ath.c revision 1.1.1.3 1 /*-
2 * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 * redistribution must be conditioned upon including a substantially
14 * similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 * of any contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.54 2004/04/05 04:42:42 sam Exp $");
39
40 /*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47 #include "opt_inet.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63
64 #include <machine/bus.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72
73 #include <net80211/ieee80211_var.h>
74
75 #include <net/bpf.h>
76
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81
82 #define AR_DEBUG
83 #include <dev/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85
86 /* unalligned little endian access */
87 #define LE_READ_2(p) \
88 ((u_int16_t) \
89 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
90 #define LE_READ_4(p) \
91 ((u_int32_t) \
92 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
93 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
94
95 static void ath_init(void *);
96 static void ath_stop(struct ifnet *);
97 static void ath_start(struct ifnet *);
98 static void ath_reset(struct ath_softc *);
99 static int ath_media_change(struct ifnet *);
100 static void ath_watchdog(struct ifnet *);
101 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
102 static void ath_fatal_proc(void *, int);
103 static void ath_rxorn_proc(void *, int);
104 static void ath_bmiss_proc(void *, int);
105 static void ath_initkeytable(struct ath_softc *);
106 static void ath_mode_init(struct ath_softc *);
107 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
108 static void ath_beacon_proc(void *, int);
109 static void ath_beacon_free(struct ath_softc *);
110 static void ath_beacon_config(struct ath_softc *);
111 static int ath_desc_alloc(struct ath_softc *);
112 static void ath_desc_free(struct ath_softc *);
113 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
114 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
115 static void ath_node_copy(struct ieee80211com *,
116 struct ieee80211_node *, const struct ieee80211_node *);
117 static u_int8_t ath_node_getrssi(struct ieee80211com *,
118 struct ieee80211_node *);
119 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
120 static void ath_rx_proc(void *, int);
121 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
122 struct ath_buf *, struct mbuf *);
123 static void ath_tx_proc(void *, int);
124 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
125 static void ath_draintxq(struct ath_softc *);
126 static void ath_stoprecv(struct ath_softc *);
127 static int ath_startrecv(struct ath_softc *);
128 static void ath_next_scan(void *);
129 static void ath_calibrate(void *);
130 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
131 static void ath_newassoc(struct ieee80211com *,
132 struct ieee80211_node *, int);
133 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
134
135 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
136 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
137 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
138 static void ath_rate_ctl(void *, struct ieee80211_node *);
139
140 SYSCTL_DECL(_hw_ath);
141
142 /* XXX validate sysctl values */
143 static int ath_dwelltime = 200; /* 5 channels/second */
144 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
145 0, "channel dwell time (ms) for AP/station scanning");
146 static int ath_calinterval = 30; /* calibrate every 30 secs */
147 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
148 0, "chip calibration interval (secs)");
149 static int ath_outdoor = AH_TRUE; /* outdoor operation */
150 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
151 0, "enable/disable outdoor operation");
152 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
153 static int ath_countrycode = CTRY_DEFAULT; /* country code */
154 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
155 0, "country code");
156 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
157 static int ath_regdomain = 0; /* regulatory domain */
158 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
159 0, "regulatory domain");
160
161 #ifdef AR_DEBUG
162 int ath_debug = 0;
163 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
164 0, "control debugging printfs");
165 TUNABLE_INT("hw.ath.debug", &ath_debug);
166 #define IFF_DUMPPKTS(_ifp, _m) \
167 ((ath_debug & _m) || \
168 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
169 static void ath_printrxbuf(struct ath_buf *bf, int);
170 static void ath_printtxbuf(struct ath_buf *bf, int);
171 enum {
172 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
173 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
174 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
175 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
176 ATH_DEBUG_RATE = 0x00000010, /* rate control */
177 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
178 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
179 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
180 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
181 ATH_DEBUG_INTR = 0x00001000, /* ISR */
182 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
183 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
184 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
185 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
186 ATH_DEBUG_ANY = 0xffffffff
187 };
188 #define DPRINTF(_m,X) if (ath_debug & _m) printf X
189 #else
190 #define IFF_DUMPPKTS(_ifp, _m) \
191 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
192 #define DPRINTF(_m, X)
193 #endif
194
195 int
196 ath_attach(u_int16_t devid, struct ath_softc *sc)
197 {
198 struct ieee80211com *ic = &sc->sc_ic;
199 struct ifnet *ifp = &ic->ic_if;
200 struct ath_hal *ah;
201 HAL_STATUS status;
202 int error = 0;
203
204 DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
205
206 /* set these up early for if_printf use */
207 if_initname(ifp, device_get_name(sc->sc_dev),
208 device_get_unit(sc->sc_dev));
209
210 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
211 if (ah == NULL) {
212 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
213 status);
214 error = ENXIO;
215 goto bad;
216 }
217 if (ah->ah_abi != HAL_ABI_VERSION) {
218 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
219 ah->ah_abi, HAL_ABI_VERSION);
220 error = ENXIO;
221 goto bad;
222 }
223 if_printf(ifp, "mac %d.%d phy %d.%d",
224 ah->ah_macVersion, ah->ah_macRev,
225 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
226 if (ah->ah_analog5GhzRev)
227 printf(" 5ghz radio %d.%d",
228 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
229 if (ah->ah_analog2GhzRev)
230 printf(" 2ghz radio %d.%d",
231 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
232 printf("\n");
233 sc->sc_ah = ah;
234 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
235
236 /*
237 * Collect the channel list using the default country
238 * code and including outdoor channels. The 802.11 layer
239 * is resposible for filtering this list based on settings
240 * like the phy mode.
241 */
242 error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
243 if (error != 0)
244 goto bad;
245 /*
246 * Copy these back; they are set as a side effect
247 * of constructing the channel list.
248 */
249 ath_regdomain = ath_hal_getregdomain(ah);
250 ath_countrycode = ath_hal_getcountrycode(ah);
251
252 /*
253 * Setup rate tables for all potential media types.
254 */
255 ath_rate_setup(sc, IEEE80211_MODE_11A);
256 ath_rate_setup(sc, IEEE80211_MODE_11B);
257 ath_rate_setup(sc, IEEE80211_MODE_11G);
258 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
259
260 error = ath_desc_alloc(sc);
261 if (error != 0) {
262 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
263 goto bad;
264 }
265 callout_init(&sc->sc_scan_ch, CALLOUT_MPSAFE);
266 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
267
268 ATH_TXBUF_LOCK_INIT(sc);
269 ATH_TXQ_LOCK_INIT(sc);
270
271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
272 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
273 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
274 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
275 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
276
277 /*
278 * For now just pre-allocate one data queue and one
279 * beacon queue. Note that the HAL handles resetting
280 * them at the needed time. Eventually we'll want to
281 * allocate more tx queues for splitting management
282 * frames and for QOS support.
283 */
284 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
285 HAL_TX_QUEUE_DATA,
286 AH_TRUE /* enable interrupts */
287 );
288 if (sc->sc_txhalq == (u_int) -1) {
289 if_printf(ifp, "unable to setup a data xmit queue!\n");
290 goto bad2;
291 }
292 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
293 HAL_TX_QUEUE_BEACON,
294 AH_TRUE /* enable interrupts */
295 );
296 if (sc->sc_bhalq == (u_int) -1) {
297 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
298 goto bad2;
299 }
300
301 ifp->if_softc = sc;
302 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
303 ifp->if_start = ath_start;
304 ifp->if_watchdog = ath_watchdog;
305 ifp->if_ioctl = ath_ioctl;
306 ifp->if_init = ath_init;
307 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
308
309 ic->ic_softc = sc;
310 ic->ic_newassoc = ath_newassoc;
311 /* XXX not right but it's not used anywhere important */
312 ic->ic_phytype = IEEE80211_T_OFDM;
313 ic->ic_opmode = IEEE80211_M_STA;
314 ic->ic_caps = IEEE80211_C_WEP /* wep supported */
315 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
316 | IEEE80211_C_HOSTAP /* hostap mode */
317 | IEEE80211_C_MONITOR /* monitor mode */
318 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
319 ;
320
321 /* get mac address from hardware */
322 ath_hal_getmac(ah, ic->ic_myaddr);
323
324 /* call MI attach routine. */
325 ieee80211_ifattach(ifp);
326 /* override default methods */
327 ic->ic_node_alloc = ath_node_alloc;
328 sc->sc_node_free = ic->ic_node_free;
329 ic->ic_node_free = ath_node_free;
330 sc->sc_node_copy = ic->ic_node_copy;
331 ic->ic_node_copy = ath_node_copy;
332 ic->ic_node_getrssi = ath_node_getrssi;
333 sc->sc_newstate = ic->ic_newstate;
334 ic->ic_newstate = ath_newstate;
335 /* complete initialization */
336 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
337
338 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
339 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
340 &sc->sc_drvbpf);
341 /*
342 * Initialize constant fields.
343 * XXX make header lengths a multiple of 32-bits so subsequent
344 * headers are properly aligned; this is a kludge to keep
345 * certain applications happy.
346 *
347 * NB: the channel is setup each time we transition to the
348 * RUN state to avoid filling it in for each frame.
349 */
350 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
351 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
352 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
353
354 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
355 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
356 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
357
358 return 0;
359 bad2:
360 ath_desc_free(sc);
361 bad:
362 if (ah)
363 ath_hal_detach(ah);
364 sc->sc_invalid = 1;
365 return error;
366 }
367
368 int
369 ath_detach(struct ath_softc *sc)
370 {
371 struct ifnet *ifp = &sc->sc_ic.ic_if;
372
373 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
374
375 ath_stop(ifp);
376 bpfdetach(ifp);
377 ath_desc_free(sc);
378 ath_hal_detach(sc->sc_ah);
379 ieee80211_ifdetach(ifp);
380
381 ATH_TXBUF_LOCK_DESTROY(sc);
382 ATH_TXQ_LOCK_DESTROY(sc);
383
384 return 0;
385 }
386
387 void
388 ath_suspend(struct ath_softc *sc)
389 {
390 struct ifnet *ifp = &sc->sc_ic.ic_if;
391
392 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
393
394 ath_stop(ifp);
395 }
396
397 void
398 ath_resume(struct ath_softc *sc)
399 {
400 struct ifnet *ifp = &sc->sc_ic.ic_if;
401
402 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
403
404 if (ifp->if_flags & IFF_UP) {
405 ath_init(ifp);
406 if (ifp->if_flags & IFF_RUNNING)
407 ath_start(ifp);
408 }
409 }
410
411 void
412 ath_shutdown(struct ath_softc *sc)
413 {
414 struct ifnet *ifp = &sc->sc_ic.ic_if;
415
416 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
417
418 ath_stop(ifp);
419 }
420
421 void
422 ath_intr(void *arg)
423 {
424 struct ath_softc *sc = arg;
425 struct ieee80211com *ic = &sc->sc_ic;
426 struct ifnet *ifp = &ic->ic_if;
427 struct ath_hal *ah = sc->sc_ah;
428 HAL_INT status;
429
430 if (sc->sc_invalid) {
431 /*
432 * The hardware is not ready/present, don't touch anything.
433 * Note this can happen early on if the IRQ is shared.
434 */
435 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
436 return;
437 }
438 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
439 return;
440 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
441 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
442 __func__, ifp->if_flags));
443 ath_hal_getisr(ah, &status); /* clear ISR */
444 ath_hal_intrset(ah, 0); /* disable further intr's */
445 return;
446 }
447 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
448 DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
449 #ifdef AR_DEBUG
450 if (ath_debug &&
451 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
452 if_printf(ifp, "ath_intr: status 0x%x\n", status);
453 ath_hal_dumpstate(ah);
454 }
455 #endif /* AR_DEBUG */
456 status &= sc->sc_imask; /* discard unasked for bits */
457 if (status & HAL_INT_FATAL) {
458 sc->sc_stats.ast_hardware++;
459 ath_hal_intrset(ah, 0); /* disable intr's until reset */
460 taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
461 } else if (status & HAL_INT_RXORN) {
462 sc->sc_stats.ast_rxorn++;
463 ath_hal_intrset(ah, 0); /* disable intr's until reset */
464 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
465 } else {
466 if (status & HAL_INT_RXEOL) {
467 /*
468 * NB: the hardware should re-read the link when
469 * RXE bit is written, but it doesn't work at
470 * least on older hardware revs.
471 */
472 sc->sc_stats.ast_rxeol++;
473 sc->sc_rxlink = NULL;
474 }
475 if (status & HAL_INT_TXURN) {
476 sc->sc_stats.ast_txurn++;
477 /* bump tx trigger level */
478 ath_hal_updatetxtriglevel(ah, AH_TRUE);
479 }
480 if (status & HAL_INT_RX)
481 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
482 if (status & HAL_INT_TX)
483 taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
484 if (status & HAL_INT_SWBA) {
485 /*
486 * Handle beacon transmission directly; deferring
487 * this is too slow to meet timing constraints
488 * under load.
489 */
490 ath_beacon_proc(sc, 0);
491 }
492 if (status & HAL_INT_BMISS) {
493 sc->sc_stats.ast_bmiss++;
494 taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
495 }
496 }
497 }
498
499 static void
500 ath_fatal_proc(void *arg, int pending)
501 {
502 struct ath_softc *sc = arg;
503
504 device_printf(sc->sc_dev, "hardware error; resetting\n");
505 ath_reset(sc);
506 }
507
508 static void
509 ath_rxorn_proc(void *arg, int pending)
510 {
511 struct ath_softc *sc = arg;
512
513 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
514 ath_reset(sc);
515 }
516
517 static void
518 ath_bmiss_proc(void *arg, int pending)
519 {
520 struct ath_softc *sc = arg;
521 struct ieee80211com *ic = &sc->sc_ic;
522
523 DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
524 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
525 ("unexpect operating mode %u", ic->ic_opmode));
526 if (ic->ic_state == IEEE80211_S_RUN) {
527 /*
528 * Rather than go directly to scan state, try to
529 * reassociate first. If that fails then the state
530 * machine will drop us into scanning after timing
531 * out waiting for a probe response.
532 */
533 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
534 }
535 }
536
537 static u_int
538 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
539 {
540 static const u_int modeflags[] = {
541 0, /* IEEE80211_MODE_AUTO */
542 CHANNEL_A, /* IEEE80211_MODE_11A */
543 CHANNEL_B, /* IEEE80211_MODE_11B */
544 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
545 CHANNEL_T /* IEEE80211_MODE_TURBO */
546 };
547 return modeflags[ieee80211_chan2mode(ic, chan)];
548 }
549
550 static void
551 ath_init(void *arg)
552 {
553 struct ath_softc *sc = (struct ath_softc *) arg;
554 struct ieee80211com *ic = &sc->sc_ic;
555 struct ifnet *ifp = &ic->ic_if;
556 struct ieee80211_node *ni;
557 enum ieee80211_phymode mode;
558 struct ath_hal *ah = sc->sc_ah;
559 HAL_STATUS status;
560 HAL_CHANNEL hchan;
561
562 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
563 __func__, ifp->if_flags));
564
565 ATH_LOCK(sc);
566 /*
567 * Stop anything previously setup. This is safe
568 * whether this is the first time through or not.
569 */
570 ath_stop(ifp);
571
572 /*
573 * The basic interface to setting the hardware in a good
574 * state is ``reset''. On return the hardware is known to
575 * be powered up and with interrupts disabled. This must
576 * be followed by initialization of the appropriate bits
577 * and then setup of the interrupt mask.
578 */
579 hchan.channel = ic->ic_ibss_chan->ic_freq;
580 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
581 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
582 if_printf(ifp, "unable to reset hardware; hal status %u\n",
583 status);
584 goto done;
585 }
586
587 /*
588 * Setup the hardware after reset: the key cache
589 * is filled as needed and the receive engine is
590 * set going. Frame transmit is handled entirely
591 * in the frame output path; there's nothing to do
592 * here except setup the interrupt mask.
593 */
594 if (ic->ic_flags & IEEE80211_F_WEPON)
595 ath_initkeytable(sc);
596 if (ath_startrecv(sc) != 0) {
597 if_printf(ifp, "unable to start recv logic\n");
598 goto done;
599 }
600
601 /*
602 * Enable interrupts.
603 */
604 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
605 | HAL_INT_RXEOL | HAL_INT_RXORN
606 | HAL_INT_FATAL | HAL_INT_GLOBAL;
607 ath_hal_intrset(ah, sc->sc_imask);
608
609 ifp->if_flags |= IFF_RUNNING;
610 ic->ic_state = IEEE80211_S_INIT;
611
612 /*
613 * The hardware should be ready to go now so it's safe
614 * to kick the 802.11 state machine as it's likely to
615 * immediately call back to us to send mgmt frames.
616 */
617 ni = ic->ic_bss;
618 ni->ni_chan = ic->ic_ibss_chan;
619 mode = ieee80211_chan2mode(ic, ni->ni_chan);
620 if (mode != sc->sc_curmode)
621 ath_setcurmode(sc, mode);
622 if (ic->ic_opmode != IEEE80211_M_MONITOR)
623 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
624 else
625 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
626 done:
627 ATH_UNLOCK(sc);
628 }
629
630 static void
631 ath_stop(struct ifnet *ifp)
632 {
633 struct ieee80211com *ic = (struct ieee80211com *) ifp;
634 struct ath_softc *sc = ifp->if_softc;
635 struct ath_hal *ah = sc->sc_ah;
636
637 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
638 __func__, sc->sc_invalid, ifp->if_flags));
639
640 ATH_LOCK(sc);
641 if (ifp->if_flags & IFF_RUNNING) {
642 /*
643 * Shutdown the hardware and driver:
644 * disable interrupts
645 * turn off timers
646 * clear transmit machinery
647 * clear receive machinery
648 * drain and release tx queues
649 * reclaim beacon resources
650 * reset 802.11 state machine
651 * power down hardware
652 *
653 * Note that some of this work is not possible if the
654 * hardware is gone (invalid).
655 */
656 ifp->if_flags &= ~IFF_RUNNING;
657 ifp->if_timer = 0;
658 if (!sc->sc_invalid)
659 ath_hal_intrset(ah, 0);
660 ath_draintxq(sc);
661 if (!sc->sc_invalid)
662 ath_stoprecv(sc);
663 else
664 sc->sc_rxlink = NULL;
665 IF_DRAIN(&ifp->if_snd);
666 ath_beacon_free(sc);
667 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
668 if (!sc->sc_invalid)
669 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
670 }
671 ATH_UNLOCK(sc);
672 }
673
674 /*
675 * Reset the hardware w/o losing operational state. This is
676 * basically a more efficient way of doing ath_stop, ath_init,
677 * followed by state transitions to the current 802.11
678 * operational state. Used to recover from errors rx overrun
679 * and to reset the hardware when rf gain settings must be reset.
680 */
681 static void
682 ath_reset(struct ath_softc *sc)
683 {
684 struct ieee80211com *ic = &sc->sc_ic;
685 struct ifnet *ifp = &ic->ic_if;
686 struct ath_hal *ah = sc->sc_ah;
687 struct ieee80211_channel *c;
688 HAL_STATUS status;
689 HAL_CHANNEL hchan;
690
691 /*
692 * Convert to a HAL channel description with the flags
693 * constrained to reflect the current operating mode.
694 */
695 c = ic->ic_ibss_chan;
696 hchan.channel = c->ic_freq;
697 hchan.channelFlags = ath_chan2flags(ic, c);
698
699 ath_hal_intrset(ah, 0); /* disable interrupts */
700 ath_draintxq(sc); /* stop xmit side */
701 ath_stoprecv(sc); /* stop recv side */
702 /* NB: indicate channel change so we do a full reset */
703 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
704 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
705 __func__, status);
706 ath_hal_intrset(ah, sc->sc_imask);
707 if (ath_startrecv(sc) != 0) /* restart recv */
708 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
709 ath_start(ifp); /* restart xmit */
710 if (ic->ic_state == IEEE80211_S_RUN)
711 ath_beacon_config(sc); /* restart beacons */
712 }
713
714 static void
715 ath_start(struct ifnet *ifp)
716 {
717 struct ath_softc *sc = ifp->if_softc;
718 struct ath_hal *ah = sc->sc_ah;
719 struct ieee80211com *ic = &sc->sc_ic;
720 struct ieee80211_node *ni;
721 struct ath_buf *bf;
722 struct mbuf *m;
723 struct ieee80211_frame *wh;
724
725 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
726 return;
727 for (;;) {
728 /*
729 * Grab a TX buffer and associated resources.
730 */
731 ATH_TXBUF_LOCK(sc);
732 bf = TAILQ_FIRST(&sc->sc_txbuf);
733 if (bf != NULL)
734 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
735 ATH_TXBUF_UNLOCK(sc);
736 if (bf == NULL) {
737 DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
738 __func__));
739 sc->sc_stats.ast_tx_qstop++;
740 ifp->if_flags |= IFF_OACTIVE;
741 break;
742 }
743 /*
744 * Poll the management queue for frames; they
745 * have priority over normal data frames.
746 */
747 IF_DEQUEUE(&ic->ic_mgtq, m);
748 if (m == NULL) {
749 /*
750 * No data frames go out unless we're associated.
751 */
752 if (ic->ic_state != IEEE80211_S_RUN) {
753 DPRINTF(ATH_DEBUG_ANY,
754 ("%s: ignore data packet, state %u\n",
755 __func__, ic->ic_state));
756 sc->sc_stats.ast_tx_discard++;
757 ATH_TXBUF_LOCK(sc);
758 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
759 ATH_TXBUF_UNLOCK(sc);
760 break;
761 }
762 IF_DEQUEUE(&ifp->if_snd, m);
763 if (m == NULL) {
764 ATH_TXBUF_LOCK(sc);
765 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
766 ATH_TXBUF_UNLOCK(sc);
767 break;
768 }
769 ifp->if_opackets++;
770 BPF_MTAP(ifp, m);
771 /*
772 * Encapsulate the packet in prep for transmission.
773 */
774 m = ieee80211_encap(ifp, m, &ni);
775 if (m == NULL) {
776 DPRINTF(ATH_DEBUG_ANY,
777 ("%s: encapsulation failure\n",
778 __func__));
779 sc->sc_stats.ast_tx_encap++;
780 goto bad;
781 }
782 wh = mtod(m, struct ieee80211_frame *);
783 if (ic->ic_flags & IEEE80211_F_WEPON)
784 wh->i_fc[1] |= IEEE80211_FC1_WEP;
785 } else {
786 /*
787 * Hack! The referenced node pointer is in the
788 * rcvif field of the packet header. This is
789 * placed there by ieee80211_mgmt_output because
790 * we need to hold the reference with the frame
791 * and there's no other way (other than packet
792 * tags which we consider too expensive to use)
793 * to pass it along.
794 */
795 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
796 m->m_pkthdr.rcvif = NULL;
797
798 wh = mtod(m, struct ieee80211_frame *);
799 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
800 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
801 /* fill time stamp */
802 u_int64_t tsf;
803 u_int32_t *tstamp;
804
805 tsf = ath_hal_gettsf64(ah);
806 /* XXX: adjust 100us delay to xmit */
807 tsf += 100;
808 tstamp = (u_int32_t *)&wh[1];
809 tstamp[0] = htole32(tsf & 0xffffffff);
810 tstamp[1] = htole32(tsf >> 32);
811 }
812 sc->sc_stats.ast_tx_mgmt++;
813 }
814
815 if (ath_tx_start(sc, ni, bf, m)) {
816 bad:
817 ATH_TXBUF_LOCK(sc);
818 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
819 ATH_TXBUF_UNLOCK(sc);
820 ifp->if_oerrors++;
821 if (ni && ni != ic->ic_bss)
822 ieee80211_free_node(ic, ni);
823 continue;
824 }
825
826 sc->sc_tx_timer = 5;
827 ifp->if_timer = 1;
828 }
829 }
830
831 static int
832 ath_media_change(struct ifnet *ifp)
833 {
834 int error;
835
836 error = ieee80211_media_change(ifp);
837 if (error == ENETRESET) {
838 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
839 (IFF_RUNNING|IFF_UP))
840 ath_init(ifp); /* XXX lose error */
841 error = 0;
842 }
843 return error;
844 }
845
846 static void
847 ath_watchdog(struct ifnet *ifp)
848 {
849 struct ath_softc *sc = ifp->if_softc;
850 struct ieee80211com *ic = &sc->sc_ic;
851
852 ifp->if_timer = 0;
853 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
854 return;
855 if (sc->sc_tx_timer) {
856 if (--sc->sc_tx_timer == 0) {
857 if_printf(ifp, "device timeout\n");
858 #ifdef AR_DEBUG
859 if (ath_debug & ATH_DEBUG_WATCHDOG)
860 ath_hal_dumpstate(sc->sc_ah);
861 #endif /* AR_DEBUG */
862 ath_reset(sc);
863 ifp->if_oerrors++;
864 sc->sc_stats.ast_watchdog++;
865 return;
866 }
867 ifp->if_timer = 1;
868 }
869 if (ic->ic_fixed_rate == -1) {
870 /*
871 * Run the rate control algorithm if we're not
872 * locked at a fixed rate.
873 */
874 if (ic->ic_opmode == IEEE80211_M_STA)
875 ath_rate_ctl(sc, ic->ic_bss);
876 else
877 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
878 }
879 ieee80211_watchdog(ifp);
880 }
881
882 static int
883 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
884 {
885 struct ath_softc *sc = ifp->if_softc;
886 struct ifreq *ifr = (struct ifreq *)data;
887 int error = 0;
888
889 ATH_LOCK(sc);
890 switch (cmd) {
891 case SIOCSIFFLAGS:
892 if (ifp->if_flags & IFF_UP) {
893 if (ifp->if_flags & IFF_RUNNING) {
894 /*
895 * To avoid rescanning another access point,
896 * do not call ath_init() here. Instead,
897 * only reflect promisc mode settings.
898 */
899 ath_mode_init(sc);
900 } else {
901 /*
902 * Beware of being called during detach to
903 * reset promiscuous mode. In that case we
904 * will still be marked UP but not RUNNING.
905 * However trying to re-init the interface
906 * is the wrong thing to do as we've already
907 * torn down much of our state. There's
908 * probably a better way to deal with this.
909 */
910 if (!sc->sc_invalid)
911 ath_init(ifp); /* XXX lose error */
912 }
913 } else
914 ath_stop(ifp);
915 break;
916 case SIOCADDMULTI:
917 case SIOCDELMULTI:
918 /*
919 * The upper layer has already installed/removed
920 * the multicast address(es), just recalculate the
921 * multicast filter for the card.
922 */
923 if (ifp->if_flags & IFF_RUNNING)
924 ath_mode_init(sc);
925 break;
926 case SIOCGATHSTATS:
927 error = copyout(&sc->sc_stats,
928 ifr->ifr_data, sizeof (sc->sc_stats));
929 break;
930 case SIOCGATHDIAG: {
931 struct ath_diag *ad = (struct ath_diag *)data;
932 struct ath_hal *ah = sc->sc_ah;
933 void *data;
934 u_int size;
935
936 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
937 if (size < ad->ad_size)
938 ad->ad_size = size;
939 if (data)
940 error = copyout(data, ad->ad_data, ad->ad_size);
941 } else
942 error = EINVAL;
943 break;
944 }
945 default:
946 error = ieee80211_ioctl(ifp, cmd, data);
947 if (error == ENETRESET) {
948 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
949 (IFF_RUNNING|IFF_UP))
950 ath_init(ifp); /* XXX lose error */
951 error = 0;
952 }
953 break;
954 }
955 ATH_UNLOCK(sc);
956 return error;
957 }
958
959 /*
960 * Fill the hardware key cache with key entries.
961 */
962 static void
963 ath_initkeytable(struct ath_softc *sc)
964 {
965 struct ieee80211com *ic = &sc->sc_ic;
966 struct ath_hal *ah = sc->sc_ah;
967 int i;
968
969 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
970 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
971 if (k->wk_len == 0)
972 ath_hal_keyreset(ah, i);
973 else
974 /* XXX return value */
975 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
976 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
977 }
978 }
979
980 /*
981 * Calculate the receive filter according to the
982 * operating mode and state:
983 *
984 * o always accept unicast, broadcast, and multicast traffic
985 * o maintain current state of phy error reception
986 * o probe request frames are accepted only when operating in
987 * hostap, adhoc, or monitor modes
988 * o enable promiscuous mode according to the interface state
989 * o accept beacons:
990 * - when operating in adhoc mode so the 802.11 layer creates
991 * node table entries for peers,
992 * - when operating in station mode for collecting rssi data when
993 * the station is otherwise quiet, or
994 * - when scanning
995 */
996 static u_int32_t
997 ath_calcrxfilter(struct ath_softc *sc)
998 {
999 struct ieee80211com *ic = &sc->sc_ic;
1000 struct ath_hal *ah = sc->sc_ah;
1001 struct ifnet *ifp = &ic->ic_if;
1002 u_int32_t rfilt;
1003
1004 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1005 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1006 if (ic->ic_opmode != IEEE80211_M_STA)
1007 rfilt |= HAL_RX_FILTER_PROBEREQ;
1008 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1009 (ifp->if_flags & IFF_PROMISC))
1010 rfilt |= HAL_RX_FILTER_PROM;
1011 if (ic->ic_opmode == IEEE80211_M_STA ||
1012 ic->ic_opmode == IEEE80211_M_IBSS ||
1013 ic->ic_state == IEEE80211_S_SCAN)
1014 rfilt |= HAL_RX_FILTER_BEACON;
1015 return rfilt;
1016 }
1017
1018 static void
1019 ath_mode_init(struct ath_softc *sc)
1020 {
1021 struct ieee80211com *ic = &sc->sc_ic;
1022 struct ath_hal *ah = sc->sc_ah;
1023 struct ifnet *ifp = &ic->ic_if;
1024 u_int32_t rfilt, mfilt[2], val;
1025 u_int8_t pos;
1026 struct ifmultiaddr *ifma;
1027
1028 /* configure rx filter */
1029 rfilt = ath_calcrxfilter(sc);
1030 ath_hal_setrxfilter(ah, rfilt);
1031
1032 /* configure operational mode */
1033 ath_hal_setopmode(ah, ic->ic_opmode);
1034
1035 /* calculate and install multicast filter */
1036 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1037 mfilt[0] = mfilt[1] = 0;
1038 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1039 caddr_t dl;
1040
1041 /* calculate XOR of eight 6bit values */
1042 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1043 val = LE_READ_4(dl + 0);
1044 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1045 val = LE_READ_4(dl + 3);
1046 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1047 pos &= 0x3f;
1048 mfilt[pos / 32] |= (1 << (pos % 32));
1049 }
1050 } else {
1051 mfilt[0] = mfilt[1] = ~0;
1052 }
1053 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1054 DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
1055 __func__, rfilt, mfilt[0], mfilt[1]));
1056 }
1057
1058 static void
1059 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1060 {
1061 struct ath_buf *bf = arg;
1062
1063 KASSERT(nseg <= ATH_MAX_SCATTER,
1064 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1065 bf->bf_mapsize = mapsize;
1066 bf->bf_nseg = nseg;
1067 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1068 }
1069
1070 static int
1071 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1072 {
1073 struct ieee80211com *ic = &sc->sc_ic;
1074 struct ifnet *ifp = &ic->ic_if;
1075 struct ath_hal *ah = sc->sc_ah;
1076 struct ieee80211_frame *wh;
1077 struct ath_buf *bf;
1078 struct ath_desc *ds;
1079 struct mbuf *m;
1080 int error, pktlen;
1081 u_int8_t *frm, rate;
1082 u_int16_t capinfo;
1083 struct ieee80211_rateset *rs;
1084 const HAL_RATE_TABLE *rt;
1085
1086 bf = sc->sc_bcbuf;
1087 if (bf->bf_m != NULL) {
1088 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1089 m_freem(bf->bf_m);
1090 bf->bf_m = NULL;
1091 bf->bf_node = NULL;
1092 }
1093 /*
1094 * NB: the beacon data buffer must be 32-bit aligned;
1095 * we assume the mbuf routines will return us something
1096 * with this alignment (perhaps should assert).
1097 */
1098 rs = &ni->ni_rates;
1099 pktlen = sizeof (struct ieee80211_frame)
1100 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1101 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1102 pktlen += 2;
1103 if (pktlen <= MHLEN)
1104 MGETHDR(m, M_DONTWAIT, MT_DATA);
1105 else
1106 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1107 if (m == NULL) {
1108 DPRINTF(ATH_DEBUG_BEACON,
1109 ("%s: cannot get mbuf/cluster; size %u\n",
1110 __func__, pktlen));
1111 sc->sc_stats.ast_be_nombuf++;
1112 return ENOMEM;
1113 }
1114
1115 wh = mtod(m, struct ieee80211_frame *);
1116 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1117 IEEE80211_FC0_SUBTYPE_BEACON;
1118 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1119 *(u_int16_t *)wh->i_dur = 0;
1120 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1121 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1122 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1123 *(u_int16_t *)wh->i_seq = 0;
1124
1125 /*
1126 * beacon frame format
1127 * [8] time stamp
1128 * [2] beacon interval
1129 * [2] cabability information
1130 * [tlv] ssid
1131 * [tlv] supported rates
1132 * [tlv] parameter set (IBSS)
1133 * [tlv] extended supported rates
1134 */
1135 frm = (u_int8_t *)&wh[1];
1136 memset(frm, 0, 8); /* timestamp is set by hardware */
1137 frm += 8;
1138 *(u_int16_t *)frm = htole16(ni->ni_intval);
1139 frm += 2;
1140 if (ic->ic_opmode == IEEE80211_M_IBSS)
1141 capinfo = IEEE80211_CAPINFO_IBSS;
1142 else
1143 capinfo = IEEE80211_CAPINFO_ESS;
1144 if (ic->ic_flags & IEEE80211_F_WEPON)
1145 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1146 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1147 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1148 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1149 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1150 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1151 *(u_int16_t *)frm = htole16(capinfo);
1152 frm += 2;
1153 *frm++ = IEEE80211_ELEMID_SSID;
1154 *frm++ = ni->ni_esslen;
1155 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1156 frm += ni->ni_esslen;
1157 frm = ieee80211_add_rates(frm, rs);
1158 *frm++ = IEEE80211_ELEMID_DSPARMS;
1159 *frm++ = 1;
1160 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1161 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1162 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1163 *frm++ = 2;
1164 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1165 } else {
1166 /* TODO: TIM */
1167 *frm++ = IEEE80211_ELEMID_TIM;
1168 *frm++ = 4; /* length */
1169 *frm++ = 0; /* DTIM count */
1170 *frm++ = 1; /* DTIM period */
1171 *frm++ = 0; /* bitmap control */
1172 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1173 }
1174 frm = ieee80211_add_xrates(frm, rs);
1175 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1176 KASSERT(m->m_pkthdr.len <= pktlen,
1177 ("beacon bigger than expected, len %u calculated %u",
1178 m->m_pkthdr.len, pktlen));
1179
1180 DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
1181 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1182 ath_mbuf_load_cb, bf,
1183 BUS_DMA_NOWAIT);
1184 if (error != 0) {
1185 m_freem(m);
1186 return error;
1187 }
1188 KASSERT(bf->bf_nseg == 1,
1189 ("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
1190 bf->bf_m = m;
1191
1192 /* setup descriptors */
1193 ds = bf->bf_desc;
1194
1195 ds->ds_link = 0;
1196 ds->ds_data = bf->bf_segs[0].ds_addr;
1197 /*
1198 * Calculate rate code.
1199 * XXX everything at min xmit rate
1200 */
1201 rt = sc->sc_currates;
1202 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1203 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1204 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1205 else
1206 rate = rt->info[0].rateCode;
1207 ath_hal_setuptxdesc(ah, ds
1208 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1209 , sizeof(struct ieee80211_frame) /* header length */
1210 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1211 , 0x20 /* txpower XXX */
1212 , rate, 1 /* series 0 rate/tries */
1213 , HAL_TXKEYIX_INVALID /* no encryption */
1214 , 0 /* antenna mode */
1215 , HAL_TXDESC_NOACK /* no ack for beacons */
1216 , 0 /* rts/cts rate */
1217 , 0 /* rts/cts duration */
1218 );
1219 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1220 /* XXX verify mbuf data area covers this roundup */
1221 ath_hal_filltxdesc(ah, ds
1222 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1223 , AH_TRUE /* first segment */
1224 , AH_TRUE /* last segment */
1225 );
1226
1227 return 0;
1228 }
1229
1230 static void
1231 ath_beacon_proc(void *arg, int pending)
1232 {
1233 struct ath_softc *sc = arg;
1234 struct ieee80211com *ic = &sc->sc_ic;
1235 struct ath_buf *bf = sc->sc_bcbuf;
1236 struct ath_hal *ah = sc->sc_ah;
1237
1238 DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
1239 if (ic->ic_opmode == IEEE80211_M_STA ||
1240 bf == NULL || bf->bf_m == NULL) {
1241 DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
1242 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1243 return;
1244 }
1245 /* TODO: update beacon to reflect PS poll state */
1246 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1247 DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
1248 __func__, sc->sc_bhalq));
1249 /* NB: the HAL still stops DMA, so proceed */
1250 }
1251 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1252
1253 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1254 ath_hal_txstart(ah, sc->sc_bhalq);
1255 DPRINTF(ATH_DEBUG_BEACON_PROC,
1256 ("%s: TXDP%u = %p (%p)\n", __func__,
1257 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1258 }
1259
1260 static void
1261 ath_beacon_free(struct ath_softc *sc)
1262 {
1263 struct ath_buf *bf = sc->sc_bcbuf;
1264
1265 if (bf->bf_m != NULL) {
1266 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1267 m_freem(bf->bf_m);
1268 bf->bf_m = NULL;
1269 bf->bf_node = NULL;
1270 }
1271 }
1272
1273 /*
1274 * Configure the beacon and sleep timers.
1275 *
1276 * When operating as an AP this resets the TSF and sets
1277 * up the hardware to notify us when we need to issue beacons.
1278 *
1279 * When operating in station mode this sets up the beacon
1280 * timers according to the timestamp of the last received
1281 * beacon and the current TSF, configures PCF and DTIM
1282 * handling, programs the sleep registers so the hardware
1283 * will wakeup in time to receive beacons, and configures
1284 * the beacon miss handling so we'll receive a BMISS
1285 * interrupt when we stop seeing beacons from the AP
1286 * we've associated with.
1287 */
1288 static void
1289 ath_beacon_config(struct ath_softc *sc)
1290 {
1291 struct ath_hal *ah = sc->sc_ah;
1292 struct ieee80211com *ic = &sc->sc_ic;
1293 struct ieee80211_node *ni = ic->ic_bss;
1294 u_int32_t nexttbtt;
1295
1296 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1297 (LE_READ_4(ni->ni_tstamp) >> 10);
1298 DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt));
1299 nexttbtt += ni->ni_intval;
1300 if (ic->ic_opmode == IEEE80211_M_STA) {
1301 HAL_BEACON_STATE bs;
1302 u_int32_t bmisstime;
1303
1304 /* NB: no PCF support right now */
1305 memset(&bs, 0, sizeof(bs));
1306 bs.bs_intval = ni->ni_intval;
1307 bs.bs_nexttbtt = nexttbtt;
1308 bs.bs_dtimperiod = bs.bs_intval;
1309 bs.bs_nextdtim = nexttbtt;
1310 /*
1311 * Calculate the number of consecutive beacons to miss
1312 * before taking a BMISS interrupt. The configuration
1313 * is specified in ms, so we need to convert that to
1314 * TU's and then calculate based on the beacon interval.
1315 * Note that we clamp the result to at most 10 beacons.
1316 */
1317 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1318 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1319 if (bs.bs_bmissthreshold > 10)
1320 bs.bs_bmissthreshold = 10;
1321 else if (bs.bs_bmissthreshold <= 0)
1322 bs.bs_bmissthreshold = 1;
1323
1324 /*
1325 * Calculate sleep duration. The configuration is
1326 * given in ms. We insure a multiple of the beacon
1327 * period is used. Also, if the sleep duration is
1328 * greater than the DTIM period then it makes senses
1329 * to make it a multiple of that.
1330 *
1331 * XXX fixed at 100ms
1332 */
1333 bs.bs_sleepduration =
1334 roundup((100 * 1000) / 1024, bs.bs_intval);
1335 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1336 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1337
1338 DPRINTF(ATH_DEBUG_BEACON,
1339 ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1340 , __func__
1341 , bs.bs_intval
1342 , bs.bs_nexttbtt
1343 , bs.bs_dtimperiod
1344 , bs.bs_nextdtim
1345 , bs.bs_bmissthreshold
1346 , bs.bs_sleepduration
1347 ));
1348 ath_hal_intrset(ah, 0);
1349 /*
1350 * Reset our tsf so the hardware will update the
1351 * tsf register to reflect timestamps found in
1352 * received beacons.
1353 */
1354 ath_hal_resettsf(ah);
1355 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1356 sc->sc_imask |= HAL_INT_BMISS;
1357 ath_hal_intrset(ah, sc->sc_imask);
1358 } else {
1359 DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
1360 __func__, ni->ni_intval, nexttbtt));
1361 ath_hal_intrset(ah, 0);
1362 ath_hal_beaconinit(ah, ic->ic_opmode,
1363 nexttbtt, ni->ni_intval);
1364 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1365 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1366 ath_hal_intrset(ah, sc->sc_imask);
1367 }
1368 }
1369
1370 static void
1371 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1372 {
1373 bus_addr_t *paddr = (bus_addr_t*) arg;
1374 *paddr = segs->ds_addr;
1375 }
1376
1377 static int
1378 ath_desc_alloc(struct ath_softc *sc)
1379 {
1380 int i, bsize, error;
1381 struct ath_desc *ds;
1382 struct ath_buf *bf;
1383
1384 /* allocate descriptors */
1385 sc->sc_desc_len = sizeof(struct ath_desc) *
1386 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1387 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1388 if (error != 0)
1389 return error;
1390
1391 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1392 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1393 if (error != 0)
1394 goto fail0;
1395
1396 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1397 sc->sc_desc, sc->sc_desc_len,
1398 ath_load_cb, &sc->sc_desc_paddr,
1399 BUS_DMA_NOWAIT);
1400 if (error != 0)
1401 goto fail1;
1402
1403 ds = sc->sc_desc;
1404 DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n",
1405 __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr,
1406 /*XXX*/ (u_long) sc->sc_desc_len));
1407
1408 /* allocate buffers */
1409 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1410 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1411 if (bf == NULL)
1412 goto fail2;
1413 sc->sc_bufptr = bf;
1414
1415 TAILQ_INIT(&sc->sc_rxbuf);
1416 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1417 bf->bf_desc = ds;
1418 bf->bf_daddr = sc->sc_desc_paddr +
1419 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1420 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1421 &bf->bf_dmamap);
1422 if (error != 0)
1423 break;
1424 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1425 }
1426
1427 TAILQ_INIT(&sc->sc_txbuf);
1428 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1429 bf->bf_desc = ds;
1430 bf->bf_daddr = sc->sc_desc_paddr +
1431 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1432 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1433 &bf->bf_dmamap);
1434 if (error != 0)
1435 break;
1436 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1437 }
1438 TAILQ_INIT(&sc->sc_txq);
1439
1440 /* beacon buffer */
1441 bf->bf_desc = ds;
1442 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1443 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1444 if (error != 0)
1445 return error;
1446 sc->sc_bcbuf = bf;
1447 return 0;
1448
1449 fail2:
1450 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1451 fail1:
1452 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1453 fail0:
1454 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1455 sc->sc_ddmamap = NULL;
1456 return error;
1457 }
1458
1459 static void
1460 ath_desc_free(struct ath_softc *sc)
1461 {
1462 struct ath_buf *bf;
1463
1464 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1465 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1466 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1467
1468 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1469 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1470 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1471 m_freem(bf->bf_m);
1472 }
1473 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1474 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1475 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1476 if (bf->bf_m) {
1477 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1478 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1479 m_freem(bf->bf_m);
1480 bf->bf_m = NULL;
1481 }
1482 }
1483 if (sc->sc_bcbuf != NULL) {
1484 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1485 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1486 sc->sc_bcbuf = NULL;
1487 }
1488
1489 TAILQ_INIT(&sc->sc_rxbuf);
1490 TAILQ_INIT(&sc->sc_txbuf);
1491 TAILQ_INIT(&sc->sc_txq);
1492 free(sc->sc_bufptr, M_DEVBUF);
1493 sc->sc_bufptr = NULL;
1494 }
1495
1496 static struct ieee80211_node *
1497 ath_node_alloc(struct ieee80211com *ic)
1498 {
1499 struct ath_node *an =
1500 malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO);
1501 if (an) {
1502 int i;
1503 for (i = 0; i < ATH_RHIST_SIZE; i++)
1504 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1505 an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1506 return &an->an_node;
1507 } else
1508 return NULL;
1509 }
1510
1511 static void
1512 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1513 {
1514 struct ath_softc *sc = ic->ic_if.if_softc;
1515 struct ath_buf *bf;
1516
1517 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1518 if (bf->bf_node == ni)
1519 bf->bf_node = NULL;
1520 }
1521 (*sc->sc_node_free)(ic, ni);
1522 }
1523
1524 static void
1525 ath_node_copy(struct ieee80211com *ic,
1526 struct ieee80211_node *dst, const struct ieee80211_node *src)
1527 {
1528 struct ath_softc *sc = ic->ic_if.if_softc;
1529
1530 memcpy(&dst[1], &src[1],
1531 sizeof(struct ath_node) - sizeof(struct ieee80211_node));
1532 (*sc->sc_node_copy)(ic, dst, src);
1533 }
1534
1535
1536 static u_int8_t
1537 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
1538 {
1539 struct ath_node *an = ATH_NODE(ni);
1540 int i, now, nsamples, rssi;
1541
1542 /*
1543 * Calculate the average over the last second of sampled data.
1544 */
1545 now = ticks;
1546 nsamples = 0;
1547 rssi = 0;
1548 i = an->an_rx_hist_next;
1549 do {
1550 struct ath_recv_hist *rh = &an->an_rx_hist[i];
1551 if (rh->arh_ticks == ATH_RHIST_NOTIME)
1552 goto done;
1553 if (now - rh->arh_ticks > hz)
1554 goto done;
1555 rssi += rh->arh_rssi;
1556 nsamples++;
1557 if (i == 0)
1558 i = ATH_RHIST_SIZE-1;
1559 else
1560 i--;
1561 } while (i != an->an_rx_hist_next);
1562 done:
1563 /*
1564 * Return either the average or the last known
1565 * value if there is no recent data.
1566 */
1567 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
1568 }
1569
1570 static int
1571 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1572 {
1573 struct ath_hal *ah = sc->sc_ah;
1574 int error;
1575 struct mbuf *m;
1576 struct ath_desc *ds;
1577
1578 m = bf->bf_m;
1579 if (m == NULL) {
1580 /*
1581 * NB: by assigning a page to the rx dma buffer we
1582 * implicitly satisfy the Atheros requirement that
1583 * this buffer be cache-line-aligned and sized to be
1584 * multiple of the cache line size. Not doing this
1585 * causes weird stuff to happen (for the 5210 at least).
1586 */
1587 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1588 if (m == NULL) {
1589 DPRINTF(ATH_DEBUG_ANY,
1590 ("%s: no mbuf/cluster\n", __func__));
1591 sc->sc_stats.ast_rx_nombuf++;
1592 return ENOMEM;
1593 }
1594 bf->bf_m = m;
1595 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1596
1597 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1598 ath_mbuf_load_cb, bf,
1599 BUS_DMA_NOWAIT);
1600 if (error != 0) {
1601 DPRINTF(ATH_DEBUG_ANY,
1602 ("%s: bus_dmamap_load_mbuf failed; error %d\n",
1603 __func__, error));
1604 sc->sc_stats.ast_rx_busdma++;
1605 return error;
1606 }
1607 KASSERT(bf->bf_nseg == 1,
1608 ("ath_rxbuf_init: multi-segment packet; nseg %u",
1609 bf->bf_nseg));
1610 }
1611 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
1612
1613 /*
1614 * Setup descriptors. For receive we always terminate
1615 * the descriptor list with a self-linked entry so we'll
1616 * not get overrun under high load (as can happen with a
1617 * 5212 when ANI processing enables PHY errors).
1618 *
1619 * To insure the last descriptor is self-linked we create
1620 * each descriptor as self-linked and add it to the end. As
1621 * each additional descriptor is added the previous self-linked
1622 * entry is ``fixed'' naturally. This should be safe even
1623 * if DMA is happening. When processing RX interrupts we
1624 * never remove/process the last, self-linked, entry on the
1625 * descriptor list. This insures the hardware always has
1626 * someplace to write a new frame.
1627 */
1628 ds = bf->bf_desc;
1629 ds->ds_link = bf->bf_daddr; /* link to self */
1630 ds->ds_data = bf->bf_segs[0].ds_addr;
1631 ath_hal_setuprxdesc(ah, ds
1632 , m->m_len /* buffer size */
1633 , 0
1634 );
1635
1636 if (sc->sc_rxlink != NULL)
1637 *sc->sc_rxlink = bf->bf_daddr;
1638 sc->sc_rxlink = &ds->ds_link;
1639 return 0;
1640 }
1641
1642 static void
1643 ath_rx_proc(void *arg, int npending)
1644 {
1645 #define PA2DESC(_sc, _pa) \
1646 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
1647 ((_pa) - (_sc)->sc_desc_paddr)))
1648 struct ath_softc *sc = arg;
1649 struct ath_buf *bf;
1650 struct ieee80211com *ic = &sc->sc_ic;
1651 struct ifnet *ifp = &ic->ic_if;
1652 struct ath_hal *ah = sc->sc_ah;
1653 struct ath_desc *ds;
1654 struct mbuf *m;
1655 struct ieee80211_frame *wh, whbuf;
1656 struct ieee80211_node *ni;
1657 struct ath_node *an;
1658 struct ath_recv_hist *rh;
1659 int len;
1660 u_int phyerr;
1661 HAL_STATUS status;
1662
1663 DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
1664 do {
1665 bf = TAILQ_FIRST(&sc->sc_rxbuf);
1666 if (bf == NULL) { /* NB: shouldn't happen */
1667 if_printf(ifp, "ath_rx_proc: no buffer!\n");
1668 break;
1669 }
1670 ds = bf->bf_desc;
1671 if (ds->ds_link == bf->bf_daddr) {
1672 /* NB: never process the self-linked entry at the end */
1673 break;
1674 }
1675 m = bf->bf_m;
1676 if (m == NULL) { /* NB: shouldn't happen */
1677 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1678 continue;
1679 }
1680 /* XXX sync descriptor memory */
1681 /*
1682 * Must provide the virtual address of the current
1683 * descriptor, the physical address, and the virtual
1684 * address of the next descriptor in the h/w chain.
1685 * This allows the HAL to look ahead to see if the
1686 * hardware is done with a descriptor by checking the
1687 * done bit in the following descriptor and the address
1688 * of the current descriptor the DMA engine is working
1689 * on. All this is necessary because of our use of
1690 * a self-linked list to avoid rx overruns.
1691 */
1692 status = ath_hal_rxprocdesc(ah, ds,
1693 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
1694 #ifdef AR_DEBUG
1695 if (ath_debug & ATH_DEBUG_RECV_DESC)
1696 ath_printrxbuf(bf, status == HAL_OK);
1697 #endif
1698 if (status == HAL_EINPROGRESS)
1699 break;
1700 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1701 if (ds->ds_rxstat.rs_status != 0) {
1702 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1703 sc->sc_stats.ast_rx_crcerr++;
1704 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1705 sc->sc_stats.ast_rx_fifoerr++;
1706 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1707 sc->sc_stats.ast_rx_badcrypt++;
1708 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1709 sc->sc_stats.ast_rx_phyerr++;
1710 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1711 sc->sc_stats.ast_rx_phy[phyerr]++;
1712 } else {
1713 /*
1714 * NB: don't count PHY errors as input errors;
1715 * we enable them on the 5212 to collect info
1716 * about environmental noise and, in that
1717 * setting, they don't really reflect tx/rx
1718 * errors.
1719 */
1720 ifp->if_ierrors++;
1721 }
1722 goto rx_next;
1723 }
1724
1725 len = ds->ds_rxstat.rs_datalen;
1726 if (len < IEEE80211_MIN_LEN) {
1727 DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
1728 __func__, len));
1729 sc->sc_stats.ast_rx_tooshort++;
1730 goto rx_next;
1731 }
1732
1733 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
1734 BUS_DMASYNC_POSTREAD);
1735
1736 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1737 bf->bf_m = NULL;
1738 m->m_pkthdr.rcvif = ifp;
1739 m->m_pkthdr.len = m->m_len = len;
1740
1741 if (sc->sc_drvbpf) {
1742 sc->sc_rx_th.wr_rate =
1743 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
1744 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
1745 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
1746 /* XXX TSF */
1747
1748 bpf_mtap2(sc->sc_drvbpf,
1749 &sc->sc_rx_th, sc->sc_rx_th_len, m);
1750 }
1751
1752 m_adj(m, -IEEE80211_CRC_LEN);
1753 wh = mtod(m, struct ieee80211_frame *);
1754 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1755 /*
1756 * WEP is decrypted by hardware. Clear WEP bit
1757 * and trim WEP header for ieee80211_input().
1758 */
1759 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1760 memcpy(&whbuf, wh, sizeof(whbuf));
1761 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1762 wh = mtod(m, struct ieee80211_frame *);
1763 memcpy(wh, &whbuf, sizeof(whbuf));
1764 /*
1765 * Also trim WEP ICV from the tail.
1766 */
1767 m_adj(m, -IEEE80211_WEP_CRCLEN);
1768 }
1769
1770 /*
1771 * Locate the node for sender, track state, and
1772 * then pass this node (referenced) up to the 802.11
1773 * layer for its use. We are required to pass
1774 * something so we fall back to ic_bss when this frame
1775 * is from an unknown sender.
1776 */
1777 if (ic->ic_opmode != IEEE80211_M_STA) {
1778 ni = ieee80211_find_node(ic, wh->i_addr2);
1779 if (ni == NULL)
1780 ni = ieee80211_ref_node(ic->ic_bss);
1781 } else
1782 ni = ieee80211_ref_node(ic->ic_bss);
1783
1784 /*
1785 * Record driver-specific state.
1786 */
1787 an = ATH_NODE(ni);
1788 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
1789 an->an_rx_hist_next = 0;
1790 rh = &an->an_rx_hist[an->an_rx_hist_next];
1791 rh->arh_ticks = ticks;
1792 rh->arh_rssi = ds->ds_rxstat.rs_rssi;
1793 rh->arh_antenna = ds->ds_rxstat.rs_antenna;
1794
1795 /*
1796 * Send frame up for processing.
1797 */
1798 ieee80211_input(ifp, m, ni,
1799 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
1800
1801 /*
1802 * The frame may have caused the node to be marked for
1803 * reclamation (e.g. in response to a DEAUTH message)
1804 * so use free_node here instead of unref_node.
1805 */
1806 if (ni == ic->ic_bss)
1807 ieee80211_unref_node(&ni);
1808 else
1809 ieee80211_free_node(ic, ni);
1810 rx_next:
1811 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1812 } while (ath_rxbuf_init(sc, bf) == 0);
1813
1814 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
1815 ath_hal_rxena(ah); /* in case of RXEOL */
1816 #undef PA2DESC
1817 }
1818
1819 /*
1820 * XXX Size of an ACK control frame in bytes.
1821 */
1822 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
1823
1824 static int
1825 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
1826 struct mbuf *m0)
1827 {
1828 struct ieee80211com *ic = &sc->sc_ic;
1829 struct ath_hal *ah = sc->sc_ah;
1830 struct ifnet *ifp = &sc->sc_ic.ic_if;
1831 int i, error, iswep, hdrlen, pktlen;
1832 u_int8_t rix, cix, txrate, ctsrate;
1833 struct ath_desc *ds;
1834 struct mbuf *m;
1835 struct ieee80211_frame *wh;
1836 u_int32_t iv;
1837 u_int8_t *ivp;
1838 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
1839 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
1840 u_int subtype, flags, ctsduration, antenna;
1841 HAL_PKT_TYPE atype;
1842 const HAL_RATE_TABLE *rt;
1843 HAL_BOOL shortPreamble;
1844 struct ath_node *an;
1845
1846 wh = mtod(m0, struct ieee80211_frame *);
1847 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1848 hdrlen = sizeof(struct ieee80211_frame);
1849 pktlen = m0->m_pkthdr.len;
1850
1851 if (iswep) {
1852 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
1853 m_adj(m0, hdrlen);
1854 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
1855 if (m0 == NULL) {
1856 sc->sc_stats.ast_tx_nombuf++;
1857 return ENOMEM;
1858 }
1859 ivp = hdrbuf + hdrlen;
1860 wh = mtod(m0, struct ieee80211_frame *);
1861 /*
1862 * XXX
1863 * IV must not duplicate during the lifetime of the key.
1864 * But no mechanism to renew keys is defined in IEEE 802.11
1865 * WEP. And IV may be duplicated between other stations
1866 * because of the session key itself is shared.
1867 * So we use pseudo random IV for now, though it is not the
1868 * right way.
1869 */
1870 iv = ic->ic_iv;
1871 /*
1872 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
1873 * (B, 255, N) with 3 <= B < 8
1874 */
1875 if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1876 iv += 0x000100;
1877 ic->ic_iv = iv + 1;
1878 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
1879 ivp[i] = iv;
1880 iv >>= 8;
1881 }
1882 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
1883 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
1884 /*
1885 * The ICV length must be included into hdrlen and pktlen.
1886 */
1887 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
1888 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
1889 }
1890 pktlen += IEEE80211_CRC_LEN;
1891
1892 /*
1893 * Load the DMA map so any coalescing is done. This
1894 * also calculates the number of descriptors we need.
1895 */
1896 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1897 ath_mbuf_load_cb, bf,
1898 BUS_DMA_NOWAIT);
1899 if (error == EFBIG) {
1900 /* XXX packet requires too many descriptors */
1901 bf->bf_nseg = ATH_TXDESC+1;
1902 } else if (error != 0) {
1903 sc->sc_stats.ast_tx_busdma++;
1904 m_freem(m0);
1905 return error;
1906 }
1907 /*
1908 * Discard null packets and check for packets that
1909 * require too many TX descriptors. We try to convert
1910 * the latter to a cluster.
1911 */
1912 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
1913 sc->sc_stats.ast_tx_linear++;
1914 MGETHDR(m, M_DONTWAIT, MT_DATA);
1915 if (m == NULL) {
1916 sc->sc_stats.ast_tx_nombuf++;
1917 m_freem(m0);
1918 return ENOMEM;
1919 }
1920 M_MOVE_PKTHDR(m, m0);
1921 MCLGET(m, M_DONTWAIT);
1922 if ((m->m_flags & M_EXT) == 0) {
1923 sc->sc_stats.ast_tx_nomcl++;
1924 m_freem(m0);
1925 m_free(m);
1926 return ENOMEM;
1927 }
1928 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1929 m_freem(m0);
1930 m->m_len = m->m_pkthdr.len;
1931 m0 = m;
1932 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1933 ath_mbuf_load_cb, bf,
1934 BUS_DMA_NOWAIT);
1935 if (error != 0) {
1936 sc->sc_stats.ast_tx_busdma++;
1937 m_freem(m0);
1938 return error;
1939 }
1940 KASSERT(bf->bf_nseg == 1,
1941 ("ath_tx_start: packet not one segment; nseg %u",
1942 bf->bf_nseg));
1943 } else if (bf->bf_nseg == 0) { /* null packet, discard */
1944 sc->sc_stats.ast_tx_nodata++;
1945 m_freem(m0);
1946 return EIO;
1947 }
1948 DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
1949 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1950 bf->bf_m = m0;
1951 bf->bf_node = ni; /* NB: held reference */
1952
1953 /* setup descriptors */
1954 ds = bf->bf_desc;
1955 rt = sc->sc_currates;
1956 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1957
1958 /*
1959 * Calculate Atheros packet type from IEEE80211 packet header
1960 * and setup for rate calculations.
1961 */
1962 atype = HAL_PKT_TYPE_NORMAL; /* default */
1963 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1964 case IEEE80211_FC0_TYPE_MGT:
1965 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1966 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1967 atype = HAL_PKT_TYPE_BEACON;
1968 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1969 atype = HAL_PKT_TYPE_PROBE_RESP;
1970 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1971 atype = HAL_PKT_TYPE_ATIM;
1972 rix = 0; /* XXX lowest rate */
1973 break;
1974 case IEEE80211_FC0_TYPE_CTL:
1975 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1976 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
1977 atype = HAL_PKT_TYPE_PSPOLL;
1978 rix = 0; /* XXX lowest rate */
1979 break;
1980 default:
1981 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
1982 IEEE80211_RATE_VAL];
1983 if (rix == 0xff) {
1984 if_printf(ifp, "bogus xmit rate 0x%x\n",
1985 ni->ni_rates.rs_rates[ni->ni_txrate]);
1986 sc->sc_stats.ast_tx_badrate++;
1987 m_freem(m0);
1988 return EIO;
1989 }
1990 break;
1991 }
1992 /*
1993 * NB: the 802.11 layer marks whether or not we should
1994 * use short preamble based on the current mode and
1995 * negotiated parameters.
1996 */
1997 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1998 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1999 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2000 shortPreamble = AH_TRUE;
2001 sc->sc_stats.ast_tx_shortpre++;
2002 } else {
2003 txrate = rt->info[rix].rateCode;
2004 shortPreamble = AH_FALSE;
2005 }
2006
2007 /*
2008 * Calculate miscellaneous flags.
2009 */
2010 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2011 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2012 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2013 sc->sc_stats.ast_tx_noack++;
2014 } else if (pktlen > ic->ic_rtsthreshold) {
2015 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2016 sc->sc_stats.ast_tx_rts++;
2017 }
2018
2019 /*
2020 * Calculate duration. This logically belongs in the 802.11
2021 * layer but it lacks sufficient information to calculate it.
2022 */
2023 if ((flags & HAL_TXDESC_NOACK) == 0 &&
2024 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2025 u_int16_t dur;
2026 /*
2027 * XXX not right with fragmentation.
2028 */
2029 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2030 rix, shortPreamble);
2031 *((u_int16_t*) wh->i_dur) = htole16(dur);
2032 }
2033
2034 /*
2035 * Calculate RTS/CTS rate and duration if needed.
2036 */
2037 ctsduration = 0;
2038 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2039 /*
2040 * CTS transmit rate is derived from the transmit rate
2041 * by looking in the h/w rate table. We must also factor
2042 * in whether or not a short preamble is to be used.
2043 */
2044 cix = rt->info[rix].controlRate;
2045 ctsrate = rt->info[cix].rateCode;
2046 if (shortPreamble)
2047 ctsrate |= rt->info[cix].shortPreamble;
2048 /*
2049 * Compute the transmit duration based on the size
2050 * of an ACK frame. We call into the HAL to do the
2051 * computation since it depends on the characteristics
2052 * of the actual PHY being used.
2053 */
2054 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2055 ctsduration += ath_hal_computetxtime(ah,
2056 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2057 }
2058 /* SIFS + data */
2059 ctsduration += ath_hal_computetxtime(ah,
2060 rt, pktlen, rix, shortPreamble);
2061 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2062 ctsduration += ath_hal_computetxtime(ah,
2063 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2064 }
2065 } else
2066 ctsrate = 0;
2067
2068 /*
2069 * For now use the antenna on which the last good
2070 * frame was received on. We assume this field is
2071 * initialized to 0 which gives us ``auto'' or the
2072 * ``default'' antenna.
2073 */
2074 an = (struct ath_node *) ni;
2075 if (an->an_tx_antenna)
2076 antenna = an->an_tx_antenna;
2077 else
2078 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2079
2080 if (ic->ic_rawbpf)
2081 bpf_mtap(ic->ic_rawbpf, m0);
2082 if (sc->sc_drvbpf) {
2083 sc->sc_tx_th.wt_flags = 0;
2084 if (shortPreamble)
2085 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2086 if (iswep)
2087 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2088 sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2089 sc->sc_tx_th.wt_txpower = 60/2; /* XXX */
2090 sc->sc_tx_th.wt_antenna = antenna;
2091
2092 bpf_mtap2(sc->sc_drvbpf,
2093 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
2094 }
2095
2096 /*
2097 * Formulate first tx descriptor with tx controls.
2098 */
2099 /* XXX check return value? */
2100 ath_hal_setuptxdesc(ah, ds
2101 , pktlen /* packet length */
2102 , hdrlen /* header length */
2103 , atype /* Atheros packet type */
2104 , 60 /* txpower XXX */
2105 , txrate, 1+10 /* series 0 rate/tries */
2106 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2107 , antenna /* antenna mode */
2108 , flags /* flags */
2109 , ctsrate /* rts/cts rate */
2110 , ctsduration /* rts/cts duration */
2111 );
2112 #ifdef notyet
2113 ath_hal_setupxtxdesc(ah, ds
2114 , AH_FALSE /* short preamble */
2115 , 0, 0 /* series 1 rate/tries */
2116 , 0, 0 /* series 2 rate/tries */
2117 , 0, 0 /* series 3 rate/tries */
2118 );
2119 #endif
2120 /*
2121 * Fillin the remainder of the descriptor info.
2122 */
2123 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2124 ds->ds_data = bf->bf_segs[i].ds_addr;
2125 if (i == bf->bf_nseg - 1)
2126 ds->ds_link = 0;
2127 else
2128 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2129 ath_hal_filltxdesc(ah, ds
2130 , bf->bf_segs[i].ds_len /* segment length */
2131 , i == 0 /* first segment */
2132 , i == bf->bf_nseg - 1 /* last segment */
2133 );
2134 DPRINTF(ATH_DEBUG_XMIT,
2135 ("%s: %d: %08x %08x %08x %08x %08x %08x\n",
2136 __func__, i, ds->ds_link, ds->ds_data,
2137 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
2138 }
2139
2140 /*
2141 * Insert the frame on the outbound list and
2142 * pass it on to the hardware.
2143 */
2144 ATH_TXQ_LOCK(sc);
2145 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2146 if (sc->sc_txlink == NULL) {
2147 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2148 DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
2149 (caddr_t)bf->bf_daddr, bf->bf_desc));
2150 } else {
2151 *sc->sc_txlink = bf->bf_daddr;
2152 DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
2153 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2154 }
2155 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2156 ATH_TXQ_UNLOCK(sc);
2157
2158 ath_hal_txstart(ah, sc->sc_txhalq);
2159 return 0;
2160 }
2161
2162 static void
2163 ath_tx_proc(void *arg, int npending)
2164 {
2165 struct ath_softc *sc = arg;
2166 struct ath_hal *ah = sc->sc_ah;
2167 struct ath_buf *bf;
2168 struct ieee80211com *ic = &sc->sc_ic;
2169 struct ifnet *ifp = &ic->ic_if;
2170 struct ath_desc *ds;
2171 struct ieee80211_node *ni;
2172 struct ath_node *an;
2173 int sr, lr;
2174 HAL_STATUS status;
2175
2176 DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n",
2177 __func__, npending,
2178 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2179 sc->sc_txlink));
2180 for (;;) {
2181 ATH_TXQ_LOCK(sc);
2182 bf = TAILQ_FIRST(&sc->sc_txq);
2183 if (bf == NULL) {
2184 sc->sc_txlink = NULL;
2185 ATH_TXQ_UNLOCK(sc);
2186 break;
2187 }
2188 /* only the last descriptor is needed */
2189 ds = &bf->bf_desc[bf->bf_nseg - 1];
2190 status = ath_hal_txprocdesc(ah, ds);
2191 #ifdef AR_DEBUG
2192 if (ath_debug & ATH_DEBUG_XMIT_DESC)
2193 ath_printtxbuf(bf, status == HAL_OK);
2194 #endif
2195 if (status == HAL_EINPROGRESS) {
2196 ATH_TXQ_UNLOCK(sc);
2197 break;
2198 }
2199 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2200 ATH_TXQ_UNLOCK(sc);
2201
2202 ni = bf->bf_node;
2203 if (ni != NULL) {
2204 an = (struct ath_node *) ni;
2205 if (ds->ds_txstat.ts_status == 0) {
2206 an->an_tx_ok++;
2207 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2208 } else {
2209 an->an_tx_err++;
2210 ifp->if_oerrors++;
2211 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2212 sc->sc_stats.ast_tx_xretries++;
2213 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2214 sc->sc_stats.ast_tx_fifoerr++;
2215 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2216 sc->sc_stats.ast_tx_filtered++;
2217 an->an_tx_antenna = 0; /* invalidate */
2218 }
2219 sr = ds->ds_txstat.ts_shortretry;
2220 lr = ds->ds_txstat.ts_longretry;
2221 sc->sc_stats.ast_tx_shortretry += sr;
2222 sc->sc_stats.ast_tx_longretry += lr;
2223 if (sr + lr)
2224 an->an_tx_retr++;
2225 /*
2226 * Reclaim reference to node.
2227 *
2228 * NB: the node may be reclaimed here if, for example
2229 * this is a DEAUTH message that was sent and the
2230 * node was timed out due to inactivity.
2231 */
2232 if (ni != ic->ic_bss)
2233 ieee80211_free_node(ic, ni);
2234 }
2235 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2236 BUS_DMASYNC_POSTWRITE);
2237 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2238 m_freem(bf->bf_m);
2239 bf->bf_m = NULL;
2240 bf->bf_node = NULL;
2241
2242 ATH_TXBUF_LOCK(sc);
2243 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2244 ATH_TXBUF_UNLOCK(sc);
2245 }
2246 ifp->if_flags &= ~IFF_OACTIVE;
2247 sc->sc_tx_timer = 0;
2248
2249 ath_start(ifp);
2250 }
2251
2252 /*
2253 * Drain the transmit queue and reclaim resources.
2254 */
2255 static void
2256 ath_draintxq(struct ath_softc *sc)
2257 {
2258 struct ath_hal *ah = sc->sc_ah;
2259 struct ieee80211com *ic = &sc->sc_ic;
2260 struct ifnet *ifp = &ic->ic_if;
2261 struct ieee80211_node *ni;
2262 struct ath_buf *bf;
2263
2264 /* XXX return value */
2265 if (!sc->sc_invalid) {
2266 /* don't touch the hardware if marked invalid */
2267 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2268 DPRINTF(ATH_DEBUG_RESET,
2269 ("%s: tx queue %p, link %p\n", __func__,
2270 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2271 sc->sc_txlink));
2272 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2273 DPRINTF(ATH_DEBUG_RESET,
2274 ("%s: beacon queue %p\n", __func__,
2275 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2276 }
2277 for (;;) {
2278 ATH_TXQ_LOCK(sc);
2279 bf = TAILQ_FIRST(&sc->sc_txq);
2280 if (bf == NULL) {
2281 sc->sc_txlink = NULL;
2282 ATH_TXQ_UNLOCK(sc);
2283 break;
2284 }
2285 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2286 ATH_TXQ_UNLOCK(sc);
2287 #ifdef AR_DEBUG
2288 if (ath_debug & ATH_DEBUG_RESET)
2289 ath_printtxbuf(bf,
2290 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2291 #endif /* AR_DEBUG */
2292 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2293 m_freem(bf->bf_m);
2294 bf->bf_m = NULL;
2295 ni = bf->bf_node;
2296 bf->bf_node = NULL;
2297 if (ni != NULL && ni != ic->ic_bss) {
2298 /*
2299 * Reclaim node reference.
2300 */
2301 ieee80211_free_node(ic, ni);
2302 }
2303 ATH_TXBUF_LOCK(sc);
2304 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2305 ATH_TXBUF_UNLOCK(sc);
2306 }
2307 ifp->if_flags &= ~IFF_OACTIVE;
2308 sc->sc_tx_timer = 0;
2309 }
2310
2311 /*
2312 * Disable the receive h/w in preparation for a reset.
2313 */
2314 static void
2315 ath_stoprecv(struct ath_softc *sc)
2316 {
2317 #define PA2DESC(_sc, _pa) \
2318 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2319 ((_pa) - (_sc)->sc_desc_paddr)))
2320 struct ath_hal *ah = sc->sc_ah;
2321
2322 ath_hal_stoppcurecv(ah); /* disable PCU */
2323 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2324 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2325 DELAY(3000); /* long enough for 1 frame */
2326 #ifdef AR_DEBUG
2327 if (ath_debug & ATH_DEBUG_RESET) {
2328 struct ath_buf *bf;
2329
2330 printf("%s: rx queue %p, link %p\n", __func__,
2331 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
2332 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2333 struct ath_desc *ds = bf->bf_desc;
2334 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2335 PA2DESC(sc, ds->ds_link)) == HAL_OK)
2336 ath_printrxbuf(bf, 1);
2337 }
2338 }
2339 #endif
2340 sc->sc_rxlink = NULL; /* just in case */
2341 #undef PA2DESC
2342 }
2343
2344 /*
2345 * Enable the receive h/w following a reset.
2346 */
2347 static int
2348 ath_startrecv(struct ath_softc *sc)
2349 {
2350 struct ath_hal *ah = sc->sc_ah;
2351 struct ath_buf *bf;
2352
2353 sc->sc_rxlink = NULL;
2354 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2355 int error = ath_rxbuf_init(sc, bf);
2356 if (error != 0) {
2357 DPRINTF(ATH_DEBUG_RECV,
2358 ("%s: ath_rxbuf_init failed %d\n",
2359 __func__, error));
2360 return error;
2361 }
2362 }
2363
2364 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2365 ath_hal_putrxbuf(ah, bf->bf_daddr);
2366 ath_hal_rxena(ah); /* enable recv descriptors */
2367 ath_mode_init(sc); /* set filters, etc. */
2368 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2369 return 0;
2370 }
2371
2372 /*
2373 * Set/change channels. If the channel is really being changed,
2374 * it's done by resetting the chip. To accomplish this we must
2375 * first cleanup any pending DMA, then restart stuff after a la
2376 * ath_init.
2377 */
2378 static int
2379 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2380 {
2381 struct ath_hal *ah = sc->sc_ah;
2382 struct ieee80211com *ic = &sc->sc_ic;
2383
2384 DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
2385 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2386 ic->ic_ibss_chan->ic_freq,
2387 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2388 if (chan != ic->ic_ibss_chan) {
2389 HAL_STATUS status;
2390 HAL_CHANNEL hchan;
2391 enum ieee80211_phymode mode;
2392
2393 /*
2394 * To switch channels clear any pending DMA operations;
2395 * wait long enough for the RX fifo to drain, reset the
2396 * hardware at the new frequency, and then re-enable
2397 * the relevant bits of the h/w.
2398 */
2399 ath_hal_intrset(ah, 0); /* disable interrupts */
2400 ath_draintxq(sc); /* clear pending tx frames */
2401 ath_stoprecv(sc); /* turn off frame recv */
2402 /*
2403 * Convert to a HAL channel description with
2404 * the flags constrained to reflect the current
2405 * operating mode.
2406 */
2407 hchan.channel = chan->ic_freq;
2408 hchan.channelFlags = ath_chan2flags(ic, chan);
2409 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2410 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2411 "channel %u (%u Mhz)\n",
2412 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2413 return EIO;
2414 }
2415 /*
2416 * Re-enable rx framework.
2417 */
2418 if (ath_startrecv(sc) != 0) {
2419 if_printf(&ic->ic_if,
2420 "ath_chan_set: unable to restart recv logic\n");
2421 return EIO;
2422 }
2423
2424 /*
2425 * Update BPF state.
2426 */
2427 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2428 htole16(chan->ic_freq);
2429 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2430 htole16(chan->ic_flags);
2431
2432 /*
2433 * Change channels and update the h/w rate map
2434 * if we're switching; e.g. 11a to 11b/g.
2435 */
2436 ic->ic_ibss_chan = chan;
2437 mode = ieee80211_chan2mode(ic, chan);
2438 if (mode != sc->sc_curmode)
2439 ath_setcurmode(sc, mode);
2440
2441 /*
2442 * Re-enable interrupts.
2443 */
2444 ath_hal_intrset(ah, sc->sc_imask);
2445 }
2446 return 0;
2447 }
2448
2449 static void
2450 ath_next_scan(void *arg)
2451 {
2452 struct ath_softc *sc = arg;
2453 struct ieee80211com *ic = &sc->sc_ic;
2454 struct ifnet *ifp = &ic->ic_if;
2455
2456 if (ic->ic_state == IEEE80211_S_SCAN)
2457 ieee80211_next_scan(ifp);
2458 }
2459
2460 /*
2461 * Periodically recalibrate the PHY to account
2462 * for temperature/environment changes.
2463 */
2464 static void
2465 ath_calibrate(void *arg)
2466 {
2467 struct ath_softc *sc = arg;
2468 struct ath_hal *ah = sc->sc_ah;
2469 struct ieee80211com *ic = &sc->sc_ic;
2470 struct ieee80211_channel *c;
2471 HAL_CHANNEL hchan;
2472
2473 sc->sc_stats.ast_per_cal++;
2474
2475 /*
2476 * Convert to a HAL channel description with the flags
2477 * constrained to reflect the current operating mode.
2478 */
2479 c = ic->ic_ibss_chan;
2480 hchan.channel = c->ic_freq;
2481 hchan.channelFlags = ath_chan2flags(ic, c);
2482
2483 DPRINTF(ATH_DEBUG_CALIBRATE,
2484 ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2485
2486 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2487 /*
2488 * Rfgain is out of bounds, reset the chip
2489 * to load new gain values.
2490 */
2491 sc->sc_stats.ast_per_rfgain++;
2492 ath_reset(sc);
2493 }
2494 if (!ath_hal_calibrate(ah, &hchan)) {
2495 DPRINTF(ATH_DEBUG_ANY,
2496 ("%s: calibration of channel %u failed\n",
2497 __func__, c->ic_freq));
2498 sc->sc_stats.ast_per_calfail++;
2499 }
2500 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2501 }
2502
2503 static int
2504 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2505 {
2506 struct ifnet *ifp = &ic->ic_if;
2507 struct ath_softc *sc = ifp->if_softc;
2508 struct ath_hal *ah = sc->sc_ah;
2509 struct ieee80211_node *ni;
2510 int i, error;
2511 const u_int8_t *bssid;
2512 u_int32_t rfilt;
2513 static const HAL_LED_STATE leds[] = {
2514 HAL_LED_INIT, /* IEEE80211_S_INIT */
2515 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
2516 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
2517 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
2518 HAL_LED_RUN, /* IEEE80211_S_RUN */
2519 };
2520
2521 DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
2522 ieee80211_state_name[ic->ic_state],
2523 ieee80211_state_name[nstate]));
2524
2525 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
2526
2527 if (nstate == IEEE80211_S_INIT) {
2528 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2529 ath_hal_intrset(ah, sc->sc_imask);
2530 callout_stop(&sc->sc_scan_ch);
2531 callout_stop(&sc->sc_cal_ch);
2532 return (*sc->sc_newstate)(ic, nstate, arg);
2533 }
2534 ni = ic->ic_bss;
2535 error = ath_chan_set(sc, ni->ni_chan);
2536 if (error != 0)
2537 goto bad;
2538 rfilt = ath_calcrxfilter(sc);
2539 if (nstate == IEEE80211_S_SCAN) {
2540 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2541 ath_next_scan, sc);
2542 bssid = ifp->if_broadcastaddr;
2543 } else {
2544 callout_stop(&sc->sc_scan_ch);
2545 bssid = ni->ni_bssid;
2546 }
2547 ath_hal_setrxfilter(ah, rfilt);
2548 DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
2549 __func__, rfilt, ether_sprintf(bssid)));
2550
2551 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2552 ath_hal_setassocid(ah, bssid, ni->ni_associd);
2553 else
2554 ath_hal_setassocid(ah, bssid, 0);
2555 if (ic->ic_flags & IEEE80211_F_WEPON) {
2556 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2557 if (ath_hal_keyisvalid(ah, i))
2558 ath_hal_keysetmac(ah, i, bssid);
2559 }
2560
2561 if (nstate == IEEE80211_S_RUN) {
2562 DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2563 "capinfo=0x%04x chan=%d\n"
2564 , __func__
2565 , ic->ic_flags
2566 , ni->ni_intval
2567 , ether_sprintf(ni->ni_bssid)
2568 , ni->ni_capinfo
2569 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2570
2571 /*
2572 * Allocate and setup the beacon frame for AP or adhoc mode.
2573 */
2574 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2575 ic->ic_opmode == IEEE80211_M_IBSS) {
2576 error = ath_beacon_alloc(sc, ni);
2577 if (error != 0)
2578 goto bad;
2579 }
2580
2581 /*
2582 * Configure the beacon and sleep timers.
2583 */
2584 ath_beacon_config(sc);
2585
2586 /* start periodic recalibration timer */
2587 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2588 ath_calibrate, sc);
2589 } else {
2590 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2591 ath_hal_intrset(ah, sc->sc_imask);
2592 callout_stop(&sc->sc_cal_ch); /* no calibration */
2593 }
2594 /*
2595 * Reset the rate control state.
2596 */
2597 ath_rate_ctl_reset(sc, nstate);
2598 /*
2599 * Invoke the parent method to complete the work.
2600 */
2601 return (*sc->sc_newstate)(ic, nstate, arg);
2602 bad:
2603 callout_stop(&sc->sc_scan_ch);
2604 callout_stop(&sc->sc_cal_ch);
2605 /* NB: do not invoke the parent */
2606 return error;
2607 }
2608
2609 /*
2610 * Setup driver-specific state for a newly associated node.
2611 * Note that we're called also on a re-associate, the isnew
2612 * param tells us if this is the first time or not.
2613 */
2614 static void
2615 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2616 {
2617 if (isnew) {
2618 struct ath_node *an = (struct ath_node *) ni;
2619
2620 an->an_tx_ok = an->an_tx_err =
2621 an->an_tx_retr = an->an_tx_upper = 0;
2622 /* start with highest negotiated rate */
2623 /*
2624 * XXX should do otherwise but only when
2625 * the rate control algorithm is better.
2626 */
2627 KASSERT(ni->ni_rates.rs_nrates > 0,
2628 ("new association w/ no rates!"));
2629 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2630 }
2631 }
2632
2633 static int
2634 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2635 {
2636 struct ieee80211com *ic = &sc->sc_ic;
2637 struct ifnet *ifp = &ic->ic_if;
2638 struct ath_hal *ah = sc->sc_ah;
2639 HAL_CHANNEL *chans;
2640 int i, ix, nchan;
2641
2642 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2643 M_TEMP, M_NOWAIT);
2644 if (chans == NULL) {
2645 if_printf(ifp, "unable to allocate channel table\n");
2646 return ENOMEM;
2647 }
2648 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2649 cc, HAL_MODE_ALL, outdoor)) {
2650 if_printf(ifp, "unable to collect channel list from hal\n");
2651 free(chans, M_TEMP);
2652 return EINVAL;
2653 }
2654
2655 /*
2656 * Convert HAL channels to ieee80211 ones and insert
2657 * them in the table according to their channel number.
2658 */
2659 for (i = 0; i < nchan; i++) {
2660 HAL_CHANNEL *c = &chans[i];
2661 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2662 if (ix > IEEE80211_CHAN_MAX) {
2663 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2664 ix, c->channel, c->channelFlags);
2665 continue;
2666 }
2667 /* NB: flags are known to be compatible */
2668 if (ic->ic_channels[ix].ic_freq == 0) {
2669 ic->ic_channels[ix].ic_freq = c->channel;
2670 ic->ic_channels[ix].ic_flags = c->channelFlags;
2671 } else {
2672 /* channels overlap; e.g. 11g and 11b */
2673 ic->ic_channels[ix].ic_flags |= c->channelFlags;
2674 }
2675 }
2676 free(chans, M_TEMP);
2677 return 0;
2678 }
2679
2680 static int
2681 ath_rate_setup(struct ath_softc *sc, u_int mode)
2682 {
2683 struct ath_hal *ah = sc->sc_ah;
2684 struct ieee80211com *ic = &sc->sc_ic;
2685 const HAL_RATE_TABLE *rt;
2686 struct ieee80211_rateset *rs;
2687 int i, maxrates;
2688
2689 switch (mode) {
2690 case IEEE80211_MODE_11A:
2691 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2692 break;
2693 case IEEE80211_MODE_11B:
2694 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2695 break;
2696 case IEEE80211_MODE_11G:
2697 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2698 break;
2699 case IEEE80211_MODE_TURBO:
2700 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2701 break;
2702 default:
2703 DPRINTF(ATH_DEBUG_ANY,
2704 ("%s: invalid mode %u\n", __func__, mode));
2705 return 0;
2706 }
2707 rt = sc->sc_rates[mode];
2708 if (rt == NULL)
2709 return 0;
2710 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2711 DPRINTF(ATH_DEBUG_ANY,
2712 ("%s: rate table too small (%u > %u)\n",
2713 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2714 maxrates = IEEE80211_RATE_MAXSIZE;
2715 } else
2716 maxrates = rt->rateCount;
2717 rs = &ic->ic_sup_rates[mode];
2718 for (i = 0; i < maxrates; i++)
2719 rs->rs_rates[i] = rt->info[i].dot11Rate;
2720 rs->rs_nrates = maxrates;
2721 return 1;
2722 }
2723
2724 static void
2725 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
2726 {
2727 const HAL_RATE_TABLE *rt;
2728 int i;
2729
2730 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
2731 rt = sc->sc_rates[mode];
2732 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
2733 for (i = 0; i < rt->rateCount; i++)
2734 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
2735 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
2736 for (i = 0; i < 32; i++)
2737 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
2738 sc->sc_currates = rt;
2739 sc->sc_curmode = mode;
2740 }
2741
2742 /*
2743 * Reset the rate control state for each 802.11 state transition.
2744 */
2745 static void
2746 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
2747 {
2748 struct ieee80211com *ic = &sc->sc_ic;
2749 struct ieee80211_node *ni;
2750 struct ath_node *an;
2751
2752 if (ic->ic_opmode != IEEE80211_M_STA) {
2753 /*
2754 * When operating as a station the node table holds
2755 * the AP's that were discovered during scanning.
2756 * For any other operating mode we want to reset the
2757 * tx rate state of each node.
2758 */
2759 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
2760 ni->ni_txrate = 0; /* use lowest rate */
2761 an = (struct ath_node *) ni;
2762 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
2763 an->an_tx_upper = 0;
2764 }
2765 }
2766 /*
2767 * Reset local xmit state; this is really only meaningful
2768 * when operating in station or adhoc mode.
2769 */
2770 ni = ic->ic_bss;
2771 an = (struct ath_node *) ni;
2772 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
2773 if (state == IEEE80211_S_RUN) {
2774 /* start with highest negotiated rate */
2775 KASSERT(ni->ni_rates.rs_nrates > 0,
2776 ("transition to RUN state w/ no rates!"));
2777 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2778 } else {
2779 /* use lowest rate */
2780 ni->ni_txrate = 0;
2781 }
2782 }
2783
2784 /*
2785 * Examine and potentially adjust the transmit rate.
2786 */
2787 static void
2788 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
2789 {
2790 struct ath_softc *sc = arg;
2791 struct ath_node *an = (struct ath_node *) ni;
2792 struct ieee80211_rateset *rs = &ni->ni_rates;
2793 int mod = 0, orate, enough;
2794
2795 /*
2796 * Rate control
2797 * XXX: very primitive version.
2798 */
2799 sc->sc_stats.ast_rate_calls++;
2800
2801 enough = (an->an_tx_ok + an->an_tx_err >= 10);
2802
2803 /* no packet reached -> down */
2804 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
2805 mod = -1;
2806
2807 /* all packets needs retry in average -> down */
2808 if (enough && an->an_tx_ok < an->an_tx_retr)
2809 mod = -1;
2810
2811 /* no error and less than 10% of packets needs retry -> up */
2812 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
2813 mod = 1;
2814
2815 orate = ni->ni_txrate;
2816 switch (mod) {
2817 case 0:
2818 if (enough && an->an_tx_upper > 0)
2819 an->an_tx_upper--;
2820 break;
2821 case -1:
2822 if (ni->ni_txrate > 0) {
2823 ni->ni_txrate--;
2824 sc->sc_stats.ast_rate_drop++;
2825 }
2826 an->an_tx_upper = 0;
2827 break;
2828 case 1:
2829 if (++an->an_tx_upper < 2)
2830 break;
2831 an->an_tx_upper = 0;
2832 if (ni->ni_txrate + 1 < rs->rs_nrates) {
2833 ni->ni_txrate++;
2834 sc->sc_stats.ast_rate_raise++;
2835 }
2836 break;
2837 }
2838
2839 if (ni->ni_txrate != orate) {
2840 DPRINTF(ATH_DEBUG_RATE,
2841 ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
2842 __func__,
2843 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
2844 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
2845 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
2846 }
2847 if (ni->ni_txrate != orate || enough)
2848 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
2849 }
2850
2851 #ifdef AR_DEBUG
2852 static int
2853 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
2854 {
2855 char dmode[64];
2856 int error;
2857
2858 strncpy(dmode, "", sizeof(dmode) - 1);
2859 dmode[sizeof(dmode) - 1] = '\0';
2860 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2861
2862 if (error == 0 && req->newptr != NULL) {
2863 struct ifnet *ifp;
2864 struct ath_softc *sc;
2865
2866 ifp = ifunit("ath0"); /* XXX */
2867 if (!ifp)
2868 return EINVAL;
2869 sc = ifp->if_softc;
2870 if (strcmp(dmode, "hal") == 0)
2871 ath_hal_dumpstate(sc->sc_ah);
2872 else
2873 return EINVAL;
2874 }
2875 return error;
2876 }
2877 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2878 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
2879
2880 static void
2881 ath_printrxbuf(struct ath_buf *bf, int done)
2882 {
2883 struct ath_desc *ds;
2884 int i;
2885
2886 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2887 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
2888 i, ds, (struct ath_desc *)bf->bf_daddr + i,
2889 ds->ds_link, ds->ds_data,
2890 ds->ds_ctl0, ds->ds_ctl1,
2891 ds->ds_hw[0], ds->ds_hw[1],
2892 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
2893 }
2894 }
2895
2896 static void
2897 ath_printtxbuf(struct ath_buf *bf, int done)
2898 {
2899 struct ath_desc *ds;
2900 int i;
2901
2902 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2903 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
2904 i, ds, (struct ath_desc *)bf->bf_daddr + i,
2905 ds->ds_link, ds->ds_data,
2906 ds->ds_ctl0, ds->ds_ctl1,
2907 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
2908 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
2909 }
2910 }
2911 #endif /* AR_DEBUG */
2912