ath.c revision 1.1.1.6 1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 * redistribution must be conditioned upon including a substantially
14 * similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 * of any contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
39
40 /*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47 #include "opt_inet.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63
64 #include <machine/bus.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_types.h>
70 #include <net/if_arp.h>
71 #include <net/ethernet.h>
72 #include <net/if_llc.h>
73
74 #include <net80211/ieee80211_var.h>
75
76 #include <net/bpf.h>
77
78 #ifdef INET
79 #include <netinet/in.h>
80 #include <netinet/if_ether.h>
81 #endif
82
83 #define AR_DEBUG
84 #include <dev/ath/if_athvar.h>
85 #include <contrib/dev/ath/ah_desc.h>
86 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */
87
88 /* unaligned little endian access */
89 #define LE_READ_2(p) \
90 ((u_int16_t) \
91 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
92 #define LE_READ_4(p) \
93 ((u_int32_t) \
94 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
95 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
96
97 enum {
98 ATH_LED_TX,
99 ATH_LED_RX,
100 ATH_LED_POLL,
101 };
102
103 static void ath_init(void *);
104 static void ath_stop_locked(struct ifnet *);
105 static void ath_stop(struct ifnet *);
106 static void ath_start(struct ifnet *);
107 static int ath_reset(struct ifnet *);
108 static int ath_media_change(struct ifnet *);
109 static void ath_watchdog(struct ifnet *);
110 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
111 static void ath_fatal_proc(void *, int);
112 static void ath_rxorn_proc(void *, int);
113 static void ath_bmiss_proc(void *, int);
114 static int ath_key_alloc(struct ieee80211com *,
115 const struct ieee80211_key *,
116 ieee80211_keyix *, ieee80211_keyix *);
117 static int ath_key_delete(struct ieee80211com *,
118 const struct ieee80211_key *);
119 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
120 const u_int8_t mac[IEEE80211_ADDR_LEN]);
121 static void ath_key_update_begin(struct ieee80211com *);
122 static void ath_key_update_end(struct ieee80211com *);
123 static void ath_mode_init(struct ath_softc *);
124 static void ath_setslottime(struct ath_softc *);
125 static void ath_updateslot(struct ifnet *);
126 static int ath_beaconq_setup(struct ath_hal *);
127 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
128 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
129 static void ath_beacon_proc(void *, int);
130 static void ath_bstuck_proc(void *, int);
131 static void ath_beacon_free(struct ath_softc *);
132 static void ath_beacon_config(struct ath_softc *);
133 static void ath_descdma_cleanup(struct ath_softc *sc,
134 struct ath_descdma *, ath_bufhead *);
135 static int ath_desc_alloc(struct ath_softc *);
136 static void ath_desc_free(struct ath_softc *);
137 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
138 static void ath_node_free(struct ieee80211_node *);
139 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
140 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
141 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
142 struct ieee80211_node *ni,
143 int subtype, int rssi, u_int32_t rstamp);
144 static void ath_setdefantenna(struct ath_softc *, u_int);
145 static void ath_rx_proc(void *, int);
146 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
147 static int ath_tx_setup(struct ath_softc *, int, int);
148 static int ath_wme_update(struct ieee80211com *);
149 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
150 static void ath_tx_cleanup(struct ath_softc *);
151 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
152 struct ath_buf *, struct mbuf *);
153 static void ath_tx_proc_q0(void *, int);
154 static void ath_tx_proc_q0123(void *, int);
155 static void ath_tx_proc(void *, int);
156 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
157 static void ath_draintxq(struct ath_softc *);
158 static void ath_stoprecv(struct ath_softc *);
159 static int ath_startrecv(struct ath_softc *);
160 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
161 static void ath_next_scan(void *);
162 static void ath_calibrate(void *);
163 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
164 static void ath_setup_stationkey(struct ieee80211_node *);
165 static void ath_newassoc(struct ieee80211_node *, int);
166 static int ath_getchannels(struct ath_softc *, u_int cc,
167 HAL_BOOL outdoor, HAL_BOOL xchanmode);
168 static void ath_led_event(struct ath_softc *, int);
169 static void ath_update_txpow(struct ath_softc *);
170
171 static int ath_rate_setup(struct ath_softc *, u_int mode);
172 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
173
174 static void ath_sysctlattach(struct ath_softc *);
175 static void ath_bpfattach(struct ath_softc *);
176 static void ath_announce(struct ath_softc *);
177
178 SYSCTL_DECL(_hw_ath);
179
180 /* XXX validate sysctl values */
181 static int ath_dwelltime = 200; /* 5 channels/second */
182 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
183 0, "channel dwell time (ms) for AP/station scanning");
184 static int ath_calinterval = 30; /* calibrate every 30 secs */
185 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
186 0, "chip calibration interval (secs)");
187 static int ath_outdoor = AH_TRUE; /* outdoor operation */
188 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
189 0, "outdoor operation");
190 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
191 static int ath_xchanmode = AH_TRUE; /* extended channel use */
192 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
193 0, "extended channel mode");
194 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
195 static int ath_countrycode = CTRY_DEFAULT; /* country code */
196 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
197 0, "country code");
198 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
199 static int ath_regdomain = 0; /* regulatory domain */
200 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
201 0, "regulatory domain");
202
203 #ifdef AR_DEBUG
204 static int ath_debug = 0;
205 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
206 0, "control debugging printfs");
207 TUNABLE_INT("hw.ath.debug", &ath_debug);
208 enum {
209 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
210 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
211 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
212 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
213 ATH_DEBUG_RATE = 0x00000010, /* rate control */
214 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
215 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
216 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
217 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
218 ATH_DEBUG_INTR = 0x00001000, /* ISR */
219 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
220 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
221 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
222 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
223 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
224 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
225 ATH_DEBUG_NODE = 0x00080000, /* node management */
226 ATH_DEBUG_LED = 0x00100000, /* led management */
227 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
228 ATH_DEBUG_ANY = 0xffffffff
229 };
230 #define IFF_DUMPPKTS(sc, m) \
231 ((sc->sc_debug & (m)) || \
232 (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
233 #define DPRINTF(sc, m, fmt, ...) do { \
234 if (sc->sc_debug & (m)) \
235 printf(fmt, __VA_ARGS__); \
236 } while (0)
237 #define KEYPRINTF(sc, ix, hk, mac) do { \
238 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
239 ath_keyprint(__func__, ix, hk, mac); \
240 } while (0)
241 static void ath_printrxbuf(struct ath_buf *bf, int);
242 static void ath_printtxbuf(struct ath_buf *bf, int);
243 #else
244 #define IFF_DUMPPKTS(sc, m) \
245 ((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
246 #define DPRINTF(m, fmt, ...)
247 #define KEYPRINTF(sc, k, ix, mac)
248 #endif
249
250 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
251
252 int
253 ath_attach(u_int16_t devid, struct ath_softc *sc)
254 {
255 struct ifnet *ifp;
256 struct ieee80211com *ic = &sc->sc_ic;
257 struct ath_hal *ah = NULL;
258 HAL_STATUS status;
259 int error = 0, i;
260
261 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
262
263 ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
264 if (ifp == NULL) {
265 device_printf(sc->sc_dev, "can not if_alloc()\n");
266 error = ENOSPC;
267 goto bad;
268 }
269
270 /* set these up early for if_printf use */
271 if_initname(ifp, device_get_name(sc->sc_dev),
272 device_get_unit(sc->sc_dev));
273
274 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
275 if (ah == NULL) {
276 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
277 status);
278 error = ENXIO;
279 goto bad;
280 }
281 if (ah->ah_abi != HAL_ABI_VERSION) {
282 if_printf(ifp, "HAL ABI mismatch detected "
283 "(HAL:0x%x != driver:0x%x)\n",
284 ah->ah_abi, HAL_ABI_VERSION);
285 error = ENXIO;
286 goto bad;
287 }
288 sc->sc_ah = ah;
289 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
290
291 /*
292 * Check if the MAC has multi-rate retry support.
293 * We do this by trying to setup a fake extended
294 * descriptor. MAC's that don't have support will
295 * return false w/o doing anything. MAC's that do
296 * support it will return true w/o doing anything.
297 */
298 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
299
300 /*
301 * Check if the device has hardware counters for PHY
302 * errors. If so we need to enable the MIB interrupt
303 * so we can act on stat triggers.
304 */
305 if (ath_hal_hwphycounters(ah))
306 sc->sc_needmib = 1;
307
308 /*
309 * Get the hardware key cache size.
310 */
311 sc->sc_keymax = ath_hal_keycachesize(ah);
312 if (sc->sc_keymax > ATH_KEYMAX) {
313 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
314 ATH_KEYMAX, sc->sc_keymax);
315 sc->sc_keymax = ATH_KEYMAX;
316 }
317 /*
318 * Reset the key cache since some parts do not
319 * reset the contents on initial power up.
320 */
321 for (i = 0; i < sc->sc_keymax; i++)
322 ath_hal_keyreset(ah, i);
323 /*
324 * Mark key cache slots associated with global keys
325 * as in use. If we knew TKIP was not to be used we
326 * could leave the +32, +64, and +32+64 slots free.
327 * XXX only for splitmic.
328 */
329 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
330 setbit(sc->sc_keymap, i);
331 setbit(sc->sc_keymap, i+32);
332 setbit(sc->sc_keymap, i+64);
333 setbit(sc->sc_keymap, i+32+64);
334 }
335
336 /*
337 * Collect the channel list using the default country
338 * code and including outdoor channels. The 802.11 layer
339 * is resposible for filtering this list based on settings
340 * like the phy mode.
341 */
342 error = ath_getchannels(sc, ath_countrycode,
343 ath_outdoor, ath_xchanmode);
344 if (error != 0)
345 goto bad;
346
347 /*
348 * Setup rate tables for all potential media types.
349 */
350 ath_rate_setup(sc, IEEE80211_MODE_11A);
351 ath_rate_setup(sc, IEEE80211_MODE_11B);
352 ath_rate_setup(sc, IEEE80211_MODE_11G);
353 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
354 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
355 /* NB: setup here so ath_rate_update is happy */
356 ath_setcurmode(sc, IEEE80211_MODE_11A);
357
358 /*
359 * Allocate tx+rx descriptors and populate the lists.
360 */
361 error = ath_desc_alloc(sc);
362 if (error != 0) {
363 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
364 goto bad;
365 }
366 callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
367 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
368
369 ATH_TXBUF_LOCK_INIT(sc);
370
371 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
372 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
373 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
374 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
375 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
376
377 /*
378 * Allocate hardware transmit queues: one queue for
379 * beacon frames and one data queue for each QoS
380 * priority. Note that the hal handles reseting
381 * these queues at the needed time.
382 *
383 * XXX PS-Poll
384 */
385 sc->sc_bhalq = ath_beaconq_setup(ah);
386 if (sc->sc_bhalq == (u_int) -1) {
387 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
388 error = EIO;
389 goto bad2;
390 }
391 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
392 if (sc->sc_cabq == NULL) {
393 if_printf(ifp, "unable to setup CAB xmit queue!\n");
394 error = EIO;
395 goto bad2;
396 }
397 /* NB: insure BK queue is the lowest priority h/w queue */
398 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
399 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
400 ieee80211_wme_acnames[WME_AC_BK]);
401 error = EIO;
402 goto bad2;
403 }
404 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
405 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
406 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
407 /*
408 * Not enough hardware tx queues to properly do WME;
409 * just punt and assign them all to the same h/w queue.
410 * We could do a better job of this if, for example,
411 * we allocate queues when we switch from station to
412 * AP mode.
413 */
414 if (sc->sc_ac2q[WME_AC_VI] != NULL)
415 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
416 if (sc->sc_ac2q[WME_AC_BE] != NULL)
417 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
418 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
419 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
420 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
421 }
422
423 /*
424 * Special case certain configurations. Note the
425 * CAB queue is handled by these specially so don't
426 * include them when checking the txq setup mask.
427 */
428 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
429 case 0x01:
430 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
431 break;
432 case 0x0f:
433 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
434 break;
435 default:
436 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
437 break;
438 }
439
440 /*
441 * Setup rate control. Some rate control modules
442 * call back to change the anntena state so expose
443 * the necessary entry points.
444 * XXX maybe belongs in struct ath_ratectrl?
445 */
446 sc->sc_setdefantenna = ath_setdefantenna;
447 sc->sc_rc = ath_rate_attach(sc);
448 if (sc->sc_rc == NULL) {
449 error = EIO;
450 goto bad2;
451 }
452
453 sc->sc_blinking = 0;
454 sc->sc_ledstate = 1;
455 sc->sc_ledon = 0; /* low true */
456 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
457 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
458 /*
459 * Auto-enable soft led processing for IBM cards and for
460 * 5211 minipci cards. Users can also manually enable/disable
461 * support with a sysctl.
462 */
463 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
464 if (sc->sc_softled) {
465 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
466 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
467 }
468
469 ifp->if_softc = sc;
470 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
471 ifp->if_start = ath_start;
472 ifp->if_watchdog = ath_watchdog;
473 ifp->if_ioctl = ath_ioctl;
474 ifp->if_init = ath_init;
475 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
476 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
477 IFQ_SET_READY(&ifp->if_snd);
478
479 ic->ic_ifp = ifp;
480 ic->ic_reset = ath_reset;
481 ic->ic_newassoc = ath_newassoc;
482 ic->ic_updateslot = ath_updateslot;
483 ic->ic_wme.wme_update = ath_wme_update;
484 /* XXX not right but it's not used anywhere important */
485 ic->ic_phytype = IEEE80211_T_OFDM;
486 ic->ic_opmode = IEEE80211_M_STA;
487 ic->ic_caps =
488 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
489 | IEEE80211_C_HOSTAP /* hostap mode */
490 | IEEE80211_C_MONITOR /* monitor mode */
491 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
492 | IEEE80211_C_SHSLOT /* short slot time supported */
493 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
494 ;
495 /*
496 * Query the hal to figure out h/w crypto support.
497 */
498 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
499 ic->ic_caps |= IEEE80211_C_WEP;
500 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
501 ic->ic_caps |= IEEE80211_C_AES;
502 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
503 ic->ic_caps |= IEEE80211_C_AES_CCM;
504 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
505 ic->ic_caps |= IEEE80211_C_CKIP;
506 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
507 ic->ic_caps |= IEEE80211_C_TKIP;
508 /*
509 * Check if h/w does the MIC and/or whether the
510 * separate key cache entries are required to
511 * handle both tx+rx MIC keys.
512 */
513 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
514 ic->ic_caps |= IEEE80211_C_TKIPMIC;
515 if (ath_hal_tkipsplit(ah))
516 sc->sc_splitmic = 1;
517 }
518 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
519 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
520 /*
521 * TPC support can be done either with a global cap or
522 * per-packet support. The latter is not available on
523 * all parts. We're a bit pedantic here as all parts
524 * support a global cap.
525 */
526 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
527 ic->ic_caps |= IEEE80211_C_TXPMGT;
528
529 /*
530 * Mark WME capability only if we have sufficient
531 * hardware queues to do proper priority scheduling.
532 */
533 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
534 ic->ic_caps |= IEEE80211_C_WME;
535 /*
536 * Check for misc other capabilities.
537 */
538 if (ath_hal_hasbursting(ah))
539 ic->ic_caps |= IEEE80211_C_BURST;
540
541 /*
542 * Indicate we need the 802.11 header padded to a
543 * 32-bit boundary for 4-address and QoS frames.
544 */
545 ic->ic_flags |= IEEE80211_F_DATAPAD;
546
547 /*
548 * Query the hal about antenna support.
549 */
550 sc->sc_defant = ath_hal_getdefantenna(ah);
551
552 /*
553 * Not all chips have the VEOL support we want to
554 * use with IBSS beacons; check here for it.
555 */
556 sc->sc_hasveol = ath_hal_hasveol(ah);
557
558 /* get mac address from hardware */
559 ath_hal_getmac(ah, ic->ic_myaddr);
560
561 /* call MI attach routine. */
562 ieee80211_ifattach(ic);
563 /* override default methods */
564 ic->ic_node_alloc = ath_node_alloc;
565 sc->sc_node_free = ic->ic_node_free;
566 ic->ic_node_free = ath_node_free;
567 ic->ic_node_getrssi = ath_node_getrssi;
568 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
569 ic->ic_recv_mgmt = ath_recv_mgmt;
570 sc->sc_newstate = ic->ic_newstate;
571 ic->ic_newstate = ath_newstate;
572 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
573 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
574 ic->ic_crypto.cs_key_delete = ath_key_delete;
575 ic->ic_crypto.cs_key_set = ath_key_set;
576 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
577 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
578 /* complete initialization */
579 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
580
581 ath_bpfattach(sc);
582 /*
583 * Setup dynamic sysctl's now that country code and
584 * regdomain are available from the hal.
585 */
586 ath_sysctlattach(sc);
587
588 if (bootverbose)
589 ieee80211_announce(ic);
590 ath_announce(sc);
591 return 0;
592 bad2:
593 ath_tx_cleanup(sc);
594 ath_desc_free(sc);
595 bad:
596 if (ah)
597 ath_hal_detach(ah);
598 if (ifp != NULL)
599 if_free(ifp);
600 sc->sc_invalid = 1;
601 return error;
602 }
603
604 int
605 ath_detach(struct ath_softc *sc)
606 {
607 struct ifnet *ifp = sc->sc_ifp;
608
609 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
610 __func__, ifp->if_flags);
611
612 ath_stop(ifp);
613 bpfdetach(ifp);
614 /*
615 * NB: the order of these is important:
616 * o call the 802.11 layer before detaching the hal to
617 * insure callbacks into the driver to delete global
618 * key cache entries can be handled
619 * o reclaim the tx queue data structures after calling
620 * the 802.11 layer as we'll get called back to reclaim
621 * node state and potentially want to use them
622 * o to cleanup the tx queues the hal is called, so detach
623 * it last
624 * Other than that, it's straightforward...
625 */
626 ieee80211_ifdetach(&sc->sc_ic);
627 ath_rate_detach(sc->sc_rc);
628 ath_desc_free(sc);
629 ath_tx_cleanup(sc);
630 ath_hal_detach(sc->sc_ah);
631 if_free(ifp);
632
633 return 0;
634 }
635
636 void
637 ath_suspend(struct ath_softc *sc)
638 {
639 struct ifnet *ifp = sc->sc_ifp;
640
641 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
642 __func__, ifp->if_flags);
643
644 ath_stop(ifp);
645 }
646
647 void
648 ath_resume(struct ath_softc *sc)
649 {
650 struct ifnet *ifp = sc->sc_ifp;
651
652 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
653 __func__, ifp->if_flags);
654
655 if (ifp->if_flags & IFF_UP) {
656 ath_init(sc);
657 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
658 ath_start(ifp);
659 }
660 if (sc->sc_softled) {
661 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
662 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
663 }
664 }
665
666 void
667 ath_shutdown(struct ath_softc *sc)
668 {
669 struct ifnet *ifp = sc->sc_ifp;
670
671 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
672 __func__, ifp->if_flags);
673
674 ath_stop(ifp);
675 }
676
677 /*
678 * Interrupt handler. Most of the actual processing is deferred.
679 */
680 void
681 ath_intr(void *arg)
682 {
683 struct ath_softc *sc = arg;
684 struct ifnet *ifp = sc->sc_ifp;
685 struct ath_hal *ah = sc->sc_ah;
686 HAL_INT status;
687
688 if (sc->sc_invalid) {
689 /*
690 * The hardware is not ready/present, don't touch anything.
691 * Note this can happen early on if the IRQ is shared.
692 */
693 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
694 return;
695 }
696 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
697 return;
698 if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
699 IFF_DRV_RUNNING))) {
700 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
701 __func__, ifp->if_flags);
702 ath_hal_getisr(ah, &status); /* clear ISR */
703 ath_hal_intrset(ah, 0); /* disable further intr's */
704 return;
705 }
706 /*
707 * Figure out the reason(s) for the interrupt. Note
708 * that the hal returns a pseudo-ISR that may include
709 * bits we haven't explicitly enabled so we mask the
710 * value to insure we only process bits we requested.
711 */
712 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
713 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
714 status &= sc->sc_imask; /* discard unasked for bits */
715 if (status & HAL_INT_FATAL) {
716 /*
717 * Fatal errors are unrecoverable. Typically
718 * these are caused by DMA errors. Unfortunately
719 * the exact reason is not (presently) returned
720 * by the hal.
721 */
722 sc->sc_stats.ast_hardware++;
723 ath_hal_intrset(ah, 0); /* disable intr's until reset */
724 taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
725 } else if (status & HAL_INT_RXORN) {
726 sc->sc_stats.ast_rxorn++;
727 ath_hal_intrset(ah, 0); /* disable intr's until reset */
728 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
729 } else {
730 if (status & HAL_INT_SWBA) {
731 /*
732 * Software beacon alert--time to send a beacon.
733 * Handle beacon transmission directly; deferring
734 * this is too slow to meet timing constraints
735 * under load.
736 */
737 ath_beacon_proc(sc, 0);
738 }
739 if (status & HAL_INT_RXEOL) {
740 /*
741 * NB: the hardware should re-read the link when
742 * RXE bit is written, but it doesn't work at
743 * least on older hardware revs.
744 */
745 sc->sc_stats.ast_rxeol++;
746 sc->sc_rxlink = NULL;
747 }
748 if (status & HAL_INT_TXURN) {
749 sc->sc_stats.ast_txurn++;
750 /* bump tx trigger level */
751 ath_hal_updatetxtriglevel(ah, AH_TRUE);
752 }
753 if (status & HAL_INT_RX)
754 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
755 if (status & HAL_INT_TX)
756 taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
757 if (status & HAL_INT_BMISS) {
758 sc->sc_stats.ast_bmiss++;
759 taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
760 }
761 if (status & HAL_INT_MIB) {
762 sc->sc_stats.ast_mib++;
763 /*
764 * Disable interrupts until we service the MIB
765 * interrupt; otherwise it will continue to fire.
766 */
767 ath_hal_intrset(ah, 0);
768 /*
769 * Let the hal handle the event. We assume it will
770 * clear whatever condition caused the interrupt.
771 */
772 ath_hal_mibevent(ah,
773 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
774 ath_hal_intrset(ah, sc->sc_imask);
775 }
776 }
777 }
778
779 static void
780 ath_fatal_proc(void *arg, int pending)
781 {
782 struct ath_softc *sc = arg;
783 struct ifnet *ifp = sc->sc_ifp;
784
785 if_printf(ifp, "hardware error; resetting\n");
786 ath_reset(ifp);
787 }
788
789 static void
790 ath_rxorn_proc(void *arg, int pending)
791 {
792 struct ath_softc *sc = arg;
793 struct ifnet *ifp = sc->sc_ifp;
794
795 if_printf(ifp, "rx FIFO overrun; resetting\n");
796 ath_reset(ifp);
797 }
798
799 static void
800 ath_bmiss_proc(void *arg, int pending)
801 {
802 struct ath_softc *sc = arg;
803 struct ieee80211com *ic = &sc->sc_ic;
804
805 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
806 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
807 ("unexpect operating mode %u", ic->ic_opmode));
808 if (ic->ic_state == IEEE80211_S_RUN) {
809 /*
810 * Rather than go directly to scan state, try to
811 * reassociate first. If that fails then the state
812 * machine will drop us into scanning after timing
813 * out waiting for a probe response.
814 */
815 NET_LOCK_GIANT();
816 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
817 NET_UNLOCK_GIANT();
818 }
819 }
820
821 static u_int
822 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
823 {
824 #define N(a) (sizeof(a) / sizeof(a[0]))
825 static const u_int modeflags[] = {
826 0, /* IEEE80211_MODE_AUTO */
827 CHANNEL_A, /* IEEE80211_MODE_11A */
828 CHANNEL_B, /* IEEE80211_MODE_11B */
829 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
830 0, /* IEEE80211_MODE_FH */
831 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */
832 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
833 };
834 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
835
836 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
837 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
838 return modeflags[mode];
839 #undef N
840 }
841
842 static void
843 ath_init(void *arg)
844 {
845 struct ath_softc *sc = (struct ath_softc *) arg;
846 struct ieee80211com *ic = &sc->sc_ic;
847 struct ifnet *ifp = sc->sc_ifp;
848 struct ath_hal *ah = sc->sc_ah;
849 HAL_STATUS status;
850
851 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
852 __func__, ifp->if_flags);
853
854 ATH_LOCK(sc);
855 /*
856 * Stop anything previously setup. This is safe
857 * whether this is the first time through or not.
858 */
859 ath_stop_locked(ifp);
860
861 /*
862 * The basic interface to setting the hardware in a good
863 * state is ``reset''. On return the hardware is known to
864 * be powered up and with interrupts disabled. This must
865 * be followed by initialization of the appropriate bits
866 * and then setup of the interrupt mask.
867 */
868 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
869 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
870 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
871 if_printf(ifp, "unable to reset hardware; hal status %u\n",
872 status);
873 goto done;
874 }
875
876 /*
877 * This is needed only to setup initial state
878 * but it's best done after a reset.
879 */
880 ath_update_txpow(sc);
881 /*
882 * Likewise this is set during reset so update
883 * state cached in the driver.
884 */
885 sc->sc_diversity = ath_hal_getdiversity(ah);
886
887 /*
888 * Setup the hardware after reset: the key cache
889 * is filled as needed and the receive engine is
890 * set going. Frame transmit is handled entirely
891 * in the frame output path; there's nothing to do
892 * here except setup the interrupt mask.
893 */
894 if (ath_startrecv(sc) != 0) {
895 if_printf(ifp, "unable to start recv logic\n");
896 goto done;
897 }
898
899 /*
900 * Enable interrupts.
901 */
902 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
903 | HAL_INT_RXEOL | HAL_INT_RXORN
904 | HAL_INT_FATAL | HAL_INT_GLOBAL;
905 /*
906 * Enable MIB interrupts when there are hardware phy counters.
907 * Note we only do this (at the moment) for station mode.
908 */
909 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
910 sc->sc_imask |= HAL_INT_MIB;
911 ath_hal_intrset(ah, sc->sc_imask);
912
913 ifp->if_drv_flags |= IFF_DRV_RUNNING;
914 ic->ic_state = IEEE80211_S_INIT;
915
916 /*
917 * The hardware should be ready to go now so it's safe
918 * to kick the 802.11 state machine as it's likely to
919 * immediately call back to us to send mgmt frames.
920 */
921 ath_chan_change(sc, ic->ic_curchan);
922 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
923 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
924 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
925 } else
926 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
927 done:
928 ATH_UNLOCK(sc);
929 }
930
931 static void
932 ath_stop_locked(struct ifnet *ifp)
933 {
934 struct ath_softc *sc = ifp->if_softc;
935 struct ieee80211com *ic = &sc->sc_ic;
936 struct ath_hal *ah = sc->sc_ah;
937
938 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
939 __func__, sc->sc_invalid, ifp->if_flags);
940
941 ATH_LOCK_ASSERT(sc);
942 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
943 /*
944 * Shutdown the hardware and driver:
945 * reset 802.11 state machine
946 * turn off timers
947 * disable interrupts
948 * turn off the radio
949 * clear transmit machinery
950 * clear receive machinery
951 * drain and release tx queues
952 * reclaim beacon resources
953 * power down hardware
954 *
955 * Note that some of this work is not possible if the
956 * hardware is gone (invalid).
957 */
958 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
959 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
960 ifp->if_timer = 0;
961 if (!sc->sc_invalid) {
962 if (sc->sc_softled) {
963 callout_stop(&sc->sc_ledtimer);
964 ath_hal_gpioset(ah, sc->sc_ledpin,
965 !sc->sc_ledon);
966 sc->sc_blinking = 0;
967 }
968 ath_hal_intrset(ah, 0);
969 }
970 ath_draintxq(sc);
971 if (!sc->sc_invalid) {
972 ath_stoprecv(sc);
973 ath_hal_phydisable(ah);
974 } else
975 sc->sc_rxlink = NULL;
976 IFQ_DRV_PURGE(&ifp->if_snd);
977 ath_beacon_free(sc);
978 }
979 }
980
981 static void
982 ath_stop(struct ifnet *ifp)
983 {
984 struct ath_softc *sc = ifp->if_softc;
985
986 ATH_LOCK(sc);
987 ath_stop_locked(ifp);
988 if (!sc->sc_invalid) {
989 /*
990 * Set the chip in full sleep mode. Note that we are
991 * careful to do this only when bringing the interface
992 * completely to a stop. When the chip is in this state
993 * it must be carefully woken up or references to
994 * registers in the PCI clock domain may freeze the bus
995 * (and system). This varies by chip and is mostly an
996 * issue with newer parts that go to sleep more quickly.
997 */
998 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
999 }
1000 ATH_UNLOCK(sc);
1001 }
1002
1003 /*
1004 * Reset the hardware w/o losing operational state. This is
1005 * basically a more efficient way of doing ath_stop, ath_init,
1006 * followed by state transitions to the current 802.11
1007 * operational state. Used to recover from various errors and
1008 * to reset or reload hardware state.
1009 */
1010 static int
1011 ath_reset(struct ifnet *ifp)
1012 {
1013 struct ath_softc *sc = ifp->if_softc;
1014 struct ieee80211com *ic = &sc->sc_ic;
1015 struct ath_hal *ah = sc->sc_ah;
1016 struct ieee80211_channel *c;
1017 HAL_STATUS status;
1018
1019 /*
1020 * Convert to a HAL channel description with the flags
1021 * constrained to reflect the current operating mode.
1022 */
1023 c = ic->ic_curchan;
1024 sc->sc_curchan.channel = c->ic_freq;
1025 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1026
1027 ath_hal_intrset(ah, 0); /* disable interrupts */
1028 ath_draintxq(sc); /* stop xmit side */
1029 ath_stoprecv(sc); /* stop recv side */
1030 /* NB: indicate channel change so we do a full reset */
1031 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1032 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1033 __func__, status);
1034 ath_update_txpow(sc); /* update tx power state */
1035 sc->sc_diversity = ath_hal_getdiversity(ah);
1036 if (ath_startrecv(sc) != 0) /* restart recv */
1037 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1038 /*
1039 * We may be doing a reset in response to an ioctl
1040 * that changes the channel so update any state that
1041 * might change as a result.
1042 */
1043 ath_chan_change(sc, c);
1044 if (ic->ic_state == IEEE80211_S_RUN)
1045 ath_beacon_config(sc); /* restart beacons */
1046 ath_hal_intrset(ah, sc->sc_imask);
1047
1048 ath_start(ifp); /* restart xmit */
1049 return 0;
1050 }
1051
1052 static void
1053 ath_start(struct ifnet *ifp)
1054 {
1055 struct ath_softc *sc = ifp->if_softc;
1056 struct ath_hal *ah = sc->sc_ah;
1057 struct ieee80211com *ic = &sc->sc_ic;
1058 struct ieee80211_node *ni;
1059 struct ath_buf *bf;
1060 struct mbuf *m;
1061 struct ieee80211_frame *wh;
1062 struct ether_header *eh;
1063
1064 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1065 return;
1066 for (;;) {
1067 /*
1068 * Grab a TX buffer and associated resources.
1069 */
1070 ATH_TXBUF_LOCK(sc);
1071 bf = STAILQ_FIRST(&sc->sc_txbuf);
1072 if (bf != NULL)
1073 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1074 ATH_TXBUF_UNLOCK(sc);
1075 if (bf == NULL) {
1076 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1077 __func__);
1078 sc->sc_stats.ast_tx_qstop++;
1079 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1080 break;
1081 }
1082 /*
1083 * Poll the management queue for frames; they
1084 * have priority over normal data frames.
1085 */
1086 IF_DEQUEUE(&ic->ic_mgtq, m);
1087 if (m == NULL) {
1088 /*
1089 * No data frames go out unless we're associated.
1090 */
1091 if (ic->ic_state != IEEE80211_S_RUN) {
1092 DPRINTF(sc, ATH_DEBUG_ANY,
1093 "%s: ignore data packet, state %u\n",
1094 __func__, ic->ic_state);
1095 sc->sc_stats.ast_tx_discard++;
1096 ATH_TXBUF_LOCK(sc);
1097 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1098 ATH_TXBUF_UNLOCK(sc);
1099 break;
1100 }
1101 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1102 if (m == NULL) {
1103 ATH_TXBUF_LOCK(sc);
1104 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1105 ATH_TXBUF_UNLOCK(sc);
1106 break;
1107 }
1108 /*
1109 * Find the node for the destination so we can do
1110 * things like power save and fast frames aggregation.
1111 */
1112 if (m->m_len < sizeof(struct ether_header) &&
1113 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1114 ic->ic_stats.is_tx_nobuf++; /* XXX */
1115 ni = NULL;
1116 goto bad;
1117 }
1118 eh = mtod(m, struct ether_header *);
1119 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1120 if (ni == NULL) {
1121 /* NB: ieee80211_find_txnode does stat+msg */
1122 m_freem(m);
1123 goto bad;
1124 }
1125 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1126 (m->m_flags & M_PWR_SAV) == 0) {
1127 /*
1128 * Station in power save mode; pass the frame
1129 * to the 802.11 layer and continue. We'll get
1130 * the frame back when the time is right.
1131 */
1132 ieee80211_pwrsave(ic, ni, m);
1133 goto reclaim;
1134 }
1135 /* calculate priority so we can find the tx queue */
1136 if (ieee80211_classify(ic, m, ni)) {
1137 DPRINTF(sc, ATH_DEBUG_XMIT,
1138 "%s: discard, classification failure\n",
1139 __func__);
1140 m_freem(m);
1141 goto bad;
1142 }
1143 ifp->if_opackets++;
1144 BPF_MTAP(ifp, m);
1145 /*
1146 * Encapsulate the packet in prep for transmission.
1147 */
1148 m = ieee80211_encap(ic, m, ni);
1149 if (m == NULL) {
1150 DPRINTF(sc, ATH_DEBUG_ANY,
1151 "%s: encapsulation failure\n",
1152 __func__);
1153 sc->sc_stats.ast_tx_encap++;
1154 goto bad;
1155 }
1156 } else {
1157 /*
1158 * Hack! The referenced node pointer is in the
1159 * rcvif field of the packet header. This is
1160 * placed there by ieee80211_mgmt_output because
1161 * we need to hold the reference with the frame
1162 * and there's no other way (other than packet
1163 * tags which we consider too expensive to use)
1164 * to pass it along.
1165 */
1166 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1167 m->m_pkthdr.rcvif = NULL;
1168
1169 wh = mtod(m, struct ieee80211_frame *);
1170 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1171 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1172 /* fill time stamp */
1173 u_int64_t tsf;
1174 u_int32_t *tstamp;
1175
1176 tsf = ath_hal_gettsf64(ah);
1177 /* XXX: adjust 100us delay to xmit */
1178 tsf += 100;
1179 tstamp = (u_int32_t *)&wh[1];
1180 tstamp[0] = htole32(tsf & 0xffffffff);
1181 tstamp[1] = htole32(tsf >> 32);
1182 }
1183 sc->sc_stats.ast_tx_mgmt++;
1184 }
1185
1186 if (ath_tx_start(sc, ni, bf, m)) {
1187 bad:
1188 ifp->if_oerrors++;
1189 reclaim:
1190 ATH_TXBUF_LOCK(sc);
1191 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1192 ATH_TXBUF_UNLOCK(sc);
1193 if (ni != NULL)
1194 ieee80211_free_node(ni);
1195 continue;
1196 }
1197
1198 sc->sc_tx_timer = 5;
1199 ifp->if_timer = 1;
1200 }
1201 }
1202
1203 static int
1204 ath_media_change(struct ifnet *ifp)
1205 {
1206 #define IS_UP(ifp) \
1207 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1208 int error;
1209
1210 error = ieee80211_media_change(ifp);
1211 if (error == ENETRESET) {
1212 if (IS_UP(ifp))
1213 ath_init(ifp->if_softc); /* XXX lose error */
1214 error = 0;
1215 }
1216 return error;
1217 #undef IS_UP
1218 }
1219
1220 #ifdef AR_DEBUG
1221 static void
1222 ath_keyprint(const char *tag, u_int ix,
1223 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1224 {
1225 static const char *ciphers[] = {
1226 "WEP",
1227 "AES-OCB",
1228 "AES-CCM",
1229 "CKIP",
1230 "TKIP",
1231 "CLR",
1232 };
1233 int i, n;
1234
1235 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1236 for (i = 0, n = hk->kv_len; i < n; i++)
1237 printf("%02x", hk->kv_val[i]);
1238 printf(" mac %s", ether_sprintf(mac));
1239 if (hk->kv_type == HAL_CIPHER_TKIP) {
1240 printf(" mic ");
1241 for (i = 0; i < sizeof(hk->kv_mic); i++)
1242 printf("%02x", hk->kv_mic[i]);
1243 }
1244 printf("\n");
1245 }
1246 #endif
1247
1248 /*
1249 * Set a TKIP key into the hardware. This handles the
1250 * potential distribution of key state to multiple key
1251 * cache slots for TKIP.
1252 */
1253 static int
1254 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1255 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1256 {
1257 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1258 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1259 struct ath_hal *ah = sc->sc_ah;
1260
1261 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1262 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1263 KASSERT(sc->sc_splitmic, ("key cache !split"));
1264 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1265 /*
1266 * TX key goes at first index, RX key at the rx index.
1267 * The hal handles the MIC keys at index+64.
1268 */
1269 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1270 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1271 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1272 return 0;
1273
1274 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1275 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1276 /* XXX delete tx key on failure? */
1277 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1278 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1279 /*
1280 * TX/RX key goes at first index.
1281 * The hal handles the MIC keys are index+64.
1282 */
1283 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1284 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1285 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1286 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1287 }
1288 return 0;
1289 #undef IEEE80211_KEY_XR
1290 }
1291
1292 /*
1293 * Set a net80211 key into the hardware. This handles the
1294 * potential distribution of key state to multiple key
1295 * cache slots for TKIP with hardware MIC support.
1296 */
1297 static int
1298 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1299 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1300 struct ieee80211_node *bss)
1301 {
1302 #define N(a) (sizeof(a)/sizeof(a[0]))
1303 static const u_int8_t ciphermap[] = {
1304 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1305 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1306 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1307 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1308 (u_int8_t) -1, /* 4 is not allocated */
1309 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1310 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1311 };
1312 struct ath_hal *ah = sc->sc_ah;
1313 const struct ieee80211_cipher *cip = k->wk_cipher;
1314 u_int8_t gmac[IEEE80211_ADDR_LEN];
1315 const u_int8_t *mac;
1316 HAL_KEYVAL hk;
1317
1318 memset(&hk, 0, sizeof(hk));
1319 /*
1320 * Software crypto uses a "clear key" so non-crypto
1321 * state kept in the key cache are maintained and
1322 * so that rx frames have an entry to match.
1323 */
1324 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1325 KASSERT(cip->ic_cipher < N(ciphermap),
1326 ("invalid cipher type %u", cip->ic_cipher));
1327 hk.kv_type = ciphermap[cip->ic_cipher];
1328 hk.kv_len = k->wk_keylen;
1329 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1330 } else
1331 hk.kv_type = HAL_CIPHER_CLR;
1332
1333 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1334 /*
1335 * Group keys on hardware that supports multicast frame
1336 * key search use a mac that is the sender's address with
1337 * the high bit set instead of the app-specified address.
1338 */
1339 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1340 gmac[0] |= 0x80;
1341 mac = gmac;
1342 } else
1343 mac = mac0;
1344
1345 if (hk.kv_type == HAL_CIPHER_TKIP &&
1346 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1347 sc->sc_splitmic) {
1348 return ath_keyset_tkip(sc, k, &hk, mac);
1349 } else {
1350 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1351 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1352 }
1353 #undef N
1354 }
1355
1356 /*
1357 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1358 * each key, one for decrypt/encrypt and the other for the MIC.
1359 */
1360 static u_int16_t
1361 key_alloc_2pair(struct ath_softc *sc,
1362 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1363 {
1364 #define N(a) (sizeof(a)/sizeof(a[0]))
1365 u_int i, keyix;
1366
1367 KASSERT(sc->sc_splitmic, ("key cache !split"));
1368 /* XXX could optimize */
1369 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1370 u_int8_t b = sc->sc_keymap[i];
1371 if (b != 0xff) {
1372 /*
1373 * One or more slots in this byte are free.
1374 */
1375 keyix = i*NBBY;
1376 while (b & 1) {
1377 again:
1378 keyix++;
1379 b >>= 1;
1380 }
1381 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1382 if (isset(sc->sc_keymap, keyix+32) ||
1383 isset(sc->sc_keymap, keyix+64) ||
1384 isset(sc->sc_keymap, keyix+32+64)) {
1385 /* full pair unavailable */
1386 /* XXX statistic */
1387 if (keyix == (i+1)*NBBY) {
1388 /* no slots were appropriate, advance */
1389 continue;
1390 }
1391 goto again;
1392 }
1393 setbit(sc->sc_keymap, keyix);
1394 setbit(sc->sc_keymap, keyix+64);
1395 setbit(sc->sc_keymap, keyix+32);
1396 setbit(sc->sc_keymap, keyix+32+64);
1397 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1398 "%s: key pair %u,%u %u,%u\n",
1399 __func__, keyix, keyix+64,
1400 keyix+32, keyix+32+64);
1401 *txkeyix = keyix;
1402 *rxkeyix = keyix+32;
1403 return 1;
1404 }
1405 }
1406 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1407 return 0;
1408 #undef N
1409 }
1410
1411 /*
1412 * Allocate a single key cache slot.
1413 */
1414 static int
1415 key_alloc_single(struct ath_softc *sc,
1416 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1417 {
1418 #define N(a) (sizeof(a)/sizeof(a[0]))
1419 u_int i, keyix;
1420
1421 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1422 for (i = 0; i < N(sc->sc_keymap); i++) {
1423 u_int8_t b = sc->sc_keymap[i];
1424 if (b != 0xff) {
1425 /*
1426 * One or more slots are free.
1427 */
1428 keyix = i*NBBY;
1429 while (b & 1)
1430 keyix++, b >>= 1;
1431 setbit(sc->sc_keymap, keyix);
1432 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1433 __func__, keyix);
1434 *txkeyix = *rxkeyix = keyix;
1435 return 1;
1436 }
1437 }
1438 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1439 return 0;
1440 #undef N
1441 }
1442
1443 /*
1444 * Allocate one or more key cache slots for a uniacst key. The
1445 * key itself is needed only to identify the cipher. For hardware
1446 * TKIP with split cipher+MIC keys we allocate two key cache slot
1447 * pairs so that we can setup separate TX and RX MIC keys. Note
1448 * that the MIC key for a TKIP key at slot i is assumed by the
1449 * hardware to be at slot i+64. This limits TKIP keys to the first
1450 * 64 entries.
1451 */
1452 static int
1453 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1454 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1455 {
1456 struct ath_softc *sc = ic->ic_ifp->if_softc;
1457
1458 /*
1459 * Group key allocation must be handled specially for
1460 * parts that do not support multicast key cache search
1461 * functionality. For those parts the key id must match
1462 * the h/w key index so lookups find the right key. On
1463 * parts w/ the key search facility we install the sender's
1464 * mac address (with the high bit set) and let the hardware
1465 * find the key w/o using the key id. This is preferred as
1466 * it permits us to support multiple users for adhoc and/or
1467 * multi-station operation.
1468 */
1469 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1470 if (!(&ic->ic_nw_keys[0] <= k &&
1471 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1472 /* should not happen */
1473 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1474 "%s: bogus group key\n", __func__);
1475 return 0;
1476 }
1477 /*
1478 * XXX we pre-allocate the global keys so
1479 * have no way to check if they've already been allocated.
1480 */
1481 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1482 return 1;
1483 }
1484
1485 /*
1486 * We allocate two pair for TKIP when using the h/w to do
1487 * the MIC. For everything else, including software crypto,
1488 * we allocate a single entry. Note that s/w crypto requires
1489 * a pass-through slot on the 5211 and 5212. The 5210 does
1490 * not support pass-through cache entries and we map all
1491 * those requests to slot 0.
1492 */
1493 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1494 return key_alloc_single(sc, keyix, rxkeyix);
1495 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1496 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1497 return key_alloc_2pair(sc, keyix, rxkeyix);
1498 } else {
1499 return key_alloc_single(sc, keyix, rxkeyix);
1500 }
1501 }
1502
1503 /*
1504 * Delete an entry in the key cache allocated by ath_key_alloc.
1505 */
1506 static int
1507 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1508 {
1509 struct ath_softc *sc = ic->ic_ifp->if_softc;
1510 struct ath_hal *ah = sc->sc_ah;
1511 const struct ieee80211_cipher *cip = k->wk_cipher;
1512 u_int keyix = k->wk_keyix;
1513
1514 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1515
1516 ath_hal_keyreset(ah, keyix);
1517 /*
1518 * Handle split tx/rx keying required for TKIP with h/w MIC.
1519 */
1520 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1521 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1522 ath_hal_keyreset(ah, keyix+32); /* RX key */
1523 if (keyix >= IEEE80211_WEP_NKID) {
1524 /*
1525 * Don't touch keymap entries for global keys so
1526 * they are never considered for dynamic allocation.
1527 */
1528 clrbit(sc->sc_keymap, keyix);
1529 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1530 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1531 sc->sc_splitmic) {
1532 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1533 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1534 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1535 }
1536 }
1537 return 1;
1538 }
1539
1540 /*
1541 * Set the key cache contents for the specified key. Key cache
1542 * slot(s) must already have been allocated by ath_key_alloc.
1543 */
1544 static int
1545 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1546 const u_int8_t mac[IEEE80211_ADDR_LEN])
1547 {
1548 struct ath_softc *sc = ic->ic_ifp->if_softc;
1549
1550 return ath_keyset(sc, k, mac, ic->ic_bss);
1551 }
1552
1553 /*
1554 * Block/unblock tx+rx processing while a key change is done.
1555 * We assume the caller serializes key management operations
1556 * so we only need to worry about synchronization with other
1557 * uses that originate in the driver.
1558 */
1559 static void
1560 ath_key_update_begin(struct ieee80211com *ic)
1561 {
1562 struct ifnet *ifp = ic->ic_ifp;
1563 struct ath_softc *sc = ifp->if_softc;
1564
1565 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1566 #if 0
1567 tasklet_disable(&sc->sc_rxtq);
1568 #endif
1569 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1570 }
1571
1572 static void
1573 ath_key_update_end(struct ieee80211com *ic)
1574 {
1575 struct ifnet *ifp = ic->ic_ifp;
1576 struct ath_softc *sc = ifp->if_softc;
1577
1578 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1579 IF_UNLOCK(&ifp->if_snd);
1580 #if 0
1581 tasklet_enable(&sc->sc_rxtq);
1582 #endif
1583 }
1584
1585 /*
1586 * Calculate the receive filter according to the
1587 * operating mode and state:
1588 *
1589 * o always accept unicast, broadcast, and multicast traffic
1590 * o maintain current state of phy error reception (the hal
1591 * may enable phy error frames for noise immunity work)
1592 * o probe request frames are accepted only when operating in
1593 * hostap, adhoc, or monitor modes
1594 * o enable promiscuous mode according to the interface state
1595 * o accept beacons:
1596 * - when operating in adhoc mode so the 802.11 layer creates
1597 * node table entries for peers,
1598 * - when operating in station mode for collecting rssi data when
1599 * the station is otherwise quiet, or
1600 * - when scanning
1601 */
1602 static u_int32_t
1603 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1604 {
1605 struct ieee80211com *ic = &sc->sc_ic;
1606 struct ath_hal *ah = sc->sc_ah;
1607 struct ifnet *ifp = sc->sc_ifp;
1608 u_int32_t rfilt;
1609
1610 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1611 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1612 if (ic->ic_opmode != IEEE80211_M_STA)
1613 rfilt |= HAL_RX_FILTER_PROBEREQ;
1614 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1615 (ifp->if_flags & IFF_PROMISC))
1616 rfilt |= HAL_RX_FILTER_PROM;
1617 if (ic->ic_opmode == IEEE80211_M_STA ||
1618 ic->ic_opmode == IEEE80211_M_IBSS ||
1619 state == IEEE80211_S_SCAN)
1620 rfilt |= HAL_RX_FILTER_BEACON;
1621 return rfilt;
1622 }
1623
1624 static void
1625 ath_mode_init(struct ath_softc *sc)
1626 {
1627 struct ieee80211com *ic = &sc->sc_ic;
1628 struct ath_hal *ah = sc->sc_ah;
1629 struct ifnet *ifp = sc->sc_ifp;
1630 u_int32_t rfilt, mfilt[2], val;
1631 u_int8_t pos;
1632 struct ifmultiaddr *ifma;
1633
1634 /* configure rx filter */
1635 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1636 ath_hal_setrxfilter(ah, rfilt);
1637
1638 /* configure operational mode */
1639 ath_hal_setopmode(ah);
1640
1641 /*
1642 * Handle any link-level address change. Note that we only
1643 * need to force ic_myaddr; any other addresses are handled
1644 * as a byproduct of the ifnet code marking the interface
1645 * down then up.
1646 *
1647 * XXX should get from lladdr instead of arpcom but that's more work
1648 */
1649 IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2ENADDR(ifp));
1650 ath_hal_setmac(ah, ic->ic_myaddr);
1651
1652 /* calculate and install multicast filter */
1653 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1654 mfilt[0] = mfilt[1] = 0;
1655 IF_ADDR_LOCK(ifp);
1656 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1657 caddr_t dl;
1658
1659 /* calculate XOR of eight 6bit values */
1660 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1661 val = LE_READ_4(dl + 0);
1662 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1663 val = LE_READ_4(dl + 3);
1664 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1665 pos &= 0x3f;
1666 mfilt[pos / 32] |= (1 << (pos % 32));
1667 }
1668 IF_ADDR_UNLOCK(ifp);
1669 } else {
1670 mfilt[0] = mfilt[1] = ~0;
1671 }
1672 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1673 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1674 __func__, rfilt, mfilt[0], mfilt[1]);
1675 }
1676
1677 /*
1678 * Set the slot time based on the current setting.
1679 */
1680 static void
1681 ath_setslottime(struct ath_softc *sc)
1682 {
1683 struct ieee80211com *ic = &sc->sc_ic;
1684 struct ath_hal *ah = sc->sc_ah;
1685
1686 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1687 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1688 else
1689 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1690 sc->sc_updateslot = OK;
1691 }
1692
1693 /*
1694 * Callback from the 802.11 layer to update the
1695 * slot time based on the current setting.
1696 */
1697 static void
1698 ath_updateslot(struct ifnet *ifp)
1699 {
1700 struct ath_softc *sc = ifp->if_softc;
1701 struct ieee80211com *ic = &sc->sc_ic;
1702
1703 /*
1704 * When not coordinating the BSS, change the hardware
1705 * immediately. For other operation we defer the change
1706 * until beacon updates have propagated to the stations.
1707 */
1708 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1709 sc->sc_updateslot = UPDATE;
1710 else
1711 ath_setslottime(sc);
1712 }
1713
1714 /*
1715 * Setup a h/w transmit queue for beacons.
1716 */
1717 static int
1718 ath_beaconq_setup(struct ath_hal *ah)
1719 {
1720 HAL_TXQ_INFO qi;
1721
1722 memset(&qi, 0, sizeof(qi));
1723 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1724 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1725 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1726 /* NB: for dynamic turbo, don't enable any other interrupts */
1727 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1728 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1729 }
1730
1731 /*
1732 * Setup the transmit queue parameters for the beacon queue.
1733 */
1734 static int
1735 ath_beaconq_config(struct ath_softc *sc)
1736 {
1737 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
1738 struct ieee80211com *ic = &sc->sc_ic;
1739 struct ath_hal *ah = sc->sc_ah;
1740 HAL_TXQ_INFO qi;
1741
1742 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1743 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1744 /*
1745 * Always burst out beacon and CAB traffic.
1746 */
1747 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1748 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1749 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1750 } else {
1751 struct wmeParams *wmep =
1752 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1753 /*
1754 * Adhoc mode; important thing is to use 2x cwmin.
1755 */
1756 qi.tqi_aifs = wmep->wmep_aifsn;
1757 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1758 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1759 }
1760
1761 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1762 device_printf(sc->sc_dev, "unable to update parameters for "
1763 "beacon hardware queue!\n");
1764 return 0;
1765 } else {
1766 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1767 return 1;
1768 }
1769 #undef ATH_EXPONENT_TO_VALUE
1770 }
1771
1772 /*
1773 * Allocate and setup an initial beacon frame.
1774 */
1775 static int
1776 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1777 {
1778 struct ieee80211com *ic = ni->ni_ic;
1779 struct ath_buf *bf;
1780 struct mbuf *m;
1781 int error;
1782
1783 bf = STAILQ_FIRST(&sc->sc_bbuf);
1784 if (bf == NULL) {
1785 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1786 sc->sc_stats.ast_be_nombuf++; /* XXX */
1787 return ENOMEM; /* XXX */
1788 }
1789 /*
1790 * NB: the beacon data buffer must be 32-bit aligned;
1791 * we assume the mbuf routines will return us something
1792 * with this alignment (perhaps should assert).
1793 */
1794 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1795 if (m == NULL) {
1796 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1797 __func__);
1798 sc->sc_stats.ast_be_nombuf++;
1799 return ENOMEM;
1800 }
1801 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1802 bf->bf_segs, &bf->bf_nseg,
1803 BUS_DMA_NOWAIT);
1804 if (error == 0) {
1805 bf->bf_m = m;
1806 bf->bf_node = ieee80211_ref_node(ni);
1807 } else {
1808 m_freem(m);
1809 }
1810 return error;
1811 }
1812
1813 /*
1814 * Setup the beacon frame for transmit.
1815 */
1816 static void
1817 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1818 {
1819 #define USE_SHPREAMBLE(_ic) \
1820 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1821 == IEEE80211_F_SHPREAMBLE)
1822 struct ieee80211_node *ni = bf->bf_node;
1823 struct ieee80211com *ic = ni->ni_ic;
1824 struct mbuf *m = bf->bf_m;
1825 struct ath_hal *ah = sc->sc_ah;
1826 struct ath_node *an = ATH_NODE(ni);
1827 struct ath_desc *ds;
1828 int flags, antenna;
1829 u_int8_t rate;
1830
1831 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1832 __func__, m, m->m_len);
1833
1834 /* setup descriptors */
1835 ds = bf->bf_desc;
1836
1837 flags = HAL_TXDESC_NOACK;
1838 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1839 ds->ds_link = bf->bf_daddr; /* self-linked */
1840 flags |= HAL_TXDESC_VEOL;
1841 /*
1842 * Let hardware handle antenna switching.
1843 */
1844 antenna = sc->sc_txantenna;
1845 } else {
1846 ds->ds_link = 0;
1847 /*
1848 * Switch antenna every 4 beacons.
1849 * XXX assumes two antenna
1850 */
1851 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1852 }
1853
1854 KASSERT(bf->bf_nseg == 1,
1855 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1856 ds->ds_data = bf->bf_segs[0].ds_addr;
1857 /*
1858 * Calculate rate code.
1859 * XXX everything at min xmit rate
1860 */
1861 if (USE_SHPREAMBLE(ic))
1862 rate = an->an_tx_mgtratesp;
1863 else
1864 rate = an->an_tx_mgtrate;
1865 ath_hal_setuptxdesc(ah, ds
1866 , m->m_len + IEEE80211_CRC_LEN /* frame length */
1867 , sizeof(struct ieee80211_frame)/* header length */
1868 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1869 , ni->ni_txpower /* txpower XXX */
1870 , rate, 1 /* series 0 rate/tries */
1871 , HAL_TXKEYIX_INVALID /* no encryption */
1872 , antenna /* antenna mode */
1873 , flags /* no ack, veol for beacons */
1874 , 0 /* rts/cts rate */
1875 , 0 /* rts/cts duration */
1876 );
1877 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1878 ath_hal_filltxdesc(ah, ds
1879 , roundup(m->m_len, 4) /* buffer length */
1880 , AH_TRUE /* first segment */
1881 , AH_TRUE /* last segment */
1882 , ds /* first descriptor */
1883 );
1884 #undef USE_SHPREAMBLE
1885 }
1886
1887 /*
1888 * Transmit a beacon frame at SWBA. Dynamic updates to the
1889 * frame contents are done as needed and the slot time is
1890 * also adjusted based on current state.
1891 */
1892 static void
1893 ath_beacon_proc(void *arg, int pending)
1894 {
1895 struct ath_softc *sc = arg;
1896 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1897 struct ieee80211_node *ni = bf->bf_node;
1898 struct ieee80211com *ic = ni->ni_ic;
1899 struct ath_hal *ah = sc->sc_ah;
1900 struct mbuf *m;
1901 int ncabq, error, otherant;
1902
1903 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1904 __func__, pending);
1905
1906 if (ic->ic_opmode == IEEE80211_M_STA ||
1907 ic->ic_opmode == IEEE80211_M_MONITOR ||
1908 bf == NULL || bf->bf_m == NULL) {
1909 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1910 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1911 return;
1912 }
1913 /*
1914 * Check if the previous beacon has gone out. If
1915 * not don't don't try to post another, skip this
1916 * period and wait for the next. Missed beacons
1917 * indicate a problem and should not occur. If we
1918 * miss too many consecutive beacons reset the device.
1919 */
1920 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1921 sc->sc_bmisscount++;
1922 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1923 "%s: missed %u consecutive beacons\n",
1924 __func__, sc->sc_bmisscount);
1925 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
1926 taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1927 return;
1928 }
1929 if (sc->sc_bmisscount != 0) {
1930 DPRINTF(sc, ATH_DEBUG_BEACON,
1931 "%s: resume beacon xmit after %u misses\n",
1932 __func__, sc->sc_bmisscount);
1933 sc->sc_bmisscount = 0;
1934 }
1935
1936 /*
1937 * Update dynamic beacon contents. If this returns
1938 * non-zero then we need to remap the memory because
1939 * the beacon frame changed size (probably because
1940 * of the TIM bitmap).
1941 */
1942 m = bf->bf_m;
1943 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1944 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1945 /* XXX too conservative? */
1946 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1947 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1948 bf->bf_segs, &bf->bf_nseg,
1949 BUS_DMA_NOWAIT);
1950 if (error != 0) {
1951 if_printf(ic->ic_ifp,
1952 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1953 __func__, error);
1954 return;
1955 }
1956 }
1957
1958 /*
1959 * Handle slot time change when a non-ERP station joins/leaves
1960 * an 11g network. The 802.11 layer notifies us via callback,
1961 * we mark updateslot, then wait one beacon before effecting
1962 * the change. This gives associated stations at least one
1963 * beacon interval to note the state change.
1964 */
1965 /* XXX locking */
1966 if (sc->sc_updateslot == UPDATE)
1967 sc->sc_updateslot = COMMIT; /* commit next beacon */
1968 else if (sc->sc_updateslot == COMMIT)
1969 ath_setslottime(sc); /* commit change to h/w */
1970
1971 /*
1972 * Check recent per-antenna transmit statistics and flip
1973 * the default antenna if noticeably more frames went out
1974 * on the non-default antenna.
1975 * XXX assumes 2 anntenae
1976 */
1977 otherant = sc->sc_defant & 1 ? 2 : 1;
1978 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1979 ath_setdefantenna(sc, otherant);
1980 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1981
1982 /*
1983 * Construct tx descriptor.
1984 */
1985 ath_beacon_setup(sc, bf);
1986
1987 /*
1988 * Stop any current dma and put the new frame on the queue.
1989 * This should never fail since we check above that no frames
1990 * are still pending on the queue.
1991 */
1992 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1993 DPRINTF(sc, ATH_DEBUG_ANY,
1994 "%s: beacon queue %u did not stop?\n",
1995 __func__, sc->sc_bhalq);
1996 }
1997 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1998
1999 /*
2000 * Enable the CAB queue before the beacon queue to
2001 * insure cab frames are triggered by this beacon.
2002 */
2003 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */
2004 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2005 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2006 ath_hal_txstart(ah, sc->sc_bhalq);
2007 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2008 "%s: TXDP[%u] = %p (%p)\n", __func__,
2009 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2010
2011 sc->sc_stats.ast_be_xmit++;
2012 }
2013
2014 /*
2015 * Reset the hardware after detecting beacons have stopped.
2016 */
2017 static void
2018 ath_bstuck_proc(void *arg, int pending)
2019 {
2020 struct ath_softc *sc = arg;
2021 struct ifnet *ifp = sc->sc_ifp;
2022
2023 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2024 sc->sc_bmisscount);
2025 ath_reset(ifp);
2026 }
2027
2028 /*
2029 * Reclaim beacon resources.
2030 */
2031 static void
2032 ath_beacon_free(struct ath_softc *sc)
2033 {
2034 struct ath_buf *bf;
2035
2036 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2037 if (bf->bf_m != NULL) {
2038 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2039 m_freem(bf->bf_m);
2040 bf->bf_m = NULL;
2041 }
2042 if (bf->bf_node != NULL) {
2043 ieee80211_free_node(bf->bf_node);
2044 bf->bf_node = NULL;
2045 }
2046 }
2047 }
2048
2049 /*
2050 * Configure the beacon and sleep timers.
2051 *
2052 * When operating as an AP this resets the TSF and sets
2053 * up the hardware to notify us when we need to issue beacons.
2054 *
2055 * When operating in station mode this sets up the beacon
2056 * timers according to the timestamp of the last received
2057 * beacon and the current TSF, configures PCF and DTIM
2058 * handling, programs the sleep registers so the hardware
2059 * will wakeup in time to receive beacons, and configures
2060 * the beacon miss handling so we'll receive a BMISS
2061 * interrupt when we stop seeing beacons from the AP
2062 * we've associated with.
2063 */
2064 static void
2065 ath_beacon_config(struct ath_softc *sc)
2066 {
2067 #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10))
2068 struct ath_hal *ah = sc->sc_ah;
2069 struct ieee80211com *ic = &sc->sc_ic;
2070 struct ieee80211_node *ni = ic->ic_bss;
2071 u_int32_t nexttbtt, intval;
2072
2073 /* extract tstamp from last beacon and convert to TU */
2074 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2075 LE_READ_4(ni->ni_tstamp.data));
2076 /* NB: the beacon interval is kept internally in TU's */
2077 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2078 if (nexttbtt == 0) /* e.g. for ap mode */
2079 nexttbtt = intval;
2080 else if (intval) /* NB: can be 0 for monitor mode */
2081 nexttbtt = roundup(nexttbtt, intval);
2082 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2083 __func__, nexttbtt, intval, ni->ni_intval);
2084 if (ic->ic_opmode == IEEE80211_M_STA) {
2085 HAL_BEACON_STATE bs;
2086 u_int64_t tsf;
2087 u_int32_t tsftu;
2088 int dtimperiod, dtimcount;
2089 int cfpperiod, cfpcount;
2090
2091 /*
2092 * Setup dtim and cfp parameters according to
2093 * last beacon we received (which may be none).
2094 */
2095 dtimperiod = ni->ni_dtim_period;
2096 if (dtimperiod <= 0) /* NB: 0 if not known */
2097 dtimperiod = 1;
2098 dtimcount = ni->ni_dtim_count;
2099 if (dtimcount >= dtimperiod) /* NB: sanity check */
2100 dtimcount = 0; /* XXX? */
2101 cfpperiod = 1; /* NB: no PCF support yet */
2102 cfpcount = 0;
2103 #define FUDGE 2
2104 /*
2105 * Pull nexttbtt forward to reflect the current
2106 * TSF and calculate dtim+cfp state for the result.
2107 */
2108 tsf = ath_hal_gettsf64(ah);
2109 tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2110 do {
2111 nexttbtt += intval;
2112 if (--dtimcount < 0) {
2113 dtimcount = dtimperiod - 1;
2114 if (--cfpcount < 0)
2115 cfpcount = cfpperiod - 1;
2116 }
2117 } while (nexttbtt < tsftu);
2118 #undef FUDGE
2119 memset(&bs, 0, sizeof(bs));
2120 bs.bs_intval = intval;
2121 bs.bs_nexttbtt = nexttbtt;
2122 bs.bs_dtimperiod = dtimperiod*intval;
2123 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2124 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2125 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2126 bs.bs_cfpmaxduration = 0;
2127 #if 0
2128 /*
2129 * The 802.11 layer records the offset to the DTIM
2130 * bitmap while receiving beacons; use it here to
2131 * enable h/w detection of our AID being marked in
2132 * the bitmap vector (to indicate frames for us are
2133 * pending at the AP).
2134 * XXX do DTIM handling in s/w to WAR old h/w bugs
2135 * XXX enable based on h/w rev for newer chips
2136 */
2137 bs.bs_timoffset = ni->ni_timoff;
2138 #endif
2139 /*
2140 * Calculate the number of consecutive beacons to miss
2141 * before taking a BMISS interrupt. The configuration
2142 * is specified in ms, so we need to convert that to
2143 * TU's and then calculate based on the beacon interval.
2144 * Note that we clamp the result to at most 10 beacons.
2145 */
2146 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2147 if (bs.bs_bmissthreshold > 10)
2148 bs.bs_bmissthreshold = 10;
2149 else if (bs.bs_bmissthreshold <= 0)
2150 bs.bs_bmissthreshold = 1;
2151
2152 /*
2153 * Calculate sleep duration. The configuration is
2154 * given in ms. We insure a multiple of the beacon
2155 * period is used. Also, if the sleep duration is
2156 * greater than the DTIM period then it makes senses
2157 * to make it a multiple of that.
2158 *
2159 * XXX fixed at 100ms
2160 */
2161 bs.bs_sleepduration =
2162 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2163 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2164 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2165
2166 DPRINTF(sc, ATH_DEBUG_BEACON,
2167 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2168 , __func__
2169 , tsf, tsftu
2170 , bs.bs_intval
2171 , bs.bs_nexttbtt
2172 , bs.bs_dtimperiod
2173 , bs.bs_nextdtim
2174 , bs.bs_bmissthreshold
2175 , bs.bs_sleepduration
2176 , bs.bs_cfpperiod
2177 , bs.bs_cfpmaxduration
2178 , bs.bs_cfpnext
2179 , bs.bs_timoffset
2180 );
2181 ath_hal_intrset(ah, 0);
2182 ath_hal_beacontimers(ah, &bs);
2183 sc->sc_imask |= HAL_INT_BMISS;
2184 ath_hal_intrset(ah, sc->sc_imask);
2185 } else {
2186 ath_hal_intrset(ah, 0);
2187 if (nexttbtt == intval)
2188 intval |= HAL_BEACON_RESET_TSF;
2189 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2190 /*
2191 * In IBSS mode enable the beacon timers but only
2192 * enable SWBA interrupts if we need to manually
2193 * prepare beacon frames. Otherwise we use a
2194 * self-linked tx descriptor and let the hardware
2195 * deal with things.
2196 */
2197 intval |= HAL_BEACON_ENA;
2198 if (!sc->sc_hasveol)
2199 sc->sc_imask |= HAL_INT_SWBA;
2200 ath_beaconq_config(sc);
2201 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2202 /*
2203 * In AP mode we enable the beacon timers and
2204 * SWBA interrupts to prepare beacon frames.
2205 */
2206 intval |= HAL_BEACON_ENA;
2207 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2208 ath_beaconq_config(sc);
2209 }
2210 ath_hal_beaconinit(ah, nexttbtt, intval);
2211 sc->sc_bmisscount = 0;
2212 ath_hal_intrset(ah, sc->sc_imask);
2213 /*
2214 * When using a self-linked beacon descriptor in
2215 * ibss mode load it once here.
2216 */
2217 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2218 ath_beacon_proc(sc, 0);
2219 }
2220 #undef TSF_TO_TU
2221 }
2222
2223 static void
2224 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2225 {
2226 bus_addr_t *paddr = (bus_addr_t*) arg;
2227 KASSERT(error == 0, ("error %u on bus_dma callback", error));
2228 *paddr = segs->ds_addr;
2229 }
2230
2231 static int
2232 ath_descdma_setup(struct ath_softc *sc,
2233 struct ath_descdma *dd, ath_bufhead *head,
2234 const char *name, int nbuf, int ndesc)
2235 {
2236 #define DS2PHYS(_dd, _ds) \
2237 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2238 struct ifnet *ifp = sc->sc_ifp;
2239 struct ath_desc *ds;
2240 struct ath_buf *bf;
2241 int i, bsize, error;
2242
2243 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2244 __func__, name, nbuf, ndesc);
2245
2246 dd->dd_name = name;
2247 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2248
2249 /*
2250 * Setup DMA descriptor area.
2251 */
2252 error = bus_dma_tag_create(NULL, /* parent */
2253 PAGE_SIZE, 0, /* alignment, bounds */
2254 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
2255 BUS_SPACE_MAXADDR, /* highaddr */
2256 NULL, NULL, /* filter, filterarg */
2257 dd->dd_desc_len, /* maxsize */
2258 1, /* nsegments */
2259 BUS_SPACE_MAXADDR, /* maxsegsize */
2260 BUS_DMA_ALLOCNOW, /* flags */
2261 NULL, /* lockfunc */
2262 NULL, /* lockarg */
2263 &dd->dd_dmat);
2264 if (error != 0) {
2265 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2266 return error;
2267 }
2268
2269 /* allocate descriptors */
2270 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2271 if (error != 0) {
2272 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2273 "error %u\n", dd->dd_name, error);
2274 goto fail0;
2275 }
2276
2277 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2278 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2279 if (error != 0) {
2280 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2281 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2282 goto fail1;
2283 }
2284
2285 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2286 dd->dd_desc, dd->dd_desc_len,
2287 ath_load_cb, &dd->dd_desc_paddr,
2288 BUS_DMA_NOWAIT);
2289 if (error != 0) {
2290 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2291 dd->dd_name, error);
2292 goto fail2;
2293 }
2294
2295 ds = dd->dd_desc;
2296 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2297 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2298 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2299
2300 /* allocate rx buffers */
2301 bsize = sizeof(struct ath_buf) * nbuf;
2302 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2303 if (bf == NULL) {
2304 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2305 dd->dd_name, bsize);
2306 goto fail3;
2307 }
2308 dd->dd_bufptr = bf;
2309
2310 STAILQ_INIT(head);
2311 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2312 bf->bf_desc = ds;
2313 bf->bf_daddr = DS2PHYS(dd, ds);
2314 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2315 &bf->bf_dmamap);
2316 if (error != 0) {
2317 if_printf(ifp, "unable to create dmamap for %s "
2318 "buffer %u, error %u\n", dd->dd_name, i, error);
2319 ath_descdma_cleanup(sc, dd, head);
2320 return error;
2321 }
2322 STAILQ_INSERT_TAIL(head, bf, bf_list);
2323 }
2324 return 0;
2325 fail3:
2326 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2327 fail2:
2328 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2329 fail1:
2330 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2331 fail0:
2332 bus_dma_tag_destroy(dd->dd_dmat);
2333 memset(dd, 0, sizeof(*dd));
2334 return error;
2335 #undef DS2PHYS
2336 }
2337
2338 static void
2339 ath_descdma_cleanup(struct ath_softc *sc,
2340 struct ath_descdma *dd, ath_bufhead *head)
2341 {
2342 struct ath_buf *bf;
2343 struct ieee80211_node *ni;
2344
2345 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2346 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2347 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2348 bus_dma_tag_destroy(dd->dd_dmat);
2349
2350 STAILQ_FOREACH(bf, head, bf_list) {
2351 if (bf->bf_m) {
2352 m_freem(bf->bf_m);
2353 bf->bf_m = NULL;
2354 }
2355 if (bf->bf_dmamap != NULL) {
2356 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2357 bf->bf_dmamap = NULL;
2358 }
2359 ni = bf->bf_node;
2360 bf->bf_node = NULL;
2361 if (ni != NULL) {
2362 /*
2363 * Reclaim node reference.
2364 */
2365 ieee80211_free_node(ni);
2366 }
2367 }
2368
2369 STAILQ_INIT(head);
2370 free(dd->dd_bufptr, M_ATHDEV);
2371 memset(dd, 0, sizeof(*dd));
2372 }
2373
2374 static int
2375 ath_desc_alloc(struct ath_softc *sc)
2376 {
2377 int error;
2378
2379 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2380 "rx", ATH_RXBUF, 1);
2381 if (error != 0)
2382 return error;
2383
2384 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2385 "tx", ATH_TXBUF, ATH_TXDESC);
2386 if (error != 0) {
2387 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2388 return error;
2389 }
2390
2391 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2392 "beacon", 1, 1);
2393 if (error != 0) {
2394 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2395 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2396 return error;
2397 }
2398 return 0;
2399 }
2400
2401 static void
2402 ath_desc_free(struct ath_softc *sc)
2403 {
2404
2405 if (sc->sc_bdma.dd_desc_len != 0)
2406 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2407 if (sc->sc_txdma.dd_desc_len != 0)
2408 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2409 if (sc->sc_rxdma.dd_desc_len != 0)
2410 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2411 }
2412
2413 static struct ieee80211_node *
2414 ath_node_alloc(struct ieee80211_node_table *nt)
2415 {
2416 struct ieee80211com *ic = nt->nt_ic;
2417 struct ath_softc *sc = ic->ic_ifp->if_softc;
2418 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2419 struct ath_node *an;
2420
2421 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2422 if (an == NULL) {
2423 /* XXX stat+msg */
2424 return NULL;
2425 }
2426 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2427 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2428 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2429 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2430 ath_rate_node_init(sc, an);
2431
2432 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2433 return &an->an_node;
2434 }
2435
2436 static void
2437 ath_node_free(struct ieee80211_node *ni)
2438 {
2439 struct ieee80211com *ic = ni->ni_ic;
2440 struct ath_softc *sc = ic->ic_ifp->if_softc;
2441
2442 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2443
2444 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2445 sc->sc_node_free(ni);
2446 }
2447
2448 static u_int8_t
2449 ath_node_getrssi(const struct ieee80211_node *ni)
2450 {
2451 #define HAL_EP_RND(x, mul) \
2452 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2453 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2454 int32_t rssi;
2455
2456 /*
2457 * When only one frame is received there will be no state in
2458 * avgrssi so fallback on the value recorded by the 802.11 layer.
2459 */
2460 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2461 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2462 else
2463 rssi = ni->ni_rssi;
2464 /* NB: theoretically we shouldn't need this, but be paranoid */
2465 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2466 #undef HAL_EP_RND
2467 }
2468
2469 static int
2470 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2471 {
2472 struct ath_hal *ah = sc->sc_ah;
2473 int error;
2474 struct mbuf *m;
2475 struct ath_desc *ds;
2476
2477 m = bf->bf_m;
2478 if (m == NULL) {
2479 /*
2480 * NB: by assigning a page to the rx dma buffer we
2481 * implicitly satisfy the Atheros requirement that
2482 * this buffer be cache-line-aligned and sized to be
2483 * multiple of the cache line size. Not doing this
2484 * causes weird stuff to happen (for the 5210 at least).
2485 */
2486 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2487 if (m == NULL) {
2488 DPRINTF(sc, ATH_DEBUG_ANY,
2489 "%s: no mbuf/cluster\n", __func__);
2490 sc->sc_stats.ast_rx_nombuf++;
2491 return ENOMEM;
2492 }
2493 bf->bf_m = m;
2494 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2495
2496 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2497 bf->bf_dmamap, m,
2498 bf->bf_segs, &bf->bf_nseg,
2499 BUS_DMA_NOWAIT);
2500 if (error != 0) {
2501 DPRINTF(sc, ATH_DEBUG_ANY,
2502 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2503 __func__, error);
2504 sc->sc_stats.ast_rx_busdma++;
2505 return error;
2506 }
2507 KASSERT(bf->bf_nseg == 1,
2508 ("multi-segment packet; nseg %u", bf->bf_nseg));
2509 }
2510 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2511
2512 /*
2513 * Setup descriptors. For receive we always terminate
2514 * the descriptor list with a self-linked entry so we'll
2515 * not get overrun under high load (as can happen with a
2516 * 5212 when ANI processing enables PHY error frames).
2517 *
2518 * To insure the last descriptor is self-linked we create
2519 * each descriptor as self-linked and add it to the end. As
2520 * each additional descriptor is added the previous self-linked
2521 * entry is ``fixed'' naturally. This should be safe even
2522 * if DMA is happening. When processing RX interrupts we
2523 * never remove/process the last, self-linked, entry on the
2524 * descriptor list. This insures the hardware always has
2525 * someplace to write a new frame.
2526 */
2527 ds = bf->bf_desc;
2528 ds->ds_link = bf->bf_daddr; /* link to self */
2529 ds->ds_data = bf->bf_segs[0].ds_addr;
2530 ath_hal_setuprxdesc(ah, ds
2531 , m->m_len /* buffer size */
2532 , 0
2533 );
2534
2535 if (sc->sc_rxlink != NULL)
2536 *sc->sc_rxlink = bf->bf_daddr;
2537 sc->sc_rxlink = &ds->ds_link;
2538 return 0;
2539 }
2540
2541 /*
2542 * Extend 15-bit time stamp from rx descriptor to
2543 * a full 64-bit TSF using the current h/w TSF.
2544 */
2545 static __inline u_int64_t
2546 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2547 {
2548 u_int64_t tsf;
2549
2550 tsf = ath_hal_gettsf64(ah);
2551 if ((tsf & 0x7fff) < rstamp)
2552 tsf -= 0x8000;
2553 return ((tsf &~ 0x7fff) | rstamp);
2554 }
2555
2556 /*
2557 * Intercept management frames to collect beacon rssi data
2558 * and to do ibss merges.
2559 */
2560 static void
2561 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2562 struct ieee80211_node *ni,
2563 int subtype, int rssi, u_int32_t rstamp)
2564 {
2565 struct ath_softc *sc = ic->ic_ifp->if_softc;
2566
2567 /*
2568 * Call up first so subsequent work can use information
2569 * potentially stored in the node (e.g. for ibss merge).
2570 */
2571 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2572 switch (subtype) {
2573 case IEEE80211_FC0_SUBTYPE_BEACON:
2574 /* update rssi statistics for use by the hal */
2575 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2576 /* fall thru... */
2577 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2578 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2579 ic->ic_state == IEEE80211_S_RUN) {
2580 u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2581 /*
2582 * Handle ibss merge as needed; check the tsf on the
2583 * frame before attempting the merge. The 802.11 spec
2584 * says the station should change it's bssid to match
2585 * the oldest station with the same ssid, where oldest
2586 * is determined by the tsf. Note that hardware
2587 * reconfiguration happens through callback to
2588 * ath_newstate as the state machine will go from
2589 * RUN -> RUN when this happens.
2590 */
2591 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2592 DPRINTF(sc, ATH_DEBUG_STATE,
2593 "ibss merge, rstamp %u tsf %ju "
2594 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2595 (uintmax_t)ni->ni_tstamp.tsf);
2596 (void) ieee80211_ibss_merge(ni);
2597 }
2598 }
2599 break;
2600 }
2601 }
2602
2603 /*
2604 * Set the default antenna.
2605 */
2606 static void
2607 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2608 {
2609 struct ath_hal *ah = sc->sc_ah;
2610
2611 /* XXX block beacon interrupts */
2612 ath_hal_setdefantenna(ah, antenna);
2613 if (sc->sc_defant != antenna)
2614 sc->sc_stats.ast_ant_defswitch++;
2615 sc->sc_defant = antenna;
2616 sc->sc_rxotherant = 0;
2617 }
2618
2619 static void
2620 ath_rx_proc(void *arg, int npending)
2621 {
2622 #define PA2DESC(_sc, _pa) \
2623 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2624 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2625 struct ath_softc *sc = arg;
2626 struct ath_buf *bf;
2627 struct ieee80211com *ic = &sc->sc_ic;
2628 struct ifnet *ifp = sc->sc_ifp;
2629 struct ath_hal *ah = sc->sc_ah;
2630 struct ath_desc *ds;
2631 struct mbuf *m;
2632 struct ieee80211_node *ni;
2633 struct ath_node *an;
2634 int len, type;
2635 u_int phyerr;
2636 HAL_STATUS status;
2637
2638 NET_LOCK_GIANT(); /* XXX */
2639
2640 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2641 do {
2642 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2643 if (bf == NULL) { /* NB: shouldn't happen */
2644 if_printf(ifp, "%s: no buffer!\n", __func__);
2645 break;
2646 }
2647 ds = bf->bf_desc;
2648 if (ds->ds_link == bf->bf_daddr) {
2649 /* NB: never process the self-linked entry at the end */
2650 break;
2651 }
2652 m = bf->bf_m;
2653 if (m == NULL) { /* NB: shouldn't happen */
2654 if_printf(ifp, "%s: no mbuf!\n", __func__);
2655 continue;
2656 }
2657 /* XXX sync descriptor memory */
2658 /*
2659 * Must provide the virtual address of the current
2660 * descriptor, the physical address, and the virtual
2661 * address of the next descriptor in the h/w chain.
2662 * This allows the HAL to look ahead to see if the
2663 * hardware is done with a descriptor by checking the
2664 * done bit in the following descriptor and the address
2665 * of the current descriptor the DMA engine is working
2666 * on. All this is necessary because of our use of
2667 * a self-linked list to avoid rx overruns.
2668 */
2669 status = ath_hal_rxprocdesc(ah, ds,
2670 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2671 #ifdef AR_DEBUG
2672 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2673 ath_printrxbuf(bf, status == HAL_OK);
2674 #endif
2675 if (status == HAL_EINPROGRESS)
2676 break;
2677 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2678 if (ds->ds_rxstat.rs_more) {
2679 /*
2680 * Frame spans multiple descriptors; this
2681 * cannot happen yet as we don't support
2682 * jumbograms. If not in monitor mode,
2683 * discard the frame.
2684 */
2685 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2686 sc->sc_stats.ast_rx_toobig++;
2687 goto rx_next;
2688 }
2689 /* fall thru for monitor mode handling... */
2690 } else if (ds->ds_rxstat.rs_status != 0) {
2691 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2692 sc->sc_stats.ast_rx_crcerr++;
2693 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2694 sc->sc_stats.ast_rx_fifoerr++;
2695 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2696 sc->sc_stats.ast_rx_phyerr++;
2697 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2698 sc->sc_stats.ast_rx_phy[phyerr]++;
2699 goto rx_next;
2700 }
2701 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2702 /*
2703 * Decrypt error. If the error occurred
2704 * because there was no hardware key, then
2705 * let the frame through so the upper layers
2706 * can process it. This is necessary for 5210
2707 * parts which have no way to setup a ``clear''
2708 * key cache entry.
2709 *
2710 * XXX do key cache faulting
2711 */
2712 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2713 goto rx_accept;
2714 sc->sc_stats.ast_rx_badcrypt++;
2715 }
2716 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2717 sc->sc_stats.ast_rx_badmic++;
2718 /*
2719 * Do minimal work required to hand off
2720 * the 802.11 header for notifcation.
2721 */
2722 /* XXX frag's and qos frames */
2723 len = ds->ds_rxstat.rs_datalen;
2724 if (len >= sizeof (struct ieee80211_frame)) {
2725 bus_dmamap_sync(sc->sc_dmat,
2726 bf->bf_dmamap,
2727 BUS_DMASYNC_POSTREAD);
2728 ieee80211_notify_michael_failure(ic,
2729 mtod(m, struct ieee80211_frame *),
2730 sc->sc_splitmic ?
2731 ds->ds_rxstat.rs_keyix-32 :
2732 ds->ds_rxstat.rs_keyix
2733 );
2734 }
2735 }
2736 ifp->if_ierrors++;
2737 /*
2738 * Reject error frames, we normally don't want
2739 * to see them in monitor mode (in monitor mode
2740 * allow through packets that have crypto problems).
2741 */
2742 if ((ds->ds_rxstat.rs_status &~
2743 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2744 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2745 goto rx_next;
2746 }
2747 rx_accept:
2748 /*
2749 * Sync and unmap the frame. At this point we're
2750 * committed to passing the mbuf somewhere so clear
2751 * bf_m; this means a new sk_buff must be allocated
2752 * when the rx descriptor is setup again to receive
2753 * another frame.
2754 */
2755 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2756 BUS_DMASYNC_POSTREAD);
2757 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2758 bf->bf_m = NULL;
2759
2760 m->m_pkthdr.rcvif = ifp;
2761 len = ds->ds_rxstat.rs_datalen;
2762 m->m_pkthdr.len = m->m_len = len;
2763
2764 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2765
2766 if (sc->sc_drvbpf) {
2767 u_int8_t rix;
2768
2769 /*
2770 * Discard anything shorter than an ack or cts.
2771 */
2772 if (len < IEEE80211_ACK_LEN) {
2773 DPRINTF(sc, ATH_DEBUG_RECV,
2774 "%s: runt packet %d\n",
2775 __func__, len);
2776 sc->sc_stats.ast_rx_tooshort++;
2777 m_freem(m);
2778 goto rx_next;
2779 }
2780 rix = ds->ds_rxstat.rs_rate;
2781 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2782 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2783 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2784 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2785 /* XXX TSF */
2786
2787 bpf_mtap2(sc->sc_drvbpf,
2788 &sc->sc_rx_th, sc->sc_rx_th_len, m);
2789 }
2790
2791 /*
2792 * From this point on we assume the frame is at least
2793 * as large as ieee80211_frame_min; verify that.
2794 */
2795 if (len < IEEE80211_MIN_LEN) {
2796 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2797 __func__, len);
2798 sc->sc_stats.ast_rx_tooshort++;
2799 m_freem(m);
2800 goto rx_next;
2801 }
2802
2803 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2804 ieee80211_dump_pkt(mtod(m, caddr_t), len,
2805 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2806 ds->ds_rxstat.rs_rssi);
2807 }
2808
2809 m_adj(m, -IEEE80211_CRC_LEN);
2810
2811 /*
2812 * Locate the node for sender, track state, and then
2813 * pass the (referenced) node up to the 802.11 layer
2814 * for its use.
2815 */
2816 ni = ieee80211_find_rxnode_withkey(ic,
2817 mtod(m, const struct ieee80211_frame_min *),
2818 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2819 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2820 /*
2821 * Track rx rssi and do any rx antenna management.
2822 */
2823 an = ATH_NODE(ni);
2824 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2825 /*
2826 * Send frame up for processing.
2827 */
2828 type = ieee80211_input(ic, m, ni,
2829 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2830 ieee80211_free_node(ni);
2831 if (sc->sc_diversity) {
2832 /*
2833 * When using fast diversity, change the default rx
2834 * antenna if diversity chooses the other antenna 3
2835 * times in a row.
2836 */
2837 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2838 if (++sc->sc_rxotherant >= 3)
2839 ath_setdefantenna(sc,
2840 ds->ds_rxstat.rs_antenna);
2841 } else
2842 sc->sc_rxotherant = 0;
2843 }
2844 if (sc->sc_softled) {
2845 /*
2846 * Blink for any data frame. Otherwise do a
2847 * heartbeat-style blink when idle. The latter
2848 * is mainly for station mode where we depend on
2849 * periodic beacon frames to trigger the poll event.
2850 */
2851 if (type == IEEE80211_FC0_TYPE_DATA) {
2852 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2853 ath_led_event(sc, ATH_LED_RX);
2854 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2855 ath_led_event(sc, ATH_LED_POLL);
2856 }
2857 rx_next:
2858 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2859 } while (ath_rxbuf_init(sc, bf) == 0);
2860
2861 /* rx signal state monitoring */
2862 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2863
2864 NET_UNLOCK_GIANT(); /* XXX */
2865 #undef PA2DESC
2866 }
2867
2868 /*
2869 * Setup a h/w transmit queue.
2870 */
2871 static struct ath_txq *
2872 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2873 {
2874 #define N(a) (sizeof(a)/sizeof(a[0]))
2875 struct ath_hal *ah = sc->sc_ah;
2876 HAL_TXQ_INFO qi;
2877 int qnum;
2878
2879 memset(&qi, 0, sizeof(qi));
2880 qi.tqi_subtype = subtype;
2881 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2882 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2883 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2884 /*
2885 * Enable interrupts only for EOL and DESC conditions.
2886 * We mark tx descriptors to receive a DESC interrupt
2887 * when a tx queue gets deep; otherwise waiting for the
2888 * EOL to reap descriptors. Note that this is done to
2889 * reduce interrupt load and this only defers reaping
2890 * descriptors, never transmitting frames. Aside from
2891 * reducing interrupts this also permits more concurrency.
2892 * The only potential downside is if the tx queue backs
2893 * up in which case the top half of the kernel may backup
2894 * due to a lack of tx descriptors.
2895 */
2896 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2897 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2898 if (qnum == -1) {
2899 /*
2900 * NB: don't print a message, this happens
2901 * normally on parts with too few tx queues
2902 */
2903 return NULL;
2904 }
2905 if (qnum >= N(sc->sc_txq)) {
2906 device_printf(sc->sc_dev,
2907 "hal qnum %u out of range, max %zu!\n",
2908 qnum, N(sc->sc_txq));
2909 ath_hal_releasetxqueue(ah, qnum);
2910 return NULL;
2911 }
2912 if (!ATH_TXQ_SETUP(sc, qnum)) {
2913 struct ath_txq *txq = &sc->sc_txq[qnum];
2914
2915 txq->axq_qnum = qnum;
2916 txq->axq_depth = 0;
2917 txq->axq_intrcnt = 0;
2918 txq->axq_link = NULL;
2919 STAILQ_INIT(&txq->axq_q);
2920 ATH_TXQ_LOCK_INIT(sc, txq);
2921 sc->sc_txqsetup |= 1<<qnum;
2922 }
2923 return &sc->sc_txq[qnum];
2924 #undef N
2925 }
2926
2927 /*
2928 * Setup a hardware data transmit queue for the specified
2929 * access control. The hal may not support all requested
2930 * queues in which case it will return a reference to a
2931 * previously setup queue. We record the mapping from ac's
2932 * to h/w queues for use by ath_tx_start and also track
2933 * the set of h/w queues being used to optimize work in the
2934 * transmit interrupt handler and related routines.
2935 */
2936 static int
2937 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2938 {
2939 #define N(a) (sizeof(a)/sizeof(a[0]))
2940 struct ath_txq *txq;
2941
2942 if (ac >= N(sc->sc_ac2q)) {
2943 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2944 ac, N(sc->sc_ac2q));
2945 return 0;
2946 }
2947 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2948 if (txq != NULL) {
2949 sc->sc_ac2q[ac] = txq;
2950 return 1;
2951 } else
2952 return 0;
2953 #undef N
2954 }
2955
2956 /*
2957 * Update WME parameters for a transmit queue.
2958 */
2959 static int
2960 ath_txq_update(struct ath_softc *sc, int ac)
2961 {
2962 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
2963 #define ATH_TXOP_TO_US(v) (v<<5)
2964 struct ieee80211com *ic = &sc->sc_ic;
2965 struct ath_txq *txq = sc->sc_ac2q[ac];
2966 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2967 struct ath_hal *ah = sc->sc_ah;
2968 HAL_TXQ_INFO qi;
2969
2970 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2971 qi.tqi_aifs = wmep->wmep_aifsn;
2972 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2973 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2974 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2975
2976 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
2977 device_printf(sc->sc_dev, "unable to update hardware queue "
2978 "parameters for %s traffic!\n",
2979 ieee80211_wme_acnames[ac]);
2980 return 0;
2981 } else {
2982 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
2983 return 1;
2984 }
2985 #undef ATH_TXOP_TO_US
2986 #undef ATH_EXPONENT_TO_VALUE
2987 }
2988
2989 /*
2990 * Callback from the 802.11 layer to update WME parameters.
2991 */
2992 static int
2993 ath_wme_update(struct ieee80211com *ic)
2994 {
2995 struct ath_softc *sc = ic->ic_ifp->if_softc;
2996
2997 return !ath_txq_update(sc, WME_AC_BE) ||
2998 !ath_txq_update(sc, WME_AC_BK) ||
2999 !ath_txq_update(sc, WME_AC_VI) ||
3000 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3001 }
3002
3003 /*
3004 * Reclaim resources for a setup queue.
3005 */
3006 static void
3007 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3008 {
3009
3010 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3011 ATH_TXQ_LOCK_DESTROY(txq);
3012 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3013 }
3014
3015 /*
3016 * Reclaim all tx queue resources.
3017 */
3018 static void
3019 ath_tx_cleanup(struct ath_softc *sc)
3020 {
3021 int i;
3022
3023 ATH_TXBUF_LOCK_DESTROY(sc);
3024 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3025 if (ATH_TXQ_SETUP(sc, i))
3026 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3027 }
3028
3029 /*
3030 * Defragment an mbuf chain, returning at most maxfrags separate
3031 * mbufs+clusters. If this is not possible NULL is returned and
3032 * the original mbuf chain is left in it's present (potentially
3033 * modified) state. We use two techniques: collapsing consecutive
3034 * mbufs and replacing consecutive mbufs by a cluster.
3035 */
3036 static struct mbuf *
3037 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3038 {
3039 struct mbuf *m, *n, *n2, **prev;
3040 u_int curfrags;
3041
3042 /*
3043 * Calculate the current number of frags.
3044 */
3045 curfrags = 0;
3046 for (m = m0; m != NULL; m = m->m_next)
3047 curfrags++;
3048 /*
3049 * First, try to collapse mbufs. Note that we always collapse
3050 * towards the front so we don't need to deal with moving the
3051 * pkthdr. This may be suboptimal if the first mbuf has much
3052 * less data than the following.
3053 */
3054 m = m0;
3055 again:
3056 for (;;) {
3057 n = m->m_next;
3058 if (n == NULL)
3059 break;
3060 if ((m->m_flags & M_RDONLY) == 0 &&
3061 n->m_len < M_TRAILINGSPACE(m)) {
3062 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3063 n->m_len);
3064 m->m_len += n->m_len;
3065 m->m_next = n->m_next;
3066 m_free(n);
3067 if (--curfrags <= maxfrags)
3068 return m0;
3069 } else
3070 m = n;
3071 }
3072 KASSERT(maxfrags > 1,
3073 ("maxfrags %u, but normal collapse failed", maxfrags));
3074 /*
3075 * Collapse consecutive mbufs to a cluster.
3076 */
3077 prev = &m0->m_next; /* NB: not the first mbuf */
3078 while ((n = *prev) != NULL) {
3079 if ((n2 = n->m_next) != NULL &&
3080 n->m_len + n2->m_len < MCLBYTES) {
3081 m = m_getcl(how, MT_DATA, 0);
3082 if (m == NULL)
3083 goto bad;
3084 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3085 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3086 n2->m_len);
3087 m->m_len = n->m_len + n2->m_len;
3088 m->m_next = n2->m_next;
3089 *prev = m;
3090 m_free(n);
3091 m_free(n2);
3092 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3093 return m0;
3094 /*
3095 * Still not there, try the normal collapse
3096 * again before we allocate another cluster.
3097 */
3098 goto again;
3099 }
3100 prev = &n->m_next;
3101 }
3102 /*
3103 * No place where we can collapse to a cluster; punt.
3104 * This can occur if, for example, you request 2 frags
3105 * but the packet requires that both be clusters (we
3106 * never reallocate the first mbuf to avoid moving the
3107 * packet header).
3108 */
3109 bad:
3110 return NULL;
3111 }
3112
3113 static int
3114 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3115 struct mbuf *m0)
3116 {
3117 #define CTS_DURATION \
3118 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3119 #define updateCTSForBursting(_ah, _ds, _txq) \
3120 ath_hal_updateCTSForBursting(_ah, _ds, \
3121 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3122 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3123 txopLimit, CTS_DURATION)
3124 struct ieee80211com *ic = &sc->sc_ic;
3125 struct ath_hal *ah = sc->sc_ah;
3126 struct ifnet *ifp = sc->sc_ifp;
3127 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3128 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3129 u_int8_t rix, txrate, ctsrate;
3130 u_int8_t cix = 0xff; /* NB: silence compiler */
3131 struct ath_desc *ds, *ds0;
3132 struct ath_txq *txq;
3133 struct ieee80211_frame *wh;
3134 u_int subtype, flags, ctsduration;
3135 HAL_PKT_TYPE atype;
3136 const HAL_RATE_TABLE *rt;
3137 HAL_BOOL shortPreamble;
3138 struct ath_node *an;
3139 struct mbuf *m;
3140 u_int pri;
3141
3142 wh = mtod(m0, struct ieee80211_frame *);
3143 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3144 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3145 hdrlen = ieee80211_anyhdrsize(wh);
3146 /*
3147 * Packet length must not include any
3148 * pad bytes; deduct them here.
3149 */
3150 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3151
3152 if (iswep) {
3153 const struct ieee80211_cipher *cip;
3154 struct ieee80211_key *k;
3155
3156 /*
3157 * Construct the 802.11 header+trailer for an encrypted
3158 * frame. The only reason this can fail is because of an
3159 * unknown or unsupported cipher/key type.
3160 */
3161 k = ieee80211_crypto_encap(ic, ni, m0);
3162 if (k == NULL) {
3163 /*
3164 * This can happen when the key is yanked after the
3165 * frame was queued. Just discard the frame; the
3166 * 802.11 layer counts failures and provides
3167 * debugging/diagnostics.
3168 */
3169 m_freem(m0);
3170 return EIO;
3171 }
3172 /*
3173 * Adjust the packet + header lengths for the crypto
3174 * additions and calculate the h/w key index. When
3175 * a s/w mic is done the frame will have had any mic
3176 * added to it prior to entry so skb->len above will
3177 * account for it. Otherwise we need to add it to the
3178 * packet length.
3179 */
3180 cip = k->wk_cipher;
3181 hdrlen += cip->ic_header;
3182 pktlen += cip->ic_header + cip->ic_trailer;
3183 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3184 pktlen += cip->ic_miclen;
3185 keyix = k->wk_keyix;
3186
3187 /* packet header may have moved, reset our local pointer */
3188 wh = mtod(m0, struct ieee80211_frame *);
3189 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3190 /*
3191 * Use station key cache slot, if assigned.
3192 */
3193 keyix = ni->ni_ucastkey.wk_keyix;
3194 if (keyix == IEEE80211_KEYIX_NONE)
3195 keyix = HAL_TXKEYIX_INVALID;
3196 } else
3197 keyix = HAL_TXKEYIX_INVALID;
3198
3199 pktlen += IEEE80211_CRC_LEN;
3200
3201 /*
3202 * Load the DMA map so any coalescing is done. This
3203 * also calculates the number of descriptors we need.
3204 */
3205 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3206 bf->bf_segs, &bf->bf_nseg,
3207 BUS_DMA_NOWAIT);
3208 if (error == EFBIG) {
3209 /* XXX packet requires too many descriptors */
3210 bf->bf_nseg = ATH_TXDESC+1;
3211 } else if (error != 0) {
3212 sc->sc_stats.ast_tx_busdma++;
3213 m_freem(m0);
3214 return error;
3215 }
3216 /*
3217 * Discard null packets and check for packets that
3218 * require too many TX descriptors. We try to convert
3219 * the latter to a cluster.
3220 */
3221 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
3222 sc->sc_stats.ast_tx_linear++;
3223 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3224 if (m == NULL) {
3225 m_freem(m0);
3226 sc->sc_stats.ast_tx_nombuf++;
3227 return ENOMEM;
3228 }
3229 m0 = m;
3230 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3231 bf->bf_segs, &bf->bf_nseg,
3232 BUS_DMA_NOWAIT);
3233 if (error != 0) {
3234 sc->sc_stats.ast_tx_busdma++;
3235 m_freem(m0);
3236 return error;
3237 }
3238 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3239 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3240 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3241 sc->sc_stats.ast_tx_nodata++;
3242 m_freem(m0);
3243 return EIO;
3244 }
3245 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3246 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3247 bf->bf_m = m0;
3248 bf->bf_node = ni; /* NB: held reference */
3249
3250 /* setup descriptors */
3251 ds = bf->bf_desc;
3252 rt = sc->sc_currates;
3253 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3254
3255 /*
3256 * NB: the 802.11 layer marks whether or not we should
3257 * use short preamble based on the current mode and
3258 * negotiated parameters.
3259 */
3260 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3261 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3262 shortPreamble = AH_TRUE;
3263 sc->sc_stats.ast_tx_shortpre++;
3264 } else {
3265 shortPreamble = AH_FALSE;
3266 }
3267
3268 an = ATH_NODE(ni);
3269 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3270 /*
3271 * Calculate Atheros packet type from IEEE80211 packet header,
3272 * setup for rate calculations, and select h/w transmit queue.
3273 */
3274 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3275 case IEEE80211_FC0_TYPE_MGT:
3276 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3277 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3278 atype = HAL_PKT_TYPE_BEACON;
3279 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3280 atype = HAL_PKT_TYPE_PROBE_RESP;
3281 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3282 atype = HAL_PKT_TYPE_ATIM;
3283 else
3284 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3285 rix = 0; /* XXX lowest rate */
3286 try0 = ATH_TXMAXTRY;
3287 if (shortPreamble)
3288 txrate = an->an_tx_mgtratesp;
3289 else
3290 txrate = an->an_tx_mgtrate;
3291 /* NB: force all management frames to highest queue */
3292 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3293 /* NB: force all management frames to highest queue */
3294 pri = WME_AC_VO;
3295 } else
3296 pri = WME_AC_BE;
3297 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3298 break;
3299 case IEEE80211_FC0_TYPE_CTL:
3300 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3301 rix = 0; /* XXX lowest rate */
3302 try0 = ATH_TXMAXTRY;
3303 if (shortPreamble)
3304 txrate = an->an_tx_mgtratesp;
3305 else
3306 txrate = an->an_tx_mgtrate;
3307 /* NB: force all ctl frames to highest queue */
3308 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3309 /* NB: force all ctl frames to highest queue */
3310 pri = WME_AC_VO;
3311 } else
3312 pri = WME_AC_BE;
3313 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3314 break;
3315 case IEEE80211_FC0_TYPE_DATA:
3316 atype = HAL_PKT_TYPE_NORMAL; /* default */
3317 /*
3318 * Data frames; consult the rate control module.
3319 */
3320 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3321 &rix, &try0, &txrate);
3322 sc->sc_txrate = txrate; /* for LED blinking */
3323 /*
3324 * Default all non-QoS traffic to the background queue.
3325 */
3326 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3327 pri = M_WME_GETAC(m0);
3328 if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3329 flags |= HAL_TXDESC_NOACK;
3330 sc->sc_stats.ast_tx_noack++;
3331 }
3332 } else
3333 pri = WME_AC_BE;
3334 break;
3335 default:
3336 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3337 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3338 /* XXX statistic */
3339 m_freem(m0);
3340 return EIO;
3341 }
3342 txq = sc->sc_ac2q[pri];
3343
3344 /*
3345 * When servicing one or more stations in power-save mode
3346 * multicast frames must be buffered until after the beacon.
3347 * We use the CAB queue for that.
3348 */
3349 if (ismcast && ic->ic_ps_sta) {
3350 txq = sc->sc_cabq;
3351 /* XXX? more bit in 802.11 frame header */
3352 }
3353
3354 /*
3355 * Calculate miscellaneous flags.
3356 */
3357 if (ismcast) {
3358 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3359 sc->sc_stats.ast_tx_noack++;
3360 } else if (pktlen > ic->ic_rtsthreshold) {
3361 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3362 cix = rt->info[rix].controlRate;
3363 sc->sc_stats.ast_tx_rts++;
3364 }
3365
3366 /*
3367 * If 802.11g protection is enabled, determine whether
3368 * to use RTS/CTS or just CTS. Note that this is only
3369 * done for OFDM unicast frames.
3370 */
3371 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3372 rt->info[rix].phy == IEEE80211_T_OFDM &&
3373 (flags & HAL_TXDESC_NOACK) == 0) {
3374 /* XXX fragments must use CCK rates w/ protection */
3375 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3376 flags |= HAL_TXDESC_RTSENA;
3377 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3378 flags |= HAL_TXDESC_CTSENA;
3379 cix = rt->info[sc->sc_protrix].controlRate;
3380 sc->sc_stats.ast_tx_protect++;
3381 }
3382
3383 /*
3384 * Calculate duration. This logically belongs in the 802.11
3385 * layer but it lacks sufficient information to calculate it.
3386 */
3387 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3388 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3389 u_int16_t dur;
3390 /*
3391 * XXX not right with fragmentation.
3392 */
3393 if (shortPreamble)
3394 dur = rt->info[rix].spAckDuration;
3395 else
3396 dur = rt->info[rix].lpAckDuration;
3397 *(u_int16_t *)wh->i_dur = htole16(dur);
3398 }
3399
3400 /*
3401 * Calculate RTS/CTS rate and duration if needed.
3402 */
3403 ctsduration = 0;
3404 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3405 /*
3406 * CTS transmit rate is derived from the transmit rate
3407 * by looking in the h/w rate table. We must also factor
3408 * in whether or not a short preamble is to be used.
3409 */
3410 /* NB: cix is set above where RTS/CTS is enabled */
3411 KASSERT(cix != 0xff, ("cix not setup"));
3412 ctsrate = rt->info[cix].rateCode;
3413 /*
3414 * Compute the transmit duration based on the frame
3415 * size and the size of an ACK frame. We call into the
3416 * HAL to do the computation since it depends on the
3417 * characteristics of the actual PHY being used.
3418 *
3419 * NB: CTS is assumed the same size as an ACK so we can
3420 * use the precalculated ACK durations.
3421 */
3422 if (shortPreamble) {
3423 ctsrate |= rt->info[cix].shortPreamble;
3424 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3425 ctsduration += rt->info[cix].spAckDuration;
3426 ctsduration += ath_hal_computetxtime(ah,
3427 rt, pktlen, rix, AH_TRUE);
3428 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3429 ctsduration += rt->info[rix].spAckDuration;
3430 } else {
3431 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3432 ctsduration += rt->info[cix].lpAckDuration;
3433 ctsduration += ath_hal_computetxtime(ah,
3434 rt, pktlen, rix, AH_FALSE);
3435 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3436 ctsduration += rt->info[rix].lpAckDuration;
3437 }
3438 /*
3439 * Must disable multi-rate retry when using RTS/CTS.
3440 */
3441 try0 = ATH_TXMAXTRY;
3442 } else
3443 ctsrate = 0;
3444
3445 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3446 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3447 sc->sc_hwmap[txrate].ieeerate, -1);
3448
3449 if (ic->ic_rawbpf)
3450 bpf_mtap(ic->ic_rawbpf, m0);
3451 if (sc->sc_drvbpf) {
3452 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3453 if (iswep)
3454 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3455 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3456 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3457 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3458
3459 bpf_mtap2(sc->sc_drvbpf,
3460 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3461 }
3462
3463 /*
3464 * Determine if a tx interrupt should be generated for
3465 * this descriptor. We take a tx interrupt to reap
3466 * descriptors when the h/w hits an EOL condition or
3467 * when the descriptor is specifically marked to generate
3468 * an interrupt. We periodically mark descriptors in this
3469 * way to insure timely replenishing of the supply needed
3470 * for sending frames. Defering interrupts reduces system
3471 * load and potentially allows more concurrent work to be
3472 * done but if done to aggressively can cause senders to
3473 * backup.
3474 *
3475 * NB: use >= to deal with sc_txintrperiod changing
3476 * dynamically through sysctl.
3477 */
3478 if (flags & HAL_TXDESC_INTREQ) {
3479 txq->axq_intrcnt = 0;
3480 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3481 flags |= HAL_TXDESC_INTREQ;
3482 txq->axq_intrcnt = 0;
3483 }
3484
3485 /*
3486 * Formulate first tx descriptor with tx controls.
3487 */
3488 /* XXX check return value? */
3489 ath_hal_setuptxdesc(ah, ds
3490 , pktlen /* packet length */
3491 , hdrlen /* header length */
3492 , atype /* Atheros packet type */
3493 , ni->ni_txpower /* txpower */
3494 , txrate, try0 /* series 0 rate/tries */
3495 , keyix /* key cache index */
3496 , sc->sc_txantenna /* antenna mode */
3497 , flags /* flags */
3498 , ctsrate /* rts/cts rate */
3499 , ctsduration /* rts/cts duration */
3500 );
3501 bf->bf_flags = flags;
3502 /*
3503 * Setup the multi-rate retry state only when we're
3504 * going to use it. This assumes ath_hal_setuptxdesc
3505 * initializes the descriptors (so we don't have to)
3506 * when the hardware supports multi-rate retry and
3507 * we don't use it.
3508 */
3509 if (try0 != ATH_TXMAXTRY)
3510 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3511
3512 /*
3513 * Fillin the remainder of the descriptor info.
3514 */
3515 ds0 = ds;
3516 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3517 ds->ds_data = bf->bf_segs[i].ds_addr;
3518 if (i == bf->bf_nseg - 1)
3519 ds->ds_link = 0;
3520 else
3521 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3522 ath_hal_filltxdesc(ah, ds
3523 , bf->bf_segs[i].ds_len /* segment length */
3524 , i == 0 /* first segment */
3525 , i == bf->bf_nseg - 1 /* last segment */
3526 , ds0 /* first descriptor */
3527 );
3528 DPRINTF(sc, ATH_DEBUG_XMIT,
3529 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3530 __func__, i, ds->ds_link, ds->ds_data,
3531 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3532 }
3533 /*
3534 * Insert the frame on the outbound list and
3535 * pass it on to the hardware.
3536 */
3537 ATH_TXQ_LOCK(txq);
3538 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3539 u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3540 cap->cap_wmeParams[pri].wmep_txopLimit);
3541 /*
3542 * When bursting, potentially extend the CTS duration
3543 * of a previously queued frame to cover this frame
3544 * and not exceed the txopLimit. If that can be done
3545 * then disable RTS/CTS on this frame since it's now
3546 * covered (burst extension). Otherwise we must terminate
3547 * the burst before this frame goes out so as not to
3548 * violate the WME parameters. All this is complicated
3549 * as we need to update the state of packets on the
3550 * (live) hardware queue. The logic is buried in the hal
3551 * because it's highly chip-specific.
3552 */
3553 if (txopLimit != 0) {
3554 sc->sc_stats.ast_tx_ctsburst++;
3555 if (updateCTSForBursting(ah, ds0, txq) == 0) {
3556 /*
3557 * This frame was not covered by RTS/CTS from
3558 * the previous frame in the burst; update the
3559 * descriptor pointers so this frame is now
3560 * treated as the last frame for extending a
3561 * burst.
3562 */
3563 txq->axq_lastdsWithCTS = ds0;
3564 /* set gating Desc to final desc */
3565 txq->axq_gatingds =
3566 (struct ath_desc *)txq->axq_link;
3567 } else
3568 sc->sc_stats.ast_tx_ctsext++;
3569 }
3570 }
3571 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3572 if (txq->axq_link == NULL) {
3573 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3574 DPRINTF(sc, ATH_DEBUG_XMIT,
3575 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3576 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3577 txq->axq_depth);
3578 } else {
3579 *txq->axq_link = bf->bf_daddr;
3580 DPRINTF(sc, ATH_DEBUG_XMIT,
3581 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3582 txq->axq_qnum, txq->axq_link,
3583 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3584 }
3585 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3586 /*
3587 * The CAB queue is started from the SWBA handler since
3588 * frames only go out on DTIM and to avoid possible races.
3589 */
3590 if (txq != sc->sc_cabq)
3591 ath_hal_txstart(ah, txq->axq_qnum);
3592 ATH_TXQ_UNLOCK(txq);
3593
3594 return 0;
3595 #undef updateCTSForBursting
3596 #undef CTS_DURATION
3597 }
3598
3599 /*
3600 * Process completed xmit descriptors from the specified queue.
3601 */
3602 static void
3603 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3604 {
3605 struct ath_hal *ah = sc->sc_ah;
3606 struct ieee80211com *ic = &sc->sc_ic;
3607 struct ath_buf *bf;
3608 struct ath_desc *ds, *ds0;
3609 struct ieee80211_node *ni;
3610 struct ath_node *an;
3611 int sr, lr, pri;
3612 HAL_STATUS status;
3613
3614 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3615 __func__, txq->axq_qnum,
3616 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3617 txq->axq_link);
3618 for (;;) {
3619 ATH_TXQ_LOCK(txq);
3620 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
3621 bf = STAILQ_FIRST(&txq->axq_q);
3622 if (bf == NULL) {
3623 txq->axq_link = NULL;
3624 ATH_TXQ_UNLOCK(txq);
3625 break;
3626 }
3627 ds0 = &bf->bf_desc[0];
3628 ds = &bf->bf_desc[bf->bf_nseg - 1];
3629 status = ath_hal_txprocdesc(ah, ds);
3630 #ifdef AR_DEBUG
3631 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3632 ath_printtxbuf(bf, status == HAL_OK);
3633 #endif
3634 if (status == HAL_EINPROGRESS) {
3635 ATH_TXQ_UNLOCK(txq);
3636 break;
3637 }
3638 if (ds0 == txq->axq_lastdsWithCTS)
3639 txq->axq_lastdsWithCTS = NULL;
3640 if (ds == txq->axq_gatingds)
3641 txq->axq_gatingds = NULL;
3642 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3643 ATH_TXQ_UNLOCK(txq);
3644
3645 ni = bf->bf_node;
3646 if (ni != NULL) {
3647 an = ATH_NODE(ni);
3648 if (ds->ds_txstat.ts_status == 0) {
3649 u_int8_t txant = ds->ds_txstat.ts_antenna;
3650 sc->sc_stats.ast_ant_tx[txant]++;
3651 sc->sc_ant_tx[txant]++;
3652 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3653 sc->sc_stats.ast_tx_altrate++;
3654 sc->sc_stats.ast_tx_rssi =
3655 ds->ds_txstat.ts_rssi;
3656 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3657 ds->ds_txstat.ts_rssi);
3658 pri = M_WME_GETAC(bf->bf_m);
3659 if (pri >= WME_AC_VO)
3660 ic->ic_wme.wme_hipri_traffic++;
3661 ni->ni_inact = ni->ni_inact_reload;
3662 } else {
3663 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3664 sc->sc_stats.ast_tx_xretries++;
3665 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3666 sc->sc_stats.ast_tx_fifoerr++;
3667 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3668 sc->sc_stats.ast_tx_filtered++;
3669 }
3670 sr = ds->ds_txstat.ts_shortretry;
3671 lr = ds->ds_txstat.ts_longretry;
3672 sc->sc_stats.ast_tx_shortretry += sr;
3673 sc->sc_stats.ast_tx_longretry += lr;
3674 /*
3675 * Hand the descriptor to the rate control algorithm.
3676 */
3677 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3678 (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3679 ath_rate_tx_complete(sc, an, ds, ds0);
3680 /*
3681 * Reclaim reference to node.
3682 *
3683 * NB: the node may be reclaimed here if, for example
3684 * this is a DEAUTH message that was sent and the
3685 * node was timed out due to inactivity.
3686 */
3687 ieee80211_free_node(ni);
3688 }
3689 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3690 BUS_DMASYNC_POSTWRITE);
3691 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3692 m_freem(bf->bf_m);
3693 bf->bf_m = NULL;
3694 bf->bf_node = NULL;
3695
3696 ATH_TXBUF_LOCK(sc);
3697 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3698 ATH_TXBUF_UNLOCK(sc);
3699 }
3700 }
3701
3702 /*
3703 * Deferred processing of transmit interrupt; special-cased
3704 * for a single hardware transmit queue (e.g. 5210 and 5211).
3705 */
3706 static void
3707 ath_tx_proc_q0(void *arg, int npending)
3708 {
3709 struct ath_softc *sc = arg;
3710 struct ifnet *ifp = sc->sc_ifp;
3711
3712 ath_tx_processq(sc, &sc->sc_txq[0]);
3713 ath_tx_processq(sc, sc->sc_cabq);
3714 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3715 sc->sc_tx_timer = 0;
3716
3717 if (sc->sc_softled)
3718 ath_led_event(sc, ATH_LED_TX);
3719
3720 ath_start(ifp);
3721 }
3722
3723 /*
3724 * Deferred processing of transmit interrupt; special-cased
3725 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3726 */
3727 static void
3728 ath_tx_proc_q0123(void *arg, int npending)
3729 {
3730 struct ath_softc *sc = arg;
3731 struct ifnet *ifp = sc->sc_ifp;
3732
3733 /*
3734 * Process each active queue.
3735 */
3736 ath_tx_processq(sc, &sc->sc_txq[0]);
3737 ath_tx_processq(sc, &sc->sc_txq[1]);
3738 ath_tx_processq(sc, &sc->sc_txq[2]);
3739 ath_tx_processq(sc, &sc->sc_txq[3]);
3740 ath_tx_processq(sc, sc->sc_cabq);
3741
3742 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3743 sc->sc_tx_timer = 0;
3744
3745 if (sc->sc_softled)
3746 ath_led_event(sc, ATH_LED_TX);
3747
3748 ath_start(ifp);
3749 }
3750
3751 /*
3752 * Deferred processing of transmit interrupt.
3753 */
3754 static void
3755 ath_tx_proc(void *arg, int npending)
3756 {
3757 struct ath_softc *sc = arg;
3758 struct ifnet *ifp = sc->sc_ifp;
3759 int i;
3760
3761 /*
3762 * Process each active queue.
3763 */
3764 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3765 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3766 if (ATH_TXQ_SETUP(sc, i))
3767 ath_tx_processq(sc, &sc->sc_txq[i]);
3768
3769 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3770 sc->sc_tx_timer = 0;
3771
3772 if (sc->sc_softled)
3773 ath_led_event(sc, ATH_LED_TX);
3774
3775 ath_start(ifp);
3776 }
3777
3778 static void
3779 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3780 {
3781 struct ath_hal *ah = sc->sc_ah;
3782 struct ieee80211_node *ni;
3783 struct ath_buf *bf;
3784
3785 /*
3786 * NB: this assumes output has been stopped and
3787 * we do not need to block ath_tx_tasklet
3788 */
3789 for (;;) {
3790 ATH_TXQ_LOCK(txq);
3791 bf = STAILQ_FIRST(&txq->axq_q);
3792 if (bf == NULL) {
3793 txq->axq_link = NULL;
3794 ATH_TXQ_UNLOCK(txq);
3795 break;
3796 }
3797 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3798 ATH_TXQ_UNLOCK(txq);
3799 #ifdef AR_DEBUG
3800 if (sc->sc_debug & ATH_DEBUG_RESET)
3801 ath_printtxbuf(bf,
3802 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3803 #endif /* AR_DEBUG */
3804 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3805 m_freem(bf->bf_m);
3806 bf->bf_m = NULL;
3807 ni = bf->bf_node;
3808 bf->bf_node = NULL;
3809 if (ni != NULL) {
3810 /*
3811 * Reclaim node reference.
3812 */
3813 ieee80211_free_node(ni);
3814 }
3815 ATH_TXBUF_LOCK(sc);
3816 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3817 ATH_TXBUF_UNLOCK(sc);
3818 }
3819 }
3820
3821 static void
3822 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3823 {
3824 struct ath_hal *ah = sc->sc_ah;
3825
3826 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3827 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3828 __func__, txq->axq_qnum,
3829 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3830 txq->axq_link);
3831 }
3832
3833 /*
3834 * Drain the transmit queues and reclaim resources.
3835 */
3836 static void
3837 ath_draintxq(struct ath_softc *sc)
3838 {
3839 struct ath_hal *ah = sc->sc_ah;
3840 struct ifnet *ifp = sc->sc_ifp;
3841 int i;
3842
3843 /* XXX return value */
3844 if (!sc->sc_invalid) {
3845 /* don't touch the hardware if marked invalid */
3846 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3847 DPRINTF(sc, ATH_DEBUG_RESET,
3848 "%s: beacon queue %p\n", __func__,
3849 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3850 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3851 if (ATH_TXQ_SETUP(sc, i))
3852 ath_tx_stopdma(sc, &sc->sc_txq[i]);
3853 }
3854 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3855 if (ATH_TXQ_SETUP(sc, i))
3856 ath_tx_draintxq(sc, &sc->sc_txq[i]);
3857 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3858 sc->sc_tx_timer = 0;
3859 }
3860
3861 /*
3862 * Disable the receive h/w in preparation for a reset.
3863 */
3864 static void
3865 ath_stoprecv(struct ath_softc *sc)
3866 {
3867 #define PA2DESC(_sc, _pa) \
3868 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3869 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3870 struct ath_hal *ah = sc->sc_ah;
3871
3872 ath_hal_stoppcurecv(ah); /* disable PCU */
3873 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
3874 ath_hal_stopdmarecv(ah); /* disable DMA engine */
3875 DELAY(3000); /* 3ms is long enough for 1 frame */
3876 #ifdef AR_DEBUG
3877 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3878 struct ath_buf *bf;
3879
3880 printf("%s: rx queue %p, link %p\n", __func__,
3881 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3882 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3883 struct ath_desc *ds = bf->bf_desc;
3884 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3885 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3886 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3887 ath_printrxbuf(bf, status == HAL_OK);
3888 }
3889 }
3890 #endif
3891 sc->sc_rxlink = NULL; /* just in case */
3892 #undef PA2DESC
3893 }
3894
3895 /*
3896 * Enable the receive h/w following a reset.
3897 */
3898 static int
3899 ath_startrecv(struct ath_softc *sc)
3900 {
3901 struct ath_hal *ah = sc->sc_ah;
3902 struct ath_buf *bf;
3903
3904 sc->sc_rxlink = NULL;
3905 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3906 int error = ath_rxbuf_init(sc, bf);
3907 if (error != 0) {
3908 DPRINTF(sc, ATH_DEBUG_RECV,
3909 "%s: ath_rxbuf_init failed %d\n",
3910 __func__, error);
3911 return error;
3912 }
3913 }
3914
3915 bf = STAILQ_FIRST(&sc->sc_rxbuf);
3916 ath_hal_putrxbuf(ah, bf->bf_daddr);
3917 ath_hal_rxena(ah); /* enable recv descriptors */
3918 ath_mode_init(sc); /* set filters, etc. */
3919 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
3920 return 0;
3921 }
3922
3923 /*
3924 * Update internal state after a channel change.
3925 */
3926 static void
3927 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3928 {
3929 struct ieee80211com *ic = &sc->sc_ic;
3930 enum ieee80211_phymode mode;
3931 u_int16_t flags;
3932
3933 /*
3934 * Change channels and update the h/w rate map
3935 * if we're switching; e.g. 11a to 11b/g.
3936 */
3937 mode = ieee80211_chan2mode(ic, chan);
3938 if (mode != sc->sc_curmode)
3939 ath_setcurmode(sc, mode);
3940 /*
3941 * Update BPF state. NB: ethereal et. al. don't handle
3942 * merged flags well so pick a unique mode for their use.
3943 */
3944 if (IEEE80211_IS_CHAN_A(chan))
3945 flags = IEEE80211_CHAN_A;
3946 /* XXX 11g schizophrenia */
3947 else if (IEEE80211_IS_CHAN_G(chan) ||
3948 IEEE80211_IS_CHAN_PUREG(chan))
3949 flags = IEEE80211_CHAN_G;
3950 else
3951 flags = IEEE80211_CHAN_B;
3952 if (IEEE80211_IS_CHAN_T(chan))
3953 flags |= IEEE80211_CHAN_TURBO;
3954 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3955 htole16(chan->ic_freq);
3956 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3957 htole16(flags);
3958 }
3959
3960 /*
3961 * Set/change channels. If the channel is really being changed,
3962 * it's done by reseting the chip. To accomplish this we must
3963 * first cleanup any pending DMA, then restart stuff after a la
3964 * ath_init.
3965 */
3966 static int
3967 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3968 {
3969 struct ath_hal *ah = sc->sc_ah;
3970 struct ieee80211com *ic = &sc->sc_ic;
3971 HAL_CHANNEL hchan;
3972
3973 /*
3974 * Convert to a HAL channel description with
3975 * the flags constrained to reflect the current
3976 * operating mode.
3977 */
3978 hchan.channel = chan->ic_freq;
3979 hchan.channelFlags = ath_chan2flags(ic, chan);
3980
3981 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3982 __func__,
3983 ath_hal_mhz2ieee(sc->sc_curchan.channel,
3984 sc->sc_curchan.channelFlags),
3985 sc->sc_curchan.channel,
3986 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3987 if (hchan.channel != sc->sc_curchan.channel ||
3988 hchan.channelFlags != sc->sc_curchan.channelFlags) {
3989 HAL_STATUS status;
3990
3991 /*
3992 * To switch channels clear any pending DMA operations;
3993 * wait long enough for the RX fifo to drain, reset the
3994 * hardware at the new frequency, and then re-enable
3995 * the relevant bits of the h/w.
3996 */
3997 ath_hal_intrset(ah, 0); /* disable interrupts */
3998 ath_draintxq(sc); /* clear pending tx frames */
3999 ath_stoprecv(sc); /* turn off frame recv */
4000 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4001 if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
4002 "channel %u (%u Mhz)\n",
4003 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4004 return EIO;
4005 }
4006 sc->sc_curchan = hchan;
4007 ath_update_txpow(sc); /* update tx power state */
4008 sc->sc_diversity = ath_hal_getdiversity(ah);
4009
4010 /*
4011 * Re-enable rx framework.
4012 */
4013 if (ath_startrecv(sc) != 0) {
4014 if_printf(ic->ic_ifp,
4015 "ath_chan_set: unable to restart recv logic\n");
4016 return EIO;
4017 }
4018
4019 /*
4020 * Change channels and update the h/w rate map
4021 * if we're switching; e.g. 11a to 11b/g.
4022 */
4023 ic->ic_ibss_chan = chan;
4024 ath_chan_change(sc, chan);
4025
4026 /*
4027 * Re-enable interrupts.
4028 */
4029 ath_hal_intrset(ah, sc->sc_imask);
4030 }
4031 return 0;
4032 }
4033
4034 static void
4035 ath_next_scan(void *arg)
4036 {
4037 struct ath_softc *sc = arg;
4038 struct ieee80211com *ic = &sc->sc_ic;
4039
4040 if (ic->ic_state == IEEE80211_S_SCAN)
4041 ieee80211_next_scan(ic);
4042 }
4043
4044 /*
4045 * Periodically recalibrate the PHY to account
4046 * for temperature/environment changes.
4047 */
4048 static void
4049 ath_calibrate(void *arg)
4050 {
4051 struct ath_softc *sc = arg;
4052 struct ath_hal *ah = sc->sc_ah;
4053
4054 sc->sc_stats.ast_per_cal++;
4055
4056 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4057 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4058
4059 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4060 /*
4061 * Rfgain is out of bounds, reset the chip
4062 * to load new gain values.
4063 */
4064 sc->sc_stats.ast_per_rfgain++;
4065 ath_reset(sc->sc_ifp);
4066 }
4067 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4068 DPRINTF(sc, ATH_DEBUG_ANY,
4069 "%s: calibration of channel %u failed\n",
4070 __func__, sc->sc_curchan.channel);
4071 sc->sc_stats.ast_per_calfail++;
4072 }
4073 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4074 }
4075
4076 static int
4077 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4078 {
4079 struct ifnet *ifp = ic->ic_ifp;
4080 struct ath_softc *sc = ifp->if_softc;
4081 struct ath_hal *ah = sc->sc_ah;
4082 struct ieee80211_node *ni;
4083 int i, error;
4084 const u_int8_t *bssid;
4085 u_int32_t rfilt;
4086 static const HAL_LED_STATE leds[] = {
4087 HAL_LED_INIT, /* IEEE80211_S_INIT */
4088 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4089 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4090 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4091 HAL_LED_RUN, /* IEEE80211_S_RUN */
4092 };
4093
4094 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4095 ieee80211_state_name[ic->ic_state],
4096 ieee80211_state_name[nstate]);
4097
4098 callout_stop(&sc->sc_scan_ch);
4099 callout_stop(&sc->sc_cal_ch);
4100 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4101
4102 if (nstate == IEEE80211_S_INIT) {
4103 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4104 /*
4105 * NB: disable interrupts so we don't rx frames.
4106 */
4107 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4108 /*
4109 * Notify the rate control algorithm.
4110 */
4111 ath_rate_newstate(sc, nstate);
4112 goto done;
4113 }
4114 ni = ic->ic_bss;
4115 error = ath_chan_set(sc, ic->ic_curchan);
4116 if (error != 0)
4117 goto bad;
4118 rfilt = ath_calcrxfilter(sc, nstate);
4119 if (nstate == IEEE80211_S_SCAN)
4120 bssid = ifp->if_broadcastaddr;
4121 else
4122 bssid = ni->ni_bssid;
4123 ath_hal_setrxfilter(ah, rfilt);
4124 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4125 __func__, rfilt, ether_sprintf(bssid));
4126
4127 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4128 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4129 else
4130 ath_hal_setassocid(ah, bssid, 0);
4131 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4132 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4133 if (ath_hal_keyisvalid(ah, i))
4134 ath_hal_keysetmac(ah, i, bssid);
4135 }
4136
4137 /*
4138 * Notify the rate control algorithm so rates
4139 * are setup should ath_beacon_alloc be called.
4140 */
4141 ath_rate_newstate(sc, nstate);
4142
4143 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4144 /* nothing to do */;
4145 } else if (nstate == IEEE80211_S_RUN) {
4146 DPRINTF(sc, ATH_DEBUG_STATE,
4147 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4148 "capinfo=0x%04x chan=%d\n"
4149 , __func__
4150 , ic->ic_flags
4151 , ni->ni_intval
4152 , ether_sprintf(ni->ni_bssid)
4153 , ni->ni_capinfo
4154 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4155
4156 switch (ic->ic_opmode) {
4157 case IEEE80211_M_HOSTAP:
4158 case IEEE80211_M_IBSS:
4159 /*
4160 * Allocate and setup the beacon frame.
4161 *
4162 * Stop any previous beacon DMA. This may be
4163 * necessary, for example, when an ibss merge
4164 * causes reconfiguration; there will be a state
4165 * transition from RUN->RUN that means we may
4166 * be called with beacon transmission active.
4167 */
4168 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4169 ath_beacon_free(sc);
4170 error = ath_beacon_alloc(sc, ni);
4171 if (error != 0)
4172 goto bad;
4173 break;
4174 case IEEE80211_M_STA:
4175 /*
4176 * Allocate a key cache slot to the station.
4177 */
4178 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4179 sc->sc_hasclrkey &&
4180 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4181 ath_setup_stationkey(ni);
4182 break;
4183 default:
4184 break;
4185 }
4186
4187 /*
4188 * Configure the beacon and sleep timers.
4189 */
4190 ath_beacon_config(sc);
4191 } else {
4192 ath_hal_intrset(ah,
4193 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4194 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4195 }
4196 done:
4197 /*
4198 * Invoke the parent method to complete the work.
4199 */
4200 error = sc->sc_newstate(ic, nstate, arg);
4201 /*
4202 * Finally, start any timers.
4203 */
4204 if (nstate == IEEE80211_S_RUN) {
4205 /* start periodic recalibration timer */
4206 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4207 ath_calibrate, sc);
4208 } else if (nstate == IEEE80211_S_SCAN) {
4209 /* start ap/neighbor scan timer */
4210 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4211 ath_next_scan, sc);
4212 }
4213 bad:
4214 return error;
4215 }
4216
4217 /*
4218 * Allocate a key cache slot to the station so we can
4219 * setup a mapping from key index to node. The key cache
4220 * slot is needed for managing antenna state and for
4221 * compression when stations do not use crypto. We do
4222 * it uniliaterally here; if crypto is employed this slot
4223 * will be reassigned.
4224 */
4225 static void
4226 ath_setup_stationkey(struct ieee80211_node *ni)
4227 {
4228 struct ieee80211com *ic = ni->ni_ic;
4229 struct ath_softc *sc = ic->ic_ifp->if_softc;
4230 ieee80211_keyix keyix, rxkeyix;
4231
4232 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4233 /*
4234 * Key cache is full; we'll fall back to doing
4235 * the more expensive lookup in software. Note
4236 * this also means no h/w compression.
4237 */
4238 /* XXX msg+statistic */
4239 } else {
4240 /* XXX locking? */
4241 ni->ni_ucastkey.wk_keyix = keyix;
4242 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4243 /* NB: this will create a pass-thru key entry */
4244 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4245 }
4246 }
4247
4248 /*
4249 * Setup driver-specific state for a newly associated node.
4250 * Note that we're called also on a re-associate, the isnew
4251 * param tells us if this is the first time or not.
4252 */
4253 static void
4254 ath_newassoc(struct ieee80211_node *ni, int isnew)
4255 {
4256 struct ieee80211com *ic = ni->ni_ic;
4257 struct ath_softc *sc = ic->ic_ifp->if_softc;
4258
4259 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4260 if (isnew &&
4261 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4262 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4263 ("new assoc with a unicast key already setup (keyix %u)",
4264 ni->ni_ucastkey.wk_keyix));
4265 ath_setup_stationkey(ni);
4266 }
4267 }
4268
4269 static int
4270 ath_getchannels(struct ath_softc *sc, u_int cc,
4271 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4272 {
4273 struct ieee80211com *ic = &sc->sc_ic;
4274 struct ifnet *ifp = sc->sc_ifp;
4275 struct ath_hal *ah = sc->sc_ah;
4276 HAL_CHANNEL *chans;
4277 int i, ix, nchan;
4278
4279 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4280 M_TEMP, M_NOWAIT);
4281 if (chans == NULL) {
4282 if_printf(ifp, "unable to allocate channel table\n");
4283 return ENOMEM;
4284 }
4285 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4286 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4287 u_int32_t rd;
4288
4289 ath_hal_getregdomain(ah, &rd);
4290 if_printf(ifp, "unable to collect channel list from hal; "
4291 "regdomain likely %u country code %u\n", rd, cc);
4292 free(chans, M_TEMP);
4293 return EINVAL;
4294 }
4295
4296 /*
4297 * Convert HAL channels to ieee80211 ones and insert
4298 * them in the table according to their channel number.
4299 */
4300 for (i = 0; i < nchan; i++) {
4301 HAL_CHANNEL *c = &chans[i];
4302 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4303 if (ix > IEEE80211_CHAN_MAX) {
4304 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4305 ix, c->channel, c->channelFlags);
4306 continue;
4307 }
4308 /* NB: flags are known to be compatible */
4309 if (ic->ic_channels[ix].ic_freq == 0) {
4310 ic->ic_channels[ix].ic_freq = c->channel;
4311 ic->ic_channels[ix].ic_flags = c->channelFlags;
4312 } else {
4313 /* channels overlap; e.g. 11g and 11b */
4314 ic->ic_channels[ix].ic_flags |= c->channelFlags;
4315 }
4316 }
4317 free(chans, M_TEMP);
4318 return 0;
4319 }
4320
4321 static void
4322 ath_led_done(void *arg)
4323 {
4324 struct ath_softc *sc = arg;
4325
4326 sc->sc_blinking = 0;
4327 }
4328
4329 /*
4330 * Turn the LED off: flip the pin and then set a timer so no
4331 * update will happen for the specified duration.
4332 */
4333 static void
4334 ath_led_off(void *arg)
4335 {
4336 struct ath_softc *sc = arg;
4337
4338 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4339 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4340 }
4341
4342 /*
4343 * Blink the LED according to the specified on/off times.
4344 */
4345 static void
4346 ath_led_blink(struct ath_softc *sc, int on, int off)
4347 {
4348 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4349 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4350 sc->sc_blinking = 1;
4351 sc->sc_ledoff = off;
4352 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4353 }
4354
4355 static void
4356 ath_led_event(struct ath_softc *sc, int event)
4357 {
4358
4359 sc->sc_ledevent = ticks; /* time of last event */
4360 if (sc->sc_blinking) /* don't interrupt active blink */
4361 return;
4362 switch (event) {
4363 case ATH_LED_POLL:
4364 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4365 sc->sc_hwmap[0].ledoff);
4366 break;
4367 case ATH_LED_TX:
4368 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4369 sc->sc_hwmap[sc->sc_txrate].ledoff);
4370 break;
4371 case ATH_LED_RX:
4372 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4373 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4374 break;
4375 }
4376 }
4377
4378 static void
4379 ath_update_txpow(struct ath_softc *sc)
4380 {
4381 struct ieee80211com *ic = &sc->sc_ic;
4382 struct ath_hal *ah = sc->sc_ah;
4383 u_int32_t txpow;
4384
4385 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4386 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4387 /* read back in case value is clamped */
4388 ath_hal_gettxpowlimit(ah, &txpow);
4389 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4390 }
4391 /*
4392 * Fetch max tx power level for status requests.
4393 */
4394 ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4395 ic->ic_bss->ni_txpower = txpow;
4396 }
4397
4398 static int
4399 ath_rate_setup(struct ath_softc *sc, u_int mode)
4400 {
4401 struct ath_hal *ah = sc->sc_ah;
4402 struct ieee80211com *ic = &sc->sc_ic;
4403 const HAL_RATE_TABLE *rt;
4404 struct ieee80211_rateset *rs;
4405 int i, maxrates;
4406
4407 switch (mode) {
4408 case IEEE80211_MODE_11A:
4409 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4410 break;
4411 case IEEE80211_MODE_11B:
4412 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4413 break;
4414 case IEEE80211_MODE_11G:
4415 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4416 break;
4417 case IEEE80211_MODE_TURBO_A:
4418 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4419 break;
4420 case IEEE80211_MODE_TURBO_G:
4421 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4422 break;
4423 default:
4424 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4425 __func__, mode);
4426 return 0;
4427 }
4428 rt = sc->sc_rates[mode];
4429 if (rt == NULL)
4430 return 0;
4431 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4432 DPRINTF(sc, ATH_DEBUG_ANY,
4433 "%s: rate table too small (%u > %u)\n",
4434 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4435 maxrates = IEEE80211_RATE_MAXSIZE;
4436 } else
4437 maxrates = rt->rateCount;
4438 rs = &ic->ic_sup_rates[mode];
4439 for (i = 0; i < maxrates; i++)
4440 rs->rs_rates[i] = rt->info[i].dot11Rate;
4441 rs->rs_nrates = maxrates;
4442 return 1;
4443 }
4444
4445 static void
4446 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4447 {
4448 #define N(a) (sizeof(a)/sizeof(a[0]))
4449 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
4450 static const struct {
4451 u_int rate; /* tx/rx 802.11 rate */
4452 u_int16_t timeOn; /* LED on time (ms) */
4453 u_int16_t timeOff; /* LED off time (ms) */
4454 } blinkrates[] = {
4455 { 108, 40, 10 },
4456 { 96, 44, 11 },
4457 { 72, 50, 13 },
4458 { 48, 57, 14 },
4459 { 36, 67, 16 },
4460 { 24, 80, 20 },
4461 { 22, 100, 25 },
4462 { 18, 133, 34 },
4463 { 12, 160, 40 },
4464 { 10, 200, 50 },
4465 { 6, 240, 58 },
4466 { 4, 267, 66 },
4467 { 2, 400, 100 },
4468 { 0, 500, 130 },
4469 };
4470 const HAL_RATE_TABLE *rt;
4471 int i, j;
4472
4473 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4474 rt = sc->sc_rates[mode];
4475 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4476 for (i = 0; i < rt->rateCount; i++)
4477 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4478 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4479 for (i = 0; i < 32; i++) {
4480 u_int8_t ix = rt->rateCodeToIndex[i];
4481 if (ix == 0xff) {
4482 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4483 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4484 continue;
4485 }
4486 sc->sc_hwmap[i].ieeerate =
4487 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4488 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4489 if (rt->info[ix].shortPreamble ||
4490 rt->info[ix].phy == IEEE80211_T_OFDM)
4491 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4492 /* NB: receive frames include FCS */
4493 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4494 IEEE80211_RADIOTAP_F_FCS;
4495 /* setup blink rate table to avoid per-packet lookup */
4496 for (j = 0; j < N(blinkrates)-1; j++)
4497 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4498 break;
4499 /* NB: this uses the last entry if the rate isn't found */
4500 /* XXX beware of overlow */
4501 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4502 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4503 }
4504 sc->sc_currates = rt;
4505 sc->sc_curmode = mode;
4506 /*
4507 * All protection frames are transmited at 2Mb/s for
4508 * 11g, otherwise at 1Mb/s.
4509 * XXX select protection rate index from rate table.
4510 */
4511 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4512 /* NB: caller is responsible for reseting rate control state */
4513 #undef N
4514 }
4515
4516 #ifdef AR_DEBUG
4517 static void
4518 ath_printrxbuf(struct ath_buf *bf, int done)
4519 {
4520 struct ath_desc *ds;
4521 int i;
4522
4523 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4524 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4525 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4526 ds->ds_link, ds->ds_data,
4527 ds->ds_ctl0, ds->ds_ctl1,
4528 ds->ds_hw[0], ds->ds_hw[1],
4529 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4530 }
4531 }
4532
4533 static void
4534 ath_printtxbuf(struct ath_buf *bf, int done)
4535 {
4536 struct ath_desc *ds;
4537 int i;
4538
4539 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4540 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4541 i, ds, (struct ath_desc *)bf->bf_daddr + i,
4542 ds->ds_link, ds->ds_data,
4543 ds->ds_ctl0, ds->ds_ctl1,
4544 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4545 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4546 }
4547 }
4548 #endif /* AR_DEBUG */
4549
4550 static void
4551 ath_watchdog(struct ifnet *ifp)
4552 {
4553 struct ath_softc *sc = ifp->if_softc;
4554 struct ieee80211com *ic = &sc->sc_ic;
4555
4556 ifp->if_timer = 0;
4557 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
4558 return;
4559 if (sc->sc_tx_timer) {
4560 if (--sc->sc_tx_timer == 0) {
4561 if_printf(ifp, "device timeout\n");
4562 ath_reset(ifp);
4563 ifp->if_oerrors++;
4564 sc->sc_stats.ast_watchdog++;
4565 } else
4566 ifp->if_timer = 1;
4567 }
4568 ieee80211_watchdog(ic);
4569 }
4570
4571 /*
4572 * Diagnostic interface to the HAL. This is used by various
4573 * tools to do things like retrieve register contents for
4574 * debugging. The mechanism is intentionally opaque so that
4575 * it can change frequently w/o concern for compatiblity.
4576 */
4577 static int
4578 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4579 {
4580 struct ath_hal *ah = sc->sc_ah;
4581 u_int id = ad->ad_id & ATH_DIAG_ID;
4582 void *indata = NULL;
4583 void *outdata = NULL;
4584 u_int32_t insize = ad->ad_in_size;
4585 u_int32_t outsize = ad->ad_out_size;
4586 int error = 0;
4587
4588 if (ad->ad_id & ATH_DIAG_IN) {
4589 /*
4590 * Copy in data.
4591 */
4592 indata = malloc(insize, M_TEMP, M_NOWAIT);
4593 if (indata == NULL) {
4594 error = ENOMEM;
4595 goto bad;
4596 }
4597 error = copyin(ad->ad_in_data, indata, insize);
4598 if (error)
4599 goto bad;
4600 }
4601 if (ad->ad_id & ATH_DIAG_DYN) {
4602 /*
4603 * Allocate a buffer for the results (otherwise the HAL
4604 * returns a pointer to a buffer where we can read the
4605 * results). Note that we depend on the HAL leaving this
4606 * pointer for us to use below in reclaiming the buffer;
4607 * may want to be more defensive.
4608 */
4609 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4610 if (outdata == NULL) {
4611 error = ENOMEM;
4612 goto bad;
4613 }
4614 }
4615 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4616 if (outsize < ad->ad_out_size)
4617 ad->ad_out_size = outsize;
4618 if (outdata != NULL)
4619 error = copyout(outdata, ad->ad_out_data,
4620 ad->ad_out_size);
4621 } else {
4622 error = EINVAL;
4623 }
4624 bad:
4625 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4626 free(indata, M_TEMP);
4627 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4628 free(outdata, M_TEMP);
4629 return error;
4630 }
4631
4632 static int
4633 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4634 {
4635 #define IS_RUNNING(ifp) \
4636 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4637 struct ath_softc *sc = ifp->if_softc;
4638 struct ieee80211com *ic = &sc->sc_ic;
4639 struct ifreq *ifr = (struct ifreq *)data;
4640 int error = 0;
4641
4642 ATH_LOCK(sc);
4643 switch (cmd) {
4644 case SIOCSIFFLAGS:
4645 if (IS_RUNNING(ifp)) {
4646 /*
4647 * To avoid rescanning another access point,
4648 * do not call ath_init() here. Instead,
4649 * only reflect promisc mode settings.
4650 */
4651 ath_mode_init(sc);
4652 } else if (ifp->if_flags & IFF_UP) {
4653 /*
4654 * Beware of being called during attach/detach
4655 * to reset promiscuous mode. In that case we
4656 * will still be marked UP but not RUNNING.
4657 * However trying to re-init the interface
4658 * is the wrong thing to do as we've already
4659 * torn down much of our state. There's
4660 * probably a better way to deal with this.
4661 */
4662 if (!sc->sc_invalid && ic->ic_bss != NULL)
4663 ath_init(sc); /* XXX lose error */
4664 } else
4665 ath_stop_locked(ifp);
4666 break;
4667 case SIOCADDMULTI:
4668 case SIOCDELMULTI:
4669 /*
4670 * The upper layer has already installed/removed
4671 * the multicast address(es), just recalculate the
4672 * multicast filter for the card.
4673 */
4674 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4675 ath_mode_init(sc);
4676 break;
4677 case SIOCGATHSTATS:
4678 /* NB: embed these numbers to get a consistent view */
4679 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4680 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4681 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4682 ATH_UNLOCK(sc);
4683 /*
4684 * NB: Drop the softc lock in case of a page fault;
4685 * we'll accept any potential inconsisentcy in the
4686 * statistics. The alternative is to copy the data
4687 * to a local structure.
4688 */
4689 return copyout(&sc->sc_stats,
4690 ifr->ifr_data, sizeof (sc->sc_stats));
4691 case SIOCGATHDIAG:
4692 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4693 break;
4694 default:
4695 error = ieee80211_ioctl(ic, cmd, data);
4696 if (error == ENETRESET) {
4697 if (IS_RUNNING(ifp) &&
4698 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4699 ath_init(sc); /* XXX lose error */
4700 error = 0;
4701 }
4702 if (error == ERESTART)
4703 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4704 break;
4705 }
4706 ATH_UNLOCK(sc);
4707 return error;
4708 #undef IS_RUNNING
4709 }
4710
4711 static int
4712 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4713 {
4714 struct ath_softc *sc = arg1;
4715 u_int slottime = ath_hal_getslottime(sc->sc_ah);
4716 int error;
4717
4718 error = sysctl_handle_int(oidp, &slottime, 0, req);
4719 if (error || !req->newptr)
4720 return error;
4721 return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4722 }
4723
4724 static int
4725 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4726 {
4727 struct ath_softc *sc = arg1;
4728 u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4729 int error;
4730
4731 error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4732 if (error || !req->newptr)
4733 return error;
4734 return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4735 }
4736
4737 static int
4738 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4739 {
4740 struct ath_softc *sc = arg1;
4741 u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4742 int error;
4743
4744 error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4745 if (error || !req->newptr)
4746 return error;
4747 return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4748 }
4749
4750 static int
4751 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4752 {
4753 struct ath_softc *sc = arg1;
4754 int softled = sc->sc_softled;
4755 int error;
4756
4757 error = sysctl_handle_int(oidp, &softled, 0, req);
4758 if (error || !req->newptr)
4759 return error;
4760 softled = (softled != 0);
4761 if (softled != sc->sc_softled) {
4762 if (softled) {
4763 /* NB: handle any sc_ledpin change */
4764 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4765 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4766 !sc->sc_ledon);
4767 }
4768 sc->sc_softled = softled;
4769 }
4770 return 0;
4771 }
4772
4773 static int
4774 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4775 {
4776 struct ath_softc *sc = arg1;
4777 u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4778 int error;
4779
4780 error = sysctl_handle_int(oidp, &defantenna, 0, req);
4781 if (!error && req->newptr)
4782 ath_hal_setdefantenna(sc->sc_ah, defantenna);
4783 return error;
4784 }
4785
4786 static int
4787 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4788 {
4789 struct ath_softc *sc = arg1;
4790 u_int diversity = ath_hal_getdiversity(sc->sc_ah);
4791 int error;
4792
4793 error = sysctl_handle_int(oidp, &diversity, 0, req);
4794 if (error || !req->newptr)
4795 return error;
4796 if (!ath_hal_setdiversity(sc->sc_ah, diversity))
4797 return EINVAL;
4798 sc->sc_diversity = diversity;
4799 return 0;
4800 }
4801
4802 static int
4803 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4804 {
4805 struct ath_softc *sc = arg1;
4806 u_int32_t diag;
4807 int error;
4808
4809 if (!ath_hal_getdiag(sc->sc_ah, &diag))
4810 return EINVAL;
4811 error = sysctl_handle_int(oidp, &diag, 0, req);
4812 if (error || !req->newptr)
4813 return error;
4814 return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4815 }
4816
4817 static int
4818 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4819 {
4820 struct ath_softc *sc = arg1;
4821 struct ifnet *ifp = sc->sc_ifp;
4822 u_int32_t scale;
4823 int error;
4824
4825 ath_hal_gettpscale(sc->sc_ah, &scale);
4826 error = sysctl_handle_int(oidp, &scale, 0, req);
4827 if (error || !req->newptr)
4828 return error;
4829 return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4830 }
4831
4832 static int
4833 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4834 {
4835 struct ath_softc *sc = arg1;
4836 u_int tpc = ath_hal_gettpc(sc->sc_ah);
4837 int error;
4838
4839 error = sysctl_handle_int(oidp, &tpc, 0, req);
4840 if (error || !req->newptr)
4841 return error;
4842 return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4843 }
4844
4845 static void
4846 ath_sysctlattach(struct ath_softc *sc)
4847 {
4848 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4849 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4850 struct ath_hal *ah = sc->sc_ah;
4851
4852 ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4853 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4854 "countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4855 "EEPROM country code");
4856 ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4857 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4858 "regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4859 "EEPROM regdomain code");
4860 sc->sc_debug = ath_debug;
4861 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4862 "debug", CTLFLAG_RW, &sc->sc_debug, 0,
4863 "control debugging printfs");
4864
4865 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4866 "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4867 ath_sysctl_slottime, "I", "802.11 slot time (us)");
4868 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4869 "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4870 ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4871 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4872 "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4873 ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4874 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4875 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4876 ath_sysctl_softled, "I", "enable/disable software LED support");
4877 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4878 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4879 "GPIO pin connected to LED");
4880 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4881 "ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4882 "setting to turn LED on");
4883 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4884 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4885 "idle time for inactivity LED (ticks)");
4886 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4887 "txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4888 "tx antenna (0=auto)");
4889 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4890 "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4891 ath_sysctl_rxantenna, "I", "default/rx antenna");
4892 if (ath_hal_hasdiversity(ah))
4893 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4894 "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4895 ath_sysctl_diversity, "I", "antenna diversity");
4896 sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4897 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4898 "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4899 "tx descriptor batching");
4900 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4901 "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4902 ath_sysctl_diag, "I", "h/w diagnostic control");
4903 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4904 "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4905 ath_sysctl_tpscale, "I", "tx power scaling");
4906 if (ath_hal_hastpc(ah))
4907 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4908 "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4909 ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4910 }
4911
4912 static void
4913 ath_bpfattach(struct ath_softc *sc)
4914 {
4915 struct ifnet *ifp = sc->sc_ifp;
4916
4917 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4918 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4919 &sc->sc_drvbpf);
4920 /*
4921 * Initialize constant fields.
4922 * XXX make header lengths a multiple of 32-bits so subsequent
4923 * headers are properly aligned; this is a kludge to keep
4924 * certain applications happy.
4925 *
4926 * NB: the channel is setup each time we transition to the
4927 * RUN state to avoid filling it in for each frame.
4928 */
4929 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4930 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4931 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4932
4933 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4934 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4935 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4936 }
4937
4938 /*
4939 * Announce various information on device/driver attach.
4940 */
4941 static void
4942 ath_announce(struct ath_softc *sc)
4943 {
4944 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
4945 struct ifnet *ifp = sc->sc_ifp;
4946 struct ath_hal *ah = sc->sc_ah;
4947 u_int modes, cc;
4948
4949 if_printf(ifp, "mac %d.%d phy %d.%d",
4950 ah->ah_macVersion, ah->ah_macRev,
4951 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4952 /*
4953 * Print radio revision(s). We check the wireless modes
4954 * to avoid falsely printing revs for inoperable parts.
4955 * Dual-band radio revs are returned in the 5Ghz rev number.
4956 */
4957 ath_hal_getcountrycode(ah, &cc);
4958 modes = ath_hal_getwirelessmodes(ah, cc);
4959 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4960 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4961 printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4962 ah->ah_analog5GhzRev >> 4,
4963 ah->ah_analog5GhzRev & 0xf,
4964 ah->ah_analog2GhzRev >> 4,
4965 ah->ah_analog2GhzRev & 0xf);
4966 else
4967 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4968 ah->ah_analog5GhzRev & 0xf);
4969 } else
4970 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4971 ah->ah_analog5GhzRev & 0xf);
4972 printf("\n");
4973 if (bootverbose) {
4974 int i;
4975 for (i = 0; i <= WME_AC_VO; i++) {
4976 struct ath_txq *txq = sc->sc_ac2q[i];
4977 if_printf(ifp, "Use hw queue %u for %s traffic\n",
4978 txq->axq_qnum, ieee80211_wme_acnames[i]);
4979 }
4980 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4981 sc->sc_cabq->axq_qnum);
4982 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4983 }
4984 #undef HAL_MODE_DUALBAND
4985 }
4986