ath.c revision 1.1.1.4 1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 * redistribution must be conditioned upon including a substantially
14 * similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 * of any contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.88 2005/04/12 17:56:43 sam Exp $");
39
40 /*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47 #include "opt_inet.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63
64 #include <machine/bus.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72
73 #include <net80211/ieee80211_var.h>
74
75 #include <net/bpf.h>
76
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81
82 #define AR_DEBUG
83 #include <dev/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
86
87 /* unalligned little endian access */
88 #define LE_READ_2(p) \
89 ((u_int16_t) \
90 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
91 #define LE_READ_4(p) \
92 ((u_int32_t) \
93 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
94 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
95
96 enum {
97 ATH_LED_TX,
98 ATH_LED_RX,
99 ATH_LED_POLL,
100 };
101
102 static void ath_init(void *);
103 static void ath_stop_locked(struct ifnet *);
104 static void ath_stop(struct ifnet *);
105 static void ath_start(struct ifnet *);
106 static int ath_reset(struct ifnet *);
107 static int ath_media_change(struct ifnet *);
108 static void ath_watchdog(struct ifnet *);
109 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
110 static void ath_fatal_proc(void *, int);
111 static void ath_rxorn_proc(void *, int);
112 static void ath_bmiss_proc(void *, int);
113 static void ath_initkeytable(struct ath_softc *);
114 static int ath_key_alloc(struct ieee80211com *,
115 const struct ieee80211_key *);
116 static int ath_key_delete(struct ieee80211com *,
117 const struct ieee80211_key *);
118 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119 const u_int8_t mac[IEEE80211_ADDR_LEN]);
120 static void ath_key_update_begin(struct ieee80211com *);
121 static void ath_key_update_end(struct ieee80211com *);
122 static void ath_mode_init(struct ath_softc *);
123 static void ath_setslottime(struct ath_softc *);
124 static void ath_updateslot(struct ifnet *);
125 static int ath_beaconq_setup(struct ath_hal *);
126 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128 static void ath_beacon_proc(void *, int);
129 static void ath_bstuck_proc(void *, int);
130 static void ath_beacon_free(struct ath_softc *);
131 static void ath_beacon_config(struct ath_softc *);
132 static void ath_descdma_cleanup(struct ath_softc *sc,
133 struct ath_descdma *, ath_bufhead *);
134 static int ath_desc_alloc(struct ath_softc *);
135 static void ath_desc_free(struct ath_softc *);
136 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137 static void ath_node_free(struct ieee80211_node *);
138 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
139 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141 struct ieee80211_node *ni,
142 int subtype, int rssi, u_int32_t rstamp);
143 static void ath_setdefantenna(struct ath_softc *, u_int);
144 static void ath_rx_proc(void *, int);
145 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
146 static int ath_tx_setup(struct ath_softc *, int, int);
147 static int ath_wme_update(struct ieee80211com *);
148 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
149 static void ath_tx_cleanup(struct ath_softc *);
150 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
151 struct ath_buf *, struct mbuf *);
152 static void ath_tx_proc_q0(void *, int);
153 static void ath_tx_proc_q0123(void *, int);
154 static void ath_tx_proc(void *, int);
155 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
156 static void ath_draintxq(struct ath_softc *);
157 static void ath_stoprecv(struct ath_softc *);
158 static int ath_startrecv(struct ath_softc *);
159 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
160 static void ath_next_scan(void *);
161 static void ath_calibrate(void *);
162 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
163 static void ath_newassoc(struct ieee80211com *,
164 struct ieee80211_node *, int);
165 static int ath_getchannels(struct ath_softc *, u_int cc,
166 HAL_BOOL outdoor, HAL_BOOL xchanmode);
167 static void ath_led_event(struct ath_softc *, int);
168 static void ath_update_txpow(struct ath_softc *);
169
170 static int ath_rate_setup(struct ath_softc *, u_int mode);
171 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
172
173 static void ath_sysctlattach(struct ath_softc *);
174 static void ath_bpfattach(struct ath_softc *);
175 static void ath_announce(struct ath_softc *);
176
177 SYSCTL_DECL(_hw_ath);
178
179 /* XXX validate sysctl values */
180 static int ath_dwelltime = 200; /* 5 channels/second */
181 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
182 0, "channel dwell time (ms) for AP/station scanning");
183 static int ath_calinterval = 30; /* calibrate every 30 secs */
184 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
185 0, "chip calibration interval (secs)");
186 static int ath_outdoor = AH_TRUE; /* outdoor operation */
187 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
188 0, "outdoor operation");
189 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
190 static int ath_xchanmode = AH_TRUE; /* extended channel use */
191 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
192 0, "extended channel mode");
193 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
194 static int ath_countrycode = CTRY_DEFAULT; /* country code */
195 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
196 0, "country code");
197 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
198 static int ath_regdomain = 0; /* regulatory domain */
199 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200 0, "regulatory domain");
201
202 #ifdef AR_DEBUG
203 static int ath_debug = 0;
204 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
205 0, "control debugging printfs");
206 TUNABLE_INT("hw.ath.debug", &ath_debug);
207 enum {
208 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
209 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
210 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
211 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
212 ATH_DEBUG_RATE = 0x00000010, /* rate control */
213 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
214 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
215 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
216 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
217 ATH_DEBUG_INTR = 0x00001000, /* ISR */
218 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
219 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
220 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
221 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
222 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
223 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
224 ATH_DEBUG_NODE = 0x00080000, /* node management */
225 ATH_DEBUG_LED = 0x00100000, /* led management */
226 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
227 ATH_DEBUG_ANY = 0xffffffff
228 };
229 #define IFF_DUMPPKTS(sc, m) \
230 ((sc->sc_debug & (m)) || \
231 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
232 #define DPRINTF(sc, m, fmt, ...) do { \
233 if (sc->sc_debug & (m)) \
234 printf(fmt, __VA_ARGS__); \
235 } while (0)
236 #define KEYPRINTF(sc, ix, hk, mac) do { \
237 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
238 ath_keyprint(__func__, ix, hk, mac); \
239 } while (0)
240 static void ath_printrxbuf(struct ath_buf *bf, int);
241 static void ath_printtxbuf(struct ath_buf *bf, int);
242 #else
243 #define IFF_DUMPPKTS(sc, m) \
244 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define DPRINTF(m, fmt, ...)
246 #define KEYPRINTF(sc, k, ix, mac)
247 #endif
248
249 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
250
251 int
252 ath_attach(u_int16_t devid, struct ath_softc *sc)
253 {
254 struct ifnet *ifp = &sc->sc_if;
255 struct ieee80211com *ic = &sc->sc_ic;
256 struct ath_hal *ah;
257 HAL_STATUS status;
258 int error = 0, i;
259
260 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
261
262 /* set these up early for if_printf use */
263 if_initname(ifp, device_get_name(sc->sc_dev),
264 device_get_unit(sc->sc_dev));
265
266 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
267 if (ah == NULL) {
268 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
269 status);
270 error = ENXIO;
271 goto bad;
272 }
273 if (ah->ah_abi != HAL_ABI_VERSION) {
274 if_printf(ifp, "HAL ABI mismatch detected "
275 "(HAL:0x%x != driver:0x%x)\n",
276 ah->ah_abi, HAL_ABI_VERSION);
277 error = ENXIO;
278 goto bad;
279 }
280 sc->sc_ah = ah;
281 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
282
283 /*
284 * Check if the MAC has multi-rate retry support.
285 * We do this by trying to setup a fake extended
286 * descriptor. MAC's that don't have support will
287 * return false w/o doing anything. MAC's that do
288 * support it will return true w/o doing anything.
289 */
290 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
291
292 /*
293 * Check if the device has hardware counters for PHY
294 * errors. If so we need to enable the MIB interrupt
295 * so we can act on stat triggers.
296 */
297 if (ath_hal_hwphycounters(ah))
298 sc->sc_needmib = 1;
299
300 /*
301 * Get the hardware key cache size.
302 */
303 sc->sc_keymax = ath_hal_keycachesize(ah);
304 if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
305 if_printf(ifp,
306 "Warning, using only %zu of %u key cache slots\n",
307 sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
308 sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
309 }
310 /*
311 * Reset the key cache since some parts do not
312 * reset the contents on initial power up.
313 */
314 for (i = 0; i < sc->sc_keymax; i++)
315 ath_hal_keyreset(ah, i);
316 /*
317 * Mark key cache slots associated with global keys
318 * as in use. If we knew TKIP was not to be used we
319 * could leave the +32, +64, and +32+64 slots free.
320 * XXX only for splitmic.
321 */
322 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
323 setbit(sc->sc_keymap, i);
324 setbit(sc->sc_keymap, i+32);
325 setbit(sc->sc_keymap, i+64);
326 setbit(sc->sc_keymap, i+32+64);
327 }
328
329 /*
330 * Collect the channel list using the default country
331 * code and including outdoor channels. The 802.11 layer
332 * is resposible for filtering this list based on settings
333 * like the phy mode.
334 */
335 error = ath_getchannels(sc, ath_countrycode,
336 ath_outdoor, ath_xchanmode);
337 if (error != 0)
338 goto bad;
339 /*
340 * Setup dynamic sysctl's now that country code and
341 * regdomain are available from the hal.
342 */
343 ath_sysctlattach(sc);
344
345 /*
346 * Setup rate tables for all potential media types.
347 */
348 ath_rate_setup(sc, IEEE80211_MODE_11A);
349 ath_rate_setup(sc, IEEE80211_MODE_11B);
350 ath_rate_setup(sc, IEEE80211_MODE_11G);
351 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
352 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
353 /* NB: setup here so ath_rate_update is happy */
354 ath_setcurmode(sc, IEEE80211_MODE_11A);
355
356 /*
357 * Allocate tx+rx descriptors and populate the lists.
358 */
359 error = ath_desc_alloc(sc);
360 if (error != 0) {
361 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
362 goto bad;
363 }
364 callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
365 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
366
367 ATH_TXBUF_LOCK_INIT(sc);
368
369 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
370 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
371 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
372 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
373 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
374
375 /*
376 * Allocate hardware transmit queues: one queue for
377 * beacon frames and one data queue for each QoS
378 * priority. Note that the hal handles reseting
379 * these queues at the needed time.
380 *
381 * XXX PS-Poll
382 */
383 sc->sc_bhalq = ath_beaconq_setup(ah);
384 if (sc->sc_bhalq == (u_int) -1) {
385 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
386 error = EIO;
387 goto bad2;
388 }
389 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
390 if (sc->sc_cabq == NULL) {
391 if_printf(ifp, "unable to setup CAB xmit queue!\n");
392 error = EIO;
393 goto bad2;
394 }
395 /* NB: insure BK queue is the lowest priority h/w queue */
396 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
397 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
398 ieee80211_wme_acnames[WME_AC_BK]);
399 error = EIO;
400 goto bad2;
401 }
402 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
403 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
404 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
405 /*
406 * Not enough hardware tx queues to properly do WME;
407 * just punt and assign them all to the same h/w queue.
408 * We could do a better job of this if, for example,
409 * we allocate queues when we switch from station to
410 * AP mode.
411 */
412 if (sc->sc_ac2q[WME_AC_VI] != NULL)
413 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
414 if (sc->sc_ac2q[WME_AC_BE] != NULL)
415 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
416 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
417 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
418 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
419 }
420
421 /*
422 * Special case certain configurations. Note the
423 * CAB queue is handled by these specially so don't
424 * include them when checking the txq setup mask.
425 */
426 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
427 case 0x01:
428 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
429 break;
430 case 0x0f:
431 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
432 break;
433 default:
434 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
435 break;
436 }
437
438 /*
439 * Setup rate control. Some rate control modules
440 * call back to change the anntena state so expose
441 * the necessary entry points.
442 * XXX maybe belongs in struct ath_ratectrl?
443 */
444 sc->sc_setdefantenna = ath_setdefantenna;
445 sc->sc_rc = ath_rate_attach(sc);
446 if (sc->sc_rc == NULL) {
447 error = EIO;
448 goto bad2;
449 }
450
451 sc->sc_blinking = 0;
452 sc->sc_ledstate = 1;
453 sc->sc_ledon = 0; /* low true */
454 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
455 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
456 /*
457 * Auto-enable soft led processing for IBM cards and for
458 * 5211 minipci cards. Users can also manually enable/disable
459 * support with a sysctl.
460 */
461 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
462 if (sc->sc_softled) {
463 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
464 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
465 }
466
467 ifp->if_softc = sc;
468 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
469 ifp->if_start = ath_start;
470 ifp->if_watchdog = ath_watchdog;
471 ifp->if_ioctl = ath_ioctl;
472 ifp->if_init = ath_init;
473 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
474 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
475 IFQ_SET_READY(&ifp->if_snd);
476
477 ic->ic_ifp = ifp;
478 ic->ic_reset = ath_reset;
479 ic->ic_newassoc = ath_newassoc;
480 ic->ic_updateslot = ath_updateslot;
481 ic->ic_wme.wme_update = ath_wme_update;
482 /* XXX not right but it's not used anywhere important */
483 ic->ic_phytype = IEEE80211_T_OFDM;
484 ic->ic_opmode = IEEE80211_M_STA;
485 ic->ic_caps =
486 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
487 | IEEE80211_C_HOSTAP /* hostap mode */
488 | IEEE80211_C_MONITOR /* monitor mode */
489 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
490 | IEEE80211_C_SHSLOT /* short slot time supported */
491 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
492 ;
493 /*
494 * Query the hal to figure out h/w crypto support.
495 */
496 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
497 ic->ic_caps |= IEEE80211_C_WEP;
498 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
499 ic->ic_caps |= IEEE80211_C_AES;
500 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
501 ic->ic_caps |= IEEE80211_C_AES_CCM;
502 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
503 ic->ic_caps |= IEEE80211_C_CKIP;
504 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
505 ic->ic_caps |= IEEE80211_C_TKIP;
506 /*
507 * Check if h/w does the MIC and/or whether the
508 * separate key cache entries are required to
509 * handle both tx+rx MIC keys.
510 */
511 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
512 ic->ic_caps |= IEEE80211_C_TKIPMIC;
513 if (ath_hal_tkipsplit(ah))
514 sc->sc_splitmic = 1;
515 }
516 /*
517 * TPC support can be done either with a global cap or
518 * per-packet support. The latter is not available on
519 * all parts. We're a bit pedantic here as all parts
520 * support a global cap.
521 */
522 sc->sc_hastpc = ath_hal_hastpc(ah);
523 if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
524 ic->ic_caps |= IEEE80211_C_TXPMGT;
525
526 /*
527 * Mark WME capability only if we have sufficient
528 * hardware queues to do proper priority scheduling.
529 */
530 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
531 ic->ic_caps |= IEEE80211_C_WME;
532 /*
533 * Check for frame bursting capability.
534 */
535 if (ath_hal_hasbursting(ah))
536 ic->ic_caps |= IEEE80211_C_BURST;
537
538 /*
539 * Indicate we need the 802.11 header padded to a
540 * 32-bit boundary for 4-address and QoS frames.
541 */
542 ic->ic_flags |= IEEE80211_F_DATAPAD;
543
544 /*
545 * Query the hal about antenna support.
546 */
547 if (ath_hal_hasdiversity(ah)) {
548 sc->sc_hasdiversity = 1;
549 sc->sc_diversity = ath_hal_getdiversity(ah);
550 }
551 sc->sc_defant = ath_hal_getdefantenna(ah);
552
553 /*
554 * Not all chips have the VEOL support we want to
555 * use with IBSS beacons; check here for it.
556 */
557 sc->sc_hasveol = ath_hal_hasveol(ah);
558
559 /* get mac address from hardware */
560 ath_hal_getmac(ah, ic->ic_myaddr);
561
562 /* call MI attach routine. */
563 ieee80211_ifattach(ic);
564 /* override default methods */
565 ic->ic_node_alloc = ath_node_alloc;
566 sc->sc_node_free = ic->ic_node_free;
567 ic->ic_node_free = ath_node_free;
568 ic->ic_node_getrssi = ath_node_getrssi;
569 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
570 ic->ic_recv_mgmt = ath_recv_mgmt;
571 sc->sc_newstate = ic->ic_newstate;
572 ic->ic_newstate = ath_newstate;
573 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
574 ic->ic_crypto.cs_key_delete = ath_key_delete;
575 ic->ic_crypto.cs_key_set = ath_key_set;
576 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
577 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
578 /* complete initialization */
579 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
580
581 ath_bpfattach(sc);
582
583 if (bootverbose)
584 ieee80211_announce(ic);
585 ath_announce(sc);
586 return 0;
587 bad2:
588 ath_tx_cleanup(sc);
589 ath_desc_free(sc);
590 bad:
591 if (ah)
592 ath_hal_detach(ah);
593 sc->sc_invalid = 1;
594 return error;
595 }
596
597 int
598 ath_detach(struct ath_softc *sc)
599 {
600 struct ifnet *ifp = &sc->sc_if;
601
602 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
603 __func__, ifp->if_flags);
604
605 ath_stop(ifp);
606 bpfdetach(ifp);
607 /*
608 * NB: the order of these is important:
609 * o call the 802.11 layer before detaching the hal to
610 * insure callbacks into the driver to delete global
611 * key cache entries can be handled
612 * o reclaim the tx queue data structures after calling
613 * the 802.11 layer as we'll get called back to reclaim
614 * node state and potentially want to use them
615 * o to cleanup the tx queues the hal is called, so detach
616 * it last
617 * Other than that, it's straightforward...
618 */
619 ieee80211_ifdetach(&sc->sc_ic);
620 ath_rate_detach(sc->sc_rc);
621 ath_desc_free(sc);
622 ath_tx_cleanup(sc);
623 ath_hal_detach(sc->sc_ah);
624
625 return 0;
626 }
627
628 void
629 ath_suspend(struct ath_softc *sc)
630 {
631 struct ifnet *ifp = &sc->sc_if;
632
633 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
634 __func__, ifp->if_flags);
635
636 ath_stop(ifp);
637 }
638
639 void
640 ath_resume(struct ath_softc *sc)
641 {
642 struct ifnet *ifp = &sc->sc_if;
643
644 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
645 __func__, ifp->if_flags);
646
647 if (ifp->if_flags & IFF_UP) {
648 ath_init(ifp);
649 if (ifp->if_flags & IFF_RUNNING)
650 ath_start(ifp);
651 }
652 }
653
654 void
655 ath_shutdown(struct ath_softc *sc)
656 {
657 struct ifnet *ifp = &sc->sc_if;
658
659 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
660 __func__, ifp->if_flags);
661
662 ath_stop(ifp);
663 }
664
665 /*
666 * Interrupt handler. Most of the actual processing is deferred.
667 */
668 void
669 ath_intr(void *arg)
670 {
671 struct ath_softc *sc = arg;
672 struct ifnet *ifp = &sc->sc_if;
673 struct ath_hal *ah = sc->sc_ah;
674 HAL_INT status;
675
676 if (sc->sc_invalid) {
677 /*
678 * The hardware is not ready/present, don't touch anything.
679 * Note this can happen early on if the IRQ is shared.
680 */
681 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
682 return;
683 }
684 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
685 return;
686 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
687 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
688 __func__, ifp->if_flags);
689 ath_hal_getisr(ah, &status); /* clear ISR */
690 ath_hal_intrset(ah, 0); /* disable further intr's */
691 return;
692 }
693 /*
694 * Figure out the reason(s) for the interrupt. Note
695 * that the hal returns a pseudo-ISR that may include
696 * bits we haven't explicitly enabled so we mask the
697 * value to insure we only process bits we requested.
698 */
699 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
700 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
701 status &= sc->sc_imask; /* discard unasked for bits */
702 if (status & HAL_INT_FATAL) {
703 /*
704 * Fatal errors are unrecoverable. Typically
705 * these are caused by DMA errors. Unfortunately
706 * the exact reason is not (presently) returned
707 * by the hal.
708 */
709 sc->sc_stats.ast_hardware++;
710 ath_hal_intrset(ah, 0); /* disable intr's until reset */
711 taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
712 } else if (status & HAL_INT_RXORN) {
713 sc->sc_stats.ast_rxorn++;
714 ath_hal_intrset(ah, 0); /* disable intr's until reset */
715 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
716 } else {
717 if (status & HAL_INT_SWBA) {
718 /*
719 * Software beacon alert--time to send a beacon.
720 * Handle beacon transmission directly; deferring
721 * this is too slow to meet timing constraints
722 * under load.
723 */
724 ath_beacon_proc(sc, 0);
725 }
726 if (status & HAL_INT_RXEOL) {
727 /*
728 * NB: the hardware should re-read the link when
729 * RXE bit is written, but it doesn't work at
730 * least on older hardware revs.
731 */
732 sc->sc_stats.ast_rxeol++;
733 sc->sc_rxlink = NULL;
734 }
735 if (status & HAL_INT_TXURN) {
736 sc->sc_stats.ast_txurn++;
737 /* bump tx trigger level */
738 ath_hal_updatetxtriglevel(ah, AH_TRUE);
739 }
740 if (status & HAL_INT_RX)
741 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
742 if (status & HAL_INT_TX)
743 taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
744 if (status & HAL_INT_BMISS) {
745 sc->sc_stats.ast_bmiss++;
746 taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
747 }
748 if (status & HAL_INT_MIB) {
749 sc->sc_stats.ast_mib++;
750 /*
751 * Disable interrupts until we service the MIB
752 * interrupt; otherwise it will continue to fire.
753 */
754 ath_hal_intrset(ah, 0);
755 /*
756 * Let the hal handle the event. We assume it will
757 * clear whatever condition caused the interrupt.
758 */
759 ath_hal_mibevent(ah,
760 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
761 ath_hal_intrset(ah, sc->sc_imask);
762 }
763 }
764 }
765
766 static void
767 ath_fatal_proc(void *arg, int pending)
768 {
769 struct ath_softc *sc = arg;
770 struct ifnet *ifp = &sc->sc_if;
771
772 if_printf(ifp, "hardware error; resetting\n");
773 ath_reset(ifp);
774 }
775
776 static void
777 ath_rxorn_proc(void *arg, int pending)
778 {
779 struct ath_softc *sc = arg;
780 struct ifnet *ifp = &sc->sc_if;
781
782 if_printf(ifp, "rx FIFO overrun; resetting\n");
783 ath_reset(ifp);
784 }
785
786 static void
787 ath_bmiss_proc(void *arg, int pending)
788 {
789 struct ath_softc *sc = arg;
790 struct ieee80211com *ic = &sc->sc_ic;
791
792 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
793 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
794 ("unexpect operating mode %u", ic->ic_opmode));
795 if (ic->ic_state == IEEE80211_S_RUN) {
796 /*
797 * Rather than go directly to scan state, try to
798 * reassociate first. If that fails then the state
799 * machine will drop us into scanning after timing
800 * out waiting for a probe response.
801 */
802 NET_LOCK_GIANT();
803 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
804 NET_UNLOCK_GIANT();
805 }
806 }
807
808 static u_int
809 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
810 {
811 #define N(a) (sizeof(a) / sizeof(a[0]))
812 static const u_int modeflags[] = {
813 0, /* IEEE80211_MODE_AUTO */
814 CHANNEL_A, /* IEEE80211_MODE_11A */
815 CHANNEL_B, /* IEEE80211_MODE_11B */
816 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
817 0, /* IEEE80211_MODE_FH */
818 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */
819 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
820 };
821 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
822
823 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
824 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
825 return modeflags[mode];
826 #undef N
827 }
828
829 static void
830 ath_init(void *arg)
831 {
832 struct ath_softc *sc = (struct ath_softc *) arg;
833 struct ieee80211com *ic = &sc->sc_ic;
834 struct ifnet *ifp = &sc->sc_if;
835 struct ieee80211_node *ni;
836 struct ath_hal *ah = sc->sc_ah;
837 HAL_STATUS status;
838
839 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
840 __func__, ifp->if_flags);
841
842 ATH_LOCK(sc);
843 /*
844 * Stop anything previously setup. This is safe
845 * whether this is the first time through or not.
846 */
847 ath_stop_locked(ifp);
848
849 /*
850 * The basic interface to setting the hardware in a good
851 * state is ``reset''. On return the hardware is known to
852 * be powered up and with interrupts disabled. This must
853 * be followed by initialization of the appropriate bits
854 * and then setup of the interrupt mask.
855 */
856 sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
857 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
858 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
859 if_printf(ifp, "unable to reset hardware; hal status %u\n",
860 status);
861 goto done;
862 }
863
864 /*
865 * This is needed only to setup initial state
866 * but it's best done after a reset.
867 */
868 ath_update_txpow(sc);
869
870 /*
871 * Setup the hardware after reset: the key cache
872 * is filled as needed and the receive engine is
873 * set going. Frame transmit is handled entirely
874 * in the frame output path; there's nothing to do
875 * here except setup the interrupt mask.
876 */
877 ath_initkeytable(sc); /* XXX still needed? */
878 if (ath_startrecv(sc) != 0) {
879 if_printf(ifp, "unable to start recv logic\n");
880 goto done;
881 }
882
883 /*
884 * Enable interrupts.
885 */
886 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
887 | HAL_INT_RXEOL | HAL_INT_RXORN
888 | HAL_INT_FATAL | HAL_INT_GLOBAL;
889 /*
890 * Enable MIB interrupts when there are hardware phy counters.
891 * Note we only do this (at the moment) for station mode.
892 */
893 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
894 sc->sc_imask |= HAL_INT_MIB;
895 ath_hal_intrset(ah, sc->sc_imask);
896
897 ifp->if_flags |= IFF_RUNNING;
898 ic->ic_state = IEEE80211_S_INIT;
899
900 /*
901 * The hardware should be ready to go now so it's safe
902 * to kick the 802.11 state machine as it's likely to
903 * immediately call back to us to send mgmt frames.
904 */
905 ni = ic->ic_bss;
906 ni->ni_chan = ic->ic_ibss_chan;
907 ath_chan_change(sc, ni->ni_chan);
908 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
909 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
910 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
911 } else
912 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
913 done:
914 ATH_UNLOCK(sc);
915 }
916
917 static void
918 ath_stop_locked(struct ifnet *ifp)
919 {
920 struct ath_softc *sc = ifp->if_softc;
921 struct ieee80211com *ic = &sc->sc_ic;
922 struct ath_hal *ah = sc->sc_ah;
923
924 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
925 __func__, sc->sc_invalid, ifp->if_flags);
926
927 ATH_LOCK_ASSERT(sc);
928 if (ifp->if_flags & IFF_RUNNING) {
929 /*
930 * Shutdown the hardware and driver:
931 * reset 802.11 state machine
932 * turn off timers
933 * disable interrupts
934 * turn off the radio
935 * clear transmit machinery
936 * clear receive machinery
937 * drain and release tx queues
938 * reclaim beacon resources
939 * power down hardware
940 *
941 * Note that some of this work is not possible if the
942 * hardware is gone (invalid).
943 */
944 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
945 ifp->if_flags &= ~IFF_RUNNING;
946 ifp->if_timer = 0;
947 if (!sc->sc_invalid) {
948 if (sc->sc_softled) {
949 callout_stop(&sc->sc_ledtimer);
950 ath_hal_gpioset(ah, sc->sc_ledpin,
951 !sc->sc_ledon);
952 sc->sc_blinking = 0;
953 }
954 ath_hal_intrset(ah, 0);
955 }
956 ath_draintxq(sc);
957 if (!sc->sc_invalid) {
958 ath_stoprecv(sc);
959 ath_hal_phydisable(ah);
960 } else
961 sc->sc_rxlink = NULL;
962 IFQ_DRV_PURGE(&ifp->if_snd);
963 ath_beacon_free(sc);
964 }
965 }
966
967 static void
968 ath_stop(struct ifnet *ifp)
969 {
970 struct ath_softc *sc = ifp->if_softc;
971
972 ATH_LOCK(sc);
973 ath_stop_locked(ifp);
974 if (!sc->sc_invalid) {
975 /*
976 * Set the chip in full sleep mode. Note that we are
977 * careful to do this only when bringing the interface
978 * completely to a stop. When the chip is in this state
979 * it must be carefully woken up or references to
980 * registers in the PCI clock domain may freeze the bus
981 * (and system). This varies by chip and is mostly an
982 * issue with newer parts that go to sleep more quickly.
983 */
984 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
985 }
986 ATH_UNLOCK(sc);
987 }
988
989 /*
990 * Reset the hardware w/o losing operational state. This is
991 * basically a more efficient way of doing ath_stop, ath_init,
992 * followed by state transitions to the current 802.11
993 * operational state. Used to recover from various errors and
994 * to reset or reload hardware state.
995 */
996 static int
997 ath_reset(struct ifnet *ifp)
998 {
999 struct ath_softc *sc = ifp->if_softc;
1000 struct ieee80211com *ic = &sc->sc_ic;
1001 struct ath_hal *ah = sc->sc_ah;
1002 struct ieee80211_channel *c;
1003 HAL_STATUS status;
1004
1005 /*
1006 * Convert to a HAL channel description with the flags
1007 * constrained to reflect the current operating mode.
1008 */
1009 c = ic->ic_ibss_chan;
1010 sc->sc_curchan.channel = c->ic_freq;
1011 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1012
1013 ath_hal_intrset(ah, 0); /* disable interrupts */
1014 ath_draintxq(sc); /* stop xmit side */
1015 ath_stoprecv(sc); /* stop recv side */
1016 /* NB: indicate channel change so we do a full reset */
1017 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1018 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1019 __func__, status);
1020 ath_update_txpow(sc); /* update tx power state */
1021 if (ath_startrecv(sc) != 0) /* restart recv */
1022 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1023 /*
1024 * We may be doing a reset in response to an ioctl
1025 * that changes the channel so update any state that
1026 * might change as a result.
1027 */
1028 ath_chan_change(sc, c);
1029 if (ic->ic_state == IEEE80211_S_RUN)
1030 ath_beacon_config(sc); /* restart beacons */
1031 ath_hal_intrset(ah, sc->sc_imask);
1032
1033 ath_start(ifp); /* restart xmit */
1034 return 0;
1035 }
1036
1037 static void
1038 ath_start(struct ifnet *ifp)
1039 {
1040 struct ath_softc *sc = ifp->if_softc;
1041 struct ath_hal *ah = sc->sc_ah;
1042 struct ieee80211com *ic = &sc->sc_ic;
1043 struct ieee80211_node *ni;
1044 struct ath_buf *bf;
1045 struct mbuf *m;
1046 struct ieee80211_frame *wh;
1047 struct ether_header *eh;
1048
1049 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1050 return;
1051 for (;;) {
1052 /*
1053 * Grab a TX buffer and associated resources.
1054 */
1055 ATH_TXBUF_LOCK(sc);
1056 bf = STAILQ_FIRST(&sc->sc_txbuf);
1057 if (bf != NULL)
1058 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1059 ATH_TXBUF_UNLOCK(sc);
1060 if (bf == NULL) {
1061 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1062 __func__);
1063 sc->sc_stats.ast_tx_qstop++;
1064 ifp->if_flags |= IFF_OACTIVE;
1065 break;
1066 }
1067 /*
1068 * Poll the management queue for frames; they
1069 * have priority over normal data frames.
1070 */
1071 IF_DEQUEUE(&ic->ic_mgtq, m);
1072 if (m == NULL) {
1073 /*
1074 * No data frames go out unless we're associated.
1075 */
1076 if (ic->ic_state != IEEE80211_S_RUN) {
1077 DPRINTF(sc, ATH_DEBUG_ANY,
1078 "%s: ignore data packet, state %u\n",
1079 __func__, ic->ic_state);
1080 sc->sc_stats.ast_tx_discard++;
1081 ATH_TXBUF_LOCK(sc);
1082 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1083 ATH_TXBUF_UNLOCK(sc);
1084 break;
1085 }
1086 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1087 if (m == NULL) {
1088 ATH_TXBUF_LOCK(sc);
1089 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1090 ATH_TXBUF_UNLOCK(sc);
1091 break;
1092 }
1093 /*
1094 * Find the node for the destination so we can do
1095 * things like power save and fast frames aggregation.
1096 */
1097 if (m->m_len < sizeof(struct ether_header) &&
1098 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1099 ic->ic_stats.is_tx_nobuf++; /* XXX */
1100 ni = NULL;
1101 goto bad;
1102 }
1103 eh = mtod(m, struct ether_header *);
1104 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1105 if (ni == NULL) {
1106 /* NB: ieee80211_find_txnode does stat+msg */
1107 m_freem(m);
1108 goto bad;
1109 }
1110 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1111 (m->m_flags & M_PWR_SAV) == 0) {
1112 /*
1113 * Station in power save mode; pass the frame
1114 * to the 802.11 layer and continue. We'll get
1115 * the frame back when the time is right.
1116 */
1117 ieee80211_pwrsave(ic, ni, m);
1118 goto reclaim;
1119 }
1120 /* calculate priority so we can find the tx queue */
1121 if (ieee80211_classify(ic, m, ni)) {
1122 DPRINTF(sc, ATH_DEBUG_XMIT,
1123 "%s: discard, classification failure\n",
1124 __func__);
1125 m_freem(m);
1126 goto bad;
1127 }
1128 ifp->if_opackets++;
1129 BPF_MTAP(ifp, m);
1130 /*
1131 * Encapsulate the packet in prep for transmission.
1132 */
1133 m = ieee80211_encap(ic, m, ni);
1134 if (m == NULL) {
1135 DPRINTF(sc, ATH_DEBUG_ANY,
1136 "%s: encapsulation failure\n",
1137 __func__);
1138 sc->sc_stats.ast_tx_encap++;
1139 goto bad;
1140 }
1141 } else {
1142 /*
1143 * Hack! The referenced node pointer is in the
1144 * rcvif field of the packet header. This is
1145 * placed there by ieee80211_mgmt_output because
1146 * we need to hold the reference with the frame
1147 * and there's no other way (other than packet
1148 * tags which we consider too expensive to use)
1149 * to pass it along.
1150 */
1151 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1152 m->m_pkthdr.rcvif = NULL;
1153
1154 wh = mtod(m, struct ieee80211_frame *);
1155 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1156 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1157 /* fill time stamp */
1158 u_int64_t tsf;
1159 u_int32_t *tstamp;
1160
1161 tsf = ath_hal_gettsf64(ah);
1162 /* XXX: adjust 100us delay to xmit */
1163 tsf += 100;
1164 tstamp = (u_int32_t *)&wh[1];
1165 tstamp[0] = htole32(tsf & 0xffffffff);
1166 tstamp[1] = htole32(tsf >> 32);
1167 }
1168 sc->sc_stats.ast_tx_mgmt++;
1169 }
1170
1171 if (ath_tx_start(sc, ni, bf, m)) {
1172 bad:
1173 ifp->if_oerrors++;
1174 reclaim:
1175 ATH_TXBUF_LOCK(sc);
1176 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1177 ATH_TXBUF_UNLOCK(sc);
1178 if (ni != NULL)
1179 ieee80211_free_node(ni);
1180 continue;
1181 }
1182
1183 sc->sc_tx_timer = 5;
1184 ifp->if_timer = 1;
1185 }
1186 }
1187
1188 static int
1189 ath_media_change(struct ifnet *ifp)
1190 {
1191 #define IS_UP(ifp) \
1192 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1193 int error;
1194
1195 error = ieee80211_media_change(ifp);
1196 if (error == ENETRESET) {
1197 if (IS_UP(ifp))
1198 ath_init(ifp); /* XXX lose error */
1199 error = 0;
1200 }
1201 return error;
1202 #undef IS_UP
1203 }
1204
1205 #ifdef AR_DEBUG
1206 static void
1207 ath_keyprint(const char *tag, u_int ix,
1208 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1209 {
1210 static const char *ciphers[] = {
1211 "WEP",
1212 "AES-OCB",
1213 "AES-CCM",
1214 "CKIP",
1215 "TKIP",
1216 "CLR",
1217 };
1218 int i, n;
1219
1220 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1221 for (i = 0, n = hk->kv_len; i < n; i++)
1222 printf("%02x", hk->kv_val[i]);
1223 printf(" mac %s", ether_sprintf(mac));
1224 if (hk->kv_type == HAL_CIPHER_TKIP) {
1225 printf(" mic ");
1226 for (i = 0; i < sizeof(hk->kv_mic); i++)
1227 printf("%02x", hk->kv_mic[i]);
1228 }
1229 printf("\n");
1230 }
1231 #endif
1232
1233 /*
1234 * Set a TKIP key into the hardware. This handles the
1235 * potential distribution of key state to multiple key
1236 * cache slots for TKIP.
1237 */
1238 static int
1239 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1240 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1241 {
1242 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1243 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1244 struct ath_hal *ah = sc->sc_ah;
1245
1246 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1247 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1248 KASSERT(sc->sc_splitmic, ("key cache !split"));
1249 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1250 /*
1251 * TX key goes at first index, RX key at +32.
1252 * The hal handles the MIC keys at index+64.
1253 */
1254 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1255 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1256 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1257 return 0;
1258
1259 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1260 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1261 /* XXX delete tx key on failure? */
1262 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1263 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1264 /*
1265 * TX/RX key goes at first index.
1266 * The hal handles the MIC keys are index+64.
1267 */
1268 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
1269 ("group key at index %u", k->wk_keyix));
1270 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1271 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1272 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1273 return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
1274 }
1275 /* XXX key w/o xmit/recv; need this for compression? */
1276 return 0;
1277 #undef IEEE80211_KEY_XR
1278 }
1279
1280 /*
1281 * Set a net80211 key into the hardware. This handles the
1282 * potential distribution of key state to multiple key
1283 * cache slots for TKIP with hardware MIC support.
1284 */
1285 static int
1286 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1287 const u_int8_t mac[IEEE80211_ADDR_LEN])
1288 {
1289 #define N(a) (sizeof(a)/sizeof(a[0]))
1290 static const u_int8_t ciphermap[] = {
1291 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1292 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1293 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1294 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1295 (u_int8_t) -1, /* 4 is not allocated */
1296 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1297 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1298 };
1299 struct ath_hal *ah = sc->sc_ah;
1300 const struct ieee80211_cipher *cip = k->wk_cipher;
1301 HAL_KEYVAL hk;
1302
1303 memset(&hk, 0, sizeof(hk));
1304 /*
1305 * Software crypto uses a "clear key" so non-crypto
1306 * state kept in the key cache are maintained and
1307 * so that rx frames have an entry to match.
1308 */
1309 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1310 KASSERT(cip->ic_cipher < N(ciphermap),
1311 ("invalid cipher type %u", cip->ic_cipher));
1312 hk.kv_type = ciphermap[cip->ic_cipher];
1313 hk.kv_len = k->wk_keylen;
1314 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1315 } else
1316 hk.kv_type = HAL_CIPHER_CLR;
1317
1318 if (hk.kv_type == HAL_CIPHER_TKIP &&
1319 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1320 sc->sc_splitmic) {
1321 return ath_keyset_tkip(sc, k, &hk, mac);
1322 } else {
1323 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1324 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1325 }
1326 #undef N
1327 }
1328
1329 /*
1330 * Fill the hardware key cache with key entries.
1331 */
1332 static void
1333 ath_initkeytable(struct ath_softc *sc)
1334 {
1335 struct ieee80211com *ic = &sc->sc_ic;
1336 struct ifnet *ifp = &sc->sc_if;
1337 struct ath_hal *ah = sc->sc_ah;
1338 const u_int8_t *bssid;
1339 int i;
1340
1341 /* XXX maybe should reset all keys when !PRIVACY */
1342 if (ic->ic_state == IEEE80211_S_SCAN)
1343 bssid = ifp->if_broadcastaddr;
1344 else
1345 bssid = ic->ic_bss->ni_bssid;
1346 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1347 struct ieee80211_key *k = &ic->ic_nw_keys[i];
1348
1349 if (k->wk_keylen == 0) {
1350 ath_hal_keyreset(ah, i);
1351 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
1352 __func__, i);
1353 } else {
1354 ath_keyset(sc, k, bssid);
1355 }
1356 }
1357 }
1358
1359 /*
1360 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1361 * each key, one for decrypt/encrypt and the other for the MIC.
1362 */
1363 static u_int16_t
1364 key_alloc_2pair(struct ath_softc *sc)
1365 {
1366 #define N(a) (sizeof(a)/sizeof(a[0]))
1367 u_int i, keyix;
1368
1369 KASSERT(sc->sc_splitmic, ("key cache !split"));
1370 /* XXX could optimize */
1371 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1372 u_int8_t b = sc->sc_keymap[i];
1373 if (b != 0xff) {
1374 /*
1375 * One or more slots in this byte are free.
1376 */
1377 keyix = i*NBBY;
1378 while (b & 1) {
1379 again:
1380 keyix++;
1381 b >>= 1;
1382 }
1383 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1384 if (isset(sc->sc_keymap, keyix+32) ||
1385 isset(sc->sc_keymap, keyix+64) ||
1386 isset(sc->sc_keymap, keyix+32+64)) {
1387 /* full pair unavailable */
1388 /* XXX statistic */
1389 if (keyix == (i+1)*NBBY) {
1390 /* no slots were appropriate, advance */
1391 continue;
1392 }
1393 goto again;
1394 }
1395 setbit(sc->sc_keymap, keyix);
1396 setbit(sc->sc_keymap, keyix+64);
1397 setbit(sc->sc_keymap, keyix+32);
1398 setbit(sc->sc_keymap, keyix+32+64);
1399 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1400 "%s: key pair %u,%u %u,%u\n",
1401 __func__, keyix, keyix+64,
1402 keyix+32, keyix+32+64);
1403 return keyix;
1404 }
1405 }
1406 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1407 return IEEE80211_KEYIX_NONE;
1408 #undef N
1409 }
1410
1411 /*
1412 * Allocate a single key cache slot.
1413 */
1414 static u_int16_t
1415 key_alloc_single(struct ath_softc *sc)
1416 {
1417 #define N(a) (sizeof(a)/sizeof(a[0]))
1418 u_int i, keyix;
1419
1420 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1421 for (i = 0; i < N(sc->sc_keymap); i++) {
1422 u_int8_t b = sc->sc_keymap[i];
1423 if (b != 0xff) {
1424 /*
1425 * One or more slots are free.
1426 */
1427 keyix = i*NBBY;
1428 while (b & 1)
1429 keyix++, b >>= 1;
1430 setbit(sc->sc_keymap, keyix);
1431 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1432 __func__, keyix);
1433 return keyix;
1434 }
1435 }
1436 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1437 return IEEE80211_KEYIX_NONE;
1438 #undef N
1439 }
1440
1441 /*
1442 * Allocate one or more key cache slots for a uniacst key. The
1443 * key itself is needed only to identify the cipher. For hardware
1444 * TKIP with split cipher+MIC keys we allocate two key cache slot
1445 * pairs so that we can setup separate TX and RX MIC keys. Note
1446 * that the MIC key for a TKIP key at slot i is assumed by the
1447 * hardware to be at slot i+64. This limits TKIP keys to the first
1448 * 64 entries.
1449 */
1450 static int
1451 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1452 {
1453 struct ath_softc *sc = ic->ic_ifp->if_softc;
1454
1455 /*
1456 * Group key allocation must be handled specially for
1457 * parts that do not support multicast key cache search
1458 * functionality. For those parts the key id must match
1459 * the h/w key index so lookups find the right key. On
1460 * parts w/ the key search facility we install the sender's
1461 * mac address (with the high bit set) and let the hardware
1462 * find the key w/o using the key id. This is preferred as
1463 * it permits us to support multiple users for adhoc and/or
1464 * multi-station operation.
1465 */
1466 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1467 u_int keyix;
1468
1469 if (!(&ic->ic_nw_keys[0] <= k &&
1470 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1471 /* should not happen */
1472 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1473 "%s: bogus group key\n", __func__);
1474 return IEEE80211_KEYIX_NONE;
1475 }
1476 keyix = k - ic->ic_nw_keys;
1477 /*
1478 * XXX we pre-allocate the global keys so
1479 * have no way to check if they've already been allocated.
1480 */
1481 return keyix;
1482 }
1483
1484 /*
1485 * We allocate two pair for TKIP when using the h/w to do
1486 * the MIC. For everything else, including software crypto,
1487 * we allocate a single entry. Note that s/w crypto requires
1488 * a pass-through slot on the 5211 and 5212. The 5210 does
1489 * not support pass-through cache entries and we map all
1490 * those requests to slot 0.
1491 */
1492 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1493 return key_alloc_single(sc);
1494 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1495 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1496 return key_alloc_2pair(sc);
1497 } else {
1498 return key_alloc_single(sc);
1499 }
1500 }
1501
1502 /*
1503 * Delete an entry in the key cache allocated by ath_key_alloc.
1504 */
1505 static int
1506 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1507 {
1508 struct ath_softc *sc = ic->ic_ifp->if_softc;
1509 struct ath_hal *ah = sc->sc_ah;
1510 const struct ieee80211_cipher *cip = k->wk_cipher;
1511 u_int keyix = k->wk_keyix;
1512
1513 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1514
1515 ath_hal_keyreset(ah, keyix);
1516 /*
1517 * Handle split tx/rx keying required for TKIP with h/w MIC.
1518 */
1519 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1520 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1521 ath_hal_keyreset(ah, keyix+32); /* RX key */
1522 if (keyix >= IEEE80211_WEP_NKID) {
1523 /*
1524 * Don't touch keymap entries for global keys so
1525 * they are never considered for dynamic allocation.
1526 */
1527 clrbit(sc->sc_keymap, keyix);
1528 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1529 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1530 sc->sc_splitmic) {
1531 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1532 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1533 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1534 }
1535 }
1536 return 1;
1537 }
1538
1539 /*
1540 * Set the key cache contents for the specified key. Key cache
1541 * slot(s) must already have been allocated by ath_key_alloc.
1542 */
1543 static int
1544 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1545 const u_int8_t mac[IEEE80211_ADDR_LEN])
1546 {
1547 struct ath_softc *sc = ic->ic_ifp->if_softc;
1548
1549 return ath_keyset(sc, k, mac);
1550 }
1551
1552 /*
1553 * Block/unblock tx+rx processing while a key change is done.
1554 * We assume the caller serializes key management operations
1555 * so we only need to worry about synchronization with other
1556 * uses that originate in the driver.
1557 */
1558 static void
1559 ath_key_update_begin(struct ieee80211com *ic)
1560 {
1561 struct ifnet *ifp = ic->ic_ifp;
1562 struct ath_softc *sc = ifp->if_softc;
1563
1564 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1565 #if 0
1566 tasklet_disable(&sc->sc_rxtq);
1567 #endif
1568 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1569 }
1570
1571 static void
1572 ath_key_update_end(struct ieee80211com *ic)
1573 {
1574 struct ifnet *ifp = ic->ic_ifp;
1575 struct ath_softc *sc = ifp->if_softc;
1576
1577 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1578 IF_UNLOCK(&ifp->if_snd);
1579 #if 0
1580 tasklet_enable(&sc->sc_rxtq);
1581 #endif
1582 }
1583
1584 /*
1585 * Calculate the receive filter according to the
1586 * operating mode and state:
1587 *
1588 * o always accept unicast, broadcast, and multicast traffic
1589 * o maintain current state of phy error reception (the hal
1590 * may enable phy error frames for noise immunity work)
1591 * o probe request frames are accepted only when operating in
1592 * hostap, adhoc, or monitor modes
1593 * o enable promiscuous mode according to the interface state
1594 * o accept beacons:
1595 * - when operating in adhoc mode so the 802.11 layer creates
1596 * node table entries for peers,
1597 * - when operating in station mode for collecting rssi data when
1598 * the station is otherwise quiet, or
1599 * - when scanning
1600 */
1601 static u_int32_t
1602 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1603 {
1604 struct ieee80211com *ic = &sc->sc_ic;
1605 struct ath_hal *ah = sc->sc_ah;
1606 struct ifnet *ifp = &sc->sc_if;
1607 u_int32_t rfilt;
1608
1609 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1610 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1611 if (ic->ic_opmode != IEEE80211_M_STA)
1612 rfilt |= HAL_RX_FILTER_PROBEREQ;
1613 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1614 (ifp->if_flags & IFF_PROMISC))
1615 rfilt |= HAL_RX_FILTER_PROM;
1616 if (ic->ic_opmode == IEEE80211_M_STA ||
1617 ic->ic_opmode == IEEE80211_M_IBSS ||
1618 state == IEEE80211_S_SCAN)
1619 rfilt |= HAL_RX_FILTER_BEACON;
1620 return rfilt;
1621 }
1622
1623 static void
1624 ath_mode_init(struct ath_softc *sc)
1625 {
1626 struct ieee80211com *ic = &sc->sc_ic;
1627 struct ath_hal *ah = sc->sc_ah;
1628 struct ifnet *ifp = &sc->sc_if;
1629 u_int32_t rfilt, mfilt[2], val;
1630 u_int8_t pos;
1631 struct ifmultiaddr *ifma;
1632
1633 /* configure rx filter */
1634 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1635 ath_hal_setrxfilter(ah, rfilt);
1636
1637 /* configure operational mode */
1638 ath_hal_setopmode(ah);
1639
1640 /*
1641 * Handle any link-level address change. Note that we only
1642 * need to force ic_myaddr; any other addresses are handled
1643 * as a byproduct of the ifnet code marking the interface
1644 * down then up.
1645 *
1646 * XXX should get from lladdr instead of arpcom but that's more work
1647 */
1648 IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2AC(ifp)->ac_enaddr);
1649 ath_hal_setmac(ah, ic->ic_myaddr);
1650
1651 /* calculate and install multicast filter */
1652 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1653 mfilt[0] = mfilt[1] = 0;
1654 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1655 caddr_t dl;
1656
1657 /* calculate XOR of eight 6bit values */
1658 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1659 val = LE_READ_4(dl + 0);
1660 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1661 val = LE_READ_4(dl + 3);
1662 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1663 pos &= 0x3f;
1664 mfilt[pos / 32] |= (1 << (pos % 32));
1665 }
1666 } else {
1667 mfilt[0] = mfilt[1] = ~0;
1668 }
1669 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1670 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1671 __func__, rfilt, mfilt[0], mfilt[1]);
1672 }
1673
1674 /*
1675 * Set the slot time based on the current setting.
1676 */
1677 static void
1678 ath_setslottime(struct ath_softc *sc)
1679 {
1680 struct ieee80211com *ic = &sc->sc_ic;
1681 struct ath_hal *ah = sc->sc_ah;
1682
1683 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1684 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1685 else
1686 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1687 sc->sc_updateslot = OK;
1688 }
1689
1690 /*
1691 * Callback from the 802.11 layer to update the
1692 * slot time based on the current setting.
1693 */
1694 static void
1695 ath_updateslot(struct ifnet *ifp)
1696 {
1697 struct ath_softc *sc = ifp->if_softc;
1698 struct ieee80211com *ic = &sc->sc_ic;
1699
1700 /*
1701 * When not coordinating the BSS, change the hardware
1702 * immediately. For other operation we defer the change
1703 * until beacon updates have propagated to the stations.
1704 */
1705 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1706 sc->sc_updateslot = UPDATE;
1707 else
1708 ath_setslottime(sc);
1709 }
1710
1711 /*
1712 * Setup a h/w transmit queue for beacons.
1713 */
1714 static int
1715 ath_beaconq_setup(struct ath_hal *ah)
1716 {
1717 HAL_TXQ_INFO qi;
1718
1719 memset(&qi, 0, sizeof(qi));
1720 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1721 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1722 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1723 /* NB: don't enable any interrupts */
1724 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1725 }
1726
1727 /*
1728 * Allocate and setup an initial beacon frame.
1729 */
1730 static int
1731 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1732 {
1733 struct ieee80211com *ic = ni->ni_ic;
1734 struct ath_buf *bf;
1735 struct mbuf *m;
1736 int error;
1737
1738 bf = STAILQ_FIRST(&sc->sc_bbuf);
1739 if (bf == NULL) {
1740 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1741 sc->sc_stats.ast_be_nombuf++; /* XXX */
1742 return ENOMEM; /* XXX */
1743 }
1744 /*
1745 * NB: the beacon data buffer must be 32-bit aligned;
1746 * we assume the mbuf routines will return us something
1747 * with this alignment (perhaps should assert).
1748 */
1749 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1750 if (m == NULL) {
1751 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1752 __func__);
1753 sc->sc_stats.ast_be_nombuf++;
1754 return ENOMEM;
1755 }
1756 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1757 bf->bf_segs, &bf->bf_nseg,
1758 BUS_DMA_NOWAIT);
1759 if (error == 0) {
1760 bf->bf_m = m;
1761 bf->bf_node = ieee80211_ref_node(ni);
1762 } else {
1763 m_freem(m);
1764 }
1765 return error;
1766 }
1767
1768 /*
1769 * Setup the beacon frame for transmit.
1770 */
1771 static void
1772 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1773 {
1774 #define USE_SHPREAMBLE(_ic) \
1775 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1776 == IEEE80211_F_SHPREAMBLE)
1777 struct ieee80211_node *ni = bf->bf_node;
1778 struct ieee80211com *ic = ni->ni_ic;
1779 struct mbuf *m = bf->bf_m;
1780 struct ath_hal *ah = sc->sc_ah;
1781 struct ath_node *an = ATH_NODE(ni);
1782 struct ath_desc *ds;
1783 int flags, antenna;
1784 u_int8_t rate;
1785
1786 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1787 __func__, m, m->m_len);
1788
1789 /* setup descriptors */
1790 ds = bf->bf_desc;
1791
1792 flags = HAL_TXDESC_NOACK;
1793 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1794 ds->ds_link = bf->bf_daddr; /* self-linked */
1795 flags |= HAL_TXDESC_VEOL;
1796 /*
1797 * Let hardware handle antenna switching.
1798 */
1799 antenna = 0;
1800 } else {
1801 ds->ds_link = 0;
1802 /*
1803 * Switch antenna every 4 beacons.
1804 * XXX assumes two antenna
1805 */
1806 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1807 }
1808
1809 KASSERT(bf->bf_nseg == 1,
1810 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1811 ds->ds_data = bf->bf_segs[0].ds_addr;
1812 /*
1813 * Calculate rate code.
1814 * XXX everything at min xmit rate
1815 */
1816 if (USE_SHPREAMBLE(ic))
1817 rate = an->an_tx_mgtratesp;
1818 else
1819 rate = an->an_tx_mgtrate;
1820 ath_hal_setuptxdesc(ah, ds
1821 , m->m_len + IEEE80211_CRC_LEN /* frame length */
1822 , sizeof(struct ieee80211_frame)/* header length */
1823 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1824 , ni->ni_txpower /* txpower XXX */
1825 , rate, 1 /* series 0 rate/tries */
1826 , HAL_TXKEYIX_INVALID /* no encryption */
1827 , antenna /* antenna mode */
1828 , flags /* no ack, veol for beacons */
1829 , 0 /* rts/cts rate */
1830 , 0 /* rts/cts duration */
1831 );
1832 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1833 ath_hal_filltxdesc(ah, ds
1834 , roundup(m->m_len, 4) /* buffer length */
1835 , AH_TRUE /* first segment */
1836 , AH_TRUE /* last segment */
1837 , ds /* first descriptor */
1838 );
1839 #undef USE_SHPREAMBLE
1840 }
1841
1842 /*
1843 * Transmit a beacon frame at SWBA. Dynamic updates to the
1844 * frame contents are done as needed and the slot time is
1845 * also adjusted based on current state.
1846 */
1847 static void
1848 ath_beacon_proc(void *arg, int pending)
1849 {
1850 struct ath_softc *sc = arg;
1851 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1852 struct ieee80211_node *ni = bf->bf_node;
1853 struct ieee80211com *ic = ni->ni_ic;
1854 struct ath_hal *ah = sc->sc_ah;
1855 struct mbuf *m;
1856 int ncabq, error, otherant;
1857
1858 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1859 __func__, pending);
1860
1861 if (ic->ic_opmode == IEEE80211_M_STA ||
1862 ic->ic_opmode == IEEE80211_M_MONITOR ||
1863 bf == NULL || bf->bf_m == NULL) {
1864 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1865 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1866 return;
1867 }
1868 /*
1869 * Check if the previous beacon has gone out. If
1870 * not don't don't try to post another, skip this
1871 * period and wait for the next. Missed beacons
1872 * indicate a problem and should not occur. If we
1873 * miss too many consecutive beacons reset the device.
1874 */
1875 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1876 sc->sc_bmisscount++;
1877 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1878 "%s: missed %u consecutive beacons\n",
1879 __func__, sc->sc_bmisscount);
1880 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
1881 taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1882 return;
1883 }
1884 if (sc->sc_bmisscount != 0) {
1885 DPRINTF(sc, ATH_DEBUG_BEACON,
1886 "%s: resume beacon xmit after %u misses\n",
1887 __func__, sc->sc_bmisscount);
1888 sc->sc_bmisscount = 0;
1889 }
1890
1891 /*
1892 * Update dynamic beacon contents. If this returns
1893 * non-zero then we need to remap the memory because
1894 * the beacon frame changed size (probably because
1895 * of the TIM bitmap).
1896 */
1897 m = bf->bf_m;
1898 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1899 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1900 /* XXX too conservative? */
1901 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1902 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1903 bf->bf_segs, &bf->bf_nseg,
1904 BUS_DMA_NOWAIT);
1905 if (error != 0) {
1906 if_printf(ic->ic_ifp,
1907 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1908 __func__, error);
1909 return;
1910 }
1911 }
1912
1913 /*
1914 * Handle slot time change when a non-ERP station joins/leaves
1915 * an 11g network. The 802.11 layer notifies us via callback,
1916 * we mark updateslot, then wait one beacon before effecting
1917 * the change. This gives associated stations at least one
1918 * beacon interval to note the state change.
1919 */
1920 /* XXX locking */
1921 if (sc->sc_updateslot == UPDATE)
1922 sc->sc_updateslot = COMMIT; /* commit next beacon */
1923 else if (sc->sc_updateslot == COMMIT)
1924 ath_setslottime(sc); /* commit change to h/w */
1925
1926 /*
1927 * Check recent per-antenna transmit statistics and flip
1928 * the default antenna if noticeably more frames went out
1929 * on the non-default antenna.
1930 * XXX assumes 2 anntenae
1931 */
1932 otherant = sc->sc_defant & 1 ? 2 : 1;
1933 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1934 ath_setdefantenna(sc, otherant);
1935 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1936
1937 /*
1938 * Construct tx descriptor.
1939 */
1940 ath_beacon_setup(sc, bf);
1941
1942 /*
1943 * Stop any current dma and put the new frame on the queue.
1944 * This should never fail since we check above that no frames
1945 * are still pending on the queue.
1946 */
1947 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1948 DPRINTF(sc, ATH_DEBUG_ANY,
1949 "%s: beacon queue %u did not stop?\n",
1950 __func__, sc->sc_bhalq);
1951 }
1952 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1953
1954 /*
1955 * Enable the CAB queue before the beacon queue to
1956 * insure cab frames are triggered by this beacon.
1957 */
1958 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
1959 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
1960 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1961 ath_hal_txstart(ah, sc->sc_bhalq);
1962 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1963 "%s: TXDP[%u] = %p (%p)\n", __func__,
1964 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
1965
1966 sc->sc_stats.ast_be_xmit++;
1967 }
1968
1969 /*
1970 * Reset the hardware after detecting beacons have stopped.
1971 */
1972 static void
1973 ath_bstuck_proc(void *arg, int pending)
1974 {
1975 struct ath_softc *sc = arg;
1976 struct ifnet *ifp = &sc->sc_if;
1977
1978 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
1979 sc->sc_bmisscount);
1980 ath_reset(ifp);
1981 }
1982
1983 /*
1984 * Reclaim beacon resources.
1985 */
1986 static void
1987 ath_beacon_free(struct ath_softc *sc)
1988 {
1989 struct ath_buf *bf;
1990
1991 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
1992 if (bf->bf_m != NULL) {
1993 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1994 m_freem(bf->bf_m);
1995 bf->bf_m = NULL;
1996 }
1997 if (bf->bf_node != NULL) {
1998 ieee80211_free_node(bf->bf_node);
1999 bf->bf_node = NULL;
2000 }
2001 }
2002 }
2003
2004 /*
2005 * Configure the beacon and sleep timers.
2006 *
2007 * When operating as an AP this resets the TSF and sets
2008 * up the hardware to notify us when we need to issue beacons.
2009 *
2010 * When operating in station mode this sets up the beacon
2011 * timers according to the timestamp of the last received
2012 * beacon and the current TSF, configures PCF and DTIM
2013 * handling, programs the sleep registers so the hardware
2014 * will wakeup in time to receive beacons, and configures
2015 * the beacon miss handling so we'll receive a BMISS
2016 * interrupt when we stop seeing beacons from the AP
2017 * we've associated with.
2018 */
2019 static void
2020 ath_beacon_config(struct ath_softc *sc)
2021 {
2022 struct ath_hal *ah = sc->sc_ah;
2023 struct ieee80211com *ic = &sc->sc_ic;
2024 struct ieee80211_node *ni = ic->ic_bss;
2025 u_int32_t nexttbtt, intval;
2026
2027 nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
2028 (LE_READ_4(ni->ni_tstamp.data) >> 10);
2029 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2030 if (nexttbtt == 0) /* e.g. for ap mode */
2031 nexttbtt = intval;
2032 else if (intval) /* NB: can be 0 for monitor mode */
2033 nexttbtt = roundup(nexttbtt, intval);
2034 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2035 __func__, nexttbtt, intval, ni->ni_intval);
2036 if (ic->ic_opmode == IEEE80211_M_STA) {
2037 HAL_BEACON_STATE bs;
2038
2039 /* NB: no PCF support right now */
2040 memset(&bs, 0, sizeof(bs));
2041 bs.bs_intval = intval;
2042 bs.bs_nexttbtt = nexttbtt;
2043 bs.bs_dtimperiod = bs.bs_intval;
2044 bs.bs_nextdtim = nexttbtt;
2045 /*
2046 * The 802.11 layer records the offset to the DTIM
2047 * bitmap while receiving beacons; use it here to
2048 * enable h/w detection of our AID being marked in
2049 * the bitmap vector (to indicate frames for us are
2050 * pending at the AP).
2051 */
2052 bs.bs_timoffset = ni->ni_timoff;
2053 /*
2054 * Calculate the number of consecutive beacons to miss
2055 * before taking a BMISS interrupt. The configuration
2056 * is specified in ms, so we need to convert that to
2057 * TU's and then calculate based on the beacon interval.
2058 * Note that we clamp the result to at most 10 beacons.
2059 */
2060 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2061 if (bs.bs_bmissthreshold > 10)
2062 bs.bs_bmissthreshold = 10;
2063 else if (bs.bs_bmissthreshold <= 0)
2064 bs.bs_bmissthreshold = 1;
2065
2066 /*
2067 * Calculate sleep duration. The configuration is
2068 * given in ms. We insure a multiple of the beacon
2069 * period is used. Also, if the sleep duration is
2070 * greater than the DTIM period then it makes senses
2071 * to make it a multiple of that.
2072 *
2073 * XXX fixed at 100ms
2074 */
2075 bs.bs_sleepduration =
2076 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2077 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2078 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2079
2080 DPRINTF(sc, ATH_DEBUG_BEACON,
2081 "%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2082 , __func__
2083 , bs.bs_intval
2084 , bs.bs_nexttbtt
2085 , bs.bs_dtimperiod
2086 , bs.bs_nextdtim
2087 , bs.bs_bmissthreshold
2088 , bs.bs_sleepduration
2089 , bs.bs_cfpperiod
2090 , bs.bs_cfpmaxduration
2091 , bs.bs_cfpnext
2092 , bs.bs_timoffset
2093 );
2094 ath_hal_intrset(ah, 0);
2095 ath_hal_beacontimers(ah, &bs);
2096 sc->sc_imask |= HAL_INT_BMISS;
2097 ath_hal_intrset(ah, sc->sc_imask);
2098 } else {
2099 ath_hal_intrset(ah, 0);
2100 if (nexttbtt == intval)
2101 intval |= HAL_BEACON_RESET_TSF;
2102 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2103 /*
2104 * In IBSS mode enable the beacon timers but only
2105 * enable SWBA interrupts if we need to manually
2106 * prepare beacon frames. Otherwise we use a
2107 * self-linked tx descriptor and let the hardware
2108 * deal with things.
2109 */
2110 intval |= HAL_BEACON_ENA;
2111 if (!sc->sc_hasveol)
2112 sc->sc_imask |= HAL_INT_SWBA;
2113 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2114 /*
2115 * In AP mode we enable the beacon timers and
2116 * SWBA interrupts to prepare beacon frames.
2117 */
2118 intval |= HAL_BEACON_ENA;
2119 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2120 }
2121 ath_hal_beaconinit(ah, nexttbtt, intval);
2122 sc->sc_bmisscount = 0;
2123 ath_hal_intrset(ah, sc->sc_imask);
2124 /*
2125 * When using a self-linked beacon descriptor in
2126 * ibss mode load it once here.
2127 */
2128 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2129 ath_beacon_proc(sc, 0);
2130 }
2131 }
2132
2133 static void
2134 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2135 {
2136 bus_addr_t *paddr = (bus_addr_t*) arg;
2137 KASSERT(error == 0, ("error %u on bus_dma callback", error));
2138 *paddr = segs->ds_addr;
2139 }
2140
2141 static int
2142 ath_descdma_setup(struct ath_softc *sc,
2143 struct ath_descdma *dd, ath_bufhead *head,
2144 const char *name, int nbuf, int ndesc)
2145 {
2146 #define DS2PHYS(_dd, _ds) \
2147 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2148 struct ifnet *ifp = &sc->sc_if;
2149 struct ath_desc *ds;
2150 struct ath_buf *bf;
2151 int i, bsize, error;
2152
2153 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2154 __func__, name, nbuf, ndesc);
2155
2156 dd->dd_name = name;
2157 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2158
2159 /*
2160 * Setup DMA descriptor area.
2161 */
2162 error = bus_dma_tag_create(NULL, /* parent */
2163 PAGE_SIZE, 0, /* alignment, bounds */
2164 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
2165 BUS_SPACE_MAXADDR, /* highaddr */
2166 NULL, NULL, /* filter, filterarg */
2167 dd->dd_desc_len, /* maxsize */
2168 1, /* nsegments */
2169 BUS_SPACE_MAXADDR, /* maxsegsize */
2170 BUS_DMA_ALLOCNOW, /* flags */
2171 NULL, /* lockfunc */
2172 NULL, /* lockarg */
2173 &dd->dd_dmat);
2174 if (error != 0) {
2175 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2176 return error;
2177 }
2178
2179 /* allocate descriptors */
2180 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2181 if (error != 0) {
2182 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2183 "error %u\n", dd->dd_name, error);
2184 goto fail0;
2185 }
2186
2187 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2188 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2189 if (error != 0) {
2190 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2191 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2192 goto fail1;
2193 }
2194
2195 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2196 dd->dd_desc, dd->dd_desc_len,
2197 ath_load_cb, &dd->dd_desc_paddr,
2198 BUS_DMA_NOWAIT);
2199 if (error != 0) {
2200 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2201 dd->dd_name, error);
2202 goto fail2;
2203 }
2204
2205 ds = dd->dd_desc;
2206 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2207 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2208 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2209
2210 /* allocate rx buffers */
2211 bsize = sizeof(struct ath_buf) * nbuf;
2212 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2213 if (bf == NULL) {
2214 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2215 dd->dd_name, bsize);
2216 goto fail3;
2217 }
2218 dd->dd_bufptr = bf;
2219
2220 STAILQ_INIT(head);
2221 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2222 bf->bf_desc = ds;
2223 bf->bf_daddr = DS2PHYS(dd, ds);
2224 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2225 &bf->bf_dmamap);
2226 if (error != 0) {
2227 if_printf(ifp, "unable to create dmamap for %s "
2228 "buffer %u, error %u\n", dd->dd_name, i, error);
2229 ath_descdma_cleanup(sc, dd, head);
2230 return error;
2231 }
2232 STAILQ_INSERT_TAIL(head, bf, bf_list);
2233 }
2234 return 0;
2235 fail3:
2236 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2237 fail2:
2238 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2239 fail1:
2240 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2241 fail0:
2242 bus_dma_tag_destroy(dd->dd_dmat);
2243 memset(dd, 0, sizeof(*dd));
2244 return error;
2245 #undef DS2PHYS
2246 }
2247
2248 static void
2249 ath_descdma_cleanup(struct ath_softc *sc,
2250 struct ath_descdma *dd, ath_bufhead *head)
2251 {
2252 struct ath_buf *bf;
2253 struct ieee80211_node *ni;
2254
2255 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2256 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2257 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2258 bus_dma_tag_destroy(dd->dd_dmat);
2259
2260 STAILQ_FOREACH(bf, head, bf_list) {
2261 if (bf->bf_m) {
2262 m_freem(bf->bf_m);
2263 bf->bf_m = NULL;
2264 }
2265 if (bf->bf_dmamap != NULL) {
2266 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2267 bf->bf_dmamap = NULL;
2268 }
2269 ni = bf->bf_node;
2270 bf->bf_node = NULL;
2271 if (ni != NULL) {
2272 /*
2273 * Reclaim node reference.
2274 */
2275 ieee80211_free_node(ni);
2276 }
2277 }
2278
2279 STAILQ_INIT(head);
2280 free(dd->dd_bufptr, M_ATHDEV);
2281 memset(dd, 0, sizeof(*dd));
2282 }
2283
2284 static int
2285 ath_desc_alloc(struct ath_softc *sc)
2286 {
2287 int error;
2288
2289 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2290 "rx", ATH_RXBUF, 1);
2291 if (error != 0)
2292 return error;
2293
2294 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2295 "tx", ATH_TXBUF, ATH_TXDESC);
2296 if (error != 0) {
2297 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2298 return error;
2299 }
2300
2301 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2302 "beacon", 1, 1);
2303 if (error != 0) {
2304 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2305 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2306 return error;
2307 }
2308 return 0;
2309 }
2310
2311 static void
2312 ath_desc_free(struct ath_softc *sc)
2313 {
2314
2315 if (sc->sc_bdma.dd_desc_len != 0)
2316 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2317 if (sc->sc_txdma.dd_desc_len != 0)
2318 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2319 if (sc->sc_rxdma.dd_desc_len != 0)
2320 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2321 }
2322
2323 static struct ieee80211_node *
2324 ath_node_alloc(struct ieee80211_node_table *nt)
2325 {
2326 struct ieee80211com *ic = nt->nt_ic;
2327 struct ath_softc *sc = ic->ic_ifp->if_softc;
2328 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2329 struct ath_node *an;
2330
2331 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2332 if (an == NULL) {
2333 /* XXX stat+msg */
2334 return NULL;
2335 }
2336 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2337 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2338 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2339 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2340 ath_rate_node_init(sc, an);
2341
2342 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2343 return &an->an_node;
2344 }
2345
2346 static void
2347 ath_node_free(struct ieee80211_node *ni)
2348 {
2349 struct ieee80211com *ic = ni->ni_ic;
2350 struct ath_softc *sc = ic->ic_ifp->if_softc;
2351
2352 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2353
2354 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2355 sc->sc_node_free(ni);
2356 }
2357
2358 static u_int8_t
2359 ath_node_getrssi(const struct ieee80211_node *ni)
2360 {
2361 #define HAL_EP_RND(x, mul) \
2362 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2363 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2364 int32_t rssi;
2365
2366 /*
2367 * When only one frame is received there will be no state in
2368 * avgrssi so fallback on the value recorded by the 802.11 layer.
2369 */
2370 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2371 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2372 else
2373 rssi = ni->ni_rssi;
2374 /* NB: theoretically we shouldn't need this, but be paranoid */
2375 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2376 #undef HAL_EP_RND
2377 }
2378
2379 static int
2380 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2381 {
2382 struct ath_hal *ah = sc->sc_ah;
2383 int error;
2384 struct mbuf *m;
2385 struct ath_desc *ds;
2386
2387 m = bf->bf_m;
2388 if (m == NULL) {
2389 /*
2390 * NB: by assigning a page to the rx dma buffer we
2391 * implicitly satisfy the Atheros requirement that
2392 * this buffer be cache-line-aligned and sized to be
2393 * multiple of the cache line size. Not doing this
2394 * causes weird stuff to happen (for the 5210 at least).
2395 */
2396 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2397 if (m == NULL) {
2398 DPRINTF(sc, ATH_DEBUG_ANY,
2399 "%s: no mbuf/cluster\n", __func__);
2400 sc->sc_stats.ast_rx_nombuf++;
2401 return ENOMEM;
2402 }
2403 bf->bf_m = m;
2404 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2405
2406 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2407 bf->bf_dmamap, m,
2408 bf->bf_segs, &bf->bf_nseg,
2409 BUS_DMA_NOWAIT);
2410 if (error != 0) {
2411 DPRINTF(sc, ATH_DEBUG_ANY,
2412 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2413 __func__, error);
2414 sc->sc_stats.ast_rx_busdma++;
2415 return error;
2416 }
2417 KASSERT(bf->bf_nseg == 1,
2418 ("multi-segment packet; nseg %u", bf->bf_nseg));
2419 }
2420 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2421
2422 /*
2423 * Setup descriptors. For receive we always terminate
2424 * the descriptor list with a self-linked entry so we'll
2425 * not get overrun under high load (as can happen with a
2426 * 5212 when ANI processing enables PHY error frames).
2427 *
2428 * To insure the last descriptor is self-linked we create
2429 * each descriptor as self-linked and add it to the end. As
2430 * each additional descriptor is added the previous self-linked
2431 * entry is ``fixed'' naturally. This should be safe even
2432 * if DMA is happening. When processing RX interrupts we
2433 * never remove/process the last, self-linked, entry on the
2434 * descriptor list. This insures the hardware always has
2435 * someplace to write a new frame.
2436 */
2437 ds = bf->bf_desc;
2438 ds->ds_link = bf->bf_daddr; /* link to self */
2439 ds->ds_data = bf->bf_segs[0].ds_addr;
2440 ath_hal_setuprxdesc(ah, ds
2441 , m->m_len /* buffer size */
2442 , 0
2443 );
2444
2445 if (sc->sc_rxlink != NULL)
2446 *sc->sc_rxlink = bf->bf_daddr;
2447 sc->sc_rxlink = &ds->ds_link;
2448 return 0;
2449 }
2450
2451 /*
2452 * Extend 15-bit time stamp from rx descriptor to
2453 * a full 64-bit TSF using the current h/w TSF.
2454 */
2455 static __inline u_int64_t
2456 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2457 {
2458 u_int64_t tsf;
2459
2460 tsf = ath_hal_gettsf64(ah);
2461 if ((tsf & 0x7fff) < rstamp)
2462 tsf -= 0x8000;
2463 return ((tsf &~ 0x7fff) | rstamp);
2464 }
2465
2466 /*
2467 * Intercept management frames to collect beacon rssi data
2468 * and to do ibss merges.
2469 */
2470 static void
2471 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2472 struct ieee80211_node *ni,
2473 int subtype, int rssi, u_int32_t rstamp)
2474 {
2475 struct ath_softc *sc = ic->ic_ifp->if_softc;
2476
2477 /*
2478 * Call up first so subsequent work can use information
2479 * potentially stored in the node (e.g. for ibss merge).
2480 */
2481 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2482 switch (subtype) {
2483 case IEEE80211_FC0_SUBTYPE_BEACON:
2484 /* update rssi statistics for use by the hal */
2485 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2486 /* fall thru... */
2487 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2488 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2489 ic->ic_state == IEEE80211_S_RUN) {
2490 u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2491 /*
2492 * Handle ibss merge as needed; check the tsf on the
2493 * frame before attempting the merge. The 802.11 spec
2494 * says the station should change it's bssid to match
2495 * the oldest station with the same ssid, where oldest
2496 * is determined by the tsf. Note that hardware
2497 * reconfiguration happens through callback to
2498 * ath_newstate as the state machine will go from
2499 * RUN -> RUN when this happens.
2500 */
2501 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2502 DPRINTF(sc, ATH_DEBUG_STATE,
2503 "ibss merge, rstamp %u tsf %ju "
2504 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2505 (uintmax_t)ni->ni_tstamp.tsf);
2506 (void) ieee80211_ibss_merge(ic, ni);
2507 }
2508 }
2509 break;
2510 }
2511 }
2512
2513 /*
2514 * Set the default antenna.
2515 */
2516 static void
2517 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2518 {
2519 struct ath_hal *ah = sc->sc_ah;
2520
2521 /* XXX block beacon interrupts */
2522 ath_hal_setdefantenna(ah, antenna);
2523 if (sc->sc_defant != antenna)
2524 sc->sc_stats.ast_ant_defswitch++;
2525 sc->sc_defant = antenna;
2526 sc->sc_rxotherant = 0;
2527 }
2528
2529 static void
2530 ath_rx_proc(void *arg, int npending)
2531 {
2532 #define PA2DESC(_sc, _pa) \
2533 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2534 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2535 struct ath_softc *sc = arg;
2536 struct ath_buf *bf;
2537 struct ieee80211com *ic = &sc->sc_ic;
2538 struct ifnet *ifp = &sc->sc_if;
2539 struct ath_hal *ah = sc->sc_ah;
2540 struct ath_desc *ds;
2541 struct mbuf *m;
2542 struct ieee80211_node *ni;
2543 struct ath_node *an;
2544 int len, type;
2545 u_int phyerr;
2546 HAL_STATUS status;
2547
2548 NET_LOCK_GIANT(); /* XXX */
2549
2550 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2551 do {
2552 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2553 if (bf == NULL) { /* NB: shouldn't happen */
2554 if_printf(ifp, "%s: no buffer!\n", __func__);
2555 break;
2556 }
2557 ds = bf->bf_desc;
2558 if (ds->ds_link == bf->bf_daddr) {
2559 /* NB: never process the self-linked entry at the end */
2560 break;
2561 }
2562 m = bf->bf_m;
2563 if (m == NULL) { /* NB: shouldn't happen */
2564 if_printf(ifp, "%s: no mbuf!\n", __func__);
2565 continue;
2566 }
2567 /* XXX sync descriptor memory */
2568 /*
2569 * Must provide the virtual address of the current
2570 * descriptor, the physical address, and the virtual
2571 * address of the next descriptor in the h/w chain.
2572 * This allows the HAL to look ahead to see if the
2573 * hardware is done with a descriptor by checking the
2574 * done bit in the following descriptor and the address
2575 * of the current descriptor the DMA engine is working
2576 * on. All this is necessary because of our use of
2577 * a self-linked list to avoid rx overruns.
2578 */
2579 status = ath_hal_rxprocdesc(ah, ds,
2580 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2581 #ifdef AR_DEBUG
2582 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2583 ath_printrxbuf(bf, status == HAL_OK);
2584 #endif
2585 if (status == HAL_EINPROGRESS)
2586 break;
2587 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2588 if (ds->ds_rxstat.rs_more) {
2589 /*
2590 * Frame spans multiple descriptors; this
2591 * cannot happen yet as we don't support
2592 * jumbograms. If not in monitor mode,
2593 * discard the frame.
2594 */
2595 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2596 sc->sc_stats.ast_rx_toobig++;
2597 goto rx_next;
2598 }
2599 /* fall thru for monitor mode handling... */
2600 } else if (ds->ds_rxstat.rs_status != 0) {
2601 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2602 sc->sc_stats.ast_rx_crcerr++;
2603 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2604 sc->sc_stats.ast_rx_fifoerr++;
2605 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2606 sc->sc_stats.ast_rx_phyerr++;
2607 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2608 sc->sc_stats.ast_rx_phy[phyerr]++;
2609 goto rx_next;
2610 }
2611 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2612 /*
2613 * Decrypt error. If the error occurred
2614 * because there was no hardware key, then
2615 * let the frame through so the upper layers
2616 * can process it. This is necessary for 5210
2617 * parts which have no way to setup a ``clear''
2618 * key cache entry.
2619 *
2620 * XXX do key cache faulting
2621 */
2622 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2623 goto rx_accept;
2624 sc->sc_stats.ast_rx_badcrypt++;
2625 }
2626 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2627 sc->sc_stats.ast_rx_badmic++;
2628 /*
2629 * Do minimal work required to hand off
2630 * the 802.11 header for notifcation.
2631 */
2632 /* XXX frag's and qos frames */
2633 len = ds->ds_rxstat.rs_datalen;
2634 if (len >= sizeof (struct ieee80211_frame)) {
2635 bus_dmamap_sync(sc->sc_dmat,
2636 bf->bf_dmamap,
2637 BUS_DMASYNC_POSTREAD);
2638 ieee80211_notify_michael_failure(ic,
2639 mtod(m, struct ieee80211_frame *),
2640 sc->sc_splitmic ?
2641 ds->ds_rxstat.rs_keyix-32 :
2642 ds->ds_rxstat.rs_keyix
2643 );
2644 }
2645 }
2646 ifp->if_ierrors++;
2647 /*
2648 * Reject error frames, we normally don't want
2649 * to see them in monitor mode (in monitor mode
2650 * allow through packets that have crypto problems).
2651 */
2652 if ((ds->ds_rxstat.rs_status &~
2653 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2654 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2655 goto rx_next;
2656 }
2657 rx_accept:
2658 /*
2659 * Sync and unmap the frame. At this point we're
2660 * committed to passing the mbuf somewhere so clear
2661 * bf_m; this means a new sk_buff must be allocated
2662 * when the rx descriptor is setup again to receive
2663 * another frame.
2664 */
2665 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2666 BUS_DMASYNC_POSTREAD);
2667 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2668 bf->bf_m = NULL;
2669
2670 m->m_pkthdr.rcvif = ifp;
2671 len = ds->ds_rxstat.rs_datalen;
2672 m->m_pkthdr.len = m->m_len = len;
2673
2674 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2675
2676 if (sc->sc_drvbpf) {
2677 u_int8_t rix;
2678
2679 /*
2680 * Discard anything shorter than an ack or cts.
2681 */
2682 if (len < IEEE80211_ACK_LEN) {
2683 DPRINTF(sc, ATH_DEBUG_RECV,
2684 "%s: runt packet %d\n",
2685 __func__, len);
2686 sc->sc_stats.ast_rx_tooshort++;
2687 m_freem(m);
2688 goto rx_next;
2689 }
2690 rix = ds->ds_rxstat.rs_rate;
2691 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2692 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2693 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2694 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2695 /* XXX TSF */
2696
2697 bpf_mtap2(sc->sc_drvbpf,
2698 &sc->sc_rx_th, sc->sc_rx_th_len, m);
2699 }
2700
2701 /*
2702 * From this point on we assume the frame is at least
2703 * as large as ieee80211_frame_min; verify that.
2704 */
2705 if (len < IEEE80211_MIN_LEN) {
2706 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2707 __func__, len);
2708 sc->sc_stats.ast_rx_tooshort++;
2709 m_freem(m);
2710 goto rx_next;
2711 }
2712
2713 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2714 ieee80211_dump_pkt(mtod(m, caddr_t), len,
2715 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2716 ds->ds_rxstat.rs_rssi);
2717 }
2718
2719 m_adj(m, -IEEE80211_CRC_LEN);
2720
2721 /*
2722 * Locate the node for sender, track state, and then
2723 * pass the (referenced) node up to the 802.11 layer
2724 * for its use.
2725 */
2726 ni = ieee80211_find_rxnode(ic,
2727 mtod(m, const struct ieee80211_frame_min *));
2728
2729 /*
2730 * Track rx rssi and do any rx antenna management.
2731 */
2732 an = ATH_NODE(ni);
2733 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2734 if (sc->sc_diversity) {
2735 /*
2736 * When using fast diversity, change the default rx
2737 * antenna if diversity chooses the other antenna 3
2738 * times in a row.
2739 */
2740 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2741 if (++sc->sc_rxotherant >= 3)
2742 ath_setdefantenna(sc,
2743 ds->ds_rxstat.rs_antenna);
2744 } else
2745 sc->sc_rxotherant = 0;
2746 }
2747
2748 /*
2749 * Send frame up for processing.
2750 */
2751 type = ieee80211_input(ic, m, ni,
2752 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2753
2754 if (sc->sc_softled) {
2755 /*
2756 * Blink for any data frame. Otherwise do a
2757 * heartbeat-style blink when idle. The latter
2758 * is mainly for station mode where we depend on
2759 * periodic beacon frames to trigger the poll event.
2760 */
2761 if (type == IEEE80211_FC0_TYPE_DATA) {
2762 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2763 ath_led_event(sc, ATH_LED_RX);
2764 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2765 ath_led_event(sc, ATH_LED_POLL);
2766 }
2767
2768 /*
2769 * Reclaim node reference.
2770 */
2771 ieee80211_free_node(ni);
2772 rx_next:
2773 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2774 } while (ath_rxbuf_init(sc, bf) == 0);
2775
2776 /* rx signal state monitoring */
2777 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2778
2779 NET_UNLOCK_GIANT(); /* XXX */
2780 #undef PA2DESC
2781 }
2782
2783 /*
2784 * Setup a h/w transmit queue.
2785 */
2786 static struct ath_txq *
2787 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2788 {
2789 #define N(a) (sizeof(a)/sizeof(a[0]))
2790 struct ath_hal *ah = sc->sc_ah;
2791 HAL_TXQ_INFO qi;
2792 int qnum;
2793
2794 memset(&qi, 0, sizeof(qi));
2795 qi.tqi_subtype = subtype;
2796 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2797 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2798 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2799 /*
2800 * Enable interrupts only for EOL and DESC conditions.
2801 * We mark tx descriptors to receive a DESC interrupt
2802 * when a tx queue gets deep; otherwise waiting for the
2803 * EOL to reap descriptors. Note that this is done to
2804 * reduce interrupt load and this only defers reaping
2805 * descriptors, never transmitting frames. Aside from
2806 * reducing interrupts this also permits more concurrency.
2807 * The only potential downside is if the tx queue backs
2808 * up in which case the top half of the kernel may backup
2809 * due to a lack of tx descriptors.
2810 */
2811 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2812 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2813 if (qnum == -1) {
2814 /*
2815 * NB: don't print a message, this happens
2816 * normally on parts with too few tx queues
2817 */
2818 return NULL;
2819 }
2820 if (qnum >= N(sc->sc_txq)) {
2821 device_printf(sc->sc_dev,
2822 "hal qnum %u out of range, max %zu!\n",
2823 qnum, N(sc->sc_txq));
2824 ath_hal_releasetxqueue(ah, qnum);
2825 return NULL;
2826 }
2827 if (!ATH_TXQ_SETUP(sc, qnum)) {
2828 struct ath_txq *txq = &sc->sc_txq[qnum];
2829
2830 txq->axq_qnum = qnum;
2831 txq->axq_depth = 0;
2832 txq->axq_intrcnt = 0;
2833 txq->axq_link = NULL;
2834 STAILQ_INIT(&txq->axq_q);
2835 ATH_TXQ_LOCK_INIT(sc, txq);
2836 sc->sc_txqsetup |= 1<<qnum;
2837 }
2838 return &sc->sc_txq[qnum];
2839 #undef N
2840 }
2841
2842 /*
2843 * Setup a hardware data transmit queue for the specified
2844 * access control. The hal may not support all requested
2845 * queues in which case it will return a reference to a
2846 * previously setup queue. We record the mapping from ac's
2847 * to h/w queues for use by ath_tx_start and also track
2848 * the set of h/w queues being used to optimize work in the
2849 * transmit interrupt handler and related routines.
2850 */
2851 static int
2852 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2853 {
2854 #define N(a) (sizeof(a)/sizeof(a[0]))
2855 struct ath_txq *txq;
2856
2857 if (ac >= N(sc->sc_ac2q)) {
2858 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2859 ac, N(sc->sc_ac2q));
2860 return 0;
2861 }
2862 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2863 if (txq != NULL) {
2864 sc->sc_ac2q[ac] = txq;
2865 return 1;
2866 } else
2867 return 0;
2868 #undef N
2869 }
2870
2871 /*
2872 * Update WME parameters for a transmit queue.
2873 */
2874 static int
2875 ath_txq_update(struct ath_softc *sc, int ac)
2876 {
2877 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
2878 #define ATH_TXOP_TO_US(v) (v<<5)
2879 struct ieee80211com *ic = &sc->sc_ic;
2880 struct ath_txq *txq = sc->sc_ac2q[ac];
2881 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2882 struct ath_hal *ah = sc->sc_ah;
2883 HAL_TXQ_INFO qi;
2884
2885 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2886 qi.tqi_aifs = wmep->wmep_aifsn;
2887 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2888 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2889 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2890
2891 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
2892 device_printf(sc->sc_dev, "unable to update hardware queue "
2893 "parameters for %s traffic!\n",
2894 ieee80211_wme_acnames[ac]);
2895 return 0;
2896 } else {
2897 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
2898 return 1;
2899 }
2900 #undef ATH_TXOP_TO_US
2901 #undef ATH_EXPONENT_TO_VALUE
2902 }
2903
2904 /*
2905 * Callback from the 802.11 layer to update WME parameters.
2906 */
2907 static int
2908 ath_wme_update(struct ieee80211com *ic)
2909 {
2910 struct ath_softc *sc = ic->ic_ifp->if_softc;
2911
2912 return !ath_txq_update(sc, WME_AC_BE) ||
2913 !ath_txq_update(sc, WME_AC_BK) ||
2914 !ath_txq_update(sc, WME_AC_VI) ||
2915 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
2916 }
2917
2918 /*
2919 * Reclaim resources for a setup queue.
2920 */
2921 static void
2922 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2923 {
2924
2925 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2926 ATH_TXQ_LOCK_DESTROY(txq);
2927 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2928 }
2929
2930 /*
2931 * Reclaim all tx queue resources.
2932 */
2933 static void
2934 ath_tx_cleanup(struct ath_softc *sc)
2935 {
2936 int i;
2937
2938 ATH_TXBUF_LOCK_DESTROY(sc);
2939 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
2940 if (ATH_TXQ_SETUP(sc, i))
2941 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
2942 }
2943
2944 /*
2945 * Defragment an mbuf chain, returning at most maxfrags separate
2946 * mbufs+clusters. If this is not possible NULL is returned and
2947 * the original mbuf chain is left in it's present (potentially
2948 * modified) state. We use two techniques: collapsing consecutive
2949 * mbufs and replacing consecutive mbufs by a cluster.
2950 */
2951 static struct mbuf *
2952 ath_defrag(struct mbuf *m0, int how, int maxfrags)
2953 {
2954 struct mbuf *m, *n, *n2, **prev;
2955 u_int curfrags;
2956
2957 /*
2958 * Calculate the current number of frags.
2959 */
2960 curfrags = 0;
2961 for (m = m0; m != NULL; m = m->m_next)
2962 curfrags++;
2963 /*
2964 * First, try to collapse mbufs. Note that we always collapse
2965 * towards the front so we don't need to deal with moving the
2966 * pkthdr. This may be suboptimal if the first mbuf has much
2967 * less data than the following.
2968 */
2969 m = m0;
2970 again:
2971 for (;;) {
2972 n = m->m_next;
2973 if (n == NULL)
2974 break;
2975 if ((m->m_flags & M_RDONLY) == 0 &&
2976 n->m_len < M_TRAILINGSPACE(m)) {
2977 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2978 n->m_len);
2979 m->m_len += n->m_len;
2980 m->m_next = n->m_next;
2981 m_free(n);
2982 if (--curfrags <= maxfrags)
2983 return m0;
2984 } else
2985 m = n;
2986 }
2987 KASSERT(maxfrags > 1,
2988 ("maxfrags %u, but normal collapse failed", maxfrags));
2989 /*
2990 * Collapse consecutive mbufs to a cluster.
2991 */
2992 prev = &m0->m_next; /* NB: not the first mbuf */
2993 while ((n = *prev) != NULL) {
2994 if ((n2 = n->m_next) != NULL &&
2995 n->m_len + n2->m_len < MCLBYTES) {
2996 m = m_getcl(how, MT_DATA, 0);
2997 if (m == NULL)
2998 goto bad;
2999 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3000 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3001 n2->m_len);
3002 m->m_len = n->m_len + n2->m_len;
3003 m->m_next = n2->m_next;
3004 *prev = m;
3005 m_free(n);
3006 m_free(n2);
3007 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3008 return m0;
3009 /*
3010 * Still not there, try the normal collapse
3011 * again before we allocate another cluster.
3012 */
3013 goto again;
3014 }
3015 prev = &n->m_next;
3016 }
3017 /*
3018 * No place where we can collapse to a cluster; punt.
3019 * This can occur if, for example, you request 2 frags
3020 * but the packet requires that both be clusters (we
3021 * never reallocate the first mbuf to avoid moving the
3022 * packet header).
3023 */
3024 bad:
3025 return NULL;
3026 }
3027
3028 static int
3029 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3030 struct mbuf *m0)
3031 {
3032 #define CTS_DURATION \
3033 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3034 #define updateCTSForBursting(_ah, _ds, _txq) \
3035 ath_hal_updateCTSForBursting(_ah, _ds, \
3036 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3037 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3038 txopLimit, CTS_DURATION)
3039 struct ieee80211com *ic = &sc->sc_ic;
3040 struct ath_hal *ah = sc->sc_ah;
3041 struct ifnet *ifp = &sc->sc_if;
3042 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3043 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3044 u_int8_t rix, txrate, ctsrate;
3045 u_int8_t cix = 0xff; /* NB: silence compiler */
3046 struct ath_desc *ds, *ds0;
3047 struct ath_txq *txq;
3048 struct ieee80211_frame *wh;
3049 u_int subtype, flags, ctsduration;
3050 HAL_PKT_TYPE atype;
3051 const HAL_RATE_TABLE *rt;
3052 HAL_BOOL shortPreamble;
3053 struct ath_node *an;
3054 struct mbuf *m;
3055 u_int pri;
3056
3057 wh = mtod(m0, struct ieee80211_frame *);
3058 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3059 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3060 hdrlen = ieee80211_anyhdrsize(wh);
3061 /*
3062 * Packet length must not include any
3063 * pad bytes; deduct them here.
3064 */
3065 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3066
3067 if (iswep) {
3068 const struct ieee80211_cipher *cip;
3069 struct ieee80211_key *k;
3070
3071 /*
3072 * Construct the 802.11 header+trailer for an encrypted
3073 * frame. The only reason this can fail is because of an
3074 * unknown or unsupported cipher/key type.
3075 */
3076 k = ieee80211_crypto_encap(ic, ni, m0);
3077 if (k == NULL) {
3078 /*
3079 * This can happen when the key is yanked after the
3080 * frame was queued. Just discard the frame; the
3081 * 802.11 layer counts failures and provides
3082 * debugging/diagnostics.
3083 */
3084 m_freem(m0);
3085 return EIO;
3086 }
3087 /*
3088 * Adjust the packet + header lengths for the crypto
3089 * additions and calculate the h/w key index. When
3090 * a s/w mic is done the frame will have had any mic
3091 * added to it prior to entry so skb->len above will
3092 * account for it. Otherwise we need to add it to the
3093 * packet length.
3094 */
3095 cip = k->wk_cipher;
3096 hdrlen += cip->ic_header;
3097 pktlen += cip->ic_header + cip->ic_trailer;
3098 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3099 pktlen += cip->ic_miclen;
3100 keyix = k->wk_keyix;
3101
3102 /* packet header may have moved, reset our local pointer */
3103 wh = mtod(m0, struct ieee80211_frame *);
3104 } else
3105 keyix = HAL_TXKEYIX_INVALID;
3106
3107 pktlen += IEEE80211_CRC_LEN;
3108
3109 /*
3110 * Load the DMA map so any coalescing is done. This
3111 * also calculates the number of descriptors we need.
3112 */
3113 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3114 bf->bf_segs, &bf->bf_nseg,
3115 BUS_DMA_NOWAIT);
3116 if (error == EFBIG) {
3117 /* XXX packet requires too many descriptors */
3118 bf->bf_nseg = ATH_TXDESC+1;
3119 } else if (error != 0) {
3120 sc->sc_stats.ast_tx_busdma++;
3121 m_freem(m0);
3122 return error;
3123 }
3124 /*
3125 * Discard null packets and check for packets that
3126 * require too many TX descriptors. We try to convert
3127 * the latter to a cluster.
3128 */
3129 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
3130 sc->sc_stats.ast_tx_linear++;
3131 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3132 if (m == NULL) {
3133 m_freem(m0);
3134 sc->sc_stats.ast_tx_nombuf++;
3135 return ENOMEM;
3136 }
3137 m0 = m;
3138 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3139 bf->bf_segs, &bf->bf_nseg,
3140 BUS_DMA_NOWAIT);
3141 if (error != 0) {
3142 sc->sc_stats.ast_tx_busdma++;
3143 m_freem(m0);
3144 return error;
3145 }
3146 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3147 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3148 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3149 sc->sc_stats.ast_tx_nodata++;
3150 m_freem(m0);
3151 return EIO;
3152 }
3153 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3154 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3155 bf->bf_m = m0;
3156 bf->bf_node = ni; /* NB: held reference */
3157
3158 /* setup descriptors */
3159 ds = bf->bf_desc;
3160 rt = sc->sc_currates;
3161 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3162
3163 /*
3164 * NB: the 802.11 layer marks whether or not we should
3165 * use short preamble based on the current mode and
3166 * negotiated parameters.
3167 */
3168 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3169 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3170 shortPreamble = AH_TRUE;
3171 sc->sc_stats.ast_tx_shortpre++;
3172 } else {
3173 shortPreamble = AH_FALSE;
3174 }
3175
3176 an = ATH_NODE(ni);
3177 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3178 /*
3179 * Calculate Atheros packet type from IEEE80211 packet header,
3180 * setup for rate calculations, and select h/w transmit queue.
3181 */
3182 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3183 case IEEE80211_FC0_TYPE_MGT:
3184 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3185 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3186 atype = HAL_PKT_TYPE_BEACON;
3187 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3188 atype = HAL_PKT_TYPE_PROBE_RESP;
3189 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3190 atype = HAL_PKT_TYPE_ATIM;
3191 else
3192 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3193 rix = 0; /* XXX lowest rate */
3194 try0 = ATH_TXMAXTRY;
3195 if (shortPreamble)
3196 txrate = an->an_tx_mgtratesp;
3197 else
3198 txrate = an->an_tx_mgtrate;
3199 /* NB: force all management frames to highest queue */
3200 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3201 /* NB: force all management frames to highest queue */
3202 pri = WME_AC_VO;
3203 } else
3204 pri = WME_AC_BE;
3205 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3206 break;
3207 case IEEE80211_FC0_TYPE_CTL:
3208 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3209 rix = 0; /* XXX lowest rate */
3210 try0 = ATH_TXMAXTRY;
3211 if (shortPreamble)
3212 txrate = an->an_tx_mgtratesp;
3213 else
3214 txrate = an->an_tx_mgtrate;
3215 /* NB: force all ctl frames to highest queue */
3216 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3217 /* NB: force all ctl frames to highest queue */
3218 pri = WME_AC_VO;
3219 } else
3220 pri = WME_AC_BE;
3221 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3222 break;
3223 case IEEE80211_FC0_TYPE_DATA:
3224 atype = HAL_PKT_TYPE_NORMAL; /* default */
3225 /*
3226 * Data frames; consult the rate control module.
3227 */
3228 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3229 &rix, &try0, &txrate);
3230 sc->sc_txrate = txrate; /* for LED blinking */
3231 /*
3232 * Default all non-QoS traffic to the background queue.
3233 */
3234 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3235 pri = M_WME_GETAC(m0);
3236 if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3237 flags |= HAL_TXDESC_NOACK;
3238 sc->sc_stats.ast_tx_noack++;
3239 }
3240 } else
3241 pri = WME_AC_BE;
3242 break;
3243 default:
3244 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3245 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3246 /* XXX statistic */
3247 m_freem(m0);
3248 return EIO;
3249 }
3250 txq = sc->sc_ac2q[pri];
3251
3252 /*
3253 * When servicing one or more stations in power-save mode
3254 * multicast frames must be buffered until after the beacon.
3255 * We use the CAB queue for that.
3256 */
3257 if (ismcast && ic->ic_ps_sta) {
3258 txq = sc->sc_cabq;
3259 /* XXX? more bit in 802.11 frame header */
3260 }
3261
3262 /*
3263 * Calculate miscellaneous flags.
3264 */
3265 if (ismcast) {
3266 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3267 sc->sc_stats.ast_tx_noack++;
3268 } else if (pktlen > ic->ic_rtsthreshold) {
3269 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3270 cix = rt->info[rix].controlRate;
3271 sc->sc_stats.ast_tx_rts++;
3272 }
3273
3274 /*
3275 * If 802.11g protection is enabled, determine whether
3276 * to use RTS/CTS or just CTS. Note that this is only
3277 * done for OFDM unicast frames.
3278 */
3279 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3280 rt->info[rix].phy == IEEE80211_T_OFDM &&
3281 (flags & HAL_TXDESC_NOACK) == 0) {
3282 /* XXX fragments must use CCK rates w/ protection */
3283 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3284 flags |= HAL_TXDESC_RTSENA;
3285 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3286 flags |= HAL_TXDESC_CTSENA;
3287 cix = rt->info[sc->sc_protrix].controlRate;
3288 sc->sc_stats.ast_tx_protect++;
3289 }
3290
3291 /*
3292 * Calculate duration. This logically belongs in the 802.11
3293 * layer but it lacks sufficient information to calculate it.
3294 */
3295 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3296 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3297 u_int16_t dur;
3298 /*
3299 * XXX not right with fragmentation.
3300 */
3301 if (shortPreamble)
3302 dur = rt->info[rix].spAckDuration;
3303 else
3304 dur = rt->info[rix].lpAckDuration;
3305 *(u_int16_t *)wh->i_dur = htole16(dur);
3306 }
3307
3308 /*
3309 * Calculate RTS/CTS rate and duration if needed.
3310 */
3311 ctsduration = 0;
3312 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3313 /*
3314 * CTS transmit rate is derived from the transmit rate
3315 * by looking in the h/w rate table. We must also factor
3316 * in whether or not a short preamble is to be used.
3317 */
3318 /* NB: cix is set above where RTS/CTS is enabled */
3319 KASSERT(cix != 0xff, ("cix not setup"));
3320 ctsrate = rt->info[cix].rateCode;
3321 /*
3322 * Compute the transmit duration based on the frame
3323 * size and the size of an ACK frame. We call into the
3324 * HAL to do the computation since it depends on the
3325 * characteristics of the actual PHY being used.
3326 *
3327 * NB: CTS is assumed the same size as an ACK so we can
3328 * use the precalculated ACK durations.
3329 */
3330 if (shortPreamble) {
3331 ctsrate |= rt->info[cix].shortPreamble;
3332 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3333 ctsduration += rt->info[cix].spAckDuration;
3334 ctsduration += ath_hal_computetxtime(ah,
3335 rt, pktlen, rix, AH_TRUE);
3336 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3337 ctsduration += rt->info[cix].spAckDuration;
3338 } else {
3339 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3340 ctsduration += rt->info[cix].lpAckDuration;
3341 ctsduration += ath_hal_computetxtime(ah,
3342 rt, pktlen, rix, AH_FALSE);
3343 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3344 ctsduration += rt->info[cix].lpAckDuration;
3345 }
3346 /*
3347 * Must disable multi-rate retry when using RTS/CTS.
3348 */
3349 try0 = ATH_TXMAXTRY;
3350 } else
3351 ctsrate = 0;
3352
3353 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3354 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3355 sc->sc_hwmap[txrate].ieeerate, -1);
3356
3357 if (ic->ic_rawbpf)
3358 bpf_mtap(ic->ic_rawbpf, m0);
3359 if (sc->sc_drvbpf) {
3360 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3361 if (iswep)
3362 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3363 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3364 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3365 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3366
3367 bpf_mtap2(sc->sc_drvbpf,
3368 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3369 }
3370
3371 /*
3372 * Determine if a tx interrupt should be generated for
3373 * this descriptor. We take a tx interrupt to reap
3374 * descriptors when the h/w hits an EOL condition or
3375 * when the descriptor is specifically marked to generate
3376 * an interrupt. We periodically mark descriptors in this
3377 * way to insure timely replenishing of the supply needed
3378 * for sending frames. Defering interrupts reduces system
3379 * load and potentially allows more concurrent work to be
3380 * done but if done to aggressively can cause senders to
3381 * backup.
3382 *
3383 * NB: use >= to deal with sc_txintrperiod changing
3384 * dynamically through sysctl.
3385 */
3386 if (flags & HAL_TXDESC_INTREQ) {
3387 txq->axq_intrcnt = 0;
3388 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3389 flags |= HAL_TXDESC_INTREQ;
3390 txq->axq_intrcnt = 0;
3391 }
3392
3393 /*
3394 * Formulate first tx descriptor with tx controls.
3395 */
3396 /* XXX check return value? */
3397 ath_hal_setuptxdesc(ah, ds
3398 , pktlen /* packet length */
3399 , hdrlen /* header length */
3400 , atype /* Atheros packet type */
3401 , ni->ni_txpower /* txpower */
3402 , txrate, try0 /* series 0 rate/tries */
3403 , keyix /* key cache index */
3404 , sc->sc_txantenna /* antenna mode */
3405 , flags /* flags */
3406 , ctsrate /* rts/cts rate */
3407 , ctsduration /* rts/cts duration */
3408 );
3409 /*
3410 * Setup the multi-rate retry state only when we're
3411 * going to use it. This assumes ath_hal_setuptxdesc
3412 * initializes the descriptors (so we don't have to)
3413 * when the hardware supports multi-rate retry and
3414 * we don't use it.
3415 */
3416 if (try0 != ATH_TXMAXTRY)
3417 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3418
3419 /*
3420 * Fillin the remainder of the descriptor info.
3421 */
3422 ds0 = ds;
3423 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3424 ds->ds_data = bf->bf_segs[i].ds_addr;
3425 if (i == bf->bf_nseg - 1)
3426 ds->ds_link = 0;
3427 else
3428 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3429 ath_hal_filltxdesc(ah, ds
3430 , bf->bf_segs[i].ds_len /* segment length */
3431 , i == 0 /* first segment */
3432 , i == bf->bf_nseg - 1 /* last segment */
3433 , ds0 /* first descriptor */
3434 );
3435 DPRINTF(sc, ATH_DEBUG_XMIT,
3436 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3437 __func__, i, ds->ds_link, ds->ds_data,
3438 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3439 }
3440 /*
3441 * Insert the frame on the outbound list and
3442 * pass it on to the hardware.
3443 */
3444 ATH_TXQ_LOCK(txq);
3445 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3446 u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3447 cap->cap_wmeParams[pri].wmep_txopLimit);
3448 /*
3449 * When bursting, potentially extend the CTS duration
3450 * of a previously queued frame to cover this frame
3451 * and not exceed the txopLimit. If that can be done
3452 * then disable RTS/CTS on this frame since it's now
3453 * covered (burst extension). Otherwise we must terminate
3454 * the burst before this frame goes out so as not to
3455 * violate the WME parameters. All this is complicated
3456 * as we need to update the state of packets on the
3457 * (live) hardware queue. The logic is buried in the hal
3458 * because it's highly chip-specific.
3459 */
3460 if (txopLimit != 0) {
3461 sc->sc_stats.ast_tx_ctsburst++;
3462 if (updateCTSForBursting(ah, ds0, txq) == 0) {
3463 /*
3464 * This frame was not covered by RTS/CTS from
3465 * the previous frame in the burst; update the
3466 * descriptor pointers so this frame is now
3467 * treated as the last frame for extending a
3468 * burst.
3469 */
3470 txq->axq_lastdsWithCTS = ds0;
3471 /* set gating Desc to final desc */
3472 txq->axq_gatingds =
3473 (struct ath_desc *)txq->axq_link;
3474 } else
3475 sc->sc_stats.ast_tx_ctsext++;
3476 }
3477 }
3478 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3479 if (txq->axq_link == NULL) {
3480 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3481 DPRINTF(sc, ATH_DEBUG_XMIT,
3482 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3483 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3484 txq->axq_depth);
3485 } else {
3486 *txq->axq_link = bf->bf_daddr;
3487 DPRINTF(sc, ATH_DEBUG_XMIT,
3488 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3489 txq->axq_qnum, txq->axq_link,
3490 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3491 }
3492 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3493 /*
3494 * The CAB queue is started from the SWBA handler since
3495 * frames only go out on DTIM and to avoid possible races.
3496 */
3497 if (txq != sc->sc_cabq)
3498 ath_hal_txstart(ah, txq->axq_qnum);
3499 ATH_TXQ_UNLOCK(txq);
3500
3501 return 0;
3502 #undef updateCTSForBursting
3503 #undef CTS_DURATION
3504 }
3505
3506 /*
3507 * Process completed xmit descriptors from the specified queue.
3508 */
3509 static void
3510 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3511 {
3512 struct ath_hal *ah = sc->sc_ah;
3513 struct ieee80211com *ic = &sc->sc_ic;
3514 struct ath_buf *bf;
3515 struct ath_desc *ds, *ds0;
3516 struct ieee80211_node *ni;
3517 struct ath_node *an;
3518 int sr, lr, pri;
3519 HAL_STATUS status;
3520
3521 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3522 __func__, txq->axq_qnum,
3523 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3524 txq->axq_link);
3525 for (;;) {
3526 ATH_TXQ_LOCK(txq);
3527 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3528 bf = STAILQ_FIRST(&txq->axq_q);
3529 if (bf == NULL) {
3530 txq->axq_link = NULL;
3531 ATH_TXQ_UNLOCK(txq);
3532 break;
3533 }
3534 ds0 = &bf->bf_desc[0];
3535 ds = &bf->bf_desc[bf->bf_nseg - 1];
3536 status = ath_hal_txprocdesc(ah, ds);
3537 #ifdef AR_DEBUG
3538 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3539 ath_printtxbuf(bf, status == HAL_OK);
3540 #endif
3541 if (status == HAL_EINPROGRESS) {
3542 ATH_TXQ_UNLOCK(txq);
3543 break;
3544 }
3545 if (ds0 == txq->axq_lastdsWithCTS)
3546 txq->axq_lastdsWithCTS = NULL;
3547 if (ds == txq->axq_gatingds)
3548 txq->axq_gatingds = NULL;
3549 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3550 ATH_TXQ_UNLOCK(txq);
3551
3552 ni = bf->bf_node;
3553 if (ni != NULL) {
3554 an = ATH_NODE(ni);
3555 if (ds->ds_txstat.ts_status == 0) {
3556 u_int8_t txant = ds->ds_txstat.ts_antenna;
3557 sc->sc_stats.ast_ant_tx[txant]++;
3558 sc->sc_ant_tx[txant]++;
3559 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3560 sc->sc_stats.ast_tx_altrate++;
3561 sc->sc_stats.ast_tx_rssi =
3562 ds->ds_txstat.ts_rssi;
3563 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3564 ds->ds_txstat.ts_rssi);
3565 pri = M_WME_GETAC(bf->bf_m);
3566 if (pri >= WME_AC_VO)
3567 ic->ic_wme.wme_hipri_traffic++;
3568 ni->ni_inact = ni->ni_inact_reload;
3569 } else {
3570 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3571 sc->sc_stats.ast_tx_xretries++;
3572 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3573 sc->sc_stats.ast_tx_fifoerr++;
3574 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3575 sc->sc_stats.ast_tx_filtered++;
3576 }
3577 sr = ds->ds_txstat.ts_shortretry;
3578 lr = ds->ds_txstat.ts_longretry;
3579 sc->sc_stats.ast_tx_shortretry += sr;
3580 sc->sc_stats.ast_tx_longretry += lr;
3581 /*
3582 * Hand the descriptor to the rate control algorithm.
3583 */
3584 ath_rate_tx_complete(sc, an, ds, ds0);
3585 /*
3586 * Reclaim reference to node.
3587 *
3588 * NB: the node may be reclaimed here if, for example
3589 * this is a DEAUTH message that was sent and the
3590 * node was timed out due to inactivity.
3591 */
3592 ieee80211_free_node(ni);
3593 }
3594 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3595 BUS_DMASYNC_POSTWRITE);
3596 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3597 m_freem(bf->bf_m);
3598 bf->bf_m = NULL;
3599 bf->bf_node = NULL;
3600
3601 ATH_TXBUF_LOCK(sc);
3602 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3603 ATH_TXBUF_UNLOCK(sc);
3604 }
3605 }
3606
3607 /*
3608 * Deferred processing of transmit interrupt; special-cased
3609 * for a single hardware transmit queue (e.g. 5210 and 5211).
3610 */
3611 static void
3612 ath_tx_proc_q0(void *arg, int npending)
3613 {
3614 struct ath_softc *sc = arg;
3615 struct ifnet *ifp = &sc->sc_if;
3616
3617 ath_tx_processq(sc, &sc->sc_txq[0]);
3618 ath_tx_processq(sc, sc->sc_cabq);
3619 ifp->if_flags &= ~IFF_OACTIVE;
3620 sc->sc_tx_timer = 0;
3621
3622 if (sc->sc_softled)
3623 ath_led_event(sc, ATH_LED_TX);
3624
3625 ath_start(ifp);
3626 }
3627
3628 /*
3629 * Deferred processing of transmit interrupt; special-cased
3630 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3631 */
3632 static void
3633 ath_tx_proc_q0123(void *arg, int npending)
3634 {
3635 struct ath_softc *sc = arg;
3636 struct ifnet *ifp = &sc->sc_if;
3637
3638 /*
3639 * Process each active queue.
3640 */
3641 ath_tx_processq(sc, &sc->sc_txq[0]);
3642 ath_tx_processq(sc, &sc->sc_txq[1]);
3643 ath_tx_processq(sc, &sc->sc_txq[2]);
3644 ath_tx_processq(sc, &sc->sc_txq[3]);
3645 ath_tx_processq(sc, sc->sc_cabq);
3646
3647 ifp->if_flags &= ~IFF_OACTIVE;
3648 sc->sc_tx_timer = 0;
3649
3650 if (sc->sc_softled)
3651 ath_led_event(sc, ATH_LED_TX);
3652
3653 ath_start(ifp);
3654 }
3655
3656 /*
3657 * Deferred processing of transmit interrupt.
3658 */
3659 static void
3660 ath_tx_proc(void *arg, int npending)
3661 {
3662 struct ath_softc *sc = arg;
3663 struct ifnet *ifp = &sc->sc_if;
3664 int i;
3665
3666 /*
3667 * Process each active queue.
3668 */
3669 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3670 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3671 if (ATH_TXQ_SETUP(sc, i))
3672 ath_tx_processq(sc, &sc->sc_txq[i]);
3673
3674 ifp->if_flags &= ~IFF_OACTIVE;
3675 sc->sc_tx_timer = 0;
3676
3677 if (sc->sc_softled)
3678 ath_led_event(sc, ATH_LED_TX);
3679
3680 ath_start(ifp);
3681 }
3682
3683 static void
3684 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3685 {
3686 struct ath_hal *ah = sc->sc_ah;
3687 struct ieee80211_node *ni;
3688 struct ath_buf *bf;
3689
3690 /*
3691 * NB: this assumes output has been stopped and
3692 * we do not need to block ath_tx_tasklet
3693 */
3694 for (;;) {
3695 ATH_TXQ_LOCK(txq);
3696 bf = STAILQ_FIRST(&txq->axq_q);
3697 if (bf == NULL) {
3698 txq->axq_link = NULL;
3699 ATH_TXQ_UNLOCK(txq);
3700 break;
3701 }
3702 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3703 ATH_TXQ_UNLOCK(txq);
3704 #ifdef AR_DEBUG
3705 if (sc->sc_debug & ATH_DEBUG_RESET)
3706 ath_printtxbuf(bf,
3707 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3708 #endif /* AR_DEBUG */
3709 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3710 m_freem(bf->bf_m);
3711 bf->bf_m = NULL;
3712 ni = bf->bf_node;
3713 bf->bf_node = NULL;
3714 if (ni != NULL) {
3715 /*
3716 * Reclaim node reference.
3717 */
3718 ieee80211_free_node(ni);
3719 }
3720 ATH_TXBUF_LOCK(sc);
3721 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3722 ATH_TXBUF_UNLOCK(sc);
3723 }
3724 }
3725
3726 static void
3727 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3728 {
3729 struct ath_hal *ah = sc->sc_ah;
3730
3731 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3732 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3733 __func__, txq->axq_qnum,
3734 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3735 txq->axq_link);
3736 }
3737
3738 /*
3739 * Drain the transmit queues and reclaim resources.
3740 */
3741 static void
3742 ath_draintxq(struct ath_softc *sc)
3743 {
3744 struct ath_hal *ah = sc->sc_ah;
3745 struct ifnet *ifp = &sc->sc_if;
3746 int i;
3747
3748 /* XXX return value */
3749 if (!sc->sc_invalid) {
3750 /* don't touch the hardware if marked invalid */
3751 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3752 DPRINTF(sc, ATH_DEBUG_RESET,
3753 "%s: beacon queue %p\n", __func__,
3754 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3755 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3756 if (ATH_TXQ_SETUP(sc, i))
3757 ath_tx_stopdma(sc, &sc->sc_txq[i]);
3758 }
3759 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3760 if (ATH_TXQ_SETUP(sc, i))
3761 ath_tx_draintxq(sc, &sc->sc_txq[i]);
3762 ifp->if_flags &= ~IFF_OACTIVE;
3763 sc->sc_tx_timer = 0;
3764 }
3765
3766 /*
3767 * Disable the receive h/w in preparation for a reset.
3768 */
3769 static void
3770 ath_stoprecv(struct ath_softc *sc)
3771 {
3772 #define PA2DESC(_sc, _pa) \
3773 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3774 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3775 struct ath_hal *ah = sc->sc_ah;
3776
3777 ath_hal_stoppcurecv(ah); /* disable PCU */
3778 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
3779 ath_hal_stopdmarecv(ah); /* disable DMA engine */
3780 DELAY(3000); /* 3ms is long enough for 1 frame */
3781 #ifdef AR_DEBUG
3782 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3783 struct ath_buf *bf;
3784
3785 printf("%s: rx queue %p, link %p\n", __func__,
3786 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3787 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3788 struct ath_desc *ds = bf->bf_desc;
3789 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3790 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3791 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3792 ath_printrxbuf(bf, status == HAL_OK);
3793 }
3794 }
3795 #endif
3796 sc->sc_rxlink = NULL; /* just in case */
3797 #undef PA2DESC
3798 }
3799
3800 /*
3801 * Enable the receive h/w following a reset.
3802 */
3803 static int
3804 ath_startrecv(struct ath_softc *sc)
3805 {
3806 struct ath_hal *ah = sc->sc_ah;
3807 struct ath_buf *bf;
3808
3809 sc->sc_rxlink = NULL;
3810 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3811 int error = ath_rxbuf_init(sc, bf);
3812 if (error != 0) {
3813 DPRINTF(sc, ATH_DEBUG_RECV,
3814 "%s: ath_rxbuf_init failed %d\n",
3815 __func__, error);
3816 return error;
3817 }
3818 }
3819
3820 bf = STAILQ_FIRST(&sc->sc_rxbuf);
3821 ath_hal_putrxbuf(ah, bf->bf_daddr);
3822 ath_hal_rxena(ah); /* enable recv descriptors */
3823 ath_mode_init(sc); /* set filters, etc. */
3824 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
3825 return 0;
3826 }
3827
3828 /*
3829 * Update internal state after a channel change.
3830 */
3831 static void
3832 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3833 {
3834 struct ieee80211com *ic = &sc->sc_ic;
3835 enum ieee80211_phymode mode;
3836 u_int16_t flags;
3837
3838 /*
3839 * Change channels and update the h/w rate map
3840 * if we're switching; e.g. 11a to 11b/g.
3841 */
3842 mode = ieee80211_chan2mode(ic, chan);
3843 if (mode != sc->sc_curmode)
3844 ath_setcurmode(sc, mode);
3845 /*
3846 * Update BPF state. NB: ethereal et. al. don't handle
3847 * merged flags well so pick a unique mode for their use.
3848 */
3849 if (IEEE80211_IS_CHAN_A(chan))
3850 flags = IEEE80211_CHAN_A;
3851 /* XXX 11g schizophrenia */
3852 else if (IEEE80211_IS_CHAN_G(chan) ||
3853 IEEE80211_IS_CHAN_PUREG(chan))
3854 flags = IEEE80211_CHAN_G;
3855 else
3856 flags = IEEE80211_CHAN_B;
3857 if (IEEE80211_IS_CHAN_T(chan))
3858 flags |= IEEE80211_CHAN_TURBO;
3859 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3860 htole16(chan->ic_freq);
3861 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3862 htole16(flags);
3863 }
3864
3865 /*
3866 * Set/change channels. If the channel is really being changed,
3867 * it's done by reseting the chip. To accomplish this we must
3868 * first cleanup any pending DMA, then restart stuff after a la
3869 * ath_init.
3870 */
3871 static int
3872 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3873 {
3874 struct ath_hal *ah = sc->sc_ah;
3875 struct ieee80211com *ic = &sc->sc_ic;
3876 HAL_CHANNEL hchan;
3877
3878 /*
3879 * Convert to a HAL channel description with
3880 * the flags constrained to reflect the current
3881 * operating mode.
3882 */
3883 hchan.channel = chan->ic_freq;
3884 hchan.channelFlags = ath_chan2flags(ic, chan);
3885
3886 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3887 __func__,
3888 ath_hal_mhz2ieee(sc->sc_curchan.channel,
3889 sc->sc_curchan.channelFlags),
3890 sc->sc_curchan.channel,
3891 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3892 if (hchan.channel != sc->sc_curchan.channel ||
3893 hchan.channelFlags != sc->sc_curchan.channelFlags) {
3894 HAL_STATUS status;
3895
3896 /*
3897 * To switch channels clear any pending DMA operations;
3898 * wait long enough for the RX fifo to drain, reset the
3899 * hardware at the new frequency, and then re-enable
3900 * the relevant bits of the h/w.
3901 */
3902 ath_hal_intrset(ah, 0); /* disable interrupts */
3903 ath_draintxq(sc); /* clear pending tx frames */
3904 ath_stoprecv(sc); /* turn off frame recv */
3905 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3906 if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
3907 "channel %u (%u Mhz)\n",
3908 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3909 return EIO;
3910 }
3911 sc->sc_curchan = hchan;
3912 ath_update_txpow(sc); /* update tx power state */
3913
3914 /*
3915 * Re-enable rx framework.
3916 */
3917 if (ath_startrecv(sc) != 0) {
3918 if_printf(ic->ic_ifp,
3919 "ath_chan_set: unable to restart recv logic\n");
3920 return EIO;
3921 }
3922
3923 /*
3924 * Change channels and update the h/w rate map
3925 * if we're switching; e.g. 11a to 11b/g.
3926 */
3927 ic->ic_ibss_chan = chan;
3928 ath_chan_change(sc, chan);
3929
3930 /*
3931 * Re-enable interrupts.
3932 */
3933 ath_hal_intrset(ah, sc->sc_imask);
3934 }
3935 return 0;
3936 }
3937
3938 static void
3939 ath_next_scan(void *arg)
3940 {
3941 struct ath_softc *sc = arg;
3942 struct ieee80211com *ic = &sc->sc_ic;
3943
3944 if (ic->ic_state == IEEE80211_S_SCAN)
3945 ieee80211_next_scan(ic);
3946 }
3947
3948 /*
3949 * Periodically recalibrate the PHY to account
3950 * for temperature/environment changes.
3951 */
3952 static void
3953 ath_calibrate(void *arg)
3954 {
3955 struct ath_softc *sc = arg;
3956 struct ath_hal *ah = sc->sc_ah;
3957
3958 sc->sc_stats.ast_per_cal++;
3959
3960 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
3961 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
3962
3963 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3964 /*
3965 * Rfgain is out of bounds, reset the chip
3966 * to load new gain values.
3967 */
3968 sc->sc_stats.ast_per_rfgain++;
3969 ath_reset(&sc->sc_if);
3970 }
3971 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
3972 DPRINTF(sc, ATH_DEBUG_ANY,
3973 "%s: calibration of channel %u failed\n",
3974 __func__, sc->sc_curchan.channel);
3975 sc->sc_stats.ast_per_calfail++;
3976 }
3977 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
3978 }
3979
3980 static int
3981 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3982 {
3983 struct ifnet *ifp = ic->ic_ifp;
3984 struct ath_softc *sc = ifp->if_softc;
3985 struct ath_hal *ah = sc->sc_ah;
3986 struct ieee80211_node *ni;
3987 int i, error;
3988 const u_int8_t *bssid;
3989 u_int32_t rfilt;
3990 static const HAL_LED_STATE leds[] = {
3991 HAL_LED_INIT, /* IEEE80211_S_INIT */
3992 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
3993 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
3994 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
3995 HAL_LED_RUN, /* IEEE80211_S_RUN */
3996 };
3997
3998 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
3999 ieee80211_state_name[ic->ic_state],
4000 ieee80211_state_name[nstate]);
4001
4002 callout_stop(&sc->sc_scan_ch);
4003 callout_stop(&sc->sc_cal_ch);
4004 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4005
4006 if (nstate == IEEE80211_S_INIT) {
4007 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4008 /*
4009 * NB: disable interrupts so we don't rx frames.
4010 */
4011 ath_hal_intrset(ah, sc->sc_imask &~ ~HAL_INT_GLOBAL);
4012 /*
4013 * Notify the rate control algorithm.
4014 */
4015 ath_rate_newstate(sc, nstate);
4016 goto done;
4017 }
4018 ni = ic->ic_bss;
4019 error = ath_chan_set(sc, ni->ni_chan);
4020 if (error != 0)
4021 goto bad;
4022 rfilt = ath_calcrxfilter(sc, nstate);
4023 if (nstate == IEEE80211_S_SCAN)
4024 bssid = ifp->if_broadcastaddr;
4025 else
4026 bssid = ni->ni_bssid;
4027 ath_hal_setrxfilter(ah, rfilt);
4028 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4029 __func__, rfilt, ether_sprintf(bssid));
4030
4031 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4032 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4033 else
4034 ath_hal_setassocid(ah, bssid, 0);
4035 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4036 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4037 if (ath_hal_keyisvalid(ah, i))
4038 ath_hal_keysetmac(ah, i, bssid);
4039 }
4040
4041 /*
4042 * Notify the rate control algorithm so rates
4043 * are setup should ath_beacon_alloc be called.
4044 */
4045 ath_rate_newstate(sc, nstate);
4046
4047 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4048 /* nothing to do */;
4049 } else if (nstate == IEEE80211_S_RUN) {
4050 DPRINTF(sc, ATH_DEBUG_STATE,
4051 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4052 "capinfo=0x%04x chan=%d\n"
4053 , __func__
4054 , ic->ic_flags
4055 , ni->ni_intval
4056 , ether_sprintf(ni->ni_bssid)
4057 , ni->ni_capinfo
4058 , ieee80211_chan2ieee(ic, ni->ni_chan));
4059
4060 /*
4061 * Allocate and setup the beacon frame for AP or adhoc mode.
4062 */
4063 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4064 ic->ic_opmode == IEEE80211_M_IBSS) {
4065 /*
4066 * Stop any previous beacon DMA. This may be
4067 * necessary, for example, when an ibss merge
4068 * causes reconfiguration; there will be a state
4069 * transition from RUN->RUN that means we may
4070 * be called with beacon transmission active.
4071 */
4072 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4073 ath_beacon_free(sc);
4074 error = ath_beacon_alloc(sc, ni);
4075 if (error != 0)
4076 goto bad;
4077 }
4078
4079 /*
4080 * Configure the beacon and sleep timers.
4081 */
4082 ath_beacon_config(sc);
4083 } else {
4084 ath_hal_intrset(ah,
4085 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4086 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4087 }
4088 done:
4089 /*
4090 * Invoke the parent method to complete the work.
4091 */
4092 error = sc->sc_newstate(ic, nstate, arg);
4093 /*
4094 * Finally, start any timers.
4095 */
4096 if (nstate == IEEE80211_S_RUN) {
4097 /* start periodic recalibration timer */
4098 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4099 ath_calibrate, sc);
4100 } else if (nstate == IEEE80211_S_SCAN) {
4101 /* start ap/neighbor scan timer */
4102 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4103 ath_next_scan, sc);
4104 }
4105 bad:
4106 return error;
4107 }
4108
4109 /*
4110 * Setup driver-specific state for a newly associated node.
4111 * Note that we're called also on a re-associate, the isnew
4112 * param tells us if this is the first time or not.
4113 */
4114 static void
4115 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4116 {
4117 struct ath_softc *sc = ic->ic_ifp->if_softc;
4118
4119 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4120 }
4121
4122 static int
4123 ath_getchannels(struct ath_softc *sc, u_int cc,
4124 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4125 {
4126 struct ieee80211com *ic = &sc->sc_ic;
4127 struct ifnet *ifp = &sc->sc_if;
4128 struct ath_hal *ah = sc->sc_ah;
4129 HAL_CHANNEL *chans;
4130 int i, ix, nchan;
4131
4132 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4133 M_TEMP, M_NOWAIT);
4134 if (chans == NULL) {
4135 if_printf(ifp, "unable to allocate channel table\n");
4136 return ENOMEM;
4137 }
4138 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4139 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4140 u_int32_t rd;
4141
4142 ath_hal_getregdomain(ah, &rd);
4143 if_printf(ifp, "unable to collect channel list from hal; "
4144 "regdomain likely %u country code %u\n", rd, cc);
4145 free(chans, M_TEMP);
4146 return EINVAL;
4147 }
4148
4149 /*
4150 * Convert HAL channels to ieee80211 ones and insert
4151 * them in the table according to their channel number.
4152 */
4153 for (i = 0; i < nchan; i++) {
4154 HAL_CHANNEL *c = &chans[i];
4155 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4156 if (ix > IEEE80211_CHAN_MAX) {
4157 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4158 ix, c->channel, c->channelFlags);
4159 continue;
4160 }
4161 /* NB: flags are known to be compatible */
4162 if (ic->ic_channels[ix].ic_freq == 0) {
4163 ic->ic_channels[ix].ic_freq = c->channel;
4164 ic->ic_channels[ix].ic_flags = c->channelFlags;
4165 } else {
4166 /* channels overlap; e.g. 11g and 11b */
4167 ic->ic_channels[ix].ic_flags |= c->channelFlags;
4168 }
4169 }
4170 free(chans, M_TEMP);
4171 return 0;
4172 }
4173
4174 static void
4175 ath_led_done(void *arg)
4176 {
4177 struct ath_softc *sc = arg;
4178
4179 sc->sc_blinking = 0;
4180 }
4181
4182 /*
4183 * Turn the LED off: flip the pin and then set a timer so no
4184 * update will happen for the specified duration.
4185 */
4186 static void
4187 ath_led_off(void *arg)
4188 {
4189 struct ath_softc *sc = arg;
4190
4191 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4192 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4193 }
4194
4195 /*
4196 * Blink the LED according to the specified on/off times.
4197 */
4198 static void
4199 ath_led_blink(struct ath_softc *sc, int on, int off)
4200 {
4201 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4202 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4203 sc->sc_blinking = 1;
4204 sc->sc_ledoff = off;
4205 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4206 }
4207
4208 static void
4209 ath_led_event(struct ath_softc *sc, int event)
4210 {
4211
4212 sc->sc_ledevent = ticks; /* time of last event */
4213 if (sc->sc_blinking) /* don't interrupt active blink */
4214 return;
4215 switch (event) {
4216 case ATH_LED_POLL:
4217 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4218 sc->sc_hwmap[0].ledoff);
4219 break;
4220 case ATH_LED_TX:
4221 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4222 sc->sc_hwmap[sc->sc_txrate].ledoff);
4223 break;
4224 case ATH_LED_RX:
4225 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4226 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4227 break;
4228 }
4229 }
4230
4231 static void
4232 ath_update_txpow(struct ath_softc *sc)
4233 {
4234 struct ieee80211com *ic = &sc->sc_ic;
4235 struct ath_hal *ah = sc->sc_ah;
4236 u_int32_t txpow;
4237
4238 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4239 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4240 /* read back in case value is clamped */
4241 ath_hal_gettxpowlimit(ah, &txpow);
4242 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4243 }
4244 /*
4245 * Fetch max tx power level for status requests.
4246 */
4247 ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4248 ic->ic_bss->ni_txpower = txpow;
4249 }
4250
4251 static int
4252 ath_rate_setup(struct ath_softc *sc, u_int mode)
4253 {
4254 struct ath_hal *ah = sc->sc_ah;
4255 struct ieee80211com *ic = &sc->sc_ic;
4256 const HAL_RATE_TABLE *rt;
4257 struct ieee80211_rateset *rs;
4258 int i, maxrates;
4259
4260 switch (mode) {
4261 case IEEE80211_MODE_11A:
4262 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4263 break;
4264 case IEEE80211_MODE_11B:
4265 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4266 break;
4267 case IEEE80211_MODE_11G:
4268 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4269 break;
4270 case IEEE80211_MODE_TURBO_A:
4271 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4272 break;
4273 case IEEE80211_MODE_TURBO_G:
4274 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4275 break;
4276 default:
4277 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4278 __func__, mode);
4279 return 0;
4280 }
4281 rt = sc->sc_rates[mode];
4282 if (rt == NULL)
4283 return 0;
4284 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4285 DPRINTF(sc, ATH_DEBUG_ANY,
4286 "%s: rate table too small (%u > %u)\n",
4287 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4288 maxrates = IEEE80211_RATE_MAXSIZE;
4289 } else
4290 maxrates = rt->rateCount;
4291 rs = &ic->ic_sup_rates[mode];
4292 for (i = 0; i < maxrates; i++)
4293 rs->rs_rates[i] = rt->info[i].dot11Rate;
4294 rs->rs_nrates = maxrates;
4295 return 1;
4296 }
4297
4298 static void
4299 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4300 {
4301 #define N(a) (sizeof(a)/sizeof(a[0]))
4302 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4303 static const struct {
4304 u_int rate; /* tx/rx 802.11 rate */
4305 u_int16_t timeOn; /* LED on time (ms) */
4306 u_int16_t timeOff; /* LED off time (ms) */
4307 } blinkrates[] = {
4308 { 108, 40, 10 },
4309 { 96, 44, 11 },
4310 { 72, 50, 13 },
4311 { 48, 57, 14 },
4312 { 36, 67, 16 },
4313 { 24, 80, 20 },
4314 { 22, 100, 25 },
4315 { 18, 133, 34 },
4316 { 12, 160, 40 },
4317 { 10, 200, 50 },
4318 { 6, 240, 58 },
4319 { 4, 267, 66 },
4320 { 2, 400, 100 },
4321 { 0, 500, 130 },
4322 };
4323 const HAL_RATE_TABLE *rt;
4324 int i, j;
4325
4326 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4327 rt = sc->sc_rates[mode];
4328 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4329 for (i = 0; i < rt->rateCount; i++)
4330 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4331 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4332 for (i = 0; i < 32; i++) {
4333 u_int8_t ix = rt->rateCodeToIndex[i];
4334 if (ix == 0xff) {
4335 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4336 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4337 continue;
4338 }
4339 sc->sc_hwmap[i].ieeerate =
4340 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4341 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4342 if (rt->info[ix].shortPreamble ||
4343 rt->info[ix].phy == IEEE80211_T_OFDM)
4344 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4345 /* NB: receive frames include FCS */
4346 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4347 IEEE80211_RADIOTAP_F_FCS;
4348 /* setup blink rate table to avoid per-packet lookup */
4349 for (j = 0; j < N(blinkrates)-1; j++)
4350 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4351 break;
4352 /* NB: this uses the last entry if the rate isn't found */
4353 /* XXX beware of overlow */
4354 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4355 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4356 }
4357 sc->sc_currates = rt;
4358 sc->sc_curmode = mode;
4359 /*
4360 * All protection frames are transmited at 2Mb/s for
4361 * 11g, otherwise at 1Mb/s.
4362 * XXX select protection rate index from rate table.
4363 */
4364 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4365 /* NB: caller is responsible for reseting rate control state */
4366 #undef N
4367 }
4368
4369 #ifdef AR_DEBUG
4370 static void
4371 ath_printrxbuf(struct ath_buf *bf, int done)
4372 {
4373 struct ath_desc *ds;
4374 int i;
4375
4376 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4377 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4378 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4379 ds->ds_link, ds->ds_data,
4380 ds->ds_ctl0, ds->ds_ctl1,
4381 ds->ds_hw[0], ds->ds_hw[1],
4382 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4383 }
4384 }
4385
4386 static void
4387 ath_printtxbuf(struct ath_buf *bf, int done)
4388 {
4389 struct ath_desc *ds;
4390 int i;
4391
4392 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4393 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4394 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4395 ds->ds_link, ds->ds_data,
4396 ds->ds_ctl0, ds->ds_ctl1,
4397 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4398 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4399 }
4400 }
4401 #endif /* AR_DEBUG */
4402
4403 static void
4404 ath_watchdog(struct ifnet *ifp)
4405 {
4406 struct ath_softc *sc = ifp->if_softc;
4407 struct ieee80211com *ic = &sc->sc_ic;
4408
4409 ifp->if_timer = 0;
4410 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4411 return;
4412 if (sc->sc_tx_timer) {
4413 if (--sc->sc_tx_timer == 0) {
4414 if_printf(ifp, "device timeout\n");
4415 ath_reset(ifp);
4416 ifp->if_oerrors++;
4417 sc->sc_stats.ast_watchdog++;
4418 } else
4419 ifp->if_timer = 1;
4420 }
4421 ieee80211_watchdog(ic);
4422 }
4423
4424 /*
4425 * Diagnostic interface to the HAL. This is used by various
4426 * tools to do things like retrieve register contents for
4427 * debugging. The mechanism is intentionally opaque so that
4428 * it can change frequently w/o concern for compatiblity.
4429 */
4430 static int
4431 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4432 {
4433 struct ath_hal *ah = sc->sc_ah;
4434 u_int id = ad->ad_id & ATH_DIAG_ID;
4435 void *indata = NULL;
4436 void *outdata = NULL;
4437 u_int32_t insize = ad->ad_in_size;
4438 u_int32_t outsize = ad->ad_out_size;
4439 int error = 0;
4440
4441 if (ad->ad_id & ATH_DIAG_IN) {
4442 /*
4443 * Copy in data.
4444 */
4445 indata = malloc(insize, M_TEMP, M_NOWAIT);
4446 if (indata == NULL) {
4447 error = ENOMEM;
4448 goto bad;
4449 }
4450 error = copyin(ad->ad_in_data, indata, insize);
4451 if (error)
4452 goto bad;
4453 }
4454 if (ad->ad_id & ATH_DIAG_DYN) {
4455 /*
4456 * Allocate a buffer for the results (otherwise the HAL
4457 * returns a pointer to a buffer where we can read the
4458 * results). Note that we depend on the HAL leaving this
4459 * pointer for us to use below in reclaiming the buffer;
4460 * may want to be more defensive.
4461 */
4462 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4463 if (outdata == NULL) {
4464 error = ENOMEM;
4465 goto bad;
4466 }
4467 }
4468 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4469 if (outsize < ad->ad_out_size)
4470 ad->ad_out_size = outsize;
4471 if (outdata != NULL)
4472 error = copyout(outdata, ad->ad_out_data,
4473 ad->ad_out_size);
4474 } else {
4475 error = EINVAL;
4476 }
4477 bad:
4478 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4479 free(indata, M_TEMP);
4480 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4481 free(outdata, M_TEMP);
4482 return error;
4483 }
4484
4485 static int
4486 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4487 {
4488 #define IS_RUNNING(ifp) \
4489 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4490 struct ath_softc *sc = ifp->if_softc;
4491 struct ieee80211com *ic = &sc->sc_ic;
4492 struct ifreq *ifr = (struct ifreq *)data;
4493 int error = 0;
4494
4495 ATH_LOCK(sc);
4496 switch (cmd) {
4497 case SIOCSIFFLAGS:
4498 if (IS_RUNNING(ifp)) {
4499 /*
4500 * To avoid rescanning another access point,
4501 * do not call ath_init() here. Instead,
4502 * only reflect promisc mode settings.
4503 */
4504 ath_mode_init(sc);
4505 } else if (ifp->if_flags & IFF_UP) {
4506 /*
4507 * Beware of being called during attach/detach
4508 * to reset promiscuous mode. In that case we
4509 * will still be marked UP but not RUNNING.
4510 * However trying to re-init the interface
4511 * is the wrong thing to do as we've already
4512 * torn down much of our state. There's
4513 * probably a better way to deal with this.
4514 */
4515 if (!sc->sc_invalid && ic->ic_bss != NULL)
4516 ath_init(ifp); /* XXX lose error */
4517 } else
4518 ath_stop_locked(ifp);
4519 break;
4520 case SIOCADDMULTI:
4521 case SIOCDELMULTI:
4522 /*
4523 * The upper layer has already installed/removed
4524 * the multicast address(es), just recalculate the
4525 * multicast filter for the card.
4526 */
4527 if (ifp->if_flags & IFF_RUNNING)
4528 ath_mode_init(sc);
4529 break;
4530 case SIOCGATHSTATS:
4531 /* NB: embed these numbers to get a consistent view */
4532 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4533 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4534 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4535 ATH_UNLOCK(sc);
4536 /*
4537 * NB: Drop the softc lock in case of a page fault;
4538 * we'll accept any potential inconsisentcy in the
4539 * statistics. The alternative is to copy the data
4540 * to a local structure.
4541 */
4542 return copyout(&sc->sc_stats,
4543 ifr->ifr_data, sizeof (sc->sc_stats));
4544 case SIOCGATHDIAG:
4545 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4546 break;
4547 default:
4548 error = ieee80211_ioctl(ic, cmd, data);
4549 if (error == ENETRESET) {
4550 if (IS_RUNNING(ifp) &&
4551 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4552 ath_init(ifp); /* XXX lose error */
4553 error = 0;
4554 }
4555 if (error == ERESTART)
4556 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4557 break;
4558 }
4559 ATH_UNLOCK(sc);
4560 return error;
4561 #undef IS_RUNNING
4562 }
4563
4564 static int
4565 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4566 {
4567 struct ath_softc *sc = arg1;
4568 u_int slottime = ath_hal_getslottime(sc->sc_ah);
4569 int error;
4570
4571 error = sysctl_handle_int(oidp, &slottime, 0, req);
4572 if (error || !req->newptr)
4573 return error;
4574 return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4575 }
4576
4577 static int
4578 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4579 {
4580 struct ath_softc *sc = arg1;
4581 u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4582 int error;
4583
4584 error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4585 if (error || !req->newptr)
4586 return error;
4587 return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4588 }
4589
4590 static int
4591 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4592 {
4593 struct ath_softc *sc = arg1;
4594 u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4595 int error;
4596
4597 error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4598 if (error || !req->newptr)
4599 return error;
4600 return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4601 }
4602
4603 static int
4604 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4605 {
4606 struct ath_softc *sc = arg1;
4607 int softled = sc->sc_softled;
4608 int error;
4609
4610 error = sysctl_handle_int(oidp, &softled, 0, req);
4611 if (error || !req->newptr)
4612 return error;
4613 softled = (softled != 0);
4614 if (softled != sc->sc_softled) {
4615 if (softled) {
4616 /* NB: handle any sc_ledpin change */
4617 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4618 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4619 !sc->sc_ledon);
4620 }
4621 sc->sc_softled = softled;
4622 }
4623 return 0;
4624 }
4625
4626 static int
4627 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4628 {
4629 struct ath_softc *sc = arg1;
4630 u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4631 int error;
4632
4633 error = sysctl_handle_int(oidp, &defantenna, 0, req);
4634 if (!error && req->newptr)
4635 ath_hal_setdefantenna(sc->sc_ah, defantenna);
4636 return error;
4637 }
4638
4639 static int
4640 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4641 {
4642 struct ath_softc *sc = arg1;
4643 u_int diversity = sc->sc_diversity;
4644 int error;
4645
4646 error = sysctl_handle_int(oidp, &diversity, 0, req);
4647 if (error || !req->newptr)
4648 return error;
4649 sc->sc_diversity = diversity;
4650 return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4651 }
4652
4653 static int
4654 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4655 {
4656 struct ath_softc *sc = arg1;
4657 u_int32_t diag;
4658 int error;
4659
4660 if (!ath_hal_getdiag(sc->sc_ah, &diag))
4661 return EINVAL;
4662 error = sysctl_handle_int(oidp, &diag, 0, req);
4663 if (error || !req->newptr)
4664 return error;
4665 return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4666 }
4667
4668 static int
4669 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4670 {
4671 struct ath_softc *sc = arg1;
4672 struct ifnet *ifp = &sc->sc_if;
4673 u_int32_t scale;
4674 int error;
4675
4676 ath_hal_gettpscale(sc->sc_ah, &scale);
4677 error = sysctl_handle_int(oidp, &scale, 0, req);
4678 if (error || !req->newptr)
4679 return error;
4680 return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4681 }
4682
4683 static int
4684 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4685 {
4686 struct ath_softc *sc = arg1;
4687 u_int tpc = ath_hal_gettpc(sc->sc_ah);
4688 int error;
4689
4690 error = sysctl_handle_int(oidp, &tpc, 0, req);
4691 if (error || !req->newptr)
4692 return error;
4693 return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4694 }
4695
4696 static void
4697 ath_sysctlattach(struct ath_softc *sc)
4698 {
4699 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4700 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4701
4702 ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4703 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4704 "countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4705 "EEPROM country code");
4706 ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4707 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4708 "regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4709 "EEPROM regdomain code");
4710 sc->sc_debug = ath_debug;
4711 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4712 "debug", CTLFLAG_RW, &sc->sc_debug, 0,
4713 "control debugging printfs");
4714
4715 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4716 "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4717 ath_sysctl_slottime, "I", "802.11 slot time (us)");
4718 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4719 "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4720 ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4721 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4722 "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4723 ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4724 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4725 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4726 ath_sysctl_softled, "I", "enable/disable software LED support");
4727 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4728 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4729 "GPIO pin connected to LED");
4730 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4731 "ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4732 "setting to turn LED on");
4733 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4734 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4735 "idle time for inactivity LED (ticks)");
4736 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4737 "txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4738 "tx antenna (0=auto)");
4739 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4740 "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4741 ath_sysctl_rxantenna, "I", "default/rx antenna");
4742 if (sc->sc_hasdiversity)
4743 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4744 "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4745 ath_sysctl_diversity, "I", "antenna diversity");
4746 sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4747 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4748 "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4749 "tx descriptor batching");
4750 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4751 "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4752 ath_sysctl_diag, "I", "h/w diagnostic control");
4753 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4754 "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4755 ath_sysctl_tpscale, "I", "tx power scaling");
4756 if (sc->sc_hastpc)
4757 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4758 "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4759 ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4760 }
4761
4762 static void
4763 ath_bpfattach(struct ath_softc *sc)
4764 {
4765 struct ifnet *ifp = &sc->sc_if;
4766
4767 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4768 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4769 &sc->sc_drvbpf);
4770 /*
4771 * Initialize constant fields.
4772 * XXX make header lengths a multiple of 32-bits so subsequent
4773 * headers are properly aligned; this is a kludge to keep
4774 * certain applications happy.
4775 *
4776 * NB: the channel is setup each time we transition to the
4777 * RUN state to avoid filling it in for each frame.
4778 */
4779 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4780 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4781 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4782
4783 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4784 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4785 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4786 }
4787
4788 /*
4789 * Announce various information on device/driver attach.
4790 */
4791 static void
4792 ath_announce(struct ath_softc *sc)
4793 {
4794 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
4795 struct ifnet *ifp = &sc->sc_if;
4796 struct ath_hal *ah = sc->sc_ah;
4797 u_int modes, cc;
4798
4799 if_printf(ifp, "mac %d.%d phy %d.%d",
4800 ah->ah_macVersion, ah->ah_macRev,
4801 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4802 /*
4803 * Print radio revision(s). We check the wireless modes
4804 * to avoid falsely printing revs for inoperable parts.
4805 * Dual-band radio revs are returned in the 5Ghz rev number.
4806 */
4807 ath_hal_getcountrycode(ah, &cc);
4808 modes = ath_hal_getwirelessmodes(ah, cc);
4809 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4810 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4811 printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4812 ah->ah_analog5GhzRev >> 4,
4813 ah->ah_analog5GhzRev & 0xf,
4814 ah->ah_analog2GhzRev >> 4,
4815 ah->ah_analog2GhzRev & 0xf);
4816 else
4817 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4818 ah->ah_analog5GhzRev & 0xf);
4819 } else
4820 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4821 ah->ah_analog5GhzRev & 0xf);
4822 printf("\n");
4823 if (bootverbose) {
4824 int i;
4825 for (i = 0; i <= WME_AC_VO; i++) {
4826 struct ath_txq *txq = sc->sc_ac2q[i];
4827 if_printf(ifp, "Use hw queue %u for %s traffic\n",
4828 txq->axq_qnum, ieee80211_wme_acnames[i]);
4829 }
4830 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4831 sc->sc_cabq->axq_qnum);
4832 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4833 }
4834 #undef HAL_MODE_DUALBAND
4835 }
4836