrxbuf(bf, status == HAL_OK);
   3888      1.1  dyoung 		}
   3889      1.1  dyoung 	}
   3890      1.1  dyoung #endif
   3891      1.1  dyoung 	sc->sc_rxlink = NULL;		/* just in case */
   3892  1.1.1.2  dyoung #undef PA2DESC
   3893      1.1  dyoung }
   3894      1.1  dyoung 
   3895      1.1  dyoung /*
   3896      1.1  dyoung  * Enable the receive h/w following a reset.
   3897      1.1  dyoung  */
   3898      1.1  dyoung static int
   3899      1.1  dyoung ath_startrecv(struct ath_softc *sc)
   3900      1.1  dyoung {
   3901      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3902      1.1  dyoung 	struct ath_buf *bf;
   3903      1.1  dyoung 
   3904      1.1  dyoung 	sc->sc_rxlink = NULL;
   3905  1.1.1.4  dyoung 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   3906      1.1  dyoung 		int error = ath_rxbuf_init(sc, bf);
   3907      1.1  dyoung 		if (error != 0) {
   3908  1.1.1.4  dyoung 			DPRINTF(sc, ATH_DEBUG_RECV,
   3909  1.1.1.4  dyoung 				"%s: ath_rxbuf_init failed %d\n",
   3910  1.1.1.4  dyoung 				__func__, error);
   3911      1.1  dyoung 			return error;
   3912      1.1  dyoung 		}
   3913      1.1  dyoung 	}
   3914      1.1  dyoung 
   3915  1.1.1.4  dyoung 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3916      1.1  dyoung 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   3917      1.1  dyoung 	ath_hal_rxena(ah);		/* enable recv descriptors */
   3918      1.1  dyoung 	ath_mode_init(sc);		/* set filters, etc. */
   3919      1.1  dyoung 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   3920      1.1  dyoung 	return 0;
   3921      1.1  dyoung }
   3922      1.1  dyoung 
   3923  1.1.1.4  dyoung /*
   3924  1.1.1.4  dyoung  * Update internal state after a channel change.
   3925  1.1.1.4  dyoung  */
   3926  1.1.1.4  dyoung static void
   3927  1.1.1.4  dyoung ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   3928  1.1.1.4  dyoung {
   3929  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   3930  1.1.1.4  dyoung 	enum ieee80211_phymode mode;
   3931  1.1.1.4  dyoung 	u_int16_t flags;
   3932  1.1.1.4  dyoung 
   3933  1.1.1.4  dyoung 	/*
   3934  1.1.1.4  dyoung 	 * Change channels and update the h/w rate map
   3935  1.1.1.4  dyoung 	 * if we're switching; e.g. 11a to 11b/g.
   3936  1.1.1.4  dyoung 	 */
   3937  1.1.1.4  dyoung 	mode = ieee80211_chan2mode(ic, chan);
   3938  1.1.1.4  dyoung 	if (mode != sc->sc_curmode)
   3939  1.1.1.4  dyoung 		ath_setcurmode(sc, mode);
   3940  1.1.1.4  dyoung 	/*
   3941  1.1.1.4  dyoung 	 * Update BPF state.  NB: ethereal et. al. don't handle
   3942  1.1.1.4  dyoung 	 * merged flags well so pick a unique mode for their use.
   3943  1.1.1.4  dyoung 	 */
   3944  1.1.1.4  dyoung 	if (IEEE80211_IS_CHAN_A(chan))
   3945  1.1.1.4  dyoung 		flags = IEEE80211_CHAN_A;
   3946  1.1.1.4  dyoung 	/* XXX 11g schizophrenia */
   3947  1.1.1.4  dyoung 	else if (IEEE80211_IS_CHAN_G(chan) ||
   3948  1.1.1.4  dyoung 	    IEEE80211_IS_CHAN_PUREG(chan))
   3949  1.1.1.4  dyoung 		flags = IEEE80211_CHAN_G;
   3950  1.1.1.4  dyoung 	else
   3951  1.1.1.4  dyoung 		flags = IEEE80211_CHAN_B;
   3952  1.1.1.4  dyoung 	if (IEEE80211_IS_CHAN_T(chan))
   3953  1.1.1.4  dyoung 		flags |= IEEE80211_CHAN_TURBO;
   3954  1.1.1.4  dyoung 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   3955  1.1.1.4  dyoung 		htole16(chan->ic_freq);
   3956  1.1.1.4  dyoung 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   3957  1.1.1.4  dyoung 		htole16(flags);
   3958  1.1.1.4  dyoung }
   3959  1.1.1.4  dyoung 
   3960      1.1  dyoung /*
   3961      1.1  dyoung  * Set/change channels.  If the channel is really being changed,
   3962  1.1.1.4  dyoung  * it's done by reseting the chip.  To accomplish this we must
   3963      1.1  dyoung  * first cleanup any pending DMA, then restart stuff after a la
   3964      1.1  dyoung  * ath_init.
   3965      1.1  dyoung  */
   3966      1.1  dyoung static int
   3967      1.1  dyoung ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   3968      1.1  dyoung {
   3969      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   3970      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   3971  1.1.1.4  dyoung 	HAL_CHANNEL hchan;
   3972  1.1.1.4  dyoung 
   3973  1.1.1.4  dyoung 	/*
   3974  1.1.1.4  dyoung 	 * Convert to a HAL channel description with
   3975  1.1.1.4  dyoung 	 * the flags constrained to reflect the current
   3976  1.1.1.4  dyoung 	 * operating mode.
   3977  1.1.1.4  dyoung 	 */
   3978  1.1.1.4  dyoung 	hchan.channel = chan->ic_freq;
   3979  1.1.1.4  dyoung 	hchan.channelFlags = ath_chan2flags(ic, chan);
   3980      1.1  dyoung 
   3981  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
   3982  1.1.1.4  dyoung 	    __func__,
   3983  1.1.1.4  dyoung 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
   3984  1.1.1.4  dyoung 		sc->sc_curchan.channelFlags),
   3985  1.1.1.4  dyoung 	    	sc->sc_curchan.channel,
   3986  1.1.1.4  dyoung 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
   3987  1.1.1.4  dyoung 	if (hchan.channel != sc->sc_curchan.channel ||
   3988  1.1.1.4  dyoung 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   3989      1.1  dyoung 		HAL_STATUS status;
   3990      1.1  dyoung 
   3991      1.1  dyoung 		/*
   3992      1.1  dyoung 		 * To switch channels clear any pending DMA operations;
   3993      1.1  dyoung 		 * wait long enough for the RX fifo to drain, reset the
   3994      1.1  dyoung 		 * hardware at the new frequency, and then re-enable
   3995      1.1  dyoung 		 * the relevant bits of the h/w.
   3996      1.1  dyoung 		 */
   3997      1.1  dyoung 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   3998      1.1  dyoung 		ath_draintxq(sc);		/* clear pending tx frames */
   3999      1.1  dyoung 		ath_stoprecv(sc);		/* turn off frame recv */
   4000      1.1  dyoung 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4001  1.1.1.4  dyoung 			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
   4002      1.1  dyoung 				"channel %u (%u Mhz)\n",
   4003      1.1  dyoung 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
   4004      1.1  dyoung 			return EIO;
   4005      1.1  dyoung 		}
   4006  1.1.1.4  dyoung 		sc->sc_curchan = hchan;
   4007  1.1.1.4  dyoung 		ath_update_txpow(sc);		/* update tx power state */
   4008  1.1.1.6   skrll 		sc->sc_diversity = ath_hal_getdiversity(ah);
   4009  1.1.1.4  dyoung 
   4010      1.1  dyoung 		/*
   4011      1.1  dyoung 		 * Re-enable rx framework.
   4012      1.1  dyoung 		 */
   4013      1.1  dyoung 		if (ath_startrecv(sc) != 0) {
   4014  1.1.1.4  dyoung 			if_printf(ic->ic_ifp,
   4015      1.1  dyoung 				"ath_chan_set: unable to restart recv logic\n");
   4016      1.1  dyoung 			return EIO;
   4017      1.1  dyoung 		}
   4018      1.1  dyoung 
   4019      1.1  dyoung 		/*
   4020      1.1  dyoung 		 * Change channels and update the h/w rate map
   4021      1.1  dyoung 		 * if we're switching; e.g. 11a to 11b/g.
   4022      1.1  dyoung 		 */
   4023      1.1  dyoung 		ic->ic_ibss_chan = chan;
   4024  1.1.1.4  dyoung 		ath_chan_change(sc, chan);
   4025      1.1  dyoung 
   4026      1.1  dyoung 		/*
   4027      1.1  dyoung 		 * Re-enable interrupts.
   4028      1.1  dyoung 		 */
   4029      1.1  dyoung 		ath_hal_intrset(ah, sc->sc_imask);
   4030      1.1  dyoung 	}
   4031      1.1  dyoung 	return 0;
   4032      1.1  dyoung }
   4033      1.1  dyoung 
   4034      1.1  dyoung static void
   4035      1.1  dyoung ath_next_scan(void *arg)
   4036      1.1  dyoung {
   4037      1.1  dyoung 	struct ath_softc *sc = arg;
   4038      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4039      1.1  dyoung 
   4040      1.1  dyoung 	if (ic->ic_state == IEEE80211_S_SCAN)
   4041  1.1.1.4  dyoung 		ieee80211_next_scan(ic);
   4042      1.1  dyoung }
   4043      1.1  dyoung 
   4044      1.1  dyoung /*
   4045      1.1  dyoung  * Periodically recalibrate the PHY to account
   4046      1.1  dyoung  * for temperature/environment changes.
   4047      1.1  dyoung  */
   4048      1.1  dyoung static void
   4049      1.1  dyoung ath_calibrate(void *arg)
   4050      1.1  dyoung {
   4051      1.1  dyoung 	struct ath_softc *sc = arg;
   4052      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4053      1.1  dyoung 
   4054      1.1  dyoung 	sc->sc_stats.ast_per_cal++;
   4055      1.1  dyoung 
   4056  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
   4057  1.1.1.4  dyoung 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
   4058      1.1  dyoung 
   4059      1.1  dyoung 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4060      1.1  dyoung 		/*
   4061      1.1  dyoung 		 * Rfgain is out of bounds, reset the chip
   4062      1.1  dyoung 		 * to load new gain values.
   4063      1.1  dyoung 		 */
   4064      1.1  dyoung 		sc->sc_stats.ast_per_rfgain++;
   4065  1.1.1.5  dyoung 		ath_reset(sc->sc_ifp);
   4066      1.1  dyoung 	}
   4067  1.1.1.4  dyoung 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
   4068  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY,
   4069  1.1.1.4  dyoung 			"%s: calibration of channel %u failed\n",
   4070  1.1.1.4  dyoung 			__func__, sc->sc_curchan.channel);
   4071      1.1  dyoung 		sc->sc_stats.ast_per_calfail++;
   4072      1.1  dyoung 	}
   4073  1.1.1.4  dyoung 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
   4074      1.1  dyoung }
   4075      1.1  dyoung 
   4076      1.1  dyoung static int
   4077      1.1  dyoung ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4078      1.1  dyoung {
   4079  1.1.1.4  dyoung 	struct ifnet *ifp = ic->ic_ifp;
   4080      1.1  dyoung 	struct ath_softc *sc = ifp->if_softc;
   4081      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4082      1.1  dyoung 	struct ieee80211_node *ni;
   4083      1.1  dyoung 	int i, error;
   4084  1.1.1.2  dyoung 	const u_int8_t *bssid;
   4085      1.1  dyoung 	u_int32_t rfilt;
   4086      1.1  dyoung 	static const HAL_LED_STATE leds[] = {
   4087      1.1  dyoung 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4088      1.1  dyoung 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4089      1.1  dyoung 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4090      1.1  dyoung 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4091      1.1  dyoung 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4092      1.1  dyoung 	};
   4093      1.1  dyoung 
   4094  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4095      1.1  dyoung 		ieee80211_state_name[ic->ic_state],
   4096  1.1.1.4  dyoung 		ieee80211_state_name[nstate]);
   4097      1.1  dyoung 
   4098  1.1.1.4  dyoung 	callout_stop(&sc->sc_scan_ch);
   4099  1.1.1.4  dyoung 	callout_stop(&sc->sc_cal_ch);
   4100      1.1  dyoung 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4101      1.1  dyoung 
   4102      1.1  dyoung 	if (nstate == IEEE80211_S_INIT) {
   4103      1.1  dyoung 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4104  1.1.1.4  dyoung 		/*
   4105  1.1.1.4  dyoung 		 * NB: disable interrupts so we don't rx frames.
   4106  1.1.1.4  dyoung 		 */
   4107  1.1.1.5  dyoung 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4108  1.1.1.4  dyoung 		/*
   4109  1.1.1.4  dyoung 		 * Notify the rate control algorithm.
   4110  1.1.1.4  dyoung 		 */
   4111  1.1.1.4  dyoung 		ath_rate_newstate(sc, nstate);
   4112  1.1.1.4  dyoung 		goto done;
   4113      1.1  dyoung 	}
   4114      1.1  dyoung 	ni = ic->ic_bss;
   4115  1.1.1.6   skrll 	error = ath_chan_set(sc, ic->ic_curchan);
   4116      1.1  dyoung 	if (error != 0)
   4117      1.1  dyoung 		goto bad;
   4118  1.1.1.4  dyoung 	rfilt = ath_calcrxfilter(sc, nstate);
   4119  1.1.1.4  dyoung 	if (nstate == IEEE80211_S_SCAN)
   4120      1.1  dyoung 		bssid = ifp->if_broadcastaddr;
   4121  1.1.1.4  dyoung 	else
   4122      1.1  dyoung 		bssid = ni->ni_bssid;
   4123      1.1  dyoung 	ath_hal_setrxfilter(ah, rfilt);
   4124  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4125  1.1.1.4  dyoung 		 __func__, rfilt, ether_sprintf(bssid));
   4126      1.1  dyoung 
   4127      1.1  dyoung 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4128      1.1  dyoung 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4129      1.1  dyoung 	else
   4130      1.1  dyoung 		ath_hal_setassocid(ah, bssid, 0);
   4131  1.1.1.4  dyoung 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4132      1.1  dyoung 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4133      1.1  dyoung 			if (ath_hal_keyisvalid(ah, i))
   4134      1.1  dyoung 				ath_hal_keysetmac(ah, i, bssid);
   4135      1.1  dyoung 	}
   4136      1.1  dyoung 
   4137  1.1.1.4  dyoung 	/*
   4138  1.1.1.4  dyoung 	 * Notify the rate control algorithm so rates
   4139  1.1.1.4  dyoung 	 * are setup should ath_beacon_alloc be called.
   4140  1.1.1.4  dyoung 	 */
   4141  1.1.1.4  dyoung 	ath_rate_newstate(sc, nstate);
   4142  1.1.1.4  dyoung 
   4143  1.1.1.4  dyoung 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4144  1.1.1.4  dyoung 		/* nothing to do */;
   4145  1.1.1.4  dyoung 	} else if (nstate == IEEE80211_S_RUN) {
   4146  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_STATE,
   4147  1.1.1.4  dyoung 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4148      1.1  dyoung 			"capinfo=0x%04x chan=%d\n"
   4149      1.1  dyoung 			 , __func__
   4150      1.1  dyoung 			 , ic->ic_flags
   4151      1.1  dyoung 			 , ni->ni_intval
   4152      1.1  dyoung 			 , ether_sprintf(ni->ni_bssid)
   4153      1.1  dyoung 			 , ni->ni_capinfo
   4154  1.1.1.6   skrll 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4155      1.1  dyoung 
   4156  1.1.1.5  dyoung 		switch (ic->ic_opmode) {
   4157  1.1.1.5  dyoung 		case IEEE80211_M_HOSTAP:
   4158  1.1.1.5  dyoung 		case IEEE80211_M_IBSS:
   4159  1.1.1.4  dyoung 			/*
   4160  1.1.1.5  dyoung 			 * Allocate and setup the beacon frame.
   4161  1.1.1.5  dyoung 			 *
   4162  1.1.1.4  dyoung 			 * Stop any previous beacon DMA.  This may be
   4163  1.1.1.4  dyoung 			 * necessary, for example, when an ibss merge
   4164  1.1.1.4  dyoung 			 * causes reconfiguration; there will be a state
   4165  1.1.1.4  dyoung 			 * transition from RUN->RUN that means we may
   4166  1.1.1.4  dyoung 			 * be called with beacon transmission active.
   4167  1.1.1.4  dyoung 			 */
   4168  1.1.1.4  dyoung 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4169  1.1.1.4  dyoung 			ath_beacon_free(sc);
   4170      1.1  dyoung 			error = ath_beacon_alloc(sc, ni);
   4171      1.1  dyoung 			if (error != 0)
   4172      1.1  dyoung 				goto bad;
   4173  1.1.1.5  dyoung 			break;
   4174  1.1.1.5  dyoung 		case IEEE80211_M_STA:
   4175  1.1.1.5  dyoung 			/*
   4176  1.1.1.5  dyoung 			 * Allocate a key cache slot to the station.
   4177  1.1.1.5  dyoung 			 */
   4178  1.1.1.5  dyoung 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4179  1.1.1.5  dyoung 			    sc->sc_hasclrkey &&
   4180  1.1.1.5  dyoung 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4181  1.1.1.5  dyoung 				ath_setup_stationkey(ni);
   4182  1.1.1.5  dyoung 			break;
   4183  1.1.1.5  dyoung 		default:
   4184  1.1.1.5  dyoung 			break;
   4185      1.1  dyoung 		}
   4186      1.1  dyoung 
   4187      1.1  dyoung 		/*
   4188      1.1  dyoung 		 * Configure the beacon and sleep timers.
   4189      1.1  dyoung 		 */
   4190      1.1  dyoung 		ath_beacon_config(sc);
   4191      1.1  dyoung 	} else {
   4192  1.1.1.4  dyoung 		ath_hal_intrset(ah,
   4193  1.1.1.4  dyoung 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4194      1.1  dyoung 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4195      1.1  dyoung 	}
   4196  1.1.1.4  dyoung done:
   4197      1.1  dyoung 	/*
   4198  1.1.1.4  dyoung 	 * Invoke the parent method to complete the work.
   4199      1.1  dyoung 	 */
   4200  1.1.1.4  dyoung 	error = sc->sc_newstate(ic, nstate, arg);
   4201      1.1  dyoung 	/*
   4202  1.1.1.4  dyoung 	 * Finally, start any timers.
   4203      1.1  dyoung 	 */
   4204  1.1.1.4  dyoung 	if (nstate == IEEE80211_S_RUN) {
   4205  1.1.1.4  dyoung 		/* start periodic recalibration timer */
   4206  1.1.1.4  dyoung 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
   4207  1.1.1.4  dyoung 			ath_calibrate, sc);
   4208  1.1.1.4  dyoung 	} else if (nstate == IEEE80211_S_SCAN) {
   4209  1.1.1.4  dyoung 		/* start ap/neighbor scan timer */
   4210  1.1.1.4  dyoung 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4211  1.1.1.4  dyoung 			ath_next_scan, sc);
   4212  1.1.1.4  dyoung 	}
   4213      1.1  dyoung bad:
   4214      1.1  dyoung 	return error;
   4215      1.1  dyoung }
   4216      1.1  dyoung 
   4217      1.1  dyoung /*
   4218  1.1.1.5  dyoung  * Allocate a key cache slot to the station so we can
   4219  1.1.1.5  dyoung  * setup a mapping from key index to node. The key cache
   4220  1.1.1.5  dyoung  * slot is needed for managing antenna state and for
   4221  1.1.1.5  dyoung  * compression when stations do not use crypto.  We do
   4222  1.1.1.5  dyoung  * it uniliaterally here; if crypto is employed this slot
   4223  1.1.1.5  dyoung  * will be reassigned.
   4224  1.1.1.5  dyoung  */
   4225  1.1.1.5  dyoung static void
   4226  1.1.1.5  dyoung ath_setup_stationkey(struct ieee80211_node *ni)
   4227  1.1.1.5  dyoung {
   4228  1.1.1.5  dyoung 	struct ieee80211com *ic = ni->ni_ic;
   4229  1.1.1.5  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4230  1.1.1.6   skrll 	ieee80211_keyix keyix, rxkeyix;
   4231  1.1.1.5  dyoung 
   4232  1.1.1.6   skrll 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4233  1.1.1.5  dyoung 		/*
   4234  1.1.1.5  dyoung 		 * Key cache is full; we'll fall back to doing
   4235  1.1.1.5  dyoung 		 * the more expensive lookup in software.  Note
   4236  1.1.1.5  dyoung 		 * this also means no h/w compression.
   4237  1.1.1.5  dyoung 		 */
   4238  1.1.1.5  dyoung 		/* XXX msg+statistic */
   4239  1.1.1.5  dyoung 	} else {
   4240  1.1.1.6   skrll 		/* XXX locking? */
   4241  1.1.1.5  dyoung 		ni->ni_ucastkey.wk_keyix = keyix;
   4242  1.1.1.6   skrll 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4243  1.1.1.5  dyoung 		/* NB: this will create a pass-thru key entry */
   4244  1.1.1.5  dyoung 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4245  1.1.1.5  dyoung 	}
   4246  1.1.1.5  dyoung }
   4247  1.1.1.5  dyoung 
   4248  1.1.1.5  dyoung /*
   4249      1.1  dyoung  * Setup driver-specific state for a newly associated node.
   4250      1.1  dyoung  * Note that we're called also on a re-associate, the isnew
   4251      1.1  dyoung  * param tells us if this is the first time or not.
   4252      1.1  dyoung  */
   4253      1.1  dyoung static void
   4254  1.1.1.6   skrll ath_newassoc(struct ieee80211_node *ni, int isnew)
   4255      1.1  dyoung {
   4256  1.1.1.6   skrll 	struct ieee80211com *ic = ni->ni_ic;
   4257  1.1.1.4  dyoung 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4258      1.1  dyoung 
   4259  1.1.1.4  dyoung 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4260  1.1.1.5  dyoung 	if (isnew &&
   4261  1.1.1.5  dyoung 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4262  1.1.1.5  dyoung 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4263  1.1.1.5  dyoung 		    ("new assoc with a unicast key already setup (keyix %u)",
   4264  1.1.1.5  dyoung 		    ni->ni_ucastkey.wk_keyix));
   4265  1.1.1.5  dyoung 		ath_setup_stationkey(ni);
   4266  1.1.1.5  dyoung 	}
   4267      1.1  dyoung }
   4268      1.1  dyoung 
   4269      1.1  dyoung static int
   4270  1.1.1.4  dyoung ath_getchannels(struct ath_softc *sc, u_int cc,
   4271  1.1.1.4  dyoung 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4272      1.1  dyoung {
   4273      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4274  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   4275      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4276      1.1  dyoung 	HAL_CHANNEL *chans;
   4277      1.1  dyoung 	int i, ix, nchan;
   4278      1.1  dyoung 
   4279      1.1  dyoung 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4280      1.1  dyoung 			M_TEMP, M_NOWAIT);
   4281      1.1  dyoung 	if (chans == NULL) {
   4282      1.1  dyoung 		if_printf(ifp, "unable to allocate channel table\n");
   4283      1.1  dyoung 		return ENOMEM;
   4284      1.1  dyoung 	}
   4285      1.1  dyoung 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4286  1.1.1.4  dyoung 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4287  1.1.1.4  dyoung 		u_int32_t rd;
   4288  1.1.1.4  dyoung 
   4289  1.1.1.4  dyoung 		ath_hal_getregdomain(ah, &rd);
   4290  1.1.1.4  dyoung 		if_printf(ifp, "unable to collect channel list from hal; "
   4291  1.1.1.4  dyoung 			"regdomain likely %u country code %u\n", rd, cc);
   4292      1.1  dyoung 		free(chans, M_TEMP);
   4293      1.1  dyoung 		return EINVAL;
   4294      1.1  dyoung 	}
   4295      1.1  dyoung 
   4296      1.1  dyoung 	/*
   4297      1.1  dyoung 	 * Convert HAL channels to ieee80211 ones and insert
   4298      1.1  dyoung 	 * them in the table according to their channel number.
   4299      1.1  dyoung 	 */
   4300      1.1  dyoung 	for (i = 0; i < nchan; i++) {
   4301      1.1  dyoung 		HAL_CHANNEL *c = &chans[i];
   4302      1.1  dyoung 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
   4303      1.1  dyoung 		if (ix > IEEE80211_CHAN_MAX) {
   4304      1.1  dyoung 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
   4305      1.1  dyoung 				ix, c->channel, c->channelFlags);
   4306      1.1  dyoung 			continue;
   4307      1.1  dyoung 		}
   4308      1.1  dyoung 		/* NB: flags are known to be compatible */
   4309      1.1  dyoung 		if (ic->ic_channels[ix].ic_freq == 0) {
   4310      1.1  dyoung 			ic->ic_channels[ix].ic_freq = c->channel;
   4311      1.1  dyoung 			ic->ic_channels[ix].ic_flags = c->channelFlags;
   4312      1.1  dyoung 		} else {
   4313      1.1  dyoung 			/* channels overlap; e.g. 11g and 11b */
   4314      1.1  dyoung 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
   4315      1.1  dyoung 		}
   4316      1.1  dyoung 	}
   4317      1.1  dyoung 	free(chans, M_TEMP);
   4318      1.1  dyoung 	return 0;
   4319      1.1  dyoung }
   4320      1.1  dyoung 
   4321  1.1.1.4  dyoung static void
   4322  1.1.1.4  dyoung ath_led_done(void *arg)
   4323  1.1.1.4  dyoung {
   4324  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   4325  1.1.1.4  dyoung 
   4326  1.1.1.4  dyoung 	sc->sc_blinking = 0;
   4327  1.1.1.4  dyoung }
   4328  1.1.1.4  dyoung 
   4329  1.1.1.4  dyoung /*
   4330  1.1.1.4  dyoung  * Turn the LED off: flip the pin and then set a timer so no
   4331  1.1.1.4  dyoung  * update will happen for the specified duration.
   4332  1.1.1.4  dyoung  */
   4333  1.1.1.4  dyoung static void
   4334  1.1.1.4  dyoung ath_led_off(void *arg)
   4335  1.1.1.4  dyoung {
   4336  1.1.1.4  dyoung 	struct ath_softc *sc = arg;
   4337  1.1.1.4  dyoung 
   4338  1.1.1.4  dyoung 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4339  1.1.1.4  dyoung 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4340  1.1.1.4  dyoung }
   4341  1.1.1.4  dyoung 
   4342  1.1.1.4  dyoung /*
   4343  1.1.1.4  dyoung  * Blink the LED according to the specified on/off times.
   4344  1.1.1.4  dyoung  */
   4345  1.1.1.4  dyoung static void
   4346  1.1.1.4  dyoung ath_led_blink(struct ath_softc *sc, int on, int off)
   4347  1.1.1.4  dyoung {
   4348  1.1.1.4  dyoung 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4349  1.1.1.4  dyoung 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4350  1.1.1.4  dyoung 	sc->sc_blinking = 1;
   4351  1.1.1.4  dyoung 	sc->sc_ledoff = off;
   4352  1.1.1.4  dyoung 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4353  1.1.1.4  dyoung }
   4354  1.1.1.4  dyoung 
   4355  1.1.1.4  dyoung static void
   4356  1.1.1.4  dyoung ath_led_event(struct ath_softc *sc, int event)
   4357  1.1.1.4  dyoung {
   4358  1.1.1.4  dyoung 
   4359  1.1.1.4  dyoung 	sc->sc_ledevent = ticks;	/* time of last event */
   4360  1.1.1.4  dyoung 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4361  1.1.1.4  dyoung 		return;
   4362  1.1.1.4  dyoung 	switch (event) {
   4363  1.1.1.4  dyoung 	case ATH_LED_POLL:
   4364  1.1.1.4  dyoung 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4365  1.1.1.4  dyoung 			sc->sc_hwmap[0].ledoff);
   4366  1.1.1.4  dyoung 		break;
   4367  1.1.1.4  dyoung 	case ATH_LED_TX:
   4368  1.1.1.4  dyoung 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4369  1.1.1.4  dyoung 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4370  1.1.1.4  dyoung 		break;
   4371  1.1.1.4  dyoung 	case ATH_LED_RX:
   4372  1.1.1.4  dyoung 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4373  1.1.1.4  dyoung 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4374  1.1.1.4  dyoung 		break;
   4375  1.1.1.4  dyoung 	}
   4376  1.1.1.4  dyoung }
   4377  1.1.1.4  dyoung 
   4378  1.1.1.4  dyoung static void
   4379  1.1.1.4  dyoung ath_update_txpow(struct ath_softc *sc)
   4380  1.1.1.4  dyoung {
   4381  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4382  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4383  1.1.1.4  dyoung 	u_int32_t txpow;
   4384  1.1.1.4  dyoung 
   4385  1.1.1.4  dyoung 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4386  1.1.1.4  dyoung 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4387  1.1.1.4  dyoung 		/* read back in case value is clamped */
   4388  1.1.1.4  dyoung 		ath_hal_gettxpowlimit(ah, &txpow);
   4389  1.1.1.4  dyoung 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4390  1.1.1.4  dyoung 	}
   4391  1.1.1.4  dyoung 	/*
   4392  1.1.1.4  dyoung 	 * Fetch max tx power level for status requests.
   4393  1.1.1.4  dyoung 	 */
   4394  1.1.1.4  dyoung 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4395  1.1.1.4  dyoung 	ic->ic_bss->ni_txpower = txpow;
   4396  1.1.1.4  dyoung }
   4397  1.1.1.4  dyoung 
   4398      1.1  dyoung static int
   4399      1.1  dyoung ath_rate_setup(struct ath_softc *sc, u_int mode)
   4400      1.1  dyoung {
   4401      1.1  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4402      1.1  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4403      1.1  dyoung 	const HAL_RATE_TABLE *rt;
   4404      1.1  dyoung 	struct ieee80211_rateset *rs;
   4405      1.1  dyoung 	int i, maxrates;
   4406      1.1  dyoung 
   4407      1.1  dyoung 	switch (mode) {
   4408      1.1  dyoung 	case IEEE80211_MODE_11A:
   4409      1.1  dyoung 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
   4410      1.1  dyoung 		break;
   4411      1.1  dyoung 	case IEEE80211_MODE_11B:
   4412      1.1  dyoung 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
   4413      1.1  dyoung 		break;
   4414      1.1  dyoung 	case IEEE80211_MODE_11G:
   4415      1.1  dyoung 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
   4416      1.1  dyoung 		break;
   4417  1.1.1.4  dyoung 	case IEEE80211_MODE_TURBO_A:
   4418      1.1  dyoung 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   4419      1.1  dyoung 		break;
   4420  1.1.1.4  dyoung 	case IEEE80211_MODE_TURBO_G:
   4421  1.1.1.4  dyoung 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
   4422  1.1.1.4  dyoung 		break;
   4423      1.1  dyoung 	default:
   4424  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   4425  1.1.1.4  dyoung 			__func__, mode);
   4426      1.1  dyoung 		return 0;
   4427      1.1  dyoung 	}
   4428      1.1  dyoung 	rt = sc->sc_rates[mode];
   4429      1.1  dyoung 	if (rt == NULL)
   4430      1.1  dyoung 		return 0;
   4431      1.1  dyoung 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4432  1.1.1.4  dyoung 		DPRINTF(sc, ATH_DEBUG_ANY,
   4433  1.1.1.4  dyoung 			"%s: rate table too small (%u > %u)\n",
   4434  1.1.1.4  dyoung 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4435      1.1  dyoung 		maxrates = IEEE80211_RATE_MAXSIZE;
   4436      1.1  dyoung 	} else
   4437      1.1  dyoung 		maxrates = rt->rateCount;
   4438      1.1  dyoung 	rs = &ic->ic_sup_rates[mode];
   4439      1.1  dyoung 	for (i = 0; i < maxrates; i++)
   4440      1.1  dyoung 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4441      1.1  dyoung 	rs->rs_nrates = maxrates;
   4442      1.1  dyoung 	return 1;
   4443      1.1  dyoung }
   4444      1.1  dyoung 
   4445      1.1  dyoung static void
   4446      1.1  dyoung ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   4447      1.1  dyoung {
   4448  1.1.1.4  dyoung #define	N(a)	(sizeof(a)/sizeof(a[0]))
   4449  1.1.1.4  dyoung 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   4450  1.1.1.4  dyoung 	static const struct {
   4451  1.1.1.4  dyoung 		u_int		rate;		/* tx/rx 802.11 rate */
   4452  1.1.1.4  dyoung 		u_int16_t	timeOn;		/* LED on time (ms) */
   4453  1.1.1.4  dyoung 		u_int16_t	timeOff;	/* LED off time (ms) */
   4454  1.1.1.4  dyoung 	} blinkrates[] = {
   4455  1.1.1.4  dyoung 		{ 108,  40,  10 },
   4456  1.1.1.4  dyoung 		{  96,  44,  11 },
   4457  1.1.1.4  dyoung 		{  72,  50,  13 },
   4458  1.1.1.4  dyoung 		{  48,  57,  14 },
   4459  1.1.1.4  dyoung 		{  36,  67,  16 },
   4460  1.1.1.4  dyoung 		{  24,  80,  20 },
   4461  1.1.1.4  dyoung 		{  22, 100,  25 },
   4462  1.1.1.4  dyoung 		{  18, 133,  34 },
   4463  1.1.1.4  dyoung 		{  12, 160,  40 },
   4464  1.1.1.4  dyoung 		{  10, 200,  50 },
   4465  1.1.1.4  dyoung 		{   6, 240,  58 },
   4466  1.1.1.4  dyoung 		{   4, 267,  66 },
   4467  1.1.1.4  dyoung 		{   2, 400, 100 },
   4468  1.1.1.4  dyoung 		{   0, 500, 130 },
   4469  1.1.1.4  dyoung 	};
   4470      1.1  dyoung 	const HAL_RATE_TABLE *rt;
   4471  1.1.1.4  dyoung 	int i, j;
   4472      1.1  dyoung 
   4473      1.1  dyoung 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   4474      1.1  dyoung 	rt = sc->sc_rates[mode];
   4475      1.1  dyoung 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   4476      1.1  dyoung 	for (i = 0; i < rt->rateCount; i++)
   4477      1.1  dyoung 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   4478      1.1  dyoung 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   4479  1.1.1.4  dyoung 	for (i = 0; i < 32; i++) {
   4480  1.1.1.4  dyoung 		u_int8_t ix = rt->rateCodeToIndex[i];
   4481  1.1.1.4  dyoung 		if (ix == 0xff) {
   4482  1.1.1.4  dyoung 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   4483  1.1.1.4  dyoung 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   4484  1.1.1.4  dyoung 			continue;
   4485  1.1.1.4  dyoung 		}
   4486  1.1.1.4  dyoung 		sc->sc_hwmap[i].ieeerate =
   4487  1.1.1.4  dyoung 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   4488  1.1.1.4  dyoung 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   4489  1.1.1.4  dyoung 		if (rt->info[ix].shortPreamble ||
   4490  1.1.1.4  dyoung 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   4491  1.1.1.4  dyoung 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   4492  1.1.1.4  dyoung 		/* NB: receive frames include FCS */
   4493  1.1.1.4  dyoung 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   4494  1.1.1.4  dyoung 			IEEE80211_RADIOTAP_F_FCS;
   4495  1.1.1.4  dyoung 		/* setup blink rate table to avoid per-packet lookup */
   4496  1.1.1.4  dyoung 		for (j = 0; j < N(blinkrates)-1; j++)
   4497  1.1.1.4  dyoung 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   4498  1.1.1.4  dyoung 				break;
   4499  1.1.1.4  dyoung 		/* NB: this uses the last entry if the rate isn't found */
   4500  1.1.1.4  dyoung 		/* XXX beware of overlow */
   4501  1.1.1.4  dyoung 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   4502  1.1.1.4  dyoung 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   4503  1.1.1.4  dyoung 	}
   4504      1.1  dyoung 	sc->sc_currates = rt;
   4505      1.1  dyoung 	sc->sc_curmode = mode;
   4506  1.1.1.4  dyoung 	/*
   4507  1.1.1.4  dyoung 	 * All protection frames are transmited at 2Mb/s for
   4508  1.1.1.4  dyoung 	 * 11g, otherwise at 1Mb/s.
   4509  1.1.1.4  dyoung 	 * XXX select protection rate index from rate table.
   4510  1.1.1.4  dyoung 	 */
   4511  1.1.1.4  dyoung 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
   4512  1.1.1.4  dyoung 	/* NB: caller is responsible for reseting rate control state */
   4513  1.1.1.4  dyoung #undef N
   4514      1.1  dyoung }
   4515      1.1  dyoung 
   4516  1.1.1.4  dyoung #ifdef AR_DEBUG
   4517      1.1  dyoung static void
   4518  1.1.1.4  dyoung ath_printrxbuf(struct ath_buf *bf, int done)
   4519      1.1  dyoung {
   4520  1.1.1.4  dyoung 	struct ath_desc *ds;
   4521  1.1.1.4  dyoung 	int i;
   4522      1.1  dyoung 
   4523  1.1.1.4  dyoung 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4524  1.1.1.4  dyoung 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
   4525  1.1.1.4  dyoung 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4526  1.1.1.4  dyoung 		    ds->ds_link, ds->ds_data,
   4527  1.1.1.4  dyoung 		    ds->ds_ctl0, ds->ds_ctl1,
   4528  1.1.1.4  dyoung 		    ds->ds_hw[0], ds->ds_hw[1],
   4529  1.1.1.4  dyoung 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   4530  1.1.1.2  dyoung 	}
   4531      1.1  dyoung }
   4532      1.1  dyoung 
   4533      1.1  dyoung static void
   4534  1.1.1.4  dyoung ath_printtxbuf(struct ath_buf *bf, int done)
   4535      1.1  dyoung {
   4536  1.1.1.4  dyoung 	struct ath_desc *ds;
   4537  1.1.1.4  dyoung 	int i;
   4538      1.1  dyoung 
   4539  1.1.1.4  dyoung 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   4540  1.1.1.4  dyoung 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   4541  1.1.1.4  dyoung 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   4542  1.1.1.4  dyoung 		    ds->ds_link, ds->ds_data,
   4543  1.1.1.4  dyoung 		    ds->ds_ctl0, ds->ds_ctl1,
   4544  1.1.1.4  dyoung 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   4545  1.1.1.4  dyoung 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   4546  1.1.1.4  dyoung 	}
   4547  1.1.1.4  dyoung }
   4548  1.1.1.4  dyoung #endif /* AR_DEBUG */
   4549      1.1  dyoung 
   4550  1.1.1.4  dyoung static void
   4551  1.1.1.4  dyoung ath_watchdog(struct ifnet *ifp)
   4552  1.1.1.4  dyoung {
   4553  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   4554  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4555  1.1.1.4  dyoung 
   4556  1.1.1.4  dyoung 	ifp->if_timer = 0;
   4557  1.1.1.6   skrll 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
   4558  1.1.1.4  dyoung 		return;
   4559  1.1.1.4  dyoung 	if (sc->sc_tx_timer) {
   4560  1.1.1.4  dyoung 		if (--sc->sc_tx_timer == 0) {
   4561  1.1.1.4  dyoung 			if_printf(ifp, "device timeout\n");
   4562  1.1.1.4  dyoung 			ath_reset(ifp);
   4563  1.1.1.4  dyoung 			ifp->if_oerrors++;
   4564  1.1.1.4  dyoung 			sc->sc_stats.ast_watchdog++;
   4565  1.1.1.4  dyoung 		} else
   4566  1.1.1.4  dyoung 			ifp->if_timer = 1;
   4567  1.1.1.4  dyoung 	}
   4568  1.1.1.4  dyoung 	ieee80211_watchdog(ic);
   4569  1.1.1.4  dyoung }
   4570      1.1  dyoung 
   4571  1.1.1.4  dyoung /*
   4572  1.1.1.4  dyoung  * Diagnostic interface to the HAL.  This is used by various
   4573  1.1.1.4  dyoung  * tools to do things like retrieve register contents for
   4574  1.1.1.4  dyoung  * debugging.  The mechanism is intentionally opaque so that
   4575  1.1.1.4  dyoung  * it can change frequently w/o concern for compatiblity.
   4576  1.1.1.4  dyoung  */
   4577  1.1.1.4  dyoung static int
   4578  1.1.1.4  dyoung ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   4579  1.1.1.4  dyoung {
   4580  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4581  1.1.1.4  dyoung 	u_int id = ad->ad_id & ATH_DIAG_ID;
   4582  1.1.1.4  dyoung 	void *indata = NULL;
   4583  1.1.1.4  dyoung 	void *outdata = NULL;
   4584  1.1.1.4  dyoung 	u_int32_t insize = ad->ad_in_size;
   4585  1.1.1.4  dyoung 	u_int32_t outsize = ad->ad_out_size;
   4586  1.1.1.4  dyoung 	int error = 0;
   4587      1.1  dyoung 
   4588  1.1.1.4  dyoung 	if (ad->ad_id & ATH_DIAG_IN) {
   4589  1.1.1.4  dyoung 		/*
   4590  1.1.1.4  dyoung 		 * Copy in data.
   4591  1.1.1.4  dyoung 		 */
   4592  1.1.1.4  dyoung 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   4593  1.1.1.4  dyoung 		if (indata == NULL) {
   4594  1.1.1.4  dyoung 			error = ENOMEM;
   4595  1.1.1.4  dyoung 			goto bad;
   4596  1.1.1.4  dyoung 		}
   4597  1.1.1.4  dyoung 		error = copyin(ad->ad_in_data, indata, insize);
   4598  1.1.1.4  dyoung 		if (error)
   4599  1.1.1.4  dyoung 			goto bad;
   4600  1.1.1.4  dyoung 	}
   4601  1.1.1.4  dyoung 	if (ad->ad_id & ATH_DIAG_DYN) {
   4602  1.1.1.4  dyoung 		/*
   4603  1.1.1.4  dyoung 		 * Allocate a buffer for the results (otherwise the HAL
   4604  1.1.1.4  dyoung 		 * returns a pointer to a buffer where we can read the
   4605  1.1.1.4  dyoung 		 * results).  Note that we depend on the HAL leaving this
   4606  1.1.1.4  dyoung 		 * pointer for us to use below in reclaiming the buffer;
   4607  1.1.1.4  dyoung 		 * may want to be more defensive.
   4608  1.1.1.4  dyoung 		 */
   4609  1.1.1.4  dyoung 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   4610  1.1.1.4  dyoung 		if (outdata == NULL) {
   4611  1.1.1.4  dyoung 			error = ENOMEM;
   4612  1.1.1.4  dyoung 			goto bad;
   4613  1.1.1.4  dyoung 		}
   4614  1.1.1.4  dyoung 	}
   4615  1.1.1.4  dyoung 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   4616  1.1.1.4  dyoung 		if (outsize < ad->ad_out_size)
   4617  1.1.1.4  dyoung 			ad->ad_out_size = outsize;
   4618  1.1.1.4  dyoung 		if (outdata != NULL)
   4619  1.1.1.4  dyoung 			error = copyout(outdata, ad->ad_out_data,
   4620  1.1.1.4  dyoung 					ad->ad_out_size);
   4621  1.1.1.4  dyoung 	} else {
   4622  1.1.1.4  dyoung 		error = EINVAL;
   4623  1.1.1.4  dyoung 	}
   4624  1.1.1.4  dyoung bad:
   4625  1.1.1.4  dyoung 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   4626  1.1.1.4  dyoung 		free(indata, M_TEMP);
   4627  1.1.1.4  dyoung 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   4628  1.1.1.4  dyoung 		free(outdata, M_TEMP);
   4629  1.1.1.4  dyoung 	return error;
   4630  1.1.1.4  dyoung }
   4631      1.1  dyoung 
   4632  1.1.1.4  dyoung static int
   4633  1.1.1.4  dyoung ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   4634  1.1.1.4  dyoung {
   4635  1.1.1.4  dyoung #define	IS_RUNNING(ifp) \
   4636  1.1.1.6   skrll 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
   4637  1.1.1.4  dyoung 	struct ath_softc *sc = ifp->if_softc;
   4638  1.1.1.4  dyoung 	struct ieee80211com *ic = &sc->sc_ic;
   4639  1.1.1.4  dyoung 	struct ifreq *ifr = (struct ifreq *)data;
   4640  1.1.1.4  dyoung 	int error = 0;
   4641      1.1  dyoung 
   4642  1.1.1.4  dyoung 	ATH_LOCK(sc);
   4643  1.1.1.4  dyoung 	switch (cmd) {
   4644  1.1.1.4  dyoung 	case SIOCSIFFLAGS:
   4645  1.1.1.4  dyoung 		if (IS_RUNNING(ifp)) {
   4646  1.1.1.4  dyoung 			/*
   4647  1.1.1.4  dyoung 			 * To avoid rescanning another access point,
   4648  1.1.1.4  dyoung 			 * do not call ath_init() here.  Instead,
   4649  1.1.1.4  dyoung 			 * only reflect promisc mode settings.
   4650  1.1.1.4  dyoung 			 */
   4651  1.1.1.4  dyoung 			ath_mode_init(sc);
   4652  1.1.1.4  dyoung 		} else if (ifp->if_flags & IFF_UP) {
   4653  1.1.1.4  dyoung 			/*
   4654  1.1.1.4  dyoung 			 * Beware of being called during attach/detach
   4655  1.1.1.4  dyoung 			 * to reset promiscuous mode.  In that case we
   4656  1.1.1.4  dyoung 			 * will still be marked UP but not RUNNING.
   4657  1.1.1.4  dyoung 			 * However trying to re-init the interface
   4658  1.1.1.4  dyoung 			 * is the wrong thing to do as we've already
   4659  1.1.1.4  dyoung 			 * torn down much of our state.  There's
   4660  1.1.1.4  dyoung 			 * probably a better way to deal with this.
   4661  1.1.1.4  dyoung 			 */
   4662  1.1.1.4  dyoung 			if (!sc->sc_invalid && ic->ic_bss != NULL)
   4663  1.1.1.5  dyoung 				ath_init(sc);	/* XXX lose error */
   4664  1.1.1.4  dyoung 		} else
   4665  1.1.1.4  dyoung 			ath_stop_locked(ifp);
   4666      1.1  dyoung 		break;
   4667  1.1.1.4  dyoung 	case SIOCADDMULTI:
   4668  1.1.1.4  dyoung 	case SIOCDELMULTI:
   4669  1.1.1.4  dyoung 		/*
   4670  1.1.1.4  dyoung 		 * The upper layer has already installed/removed
   4671  1.1.1.4  dyoung 		 * the multicast address(es), just recalculate the
   4672  1.1.1.4  dyoung 		 * multicast filter for the card.
   4673  1.1.1.4  dyoung 		 */
   4674  1.1.1.6   skrll 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
   4675  1.1.1.4  dyoung 			ath_mode_init(sc);
   4676      1.1  dyoung 		break;
   4677  1.1.1.4  dyoung 	case SIOCGATHSTATS:
   4678  1.1.1.4  dyoung 		/* NB: embed these numbers to get a consistent view */
   4679  1.1.1.4  dyoung 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   4680  1.1.1.4  dyoung 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   4681  1.1.1.4  dyoung 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   4682  1.1.1.4  dyoung 		ATH_UNLOCK(sc);
   4683  1.1.1.4  dyoung 		/*
   4684  1.1.1.4  dyoung 		 * NB: Drop the softc lock in case of a page fault;
   4685  1.1.1.4  dyoung 		 * we'll accept any potential inconsisentcy in the
   4686  1.1.1.4  dyoung 		 * statistics.  The alternative is to copy the data
   4687  1.1.1.4  dyoung 		 * to a local structure.
   4688  1.1.1.4  dyoung 		 */
   4689  1.1.1.4  dyoung 		return copyout(&sc->sc_stats,
   4690  1.1.1.4  dyoung 				ifr->ifr_data, sizeof (sc->sc_stats));
   4691  1.1.1.4  dyoung 	case SIOCGATHDIAG:
   4692  1.1.1.4  dyoung 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   4693  1.1.1.4  dyoung 		break;
   4694  1.1.1.4  dyoung 	default:
   4695  1.1.1.4  dyoung 		error = ieee80211_ioctl(ic, cmd, data);
   4696  1.1.1.4  dyoung 		if (error == ENETRESET) {
   4697  1.1.1.4  dyoung 			if (IS_RUNNING(ifp) &&
   4698  1.1.1.4  dyoung 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   4699  1.1.1.5  dyoung 				ath_init(sc);	/* XXX lose error */
   4700  1.1.1.4  dyoung 			error = 0;
   4701      1.1  dyoung 		}
   4702  1.1.1.4  dyoung 		if (error == ERESTART)
   4703  1.1.1.4  dyoung 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
   4704      1.1  dyoung 		break;
   4705      1.1  dyoung 	}
   4706  1.1.1.4  dyoung 	ATH_UNLOCK(sc);
   4707  1.1.1.4  dyoung 	return error;
   4708  1.1.1.4  dyoung #undef IS_RUNNING
   4709  1.1.1.4  dyoung }
   4710      1.1  dyoung 
   4711  1.1.1.4  dyoung static int
   4712  1.1.1.4  dyoung ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
   4713  1.1.1.4  dyoung {
   4714  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4715  1.1.1.4  dyoung 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
   4716  1.1.1.4  dyoung 	int error;
   4717  1.1.1.4  dyoung 
   4718  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &slottime, 0, req);
   4719  1.1.1.4  dyoung 	if (error || !req->newptr)
   4720  1.1.1.4  dyoung 		return error;
   4721  1.1.1.4  dyoung 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
   4722      1.1  dyoung }
   4723      1.1  dyoung 
   4724      1.1  dyoung static int
   4725  1.1.1.4  dyoung ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
   4726      1.1  dyoung {
   4727  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4728  1.1.1.4  dyoung 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
   4729      1.1  dyoung 	int error;
   4730      1.1  dyoung 
   4731  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
   4732  1.1.1.4  dyoung 	if (error || !req->newptr)
   4733  1.1.1.4  dyoung 		return error;
   4734  1.1.1.4  dyoung 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
   4735  1.1.1.4  dyoung }
   4736  1.1.1.4  dyoung 
   4737  1.1.1.4  dyoung static int
   4738  1.1.1.4  dyoung ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
   4739  1.1.1.4  dyoung {
   4740  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4741  1.1.1.4  dyoung 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
   4742  1.1.1.4  dyoung 	int error;
   4743  1.1.1.4  dyoung 
   4744  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
   4745  1.1.1.4  dyoung 	if (error || !req->newptr)
   4746  1.1.1.4  dyoung 		return error;
   4747  1.1.1.4  dyoung 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
   4748  1.1.1.4  dyoung }
   4749  1.1.1.4  dyoung 
   4750  1.1.1.4  dyoung static int
   4751  1.1.1.4  dyoung ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
   4752  1.1.1.4  dyoung {
   4753  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4754  1.1.1.4  dyoung 	int softled = sc->sc_softled;
   4755  1.1.1.4  dyoung 	int error;
   4756  1.1.1.4  dyoung 
   4757  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &softled, 0, req);
   4758  1.1.1.4  dyoung 	if (error || !req->newptr)
   4759  1.1.1.4  dyoung 		return error;
   4760  1.1.1.4  dyoung 	softled = (softled != 0);
   4761  1.1.1.4  dyoung 	if (softled != sc->sc_softled) {
   4762  1.1.1.4  dyoung 		if (softled) {
   4763  1.1.1.4  dyoung 			/* NB: handle any sc_ledpin change */
   4764  1.1.1.4  dyoung 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
   4765  1.1.1.4  dyoung 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
   4766  1.1.1.4  dyoung 				!sc->sc_ledon);
   4767  1.1.1.4  dyoung 		}
   4768  1.1.1.4  dyoung 		sc->sc_softled = softled;
   4769      1.1  dyoung 	}
   4770  1.1.1.4  dyoung 	return 0;
   4771  1.1.1.4  dyoung }
   4772  1.1.1.4  dyoung 
   4773  1.1.1.4  dyoung static int
   4774  1.1.1.4  dyoung ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
   4775  1.1.1.4  dyoung {
   4776  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4777  1.1.1.4  dyoung 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
   4778  1.1.1.4  dyoung 	int error;
   4779  1.1.1.4  dyoung 
   4780  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
   4781  1.1.1.4  dyoung 	if (!error && req->newptr)
   4782  1.1.1.4  dyoung 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
   4783      1.1  dyoung 	return error;
   4784      1.1  dyoung }
   4785  1.1.1.4  dyoung 
   4786  1.1.1.4  dyoung static int
   4787  1.1.1.4  dyoung ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
   4788  1.1.1.4  dyoung {
   4789  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4790  1.1.1.6   skrll 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
   4791  1.1.1.4  dyoung 	int error;
   4792  1.1.1.4  dyoung 
   4793  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &diversity, 0, req);
   4794  1.1.1.4  dyoung 	if (error || !req->newptr)
   4795  1.1.1.4  dyoung 		return error;
   4796  1.1.1.6   skrll 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
   4797  1.1.1.6   skrll 		return EINVAL;
   4798  1.1.1.4  dyoung 	sc->sc_diversity = diversity;
   4799  1.1.1.6   skrll 	return 0;
   4800  1.1.1.4  dyoung }
   4801  1.1.1.4  dyoung 
   4802  1.1.1.4  dyoung static int
   4803  1.1.1.4  dyoung ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
   4804  1.1.1.4  dyoung {
   4805  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4806  1.1.1.4  dyoung 	u_int32_t diag;
   4807  1.1.1.4  dyoung 	int error;
   4808  1.1.1.4  dyoung 
   4809  1.1.1.4  dyoung 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
   4810  1.1.1.4  dyoung 		return EINVAL;
   4811  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &diag, 0, req);
   4812  1.1.1.4  dyoung 	if (error || !req->newptr)
   4813  1.1.1.4  dyoung 		return error;
   4814  1.1.1.4  dyoung 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
   4815  1.1.1.4  dyoung }
   4816  1.1.1.4  dyoung 
   4817  1.1.1.4  dyoung static int
   4818  1.1.1.4  dyoung ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
   4819  1.1.1.4  dyoung {
   4820  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4821  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   4822  1.1.1.4  dyoung 	u_int32_t scale;
   4823  1.1.1.4  dyoung 	int error;
   4824  1.1.1.4  dyoung 
   4825  1.1.1.4  dyoung 	ath_hal_gettpscale(sc->sc_ah, &scale);
   4826  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &scale, 0, req);
   4827  1.1.1.4  dyoung 	if (error || !req->newptr)
   4828  1.1.1.4  dyoung 		return error;
   4829  1.1.1.4  dyoung 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
   4830  1.1.1.4  dyoung }
   4831  1.1.1.4  dyoung 
   4832  1.1.1.4  dyoung static int
   4833  1.1.1.4  dyoung ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
   4834  1.1.1.4  dyoung {
   4835  1.1.1.4  dyoung 	struct ath_softc *sc = arg1;
   4836  1.1.1.4  dyoung 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
   4837  1.1.1.4  dyoung 	int error;
   4838  1.1.1.4  dyoung 
   4839  1.1.1.4  dyoung 	error = sysctl_handle_int(oidp, &tpc, 0, req);
   4840  1.1.1.4  dyoung 	if (error || !req->newptr)
   4841  1.1.1.4  dyoung 		return error;
   4842  1.1.1.4  dyoung 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
   4843  1.1.1.4  dyoung }
   4844      1.1  dyoung 
   4845      1.1  dyoung static void
   4846  1.1.1.4  dyoung ath_sysctlattach(struct ath_softc *sc)
   4847      1.1  dyoung {
   4848  1.1.1.4  dyoung 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
   4849  1.1.1.4  dyoung 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
   4850  1.1.1.6   skrll 	struct ath_hal *ah = sc->sc_ah;
   4851      1.1  dyoung 
   4852  1.1.1.4  dyoung 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
   4853  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4854  1.1.1.4  dyoung 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
   4855  1.1.1.4  dyoung 		"EEPROM country code");
   4856  1.1.1.4  dyoung 	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
   4857  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4858  1.1.1.4  dyoung 		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
   4859  1.1.1.4  dyoung 		"EEPROM regdomain code");
   4860  1.1.1.4  dyoung 	sc->sc_debug = ath_debug;
   4861  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4862  1.1.1.4  dyoung 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
   4863  1.1.1.4  dyoung 		"control debugging printfs");
   4864  1.1.1.4  dyoung 
   4865  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4866  1.1.1.4  dyoung 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4867  1.1.1.4  dyoung 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
   4868  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4869  1.1.1.4  dyoung 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4870  1.1.1.4  dyoung 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
   4871  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4872  1.1.1.4  dyoung 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4873  1.1.1.4  dyoung 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
   4874  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4875  1.1.1.4  dyoung 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4876  1.1.1.4  dyoung 		ath_sysctl_softled, "I", "enable/disable software LED support");
   4877  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4878  1.1.1.4  dyoung 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
   4879  1.1.1.4  dyoung 		"GPIO pin connected to LED");
   4880  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4881  1.1.1.4  dyoung 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
   4882  1.1.1.4  dyoung 		"setting to turn LED on");
   4883  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4884  1.1.1.4  dyoung 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
   4885  1.1.1.4  dyoung 		"idle time for inactivity LED (ticks)");
   4886  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4887  1.1.1.4  dyoung 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
   4888  1.1.1.4  dyoung 		"tx antenna (0=auto)");
   4889  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4890  1.1.1.4  dyoung 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4891  1.1.1.4  dyoung 		ath_sysctl_rxantenna, "I", "default/rx antenna");
   4892  1.1.1.6   skrll 	if (ath_hal_hasdiversity(ah))
   4893  1.1.1.4  dyoung 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4894  1.1.1.4  dyoung 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4895  1.1.1.4  dyoung 			ath_sysctl_diversity, "I", "antenna diversity");
   4896  1.1.1.4  dyoung 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
   4897  1.1.1.4  dyoung 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4898  1.1.1.4  dyoung 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
   4899  1.1.1.4  dyoung 		"tx descriptor batching");
   4900  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4901  1.1.1.4  dyoung 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4902  1.1.1.4  dyoung 		ath_sysctl_diag, "I", "h/w diagnostic control");
   4903  1.1.1.4  dyoung 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4904  1.1.1.4  dyoung 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4905  1.1.1.4  dyoung 		ath_sysctl_tpscale, "I", "tx power scaling");
   4906  1.1.1.6   skrll 	if (ath_hal_hastpc(ah))
   4907  1.1.1.4  dyoung 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
   4908  1.1.1.4  dyoung 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
   4909  1.1.1.4  dyoung 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
   4910      1.1  dyoung }
   4911      1.1  dyoung 
   4912      1.1  dyoung static void
   4913  1.1.1.4  dyoung ath_bpfattach(struct ath_softc *sc)
   4914      1.1  dyoung {
   4915  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   4916      1.1  dyoung 
   4917  1.1.1.4  dyoung 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   4918  1.1.1.4  dyoung 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   4919  1.1.1.4  dyoung 		&sc->sc_drvbpf);
   4920  1.1.1.4  dyoung 	/*
   4921  1.1.1.4  dyoung 	 * Initialize constant fields.
   4922  1.1.1.4  dyoung 	 * XXX make header lengths a multiple of 32-bits so subsequent
   4923  1.1.1.4  dyoung 	 *     headers are properly aligned; this is a kludge to keep
   4924  1.1.1.4  dyoung 	 *     certain applications happy.
   4925  1.1.1.4  dyoung 	 *
   4926  1.1.1.4  dyoung 	 * NB: the channel is setup each time we transition to the
   4927  1.1.1.4  dyoung 	 *     RUN state to avoid filling it in for each frame.
   4928  1.1.1.4  dyoung 	 */
   4929  1.1.1.4  dyoung 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   4930  1.1.1.4  dyoung 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   4931  1.1.1.4  dyoung 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   4932  1.1.1.4  dyoung 
   4933  1.1.1.4  dyoung 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   4934  1.1.1.4  dyoung 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   4935  1.1.1.4  dyoung 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   4936  1.1.1.4  dyoung }
   4937  1.1.1.4  dyoung 
   4938  1.1.1.4  dyoung /*
   4939  1.1.1.4  dyoung  * Announce various information on device/driver attach.
   4940  1.1.1.4  dyoung  */
   4941  1.1.1.4  dyoung static void
   4942  1.1.1.4  dyoung ath_announce(struct ath_softc *sc)
   4943  1.1.1.4  dyoung {
   4944  1.1.1.4  dyoung #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   4945  1.1.1.5  dyoung 	struct ifnet *ifp = sc->sc_ifp;
   4946  1.1.1.4  dyoung 	struct ath_hal *ah = sc->sc_ah;
   4947  1.1.1.4  dyoung 	u_int modes, cc;
   4948  1.1.1.4  dyoung 
   4949  1.1.1.4  dyoung 	if_printf(ifp, "mac %d.%d phy %d.%d",
   4950  1.1.1.4  dyoung 		ah->ah_macVersion, ah->ah_macRev,
   4951  1.1.1.4  dyoung 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   4952  1.1.1.4  dyoung 	/*
   4953  1.1.1.4  dyoung 	 * Print radio revision(s).  We check the wireless modes
   4954  1.1.1.4  dyoung 	 * to avoid falsely printing revs for inoperable parts.
   4955  1.1.1.4  dyoung 	 * Dual-band radio revs are returned in the 5Ghz rev number.
   4956  1.1.1.4  dyoung 	 */
   4957  1.1.1.4  dyoung 	ath_hal_getcountrycode(ah, &cc);
   4958  1.1.1.4  dyoung 	modes = ath_hal_getwirelessmodes(ah, cc);
   4959  1.1.1.4  dyoung 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   4960  1.1.1.4  dyoung 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   4961  1.1.1.4  dyoung 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
   4962  1.1.1.4  dyoung 				ah->ah_analog5GhzRev >> 4,
   4963  1.1.1.4  dyoung 				ah->ah_analog5GhzRev & 0xf,
   4964  1.1.1.4  dyoung 				ah->ah_analog2GhzRev >> 4,
   4965  1.1.1.4  dyoung 				ah->ah_analog2GhzRev & 0xf);
   4966  1.1.1.4  dyoung 		else
   4967  1.1.1.4  dyoung 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4968  1.1.1.4  dyoung 				ah->ah_analog5GhzRev & 0xf);
   4969  1.1.1.4  dyoung 	} else
   4970  1.1.1.4  dyoung 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   4971  1.1.1.4  dyoung 			ah->ah_analog5GhzRev & 0xf);
   4972  1.1.1.4  dyoung 	printf("\n");
   4973  1.1.1.4  dyoung 	if (bootverbose) {
   4974  1.1.1.4  dyoung 		int i;
   4975  1.1.1.4  dyoung 		for (i = 0; i <= WME_AC_VO; i++) {
   4976  1.1.1.4  dyoung 			struct ath_txq *txq = sc->sc_ac2q[i];
   4977  1.1.1.4  dyoung 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   4978  1.1.1.4  dyoung 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   4979  1.1.1.4  dyoung 		}
   4980  1.1.1.4  dyoung 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   4981  1.1.1.4  dyoung 			sc->sc_cabq->axq_qnum);
   4982  1.1.1.4  dyoung 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   4983      1.1  dyoung 	}
   4984  1.1.1.4  dyoung #undef HAL_MODE_DUALBAND
   4985      1.1  dyoung }
   4986