ath.c revision 1.102.2.1 1 /* $NetBSD: ath.c,v 1.102.2.1 2009/01/19 13:17:54 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.102.2.1 2009/01/19 13:17:54 skrll Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/errno.h>
71 #include <sys/callout.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/if_ether.h>
81 #include <net/if_llc.h>
82
83 #include <net80211/ieee80211_netbsd.h>
84 #include <net80211/ieee80211_var.h>
85
86 #if NBPFILTER > 0
87 #include <net/bpf.h>
88 #endif
89
90 #ifdef INET
91 #include <netinet/in.h>
92 #endif
93
94 #include <sys/device.h>
95 #include <dev/ic/ath_netbsd.h>
96
97 #define AR_DEBUG
98 #include <dev/ic/athvar.h>
99 #include "ah_desc.h"
100 #include "ah_devid.h" /* XXX for softled */
101 #include "opt_ah.h"
102
103 #ifdef ATH_TX99_DIAG
104 #include <dev/ath/ath_tx99/ath_tx99.h>
105 #endif
106
107 /* unaligned little endian access */
108 #define LE_READ_2(p) \
109 ((u_int16_t) \
110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
111 #define LE_READ_4(p) \
112 ((u_int32_t) \
113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
114 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
115
116 enum {
117 ATH_LED_TX,
118 ATH_LED_RX,
119 ATH_LED_POLL,
120 };
121
122 #ifdef AH_NEED_DESC_SWAP
123 #define HTOAH32(x) htole32(x)
124 #else
125 #define HTOAH32(x) (x)
126 #endif
127
128 static int ath_ifinit(struct ifnet *);
129 static int ath_init(struct ath_softc *);
130 static void ath_stop_locked(struct ifnet *, int);
131 static void ath_stop(struct ifnet *, int);
132 static void ath_start(struct ifnet *);
133 static int ath_media_change(struct ifnet *);
134 static void ath_watchdog(struct ifnet *);
135 static int ath_ioctl(struct ifnet *, u_long, void *);
136 static void ath_fatal_proc(void *, int);
137 static void ath_rxorn_proc(void *, int);
138 static void ath_bmiss_proc(void *, int);
139 static void ath_radar_proc(void *, int);
140 static int ath_key_alloc(struct ieee80211com *,
141 const struct ieee80211_key *,
142 ieee80211_keyix *, ieee80211_keyix *);
143 static int ath_key_delete(struct ieee80211com *,
144 const struct ieee80211_key *);
145 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
146 const u_int8_t mac[IEEE80211_ADDR_LEN]);
147 static void ath_key_update_begin(struct ieee80211com *);
148 static void ath_key_update_end(struct ieee80211com *);
149 static void ath_mode_init(struct ath_softc *);
150 static void ath_setslottime(struct ath_softc *);
151 static void ath_updateslot(struct ifnet *);
152 static int ath_beaconq_setup(struct ath_hal *);
153 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
154 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
155 static void ath_beacon_proc(void *, int);
156 static void ath_bstuck_proc(void *, int);
157 static void ath_beacon_free(struct ath_softc *);
158 static void ath_beacon_config(struct ath_softc *);
159 static void ath_descdma_cleanup(struct ath_softc *sc,
160 struct ath_descdma *, ath_bufhead *);
161 static int ath_desc_alloc(struct ath_softc *);
162 static void ath_desc_free(struct ath_softc *);
163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
164 static void ath_node_free(struct ieee80211_node *);
165 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
166 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
167 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
168 struct ieee80211_node *ni,
169 int subtype, int rssi, u_int32_t rstamp);
170 static void ath_setdefantenna(struct ath_softc *, u_int);
171 static void ath_rx_proc(void *, int);
172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
173 static int ath_tx_setup(struct ath_softc *, int, int);
174 static int ath_wme_update(struct ieee80211com *);
175 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
176 static void ath_tx_cleanup(struct ath_softc *);
177 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
178 struct ath_buf *, struct mbuf *);
179 static void ath_tx_proc_q0(void *, int);
180 static void ath_tx_proc_q0123(void *, int);
181 static void ath_tx_proc(void *, int);
182 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
183 static void ath_draintxq(struct ath_softc *);
184 static void ath_stoprecv(struct ath_softc *);
185 static int ath_startrecv(struct ath_softc *);
186 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
187 static void ath_next_scan(void *);
188 static void ath_calibrate(void *);
189 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
190 static void ath_setup_stationkey(struct ieee80211_node *);
191 static void ath_newassoc(struct ieee80211_node *, int);
192 static int ath_getchannels(struct ath_softc *, u_int cc,
193 HAL_BOOL outdoor, HAL_BOOL xchanmode);
194 static void ath_led_event(struct ath_softc *, int);
195 static void ath_update_txpow(struct ath_softc *);
196 static void ath_freetx(struct mbuf *);
197 static void ath_restore_diversity(struct ath_softc *);
198
199 static int ath_rate_setup(struct ath_softc *, u_int mode);
200 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201
202 #if NBPFILTER > 0
203 static void ath_bpfattach(struct ath_softc *);
204 #endif
205 static void ath_announce(struct ath_softc *);
206
207 int ath_dwelltime = 200; /* 5 channels/second */
208 int ath_calinterval = 30; /* calibrate every 30 secs */
209 int ath_outdoor = AH_TRUE; /* outdoor operation */
210 int ath_xchanmode = AH_TRUE; /* enable extended channels */
211 int ath_countrycode = CTRY_DEFAULT; /* country code */
212 int ath_regdomain = 0; /* regulatory domain */
213 int ath_debug = 0;
214 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
215 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
216
217 #ifdef AR_DEBUG
218 enum {
219 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
220 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
221 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
222 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
223 ATH_DEBUG_RATE = 0x00000010, /* rate control */
224 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
225 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
226 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
227 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
228 ATH_DEBUG_INTR = 0x00001000, /* ISR */
229 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
230 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
231 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
232 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
233 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
234 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
235 ATH_DEBUG_NODE = 0x00080000, /* node management */
236 ATH_DEBUG_LED = 0x00100000, /* led management */
237 ATH_DEBUG_FF = 0x00200000, /* fast frames */
238 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
239 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
240 ATH_DEBUG_ANY = 0xffffffff
241 };
242 #define IFF_DUMPPKTS(sc, m) \
243 ((sc->sc_debug & (m)) || \
244 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define DPRINTF(sc, m, fmt, ...) do { \
246 if (sc->sc_debug & (m)) \
247 printf(fmt, __VA_ARGS__); \
248 } while (0)
249 #define KEYPRINTF(sc, ix, hk, mac) do { \
250 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
251 ath_keyprint(__func__, ix, hk, mac); \
252 } while (0)
253 static void ath_printrxbuf(struct ath_buf *bf, int);
254 static void ath_printtxbuf(struct ath_buf *bf, int);
255 #else
256 #define IFF_DUMPPKTS(sc, m) \
257 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
258 #define DPRINTF(m, fmt, ...)
259 #define KEYPRINTF(sc, k, ix, mac)
260 #endif
261
262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
263
264 int
265 ath_attach(u_int16_t devid, struct ath_softc *sc)
266 {
267 struct ifnet *ifp = &sc->sc_if;
268 struct ieee80211com *ic = &sc->sc_ic;
269 struct ath_hal *ah = NULL;
270 HAL_STATUS status;
271 int error = 0, i;
272
273 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
274
275 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
276
277 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
278 if (ah == NULL) {
279 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
280 status);
281 error = ENXIO;
282 goto bad;
283 }
284 if (ah->ah_abi != HAL_ABI_VERSION) {
285 if_printf(ifp, "HAL ABI mismatch detected "
286 "(HAL:0x%x != driver:0x%x)\n",
287 ah->ah_abi, HAL_ABI_VERSION);
288 error = ENXIO;
289 goto bad;
290 }
291 sc->sc_ah = ah;
292
293 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
294 "pmf-powerdown", false))
295 goto bad;
296
297 /*
298 * Check if the MAC has multi-rate retry support.
299 * We do this by trying to setup a fake extended
300 * descriptor. MAC's that don't have support will
301 * return false w/o doing anything. MAC's that do
302 * support it will return true w/o doing anything.
303 */
304 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
305
306 /*
307 * Check if the device has hardware counters for PHY
308 * errors. If so we need to enable the MIB interrupt
309 * so we can act on stat triggers.
310 */
311 if (ath_hal_hwphycounters(ah))
312 sc->sc_needmib = 1;
313
314 /*
315 * Get the hardware key cache size.
316 */
317 sc->sc_keymax = ath_hal_keycachesize(ah);
318 if (sc->sc_keymax > ATH_KEYMAX) {
319 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
320 ATH_KEYMAX, sc->sc_keymax);
321 sc->sc_keymax = ATH_KEYMAX;
322 }
323 /*
324 * Reset the key cache since some parts do not
325 * reset the contents on initial power up.
326 */
327 for (i = 0; i < sc->sc_keymax; i++)
328 ath_hal_keyreset(ah, i);
329 /*
330 * Mark key cache slots associated with global keys
331 * as in use. If we knew TKIP was not to be used we
332 * could leave the +32, +64, and +32+64 slots free.
333 * XXX only for splitmic.
334 */
335 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
336 setbit(sc->sc_keymap, i);
337 setbit(sc->sc_keymap, i+32);
338 setbit(sc->sc_keymap, i+64);
339 setbit(sc->sc_keymap, i+32+64);
340 }
341
342 /*
343 * Collect the channel list using the default country
344 * code and including outdoor channels. The 802.11 layer
345 * is resposible for filtering this list based on settings
346 * like the phy mode.
347 */
348 error = ath_getchannels(sc, ath_countrycode,
349 ath_outdoor, ath_xchanmode);
350 if (error != 0)
351 goto bad;
352
353 /*
354 * Setup rate tables for all potential media types.
355 */
356 ath_rate_setup(sc, IEEE80211_MODE_11A);
357 ath_rate_setup(sc, IEEE80211_MODE_11B);
358 ath_rate_setup(sc, IEEE80211_MODE_11G);
359 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
360 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
361 /* NB: setup here so ath_rate_update is happy */
362 ath_setcurmode(sc, IEEE80211_MODE_11A);
363
364 /*
365 * Allocate tx+rx descriptors and populate the lists.
366 */
367 error = ath_desc_alloc(sc);
368 if (error != 0) {
369 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
370 goto bad;
371 }
372 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
373 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
374 #if 0
375 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
376 #endif
377
378 ATH_TXBUF_LOCK_INIT(sc);
379
380 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
381 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
382 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
383 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
384 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
385 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
386
387 /*
388 * Allocate hardware transmit queues: one queue for
389 * beacon frames and one data queue for each QoS
390 * priority. Note that the hal handles reseting
391 * these queues at the needed time.
392 *
393 * XXX PS-Poll
394 */
395 sc->sc_bhalq = ath_beaconq_setup(ah);
396 if (sc->sc_bhalq == (u_int) -1) {
397 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
398 error = EIO;
399 goto bad2;
400 }
401 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
402 if (sc->sc_cabq == NULL) {
403 if_printf(ifp, "unable to setup CAB xmit queue!\n");
404 error = EIO;
405 goto bad2;
406 }
407 /* NB: insure BK queue is the lowest priority h/w queue */
408 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
409 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
410 ieee80211_wme_acnames[WME_AC_BK]);
411 error = EIO;
412 goto bad2;
413 }
414 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
415 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
416 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
417 /*
418 * Not enough hardware tx queues to properly do WME;
419 * just punt and assign them all to the same h/w queue.
420 * We could do a better job of this if, for example,
421 * we allocate queues when we switch from station to
422 * AP mode.
423 */
424 if (sc->sc_ac2q[WME_AC_VI] != NULL)
425 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
426 if (sc->sc_ac2q[WME_AC_BE] != NULL)
427 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
428 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
429 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
430 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
431 }
432
433 /*
434 * Special case certain configurations. Note the
435 * CAB queue is handled by these specially so don't
436 * include them when checking the txq setup mask.
437 */
438 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
439 case 0x01:
440 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
441 break;
442 case 0x0f:
443 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
444 break;
445 default:
446 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
447 break;
448 }
449
450 /*
451 * Setup rate control. Some rate control modules
452 * call back to change the anntena state so expose
453 * the necessary entry points.
454 * XXX maybe belongs in struct ath_ratectrl?
455 */
456 sc->sc_setdefantenna = ath_setdefantenna;
457 sc->sc_rc = ath_rate_attach(sc);
458 if (sc->sc_rc == NULL) {
459 error = EIO;
460 goto bad2;
461 }
462
463 sc->sc_blinking = 0;
464 sc->sc_ledstate = 1;
465 sc->sc_ledon = 0; /* low true */
466 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
467 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
468 /*
469 * Auto-enable soft led processing for IBM cards and for
470 * 5211 minipci cards. Users can also manually enable/disable
471 * support with a sysctl.
472 */
473 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
474 if (sc->sc_softled) {
475 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
476 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
477 }
478
479 ifp->if_softc = sc;
480 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
481 ifp->if_start = ath_start;
482 ifp->if_stop = ath_stop;
483 ifp->if_watchdog = ath_watchdog;
484 ifp->if_ioctl = ath_ioctl;
485 ifp->if_init = ath_ifinit;
486 IFQ_SET_READY(&ifp->if_snd);
487
488 ic->ic_ifp = ifp;
489 ic->ic_reset = ath_reset;
490 ic->ic_newassoc = ath_newassoc;
491 ic->ic_updateslot = ath_updateslot;
492 ic->ic_wme.wme_update = ath_wme_update;
493 /* XXX not right but it's not used anywhere important */
494 ic->ic_phytype = IEEE80211_T_OFDM;
495 ic->ic_opmode = IEEE80211_M_STA;
496 ic->ic_caps =
497 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
498 | IEEE80211_C_HOSTAP /* hostap mode */
499 | IEEE80211_C_MONITOR /* monitor mode */
500 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
501 | IEEE80211_C_SHSLOT /* short slot time supported */
502 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
503 | IEEE80211_C_TXFRAG /* handle tx frags */
504 ;
505 /*
506 * Query the hal to figure out h/w crypto support.
507 */
508 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
509 ic->ic_caps |= IEEE80211_C_WEP;
510 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
511 ic->ic_caps |= IEEE80211_C_AES;
512 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
513 ic->ic_caps |= IEEE80211_C_AES_CCM;
514 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
515 ic->ic_caps |= IEEE80211_C_CKIP;
516 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
517 ic->ic_caps |= IEEE80211_C_TKIP;
518 /*
519 * Check if h/w does the MIC and/or whether the
520 * separate key cache entries are required to
521 * handle both tx+rx MIC keys.
522 */
523 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) {
524 ic->ic_caps |= IEEE80211_C_TKIPMIC;
525 /*
526 * Check if h/w does MIC correctly when
527 * WMM is turned on.
528 */
529 if (ath_hal_wmetkipmic(ah))
530 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
531 }
532
533 /*
534 * If the h/w supports storing tx+rx MIC keys
535 * in one cache slot automatically enable use.
536 */
537 if (ath_hal_tkipsplit(ah) ||
538 !ath_hal_settkipsplit(ah, AH_FALSE))
539 sc->sc_splitmic = 1;
540 }
541 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
542 #if 0
543 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
544 #endif
545 /*
546 * TPC support can be done either with a global cap or
547 * per-packet support. The latter is not available on
548 * all parts. We're a bit pedantic here as all parts
549 * support a global cap.
550 */
551 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
552 ic->ic_caps |= IEEE80211_C_TXPMGT;
553
554 /*
555 * Mark WME capability only if we have sufficient
556 * hardware queues to do proper priority scheduling.
557 */
558 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
559 ic->ic_caps |= IEEE80211_C_WME;
560 /*
561 * Check for misc other capabilities.
562 */
563 if (ath_hal_hasbursting(ah))
564 ic->ic_caps |= IEEE80211_C_BURST;
565
566 /*
567 * Indicate we need the 802.11 header padded to a
568 * 32-bit boundary for 4-address and QoS frames.
569 */
570 ic->ic_flags |= IEEE80211_F_DATAPAD;
571
572 /*
573 * Query the hal about antenna support.
574 */
575 sc->sc_defant = ath_hal_getdefantenna(ah);
576
577 /*
578 * Not all chips have the VEOL support we want to
579 * use with IBSS beacons; check here for it.
580 */
581 sc->sc_hasveol = ath_hal_hasveol(ah);
582
583 /* get mac address from hardware */
584 ath_hal_getmac(ah, ic->ic_myaddr);
585
586 if_attach(ifp);
587 /* call MI attach routine. */
588 ieee80211_ifattach(ic);
589 /* override default methods */
590 ic->ic_node_alloc = ath_node_alloc;
591 sc->sc_node_free = ic->ic_node_free;
592 ic->ic_node_free = ath_node_free;
593 ic->ic_node_getrssi = ath_node_getrssi;
594 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
595 ic->ic_recv_mgmt = ath_recv_mgmt;
596 sc->sc_newstate = ic->ic_newstate;
597 ic->ic_newstate = ath_newstate;
598 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
599 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
600 ic->ic_crypto.cs_key_delete = ath_key_delete;
601 ic->ic_crypto.cs_key_set = ath_key_set;
602 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
603 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
604 /* complete initialization */
605 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
606
607 #if NBPFILTER > 0
608 ath_bpfattach(sc);
609 #endif
610
611 sc->sc_flags |= ATH_ATTACHED;
612
613 /*
614 * Setup dynamic sysctl's now that country code and
615 * regdomain are available from the hal.
616 */
617 ath_sysctlattach(sc);
618
619 ieee80211_announce(ic);
620 ath_announce(sc);
621 return 0;
622 bad2:
623 ath_tx_cleanup(sc);
624 ath_desc_free(sc);
625 bad:
626 if (ah)
627 ath_hal_detach(ah);
628 /* XXX don't get under the abstraction like this */
629 sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
630 return error;
631 }
632
633 int
634 ath_detach(struct ath_softc *sc)
635 {
636 struct ifnet *ifp = &sc->sc_if;
637 int s;
638
639 if ((sc->sc_flags & ATH_ATTACHED) == 0)
640 return (0);
641
642 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
643 __func__, ifp->if_flags);
644
645 s = splnet();
646 ath_stop(ifp, 1);
647 #if NBPFILTER > 0
648 bpfdetach(ifp);
649 #endif
650 /*
651 * NB: the order of these is important:
652 * o call the 802.11 layer before detaching the hal to
653 * insure callbacks into the driver to delete global
654 * key cache entries can be handled
655 * o reclaim the tx queue data structures after calling
656 * the 802.11 layer as we'll get called back to reclaim
657 * node state and potentially want to use them
658 * o to cleanup the tx queues the hal is called, so detach
659 * it last
660 * Other than that, it's straightforward...
661 */
662 ieee80211_ifdetach(&sc->sc_ic);
663 #ifdef ATH_TX99_DIAG
664 if (sc->sc_tx99 != NULL)
665 sc->sc_tx99->detach(sc->sc_tx99);
666 #endif
667 ath_rate_detach(sc->sc_rc);
668 ath_desc_free(sc);
669 ath_tx_cleanup(sc);
670 sysctl_teardown(&sc->sc_sysctllog);
671 ath_hal_detach(sc->sc_ah);
672 if_detach(ifp);
673 splx(s);
674
675 return 0;
676 }
677
678 void
679 ath_suspend(struct ath_softc *sc)
680 {
681 #if notyet
682 /*
683 * Set the chip in full sleep mode. Note that we are
684 * careful to do this only when bringing the interface
685 * completely to a stop. When the chip is in this state
686 * it must be carefully woken up or references to
687 * registers in the PCI clock domain may freeze the bus
688 * (and system). This varies by chip and is mostly an
689 * issue with newer parts that go to sleep more quickly.
690 */
691 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
692 #endif
693 }
694
695 bool
696 ath_resume(struct ath_softc *sc)
697 {
698 struct ath_hal *ah = sc->sc_ah;
699 struct ieee80211com *ic = &sc->sc_ic;
700 HAL_STATUS status;
701 int i;
702
703 #if notyet
704 ath_hal_setpower(ah, HAL_PM_AWAKE);
705 #else
706 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
707 #endif
708
709 /*
710 * Reset the key cache since some parts do not
711 * reset the contents on initial power up.
712 */
713 for (i = 0; i < sc->sc_keymax; i++)
714 ath_hal_keyreset(ah, i);
715
716 ath_hal_resettxqueue(ah, sc->sc_bhalq);
717 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
718 if (ATH_TXQ_SETUP(sc, i))
719 ath_hal_resettxqueue(ah, i);
720
721 if (sc->sc_softled) {
722 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
723 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
724 }
725 return true;
726 }
727
728 /*
729 * Interrupt handler. Most of the actual processing is deferred.
730 */
731 int
732 ath_intr(void *arg)
733 {
734 struct ath_softc *sc = arg;
735 struct ifnet *ifp = &sc->sc_if;
736 struct ath_hal *ah = sc->sc_ah;
737 HAL_INT status;
738
739 if (!device_is_active(sc->sc_dev)) {
740 /*
741 * The hardware is not ready/present, don't touch anything.
742 * Note this can happen early on if the IRQ is shared.
743 */
744 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
745 return 0;
746 }
747
748 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
749 return 0;
750
751 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
752 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
753 __func__, ifp->if_flags);
754 ath_hal_getisr(ah, &status); /* clear ISR */
755 ath_hal_intrset(ah, 0); /* disable further intr's */
756 return 1; /* XXX */
757 }
758 /*
759 * Figure out the reason(s) for the interrupt. Note
760 * that the hal returns a pseudo-ISR that may include
761 * bits we haven't explicitly enabled so we mask the
762 * value to insure we only process bits we requested.
763 */
764 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
765 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
766 status &= sc->sc_imask; /* discard unasked for bits */
767 if (status & HAL_INT_FATAL) {
768 /*
769 * Fatal errors are unrecoverable. Typically
770 * these are caused by DMA errors. Unfortunately
771 * the exact reason is not (presently) returned
772 * by the hal.
773 */
774 sc->sc_stats.ast_hardware++;
775 ath_hal_intrset(ah, 0); /* disable intr's until reset */
776 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
777 } else if (status & HAL_INT_RXORN) {
778 sc->sc_stats.ast_rxorn++;
779 ath_hal_intrset(ah, 0); /* disable intr's until reset */
780 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
781 } else {
782 if (status & HAL_INT_SWBA) {
783 /*
784 * Software beacon alert--time to send a beacon.
785 * Handle beacon transmission directly; deferring
786 * this is too slow to meet timing constraints
787 * under load.
788 */
789 ath_beacon_proc(sc, 0);
790 }
791 if (status & HAL_INT_RXEOL) {
792 /*
793 * NB: the hardware should re-read the link when
794 * RXE bit is written, but it doesn't work at
795 * least on older hardware revs.
796 */
797 sc->sc_stats.ast_rxeol++;
798 sc->sc_rxlink = NULL;
799 }
800 if (status & HAL_INT_TXURN) {
801 sc->sc_stats.ast_txurn++;
802 /* bump tx trigger level */
803 ath_hal_updatetxtriglevel(ah, AH_TRUE);
804 }
805 if (status & HAL_INT_RX)
806 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
807 if (status & HAL_INT_TX)
808 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
809 if (status & HAL_INT_BMISS) {
810 sc->sc_stats.ast_bmiss++;
811 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
812 }
813 if (status & HAL_INT_MIB) {
814 sc->sc_stats.ast_mib++;
815 /*
816 * Disable interrupts until we service the MIB
817 * interrupt; otherwise it will continue to fire.
818 */
819 ath_hal_intrset(ah, 0);
820 /*
821 * Let the hal handle the event. We assume it will
822 * clear whatever condition caused the interrupt.
823 */
824 ath_hal_mibevent(ah, &sc->sc_halstats);
825 ath_hal_intrset(ah, sc->sc_imask);
826 }
827 }
828 return 1;
829 }
830
831 /* Swap transmit descriptor.
832 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
833 * function.
834 */
835 static inline void
836 ath_desc_swap(struct ath_desc *ds)
837 {
838 #ifdef AH_NEED_DESC_SWAP
839 ds->ds_link = htole32(ds->ds_link);
840 ds->ds_data = htole32(ds->ds_data);
841 ds->ds_ctl0 = htole32(ds->ds_ctl0);
842 ds->ds_ctl1 = htole32(ds->ds_ctl1);
843 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
844 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
845 #endif
846 }
847
848 static void
849 ath_fatal_proc(void *arg, int pending)
850 {
851 struct ath_softc *sc = arg;
852 struct ifnet *ifp = &sc->sc_if;
853
854 if_printf(ifp, "hardware error; resetting\n");
855 ath_reset(ifp);
856 }
857
858 static void
859 ath_rxorn_proc(void *arg, int pending)
860 {
861 struct ath_softc *sc = arg;
862 struct ifnet *ifp = &sc->sc_if;
863
864 if_printf(ifp, "rx FIFO overrun; resetting\n");
865 ath_reset(ifp);
866 }
867
868 static void
869 ath_bmiss_proc(void *arg, int pending)
870 {
871 struct ath_softc *sc = arg;
872 struct ieee80211com *ic = &sc->sc_ic;
873
874 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
875 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
876 ("unexpect operating mode %u", ic->ic_opmode));
877 if (ic->ic_state == IEEE80211_S_RUN) {
878 u_int64_t lastrx = sc->sc_lastrx;
879 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
880
881 DPRINTF(sc, ATH_DEBUG_BEACON,
882 "%s: tsf %" PRIu64 " lastrx %" PRId64
883 " (%" PRIu64 ") bmiss %u\n",
884 __func__, tsf, tsf - lastrx, lastrx,
885 ic->ic_bmisstimeout*1024);
886 /*
887 * Workaround phantom bmiss interrupts by sanity-checking
888 * the time of our last rx'd frame. If it is within the
889 * beacon miss interval then ignore the interrupt. If it's
890 * truly a bmiss we'll get another interrupt soon and that'll
891 * be dispatched up for processing.
892 */
893 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
894 NET_LOCK_GIANT();
895 ieee80211_beacon_miss(ic);
896 NET_UNLOCK_GIANT();
897 } else
898 sc->sc_stats.ast_bmiss_phantom++;
899 }
900 }
901
902 static void
903 ath_radar_proc(void *arg, int pending)
904 {
905 #if 0
906 struct ath_softc *sc = arg;
907 struct ifnet *ifp = &sc->sc_if;
908 struct ath_hal *ah = sc->sc_ah;
909 HAL_CHANNEL hchan;
910
911 if (ath_hal_procdfs(ah, &hchan)) {
912 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
913 hchan.channel, hchan.channelFlags, hchan.privFlags);
914 /*
915 * Initiate channel change.
916 */
917 /* XXX not yet */
918 }
919 #endif
920 }
921
922 static u_int
923 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
924 {
925 #define N(a) (sizeof(a) / sizeof(a[0]))
926 static const u_int modeflags[] = {
927 0, /* IEEE80211_MODE_AUTO */
928 CHANNEL_A, /* IEEE80211_MODE_11A */
929 CHANNEL_B, /* IEEE80211_MODE_11B */
930 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
931 0, /* IEEE80211_MODE_FH */
932 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
933 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
934 };
935 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
936
937 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
938 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
939 return modeflags[mode];
940 #undef N
941 }
942
943 static int
944 ath_ifinit(struct ifnet *ifp)
945 {
946 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
947
948 return ath_init(sc);
949 }
950
951 static int
952 ath_init(struct ath_softc *sc)
953 {
954 struct ifnet *ifp = &sc->sc_if;
955 struct ieee80211com *ic = &sc->sc_ic;
956 struct ath_hal *ah = sc->sc_ah;
957 HAL_STATUS status;
958 int error = 0;
959
960 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
961 __func__, ifp->if_flags);
962
963 if (device_is_active(sc->sc_dev)) {
964 ATH_LOCK(sc);
965 } else if (!pmf_device_resume_self(sc->sc_dev))
966 return ENXIO;
967 else
968 ATH_LOCK(sc);
969
970 /*
971 * Stop anything previously setup. This is safe
972 * whether this is the first time through or not.
973 */
974 ath_stop_locked(ifp, 0);
975
976 int dummy; /* XXX: gcc */
977 /* Whether we should enable h/w TKIP MIC */
978 if ((ic->ic_caps & IEEE80211_C_WME) &&
979 ((ic->ic_caps & IEEE80211_C_WME_TKIPMIC) ||
980 !(ic->ic_flags & IEEE80211_F_WME))) {
981 dummy = ath_hal_settkipmic(ah, AH_TRUE);
982 } else {
983 dummy = ath_hal_settkipmic(ah, AH_FALSE);
984 }
985
986
987 /*
988 * The basic interface to setting the hardware in a good
989 * state is ``reset''. On return the hardware is known to
990 * be powered up and with interrupts disabled. This must
991 * be followed by initialization of the appropriate bits
992 * and then setup of the interrupt mask.
993 */
994 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
995 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
996 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
997 if_printf(ifp, "unable to reset hardware; hal status %u\n",
998 status);
999 error = EIO;
1000 goto done;
1001 }
1002
1003 /*
1004 * This is needed only to setup initial state
1005 * but it's best done after a reset.
1006 */
1007 ath_update_txpow(sc);
1008 /*
1009 * Likewise this is set during reset so update
1010 * state cached in the driver.
1011 */
1012 ath_restore_diversity(sc);
1013 sc->sc_calinterval = 1;
1014 sc->sc_caltries = 0;
1015
1016 /*
1017 * Setup the hardware after reset: the key cache
1018 * is filled as needed and the receive engine is
1019 * set going. Frame transmit is handled entirely
1020 * in the frame output path; there's nothing to do
1021 * here except setup the interrupt mask.
1022 */
1023 if ((error = ath_startrecv(sc)) != 0) {
1024 if_printf(ifp, "unable to start recv logic\n");
1025 goto done;
1026 }
1027
1028 /*
1029 * Enable interrupts.
1030 */
1031 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1032 | HAL_INT_RXEOL | HAL_INT_RXORN
1033 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1034 /*
1035 * Enable MIB interrupts when there are hardware phy counters.
1036 * Note we only do this (at the moment) for station mode.
1037 */
1038 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1039 sc->sc_imask |= HAL_INT_MIB;
1040 ath_hal_intrset(ah, sc->sc_imask);
1041
1042 ifp->if_flags |= IFF_RUNNING;
1043 ic->ic_state = IEEE80211_S_INIT;
1044
1045 /*
1046 * The hardware should be ready to go now so it's safe
1047 * to kick the 802.11 state machine as it's likely to
1048 * immediately call back to us to send mgmt frames.
1049 */
1050 ath_chan_change(sc, ic->ic_curchan);
1051 #ifdef ATH_TX99_DIAG
1052 if (sc->sc_tx99 != NULL)
1053 sc->sc_tx99->start(sc->sc_tx99);
1054 else
1055 #endif
1056 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1057 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1058 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1059 } else
1060 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1061 done:
1062 ATH_UNLOCK(sc);
1063 return error;
1064 }
1065
1066 static void
1067 ath_stop_locked(struct ifnet *ifp, int disable)
1068 {
1069 struct ath_softc *sc = ifp->if_softc;
1070 struct ieee80211com *ic = &sc->sc_ic;
1071 struct ath_hal *ah = sc->sc_ah;
1072
1073 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1074 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1075
1076 ATH_LOCK_ASSERT(sc);
1077 if (ifp->if_flags & IFF_RUNNING) {
1078 /*
1079 * Shutdown the hardware and driver:
1080 * reset 802.11 state machine
1081 * turn off timers
1082 * disable interrupts
1083 * turn off the radio
1084 * clear transmit machinery
1085 * clear receive machinery
1086 * drain and release tx queues
1087 * reclaim beacon resources
1088 * power down hardware
1089 *
1090 * Note that some of this work is not possible if the
1091 * hardware is gone (invalid).
1092 */
1093 #ifdef ATH_TX99_DIAG
1094 if (sc->sc_tx99 != NULL)
1095 sc->sc_tx99->stop(sc->sc_tx99);
1096 #endif
1097 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1098 ifp->if_flags &= ~IFF_RUNNING;
1099 ifp->if_timer = 0;
1100 if (device_is_enabled(sc->sc_dev)) {
1101 if (sc->sc_softled) {
1102 callout_stop(&sc->sc_ledtimer);
1103 ath_hal_gpioset(ah, sc->sc_ledpin,
1104 !sc->sc_ledon);
1105 sc->sc_blinking = 0;
1106 }
1107 ath_hal_intrset(ah, 0);
1108 }
1109 ath_draintxq(sc);
1110 if (device_is_enabled(sc->sc_dev)) {
1111 ath_stoprecv(sc);
1112 ath_hal_phydisable(ah);
1113 } else
1114 sc->sc_rxlink = NULL;
1115 IF_PURGE(&ifp->if_snd);
1116 ath_beacon_free(sc);
1117 if (disable)
1118 pmf_device_suspend_self(sc->sc_dev);
1119 }
1120 }
1121
1122 static void
1123 ath_stop(struct ifnet *ifp, int disable)
1124 {
1125 struct ath_softc *sc = ifp->if_softc;
1126
1127 ATH_LOCK(sc);
1128 ath_stop_locked(ifp, disable);
1129 ATH_UNLOCK(sc);
1130 }
1131
1132 static void
1133 ath_restore_diversity(struct ath_softc *sc)
1134 {
1135 struct ifnet *ifp = &sc->sc_if;
1136 struct ath_hal *ah = sc->sc_ah;
1137
1138 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1139 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1140 if_printf(ifp, "could not restore diversity setting %d\n",
1141 sc->sc_diversity);
1142 sc->sc_diversity = ath_hal_getdiversity(ah);
1143 }
1144 }
1145
1146 /*
1147 * Reset the hardware w/o losing operational state. This is
1148 * basically a more efficient way of doing ath_stop, ath_init,
1149 * followed by state transitions to the current 802.11
1150 * operational state. Used to recover from various errors and
1151 * to reset or reload hardware state.
1152 */
1153 int
1154 ath_reset(struct ifnet *ifp)
1155 {
1156 struct ath_softc *sc = ifp->if_softc;
1157 struct ieee80211com *ic = &sc->sc_ic;
1158 struct ath_hal *ah = sc->sc_ah;
1159 struct ieee80211_channel *c;
1160 HAL_STATUS status;
1161
1162 /*
1163 * Convert to a HAL channel description with the flags
1164 * constrained to reflect the current operating mode.
1165 */
1166 c = ic->ic_curchan;
1167 sc->sc_curchan.channel = c->ic_freq;
1168 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1169
1170 ath_hal_intrset(ah, 0); /* disable interrupts */
1171 ath_draintxq(sc); /* stop xmit side */
1172 ath_stoprecv(sc); /* stop recv side */
1173 /* NB: indicate channel change so we do a full reset */
1174 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1175 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1176 __func__, status);
1177 ath_update_txpow(sc); /* update tx power state */
1178 ath_restore_diversity(sc);
1179 sc->sc_calinterval = 1;
1180 sc->sc_caltries = 0;
1181 if (ath_startrecv(sc) != 0) /* restart recv */
1182 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1183 /*
1184 * We may be doing a reset in response to an ioctl
1185 * that changes the channel so update any state that
1186 * might change as a result.
1187 */
1188 ath_chan_change(sc, c);
1189 if (ic->ic_state == IEEE80211_S_RUN)
1190 ath_beacon_config(sc); /* restart beacons */
1191 ath_hal_intrset(ah, sc->sc_imask);
1192
1193 ath_start(ifp); /* restart xmit */
1194 return 0;
1195 }
1196
1197 /*
1198 * Cleanup driver resources when we run out of buffers
1199 * while processing fragments; return the tx buffers
1200 * allocated and drop node references.
1201 */
1202 static void
1203 ath_txfrag_cleanup(struct ath_softc *sc,
1204 ath_bufhead *frags, struct ieee80211_node *ni)
1205 {
1206 struct ath_buf *bf;
1207
1208 ATH_TXBUF_LOCK_ASSERT(sc);
1209
1210 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1211 STAILQ_REMOVE_HEAD(frags, bf_list);
1212 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1213 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1214 ieee80211_node_decref(ni);
1215 }
1216 }
1217
1218 /*
1219 * Setup xmit of a fragmented frame. Allocate a buffer
1220 * for each frag and bump the node reference count to
1221 * reflect the held reference to be setup by ath_tx_start.
1222 */
1223 static int
1224 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1225 struct mbuf *m0, struct ieee80211_node *ni)
1226 {
1227 struct mbuf *m;
1228 struct ath_buf *bf;
1229
1230 ATH_TXBUF_LOCK(sc);
1231 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1232 bf = STAILQ_FIRST(&sc->sc_txbuf);
1233 if (bf == NULL) { /* out of buffers, cleanup */
1234 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1235 __func__);
1236 sc->sc_if.if_flags |= IFF_OACTIVE;
1237 ath_txfrag_cleanup(sc, frags, ni);
1238 break;
1239 }
1240 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1241 ieee80211_node_incref(ni);
1242 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1243 }
1244 ATH_TXBUF_UNLOCK(sc);
1245
1246 return !STAILQ_EMPTY(frags);
1247 }
1248
1249 static void
1250 ath_start(struct ifnet *ifp)
1251 {
1252 struct ath_softc *sc = ifp->if_softc;
1253 struct ath_hal *ah = sc->sc_ah;
1254 struct ieee80211com *ic = &sc->sc_ic;
1255 struct ieee80211_node *ni;
1256 struct ath_buf *bf;
1257 struct mbuf *m, *next;
1258 struct ieee80211_frame *wh;
1259 struct ether_header *eh;
1260 ath_bufhead frags;
1261
1262 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1263 !device_is_active(sc->sc_dev))
1264 return;
1265 for (;;) {
1266 /*
1267 * Grab a TX buffer and associated resources.
1268 */
1269 ATH_TXBUF_LOCK(sc);
1270 bf = STAILQ_FIRST(&sc->sc_txbuf);
1271 if (bf != NULL)
1272 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1273 ATH_TXBUF_UNLOCK(sc);
1274 if (bf == NULL) {
1275 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1276 __func__);
1277 sc->sc_stats.ast_tx_qstop++;
1278 ifp->if_flags |= IFF_OACTIVE;
1279 break;
1280 }
1281 /*
1282 * Poll the management queue for frames; they
1283 * have priority over normal data frames.
1284 */
1285 IF_DEQUEUE(&ic->ic_mgtq, m);
1286 if (m == NULL) {
1287 /*
1288 * No data frames go out unless we're associated.
1289 */
1290 if (ic->ic_state != IEEE80211_S_RUN) {
1291 DPRINTF(sc, ATH_DEBUG_XMIT,
1292 "%s: discard data packet, state %s\n",
1293 __func__,
1294 ieee80211_state_name[ic->ic_state]);
1295 sc->sc_stats.ast_tx_discard++;
1296 ATH_TXBUF_LOCK(sc);
1297 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1298 ATH_TXBUF_UNLOCK(sc);
1299 break;
1300 }
1301 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1302 if (m == NULL) {
1303 ATH_TXBUF_LOCK(sc);
1304 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1305 ATH_TXBUF_UNLOCK(sc);
1306 break;
1307 }
1308 STAILQ_INIT(&frags);
1309 /*
1310 * Find the node for the destination so we can do
1311 * things like power save and fast frames aggregation.
1312 */
1313 if (m->m_len < sizeof(struct ether_header) &&
1314 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1315 ic->ic_stats.is_tx_nobuf++; /* XXX */
1316 ni = NULL;
1317 goto bad;
1318 }
1319 eh = mtod(m, struct ether_header *);
1320 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1321 if (ni == NULL) {
1322 /* NB: ieee80211_find_txnode does stat+msg */
1323 m_freem(m);
1324 goto bad;
1325 }
1326 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1327 (m->m_flags & M_PWR_SAV) == 0) {
1328 /*
1329 * Station in power save mode; pass the frame
1330 * to the 802.11 layer and continue. We'll get
1331 * the frame back when the time is right.
1332 */
1333 ieee80211_pwrsave(ic, ni, m);
1334 goto reclaim;
1335 }
1336 /* calculate priority so we can find the tx queue */
1337 if (ieee80211_classify(ic, m, ni)) {
1338 DPRINTF(sc, ATH_DEBUG_XMIT,
1339 "%s: discard, classification failure\n",
1340 __func__);
1341 m_freem(m);
1342 goto bad;
1343 }
1344 ifp->if_opackets++;
1345
1346 #if NBPFILTER > 0
1347 if (ifp->if_bpf)
1348 bpf_mtap(ifp->if_bpf, m);
1349 #endif
1350 /*
1351 * Encapsulate the packet in prep for transmission.
1352 */
1353 m = ieee80211_encap(ic, m, ni);
1354 if (m == NULL) {
1355 DPRINTF(sc, ATH_DEBUG_XMIT,
1356 "%s: encapsulation failure\n",
1357 __func__);
1358 sc->sc_stats.ast_tx_encap++;
1359 goto bad;
1360 }
1361 /*
1362 * Check for fragmentation. If this has frame
1363 * has been broken up verify we have enough
1364 * buffers to send all the fragments so all
1365 * go out or none...
1366 */
1367 if ((m->m_flags & M_FRAG) &&
1368 !ath_txfrag_setup(sc, &frags, m, ni)) {
1369 DPRINTF(sc, ATH_DEBUG_ANY,
1370 "%s: out of txfrag buffers\n", __func__);
1371 ic->ic_stats.is_tx_nobuf++; /* XXX */
1372 ath_freetx(m);
1373 goto bad;
1374 }
1375 } else {
1376 /*
1377 * Hack! The referenced node pointer is in the
1378 * rcvif field of the packet header. This is
1379 * placed there by ieee80211_mgmt_output because
1380 * we need to hold the reference with the frame
1381 * and there's no other way (other than packet
1382 * tags which we consider too expensive to use)
1383 * to pass it along.
1384 */
1385 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1386 m->m_pkthdr.rcvif = NULL;
1387
1388 wh = mtod(m, struct ieee80211_frame *);
1389 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1390 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1391 /* fill time stamp */
1392 u_int64_t tsf;
1393 u_int32_t *tstamp;
1394
1395 tsf = ath_hal_gettsf64(ah);
1396 /* XXX: adjust 100us delay to xmit */
1397 tsf += 100;
1398 tstamp = (u_int32_t *)&wh[1];
1399 tstamp[0] = htole32(tsf & 0xffffffff);
1400 tstamp[1] = htole32(tsf >> 32);
1401 }
1402 sc->sc_stats.ast_tx_mgmt++;
1403 }
1404
1405 nextfrag:
1406 next = m->m_nextpkt;
1407 if (ath_tx_start(sc, ni, bf, m)) {
1408 bad:
1409 ifp->if_oerrors++;
1410 reclaim:
1411 ATH_TXBUF_LOCK(sc);
1412 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1413 ath_txfrag_cleanup(sc, &frags, ni);
1414 ATH_TXBUF_UNLOCK(sc);
1415 if (ni != NULL)
1416 ieee80211_free_node(ni);
1417 continue;
1418 }
1419 if (next != NULL) {
1420 m = next;
1421 bf = STAILQ_FIRST(&frags);
1422 KASSERT(bf != NULL, ("no buf for txfrag"));
1423 STAILQ_REMOVE_HEAD(&frags, bf_list);
1424 goto nextfrag;
1425 }
1426
1427 ifp->if_timer = 1;
1428 }
1429 }
1430
1431 static int
1432 ath_media_change(struct ifnet *ifp)
1433 {
1434 #define IS_UP(ifp) \
1435 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1436 int error;
1437
1438 error = ieee80211_media_change(ifp);
1439 if (error == ENETRESET) {
1440 if (IS_UP(ifp))
1441 ath_init(ifp->if_softc); /* XXX lose error */
1442 error = 0;
1443 }
1444 return error;
1445 #undef IS_UP
1446 }
1447
1448 #ifdef AR_DEBUG
1449 static void
1450 ath_keyprint(const char *tag, u_int ix,
1451 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1452 {
1453 static const char *ciphers[] = {
1454 "WEP",
1455 "AES-OCB",
1456 "AES-CCM",
1457 "CKIP",
1458 "TKIP",
1459 "CLR",
1460 };
1461 int i, n;
1462
1463 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1464 for (i = 0, n = hk->kv_len; i < n; i++)
1465 printf("%02x", hk->kv_val[i]);
1466 printf(" mac %s", ether_sprintf(mac));
1467 if (hk->kv_type == HAL_CIPHER_TKIP) {
1468 printf(" mic ");
1469 for (i = 0; i < sizeof(hk->kv_mic); i++)
1470 printf("%02x", hk->kv_mic[i]);
1471 }
1472 printf("\n");
1473 }
1474 #endif
1475
1476 /*
1477 * Set a TKIP key into the hardware. This handles the
1478 * potential distribution of key state to multiple key
1479 * cache slots for TKIP.
1480 */
1481 static int
1482 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1483 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1484 {
1485 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1486 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1487 struct ath_hal *ah = sc->sc_ah;
1488
1489 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1490 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1491 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1492 if (sc->sc_splitmic) {
1493 /*
1494 * TX key goes at first index, RX key at the rx index.
1495 * The hal handles the MIC keys at index+64.
1496 */
1497 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1498 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1499 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1500 zerobssid))
1501 return 0;
1502
1503 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1504 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1505 /* XXX delete tx key on failure? */
1506 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1507 hk, mac);
1508 } else {
1509 /*
1510 * Room for both TX+RX MIC keys in one key cache
1511 * slot, just set key at the first index; the HAL
1512 * will handle the reset.
1513 */
1514 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1515 #if HAL_ABI_VERSION > 0x06052200
1516 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1517 #endif
1518 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1519 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1520 }
1521 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1522 /*
1523 * TX/RX key goes at first index.
1524 * The hal handles the MIC keys are index+64.
1525 */
1526 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1527 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1528 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1529 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1530 }
1531 return 0;
1532 #undef IEEE80211_KEY_XR
1533 }
1534
1535 /*
1536 * Set a net80211 key into the hardware. This handles the
1537 * potential distribution of key state to multiple key
1538 * cache slots for TKIP with hardware MIC support.
1539 */
1540 static int
1541 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1542 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1543 struct ieee80211_node *bss)
1544 {
1545 #define N(a) (sizeof(a)/sizeof(a[0]))
1546 static const u_int8_t ciphermap[] = {
1547 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1548 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1549 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1550 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1551 (u_int8_t) -1, /* 4 is not allocated */
1552 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1553 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1554 };
1555 struct ath_hal *ah = sc->sc_ah;
1556 const struct ieee80211_cipher *cip = k->wk_cipher;
1557 u_int8_t gmac[IEEE80211_ADDR_LEN];
1558 const u_int8_t *mac;
1559 HAL_KEYVAL hk;
1560
1561 memset(&hk, 0, sizeof(hk));
1562 /*
1563 * Software crypto uses a "clear key" so non-crypto
1564 * state kept in the key cache are maintained and
1565 * so that rx frames have an entry to match.
1566 */
1567 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1568 KASSERT(cip->ic_cipher < N(ciphermap),
1569 ("invalid cipher type %u", cip->ic_cipher));
1570 hk.kv_type = ciphermap[cip->ic_cipher];
1571 hk.kv_len = k->wk_keylen;
1572 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1573 } else
1574 hk.kv_type = HAL_CIPHER_CLR;
1575
1576 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1577 /*
1578 * Group keys on hardware that supports multicast frame
1579 * key search use a mac that is the sender's address with
1580 * the high bit set instead of the app-specified address.
1581 */
1582 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1583 gmac[0] |= 0x80;
1584 mac = gmac;
1585 } else
1586 mac = mac0;
1587
1588 if ((hk.kv_type == HAL_CIPHER_TKIP &&
1589 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) && sc->sc_splitmic) {
1590 return ath_keyset_tkip(sc, k, &hk, mac);
1591 } else {
1592 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1593 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1594 }
1595 #undef N
1596 }
1597
1598 /*
1599 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1600 * each key, one for decrypt/encrypt and the other for the MIC.
1601 */
1602 static u_int16_t
1603 key_alloc_2pair(struct ath_softc *sc,
1604 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1605 {
1606 #define N(a) (sizeof(a)/sizeof(a[0]))
1607 u_int i, keyix;
1608
1609 KASSERT(sc->sc_splitmic, ("key cache !split"));
1610 /* XXX could optimize */
1611 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1612 u_int8_t b = sc->sc_keymap[i];
1613 if (b != 0xff) {
1614 /*
1615 * One or more slots in this byte are free.
1616 */
1617 keyix = i*NBBY;
1618 while (b & 1) {
1619 again:
1620 keyix++;
1621 b >>= 1;
1622 }
1623 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1624 if (isset(sc->sc_keymap, keyix+32) ||
1625 isset(sc->sc_keymap, keyix+64) ||
1626 isset(sc->sc_keymap, keyix+32+64)) {
1627 /* full pair unavailable */
1628 /* XXX statistic */
1629 if (keyix == (i+1)*NBBY) {
1630 /* no slots were appropriate, advance */
1631 continue;
1632 }
1633 goto again;
1634 }
1635 setbit(sc->sc_keymap, keyix);
1636 setbit(sc->sc_keymap, keyix+64);
1637 setbit(sc->sc_keymap, keyix+32);
1638 setbit(sc->sc_keymap, keyix+32+64);
1639 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1640 "%s: key pair %u,%u %u,%u\n",
1641 __func__, keyix, keyix+64,
1642 keyix+32, keyix+32+64);
1643 *txkeyix = keyix;
1644 *rxkeyix = keyix+32;
1645 return keyix;
1646 }
1647 }
1648 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1649 return IEEE80211_KEYIX_NONE;
1650 #undef N
1651 }
1652
1653 /*
1654 * Allocate a single key cache slot.
1655 */
1656 static int
1657 key_alloc_single(struct ath_softc *sc,
1658 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1659 {
1660 #define N(a) (sizeof(a)/sizeof(a[0]))
1661 u_int i, keyix;
1662
1663 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1664 for (i = 0; i < N(sc->sc_keymap); i++) {
1665 u_int8_t b = sc->sc_keymap[i];
1666 if (b != 0xff) {
1667 /*
1668 * One or more slots are free.
1669 */
1670 keyix = i*NBBY;
1671 while (b & 1)
1672 keyix++, b >>= 1;
1673 setbit(sc->sc_keymap, keyix);
1674 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1675 __func__, keyix);
1676 *txkeyix = *rxkeyix = keyix;
1677 return 1;
1678 }
1679 }
1680 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1681 return 0;
1682 #undef N
1683 }
1684
1685 /*
1686 * Allocate one or more key cache slots for a uniacst key. The
1687 * key itself is needed only to identify the cipher. For hardware
1688 * TKIP with split cipher+MIC keys we allocate two key cache slot
1689 * pairs so that we can setup separate TX and RX MIC keys. Note
1690 * that the MIC key for a TKIP key at slot i is assumed by the
1691 * hardware to be at slot i+64. This limits TKIP keys to the first
1692 * 64 entries.
1693 */
1694 static int
1695 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1696 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1697 {
1698 struct ath_softc *sc = ic->ic_ifp->if_softc;
1699
1700 /*
1701 * Group key allocation must be handled specially for
1702 * parts that do not support multicast key cache search
1703 * functionality. For those parts the key id must match
1704 * the h/w key index so lookups find the right key. On
1705 * parts w/ the key search facility we install the sender's
1706 * mac address (with the high bit set) and let the hardware
1707 * find the key w/o using the key id. This is preferred as
1708 * it permits us to support multiple users for adhoc and/or
1709 * multi-station operation.
1710 */
1711 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1712 if (!(&ic->ic_nw_keys[0] <= k &&
1713 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1714 /* should not happen */
1715 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1716 "%s: bogus group key\n", __func__);
1717 return 0;
1718 }
1719 /*
1720 * XXX we pre-allocate the global keys so
1721 * have no way to check if they've already been allocated.
1722 */
1723 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1724 return 1;
1725 }
1726
1727 /*
1728 * We allocate two pair for TKIP when using the h/w to do
1729 * the MIC. For everything else, including software crypto,
1730 * we allocate a single entry. Note that s/w crypto requires
1731 * a pass-through slot on the 5211 and 5212. The 5210 does
1732 * not support pass-through cache entries and we map all
1733 * those requests to slot 0.
1734 */
1735 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1736 return key_alloc_single(sc, keyix, rxkeyix);
1737 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1738 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1739 return key_alloc_2pair(sc, keyix, rxkeyix);
1740 } else {
1741 return key_alloc_single(sc, keyix, rxkeyix);
1742 }
1743 }
1744
1745 /*
1746 * Delete an entry in the key cache allocated by ath_key_alloc.
1747 */
1748 static int
1749 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1750 {
1751 struct ath_softc *sc = ic->ic_ifp->if_softc;
1752 struct ath_hal *ah = sc->sc_ah;
1753 const struct ieee80211_cipher *cip = k->wk_cipher;
1754 u_int keyix = k->wk_keyix;
1755
1756 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1757
1758 if (!device_has_power(sc->sc_dev)) {
1759 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1760 k->wk_keyix);
1761 }
1762
1763 ath_hal_keyreset(ah, keyix);
1764 /*
1765 * Handle split tx/rx keying required for TKIP with h/w MIC.
1766 */
1767 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1768 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1769 ath_hal_keyreset(ah, keyix+32); /* RX key */
1770 if (keyix >= IEEE80211_WEP_NKID) {
1771 /*
1772 * Don't touch keymap entries for global keys so
1773 * they are never considered for dynamic allocation.
1774 */
1775 clrbit(sc->sc_keymap, keyix);
1776 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1777 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1778 sc->sc_splitmic) {
1779 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1780 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1781 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1782 }
1783 }
1784 return 1;
1785 }
1786
1787 /*
1788 * Set the key cache contents for the specified key. Key cache
1789 * slot(s) must already have been allocated by ath_key_alloc.
1790 */
1791 static int
1792 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1793 const u_int8_t mac[IEEE80211_ADDR_LEN])
1794 {
1795 struct ath_softc *sc = ic->ic_ifp->if_softc;
1796
1797 if (!device_has_power(sc->sc_dev)) {
1798 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1799 k->wk_keyix);
1800 }
1801 return ath_keyset(sc, k, mac, ic->ic_bss);
1802 }
1803
1804 /*
1805 * Block/unblock tx+rx processing while a key change is done.
1806 * We assume the caller serializes key management operations
1807 * so we only need to worry about synchronization with other
1808 * uses that originate in the driver.
1809 */
1810 static void
1811 ath_key_update_begin(struct ieee80211com *ic)
1812 {
1813 struct ifnet *ifp = ic->ic_ifp;
1814 struct ath_softc *sc = ifp->if_softc;
1815
1816 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1817 #if 0
1818 tasklet_disable(&sc->sc_rxtq);
1819 #endif
1820 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1821 }
1822
1823 static void
1824 ath_key_update_end(struct ieee80211com *ic)
1825 {
1826 struct ifnet *ifp = ic->ic_ifp;
1827 struct ath_softc *sc = ifp->if_softc;
1828
1829 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1830 IF_UNLOCK(&ifp->if_snd);
1831 #if 0
1832 tasklet_enable(&sc->sc_rxtq);
1833 #endif
1834 }
1835
1836 /*
1837 * Calculate the receive filter according to the
1838 * operating mode and state:
1839 *
1840 * o always accept unicast, broadcast, and multicast traffic
1841 * o maintain current state of phy error reception (the hal
1842 * may enable phy error frames for noise immunity work)
1843 * o probe request frames are accepted only when operating in
1844 * hostap, adhoc, or monitor modes
1845 * o enable promiscuous mode according to the interface state
1846 * o accept beacons:
1847 * - when operating in adhoc mode so the 802.11 layer creates
1848 * node table entries for peers,
1849 * - when operating in station mode for collecting rssi data when
1850 * the station is otherwise quiet, or
1851 * - when scanning
1852 */
1853 static u_int32_t
1854 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1855 {
1856 struct ieee80211com *ic = &sc->sc_ic;
1857 struct ath_hal *ah = sc->sc_ah;
1858 struct ifnet *ifp = &sc->sc_if;
1859 u_int32_t rfilt;
1860
1861 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1862 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1863 if (ic->ic_opmode != IEEE80211_M_STA)
1864 rfilt |= HAL_RX_FILTER_PROBEREQ;
1865 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1866 (ifp->if_flags & IFF_PROMISC))
1867 rfilt |= HAL_RX_FILTER_PROM;
1868 if (ifp->if_flags & IFF_PROMISC)
1869 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1870 if (ic->ic_opmode == IEEE80211_M_STA ||
1871 ic->ic_opmode == IEEE80211_M_IBSS ||
1872 state == IEEE80211_S_SCAN)
1873 rfilt |= HAL_RX_FILTER_BEACON;
1874 return rfilt;
1875 }
1876
1877 static void
1878 ath_mode_init(struct ath_softc *sc)
1879 {
1880 struct ifnet *ifp = &sc->sc_if;
1881 struct ieee80211com *ic = &sc->sc_ic;
1882 struct ath_hal *ah = sc->sc_ah;
1883 struct ether_multi *enm;
1884 struct ether_multistep estep;
1885 u_int32_t rfilt, mfilt[2], val;
1886 int i;
1887 uint8_t pos;
1888
1889 /* configure rx filter */
1890 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1891 ath_hal_setrxfilter(ah, rfilt);
1892
1893 /* configure operational mode */
1894 ath_hal_setopmode(ah);
1895
1896 /* Write keys to hardware; it may have been powered down. */
1897 ath_key_update_begin(ic);
1898 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1899 ath_key_set(ic,
1900 &ic->ic_crypto.cs_nw_keys[i],
1901 ic->ic_myaddr);
1902 }
1903 ath_key_update_end(ic);
1904
1905 /*
1906 * Handle any link-level address change. Note that we only
1907 * need to force ic_myaddr; any other addresses are handled
1908 * as a byproduct of the ifnet code marking the interface
1909 * down then up.
1910 *
1911 * XXX should get from lladdr instead of arpcom but that's more work
1912 */
1913 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1914 ath_hal_setmac(ah, ic->ic_myaddr);
1915
1916 /* calculate and install multicast filter */
1917 ifp->if_flags &= ~IFF_ALLMULTI;
1918 mfilt[0] = mfilt[1] = 0;
1919 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1920 while (enm != NULL) {
1921 void *dl;
1922 /* XXX Punt on ranges. */
1923 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1924 mfilt[0] = mfilt[1] = 0xffffffff;
1925 ifp->if_flags |= IFF_ALLMULTI;
1926 break;
1927 }
1928 dl = enm->enm_addrlo;
1929 val = LE_READ_4((char *)dl + 0);
1930 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1931 val = LE_READ_4((char *)dl + 3);
1932 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1933 pos &= 0x3f;
1934 mfilt[pos / 32] |= (1 << (pos % 32));
1935
1936 ETHER_NEXT_MULTI(estep, enm);
1937 }
1938
1939 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1940 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1941 __func__, rfilt, mfilt[0], mfilt[1]);
1942 }
1943
1944 /*
1945 * Set the slot time based on the current setting.
1946 */
1947 static void
1948 ath_setslottime(struct ath_softc *sc)
1949 {
1950 struct ieee80211com *ic = &sc->sc_ic;
1951 struct ath_hal *ah = sc->sc_ah;
1952
1953 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1954 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1955 else
1956 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1957 sc->sc_updateslot = OK;
1958 }
1959
1960 /*
1961 * Callback from the 802.11 layer to update the
1962 * slot time based on the current setting.
1963 */
1964 static void
1965 ath_updateslot(struct ifnet *ifp)
1966 {
1967 struct ath_softc *sc = ifp->if_softc;
1968 struct ieee80211com *ic = &sc->sc_ic;
1969
1970 /*
1971 * When not coordinating the BSS, change the hardware
1972 * immediately. For other operation we defer the change
1973 * until beacon updates have propagated to the stations.
1974 */
1975 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1976 sc->sc_updateslot = UPDATE;
1977 else
1978 ath_setslottime(sc);
1979 }
1980
1981 /*
1982 * Setup a h/w transmit queue for beacons.
1983 */
1984 static int
1985 ath_beaconq_setup(struct ath_hal *ah)
1986 {
1987 HAL_TXQ_INFO qi;
1988
1989 memset(&qi, 0, sizeof(qi));
1990 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1991 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1992 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1993 /* NB: for dynamic turbo, don't enable any other interrupts */
1994 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1995 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1996 }
1997
1998 /*
1999 * Setup the transmit queue parameters for the beacon queue.
2000 */
2001 static int
2002 ath_beaconq_config(struct ath_softc *sc)
2003 {
2004 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2005 struct ieee80211com *ic = &sc->sc_ic;
2006 struct ath_hal *ah = sc->sc_ah;
2007 HAL_TXQ_INFO qi;
2008
2009 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2010 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2011 /*
2012 * Always burst out beacon and CAB traffic.
2013 */
2014 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2015 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2016 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2017 } else {
2018 struct wmeParams *wmep =
2019 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2020 /*
2021 * Adhoc mode; important thing is to use 2x cwmin.
2022 */
2023 qi.tqi_aifs = wmep->wmep_aifsn;
2024 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2025 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2026 }
2027
2028 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2029 device_printf(sc->sc_dev, "unable to update parameters for "
2030 "beacon hardware queue!\n");
2031 return 0;
2032 } else {
2033 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2034 return 1;
2035 }
2036 #undef ATH_EXPONENT_TO_VALUE
2037 }
2038
2039 /*
2040 * Allocate and setup an initial beacon frame.
2041 */
2042 static int
2043 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2044 {
2045 struct ieee80211com *ic = ni->ni_ic;
2046 struct ath_buf *bf;
2047 struct mbuf *m;
2048 int error;
2049
2050 bf = STAILQ_FIRST(&sc->sc_bbuf);
2051 if (bf == NULL) {
2052 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2053 sc->sc_stats.ast_be_nombuf++; /* XXX */
2054 return ENOMEM; /* XXX */
2055 }
2056 /*
2057 * NB: the beacon data buffer must be 32-bit aligned;
2058 * we assume the mbuf routines will return us something
2059 * with this alignment (perhaps should assert).
2060 */
2061 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2062 if (m == NULL) {
2063 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2064 __func__);
2065 sc->sc_stats.ast_be_nombuf++;
2066 return ENOMEM;
2067 }
2068 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2069 BUS_DMA_NOWAIT);
2070 if (error == 0) {
2071 bf->bf_m = m;
2072 bf->bf_node = ieee80211_ref_node(ni);
2073 } else {
2074 m_freem(m);
2075 }
2076 return error;
2077 }
2078
2079 /*
2080 * Setup the beacon frame for transmit.
2081 */
2082 static void
2083 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2084 {
2085 #define USE_SHPREAMBLE(_ic) \
2086 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2087 == IEEE80211_F_SHPREAMBLE)
2088 struct ieee80211_node *ni = bf->bf_node;
2089 struct ieee80211com *ic = ni->ni_ic;
2090 struct mbuf *m = bf->bf_m;
2091 struct ath_hal *ah = sc->sc_ah;
2092 struct ath_desc *ds;
2093 int flags, antenna;
2094 const HAL_RATE_TABLE *rt;
2095 u_int8_t rix, rate;
2096
2097 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2098 __func__, m, m->m_len);
2099
2100 /* setup descriptors */
2101 ds = bf->bf_desc;
2102
2103 flags = HAL_TXDESC_NOACK;
2104 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2105 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2106 flags |= HAL_TXDESC_VEOL;
2107 /*
2108 * Let hardware handle antenna switching unless
2109 * the user has selected a transmit antenna
2110 * (sc_txantenna is not 0).
2111 */
2112 antenna = sc->sc_txantenna;
2113 } else {
2114 ds->ds_link = 0;
2115 /*
2116 * Switch antenna every 4 beacons, unless the user
2117 * has selected a transmit antenna (sc_txantenna
2118 * is not 0).
2119 *
2120 * XXX assumes two antenna
2121 */
2122 if (sc->sc_txantenna == 0)
2123 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2124 else
2125 antenna = sc->sc_txantenna;
2126 }
2127
2128 KASSERT(bf->bf_nseg == 1,
2129 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2130 ds->ds_data = bf->bf_segs[0].ds_addr;
2131 /*
2132 * Calculate rate code.
2133 * XXX everything at min xmit rate
2134 */
2135 rix = sc->sc_minrateix;
2136 rt = sc->sc_currates;
2137 rate = rt->info[rix].rateCode;
2138 if (USE_SHPREAMBLE(ic))
2139 rate |= rt->info[rix].shortPreamble;
2140 ath_hal_setuptxdesc(ah, ds
2141 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2142 , sizeof(struct ieee80211_frame)/* header length */
2143 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2144 , ni->ni_txpower /* txpower XXX */
2145 , rate, 1 /* series 0 rate/tries */
2146 , HAL_TXKEYIX_INVALID /* no encryption */
2147 , antenna /* antenna mode */
2148 , flags /* no ack, veol for beacons */
2149 , 0 /* rts/cts rate */
2150 , 0 /* rts/cts duration */
2151 );
2152 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2153 ath_hal_filltxdesc(ah, ds
2154 , roundup(m->m_len, 4) /* buffer length */
2155 , AH_TRUE /* first segment */
2156 , AH_TRUE /* last segment */
2157 , ds /* first descriptor */
2158 );
2159
2160 /* NB: The desc swap function becomes void, if descriptor swapping
2161 * is not enabled
2162 */
2163 ath_desc_swap(ds);
2164
2165 #undef USE_SHPREAMBLE
2166 }
2167
2168 /*
2169 * Transmit a beacon frame at SWBA. Dynamic updates to the
2170 * frame contents are done as needed and the slot time is
2171 * also adjusted based on current state.
2172 */
2173 static void
2174 ath_beacon_proc(void *arg, int pending)
2175 {
2176 struct ath_softc *sc = arg;
2177 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2178 struct ieee80211_node *ni = bf->bf_node;
2179 struct ieee80211com *ic = ni->ni_ic;
2180 struct ath_hal *ah = sc->sc_ah;
2181 struct mbuf *m;
2182 int ncabq, error, otherant;
2183
2184 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2185 __func__, pending);
2186
2187 if (ic->ic_opmode == IEEE80211_M_STA ||
2188 ic->ic_opmode == IEEE80211_M_MONITOR ||
2189 bf == NULL || bf->bf_m == NULL) {
2190 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2191 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2192 return;
2193 }
2194 /*
2195 * Check if the previous beacon has gone out. If
2196 * not don't try to post another, skip this period
2197 * and wait for the next. Missed beacons indicate
2198 * a problem and should not occur. If we miss too
2199 * many consecutive beacons reset the device.
2200 */
2201 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2202 sc->sc_bmisscount++;
2203 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2204 "%s: missed %u consecutive beacons\n",
2205 __func__, sc->sc_bmisscount);
2206 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2207 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2208 return;
2209 }
2210 if (sc->sc_bmisscount != 0) {
2211 DPRINTF(sc, ATH_DEBUG_BEACON,
2212 "%s: resume beacon xmit after %u misses\n",
2213 __func__, sc->sc_bmisscount);
2214 sc->sc_bmisscount = 0;
2215 }
2216
2217 /*
2218 * Update dynamic beacon contents. If this returns
2219 * non-zero then we need to remap the memory because
2220 * the beacon frame changed size (probably because
2221 * of the TIM bitmap).
2222 */
2223 m = bf->bf_m;
2224 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2225 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2226 /* XXX too conservative? */
2227 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2228 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2229 BUS_DMA_NOWAIT);
2230 if (error != 0) {
2231 if_printf(&sc->sc_if,
2232 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2233 __func__, error);
2234 return;
2235 }
2236 }
2237
2238 /*
2239 * Handle slot time change when a non-ERP station joins/leaves
2240 * an 11g network. The 802.11 layer notifies us via callback,
2241 * we mark updateslot, then wait one beacon before effecting
2242 * the change. This gives associated stations at least one
2243 * beacon interval to note the state change.
2244 */
2245 /* XXX locking */
2246 if (sc->sc_updateslot == UPDATE)
2247 sc->sc_updateslot = COMMIT; /* commit next beacon */
2248 else if (sc->sc_updateslot == COMMIT)
2249 ath_setslottime(sc); /* commit change to h/w */
2250
2251 /*
2252 * Check recent per-antenna transmit statistics and flip
2253 * the default antenna if noticeably more frames went out
2254 * on the non-default antenna.
2255 * XXX assumes 2 anntenae
2256 */
2257 otherant = sc->sc_defant & 1 ? 2 : 1;
2258 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2259 ath_setdefantenna(sc, otherant);
2260 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2261
2262 /*
2263 * Construct tx descriptor.
2264 */
2265 ath_beacon_setup(sc, bf);
2266
2267 /*
2268 * Stop any current dma and put the new frame on the queue.
2269 * This should never fail since we check above that no frames
2270 * are still pending on the queue.
2271 */
2272 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2273 DPRINTF(sc, ATH_DEBUG_ANY,
2274 "%s: beacon queue %u did not stop?\n",
2275 __func__, sc->sc_bhalq);
2276 }
2277 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2278 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2279
2280 /*
2281 * Enable the CAB queue before the beacon queue to
2282 * insure cab frames are triggered by this beacon.
2283 */
2284 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2285 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2286 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2287 ath_hal_txstart(ah, sc->sc_bhalq);
2288 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2289 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2290 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2291
2292 sc->sc_stats.ast_be_xmit++;
2293 }
2294
2295 /*
2296 * Reset the hardware after detecting beacons have stopped.
2297 */
2298 static void
2299 ath_bstuck_proc(void *arg, int pending)
2300 {
2301 struct ath_softc *sc = arg;
2302 struct ifnet *ifp = &sc->sc_if;
2303
2304 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2305 sc->sc_bmisscount);
2306 ath_reset(ifp);
2307 }
2308
2309 /*
2310 * Reclaim beacon resources.
2311 */
2312 static void
2313 ath_beacon_free(struct ath_softc *sc)
2314 {
2315 struct ath_buf *bf;
2316
2317 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2318 if (bf->bf_m != NULL) {
2319 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2320 m_freem(bf->bf_m);
2321 bf->bf_m = NULL;
2322 }
2323 if (bf->bf_node != NULL) {
2324 ieee80211_free_node(bf->bf_node);
2325 bf->bf_node = NULL;
2326 }
2327 }
2328 }
2329
2330 /*
2331 * Configure the beacon and sleep timers.
2332 *
2333 * When operating as an AP this resets the TSF and sets
2334 * up the hardware to notify us when we need to issue beacons.
2335 *
2336 * When operating in station mode this sets up the beacon
2337 * timers according to the timestamp of the last received
2338 * beacon and the current TSF, configures PCF and DTIM
2339 * handling, programs the sleep registers so the hardware
2340 * will wakeup in time to receive beacons, and configures
2341 * the beacon miss handling so we'll receive a BMISS
2342 * interrupt when we stop seeing beacons from the AP
2343 * we've associated with.
2344 */
2345 static void
2346 ath_beacon_config(struct ath_softc *sc)
2347 {
2348 #define TSF_TO_TU(_h,_l) \
2349 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2350 #define FUDGE 2
2351 struct ath_hal *ah = sc->sc_ah;
2352 struct ieee80211com *ic = &sc->sc_ic;
2353 struct ieee80211_node *ni = ic->ic_bss;
2354 u_int32_t nexttbtt, intval, tsftu;
2355 u_int64_t tsf;
2356
2357 /* extract tstamp from last beacon and convert to TU */
2358 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2359 LE_READ_4(ni->ni_tstamp.data));
2360 /* NB: the beacon interval is kept internally in TU's */
2361 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2362 if (nexttbtt == 0) /* e.g. for ap mode */
2363 nexttbtt = intval;
2364 else if (intval) /* NB: can be 0 for monitor mode */
2365 nexttbtt = roundup(nexttbtt, intval);
2366 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2367 __func__, nexttbtt, intval, ni->ni_intval);
2368 if (ic->ic_opmode == IEEE80211_M_STA) {
2369 HAL_BEACON_STATE bs;
2370 int dtimperiod, dtimcount;
2371 int cfpperiod, cfpcount;
2372
2373 /*
2374 * Setup dtim and cfp parameters according to
2375 * last beacon we received (which may be none).
2376 */
2377 dtimperiod = ni->ni_dtim_period;
2378 if (dtimperiod <= 0) /* NB: 0 if not known */
2379 dtimperiod = 1;
2380 dtimcount = ni->ni_dtim_count;
2381 if (dtimcount >= dtimperiod) /* NB: sanity check */
2382 dtimcount = 0; /* XXX? */
2383 cfpperiod = 1; /* NB: no PCF support yet */
2384 cfpcount = 0;
2385 /*
2386 * Pull nexttbtt forward to reflect the current
2387 * TSF and calculate dtim+cfp state for the result.
2388 */
2389 tsf = ath_hal_gettsf64(ah);
2390 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2391 do {
2392 nexttbtt += intval;
2393 if (--dtimcount < 0) {
2394 dtimcount = dtimperiod - 1;
2395 if (--cfpcount < 0)
2396 cfpcount = cfpperiod - 1;
2397 }
2398 } while (nexttbtt < tsftu);
2399 memset(&bs, 0, sizeof(bs));
2400 bs.bs_intval = intval;
2401 bs.bs_nexttbtt = nexttbtt;
2402 bs.bs_dtimperiod = dtimperiod*intval;
2403 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2404 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2405 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2406 bs.bs_cfpmaxduration = 0;
2407 #if 0
2408 /*
2409 * The 802.11 layer records the offset to the DTIM
2410 * bitmap while receiving beacons; use it here to
2411 * enable h/w detection of our AID being marked in
2412 * the bitmap vector (to indicate frames for us are
2413 * pending at the AP).
2414 * XXX do DTIM handling in s/w to WAR old h/w bugs
2415 * XXX enable based on h/w rev for newer chips
2416 */
2417 bs.bs_timoffset = ni->ni_timoff;
2418 #endif
2419 /*
2420 * Calculate the number of consecutive beacons to miss
2421 * before taking a BMISS interrupt. The configuration
2422 * is specified in ms, so we need to convert that to
2423 * TU's and then calculate based on the beacon interval.
2424 * Note that we clamp the result to at most 10 beacons.
2425 */
2426 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2427 if (bs.bs_bmissthreshold > 10)
2428 bs.bs_bmissthreshold = 10;
2429 else if (bs.bs_bmissthreshold <= 0)
2430 bs.bs_bmissthreshold = 1;
2431
2432 /*
2433 * Calculate sleep duration. The configuration is
2434 * given in ms. We insure a multiple of the beacon
2435 * period is used. Also, if the sleep duration is
2436 * greater than the DTIM period then it makes senses
2437 * to make it a multiple of that.
2438 *
2439 * XXX fixed at 100ms
2440 */
2441 bs.bs_sleepduration =
2442 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2443 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2444 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2445
2446 DPRINTF(sc, ATH_DEBUG_BEACON,
2447 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2448 , __func__
2449 , tsf, tsftu
2450 , bs.bs_intval
2451 , bs.bs_nexttbtt
2452 , bs.bs_dtimperiod
2453 , bs.bs_nextdtim
2454 , bs.bs_bmissthreshold
2455 , bs.bs_sleepduration
2456 , bs.bs_cfpperiod
2457 , bs.bs_cfpmaxduration
2458 , bs.bs_cfpnext
2459 , bs.bs_timoffset
2460 );
2461 ath_hal_intrset(ah, 0);
2462 ath_hal_beacontimers(ah, &bs);
2463 sc->sc_imask |= HAL_INT_BMISS;
2464 ath_hal_intrset(ah, sc->sc_imask);
2465 } else {
2466 ath_hal_intrset(ah, 0);
2467 if (nexttbtt == intval)
2468 intval |= HAL_BEACON_RESET_TSF;
2469 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2470 /*
2471 * In IBSS mode enable the beacon timers but only
2472 * enable SWBA interrupts if we need to manually
2473 * prepare beacon frames. Otherwise we use a
2474 * self-linked tx descriptor and let the hardware
2475 * deal with things.
2476 */
2477 intval |= HAL_BEACON_ENA;
2478 if (!sc->sc_hasveol)
2479 sc->sc_imask |= HAL_INT_SWBA;
2480 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2481 /*
2482 * Pull nexttbtt forward to reflect
2483 * the current TSF.
2484 */
2485 tsf = ath_hal_gettsf64(ah);
2486 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2487 do {
2488 nexttbtt += intval;
2489 } while (nexttbtt < tsftu);
2490 }
2491 ath_beaconq_config(sc);
2492 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2493 /*
2494 * In AP mode we enable the beacon timers and
2495 * SWBA interrupts to prepare beacon frames.
2496 */
2497 intval |= HAL_BEACON_ENA;
2498 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2499 ath_beaconq_config(sc);
2500 }
2501 ath_hal_beaconinit(ah, nexttbtt, intval);
2502 sc->sc_bmisscount = 0;
2503 ath_hal_intrset(ah, sc->sc_imask);
2504 /*
2505 * When using a self-linked beacon descriptor in
2506 * ibss mode load it once here.
2507 */
2508 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2509 ath_beacon_proc(sc, 0);
2510 }
2511 sc->sc_syncbeacon = 0;
2512 #undef UNDEF
2513 #undef TSF_TO_TU
2514 }
2515
2516 static int
2517 ath_descdma_setup(struct ath_softc *sc,
2518 struct ath_descdma *dd, ath_bufhead *head,
2519 const char *name, int nbuf, int ndesc)
2520 {
2521 #define DS2PHYS(_dd, _ds) \
2522 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2523 struct ifnet *ifp = &sc->sc_if;
2524 struct ath_desc *ds;
2525 struct ath_buf *bf;
2526 int i, bsize, error;
2527
2528 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2529 __func__, name, nbuf, ndesc);
2530
2531 dd->dd_name = name;
2532 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2533
2534 /*
2535 * Setup DMA descriptor area.
2536 */
2537 dd->dd_dmat = sc->sc_dmat;
2538
2539 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2540 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2541
2542 if (error != 0) {
2543 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2544 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2545 goto fail0;
2546 }
2547
2548 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2549 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2550 if (error != 0) {
2551 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2552 nbuf * ndesc, dd->dd_name, error);
2553 goto fail1;
2554 }
2555
2556 /* allocate descriptors */
2557 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2558 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2559 if (error != 0) {
2560 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2561 "error %u\n", dd->dd_name, error);
2562 goto fail2;
2563 }
2564
2565 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2566 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2567 if (error != 0) {
2568 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2569 dd->dd_name, error);
2570 goto fail3;
2571 }
2572
2573 ds = dd->dd_desc;
2574 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2575 DPRINTF(sc, ATH_DEBUG_RESET,
2576 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2577 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2578 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2579
2580 /* allocate rx buffers */
2581 bsize = sizeof(struct ath_buf) * nbuf;
2582 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2583 if (bf == NULL) {
2584 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2585 dd->dd_name, bsize);
2586 goto fail4;
2587 }
2588 dd->dd_bufptr = bf;
2589
2590 STAILQ_INIT(head);
2591 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2592 bf->bf_desc = ds;
2593 bf->bf_daddr = DS2PHYS(dd, ds);
2594 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2595 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2596 if (error != 0) {
2597 if_printf(ifp, "unable to create dmamap for %s "
2598 "buffer %u, error %u\n", dd->dd_name, i, error);
2599 ath_descdma_cleanup(sc, dd, head);
2600 return error;
2601 }
2602 STAILQ_INSERT_TAIL(head, bf, bf_list);
2603 }
2604 return 0;
2605 fail4:
2606 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2607 fail3:
2608 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2609 fail2:
2610 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2611 fail1:
2612 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2613 fail0:
2614 memset(dd, 0, sizeof(*dd));
2615 return error;
2616 #undef DS2PHYS
2617 }
2618
2619 static void
2620 ath_descdma_cleanup(struct ath_softc *sc,
2621 struct ath_descdma *dd, ath_bufhead *head)
2622 {
2623 struct ath_buf *bf;
2624 struct ieee80211_node *ni;
2625
2626 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2627 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2628 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2629 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2630
2631 STAILQ_FOREACH(bf, head, bf_list) {
2632 if (bf->bf_m) {
2633 m_freem(bf->bf_m);
2634 bf->bf_m = NULL;
2635 }
2636 if (bf->bf_dmamap != NULL) {
2637 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2638 bf->bf_dmamap = NULL;
2639 }
2640 ni = bf->bf_node;
2641 bf->bf_node = NULL;
2642 if (ni != NULL) {
2643 /*
2644 * Reclaim node reference.
2645 */
2646 ieee80211_free_node(ni);
2647 }
2648 }
2649
2650 STAILQ_INIT(head);
2651 free(dd->dd_bufptr, M_ATHDEV);
2652 memset(dd, 0, sizeof(*dd));
2653 }
2654
2655 static int
2656 ath_desc_alloc(struct ath_softc *sc)
2657 {
2658 int error;
2659
2660 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2661 "rx", ath_rxbuf, 1);
2662 if (error != 0)
2663 return error;
2664
2665 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2666 "tx", ath_txbuf, ATH_TXDESC);
2667 if (error != 0) {
2668 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2669 return error;
2670 }
2671
2672 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2673 "beacon", 1, 1);
2674 if (error != 0) {
2675 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2676 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2677 return error;
2678 }
2679 return 0;
2680 }
2681
2682 static void
2683 ath_desc_free(struct ath_softc *sc)
2684 {
2685
2686 if (sc->sc_bdma.dd_desc_len != 0)
2687 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2688 if (sc->sc_txdma.dd_desc_len != 0)
2689 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2690 if (sc->sc_rxdma.dd_desc_len != 0)
2691 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2692 }
2693
2694 static struct ieee80211_node *
2695 ath_node_alloc(struct ieee80211_node_table *nt)
2696 {
2697 struct ieee80211com *ic = nt->nt_ic;
2698 struct ath_softc *sc = ic->ic_ifp->if_softc;
2699 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2700 struct ath_node *an;
2701
2702 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2703 if (an == NULL) {
2704 /* XXX stat+msg */
2705 return NULL;
2706 }
2707 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2708 ath_rate_node_init(sc, an);
2709
2710 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2711 return &an->an_node;
2712 }
2713
2714 static void
2715 ath_node_free(struct ieee80211_node *ni)
2716 {
2717 struct ieee80211com *ic = ni->ni_ic;
2718 struct ath_softc *sc = ic->ic_ifp->if_softc;
2719
2720 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2721
2722 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2723 sc->sc_node_free(ni);
2724 }
2725
2726 static u_int8_t
2727 ath_node_getrssi(const struct ieee80211_node *ni)
2728 {
2729 #define HAL_EP_RND(x, mul) \
2730 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2731 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2732 int32_t rssi;
2733
2734 /*
2735 * When only one frame is received there will be no state in
2736 * avgrssi so fallback on the value recorded by the 802.11 layer.
2737 */
2738 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2739 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2740 else
2741 rssi = ni->ni_rssi;
2742 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2743 #undef HAL_EP_RND
2744 }
2745
2746 static int
2747 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2748 {
2749 struct ath_hal *ah = sc->sc_ah;
2750 int error;
2751 struct mbuf *m;
2752 struct ath_desc *ds;
2753
2754 m = bf->bf_m;
2755 if (m == NULL) {
2756 /*
2757 * NB: by assigning a page to the rx dma buffer we
2758 * implicitly satisfy the Atheros requirement that
2759 * this buffer be cache-line-aligned and sized to be
2760 * multiple of the cache line size. Not doing this
2761 * causes weird stuff to happen (for the 5210 at least).
2762 */
2763 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2764 if (m == NULL) {
2765 DPRINTF(sc, ATH_DEBUG_ANY,
2766 "%s: no mbuf/cluster\n", __func__);
2767 sc->sc_stats.ast_rx_nombuf++;
2768 return ENOMEM;
2769 }
2770 bf->bf_m = m;
2771 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2772
2773 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2774 bf->bf_dmamap, m,
2775 BUS_DMA_NOWAIT);
2776 if (error != 0) {
2777 DPRINTF(sc, ATH_DEBUG_ANY,
2778 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2779 __func__, error);
2780 sc->sc_stats.ast_rx_busdma++;
2781 return error;
2782 }
2783 KASSERT(bf->bf_nseg == 1,
2784 ("multi-segment packet; nseg %u", bf->bf_nseg));
2785 }
2786 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2787 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2788
2789 /*
2790 * Setup descriptors. For receive we always terminate
2791 * the descriptor list with a self-linked entry so we'll
2792 * not get overrun under high load (as can happen with a
2793 * 5212 when ANI processing enables PHY error frames).
2794 *
2795 * To insure the last descriptor is self-linked we create
2796 * each descriptor as self-linked and add it to the end. As
2797 * each additional descriptor is added the previous self-linked
2798 * entry is ``fixed'' naturally. This should be safe even
2799 * if DMA is happening. When processing RX interrupts we
2800 * never remove/process the last, self-linked, entry on the
2801 * descriptor list. This insures the hardware always has
2802 * someplace to write a new frame.
2803 */
2804 ds = bf->bf_desc;
2805 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2806 ds->ds_data = bf->bf_segs[0].ds_addr;
2807 /* ds->ds_vdata = mtod(m, void *); for radar */
2808 ath_hal_setuprxdesc(ah, ds
2809 , m->m_len /* buffer size */
2810 , 0
2811 );
2812
2813 if (sc->sc_rxlink != NULL)
2814 *sc->sc_rxlink = bf->bf_daddr;
2815 sc->sc_rxlink = &ds->ds_link;
2816 return 0;
2817 }
2818
2819 /*
2820 * Extend 15-bit time stamp from rx descriptor to
2821 * a full 64-bit TSF using the specified TSF.
2822 */
2823 static inline u_int64_t
2824 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2825 {
2826 if ((tsf & 0x7fff) < rstamp)
2827 tsf -= 0x8000;
2828 return ((tsf &~ 0x7fff) | rstamp);
2829 }
2830
2831 /*
2832 * Intercept management frames to collect beacon rssi data
2833 * and to do ibss merges.
2834 */
2835 static void
2836 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2837 struct ieee80211_node *ni,
2838 int subtype, int rssi, u_int32_t rstamp)
2839 {
2840 struct ath_softc *sc = ic->ic_ifp->if_softc;
2841
2842 /*
2843 * Call up first so subsequent work can use information
2844 * potentially stored in the node (e.g. for ibss merge).
2845 */
2846 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2847 switch (subtype) {
2848 case IEEE80211_FC0_SUBTYPE_BEACON:
2849 /* update rssi statistics for use by the hal */
2850 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2851 if (sc->sc_syncbeacon &&
2852 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2853 /*
2854 * Resync beacon timers using the tsf of the beacon
2855 * frame we just received.
2856 */
2857 ath_beacon_config(sc);
2858 }
2859 /* fall thru... */
2860 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2861 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2862 ic->ic_state == IEEE80211_S_RUN) {
2863 u_int64_t tsf = ath_extend_tsf(rstamp,
2864 ath_hal_gettsf64(sc->sc_ah));
2865
2866 /*
2867 * Handle ibss merge as needed; check the tsf on the
2868 * frame before attempting the merge. The 802.11 spec
2869 * says the station should change it's bssid to match
2870 * the oldest station with the same ssid, where oldest
2871 * is determined by the tsf. Note that hardware
2872 * reconfiguration happens through callback to
2873 * ath_newstate as the state machine will go from
2874 * RUN -> RUN when this happens.
2875 */
2876 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2877 DPRINTF(sc, ATH_DEBUG_STATE,
2878 "ibss merge, rstamp %u tsf %ju "
2879 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2880 (uintmax_t)ni->ni_tstamp.tsf);
2881 (void) ieee80211_ibss_merge(ni);
2882 }
2883 }
2884 break;
2885 }
2886 }
2887
2888 /*
2889 * Set the default antenna.
2890 */
2891 static void
2892 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2893 {
2894 struct ath_hal *ah = sc->sc_ah;
2895
2896 /* XXX block beacon interrupts */
2897 ath_hal_setdefantenna(ah, antenna);
2898 if (sc->sc_defant != antenna)
2899 sc->sc_stats.ast_ant_defswitch++;
2900 sc->sc_defant = antenna;
2901 sc->sc_rxotherant = 0;
2902 }
2903
2904 static void
2905 ath_handle_micerror(struct ieee80211com *ic,
2906 struct ieee80211_frame *wh, int keyix)
2907 {
2908 struct ieee80211_node *ni;
2909
2910 /* XXX recheck MIC to deal w/ chips that lie */
2911 /* XXX discard MIC errors on !data frames */
2912 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2913 if (ni != NULL) {
2914 ieee80211_notify_michael_failure(ic, wh, keyix);
2915 ieee80211_free_node(ni);
2916 }
2917 }
2918
2919 static void
2920 ath_rx_proc(void *arg, int npending)
2921 {
2922 #define PA2DESC(_sc, _pa) \
2923 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2924 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2925 struct ath_softc *sc = arg;
2926 struct ath_buf *bf;
2927 struct ieee80211com *ic = &sc->sc_ic;
2928 struct ifnet *ifp = &sc->sc_if;
2929 struct ath_hal *ah = sc->sc_ah;
2930 struct ath_desc *ds;
2931 struct mbuf *m;
2932 struct ieee80211_node *ni;
2933 struct ath_node *an;
2934 int len, ngood, type;
2935 u_int phyerr;
2936 HAL_STATUS status;
2937 int16_t nf;
2938 u_int64_t tsf;
2939 uint8_t rxerr_tap, rxerr_mon;
2940
2941 NET_LOCK_GIANT(); /* XXX */
2942
2943 rxerr_tap =
2944 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
2945
2946 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
2947 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
2948 else if (ifp->if_flags & IFF_PROMISC)
2949 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
2950
2951 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2952 ngood = 0;
2953 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2954 tsf = ath_hal_gettsf64(ah);
2955 do {
2956 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2957 if (bf == NULL) { /* NB: shouldn't happen */
2958 if_printf(ifp, "%s: no buffer!\n", __func__);
2959 break;
2960 }
2961 ds = bf->bf_desc;
2962 if (ds->ds_link == bf->bf_daddr) {
2963 /* NB: never process the self-linked entry at the end */
2964 break;
2965 }
2966 m = bf->bf_m;
2967 if (m == NULL) { /* NB: shouldn't happen */
2968 if_printf(ifp, "%s: no mbuf!\n", __func__);
2969 break;
2970 }
2971 /* XXX sync descriptor memory */
2972 /*
2973 * Must provide the virtual address of the current
2974 * descriptor, the physical address, and the virtual
2975 * address of the next descriptor in the h/w chain.
2976 * This allows the HAL to look ahead to see if the
2977 * hardware is done with a descriptor by checking the
2978 * done bit in the following descriptor and the address
2979 * of the current descriptor the DMA engine is working
2980 * on. All this is necessary because of our use of
2981 * a self-linked list to avoid rx overruns.
2982 */
2983 status = ath_hal_rxprocdesc(ah, ds,
2984 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
2985 tsf, &ds->ds_rxstat);
2986 #ifdef AR_DEBUG
2987 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2988 ath_printrxbuf(bf, status == HAL_OK);
2989 #endif
2990 if (status == HAL_EINPROGRESS)
2991 break;
2992 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2993 if (ds->ds_rxstat.rs_more) {
2994 /*
2995 * Frame spans multiple descriptors; this
2996 * cannot happen yet as we don't support
2997 * jumbograms. If not in monitor mode,
2998 * discard the frame.
2999 */
3000 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3001 sc->sc_stats.ast_rx_toobig++;
3002 goto rx_next;
3003 }
3004 /* fall thru for monitor mode handling... */
3005 } else if (ds->ds_rxstat.rs_status != 0) {
3006 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3007 sc->sc_stats.ast_rx_crcerr++;
3008 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3009 sc->sc_stats.ast_rx_fifoerr++;
3010 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3011 sc->sc_stats.ast_rx_phyerr++;
3012 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3013 sc->sc_stats.ast_rx_phy[phyerr]++;
3014 goto rx_next;
3015 }
3016 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3017 /*
3018 * Decrypt error. If the error occurred
3019 * because there was no hardware key, then
3020 * let the frame through so the upper layers
3021 * can process it. This is necessary for 5210
3022 * parts which have no way to setup a ``clear''
3023 * key cache entry.
3024 *
3025 * XXX do key cache faulting
3026 */
3027 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3028 goto rx_accept;
3029 sc->sc_stats.ast_rx_badcrypt++;
3030 }
3031 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3032 sc->sc_stats.ast_rx_badmic++;
3033 /*
3034 * Do minimal work required to hand off
3035 * the 802.11 header for notifcation.
3036 */
3037 /* XXX frag's and qos frames */
3038 len = ds->ds_rxstat.rs_datalen;
3039 if (len >= sizeof (struct ieee80211_frame)) {
3040 bus_dmamap_sync(sc->sc_dmat,
3041 bf->bf_dmamap,
3042 0, bf->bf_dmamap->dm_mapsize,
3043 BUS_DMASYNC_POSTREAD);
3044 ath_handle_micerror(ic,
3045 mtod(m, struct ieee80211_frame *),
3046 sc->sc_splitmic ?
3047 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3048 }
3049 }
3050 ifp->if_ierrors++;
3051 /*
3052 * Reject error frames, we normally don't want
3053 * to see them in monitor mode (in monitor mode
3054 * allow through packets that have crypto problems).
3055 */
3056
3057 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3058 goto rx_next;
3059 }
3060 rx_accept:
3061 /*
3062 * Sync and unmap the frame. At this point we're
3063 * committed to passing the mbuf somewhere so clear
3064 * bf_m; this means a new sk_buff must be allocated
3065 * when the rx descriptor is setup again to receive
3066 * another frame.
3067 */
3068 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3069 0, bf->bf_dmamap->dm_mapsize,
3070 BUS_DMASYNC_POSTREAD);
3071 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3072 bf->bf_m = NULL;
3073
3074 m->m_pkthdr.rcvif = ifp;
3075 len = ds->ds_rxstat.rs_datalen;
3076 m->m_pkthdr.len = m->m_len = len;
3077
3078 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3079
3080 #if NBPFILTER > 0
3081 if (sc->sc_drvbpf) {
3082 u_int8_t rix;
3083
3084 /*
3085 * Discard anything shorter than an ack or cts.
3086 */
3087 if (len < IEEE80211_ACK_LEN) {
3088 DPRINTF(sc, ATH_DEBUG_RECV,
3089 "%s: runt packet %d\n",
3090 __func__, len);
3091 sc->sc_stats.ast_rx_tooshort++;
3092 m_freem(m);
3093 goto rx_next;
3094 }
3095 rix = ds->ds_rxstat.rs_rate;
3096 sc->sc_rx_th.wr_tsf = htole64(
3097 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3098 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3099 if (ds->ds_rxstat.rs_status &
3100 (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3101 sc->sc_rx_th.wr_flags |=
3102 IEEE80211_RADIOTAP_F_BADFCS;
3103 }
3104 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3105 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3106 sc->sc_rx_th.wr_antnoise = nf;
3107 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3108
3109 bpf_mtap2(sc->sc_drvbpf,
3110 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3111 }
3112 #endif
3113
3114 if (ds->ds_rxstat.rs_status & rxerr_tap) {
3115 m_freem(m);
3116 goto rx_next;
3117 }
3118 /*
3119 * From this point on we assume the frame is at least
3120 * as large as ieee80211_frame_min; verify that.
3121 */
3122 if (len < IEEE80211_MIN_LEN) {
3123 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3124 __func__, len);
3125 sc->sc_stats.ast_rx_tooshort++;
3126 m_freem(m);
3127 goto rx_next;
3128 }
3129
3130 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3131 ieee80211_dump_pkt(mtod(m, void *), len,
3132 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3133 ds->ds_rxstat.rs_rssi);
3134 }
3135
3136 m_adj(m, -IEEE80211_CRC_LEN);
3137
3138 /*
3139 * Locate the node for sender, track state, and then
3140 * pass the (referenced) node up to the 802.11 layer
3141 * for its use.
3142 */
3143 ni = ieee80211_find_rxnode_withkey(ic,
3144 mtod(m, const struct ieee80211_frame_min *),
3145 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3146 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3147 /*
3148 * Track rx rssi and do any rx antenna management.
3149 */
3150 an = ATH_NODE(ni);
3151 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3152 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3153 /*
3154 * Send frame up for processing.
3155 */
3156 type = ieee80211_input(ic, m, ni,
3157 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3158 ieee80211_free_node(ni);
3159 if (sc->sc_diversity) {
3160 /*
3161 * When using fast diversity, change the default rx
3162 * antenna if diversity chooses the other antenna 3
3163 * times in a row.
3164 */
3165 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3166 if (++sc->sc_rxotherant >= 3)
3167 ath_setdefantenna(sc,
3168 ds->ds_rxstat.rs_antenna);
3169 } else
3170 sc->sc_rxotherant = 0;
3171 }
3172 if (sc->sc_softled) {
3173 /*
3174 * Blink for any data frame. Otherwise do a
3175 * heartbeat-style blink when idle. The latter
3176 * is mainly for station mode where we depend on
3177 * periodic beacon frames to trigger the poll event.
3178 */
3179 if (type == IEEE80211_FC0_TYPE_DATA) {
3180 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3181 ath_led_event(sc, ATH_LED_RX);
3182 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3183 ath_led_event(sc, ATH_LED_POLL);
3184 }
3185 /*
3186 * Arrange to update the last rx timestamp only for
3187 * frames from our ap when operating in station mode.
3188 * This assumes the rx key is always setup when associated.
3189 */
3190 if (ic->ic_opmode == IEEE80211_M_STA &&
3191 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3192 ngood++;
3193 rx_next:
3194 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3195 } while (ath_rxbuf_init(sc, bf) == 0);
3196
3197 /* rx signal state monitoring */
3198 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3199 #if 0
3200 if (ath_hal_radar_event(ah))
3201 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3202 #endif
3203 if (ngood)
3204 sc->sc_lastrx = tsf;
3205
3206 #ifdef __NetBSD__
3207 /* XXX Why isn't this necessary in FreeBSD? */
3208 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3209 ath_start(ifp);
3210 #endif /* __NetBSD__ */
3211
3212 NET_UNLOCK_GIANT(); /* XXX */
3213 #undef PA2DESC
3214 }
3215
3216 /*
3217 * Setup a h/w transmit queue.
3218 */
3219 static struct ath_txq *
3220 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3221 {
3222 #define N(a) (sizeof(a)/sizeof(a[0]))
3223 struct ath_hal *ah = sc->sc_ah;
3224 HAL_TXQ_INFO qi;
3225 int qnum;
3226
3227 memset(&qi, 0, sizeof(qi));
3228 qi.tqi_subtype = subtype;
3229 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3230 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3231 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3232 /*
3233 * Enable interrupts only for EOL and DESC conditions.
3234 * We mark tx descriptors to receive a DESC interrupt
3235 * when a tx queue gets deep; otherwise waiting for the
3236 * EOL to reap descriptors. Note that this is done to
3237 * reduce interrupt load and this only defers reaping
3238 * descriptors, never transmitting frames. Aside from
3239 * reducing interrupts this also permits more concurrency.
3240 * The only potential downside is if the tx queue backs
3241 * up in which case the top half of the kernel may backup
3242 * due to a lack of tx descriptors.
3243 */
3244 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3245 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3246 if (qnum == -1) {
3247 /*
3248 * NB: don't print a message, this happens
3249 * normally on parts with too few tx queues
3250 */
3251 return NULL;
3252 }
3253 if (qnum >= N(sc->sc_txq)) {
3254 device_printf(sc->sc_dev,
3255 "hal qnum %u out of range, max %zu!\n",
3256 qnum, N(sc->sc_txq));
3257 ath_hal_releasetxqueue(ah, qnum);
3258 return NULL;
3259 }
3260 if (!ATH_TXQ_SETUP(sc, qnum)) {
3261 struct ath_txq *txq = &sc->sc_txq[qnum];
3262
3263 txq->axq_qnum = qnum;
3264 txq->axq_depth = 0;
3265 txq->axq_intrcnt = 0;
3266 txq->axq_link = NULL;
3267 STAILQ_INIT(&txq->axq_q);
3268 ATH_TXQ_LOCK_INIT(sc, txq);
3269 sc->sc_txqsetup |= 1<<qnum;
3270 }
3271 return &sc->sc_txq[qnum];
3272 #undef N
3273 }
3274
3275 /*
3276 * Setup a hardware data transmit queue for the specified
3277 * access control. The hal may not support all requested
3278 * queues in which case it will return a reference to a
3279 * previously setup queue. We record the mapping from ac's
3280 * to h/w queues for use by ath_tx_start and also track
3281 * the set of h/w queues being used to optimize work in the
3282 * transmit interrupt handler and related routines.
3283 */
3284 static int
3285 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3286 {
3287 #define N(a) (sizeof(a)/sizeof(a[0]))
3288 struct ath_txq *txq;
3289
3290 if (ac >= N(sc->sc_ac2q)) {
3291 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3292 ac, N(sc->sc_ac2q));
3293 return 0;
3294 }
3295 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3296 if (txq != NULL) {
3297 sc->sc_ac2q[ac] = txq;
3298 return 1;
3299 } else
3300 return 0;
3301 #undef N
3302 }
3303
3304 /*
3305 * Update WME parameters for a transmit queue.
3306 */
3307 static int
3308 ath_txq_update(struct ath_softc *sc, int ac)
3309 {
3310 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3311 #define ATH_TXOP_TO_US(v) (v<<5)
3312 struct ieee80211com *ic = &sc->sc_ic;
3313 struct ath_txq *txq = sc->sc_ac2q[ac];
3314 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3315 struct ath_hal *ah = sc->sc_ah;
3316 HAL_TXQ_INFO qi;
3317
3318 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3319 qi.tqi_aifs = wmep->wmep_aifsn;
3320 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3321 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3322 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3323
3324 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3325 device_printf(sc->sc_dev, "unable to update hardware queue "
3326 "parameters for %s traffic!\n",
3327 ieee80211_wme_acnames[ac]);
3328 return 0;
3329 } else {
3330 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3331 return 1;
3332 }
3333 #undef ATH_TXOP_TO_US
3334 #undef ATH_EXPONENT_TO_VALUE
3335 }
3336
3337 /*
3338 * Callback from the 802.11 layer to update WME parameters.
3339 */
3340 static int
3341 ath_wme_update(struct ieee80211com *ic)
3342 {
3343 struct ath_softc *sc = ic->ic_ifp->if_softc;
3344
3345 return !ath_txq_update(sc, WME_AC_BE) ||
3346 !ath_txq_update(sc, WME_AC_BK) ||
3347 !ath_txq_update(sc, WME_AC_VI) ||
3348 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3349 }
3350
3351 /*
3352 * Reclaim resources for a setup queue.
3353 */
3354 static void
3355 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3356 {
3357
3358 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3359 ATH_TXQ_LOCK_DESTROY(txq);
3360 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3361 }
3362
3363 /*
3364 * Reclaim all tx queue resources.
3365 */
3366 static void
3367 ath_tx_cleanup(struct ath_softc *sc)
3368 {
3369 int i;
3370
3371 ATH_TXBUF_LOCK_DESTROY(sc);
3372 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3373 if (ATH_TXQ_SETUP(sc, i))
3374 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3375 }
3376
3377 /*
3378 * Defragment an mbuf chain, returning at most maxfrags separate
3379 * mbufs+clusters. If this is not possible NULL is returned and
3380 * the original mbuf chain is left in it's present (potentially
3381 * modified) state. We use two techniques: collapsing consecutive
3382 * mbufs and replacing consecutive mbufs by a cluster.
3383 */
3384 static struct mbuf *
3385 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3386 {
3387 struct mbuf *m, *n, *n2, **prev;
3388 u_int curfrags;
3389
3390 /*
3391 * Calculate the current number of frags.
3392 */
3393 curfrags = 0;
3394 for (m = m0; m != NULL; m = m->m_next)
3395 curfrags++;
3396 /*
3397 * First, try to collapse mbufs. Note that we always collapse
3398 * towards the front so we don't need to deal with moving the
3399 * pkthdr. This may be suboptimal if the first mbuf has much
3400 * less data than the following.
3401 */
3402 m = m0;
3403 again:
3404 for (;;) {
3405 n = m->m_next;
3406 if (n == NULL)
3407 break;
3408 if (n->m_len < M_TRAILINGSPACE(m)) {
3409 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3410 n->m_len);
3411 m->m_len += n->m_len;
3412 m->m_next = n->m_next;
3413 m_free(n);
3414 if (--curfrags <= maxfrags)
3415 return m0;
3416 } else
3417 m = n;
3418 }
3419 KASSERT(maxfrags > 1,
3420 ("maxfrags %u, but normal collapse failed", maxfrags));
3421 /*
3422 * Collapse consecutive mbufs to a cluster.
3423 */
3424 prev = &m0->m_next; /* NB: not the first mbuf */
3425 while ((n = *prev) != NULL) {
3426 if ((n2 = n->m_next) != NULL &&
3427 n->m_len + n2->m_len < MCLBYTES) {
3428 m = m_getcl(how, MT_DATA, 0);
3429 if (m == NULL)
3430 goto bad;
3431 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3432 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3433 n2->m_len);
3434 m->m_len = n->m_len + n2->m_len;
3435 m->m_next = n2->m_next;
3436 *prev = m;
3437 m_free(n);
3438 m_free(n2);
3439 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3440 return m0;
3441 /*
3442 * Still not there, try the normal collapse
3443 * again before we allocate another cluster.
3444 */
3445 goto again;
3446 }
3447 prev = &n->m_next;
3448 }
3449 /*
3450 * No place where we can collapse to a cluster; punt.
3451 * This can occur if, for example, you request 2 frags
3452 * but the packet requires that both be clusters (we
3453 * never reallocate the first mbuf to avoid moving the
3454 * packet header).
3455 */
3456 bad:
3457 return NULL;
3458 }
3459
3460 /*
3461 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3462 */
3463 static int
3464 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3465 {
3466 int i;
3467
3468 for (i = 0; i < rt->rateCount; i++)
3469 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3470 return i;
3471 return 0; /* NB: lowest rate */
3472 }
3473
3474 static void
3475 ath_freetx(struct mbuf *m)
3476 {
3477 struct mbuf *next;
3478
3479 do {
3480 next = m->m_nextpkt;
3481 m->m_nextpkt = NULL;
3482 m_freem(m);
3483 } while ((m = next) != NULL);
3484 }
3485
3486 static int
3487 deduct_pad_bytes(int len, int hdrlen)
3488 {
3489 /* XXX I am suspicious that this code, which I extracted
3490 * XXX from ath_tx_start() for reuse, does the right thing.
3491 */
3492 return len - (hdrlen & 3);
3493 }
3494
3495 static int
3496 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3497 struct mbuf *m0)
3498 {
3499 struct ieee80211com *ic = &sc->sc_ic;
3500 struct ath_hal *ah = sc->sc_ah;
3501 struct ifnet *ifp = &sc->sc_if;
3502 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3503 int i, error, iswep, ismcast, isfrag, ismrr;
3504 int keyix, hdrlen, pktlen, try0;
3505 u_int8_t rix, txrate, ctsrate;
3506 u_int8_t cix = 0xff; /* NB: silence compiler */
3507 struct ath_desc *ds, *ds0;
3508 struct ath_txq *txq;
3509 struct ieee80211_frame *wh;
3510 u_int subtype, flags, ctsduration;
3511 HAL_PKT_TYPE atype;
3512 const HAL_RATE_TABLE *rt;
3513 HAL_BOOL shortPreamble;
3514 struct ath_node *an;
3515 struct mbuf *m;
3516 u_int pri;
3517
3518 wh = mtod(m0, struct ieee80211_frame *);
3519 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3520 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3521 isfrag = m0->m_flags & M_FRAG;
3522 hdrlen = ieee80211_anyhdrsize(wh);
3523 /*
3524 * Packet length must not include any
3525 * pad bytes; deduct them here.
3526 */
3527 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3528
3529 if (iswep) {
3530 const struct ieee80211_cipher *cip;
3531 struct ieee80211_key *k;
3532
3533 /*
3534 * Construct the 802.11 header+trailer for an encrypted
3535 * frame. The only reason this can fail is because of an
3536 * unknown or unsupported cipher/key type.
3537 */
3538 k = ieee80211_crypto_encap(ic, ni, m0);
3539 if (k == NULL) {
3540 /*
3541 * This can happen when the key is yanked after the
3542 * frame was queued. Just discard the frame; the
3543 * 802.11 layer counts failures and provides
3544 * debugging/diagnostics.
3545 */
3546 ath_freetx(m0);
3547 return EIO;
3548 }
3549 /*
3550 * Adjust the packet + header lengths for the crypto
3551 * additions and calculate the h/w key index. When
3552 * a s/w mic is done the frame will have had any mic
3553 * added to it prior to entry so m0->m_pkthdr.len above will
3554 * account for it. Otherwise we need to add it to the
3555 * packet length.
3556 */
3557 cip = k->wk_cipher;
3558 hdrlen += cip->ic_header;
3559 pktlen += cip->ic_header + cip->ic_trailer;
3560 /* NB: frags always have any TKIP MIC done in s/w */
3561 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3562 pktlen += cip->ic_miclen;
3563 keyix = k->wk_keyix;
3564
3565 /* packet header may have moved, reset our local pointer */
3566 wh = mtod(m0, struct ieee80211_frame *);
3567 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3568 /*
3569 * Use station key cache slot, if assigned.
3570 */
3571 keyix = ni->ni_ucastkey.wk_keyix;
3572 if (keyix == IEEE80211_KEYIX_NONE)
3573 keyix = HAL_TXKEYIX_INVALID;
3574 } else
3575 keyix = HAL_TXKEYIX_INVALID;
3576
3577 pktlen += IEEE80211_CRC_LEN;
3578
3579 /*
3580 * Load the DMA map so any coalescing is done. This
3581 * also calculates the number of descriptors we need.
3582 */
3583 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3584 BUS_DMA_NOWAIT);
3585 if (error == EFBIG) {
3586 /* XXX packet requires too many descriptors */
3587 bf->bf_nseg = ATH_TXDESC+1;
3588 } else if (error != 0) {
3589 sc->sc_stats.ast_tx_busdma++;
3590 ath_freetx(m0);
3591 return error;
3592 }
3593 /*
3594 * Discard null packets and check for packets that
3595 * require too many TX descriptors. We try to convert
3596 * the latter to a cluster.
3597 */
3598 if (error == EFBIG) { /* too many desc's, linearize */
3599 sc->sc_stats.ast_tx_linear++;
3600 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3601 if (m == NULL) {
3602 ath_freetx(m0);
3603 sc->sc_stats.ast_tx_nombuf++;
3604 return ENOMEM;
3605 }
3606 m0 = m;
3607 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3608 BUS_DMA_NOWAIT);
3609 if (error != 0) {
3610 sc->sc_stats.ast_tx_busdma++;
3611 ath_freetx(m0);
3612 return error;
3613 }
3614 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3615 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3616 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3617 sc->sc_stats.ast_tx_nodata++;
3618 ath_freetx(m0);
3619 return EIO;
3620 }
3621 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3622 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3623 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3624 bf->bf_m = m0;
3625 bf->bf_node = ni; /* NB: held reference */
3626
3627 /* setup descriptors */
3628 ds = bf->bf_desc;
3629 rt = sc->sc_currates;
3630 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3631
3632 /*
3633 * NB: the 802.11 layer marks whether or not we should
3634 * use short preamble based on the current mode and
3635 * negotiated parameters.
3636 */
3637 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3638 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3639 shortPreamble = AH_TRUE;
3640 sc->sc_stats.ast_tx_shortpre++;
3641 } else {
3642 shortPreamble = AH_FALSE;
3643 }
3644
3645 an = ATH_NODE(ni);
3646 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3647 ismrr = 0; /* default no multi-rate retry*/
3648 /*
3649 * Calculate Atheros packet type from IEEE80211 packet header,
3650 * setup for rate calculations, and select h/w transmit queue.
3651 */
3652 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3653 case IEEE80211_FC0_TYPE_MGT:
3654 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3655 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3656 atype = HAL_PKT_TYPE_BEACON;
3657 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3658 atype = HAL_PKT_TYPE_PROBE_RESP;
3659 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3660 atype = HAL_PKT_TYPE_ATIM;
3661 else
3662 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3663 rix = sc->sc_minrateix;
3664 txrate = rt->info[rix].rateCode;
3665 if (shortPreamble)
3666 txrate |= rt->info[rix].shortPreamble;
3667 try0 = ATH_TXMGTTRY;
3668 /* NB: force all management frames to highest queue */
3669 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3670 /* NB: force all management frames to highest queue */
3671 pri = WME_AC_VO;
3672 } else
3673 pri = WME_AC_BE;
3674 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3675 break;
3676 case IEEE80211_FC0_TYPE_CTL:
3677 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3678 rix = sc->sc_minrateix;
3679 txrate = rt->info[rix].rateCode;
3680 if (shortPreamble)
3681 txrate |= rt->info[rix].shortPreamble;
3682 try0 = ATH_TXMGTTRY;
3683 /* NB: force all ctl frames to highest queue */
3684 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3685 /* NB: force all ctl frames to highest queue */
3686 pri = WME_AC_VO;
3687 } else
3688 pri = WME_AC_BE;
3689 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3690 break;
3691 case IEEE80211_FC0_TYPE_DATA:
3692 atype = HAL_PKT_TYPE_NORMAL; /* default */
3693 /*
3694 * Data frames: multicast frames go out at a fixed rate,
3695 * otherwise consult the rate control module for the
3696 * rate to use.
3697 */
3698 if (ismcast) {
3699 /*
3700 * Check mcast rate setting in case it's changed.
3701 * XXX move out of fastpath
3702 */
3703 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3704 sc->sc_mcastrix =
3705 ath_tx_findrix(rt, ic->ic_mcast_rate);
3706 sc->sc_mcastrate = ic->ic_mcast_rate;
3707 }
3708 rix = sc->sc_mcastrix;
3709 txrate = rt->info[rix].rateCode;
3710 try0 = 1;
3711 } else {
3712 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3713 &rix, &try0, &txrate);
3714 sc->sc_txrate = txrate; /* for LED blinking */
3715 if (try0 != ATH_TXMAXTRY)
3716 ismrr = 1;
3717 }
3718 pri = M_WME_GETAC(m0);
3719 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3720 flags |= HAL_TXDESC_NOACK;
3721 break;
3722 default:
3723 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3724 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3725 /* XXX statistic */
3726 ath_freetx(m0);
3727 return EIO;
3728 }
3729 txq = sc->sc_ac2q[pri];
3730
3731 /*
3732 * When servicing one or more stations in power-save mode
3733 * multicast frames must be buffered until after the beacon.
3734 * We use the CAB queue for that.
3735 */
3736 if (ismcast && ic->ic_ps_sta) {
3737 txq = sc->sc_cabq;
3738 /* XXX? more bit in 802.11 frame header */
3739 }
3740
3741 /*
3742 * Calculate miscellaneous flags.
3743 */
3744 if (ismcast) {
3745 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3746 } else if (pktlen > ic->ic_rtsthreshold) {
3747 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3748 cix = rt->info[rix].controlRate;
3749 sc->sc_stats.ast_tx_rts++;
3750 }
3751 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3752 sc->sc_stats.ast_tx_noack++;
3753
3754 /*
3755 * If 802.11g protection is enabled, determine whether
3756 * to use RTS/CTS or just CTS. Note that this is only
3757 * done for OFDM unicast frames.
3758 */
3759 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3760 rt->info[rix].phy == IEEE80211_T_OFDM &&
3761 (flags & HAL_TXDESC_NOACK) == 0) {
3762 /* XXX fragments must use CCK rates w/ protection */
3763 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3764 flags |= HAL_TXDESC_RTSENA;
3765 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3766 flags |= HAL_TXDESC_CTSENA;
3767 if (isfrag) {
3768 /*
3769 * For frags it would be desirable to use the
3770 * highest CCK rate for RTS/CTS. But stations
3771 * farther away may detect it at a lower CCK rate
3772 * so use the configured protection rate instead
3773 * (for now).
3774 */
3775 cix = rt->info[sc->sc_protrix].controlRate;
3776 } else
3777 cix = rt->info[sc->sc_protrix].controlRate;
3778 sc->sc_stats.ast_tx_protect++;
3779 }
3780
3781 /*
3782 * Calculate duration. This logically belongs in the 802.11
3783 * layer but it lacks sufficient information to calculate it.
3784 */
3785 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3786 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3787 u_int16_t dur;
3788 /*
3789 * XXX not right with fragmentation.
3790 */
3791 if (shortPreamble)
3792 dur = rt->info[rix].spAckDuration;
3793 else
3794 dur = rt->info[rix].lpAckDuration;
3795 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3796 dur += dur; /* additional SIFS+ACK */
3797 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3798 /*
3799 * Include the size of next fragment so NAV is
3800 * updated properly. The last fragment uses only
3801 * the ACK duration
3802 */
3803 dur += ath_hal_computetxtime(ah, rt,
3804 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3805 hdrlen) -
3806 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3807 rix, shortPreamble);
3808 }
3809 if (isfrag) {
3810 /*
3811 * Force hardware to use computed duration for next
3812 * fragment by disabling multi-rate retry which updates
3813 * duration based on the multi-rate duration table.
3814 */
3815 try0 = ATH_TXMAXTRY;
3816 }
3817 *(u_int16_t *)wh->i_dur = htole16(dur);
3818 }
3819
3820 /*
3821 * Calculate RTS/CTS rate and duration if needed.
3822 */
3823 ctsduration = 0;
3824 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3825 /*
3826 * CTS transmit rate is derived from the transmit rate
3827 * by looking in the h/w rate table. We must also factor
3828 * in whether or not a short preamble is to be used.
3829 */
3830 /* NB: cix is set above where RTS/CTS is enabled */
3831 KASSERT(cix != 0xff, ("cix not setup"));
3832 ctsrate = rt->info[cix].rateCode;
3833 /*
3834 * Compute the transmit duration based on the frame
3835 * size and the size of an ACK frame. We call into the
3836 * HAL to do the computation since it depends on the
3837 * characteristics of the actual PHY being used.
3838 *
3839 * NB: CTS is assumed the same size as an ACK so we can
3840 * use the precalculated ACK durations.
3841 */
3842 if (shortPreamble) {
3843 ctsrate |= rt->info[cix].shortPreamble;
3844 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3845 ctsduration += rt->info[cix].spAckDuration;
3846 ctsduration += ath_hal_computetxtime(ah,
3847 rt, pktlen, rix, AH_TRUE);
3848 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3849 ctsduration += rt->info[rix].spAckDuration;
3850 } else {
3851 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3852 ctsduration += rt->info[cix].lpAckDuration;
3853 ctsduration += ath_hal_computetxtime(ah,
3854 rt, pktlen, rix, AH_FALSE);
3855 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3856 ctsduration += rt->info[rix].lpAckDuration;
3857 }
3858 /*
3859 * Must disable multi-rate retry when using RTS/CTS.
3860 */
3861 ismrr = 0;
3862 try0 = ATH_TXMGTTRY; /* XXX */
3863 } else
3864 ctsrate = 0;
3865
3866 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3867 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3868 sc->sc_hwmap[txrate].ieeerate, -1);
3869 #if NBPFILTER > 0
3870 if (ic->ic_rawbpf)
3871 bpf_mtap(ic->ic_rawbpf, m0);
3872 if (sc->sc_drvbpf) {
3873 u_int64_t tsf = ath_hal_gettsf64(ah);
3874
3875 sc->sc_tx_th.wt_tsf = htole64(tsf);
3876 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3877 if (iswep)
3878 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3879 if (isfrag)
3880 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3881 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3882 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3883 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3884
3885 bpf_mtap2(sc->sc_drvbpf,
3886 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3887 }
3888 #endif
3889
3890 /*
3891 * Determine if a tx interrupt should be generated for
3892 * this descriptor. We take a tx interrupt to reap
3893 * descriptors when the h/w hits an EOL condition or
3894 * when the descriptor is specifically marked to generate
3895 * an interrupt. We periodically mark descriptors in this
3896 * way to insure timely replenishing of the supply needed
3897 * for sending frames. Defering interrupts reduces system
3898 * load and potentially allows more concurrent work to be
3899 * done but if done to aggressively can cause senders to
3900 * backup.
3901 *
3902 * NB: use >= to deal with sc_txintrperiod changing
3903 * dynamically through sysctl.
3904 */
3905 if (flags & HAL_TXDESC_INTREQ) {
3906 txq->axq_intrcnt = 0;
3907 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3908 flags |= HAL_TXDESC_INTREQ;
3909 txq->axq_intrcnt = 0;
3910 }
3911
3912 /*
3913 * Formulate first tx descriptor with tx controls.
3914 */
3915 /* XXX check return value? */
3916 ath_hal_setuptxdesc(ah, ds
3917 , pktlen /* packet length */
3918 , hdrlen /* header length */
3919 , atype /* Atheros packet type */
3920 , ni->ni_txpower /* txpower */
3921 , txrate, try0 /* series 0 rate/tries */
3922 , keyix /* key cache index */
3923 , sc->sc_txantenna /* antenna mode */
3924 , flags /* flags */
3925 , ctsrate /* rts/cts rate */
3926 , ctsduration /* rts/cts duration */
3927 );
3928 bf->bf_flags = flags;
3929 /*
3930 * Setup the multi-rate retry state only when we're
3931 * going to use it. This assumes ath_hal_setuptxdesc
3932 * initializes the descriptors (so we don't have to)
3933 * when the hardware supports multi-rate retry and
3934 * we don't use it.
3935 */
3936 if (ismrr)
3937 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3938
3939 /*
3940 * Fillin the remainder of the descriptor info.
3941 */
3942 ds0 = ds;
3943 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3944 ds->ds_data = bf->bf_segs[i].ds_addr;
3945 if (i == bf->bf_nseg - 1)
3946 ds->ds_link = 0;
3947 else
3948 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3949 ath_hal_filltxdesc(ah, ds
3950 , bf->bf_segs[i].ds_len /* segment length */
3951 , i == 0 /* first segment */
3952 , i == bf->bf_nseg - 1 /* last segment */
3953 , ds0 /* first descriptor */
3954 );
3955
3956 /* NB: The desc swap function becomes void,
3957 * if descriptor swapping is not enabled
3958 */
3959 ath_desc_swap(ds);
3960
3961 DPRINTF(sc, ATH_DEBUG_XMIT,
3962 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3963 __func__, i, ds->ds_link, ds->ds_data,
3964 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3965 }
3966 /*
3967 * Insert the frame on the outbound list and
3968 * pass it on to the hardware.
3969 */
3970 ATH_TXQ_LOCK(txq);
3971 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3972 if (txq->axq_link == NULL) {
3973 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3974 DPRINTF(sc, ATH_DEBUG_XMIT,
3975 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3976 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3977 txq->axq_depth);
3978 } else {
3979 *txq->axq_link = HTOAH32(bf->bf_daddr);
3980 DPRINTF(sc, ATH_DEBUG_XMIT,
3981 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3982 __func__, txq->axq_qnum, txq->axq_link,
3983 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3984 }
3985 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3986 /*
3987 * The CAB queue is started from the SWBA handler since
3988 * frames only go out on DTIM and to avoid possible races.
3989 */
3990 if (txq != sc->sc_cabq)
3991 ath_hal_txstart(ah, txq->axq_qnum);
3992 ATH_TXQ_UNLOCK(txq);
3993
3994 return 0;
3995 }
3996
3997 /*
3998 * Process completed xmit descriptors from the specified queue.
3999 */
4000 static int
4001 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4002 {
4003 struct ath_hal *ah = sc->sc_ah;
4004 struct ieee80211com *ic = &sc->sc_ic;
4005 struct ath_buf *bf;
4006 struct ath_desc *ds, *ds0;
4007 struct ieee80211_node *ni;
4008 struct ath_node *an;
4009 int sr, lr, pri, nacked;
4010 HAL_STATUS status;
4011
4012 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4013 __func__, txq->axq_qnum,
4014 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4015 txq->axq_link);
4016 nacked = 0;
4017 for (;;) {
4018 ATH_TXQ_LOCK(txq);
4019 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4020 bf = STAILQ_FIRST(&txq->axq_q);
4021 if (bf == NULL) {
4022 txq->axq_link = NULL;
4023 ATH_TXQ_UNLOCK(txq);
4024 break;
4025 }
4026 ds0 = &bf->bf_desc[0];
4027 ds = &bf->bf_desc[bf->bf_nseg - 1];
4028 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4029 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4030 ath_printtxbuf(bf, status == HAL_OK);
4031 if (status == HAL_EINPROGRESS) {
4032 ATH_TXQ_UNLOCK(txq);
4033 break;
4034 }
4035 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4036 ATH_TXQ_UNLOCK(txq);
4037
4038 ni = bf->bf_node;
4039 if (ni != NULL) {
4040 an = ATH_NODE(ni);
4041 if (ds->ds_txstat.ts_status == 0) {
4042 u_int8_t txant = ds->ds_txstat.ts_antenna;
4043 sc->sc_stats.ast_ant_tx[txant]++;
4044 sc->sc_ant_tx[txant]++;
4045 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4046 sc->sc_stats.ast_tx_altrate++;
4047 sc->sc_stats.ast_tx_rssi =
4048 ds->ds_txstat.ts_rssi;
4049 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4050 ds->ds_txstat.ts_rssi);
4051 pri = M_WME_GETAC(bf->bf_m);
4052 if (pri >= WME_AC_VO)
4053 ic->ic_wme.wme_hipri_traffic++;
4054 ni->ni_inact = ni->ni_inact_reload;
4055 } else {
4056 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4057 sc->sc_stats.ast_tx_xretries++;
4058 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4059 sc->sc_stats.ast_tx_fifoerr++;
4060 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4061 sc->sc_stats.ast_tx_filtered++;
4062 }
4063 sr = ds->ds_txstat.ts_shortretry;
4064 lr = ds->ds_txstat.ts_longretry;
4065 sc->sc_stats.ast_tx_shortretry += sr;
4066 sc->sc_stats.ast_tx_longretry += lr;
4067 /*
4068 * Hand the descriptor to the rate control algorithm.
4069 */
4070 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4071 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4072 /*
4073 * If frame was ack'd update the last rx time
4074 * used to workaround phantom bmiss interrupts.
4075 */
4076 if (ds->ds_txstat.ts_status == 0)
4077 nacked++;
4078 ath_rate_tx_complete(sc, an, ds, ds0);
4079 }
4080 /*
4081 * Reclaim reference to node.
4082 *
4083 * NB: the node may be reclaimed here if, for example
4084 * this is a DEAUTH message that was sent and the
4085 * node was timed out due to inactivity.
4086 */
4087 ieee80211_free_node(ni);
4088 }
4089 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4090 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4091 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4092 m_freem(bf->bf_m);
4093 bf->bf_m = NULL;
4094 bf->bf_node = NULL;
4095
4096 ATH_TXBUF_LOCK(sc);
4097 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4098 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4099 ATH_TXBUF_UNLOCK(sc);
4100 }
4101 return nacked;
4102 }
4103
4104 static inline int
4105 txqactive(struct ath_hal *ah, int qnum)
4106 {
4107 u_int32_t txqs = 1<<qnum;
4108 ath_hal_gettxintrtxqs(ah, &txqs);
4109 return (txqs & (1<<qnum));
4110 }
4111
4112 /*
4113 * Deferred processing of transmit interrupt; special-cased
4114 * for a single hardware transmit queue (e.g. 5210 and 5211).
4115 */
4116 static void
4117 ath_tx_proc_q0(void *arg, int npending)
4118 {
4119 struct ath_softc *sc = arg;
4120 struct ifnet *ifp = &sc->sc_if;
4121
4122 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4123 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4124 }
4125 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4126 ath_tx_processq(sc, sc->sc_cabq);
4127
4128 if (sc->sc_softled)
4129 ath_led_event(sc, ATH_LED_TX);
4130
4131 ath_start(ifp);
4132 }
4133
4134 /*
4135 * Deferred processing of transmit interrupt; special-cased
4136 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4137 */
4138 static void
4139 ath_tx_proc_q0123(void *arg, int npending)
4140 {
4141 struct ath_softc *sc = arg;
4142 struct ifnet *ifp = &sc->sc_if;
4143 int nacked;
4144
4145 /*
4146 * Process each active queue.
4147 */
4148 nacked = 0;
4149 if (txqactive(sc->sc_ah, 0))
4150 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4151 if (txqactive(sc->sc_ah, 1))
4152 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4153 if (txqactive(sc->sc_ah, 2))
4154 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4155 if (txqactive(sc->sc_ah, 3))
4156 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4157 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4158 ath_tx_processq(sc, sc->sc_cabq);
4159 if (nacked) {
4160 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4161 }
4162
4163 if (sc->sc_softled)
4164 ath_led_event(sc, ATH_LED_TX);
4165
4166 ath_start(ifp);
4167 }
4168
4169 /*
4170 * Deferred processing of transmit interrupt.
4171 */
4172 static void
4173 ath_tx_proc(void *arg, int npending)
4174 {
4175 struct ath_softc *sc = arg;
4176 struct ifnet *ifp = &sc->sc_if;
4177 int i, nacked;
4178
4179 /*
4180 * Process each active queue.
4181 */
4182 nacked = 0;
4183 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4184 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4185 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4186 if (nacked) {
4187 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4188 }
4189
4190 if (sc->sc_softled)
4191 ath_led_event(sc, ATH_LED_TX);
4192
4193 ath_start(ifp);
4194 }
4195
4196 static void
4197 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4198 {
4199 struct ath_hal *ah = sc->sc_ah;
4200 struct ieee80211_node *ni;
4201 struct ath_buf *bf;
4202 struct ath_desc *ds;
4203
4204 /*
4205 * NB: this assumes output has been stopped and
4206 * we do not need to block ath_tx_tasklet
4207 */
4208 for (;;) {
4209 ATH_TXQ_LOCK(txq);
4210 bf = STAILQ_FIRST(&txq->axq_q);
4211 if (bf == NULL) {
4212 txq->axq_link = NULL;
4213 ATH_TXQ_UNLOCK(txq);
4214 break;
4215 }
4216 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4217 ATH_TXQ_UNLOCK(txq);
4218 ds = &bf->bf_desc[bf->bf_nseg - 1];
4219 if (sc->sc_debug & ATH_DEBUG_RESET)
4220 ath_printtxbuf(bf,
4221 ath_hal_txprocdesc(ah, bf->bf_desc,
4222 &ds->ds_txstat) == HAL_OK);
4223 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4224 m_freem(bf->bf_m);
4225 bf->bf_m = NULL;
4226 ni = bf->bf_node;
4227 bf->bf_node = NULL;
4228 if (ni != NULL) {
4229 /*
4230 * Reclaim node reference.
4231 */
4232 ieee80211_free_node(ni);
4233 }
4234 ATH_TXBUF_LOCK(sc);
4235 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4236 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4237 ATH_TXBUF_UNLOCK(sc);
4238 }
4239 }
4240
4241 static void
4242 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4243 {
4244 struct ath_hal *ah = sc->sc_ah;
4245
4246 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4247 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4248 __func__, txq->axq_qnum,
4249 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4250 txq->axq_link);
4251 }
4252
4253 /*
4254 * Drain the transmit queues and reclaim resources.
4255 */
4256 static void
4257 ath_draintxq(struct ath_softc *sc)
4258 {
4259 struct ath_hal *ah = sc->sc_ah;
4260 int i;
4261
4262 /* XXX return value */
4263 if (device_is_active(sc->sc_dev)) {
4264 /* don't touch the hardware if marked invalid */
4265 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4266 DPRINTF(sc, ATH_DEBUG_RESET,
4267 "%s: beacon queue %p\n", __func__,
4268 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4269 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4270 if (ATH_TXQ_SETUP(sc, i))
4271 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4272 }
4273 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4274 if (ATH_TXQ_SETUP(sc, i))
4275 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4276 }
4277
4278 /*
4279 * Disable the receive h/w in preparation for a reset.
4280 */
4281 static void
4282 ath_stoprecv(struct ath_softc *sc)
4283 {
4284 #define PA2DESC(_sc, _pa) \
4285 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4286 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4287 struct ath_hal *ah = sc->sc_ah;
4288 u_int64_t tsf;
4289
4290 ath_hal_stoppcurecv(ah); /* disable PCU */
4291 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4292 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4293 DELAY(3000); /* 3ms is long enough for 1 frame */
4294 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4295 struct ath_buf *bf;
4296
4297 printf("%s: rx queue %p, link %p\n", __func__,
4298 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4299 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4300 struct ath_desc *ds = bf->bf_desc;
4301 tsf = ath_hal_gettsf64(sc->sc_ah);
4302 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4303 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4304 tsf, &ds->ds_rxstat);
4305 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4306 ath_printrxbuf(bf, status == HAL_OK);
4307 }
4308 }
4309 sc->sc_rxlink = NULL; /* just in case */
4310 #undef PA2DESC
4311 }
4312
4313 /*
4314 * Enable the receive h/w following a reset.
4315 */
4316 static int
4317 ath_startrecv(struct ath_softc *sc)
4318 {
4319 struct ath_hal *ah = sc->sc_ah;
4320 struct ath_buf *bf;
4321
4322 sc->sc_rxlink = NULL;
4323 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4324 int error = ath_rxbuf_init(sc, bf);
4325 if (error != 0) {
4326 DPRINTF(sc, ATH_DEBUG_RECV,
4327 "%s: ath_rxbuf_init failed %d\n",
4328 __func__, error);
4329 return error;
4330 }
4331 }
4332
4333 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4334 ath_hal_putrxbuf(ah, bf->bf_daddr);
4335 ath_hal_rxena(ah); /* enable recv descriptors */
4336 ath_mode_init(sc); /* set filters, etc. */
4337 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4338 return 0;
4339 }
4340
4341 /*
4342 * Update internal state after a channel change.
4343 */
4344 static void
4345 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4346 {
4347 struct ieee80211com *ic = &sc->sc_ic;
4348 enum ieee80211_phymode mode;
4349 u_int16_t flags;
4350
4351 /*
4352 * Change channels and update the h/w rate map
4353 * if we're switching; e.g. 11a to 11b/g.
4354 */
4355 mode = ieee80211_chan2mode(ic, chan);
4356 if (mode != sc->sc_curmode)
4357 ath_setcurmode(sc, mode);
4358 /*
4359 * Update BPF state. NB: ethereal et. al. don't handle
4360 * merged flags well so pick a unique mode for their use.
4361 */
4362 if (IEEE80211_IS_CHAN_A(chan))
4363 flags = IEEE80211_CHAN_A;
4364 /* XXX 11g schizophrenia */
4365 else if (IEEE80211_IS_CHAN_G(chan) ||
4366 IEEE80211_IS_CHAN_PUREG(chan))
4367 flags = IEEE80211_CHAN_G;
4368 else
4369 flags = IEEE80211_CHAN_B;
4370 if (IEEE80211_IS_CHAN_T(chan))
4371 flags |= IEEE80211_CHAN_TURBO;
4372 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4373 htole16(chan->ic_freq);
4374 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4375 htole16(flags);
4376 }
4377
4378 #if 0
4379 /*
4380 * Poll for a channel clear indication; this is required
4381 * for channels requiring DFS and not previously visited
4382 * and/or with a recent radar detection.
4383 */
4384 static void
4385 ath_dfswait(void *arg)
4386 {
4387 struct ath_softc *sc = arg;
4388 struct ath_hal *ah = sc->sc_ah;
4389 HAL_CHANNEL hchan;
4390
4391 ath_hal_radar_wait(ah, &hchan);
4392 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4393 if_printf(&sc->sc_if,
4394 "channel %u/0x%x/0x%x has interference\n",
4395 hchan.channel, hchan.channelFlags, hchan.privFlags);
4396 return;
4397 }
4398 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4399 /* XXX should not happen */
4400 return;
4401 }
4402 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4403 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4404 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4405 if_printf(&sc->sc_if,
4406 "channel %u/0x%x/0x%x marked clear\n",
4407 hchan.channel, hchan.channelFlags, hchan.privFlags);
4408 } else
4409 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4410 }
4411 #endif
4412
4413 /*
4414 * Set/change channels. If the channel is really being changed,
4415 * it's done by reseting the chip. To accomplish this we must
4416 * first cleanup any pending DMA, then restart stuff after a la
4417 * ath_init.
4418 */
4419 static int
4420 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4421 {
4422 struct ath_hal *ah = sc->sc_ah;
4423 struct ieee80211com *ic = &sc->sc_ic;
4424 HAL_CHANNEL hchan;
4425
4426 /*
4427 * Convert to a HAL channel description with
4428 * the flags constrained to reflect the current
4429 * operating mode.
4430 */
4431 hchan.channel = chan->ic_freq;
4432 hchan.channelFlags = ath_chan2flags(ic, chan);
4433
4434 DPRINTF(sc, ATH_DEBUG_RESET,
4435 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4436 __func__,
4437 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4438 sc->sc_curchan.channelFlags),
4439 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4440 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4441 hchan.channel, hchan.channelFlags);
4442 if (hchan.channel != sc->sc_curchan.channel ||
4443 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4444 HAL_STATUS status;
4445
4446 /*
4447 * To switch channels clear any pending DMA operations;
4448 * wait long enough for the RX fifo to drain, reset the
4449 * hardware at the new frequency, and then re-enable
4450 * the relevant bits of the h/w.
4451 */
4452 ath_hal_intrset(ah, 0); /* disable interrupts */
4453 ath_draintxq(sc); /* clear pending tx frames */
4454 ath_stoprecv(sc); /* turn off frame recv */
4455 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4456 if_printf(ic->ic_ifp, "%s: unable to reset "
4457 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4458 __func__, ieee80211_chan2ieee(ic, chan),
4459 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4460 return EIO;
4461 }
4462 sc->sc_curchan = hchan;
4463 ath_update_txpow(sc); /* update tx power state */
4464 ath_restore_diversity(sc);
4465 sc->sc_calinterval = 1;
4466 sc->sc_caltries = 0;
4467
4468 /*
4469 * Re-enable rx framework.
4470 */
4471 if (ath_startrecv(sc) != 0) {
4472 if_printf(&sc->sc_if,
4473 "%s: unable to restart recv logic\n", __func__);
4474 return EIO;
4475 }
4476
4477 /*
4478 * Change channels and update the h/w rate map
4479 * if we're switching; e.g. 11a to 11b/g.
4480 */
4481 ic->ic_ibss_chan = chan;
4482 ath_chan_change(sc, chan);
4483
4484 #if 0
4485 /*
4486 * Handle DFS required waiting period to determine
4487 * if channel is clear of radar traffic.
4488 */
4489 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4490 #define DFS_AND_NOT_CLEAR(_c) \
4491 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4492 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4493 if_printf(&sc->sc_if,
4494 "wait for DFS clear channel signal\n");
4495 /* XXX stop sndq */
4496 sc->sc_if.if_flags |= IFF_OACTIVE;
4497 callout_reset(&sc->sc_dfs_ch,
4498 2 * hz, ath_dfswait, sc);
4499 } else
4500 callout_stop(&sc->sc_dfs_ch);
4501 #undef DFS_NOT_CLEAR
4502 }
4503 #endif
4504
4505 /*
4506 * Re-enable interrupts.
4507 */
4508 ath_hal_intrset(ah, sc->sc_imask);
4509 }
4510 return 0;
4511 }
4512
4513 static void
4514 ath_next_scan(void *arg)
4515 {
4516 struct ath_softc *sc = arg;
4517 struct ieee80211com *ic = &sc->sc_ic;
4518 int s;
4519
4520 /* don't call ath_start w/o network interrupts blocked */
4521 s = splnet();
4522
4523 if (ic->ic_state == IEEE80211_S_SCAN)
4524 ieee80211_next_scan(ic);
4525 splx(s);
4526 }
4527
4528 /*
4529 * Periodically recalibrate the PHY to account
4530 * for temperature/environment changes.
4531 */
4532 static void
4533 ath_calibrate(void *arg)
4534 {
4535 struct ath_softc *sc = arg;
4536 struct ath_hal *ah = sc->sc_ah;
4537 HAL_BOOL iqCalDone;
4538
4539 sc->sc_stats.ast_per_cal++;
4540
4541 ATH_LOCK(sc);
4542
4543 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4544 /*
4545 * Rfgain is out of bounds, reset the chip
4546 * to load new gain values.
4547 */
4548 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4549 "%s: rfgain change\n", __func__);
4550 sc->sc_stats.ast_per_rfgain++;
4551 ath_reset(&sc->sc_if);
4552 }
4553 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4554 DPRINTF(sc, ATH_DEBUG_ANY,
4555 "%s: calibration of channel %u failed\n",
4556 __func__, sc->sc_curchan.channel);
4557 sc->sc_stats.ast_per_calfail++;
4558 }
4559 /*
4560 * Calibrate noise floor data again in case of change.
4561 */
4562 ath_hal_process_noisefloor(ah);
4563 /*
4564 * Poll more frequently when the IQ calibration is in
4565 * progress to speedup loading the final settings.
4566 * We temper this aggressive polling with an exponential
4567 * back off after 4 tries up to ath_calinterval.
4568 */
4569 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4570 sc->sc_caltries = 0;
4571 sc->sc_calinterval = ath_calinterval;
4572 } else if (sc->sc_caltries > 4) {
4573 sc->sc_caltries = 0;
4574 sc->sc_calinterval <<= 1;
4575 if (sc->sc_calinterval > ath_calinterval)
4576 sc->sc_calinterval = ath_calinterval;
4577 }
4578 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4579 ("bad calibration interval %u", sc->sc_calinterval));
4580
4581 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4582 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4583 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4584 sc->sc_caltries++;
4585 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4586 ath_calibrate, sc);
4587 ATH_UNLOCK(sc);
4588 }
4589
4590 static int
4591 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4592 {
4593 struct ifnet *ifp = ic->ic_ifp;
4594 struct ath_softc *sc = ifp->if_softc;
4595 struct ath_hal *ah = sc->sc_ah;
4596 struct ieee80211_node *ni;
4597 int i, error;
4598 const u_int8_t *bssid;
4599 u_int32_t rfilt;
4600 static const HAL_LED_STATE leds[] = {
4601 HAL_LED_INIT, /* IEEE80211_S_INIT */
4602 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4603 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4604 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4605 HAL_LED_RUN, /* IEEE80211_S_RUN */
4606 };
4607
4608 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4609 ieee80211_state_name[ic->ic_state],
4610 ieee80211_state_name[nstate]);
4611
4612 callout_stop(&sc->sc_scan_ch);
4613 callout_stop(&sc->sc_cal_ch);
4614 #if 0
4615 callout_stop(&sc->sc_dfs_ch);
4616 #endif
4617 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4618
4619 if (nstate == IEEE80211_S_INIT) {
4620 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4621 /*
4622 * NB: disable interrupts so we don't rx frames.
4623 */
4624 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4625 /*
4626 * Notify the rate control algorithm.
4627 */
4628 ath_rate_newstate(sc, nstate);
4629 goto done;
4630 }
4631 ni = ic->ic_bss;
4632 error = ath_chan_set(sc, ic->ic_curchan);
4633 if (error != 0)
4634 goto bad;
4635 rfilt = ath_calcrxfilter(sc, nstate);
4636 if (nstate == IEEE80211_S_SCAN)
4637 bssid = ifp->if_broadcastaddr;
4638 else
4639 bssid = ni->ni_bssid;
4640 ath_hal_setrxfilter(ah, rfilt);
4641 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4642 __func__, rfilt, ether_sprintf(bssid));
4643
4644 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4645 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4646 else
4647 ath_hal_setassocid(ah, bssid, 0);
4648 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4649 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4650 if (ath_hal_keyisvalid(ah, i))
4651 ath_hal_keysetmac(ah, i, bssid);
4652 }
4653
4654 /*
4655 * Notify the rate control algorithm so rates
4656 * are setup should ath_beacon_alloc be called.
4657 */
4658 ath_rate_newstate(sc, nstate);
4659
4660 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4661 /* nothing to do */;
4662 } else if (nstate == IEEE80211_S_RUN) {
4663 DPRINTF(sc, ATH_DEBUG_STATE,
4664 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4665 "capinfo=0x%04x chan=%d\n"
4666 , __func__
4667 , ic->ic_flags
4668 , ni->ni_intval
4669 , ether_sprintf(ni->ni_bssid)
4670 , ni->ni_capinfo
4671 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4672
4673 switch (ic->ic_opmode) {
4674 case IEEE80211_M_HOSTAP:
4675 case IEEE80211_M_IBSS:
4676 /*
4677 * Allocate and setup the beacon frame.
4678 *
4679 * Stop any previous beacon DMA. This may be
4680 * necessary, for example, when an ibss merge
4681 * causes reconfiguration; there will be a state
4682 * transition from RUN->RUN that means we may
4683 * be called with beacon transmission active.
4684 */
4685 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4686 ath_beacon_free(sc);
4687 error = ath_beacon_alloc(sc, ni);
4688 if (error != 0)
4689 goto bad;
4690 /*
4691 * If joining an adhoc network defer beacon timer
4692 * configuration to the next beacon frame so we
4693 * have a current TSF to use. Otherwise we're
4694 * starting an ibss/bss so there's no need to delay.
4695 */
4696 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4697 ic->ic_bss->ni_tstamp.tsf != 0)
4698 sc->sc_syncbeacon = 1;
4699 else
4700 ath_beacon_config(sc);
4701 break;
4702 case IEEE80211_M_STA:
4703 /*
4704 * Allocate a key cache slot to the station.
4705 */
4706 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4707 sc->sc_hasclrkey &&
4708 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4709 ath_setup_stationkey(ni);
4710 /*
4711 * Defer beacon timer configuration to the next
4712 * beacon frame so we have a current TSF to use
4713 * (any TSF collected when scanning is likely old).
4714 */
4715 sc->sc_syncbeacon = 1;
4716 break;
4717 default:
4718 break;
4719 }
4720 /*
4721 * Let the hal process statistics collected during a
4722 * scan so it can provide calibrated noise floor data.
4723 */
4724 ath_hal_process_noisefloor(ah);
4725 /*
4726 * Reset rssi stats; maybe not the best place...
4727 */
4728 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4729 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4730 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4731 } else {
4732 ath_hal_intrset(ah,
4733 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4734 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4735 }
4736 done:
4737 /*
4738 * Invoke the parent method to complete the work.
4739 */
4740 error = sc->sc_newstate(ic, nstate, arg);
4741 /*
4742 * Finally, start any timers.
4743 */
4744 if (nstate == IEEE80211_S_RUN) {
4745 /* start periodic recalibration timer */
4746 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4747 ath_calibrate, sc);
4748 } else if (nstate == IEEE80211_S_SCAN) {
4749 /* start ap/neighbor scan timer */
4750 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4751 ath_next_scan, sc);
4752 }
4753 bad:
4754 return error;
4755 }
4756
4757 /*
4758 * Allocate a key cache slot to the station so we can
4759 * setup a mapping from key index to node. The key cache
4760 * slot is needed for managing antenna state and for
4761 * compression when stations do not use crypto. We do
4762 * it uniliaterally here; if crypto is employed this slot
4763 * will be reassigned.
4764 */
4765 static void
4766 ath_setup_stationkey(struct ieee80211_node *ni)
4767 {
4768 struct ieee80211com *ic = ni->ni_ic;
4769 struct ath_softc *sc = ic->ic_ifp->if_softc;
4770 ieee80211_keyix keyix, rxkeyix;
4771
4772 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4773 /*
4774 * Key cache is full; we'll fall back to doing
4775 * the more expensive lookup in software. Note
4776 * this also means no h/w compression.
4777 */
4778 /* XXX msg+statistic */
4779 } else {
4780 /* XXX locking? */
4781 ni->ni_ucastkey.wk_keyix = keyix;
4782 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4783 /* NB: this will create a pass-thru key entry */
4784 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4785 }
4786 }
4787
4788 /*
4789 * Setup driver-specific state for a newly associated node.
4790 * Note that we're called also on a re-associate, the isnew
4791 * param tells us if this is the first time or not.
4792 */
4793 static void
4794 ath_newassoc(struct ieee80211_node *ni, int isnew)
4795 {
4796 struct ieee80211com *ic = ni->ni_ic;
4797 struct ath_softc *sc = ic->ic_ifp->if_softc;
4798
4799 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4800 if (isnew &&
4801 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4802 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4803 ("new assoc with a unicast key already setup (keyix %u)",
4804 ni->ni_ucastkey.wk_keyix));
4805 ath_setup_stationkey(ni);
4806 }
4807 }
4808
4809 static int
4810 ath_getchannels(struct ath_softc *sc, u_int cc,
4811 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4812 {
4813 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4814 struct ieee80211com *ic = &sc->sc_ic;
4815 struct ifnet *ifp = &sc->sc_if;
4816 struct ath_hal *ah = sc->sc_ah;
4817 HAL_CHANNEL *chans;
4818 int i, ix, nchan;
4819
4820 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4821 M_TEMP, M_NOWAIT);
4822 if (chans == NULL) {
4823 if_printf(ifp, "unable to allocate channel table\n");
4824 return ENOMEM;
4825 }
4826 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4827 NULL, 0, NULL,
4828 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4829 u_int32_t rd;
4830
4831 (void)ath_hal_getregdomain(ah, &rd);
4832 if_printf(ifp, "unable to collect channel list from hal; "
4833 "regdomain likely %u country code %u\n", rd, cc);
4834 free(chans, M_TEMP);
4835 return EINVAL;
4836 }
4837
4838 /*
4839 * Convert HAL channels to ieee80211 ones and insert
4840 * them in the table according to their channel number.
4841 */
4842 for (i = 0; i < nchan; i++) {
4843 HAL_CHANNEL *c = &chans[i];
4844 u_int16_t flags;
4845
4846 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4847 if (ix > IEEE80211_CHAN_MAX) {
4848 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4849 ix, c->channel, c->channelFlags);
4850 continue;
4851 }
4852 if (ix < 0) {
4853 /* XXX can't handle stuff <2400 right now */
4854 if (bootverbose)
4855 if_printf(ifp, "hal channel %d (%u/%x) "
4856 "cannot be handled; ignored\n",
4857 ix, c->channel, c->channelFlags);
4858 continue;
4859 }
4860 /*
4861 * Calculate net80211 flags; most are compatible
4862 * but some need massaging. Note the static turbo
4863 * conversion can be removed once net80211 is updated
4864 * to understand static vs. dynamic turbo.
4865 */
4866 flags = c->channelFlags & COMPAT;
4867 if (c->channelFlags & CHANNEL_STURBO)
4868 flags |= IEEE80211_CHAN_TURBO;
4869 if (ic->ic_channels[ix].ic_freq == 0) {
4870 ic->ic_channels[ix].ic_freq = c->channel;
4871 ic->ic_channels[ix].ic_flags = flags;
4872 } else {
4873 /* channels overlap; e.g. 11g and 11b */
4874 ic->ic_channels[ix].ic_flags |= flags;
4875 }
4876 }
4877 free(chans, M_TEMP);
4878 return 0;
4879 #undef COMPAT
4880 }
4881
4882 static void
4883 ath_led_done(void *arg)
4884 {
4885 struct ath_softc *sc = arg;
4886
4887 sc->sc_blinking = 0;
4888 }
4889
4890 /*
4891 * Turn the LED off: flip the pin and then set a timer so no
4892 * update will happen for the specified duration.
4893 */
4894 static void
4895 ath_led_off(void *arg)
4896 {
4897 struct ath_softc *sc = arg;
4898
4899 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4900 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4901 }
4902
4903 /*
4904 * Blink the LED according to the specified on/off times.
4905 */
4906 static void
4907 ath_led_blink(struct ath_softc *sc, int on, int off)
4908 {
4909 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4910 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4911 sc->sc_blinking = 1;
4912 sc->sc_ledoff = off;
4913 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4914 }
4915
4916 static void
4917 ath_led_event(struct ath_softc *sc, int event)
4918 {
4919
4920 sc->sc_ledevent = ticks; /* time of last event */
4921 if (sc->sc_blinking) /* don't interrupt active blink */
4922 return;
4923 switch (event) {
4924 case ATH_LED_POLL:
4925 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4926 sc->sc_hwmap[0].ledoff);
4927 break;
4928 case ATH_LED_TX:
4929 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4930 sc->sc_hwmap[sc->sc_txrate].ledoff);
4931 break;
4932 case ATH_LED_RX:
4933 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4934 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4935 break;
4936 }
4937 }
4938
4939 static void
4940 ath_update_txpow(struct ath_softc *sc)
4941 {
4942 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4943 struct ieee80211com *ic = &sc->sc_ic;
4944 struct ath_hal *ah = sc->sc_ah;
4945 u_int32_t txpow;
4946
4947 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4948 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4949 /* read back in case value is clamped */
4950 (void)ath_hal_gettxpowlimit(ah, &txpow);
4951 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4952 }
4953 /*
4954 * Fetch max tx power level for status requests.
4955 */
4956 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4957 ic->ic_bss->ni_txpower = txpow;
4958 }
4959
4960 static void
4961 rate_setup(struct ath_softc *sc,
4962 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4963 {
4964 int i, maxrates;
4965
4966 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4967 DPRINTF(sc, ATH_DEBUG_ANY,
4968 "%s: rate table too small (%u > %u)\n",
4969 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4970 maxrates = IEEE80211_RATE_MAXSIZE;
4971 } else
4972 maxrates = rt->rateCount;
4973 for (i = 0; i < maxrates; i++)
4974 rs->rs_rates[i] = rt->info[i].dot11Rate;
4975 rs->rs_nrates = maxrates;
4976 }
4977
4978 static int
4979 ath_rate_setup(struct ath_softc *sc, u_int mode)
4980 {
4981 struct ath_hal *ah = sc->sc_ah;
4982 struct ieee80211com *ic = &sc->sc_ic;
4983 const HAL_RATE_TABLE *rt;
4984
4985 switch (mode) {
4986 case IEEE80211_MODE_11A:
4987 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4988 break;
4989 case IEEE80211_MODE_11B:
4990 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4991 break;
4992 case IEEE80211_MODE_11G:
4993 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4994 break;
4995 case IEEE80211_MODE_TURBO_A:
4996 /* XXX until static/dynamic turbo is fixed */
4997 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4998 break;
4999 case IEEE80211_MODE_TURBO_G:
5000 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5001 break;
5002 default:
5003 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5004 __func__, mode);
5005 return 0;
5006 }
5007 sc->sc_rates[mode] = rt;
5008 if (rt != NULL) {
5009 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5010 return 1;
5011 } else
5012 return 0;
5013 }
5014
5015 static void
5016 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5017 {
5018 #define N(a) (sizeof(a)/sizeof(a[0]))
5019 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5020 static const struct {
5021 u_int rate; /* tx/rx 802.11 rate */
5022 u_int16_t timeOn; /* LED on time (ms) */
5023 u_int16_t timeOff; /* LED off time (ms) */
5024 } blinkrates[] = {
5025 { 108, 40, 10 },
5026 { 96, 44, 11 },
5027 { 72, 50, 13 },
5028 { 48, 57, 14 },
5029 { 36, 67, 16 },
5030 { 24, 80, 20 },
5031 { 22, 100, 25 },
5032 { 18, 133, 34 },
5033 { 12, 160, 40 },
5034 { 10, 200, 50 },
5035 { 6, 240, 58 },
5036 { 4, 267, 66 },
5037 { 2, 400, 100 },
5038 { 0, 500, 130 },
5039 };
5040 const HAL_RATE_TABLE *rt;
5041 int i, j;
5042
5043 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5044 rt = sc->sc_rates[mode];
5045 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5046 for (i = 0; i < rt->rateCount; i++)
5047 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5048 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5049 for (i = 0; i < 32; i++) {
5050 u_int8_t ix = rt->rateCodeToIndex[i];
5051 if (ix == 0xff) {
5052 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5053 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5054 continue;
5055 }
5056 sc->sc_hwmap[i].ieeerate =
5057 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5058 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5059 if (rt->info[ix].shortPreamble ||
5060 rt->info[ix].phy == IEEE80211_T_OFDM)
5061 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5062 /* NB: receive frames include FCS */
5063 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5064 IEEE80211_RADIOTAP_F_FCS;
5065 /* setup blink rate table to avoid per-packet lookup */
5066 for (j = 0; j < N(blinkrates)-1; j++)
5067 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5068 break;
5069 /* NB: this uses the last entry if the rate isn't found */
5070 /* XXX beware of overlow */
5071 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5072 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5073 }
5074 sc->sc_currates = rt;
5075 sc->sc_curmode = mode;
5076 /*
5077 * All protection frames are transmited at 2Mb/s for
5078 * 11g, otherwise at 1Mb/s.
5079 */
5080 if (mode == IEEE80211_MODE_11G)
5081 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5082 else
5083 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5084 /* rate index used to send management frames */
5085 sc->sc_minrateix = 0;
5086 /*
5087 * Setup multicast rate state.
5088 */
5089 /* XXX layering violation */
5090 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5091 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5092 /* NB: caller is responsible for reseting rate control state */
5093 #undef N
5094 }
5095
5096 #ifdef AR_DEBUG
5097 static void
5098 ath_printrxbuf(struct ath_buf *bf, int done)
5099 {
5100 struct ath_desc *ds;
5101 int i;
5102
5103 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5104 printf("R%d (%p %" PRIx64
5105 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5106 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5107 ds->ds_link, ds->ds_data,
5108 ds->ds_ctl0, ds->ds_ctl1,
5109 ds->ds_hw[0], ds->ds_hw[1],
5110 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5111 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5112 }
5113 }
5114
5115 static void
5116 ath_printtxbuf(struct ath_buf *bf, int done)
5117 {
5118 struct ath_desc *ds;
5119 int i;
5120
5121 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5122 printf("T%d (%p %" PRIx64
5123 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5124 i, ds,
5125 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5126 ds->ds_link, ds->ds_data,
5127 ds->ds_ctl0, ds->ds_ctl1,
5128 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5129 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5130 }
5131 }
5132 #endif /* AR_DEBUG */
5133
5134 static void
5135 ath_watchdog(struct ifnet *ifp)
5136 {
5137 struct ath_softc *sc = ifp->if_softc;
5138 struct ieee80211com *ic = &sc->sc_ic;
5139 struct ath_txq *axq;
5140 int i;
5141
5142 ifp->if_timer = 0;
5143 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5144 !device_is_active(sc->sc_dev))
5145 return;
5146 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5147 if (!ATH_TXQ_SETUP(sc, i))
5148 continue;
5149 axq = &sc->sc_txq[i];
5150 ATH_TXQ_LOCK(axq);
5151 if (axq->axq_timer == 0)
5152 ;
5153 else if (--axq->axq_timer == 0) {
5154 ATH_TXQ_UNLOCK(axq);
5155 if_printf(ifp, "device timeout (txq %d, "
5156 "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5157 if (sc->sc_txintrperiod > 1)
5158 sc->sc_txintrperiod--;
5159 ath_reset(ifp);
5160 ifp->if_oerrors++;
5161 sc->sc_stats.ast_watchdog++;
5162 break;
5163 } else
5164 ifp->if_timer = 1;
5165 ATH_TXQ_UNLOCK(axq);
5166 }
5167 ieee80211_watchdog(ic);
5168 }
5169
5170 /*
5171 * Diagnostic interface to the HAL. This is used by various
5172 * tools to do things like retrieve register contents for
5173 * debugging. The mechanism is intentionally opaque so that
5174 * it can change frequently w/o concern for compatiblity.
5175 */
5176 static int
5177 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5178 {
5179 struct ath_hal *ah = sc->sc_ah;
5180 u_int id = ad->ad_id & ATH_DIAG_ID;
5181 void *indata = NULL;
5182 void *outdata = NULL;
5183 u_int32_t insize = ad->ad_in_size;
5184 u_int32_t outsize = ad->ad_out_size;
5185 int error = 0;
5186
5187 if (ad->ad_id & ATH_DIAG_IN) {
5188 /*
5189 * Copy in data.
5190 */
5191 indata = malloc(insize, M_TEMP, M_NOWAIT);
5192 if (indata == NULL) {
5193 error = ENOMEM;
5194 goto bad;
5195 }
5196 error = copyin(ad->ad_in_data, indata, insize);
5197 if (error)
5198 goto bad;
5199 }
5200 if (ad->ad_id & ATH_DIAG_DYN) {
5201 /*
5202 * Allocate a buffer for the results (otherwise the HAL
5203 * returns a pointer to a buffer where we can read the
5204 * results). Note that we depend on the HAL leaving this
5205 * pointer for us to use below in reclaiming the buffer;
5206 * may want to be more defensive.
5207 */
5208 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5209 if (outdata == NULL) {
5210 error = ENOMEM;
5211 goto bad;
5212 }
5213 }
5214 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5215 if (outsize < ad->ad_out_size)
5216 ad->ad_out_size = outsize;
5217 if (outdata != NULL)
5218 error = copyout(outdata, ad->ad_out_data,
5219 ad->ad_out_size);
5220 } else {
5221 error = EINVAL;
5222 }
5223 bad:
5224 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5225 free(indata, M_TEMP);
5226 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5227 free(outdata, M_TEMP);
5228 return error;
5229 }
5230
5231 static int
5232 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5233 {
5234 #define IS_RUNNING(ifp) \
5235 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5236 struct ath_softc *sc = ifp->if_softc;
5237 struct ieee80211com *ic = &sc->sc_ic;
5238 struct ifreq *ifr = (struct ifreq *)data;
5239 int error = 0;
5240
5241 ATH_LOCK(sc);
5242 switch (cmd) {
5243 case SIOCSIFFLAGS:
5244 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5245 break;
5246 if (IS_RUNNING(ifp)) {
5247 /*
5248 * To avoid rescanning another access point,
5249 * do not call ath_init() here. Instead,
5250 * only reflect promisc mode settings.
5251 */
5252 ath_mode_init(sc);
5253 } else if (ifp->if_flags & IFF_UP) {
5254 /*
5255 * Beware of being called during attach/detach
5256 * to reset promiscuous mode. In that case we
5257 * will still be marked UP but not RUNNING.
5258 * However trying to re-init the interface
5259 * is the wrong thing to do as we've already
5260 * torn down much of our state. There's
5261 * probably a better way to deal with this.
5262 */
5263 error = ath_init(sc);
5264 } else if (device_is_active(sc->sc_dev))
5265 ath_stop_locked(ifp, 1);
5266 break;
5267 case SIOCADDMULTI:
5268 case SIOCDELMULTI:
5269 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5270 if (ifp->if_flags & IFF_RUNNING)
5271 ath_mode_init(sc);
5272 error = 0;
5273 }
5274 break;
5275 case SIOCGATHSTATS:
5276 /* NB: embed these numbers to get a consistent view */
5277 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5278 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5279 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5280 ATH_UNLOCK(sc);
5281 /*
5282 * NB: Drop the softc lock in case of a page fault;
5283 * we'll accept any potential inconsisentcy in the
5284 * statistics. The alternative is to copy the data
5285 * to a local structure.
5286 */
5287 return copyout(&sc->sc_stats,
5288 ifr->ifr_data, sizeof (sc->sc_stats));
5289 case SIOCGATHDIAG:
5290 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5291 break;
5292 default:
5293 error = ieee80211_ioctl(ic, cmd, data);
5294 if (error != ENETRESET)
5295 ;
5296 else if (IS_RUNNING(ifp) &&
5297 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5298 error = ath_init(sc);
5299 else
5300 error = 0;
5301 break;
5302 }
5303 ATH_UNLOCK(sc);
5304 return error;
5305 #undef IS_RUNNING
5306 }
5307
5308 #if NBPFILTER > 0
5309 static void
5310 ath_bpfattach(struct ath_softc *sc)
5311 {
5312 struct ifnet *ifp = &sc->sc_if;
5313
5314 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5315 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5316 &sc->sc_drvbpf);
5317 /*
5318 * Initialize constant fields.
5319 * XXX make header lengths a multiple of 32-bits so subsequent
5320 * headers are properly aligned; this is a kludge to keep
5321 * certain applications happy.
5322 *
5323 * NB: the channel is setup each time we transition to the
5324 * RUN state to avoid filling it in for each frame.
5325 */
5326 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5327 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5328 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5329
5330 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5331 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5332 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5333 }
5334 #endif
5335
5336 /*
5337 * Announce various information on device/driver attach.
5338 */
5339 static void
5340 ath_announce(struct ath_softc *sc)
5341 {
5342 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5343 struct ifnet *ifp = &sc->sc_if;
5344 struct ath_hal *ah = sc->sc_ah;
5345 u_int modes, cc;
5346
5347 if_printf(ifp, "mac %d.%d phy %d.%d",
5348 ah->ah_macVersion, ah->ah_macRev,
5349 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5350 /*
5351 * Print radio revision(s). We check the wireless modes
5352 * to avoid falsely printing revs for inoperable parts.
5353 * Dual-band radio revs are returned in the 5 GHz rev number.
5354 */
5355 ath_hal_getcountrycode(ah, &cc);
5356 modes = ath_hal_getwirelessmodes(ah, cc);
5357 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5358 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5359 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5360 ah->ah_analog5GhzRev >> 4,
5361 ah->ah_analog5GhzRev & 0xf,
5362 ah->ah_analog2GhzRev >> 4,
5363 ah->ah_analog2GhzRev & 0xf);
5364 else
5365 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5366 ah->ah_analog5GhzRev & 0xf);
5367 } else
5368 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5369 ah->ah_analog5GhzRev & 0xf);
5370 printf("\n");
5371 if (bootverbose) {
5372 int i;
5373 for (i = 0; i <= WME_AC_VO; i++) {
5374 struct ath_txq *txq = sc->sc_ac2q[i];
5375 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5376 txq->axq_qnum, ieee80211_wme_acnames[i]);
5377 }
5378 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5379 sc->sc_cabq->axq_qnum);
5380 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5381 }
5382 if (ath_rxbuf != ATH_RXBUF)
5383 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5384 if (ath_txbuf != ATH_TXBUF)
5385 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5386 #undef HAL_MODE_DUALBAND
5387 }
5388