Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.102.8.1
      1 /*	$NetBSD: ath.c,v 1.102.8.1 2010/04/21 00:27:35 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.102.8.1 2010/04/21 00:27:35 matt Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/kernel.h>
     68 #include <sys/socket.h>
     69 #include <sys/sockio.h>
     70 #include <sys/errno.h>
     71 #include <sys/callout.h>
     72 #include <sys/bus.h>
     73 #include <sys/endian.h>
     74 
     75 #include <net/if.h>
     76 #include <net/if_dl.h>
     77 #include <net/if_media.h>
     78 #include <net/if_types.h>
     79 #include <net/if_arp.h>
     80 #include <net/if_ether.h>
     81 #include <net/if_llc.h>
     82 
     83 #include <net80211/ieee80211_netbsd.h>
     84 #include <net80211/ieee80211_var.h>
     85 
     86 #if NBPFILTER > 0
     87 #include <net/bpf.h>
     88 #endif
     89 
     90 #ifdef INET
     91 #include <netinet/in.h>
     92 #endif
     93 
     94 #include <sys/device.h>
     95 #include <dev/ic/ath_netbsd.h>
     96 
     97 #define	AR_DEBUG
     98 #include <dev/ic/athvar.h>
     99 #include "ah_desc.h"
    100 #include "ah_devid.h"	/* XXX for softled */
    101 #include "opt_ah.h"
    102 
    103 #ifdef ATH_TX99_DIAG
    104 #include <dev/ath/ath_tx99/ath_tx99.h>
    105 #endif
    106 
    107 /* unaligned little endian access */
    108 #define LE_READ_2(p)							\
    109 	((u_int16_t)							\
    110 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    111 #define LE_READ_4(p)							\
    112 	((u_int32_t)							\
    113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    114 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    115 
    116 enum {
    117 	ATH_LED_TX,
    118 	ATH_LED_RX,
    119 	ATH_LED_POLL,
    120 };
    121 
    122 #ifdef	AH_NEED_DESC_SWAP
    123 #define	HTOAH32(x)	htole32(x)
    124 #else
    125 #define	HTOAH32(x)	(x)
    126 #endif
    127 
    128 static int	ath_ifinit(struct ifnet *);
    129 static int	ath_init(struct ath_softc *);
    130 static void	ath_stop_locked(struct ifnet *, int);
    131 static void	ath_stop(struct ifnet *, int);
    132 static void	ath_start(struct ifnet *);
    133 static int	ath_media_change(struct ifnet *);
    134 static void	ath_watchdog(struct ifnet *);
    135 static int	ath_ioctl(struct ifnet *, u_long, void *);
    136 static void	ath_fatal_proc(void *, int);
    137 static void	ath_rxorn_proc(void *, int);
    138 static void	ath_bmiss_proc(void *, int);
    139 static void	ath_radar_proc(void *, int);
    140 static int	ath_key_alloc(struct ieee80211com *,
    141 			const struct ieee80211_key *,
    142 			ieee80211_keyix *, ieee80211_keyix *);
    143 static int	ath_key_delete(struct ieee80211com *,
    144 			const struct ieee80211_key *);
    145 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    146 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    147 static void	ath_key_update_begin(struct ieee80211com *);
    148 static void	ath_key_update_end(struct ieee80211com *);
    149 static void	ath_mode_init(struct ath_softc *);
    150 static void	ath_setslottime(struct ath_softc *);
    151 static void	ath_updateslot(struct ifnet *);
    152 static int	ath_beaconq_setup(struct ath_hal *);
    153 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    154 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    155 static void	ath_beacon_proc(void *, int);
    156 static void	ath_bstuck_proc(void *, int);
    157 static void	ath_beacon_free(struct ath_softc *);
    158 static void	ath_beacon_config(struct ath_softc *);
    159 static void	ath_descdma_cleanup(struct ath_softc *sc,
    160 			struct ath_descdma *, ath_bufhead *);
    161 static int	ath_desc_alloc(struct ath_softc *);
    162 static void	ath_desc_free(struct ath_softc *);
    163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    164 static void	ath_node_free(struct ieee80211_node *);
    165 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    166 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    167 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    168 			struct ieee80211_node *ni,
    169 			int subtype, int rssi, u_int32_t rstamp);
    170 static void	ath_setdefantenna(struct ath_softc *, u_int);
    171 static void	ath_rx_proc(void *, int);
    172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    173 static int	ath_tx_setup(struct ath_softc *, int, int);
    174 static int	ath_wme_update(struct ieee80211com *);
    175 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    176 static void	ath_tx_cleanup(struct ath_softc *);
    177 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    178 			     struct ath_buf *, struct mbuf *);
    179 static void	ath_tx_proc_q0(void *, int);
    180 static void	ath_tx_proc_q0123(void *, int);
    181 static void	ath_tx_proc(void *, int);
    182 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    183 static void	ath_draintxq(struct ath_softc *);
    184 static void	ath_stoprecv(struct ath_softc *);
    185 static int	ath_startrecv(struct ath_softc *);
    186 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    187 static void	ath_next_scan(void *);
    188 static void	ath_calibrate(void *);
    189 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    190 static void	ath_setup_stationkey(struct ieee80211_node *);
    191 static void	ath_newassoc(struct ieee80211_node *, int);
    192 static int	ath_getchannels(struct ath_softc *, u_int cc,
    193 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    194 static void	ath_led_event(struct ath_softc *, int);
    195 static void	ath_update_txpow(struct ath_softc *);
    196 static void	ath_freetx(struct mbuf *);
    197 static void	ath_restore_diversity(struct ath_softc *);
    198 
    199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    201 
    202 #if NBPFILTER > 0
    203 static void	ath_bpfattach(struct ath_softc *);
    204 #endif
    205 static void	ath_announce(struct ath_softc *);
    206 
    207 int ath_dwelltime = 200;		/* 5 channels/second */
    208 int ath_calinterval = 30;		/* calibrate every 30 secs */
    209 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    210 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    211 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    212 int ath_regdomain = 0;			/* regulatory domain */
    213 int ath_debug = 0;
    214 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    215 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    216 
    217 #ifdef AR_DEBUG
    218 enum {
    219 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    220 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    221 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    222 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    223 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    224 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    225 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    226 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    227 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    228 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    229 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    230 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    231 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    232 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    233 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    234 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    235 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    236 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    237 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    238 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    239 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    240 	ATH_DEBUG_ANY		= 0xffffffff
    241 };
    242 #define	IFF_DUMPPKTS(sc, m) \
    243 	((sc->sc_debug & (m)) || \
    244 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    245 #define	DPRINTF(sc, m, fmt, ...) do {				\
    246 	if (sc->sc_debug & (m))					\
    247 		printf(fmt, __VA_ARGS__);			\
    248 } while (0)
    249 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    250 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    251 		ath_keyprint(__func__, ix, hk, mac);		\
    252 } while (0)
    253 static	void ath_printrxbuf(struct ath_buf *bf, int);
    254 static	void ath_printtxbuf(struct ath_buf *bf, int);
    255 #else
    256 #define        IFF_DUMPPKTS(sc, m) \
    257 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    258 #define        DPRINTF(m, fmt, ...)
    259 #define        KEYPRINTF(sc, k, ix, mac)
    260 #endif
    261 
    262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    263 
    264 int
    265 ath_attach(u_int16_t devid, struct ath_softc *sc)
    266 {
    267 	struct ifnet *ifp = &sc->sc_if;
    268 	struct ieee80211com *ic = &sc->sc_ic;
    269 	struct ath_hal *ah = NULL;
    270 	HAL_STATUS status;
    271 	int error = 0, i;
    272 
    273 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    274 
    275 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    276 
    277 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    278 	if (ah == NULL) {
    279 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    280 			status);
    281 		error = ENXIO;
    282 		goto bad;
    283 	}
    284 	if (ah->ah_abi != HAL_ABI_VERSION) {
    285 		if_printf(ifp, "HAL ABI mismatch detected "
    286 			"(HAL:0x%x != driver:0x%x)\n",
    287 			ah->ah_abi, HAL_ABI_VERSION);
    288 		error = ENXIO;
    289 		goto bad;
    290 	}
    291 	sc->sc_ah = ah;
    292 
    293 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
    294 	    "pmf-powerdown", false))
    295 		goto bad;
    296 
    297 	/*
    298 	 * Check if the MAC has multi-rate retry support.
    299 	 * We do this by trying to setup a fake extended
    300 	 * descriptor.  MAC's that don't have support will
    301 	 * return false w/o doing anything.  MAC's that do
    302 	 * support it will return true w/o doing anything.
    303 	 */
    304 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    305 
    306 	/*
    307 	 * Check if the device has hardware counters for PHY
    308 	 * errors.  If so we need to enable the MIB interrupt
    309 	 * so we can act on stat triggers.
    310 	 */
    311 	if (ath_hal_hwphycounters(ah))
    312 		sc->sc_needmib = 1;
    313 
    314 	/*
    315 	 * Get the hardware key cache size.
    316 	 */
    317 	sc->sc_keymax = ath_hal_keycachesize(ah);
    318 	if (sc->sc_keymax > ATH_KEYMAX) {
    319 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    320 			ATH_KEYMAX, sc->sc_keymax);
    321 		sc->sc_keymax = ATH_KEYMAX;
    322 	}
    323 	/*
    324 	 * Reset the key cache since some parts do not
    325 	 * reset the contents on initial power up.
    326 	 */
    327 	for (i = 0; i < sc->sc_keymax; i++)
    328 		ath_hal_keyreset(ah, i);
    329 	/*
    330 	 * Mark key cache slots associated with global keys
    331 	 * as in use.  If we knew TKIP was not to be used we
    332 	 * could leave the +32, +64, and +32+64 slots free.
    333 	 * XXX only for splitmic.
    334 	 */
    335 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    336 		setbit(sc->sc_keymap, i);
    337 		setbit(sc->sc_keymap, i+32);
    338 		setbit(sc->sc_keymap, i+64);
    339 		setbit(sc->sc_keymap, i+32+64);
    340 	}
    341 
    342 	/*
    343 	 * Collect the channel list using the default country
    344 	 * code and including outdoor channels.  The 802.11 layer
    345 	 * is resposible for filtering this list based on settings
    346 	 * like the phy mode.
    347 	 */
    348 	error = ath_getchannels(sc, ath_countrycode,
    349 			ath_outdoor, ath_xchanmode);
    350 	if (error != 0)
    351 		goto bad;
    352 
    353 	/*
    354 	 * Setup rate tables for all potential media types.
    355 	 */
    356 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    357 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    358 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    359 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    360 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    361 	/* NB: setup here so ath_rate_update is happy */
    362 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    363 
    364 	/*
    365 	 * Allocate tx+rx descriptors and populate the lists.
    366 	 */
    367 	error = ath_desc_alloc(sc);
    368 	if (error != 0) {
    369 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    370 		goto bad;
    371 	}
    372 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    373 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    374 #if 0
    375 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    376 #endif
    377 
    378 	ATH_TXBUF_LOCK_INIT(sc);
    379 
    380 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    381 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    382 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    383 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    384 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    385 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    386 
    387 	/*
    388 	 * Allocate hardware transmit queues: one queue for
    389 	 * beacon frames and one data queue for each QoS
    390 	 * priority.  Note that the hal handles reseting
    391 	 * these queues at the needed time.
    392 	 *
    393 	 * XXX PS-Poll
    394 	 */
    395 	sc->sc_bhalq = ath_beaconq_setup(ah);
    396 	if (sc->sc_bhalq == (u_int) -1) {
    397 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    398 		error = EIO;
    399 		goto bad2;
    400 	}
    401 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    402 	if (sc->sc_cabq == NULL) {
    403 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    404 		error = EIO;
    405 		goto bad2;
    406 	}
    407 	/* NB: insure BK queue is the lowest priority h/w queue */
    408 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    409 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    410 			ieee80211_wme_acnames[WME_AC_BK]);
    411 		error = EIO;
    412 		goto bad2;
    413 	}
    414 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    415 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    416 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    417 		/*
    418 		 * Not enough hardware tx queues to properly do WME;
    419 		 * just punt and assign them all to the same h/w queue.
    420 		 * We could do a better job of this if, for example,
    421 		 * we allocate queues when we switch from station to
    422 		 * AP mode.
    423 		 */
    424 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    425 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    426 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    427 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    428 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    429 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    430 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    431 	}
    432 
    433 	/*
    434 	 * Special case certain configurations.  Note the
    435 	 * CAB queue is handled by these specially so don't
    436 	 * include them when checking the txq setup mask.
    437 	 */
    438 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    439 	case 0x01:
    440 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    441 		break;
    442 	case 0x0f:
    443 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    444 		break;
    445 	default:
    446 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    447 		break;
    448 	}
    449 
    450 	/*
    451 	 * Setup rate control.  Some rate control modules
    452 	 * call back to change the anntena state so expose
    453 	 * the necessary entry points.
    454 	 * XXX maybe belongs in struct ath_ratectrl?
    455 	 */
    456 	sc->sc_setdefantenna = ath_setdefantenna;
    457 	sc->sc_rc = ath_rate_attach(sc);
    458 	if (sc->sc_rc == NULL) {
    459 		error = EIO;
    460 		goto bad2;
    461 	}
    462 
    463 	sc->sc_blinking = 0;
    464 	sc->sc_ledstate = 1;
    465 	sc->sc_ledon = 0;			/* low true */
    466 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    467 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    468 	/*
    469 	 * Auto-enable soft led processing for IBM cards and for
    470 	 * 5211 minipci cards.  Users can also manually enable/disable
    471 	 * support with a sysctl.
    472 	 */
    473 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    474 	if (sc->sc_softled) {
    475 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    476 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    477 	}
    478 
    479 	ifp->if_softc = sc;
    480 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    481 	ifp->if_start = ath_start;
    482 	ifp->if_stop = ath_stop;
    483 	ifp->if_watchdog = ath_watchdog;
    484 	ifp->if_ioctl = ath_ioctl;
    485 	ifp->if_init = ath_ifinit;
    486 	IFQ_SET_READY(&ifp->if_snd);
    487 
    488 	ic->ic_ifp = ifp;
    489 	ic->ic_reset = ath_reset;
    490 	ic->ic_newassoc = ath_newassoc;
    491 	ic->ic_updateslot = ath_updateslot;
    492 	ic->ic_wme.wme_update = ath_wme_update;
    493 	/* XXX not right but it's not used anywhere important */
    494 	ic->ic_phytype = IEEE80211_T_OFDM;
    495 	ic->ic_opmode = IEEE80211_M_STA;
    496 	ic->ic_caps =
    497 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    498 		| IEEE80211_C_HOSTAP		/* hostap mode */
    499 		| IEEE80211_C_MONITOR		/* monitor mode */
    500 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    501 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    502 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    503 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    504 		;
    505 	/*
    506 	 * Query the hal to figure out h/w crypto support.
    507 	 */
    508 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    509 		ic->ic_caps |= IEEE80211_C_WEP;
    510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    511 		ic->ic_caps |= IEEE80211_C_AES;
    512 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    513 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    514 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    515 		ic->ic_caps |= IEEE80211_C_CKIP;
    516 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    517 		ic->ic_caps |= IEEE80211_C_TKIP;
    518 		/*
    519 		 * Check if h/w does the MIC and/or whether the
    520 		 * separate key cache entries are required to
    521 		 * handle both tx+rx MIC keys.
    522 		 */
    523 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    524 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    525 
    526 		/*
    527 		 * If the h/w supports storing tx+rx MIC keys
    528 		 * in one cache slot automatically enable use.
    529 		 */
    530 		if (ath_hal_hastkipsplit(ah) ||
    531 		    !ath_hal_settkipsplit(ah, AH_FALSE))
    532 			sc->sc_splitmic = 1;
    533 
    534 		/*
    535 		 * If the h/w can do TKIP MIC together with WME then
    536 		 * we use it; otherwise we force the MIC to be done
    537 		 * in software by the net80211 layer.
    538 		 */
    539 		if (ath_hal_haswmetkipmic(ah))
    540 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
    541 	}
    542 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    543 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    544 	/*
    545 	 * Mark key cache slots associated with global keys
    546 	 * as in use.  If we knew TKIP was not to be used we
    547 	 * could leave the +32, +64, and +32+64 slots free.
    548 	 */
    549 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    550 		setbit(sc->sc_keymap, i);
    551 		setbit(sc->sc_keymap, i+64);
    552 		if (sc->sc_splitmic) {
    553 			setbit(sc->sc_keymap, i+32);
    554 			setbit(sc->sc_keymap, i+32+64);
    555 		}
    556 	}
    557 	/*
    558 	 * TPC support can be done either with a global cap or
    559 	 * per-packet support.  The latter is not available on
    560 	 * all parts.  We're a bit pedantic here as all parts
    561 	 * support a global cap.
    562 	 */
    563 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    564 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    565 
    566 	/*
    567 	 * Mark WME capability only if we have sufficient
    568 	 * hardware queues to do proper priority scheduling.
    569 	 */
    570 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    571 		ic->ic_caps |= IEEE80211_C_WME;
    572 	/*
    573 	 * Check for misc other capabilities.
    574 	 */
    575 	if (ath_hal_hasbursting(ah))
    576 		ic->ic_caps |= IEEE80211_C_BURST;
    577 
    578 	/*
    579 	 * Indicate we need the 802.11 header padded to a
    580 	 * 32-bit boundary for 4-address and QoS frames.
    581 	 */
    582 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    583 
    584 	/*
    585 	 * Query the hal about antenna support.
    586 	 */
    587 	sc->sc_defant = ath_hal_getdefantenna(ah);
    588 
    589 	/*
    590 	 * Not all chips have the VEOL support we want to
    591 	 * use with IBSS beacons; check here for it.
    592 	 */
    593 	sc->sc_hasveol = ath_hal_hasveol(ah);
    594 
    595 	/* get mac address from hardware */
    596 	ath_hal_getmac(ah, ic->ic_myaddr);
    597 
    598 	if_attach(ifp);
    599 	/* call MI attach routine. */
    600 	ieee80211_ifattach(ic);
    601 	/* override default methods */
    602 	ic->ic_node_alloc = ath_node_alloc;
    603 	sc->sc_node_free = ic->ic_node_free;
    604 	ic->ic_node_free = ath_node_free;
    605 	ic->ic_node_getrssi = ath_node_getrssi;
    606 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    607 	ic->ic_recv_mgmt = ath_recv_mgmt;
    608 	sc->sc_newstate = ic->ic_newstate;
    609 	ic->ic_newstate = ath_newstate;
    610 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    611 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    612 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    613 	ic->ic_crypto.cs_key_set = ath_key_set;
    614 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    615 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    616 	/* complete initialization */
    617 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    618 
    619 #if NBPFILTER > 0
    620 	ath_bpfattach(sc);
    621 #endif
    622 
    623 	sc->sc_flags |= ATH_ATTACHED;
    624 
    625 	/*
    626 	 * Setup dynamic sysctl's now that country code and
    627 	 * regdomain are available from the hal.
    628 	 */
    629 	ath_sysctlattach(sc);
    630 
    631 	ieee80211_announce(ic);
    632 	ath_announce(sc);
    633 	return 0;
    634 bad2:
    635 	ath_tx_cleanup(sc);
    636 	ath_desc_free(sc);
    637 bad:
    638 	if (ah)
    639 		ath_hal_detach(ah);
    640 	/* XXX don't get under the abstraction like this */
    641 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
    642 	return error;
    643 }
    644 
    645 int
    646 ath_detach(struct ath_softc *sc)
    647 {
    648 	struct ifnet *ifp = &sc->sc_if;
    649 	int s;
    650 
    651 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    652 		return (0);
    653 
    654 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    655 		__func__, ifp->if_flags);
    656 
    657 	s = splnet();
    658 	ath_stop(ifp, 1);
    659 #if NBPFILTER > 0
    660 	bpfdetach(ifp);
    661 #endif
    662 	/*
    663 	 * NB: the order of these is important:
    664 	 * o call the 802.11 layer before detaching the hal to
    665 	 *   insure callbacks into the driver to delete global
    666 	 *   key cache entries can be handled
    667 	 * o reclaim the tx queue data structures after calling
    668 	 *   the 802.11 layer as we'll get called back to reclaim
    669 	 *   node state and potentially want to use them
    670 	 * o to cleanup the tx queues the hal is called, so detach
    671 	 *   it last
    672 	 * Other than that, it's straightforward...
    673 	 */
    674 	ieee80211_ifdetach(&sc->sc_ic);
    675 #ifdef ATH_TX99_DIAG
    676 	if (sc->sc_tx99 != NULL)
    677 		sc->sc_tx99->detach(sc->sc_tx99);
    678 #endif
    679 	ath_rate_detach(sc->sc_rc);
    680 	ath_desc_free(sc);
    681 	ath_tx_cleanup(sc);
    682 	sysctl_teardown(&sc->sc_sysctllog);
    683 	ath_hal_detach(sc->sc_ah);
    684 	if_detach(ifp);
    685 	splx(s);
    686 
    687 	return 0;
    688 }
    689 
    690 void
    691 ath_suspend(struct ath_softc *sc)
    692 {
    693 #if notyet
    694 	/*
    695 	 * Set the chip in full sleep mode.  Note that we are
    696 	 * careful to do this only when bringing the interface
    697 	 * completely to a stop.  When the chip is in this state
    698 	 * it must be carefully woken up or references to
    699 	 * registers in the PCI clock domain may freeze the bus
    700 	 * (and system).  This varies by chip and is mostly an
    701 	 * issue with newer parts that go to sleep more quickly.
    702 	 */
    703 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
    704 #endif
    705 }
    706 
    707 bool
    708 ath_resume(struct ath_softc *sc)
    709 {
    710 	struct ath_hal *ah = sc->sc_ah;
    711 	struct ieee80211com *ic = &sc->sc_ic;
    712 	HAL_STATUS status;
    713 	int i;
    714 
    715 #if notyet
    716 	ath_hal_setpower(ah, HAL_PM_AWAKE);
    717 #else
    718 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
    719 #endif
    720 
    721 	/*
    722 	 * Reset the key cache since some parts do not
    723 	 * reset the contents on initial power up.
    724 	 */
    725 	for (i = 0; i < sc->sc_keymax; i++)
    726 		ath_hal_keyreset(ah, i);
    727 
    728 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
    729 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
    730 		if (ATH_TXQ_SETUP(sc, i))
    731 			ath_hal_resettxqueue(ah, i);
    732 
    733 	if (sc->sc_softled) {
    734 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    735 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    736 	}
    737 	return true;
    738 }
    739 
    740 /*
    741  * Interrupt handler.  Most of the actual processing is deferred.
    742  */
    743 int
    744 ath_intr(void *arg)
    745 {
    746 	struct ath_softc *sc = arg;
    747 	struct ifnet *ifp = &sc->sc_if;
    748 	struct ath_hal *ah = sc->sc_ah;
    749 	HAL_INT status;
    750 
    751 	if (!device_is_active(sc->sc_dev)) {
    752 		/*
    753 		 * The hardware is not ready/present, don't touch anything.
    754 		 * Note this can happen early on if the IRQ is shared.
    755 		 */
    756 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    757 		return 0;
    758 	}
    759 
    760 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    761 		return 0;
    762 
    763 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    764 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    765 			__func__, ifp->if_flags);
    766 		ath_hal_getisr(ah, &status);	/* clear ISR */
    767 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    768 		return 1; /* XXX */
    769 	}
    770 	/*
    771 	 * Figure out the reason(s) for the interrupt.  Note
    772 	 * that the hal returns a pseudo-ISR that may include
    773 	 * bits we haven't explicitly enabled so we mask the
    774 	 * value to insure we only process bits we requested.
    775 	 */
    776 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    777 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    778 	status &= sc->sc_imask;			/* discard unasked for bits */
    779 	if (status & HAL_INT_FATAL) {
    780 		/*
    781 		 * Fatal errors are unrecoverable.  Typically
    782 		 * these are caused by DMA errors.  Unfortunately
    783 		 * the exact reason is not (presently) returned
    784 		 * by the hal.
    785 		 */
    786 		sc->sc_stats.ast_hardware++;
    787 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    788 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    789 	} else if (status & HAL_INT_RXORN) {
    790 		sc->sc_stats.ast_rxorn++;
    791 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    792 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    793 	} else {
    794 		if (status & HAL_INT_SWBA) {
    795 			/*
    796 			 * Software beacon alert--time to send a beacon.
    797 			 * Handle beacon transmission directly; deferring
    798 			 * this is too slow to meet timing constraints
    799 			 * under load.
    800 			 */
    801 			ath_beacon_proc(sc, 0);
    802 		}
    803 		if (status & HAL_INT_RXEOL) {
    804 			/*
    805 			 * NB: the hardware should re-read the link when
    806 			 *     RXE bit is written, but it doesn't work at
    807 			 *     least on older hardware revs.
    808 			 */
    809 			sc->sc_stats.ast_rxeol++;
    810 			sc->sc_rxlink = NULL;
    811 		}
    812 		if (status & HAL_INT_TXURN) {
    813 			sc->sc_stats.ast_txurn++;
    814 			/* bump tx trigger level */
    815 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    816 		}
    817 		if (status & HAL_INT_RX)
    818 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    819 		if (status & HAL_INT_TX)
    820 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    821 		if (status & HAL_INT_BMISS) {
    822 			sc->sc_stats.ast_bmiss++;
    823 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    824 		}
    825 		if (status & HAL_INT_MIB) {
    826 			sc->sc_stats.ast_mib++;
    827 			/*
    828 			 * Disable interrupts until we service the MIB
    829 			 * interrupt; otherwise it will continue to fire.
    830 			 */
    831 			ath_hal_intrset(ah, 0);
    832 			/*
    833 			 * Let the hal handle the event.  We assume it will
    834 			 * clear whatever condition caused the interrupt.
    835 			 */
    836 			ath_hal_mibevent(ah, &sc->sc_halstats);
    837 			ath_hal_intrset(ah, sc->sc_imask);
    838 		}
    839 	}
    840 	return 1;
    841 }
    842 
    843 /* Swap transmit descriptor.
    844  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    845  * function.
    846  */
    847 static inline void
    848 ath_desc_swap(struct ath_desc *ds)
    849 {
    850 #ifdef AH_NEED_DESC_SWAP
    851 	ds->ds_link = htole32(ds->ds_link);
    852 	ds->ds_data = htole32(ds->ds_data);
    853 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    854 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    855 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    856 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    857 #endif
    858 }
    859 
    860 static void
    861 ath_fatal_proc(void *arg, int pending)
    862 {
    863 	struct ath_softc *sc = arg;
    864 	struct ifnet *ifp = &sc->sc_if;
    865 
    866 	if_printf(ifp, "hardware error; resetting\n");
    867 	ath_reset(ifp);
    868 }
    869 
    870 static void
    871 ath_rxorn_proc(void *arg, int pending)
    872 {
    873 	struct ath_softc *sc = arg;
    874 	struct ifnet *ifp = &sc->sc_if;
    875 
    876 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    877 	ath_reset(ifp);
    878 }
    879 
    880 static void
    881 ath_bmiss_proc(void *arg, int pending)
    882 {
    883 	struct ath_softc *sc = arg;
    884 	struct ieee80211com *ic = &sc->sc_ic;
    885 
    886 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    887 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    888 		("unexpect operating mode %u", ic->ic_opmode));
    889 	if (ic->ic_state == IEEE80211_S_RUN) {
    890 		u_int64_t lastrx = sc->sc_lastrx;
    891 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    892 
    893 		DPRINTF(sc, ATH_DEBUG_BEACON,
    894 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    895 		    " (%" PRIu64 ") bmiss %u\n",
    896 		    __func__, tsf, tsf - lastrx, lastrx,
    897 		    ic->ic_bmisstimeout*1024);
    898 		/*
    899 		 * Workaround phantom bmiss interrupts by sanity-checking
    900 		 * the time of our last rx'd frame.  If it is within the
    901 		 * beacon miss interval then ignore the interrupt.  If it's
    902 		 * truly a bmiss we'll get another interrupt soon and that'll
    903 		 * be dispatched up for processing.
    904 		 */
    905 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    906 			NET_LOCK_GIANT();
    907 			ieee80211_beacon_miss(ic);
    908 			NET_UNLOCK_GIANT();
    909 		} else
    910 			sc->sc_stats.ast_bmiss_phantom++;
    911 	}
    912 }
    913 
    914 static void
    915 ath_radar_proc(void *arg, int pending)
    916 {
    917 #if 0
    918 	struct ath_softc *sc = arg;
    919 	struct ifnet *ifp = &sc->sc_if;
    920 	struct ath_hal *ah = sc->sc_ah;
    921 	HAL_CHANNEL hchan;
    922 
    923 	if (ath_hal_procdfs(ah, &hchan)) {
    924 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    925 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    926 		/*
    927 		 * Initiate channel change.
    928 		 */
    929 		/* XXX not yet */
    930 	}
    931 #endif
    932 }
    933 
    934 static u_int
    935 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    936 {
    937 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    938 	static const u_int modeflags[] = {
    939 		0,			/* IEEE80211_MODE_AUTO */
    940 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    941 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    942 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    943 		0,			/* IEEE80211_MODE_FH */
    944 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    945 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    946 	};
    947 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    948 
    949 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    950 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    951 	return modeflags[mode];
    952 #undef N
    953 }
    954 
    955 static int
    956 ath_ifinit(struct ifnet *ifp)
    957 {
    958 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    959 
    960 	return ath_init(sc);
    961 }
    962 
    963 static void
    964 ath_settkipmic(struct ath_softc *sc)
    965 {
    966 	struct ieee80211com *ic = &sc->sc_ic;
    967 	struct ath_hal *ah = sc->sc_ah;
    968 
    969 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
    970 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
    971 		if (ic->ic_flags & IEEE80211_F_WME) {
    972 			(void)ath_hal_settkipmic(ah, AH_FALSE);
    973 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
    974 		} else {
    975 			(void)ath_hal_settkipmic(ah, AH_TRUE);
    976 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    977 		}
    978 	}
    979 }
    980 
    981 static int
    982 ath_init(struct ath_softc *sc)
    983 {
    984 	struct ifnet *ifp = &sc->sc_if;
    985 	struct ieee80211com *ic = &sc->sc_ic;
    986 	struct ath_hal *ah = sc->sc_ah;
    987 	HAL_STATUS status;
    988 	int error = 0;
    989 
    990 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    991 		__func__, ifp->if_flags);
    992 
    993 	if (device_is_active(sc->sc_dev)) {
    994 		ATH_LOCK(sc);
    995 	} else if (!pmf_device_resume_self(sc->sc_dev))
    996 		return ENXIO;
    997 	else
    998 		ATH_LOCK(sc);
    999 
   1000 	/*
   1001 	 * Stop anything previously setup.  This is safe
   1002 	 * whether this is the first time through or not.
   1003 	 */
   1004 	ath_stop_locked(ifp, 0);
   1005 
   1006 	/*
   1007 	 * The basic interface to setting the hardware in a good
   1008 	 * state is ``reset''.  On return the hardware is known to
   1009 	 * be powered up and with interrupts disabled.  This must
   1010 	 * be followed by initialization of the appropriate bits
   1011 	 * and then setup of the interrupt mask.
   1012 	 */
   1013 	ath_settkipmic(sc);
   1014 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1015 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1016 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1017 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1018 			status);
   1019 		error = EIO;
   1020 		goto done;
   1021 	}
   1022 
   1023 	/*
   1024 	 * This is needed only to setup initial state
   1025 	 * but it's best done after a reset.
   1026 	 */
   1027 	ath_update_txpow(sc);
   1028 	/*
   1029 	 * Likewise this is set during reset so update
   1030 	 * state cached in the driver.
   1031 	 */
   1032 	ath_restore_diversity(sc);
   1033 	sc->sc_calinterval = 1;
   1034 	sc->sc_caltries = 0;
   1035 
   1036 	/*
   1037 	 * Setup the hardware after reset: the key cache
   1038 	 * is filled as needed and the receive engine is
   1039 	 * set going.  Frame transmit is handled entirely
   1040 	 * in the frame output path; there's nothing to do
   1041 	 * here except setup the interrupt mask.
   1042 	 */
   1043 	if ((error = ath_startrecv(sc)) != 0) {
   1044 		if_printf(ifp, "unable to start recv logic\n");
   1045 		goto done;
   1046 	}
   1047 
   1048 	/*
   1049 	 * Enable interrupts.
   1050 	 */
   1051 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1052 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1053 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1054 	/*
   1055 	 * Enable MIB interrupts when there are hardware phy counters.
   1056 	 * Note we only do this (at the moment) for station mode.
   1057 	 */
   1058 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1059 		sc->sc_imask |= HAL_INT_MIB;
   1060 	ath_hal_intrset(ah, sc->sc_imask);
   1061 
   1062 	ifp->if_flags |= IFF_RUNNING;
   1063 	ic->ic_state = IEEE80211_S_INIT;
   1064 
   1065 	/*
   1066 	 * The hardware should be ready to go now so it's safe
   1067 	 * to kick the 802.11 state machine as it's likely to
   1068 	 * immediately call back to us to send mgmt frames.
   1069 	 */
   1070 	ath_chan_change(sc, ic->ic_curchan);
   1071 #ifdef ATH_TX99_DIAG
   1072 	if (sc->sc_tx99 != NULL)
   1073 		sc->sc_tx99->start(sc->sc_tx99);
   1074 	else
   1075 #endif
   1076 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1077 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1078 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1079 	} else
   1080 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1081 done:
   1082 	ATH_UNLOCK(sc);
   1083 	return error;
   1084 }
   1085 
   1086 static void
   1087 ath_stop_locked(struct ifnet *ifp, int disable)
   1088 {
   1089 	struct ath_softc *sc = ifp->if_softc;
   1090 	struct ieee80211com *ic = &sc->sc_ic;
   1091 	struct ath_hal *ah = sc->sc_ah;
   1092 
   1093 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
   1094 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
   1095 
   1096 	ATH_LOCK_ASSERT(sc);
   1097 	if (ifp->if_flags & IFF_RUNNING) {
   1098 		/*
   1099 		 * Shutdown the hardware and driver:
   1100 		 *    reset 802.11 state machine
   1101 		 *    turn off timers
   1102 		 *    disable interrupts
   1103 		 *    turn off the radio
   1104 		 *    clear transmit machinery
   1105 		 *    clear receive machinery
   1106 		 *    drain and release tx queues
   1107 		 *    reclaim beacon resources
   1108 		 *    power down hardware
   1109 		 *
   1110 		 * Note that some of this work is not possible if the
   1111 		 * hardware is gone (invalid).
   1112 		 */
   1113 #ifdef ATH_TX99_DIAG
   1114 		if (sc->sc_tx99 != NULL)
   1115 			sc->sc_tx99->stop(sc->sc_tx99);
   1116 #endif
   1117 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1118 		ifp->if_flags &= ~IFF_RUNNING;
   1119 		ifp->if_timer = 0;
   1120 		if (device_is_enabled(sc->sc_dev)) {
   1121 			if (sc->sc_softled) {
   1122 				callout_stop(&sc->sc_ledtimer);
   1123 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1124 					!sc->sc_ledon);
   1125 				sc->sc_blinking = 0;
   1126 			}
   1127 			ath_hal_intrset(ah, 0);
   1128 		}
   1129 		ath_draintxq(sc);
   1130 		if (device_is_enabled(sc->sc_dev)) {
   1131 			ath_stoprecv(sc);
   1132 			ath_hal_phydisable(ah);
   1133 		} else
   1134 			sc->sc_rxlink = NULL;
   1135 		IF_PURGE(&ifp->if_snd);
   1136 		ath_beacon_free(sc);
   1137 		if (disable)
   1138 			pmf_device_suspend_self(sc->sc_dev);
   1139 	}
   1140 }
   1141 
   1142 static void
   1143 ath_stop(struct ifnet *ifp, int disable)
   1144 {
   1145 	struct ath_softc *sc = ifp->if_softc;
   1146 
   1147 	ATH_LOCK(sc);
   1148 	ath_stop_locked(ifp, disable);
   1149 	ATH_UNLOCK(sc);
   1150 }
   1151 
   1152 static void
   1153 ath_restore_diversity(struct ath_softc *sc)
   1154 {
   1155 	struct ifnet *ifp = &sc->sc_if;
   1156 	struct ath_hal *ah = sc->sc_ah;
   1157 
   1158 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1159 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1160 		if_printf(ifp, "could not restore diversity setting %d\n",
   1161 		    sc->sc_diversity);
   1162 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1163 	}
   1164 }
   1165 
   1166 /*
   1167  * Reset the hardware w/o losing operational state.  This is
   1168  * basically a more efficient way of doing ath_stop, ath_init,
   1169  * followed by state transitions to the current 802.11
   1170  * operational state.  Used to recover from various errors and
   1171  * to reset or reload hardware state.
   1172  */
   1173 int
   1174 ath_reset(struct ifnet *ifp)
   1175 {
   1176 	struct ath_softc *sc = ifp->if_softc;
   1177 	struct ieee80211com *ic = &sc->sc_ic;
   1178 	struct ath_hal *ah = sc->sc_ah;
   1179 	struct ieee80211_channel *c;
   1180 	HAL_STATUS status;
   1181 
   1182 	/*
   1183 	 * Convert to a HAL channel description with the flags
   1184 	 * constrained to reflect the current operating mode.
   1185 	 */
   1186 	c = ic->ic_curchan;
   1187 	sc->sc_curchan.channel = c->ic_freq;
   1188 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1189 
   1190 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1191 	ath_draintxq(sc);		/* stop xmit side */
   1192 	ath_stoprecv(sc);		/* stop recv side */
   1193 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
   1194 	/* NB: indicate channel change so we do a full reset */
   1195 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1196 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1197 			__func__, status);
   1198 	ath_update_txpow(sc);		/* update tx power state */
   1199 	ath_restore_diversity(sc);
   1200 	sc->sc_calinterval = 1;
   1201 	sc->sc_caltries = 0;
   1202 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1203 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1204 	/*
   1205 	 * We may be doing a reset in response to an ioctl
   1206 	 * that changes the channel so update any state that
   1207 	 * might change as a result.
   1208 	 */
   1209 	ath_chan_change(sc, c);
   1210 	if (ic->ic_state == IEEE80211_S_RUN)
   1211 		ath_beacon_config(sc);	/* restart beacons */
   1212 	ath_hal_intrset(ah, sc->sc_imask);
   1213 
   1214 	ath_start(ifp);			/* restart xmit */
   1215 	return 0;
   1216 }
   1217 
   1218 /*
   1219  * Cleanup driver resources when we run out of buffers
   1220  * while processing fragments; return the tx buffers
   1221  * allocated and drop node references.
   1222  */
   1223 static void
   1224 ath_txfrag_cleanup(struct ath_softc *sc,
   1225 	ath_bufhead *frags, struct ieee80211_node *ni)
   1226 {
   1227 	struct ath_buf *bf;
   1228 
   1229 	ATH_TXBUF_LOCK_ASSERT(sc);
   1230 
   1231 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1232 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1233 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1234 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1235 		ieee80211_node_decref(ni);
   1236 	}
   1237 }
   1238 
   1239 /*
   1240  * Setup xmit of a fragmented frame.  Allocate a buffer
   1241  * for each frag and bump the node reference count to
   1242  * reflect the held reference to be setup by ath_tx_start.
   1243  */
   1244 static int
   1245 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1246 	struct mbuf *m0, struct ieee80211_node *ni)
   1247 {
   1248 	struct mbuf *m;
   1249 	struct ath_buf *bf;
   1250 
   1251 	ATH_TXBUF_LOCK(sc);
   1252 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1253 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1254 		if (bf == NULL) {       /* out of buffers, cleanup */
   1255 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1256 				__func__);
   1257 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1258 			ath_txfrag_cleanup(sc, frags, ni);
   1259 			break;
   1260 		}
   1261 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1262 		ieee80211_node_incref(ni);
   1263 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1264 	}
   1265 	ATH_TXBUF_UNLOCK(sc);
   1266 
   1267 	return !STAILQ_EMPTY(frags);
   1268 }
   1269 
   1270 static void
   1271 ath_start(struct ifnet *ifp)
   1272 {
   1273 	struct ath_softc *sc = ifp->if_softc;
   1274 	struct ath_hal *ah = sc->sc_ah;
   1275 	struct ieee80211com *ic = &sc->sc_ic;
   1276 	struct ieee80211_node *ni;
   1277 	struct ath_buf *bf;
   1278 	struct mbuf *m, *next;
   1279 	struct ieee80211_frame *wh;
   1280 	struct ether_header *eh;
   1281 	ath_bufhead frags;
   1282 
   1283 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   1284 	    !device_is_active(sc->sc_dev))
   1285 		return;
   1286 	for (;;) {
   1287 		/*
   1288 		 * Grab a TX buffer and associated resources.
   1289 		 */
   1290 		ATH_TXBUF_LOCK(sc);
   1291 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1292 		if (bf != NULL)
   1293 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1294 		ATH_TXBUF_UNLOCK(sc);
   1295 		if (bf == NULL) {
   1296 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1297 				__func__);
   1298 			sc->sc_stats.ast_tx_qstop++;
   1299 			ifp->if_flags |= IFF_OACTIVE;
   1300 			break;
   1301 		}
   1302 		/*
   1303 		 * Poll the management queue for frames; they
   1304 		 * have priority over normal data frames.
   1305 		 */
   1306 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1307 		if (m == NULL) {
   1308 			/*
   1309 			 * No data frames go out unless we're associated.
   1310 			 */
   1311 			if (ic->ic_state != IEEE80211_S_RUN) {
   1312 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1313 				    "%s: discard data packet, state %s\n",
   1314 				    __func__,
   1315 				    ieee80211_state_name[ic->ic_state]);
   1316 				sc->sc_stats.ast_tx_discard++;
   1317 				ATH_TXBUF_LOCK(sc);
   1318 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1319 				ATH_TXBUF_UNLOCK(sc);
   1320 				break;
   1321 			}
   1322 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1323 			if (m == NULL) {
   1324 				ATH_TXBUF_LOCK(sc);
   1325 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1326 				ATH_TXBUF_UNLOCK(sc);
   1327 				break;
   1328 			}
   1329 			STAILQ_INIT(&frags);
   1330 			/*
   1331 			 * Find the node for the destination so we can do
   1332 			 * things like power save and fast frames aggregation.
   1333 			 */
   1334 			if (m->m_len < sizeof(struct ether_header) &&
   1335 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1336 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1337 				ni = NULL;
   1338 				goto bad;
   1339 			}
   1340 			eh = mtod(m, struct ether_header *);
   1341 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1342 			if (ni == NULL) {
   1343 				/* NB: ieee80211_find_txnode does stat+msg */
   1344 				m_freem(m);
   1345 				goto bad;
   1346 			}
   1347 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1348 			    (m->m_flags & M_PWR_SAV) == 0) {
   1349 				/*
   1350 				 * Station in power save mode; pass the frame
   1351 				 * to the 802.11 layer and continue.  We'll get
   1352 				 * the frame back when the time is right.
   1353 				 */
   1354 				ieee80211_pwrsave(ic, ni, m);
   1355 				goto reclaim;
   1356 			}
   1357 			/* calculate priority so we can find the tx queue */
   1358 			if (ieee80211_classify(ic, m, ni)) {
   1359 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1360 					"%s: discard, classification failure\n",
   1361 					__func__);
   1362 				m_freem(m);
   1363 				goto bad;
   1364 			}
   1365 			ifp->if_opackets++;
   1366 
   1367 #if NBPFILTER > 0
   1368 			if (ifp->if_bpf)
   1369 				bpf_mtap(ifp->if_bpf, m);
   1370 #endif
   1371 			/*
   1372 			 * Encapsulate the packet in prep for transmission.
   1373 			 */
   1374 			m = ieee80211_encap(ic, m, ni);
   1375 			if (m == NULL) {
   1376 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1377 					"%s: encapsulation failure\n",
   1378 					__func__);
   1379 				sc->sc_stats.ast_tx_encap++;
   1380 				goto bad;
   1381 			}
   1382 			/*
   1383 			 * Check for fragmentation.  If this has frame
   1384 			 * has been broken up verify we have enough
   1385 			 * buffers to send all the fragments so all
   1386 			 * go out or none...
   1387 			 */
   1388 			if ((m->m_flags & M_FRAG) &&
   1389 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1390 				DPRINTF(sc, ATH_DEBUG_ANY,
   1391 				    "%s: out of txfrag buffers\n", __func__);
   1392 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1393 				ath_freetx(m);
   1394 				goto bad;
   1395 			}
   1396 		} else {
   1397 			/*
   1398 			 * Hack!  The referenced node pointer is in the
   1399 			 * rcvif field of the packet header.  This is
   1400 			 * placed there by ieee80211_mgmt_output because
   1401 			 * we need to hold the reference with the frame
   1402 			 * and there's no other way (other than packet
   1403 			 * tags which we consider too expensive to use)
   1404 			 * to pass it along.
   1405 			 */
   1406 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1407 			m->m_pkthdr.rcvif = NULL;
   1408 
   1409 			wh = mtod(m, struct ieee80211_frame *);
   1410 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1411 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1412 				/* fill time stamp */
   1413 				u_int64_t tsf;
   1414 				u_int32_t *tstamp;
   1415 
   1416 				tsf = ath_hal_gettsf64(ah);
   1417 				/* XXX: adjust 100us delay to xmit */
   1418 				tsf += 100;
   1419 				tstamp = (u_int32_t *)&wh[1];
   1420 				tstamp[0] = htole32(tsf & 0xffffffff);
   1421 				tstamp[1] = htole32(tsf >> 32);
   1422 			}
   1423 			sc->sc_stats.ast_tx_mgmt++;
   1424 		}
   1425 
   1426 	nextfrag:
   1427 		next = m->m_nextpkt;
   1428 		if (ath_tx_start(sc, ni, bf, m)) {
   1429 	bad:
   1430 			ifp->if_oerrors++;
   1431 	reclaim:
   1432 			ATH_TXBUF_LOCK(sc);
   1433 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1434 			ath_txfrag_cleanup(sc, &frags, ni);
   1435 			ATH_TXBUF_UNLOCK(sc);
   1436 			if (ni != NULL)
   1437 				ieee80211_free_node(ni);
   1438 			continue;
   1439 		}
   1440 		if (next != NULL) {
   1441 			m = next;
   1442 			bf = STAILQ_FIRST(&frags);
   1443 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1444 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1445 			goto nextfrag;
   1446 		}
   1447 
   1448 		ifp->if_timer = 1;
   1449 	}
   1450 }
   1451 
   1452 static int
   1453 ath_media_change(struct ifnet *ifp)
   1454 {
   1455 #define	IS_UP(ifp) \
   1456 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1457 	int error;
   1458 
   1459 	error = ieee80211_media_change(ifp);
   1460 	if (error == ENETRESET) {
   1461 		if (IS_UP(ifp))
   1462 			ath_init(ifp->if_softc);	/* XXX lose error */
   1463 		error = 0;
   1464 	}
   1465 	return error;
   1466 #undef IS_UP
   1467 }
   1468 
   1469 #ifdef AR_DEBUG
   1470 static void
   1471 ath_keyprint(const char *tag, u_int ix,
   1472 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1473 {
   1474 	static const char *ciphers[] = {
   1475 		"WEP",
   1476 		"AES-OCB",
   1477 		"AES-CCM",
   1478 		"CKIP",
   1479 		"TKIP",
   1480 		"CLR",
   1481 	};
   1482 	int i, n;
   1483 
   1484 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1485 	for (i = 0, n = hk->kv_len; i < n; i++)
   1486 		printf("%02x", hk->kv_val[i]);
   1487 	printf(" mac %s", ether_sprintf(mac));
   1488 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1489 		printf(" mic ");
   1490 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1491 			printf("%02x", hk->kv_mic[i]);
   1492 	}
   1493 	printf("\n");
   1494 }
   1495 #endif
   1496 
   1497 /*
   1498  * Set a TKIP key into the hardware.  This handles the
   1499  * potential distribution of key state to multiple key
   1500  * cache slots for TKIP.
   1501  */
   1502 static int
   1503 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1504 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1505 {
   1506 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1507 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1508 	struct ath_hal *ah = sc->sc_ah;
   1509 
   1510 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1511 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1512 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1513 		if (sc->sc_splitmic) {
   1514 			/*
   1515 			 * TX key goes at first index, RX key at the rx index.
   1516 			 * The hal handles the MIC keys at index+64.
   1517 			 */
   1518 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1519 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1520 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
   1521 						zerobssid))
   1522 				return 0;
   1523 
   1524 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1525 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1526 			/* XXX delete tx key on failure? */
   1527 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
   1528 					hk, mac);
   1529 		} else {
   1530 			/*
   1531 			 * Room for both TX+RX MIC keys in one key cache
   1532 			 * slot, just set key at the first index; the HAL
   1533 			 * will handle the reset.
   1534 			 */
   1535 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1536 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1537 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1538 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1539 		}
   1540 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
   1541 		if (sc->sc_splitmic) {
   1542 			/*
   1543 			 * NB: must pass MIC key in expected location when
   1544 			 * the keycache only holds one MIC key per entry.
   1545 			 */
   1546 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
   1547 		} else
   1548 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1549 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1550 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1551 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
   1552 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1553 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1554 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1555 	}
   1556 	return 0;
   1557 #undef IEEE80211_KEY_XR
   1558 }
   1559 
   1560 /*
   1561  * Set a net80211 key into the hardware.  This handles the
   1562  * potential distribution of key state to multiple key
   1563  * cache slots for TKIP with hardware MIC support.
   1564  */
   1565 static int
   1566 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1567 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1568 	struct ieee80211_node *bss)
   1569 {
   1570 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1571 	static const u_int8_t ciphermap[] = {
   1572 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1573 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1574 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1575 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1576 		(u_int8_t) -1,		/* 4 is not allocated */
   1577 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1578 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1579 	};
   1580 	struct ath_hal *ah = sc->sc_ah;
   1581 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1582 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1583 	const u_int8_t *mac;
   1584 	HAL_KEYVAL hk;
   1585 
   1586 	memset(&hk, 0, sizeof(hk));
   1587 	/*
   1588 	 * Software crypto uses a "clear key" so non-crypto
   1589 	 * state kept in the key cache are maintained and
   1590 	 * so that rx frames have an entry to match.
   1591 	 */
   1592 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1593 		KASSERT(cip->ic_cipher < N(ciphermap),
   1594 			("invalid cipher type %u", cip->ic_cipher));
   1595 		hk.kv_type = ciphermap[cip->ic_cipher];
   1596 		hk.kv_len = k->wk_keylen;
   1597 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1598 	} else
   1599 		hk.kv_type = HAL_CIPHER_CLR;
   1600 
   1601 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1602 		/*
   1603 		 * Group keys on hardware that supports multicast frame
   1604 		 * key search use a mac that is the sender's address with
   1605 		 * the high bit set instead of the app-specified address.
   1606 		 */
   1607 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1608 		gmac[0] |= 0x80;
   1609 		mac = gmac;
   1610 	} else
   1611 		mac = mac0;
   1612 
   1613 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
   1614 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
   1615 		return ath_keyset_tkip(sc, k, &hk, mac);
   1616 	} else {
   1617 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1618 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
   1619 	}
   1620 #undef N
   1621 }
   1622 
   1623 /*
   1624  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1625  * each key, one for decrypt/encrypt and the other for the MIC.
   1626  */
   1627 static u_int16_t
   1628 key_alloc_2pair(struct ath_softc *sc,
   1629 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1630 {
   1631 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1632 	u_int i, keyix;
   1633 
   1634 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1635 	/* XXX could optimize */
   1636 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1637 		u_int8_t b = sc->sc_keymap[i];
   1638 		if (b != 0xff) {
   1639 			/*
   1640 			 * One or more slots in this byte are free.
   1641 			 */
   1642 			keyix = i*NBBY;
   1643 			while (b & 1) {
   1644 		again:
   1645 				keyix++;
   1646 				b >>= 1;
   1647 			}
   1648 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1649 			if (isset(sc->sc_keymap, keyix+32) ||
   1650 			    isset(sc->sc_keymap, keyix+64) ||
   1651 			    isset(sc->sc_keymap, keyix+32+64)) {
   1652 				/* full pair unavailable */
   1653 				/* XXX statistic */
   1654 				if (keyix == (i+1)*NBBY) {
   1655 					/* no slots were appropriate, advance */
   1656 					continue;
   1657 				}
   1658 				goto again;
   1659 			}
   1660 			setbit(sc->sc_keymap, keyix);
   1661 			setbit(sc->sc_keymap, keyix+64);
   1662 			setbit(sc->sc_keymap, keyix+32);
   1663 			setbit(sc->sc_keymap, keyix+32+64);
   1664 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1665 				"%s: key pair %u,%u %u,%u\n",
   1666 				__func__, keyix, keyix+64,
   1667 				keyix+32, keyix+32+64);
   1668 			*txkeyix = keyix;
   1669 			*rxkeyix = keyix+32;
   1670 			return keyix;
   1671 		}
   1672 	}
   1673 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1674 	return IEEE80211_KEYIX_NONE;
   1675 #undef N
   1676 }
   1677 
   1678 /*
   1679  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1680  * each key, one for decrypt/encrypt and the other for the MIC.
   1681  */
   1682 static int
   1683 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
   1684     ieee80211_keyix *rxkeyix)
   1685 {
   1686 #define N(a)	(sizeof(a)/sizeof(a[0]))
   1687 	u_int i, keyix;
   1688 
   1689 	KASSERT(!sc->sc_splitmic, ("key cache split"));
   1690 	/* XXX could optimize */
   1691 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1692 		uint8_t b = sc->sc_keymap[i];
   1693 		if (b != 0xff) {
   1694 			/*
   1695 			 * One or more slots in this byte are free.
   1696 			 */
   1697 			keyix = i*NBBY;
   1698 			while (b & 1) {
   1699 		again:
   1700 				keyix++;
   1701 				b >>= 1;
   1702 			}
   1703 			if (isset(sc->sc_keymap, keyix+64)) {
   1704 				/* full pair unavailable */
   1705 				/* XXX statistic */
   1706 				if (keyix == (i+1)*NBBY) {
   1707 					/* no slots were appropriate, advance */
   1708 					continue;
   1709 				}
   1710 				goto again;
   1711 			}
   1712 			setbit(sc->sc_keymap, keyix);
   1713 			setbit(sc->sc_keymap, keyix+64);
   1714 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1715 				"%s: key pair %u,%u\n",
   1716 				__func__, keyix, keyix+64);
   1717 			*txkeyix = *rxkeyix = keyix;
   1718 			return 1;
   1719 		}
   1720 	}
   1721 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1722 	return 0;
   1723 #undef N
   1724 }
   1725 
   1726 /*
   1727  * Allocate a single key cache slot.
   1728  */
   1729 static int
   1730 key_alloc_single(struct ath_softc *sc,
   1731 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1732 {
   1733 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1734 	u_int i, keyix;
   1735 
   1736 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1737 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1738 		u_int8_t b = sc->sc_keymap[i];
   1739 		if (b != 0xff) {
   1740 			/*
   1741 			 * One or more slots are free.
   1742 			 */
   1743 			keyix = i*NBBY;
   1744 			while (b & 1)
   1745 				keyix++, b >>= 1;
   1746 			setbit(sc->sc_keymap, keyix);
   1747 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1748 				__func__, keyix);
   1749 			*txkeyix = *rxkeyix = keyix;
   1750 			return 1;
   1751 		}
   1752 	}
   1753 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1754 	return 0;
   1755 #undef N
   1756 }
   1757 
   1758 /*
   1759  * Allocate one or more key cache slots for a uniacst key.  The
   1760  * key itself is needed only to identify the cipher.  For hardware
   1761  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1762  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1763  * that the MIC key for a TKIP key at slot i is assumed by the
   1764  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1765  * 64 entries.
   1766  */
   1767 static int
   1768 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1769 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1770 {
   1771 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1772 
   1773 	/*
   1774 	 * Group key allocation must be handled specially for
   1775 	 * parts that do not support multicast key cache search
   1776 	 * functionality.  For those parts the key id must match
   1777 	 * the h/w key index so lookups find the right key.  On
   1778 	 * parts w/ the key search facility we install the sender's
   1779 	 * mac address (with the high bit set) and let the hardware
   1780 	 * find the key w/o using the key id.  This is preferred as
   1781 	 * it permits us to support multiple users for adhoc and/or
   1782 	 * multi-station operation.
   1783 	 */
   1784 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1785 		if (!(&ic->ic_nw_keys[0] <= k &&
   1786 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1787 			/* should not happen */
   1788 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1789 				"%s: bogus group key\n", __func__);
   1790 			return 0;
   1791 		}
   1792 		/*
   1793 		 * XXX we pre-allocate the global keys so
   1794 		 * have no way to check if they've already been allocated.
   1795 		 */
   1796 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1797 		return 1;
   1798 	}
   1799 
   1800 	/*
   1801 	 * We allocate two pair for TKIP when using the h/w to do
   1802 	 * the MIC.  For everything else, including software crypto,
   1803 	 * we allocate a single entry.  Note that s/w crypto requires
   1804 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1805 	 * not support pass-through cache entries and we map all
   1806 	 * those requests to slot 0.
   1807 	 */
   1808 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1809 		return key_alloc_single(sc, keyix, rxkeyix);
   1810 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1811 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1812 		if (sc->sc_splitmic)
   1813 			return key_alloc_2pair(sc, keyix, rxkeyix);
   1814 		else
   1815 			return key_alloc_pair(sc, keyix, rxkeyix);
   1816 	} else {
   1817 		return key_alloc_single(sc, keyix, rxkeyix);
   1818 	}
   1819 }
   1820 
   1821 /*
   1822  * Delete an entry in the key cache allocated by ath_key_alloc.
   1823  */
   1824 static int
   1825 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1826 {
   1827 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1828 	struct ath_hal *ah = sc->sc_ah;
   1829 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1830 	u_int keyix = k->wk_keyix;
   1831 
   1832 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1833 
   1834 	if (!device_has_power(sc->sc_dev)) {
   1835 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
   1836 		    k->wk_keyix);
   1837 	}
   1838 
   1839 	ath_hal_keyreset(ah, keyix);
   1840 	/*
   1841 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1842 	 */
   1843 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1844 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1845 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1846 	if (keyix >= IEEE80211_WEP_NKID) {
   1847 		/*
   1848 		 * Don't touch keymap entries for global keys so
   1849 		 * they are never considered for dynamic allocation.
   1850 		 */
   1851 		clrbit(sc->sc_keymap, keyix);
   1852 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1853 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1854 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1855 			if (sc->sc_splitmic) {
   1856 				/* +32 for RX key, +32+64 for RX key MIC */
   1857 				clrbit(sc->sc_keymap, keyix+32);
   1858 				clrbit(sc->sc_keymap, keyix+32+64);
   1859 			}
   1860 		}
   1861 	}
   1862 	return 1;
   1863 }
   1864 
   1865 /*
   1866  * Set the key cache contents for the specified key.  Key cache
   1867  * slot(s) must already have been allocated by ath_key_alloc.
   1868  */
   1869 static int
   1870 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1871 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1872 {
   1873 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1874 
   1875 	if (!device_has_power(sc->sc_dev)) {
   1876 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
   1877 		    k->wk_keyix);
   1878 	}
   1879 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1880 }
   1881 
   1882 /*
   1883  * Block/unblock tx+rx processing while a key change is done.
   1884  * We assume the caller serializes key management operations
   1885  * so we only need to worry about synchronization with other
   1886  * uses that originate in the driver.
   1887  */
   1888 static void
   1889 ath_key_update_begin(struct ieee80211com *ic)
   1890 {
   1891 	struct ifnet *ifp = ic->ic_ifp;
   1892 	struct ath_softc *sc = ifp->if_softc;
   1893 
   1894 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1895 #if 0
   1896 	tasklet_disable(&sc->sc_rxtq);
   1897 #endif
   1898 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1899 }
   1900 
   1901 static void
   1902 ath_key_update_end(struct ieee80211com *ic)
   1903 {
   1904 	struct ifnet *ifp = ic->ic_ifp;
   1905 	struct ath_softc *sc = ifp->if_softc;
   1906 
   1907 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1908 	IF_UNLOCK(&ifp->if_snd);
   1909 #if 0
   1910 	tasklet_enable(&sc->sc_rxtq);
   1911 #endif
   1912 }
   1913 
   1914 /*
   1915  * Calculate the receive filter according to the
   1916  * operating mode and state:
   1917  *
   1918  * o always accept unicast, broadcast, and multicast traffic
   1919  * o maintain current state of phy error reception (the hal
   1920  *   may enable phy error frames for noise immunity work)
   1921  * o probe request frames are accepted only when operating in
   1922  *   hostap, adhoc, or monitor modes
   1923  * o enable promiscuous mode according to the interface state
   1924  * o accept beacons:
   1925  *   - when operating in adhoc mode so the 802.11 layer creates
   1926  *     node table entries for peers,
   1927  *   - when operating in station mode for collecting rssi data when
   1928  *     the station is otherwise quiet, or
   1929  *   - when scanning
   1930  */
   1931 static u_int32_t
   1932 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1933 {
   1934 	struct ieee80211com *ic = &sc->sc_ic;
   1935 	struct ath_hal *ah = sc->sc_ah;
   1936 	struct ifnet *ifp = &sc->sc_if;
   1937 	u_int32_t rfilt;
   1938 
   1939 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1940 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1941 	if (ic->ic_opmode != IEEE80211_M_STA)
   1942 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1943 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1944 	    (ifp->if_flags & IFF_PROMISC))
   1945 		rfilt |= HAL_RX_FILTER_PROM;
   1946 	if (ifp->if_flags & IFF_PROMISC)
   1947 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
   1948 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1949 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1950 	    state == IEEE80211_S_SCAN)
   1951 		rfilt |= HAL_RX_FILTER_BEACON;
   1952 	return rfilt;
   1953 }
   1954 
   1955 static void
   1956 ath_mode_init(struct ath_softc *sc)
   1957 {
   1958 	struct ifnet *ifp = &sc->sc_if;
   1959 	struct ieee80211com *ic = &sc->sc_ic;
   1960 	struct ath_hal *ah = sc->sc_ah;
   1961 	struct ether_multi *enm;
   1962 	struct ether_multistep estep;
   1963 	u_int32_t rfilt, mfilt[2], val;
   1964 	int i;
   1965 	uint8_t pos;
   1966 
   1967 	/* configure rx filter */
   1968 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1969 	ath_hal_setrxfilter(ah, rfilt);
   1970 
   1971 	/* configure operational mode */
   1972 	ath_hal_setopmode(ah);
   1973 
   1974 	/* Write keys to hardware; it may have been powered down. */
   1975 	ath_key_update_begin(ic);
   1976 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1977 		ath_key_set(ic,
   1978 			    &ic->ic_crypto.cs_nw_keys[i],
   1979 			    ic->ic_myaddr);
   1980 	}
   1981 	ath_key_update_end(ic);
   1982 
   1983 	/*
   1984 	 * Handle any link-level address change.  Note that we only
   1985 	 * need to force ic_myaddr; any other addresses are handled
   1986 	 * as a byproduct of the ifnet code marking the interface
   1987 	 * down then up.
   1988 	 *
   1989 	 * XXX should get from lladdr instead of arpcom but that's more work
   1990 	 */
   1991 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1992 	ath_hal_setmac(ah, ic->ic_myaddr);
   1993 
   1994 	/* calculate and install multicast filter */
   1995 	ifp->if_flags &= ~IFF_ALLMULTI;
   1996 	mfilt[0] = mfilt[1] = 0;
   1997 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1998 	while (enm != NULL) {
   1999 		void *dl;
   2000 		/* XXX Punt on ranges. */
   2001 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   2002 			mfilt[0] = mfilt[1] = 0xffffffff;
   2003 			ifp->if_flags |= IFF_ALLMULTI;
   2004 			break;
   2005 		}
   2006 		dl = enm->enm_addrlo;
   2007 		val = LE_READ_4((char *)dl + 0);
   2008 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   2009 		val = LE_READ_4((char *)dl + 3);
   2010 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   2011 		pos &= 0x3f;
   2012 		mfilt[pos / 32] |= (1 << (pos % 32));
   2013 
   2014 		ETHER_NEXT_MULTI(estep, enm);
   2015 	}
   2016 
   2017 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   2018 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   2019 		__func__, rfilt, mfilt[0], mfilt[1]);
   2020 }
   2021 
   2022 /*
   2023  * Set the slot time based on the current setting.
   2024  */
   2025 static void
   2026 ath_setslottime(struct ath_softc *sc)
   2027 {
   2028 	struct ieee80211com *ic = &sc->sc_ic;
   2029 	struct ath_hal *ah = sc->sc_ah;
   2030 
   2031 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2032 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2033 	else
   2034 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2035 	sc->sc_updateslot = OK;
   2036 }
   2037 
   2038 /*
   2039  * Callback from the 802.11 layer to update the
   2040  * slot time based on the current setting.
   2041  */
   2042 static void
   2043 ath_updateslot(struct ifnet *ifp)
   2044 {
   2045 	struct ath_softc *sc = ifp->if_softc;
   2046 	struct ieee80211com *ic = &sc->sc_ic;
   2047 
   2048 	/*
   2049 	 * When not coordinating the BSS, change the hardware
   2050 	 * immediately.  For other operation we defer the change
   2051 	 * until beacon updates have propagated to the stations.
   2052 	 */
   2053 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2054 		sc->sc_updateslot = UPDATE;
   2055 	else
   2056 		ath_setslottime(sc);
   2057 }
   2058 
   2059 /*
   2060  * Setup a h/w transmit queue for beacons.
   2061  */
   2062 static int
   2063 ath_beaconq_setup(struct ath_hal *ah)
   2064 {
   2065 	HAL_TXQ_INFO qi;
   2066 
   2067 	memset(&qi, 0, sizeof(qi));
   2068 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2069 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2070 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2071 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2072 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2073 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2074 }
   2075 
   2076 /*
   2077  * Setup the transmit queue parameters for the beacon queue.
   2078  */
   2079 static int
   2080 ath_beaconq_config(struct ath_softc *sc)
   2081 {
   2082 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2083 	struct ieee80211com *ic = &sc->sc_ic;
   2084 	struct ath_hal *ah = sc->sc_ah;
   2085 	HAL_TXQ_INFO qi;
   2086 
   2087 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2088 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2089 		/*
   2090 		 * Always burst out beacon and CAB traffic.
   2091 		 */
   2092 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2093 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2094 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2095 	} else {
   2096 		struct wmeParams *wmep =
   2097 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2098 		/*
   2099 		 * Adhoc mode; important thing is to use 2x cwmin.
   2100 		 */
   2101 		qi.tqi_aifs = wmep->wmep_aifsn;
   2102 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2103 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2104 	}
   2105 
   2106 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2107 		device_printf(sc->sc_dev, "unable to update parameters for "
   2108 			"beacon hardware queue!\n");
   2109 		return 0;
   2110 	} else {
   2111 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2112 		return 1;
   2113 	}
   2114 #undef ATH_EXPONENT_TO_VALUE
   2115 }
   2116 
   2117 /*
   2118  * Allocate and setup an initial beacon frame.
   2119  */
   2120 static int
   2121 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2122 {
   2123 	struct ieee80211com *ic = ni->ni_ic;
   2124 	struct ath_buf *bf;
   2125 	struct mbuf *m;
   2126 	int error;
   2127 
   2128 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2129 	if (bf == NULL) {
   2130 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2131 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2132 		return ENOMEM;			/* XXX */
   2133 	}
   2134 	/*
   2135 	 * NB: the beacon data buffer must be 32-bit aligned;
   2136 	 * we assume the mbuf routines will return us something
   2137 	 * with this alignment (perhaps should assert).
   2138 	 */
   2139 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2140 	if (m == NULL) {
   2141 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2142 			__func__);
   2143 		sc->sc_stats.ast_be_nombuf++;
   2144 		return ENOMEM;
   2145 	}
   2146 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2147 				     BUS_DMA_NOWAIT);
   2148 	if (error == 0) {
   2149 		bf->bf_m = m;
   2150 		bf->bf_node = ieee80211_ref_node(ni);
   2151 	} else {
   2152 		m_freem(m);
   2153 	}
   2154 	return error;
   2155 }
   2156 
   2157 /*
   2158  * Setup the beacon frame for transmit.
   2159  */
   2160 static void
   2161 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2162 {
   2163 #define	USE_SHPREAMBLE(_ic) \
   2164 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2165 		== IEEE80211_F_SHPREAMBLE)
   2166 	struct ieee80211_node *ni = bf->bf_node;
   2167 	struct ieee80211com *ic = ni->ni_ic;
   2168 	struct mbuf *m = bf->bf_m;
   2169 	struct ath_hal *ah = sc->sc_ah;
   2170 	struct ath_desc *ds;
   2171 	int flags, antenna;
   2172 	const HAL_RATE_TABLE *rt;
   2173 	u_int8_t rix, rate;
   2174 
   2175 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2176 		__func__, m, m->m_len);
   2177 
   2178 	/* setup descriptors */
   2179 	ds = bf->bf_desc;
   2180 
   2181 	flags = HAL_TXDESC_NOACK;
   2182 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2183 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2184 		flags |= HAL_TXDESC_VEOL;
   2185 		/*
   2186 		 * Let hardware handle antenna switching unless
   2187 		 * the user has selected a transmit antenna
   2188 		 * (sc_txantenna is not 0).
   2189 		 */
   2190 		antenna = sc->sc_txantenna;
   2191 	} else {
   2192 		ds->ds_link = 0;
   2193 		/*
   2194 		 * Switch antenna every 4 beacons, unless the user
   2195 		 * has selected a transmit antenna (sc_txantenna
   2196 		 * is not 0).
   2197 		 *
   2198 		 * XXX assumes two antenna
   2199 		 */
   2200 		if (sc->sc_txantenna == 0)
   2201 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2202 		else
   2203 			antenna = sc->sc_txantenna;
   2204 	}
   2205 
   2206 	KASSERT(bf->bf_nseg == 1,
   2207 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2208 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2209 	/*
   2210 	 * Calculate rate code.
   2211 	 * XXX everything at min xmit rate
   2212 	 */
   2213 	rix = sc->sc_minrateix;
   2214 	rt = sc->sc_currates;
   2215 	rate = rt->info[rix].rateCode;
   2216 	if (USE_SHPREAMBLE(ic))
   2217 		rate |= rt->info[rix].shortPreamble;
   2218 	ath_hal_setuptxdesc(ah, ds
   2219 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2220 		, sizeof(struct ieee80211_frame)/* header length */
   2221 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2222 		, ni->ni_txpower		/* txpower XXX */
   2223 		, rate, 1			/* series 0 rate/tries */
   2224 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2225 		, antenna			/* antenna mode */
   2226 		, flags				/* no ack, veol for beacons */
   2227 		, 0				/* rts/cts rate */
   2228 		, 0				/* rts/cts duration */
   2229 	);
   2230 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2231 	ath_hal_filltxdesc(ah, ds
   2232 		, roundup(m->m_len, 4)		/* buffer length */
   2233 		, AH_TRUE			/* first segment */
   2234 		, AH_TRUE			/* last segment */
   2235 		, ds				/* first descriptor */
   2236 	);
   2237 
   2238 	/* NB: The desc swap function becomes void, if descriptor swapping
   2239 	 * is not enabled
   2240 	 */
   2241 	ath_desc_swap(ds);
   2242 
   2243 #undef USE_SHPREAMBLE
   2244 }
   2245 
   2246 /*
   2247  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2248  * frame contents are done as needed and the slot time is
   2249  * also adjusted based on current state.
   2250  */
   2251 static void
   2252 ath_beacon_proc(void *arg, int pending)
   2253 {
   2254 	struct ath_softc *sc = arg;
   2255 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2256 	struct ieee80211_node *ni = bf->bf_node;
   2257 	struct ieee80211com *ic = ni->ni_ic;
   2258 	struct ath_hal *ah = sc->sc_ah;
   2259 	struct mbuf *m;
   2260 	int ncabq, error, otherant;
   2261 
   2262 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2263 		__func__, pending);
   2264 
   2265 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2266 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2267 	    bf == NULL || bf->bf_m == NULL) {
   2268 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2269 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2270 		return;
   2271 	}
   2272 	/*
   2273 	 * Check if the previous beacon has gone out.  If
   2274 	 * not don't try to post another, skip this period
   2275 	 * and wait for the next.  Missed beacons indicate
   2276 	 * a problem and should not occur.  If we miss too
   2277 	 * many consecutive beacons reset the device.
   2278 	 */
   2279 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2280 		sc->sc_bmisscount++;
   2281 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2282 			"%s: missed %u consecutive beacons\n",
   2283 			__func__, sc->sc_bmisscount);
   2284 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2285 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2286 		return;
   2287 	}
   2288 	if (sc->sc_bmisscount != 0) {
   2289 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2290 			"%s: resume beacon xmit after %u misses\n",
   2291 			__func__, sc->sc_bmisscount);
   2292 		sc->sc_bmisscount = 0;
   2293 	}
   2294 
   2295 	/*
   2296 	 * Update dynamic beacon contents.  If this returns
   2297 	 * non-zero then we need to remap the memory because
   2298 	 * the beacon frame changed size (probably because
   2299 	 * of the TIM bitmap).
   2300 	 */
   2301 	m = bf->bf_m;
   2302 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2303 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2304 		/* XXX too conservative? */
   2305 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2306 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2307 					     BUS_DMA_NOWAIT);
   2308 		if (error != 0) {
   2309 			if_printf(&sc->sc_if,
   2310 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2311 			    __func__, error);
   2312 			return;
   2313 		}
   2314 	}
   2315 
   2316 	/*
   2317 	 * Handle slot time change when a non-ERP station joins/leaves
   2318 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2319 	 * we mark updateslot, then wait one beacon before effecting
   2320 	 * the change.  This gives associated stations at least one
   2321 	 * beacon interval to note the state change.
   2322 	 */
   2323 	/* XXX locking */
   2324 	if (sc->sc_updateslot == UPDATE)
   2325 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2326 	else if (sc->sc_updateslot == COMMIT)
   2327 		ath_setslottime(sc);		/* commit change to h/w */
   2328 
   2329 	/*
   2330 	 * Check recent per-antenna transmit statistics and flip
   2331 	 * the default antenna if noticeably more frames went out
   2332 	 * on the non-default antenna.
   2333 	 * XXX assumes 2 anntenae
   2334 	 */
   2335 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2336 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2337 		ath_setdefantenna(sc, otherant);
   2338 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2339 
   2340 	/*
   2341 	 * Construct tx descriptor.
   2342 	 */
   2343 	ath_beacon_setup(sc, bf);
   2344 
   2345 	/*
   2346 	 * Stop any current dma and put the new frame on the queue.
   2347 	 * This should never fail since we check above that no frames
   2348 	 * are still pending on the queue.
   2349 	 */
   2350 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2351 		DPRINTF(sc, ATH_DEBUG_ANY,
   2352 			"%s: beacon queue %u did not stop?\n",
   2353 			__func__, sc->sc_bhalq);
   2354 	}
   2355 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2356 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2357 
   2358 	/*
   2359 	 * Enable the CAB queue before the beacon queue to
   2360 	 * insure cab frames are triggered by this beacon.
   2361 	 */
   2362 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2363 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2364 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2365 	ath_hal_txstart(ah, sc->sc_bhalq);
   2366 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2367 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2368 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2369 
   2370 	sc->sc_stats.ast_be_xmit++;
   2371 }
   2372 
   2373 /*
   2374  * Reset the hardware after detecting beacons have stopped.
   2375  */
   2376 static void
   2377 ath_bstuck_proc(void *arg, int pending)
   2378 {
   2379 	struct ath_softc *sc = arg;
   2380 	struct ifnet *ifp = &sc->sc_if;
   2381 
   2382 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2383 		sc->sc_bmisscount);
   2384 	ath_reset(ifp);
   2385 }
   2386 
   2387 /*
   2388  * Reclaim beacon resources.
   2389  */
   2390 static void
   2391 ath_beacon_free(struct ath_softc *sc)
   2392 {
   2393 	struct ath_buf *bf;
   2394 
   2395 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2396 		if (bf->bf_m != NULL) {
   2397 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2398 			m_freem(bf->bf_m);
   2399 			bf->bf_m = NULL;
   2400 		}
   2401 		if (bf->bf_node != NULL) {
   2402 			ieee80211_free_node(bf->bf_node);
   2403 			bf->bf_node = NULL;
   2404 		}
   2405 	}
   2406 }
   2407 
   2408 /*
   2409  * Configure the beacon and sleep timers.
   2410  *
   2411  * When operating as an AP this resets the TSF and sets
   2412  * up the hardware to notify us when we need to issue beacons.
   2413  *
   2414  * When operating in station mode this sets up the beacon
   2415  * timers according to the timestamp of the last received
   2416  * beacon and the current TSF, configures PCF and DTIM
   2417  * handling, programs the sleep registers so the hardware
   2418  * will wakeup in time to receive beacons, and configures
   2419  * the beacon miss handling so we'll receive a BMISS
   2420  * interrupt when we stop seeing beacons from the AP
   2421  * we've associated with.
   2422  */
   2423 static void
   2424 ath_beacon_config(struct ath_softc *sc)
   2425 {
   2426 #define	TSF_TO_TU(_h,_l) \
   2427 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2428 #define	FUDGE	2
   2429 	struct ath_hal *ah = sc->sc_ah;
   2430 	struct ieee80211com *ic = &sc->sc_ic;
   2431 	struct ieee80211_node *ni = ic->ic_bss;
   2432 	u_int32_t nexttbtt, intval, tsftu;
   2433 	u_int64_t tsf;
   2434 
   2435 	/* extract tstamp from last beacon and convert to TU */
   2436 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2437 			     LE_READ_4(ni->ni_tstamp.data));
   2438 	/* NB: the beacon interval is kept internally in TU's */
   2439 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2440 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2441 		nexttbtt = intval;
   2442 	else if (intval)		/* NB: can be 0 for monitor mode */
   2443 		nexttbtt = roundup(nexttbtt, intval);
   2444 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2445 		__func__, nexttbtt, intval, ni->ni_intval);
   2446 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2447 		HAL_BEACON_STATE bs;
   2448 		int dtimperiod, dtimcount;
   2449 		int cfpperiod, cfpcount;
   2450 
   2451 		/*
   2452 		 * Setup dtim and cfp parameters according to
   2453 		 * last beacon we received (which may be none).
   2454 		 */
   2455 		dtimperiod = ni->ni_dtim_period;
   2456 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2457 			dtimperiod = 1;
   2458 		dtimcount = ni->ni_dtim_count;
   2459 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2460 			dtimcount = 0;		/* XXX? */
   2461 		cfpperiod = 1;			/* NB: no PCF support yet */
   2462 		cfpcount = 0;
   2463 		/*
   2464 		 * Pull nexttbtt forward to reflect the current
   2465 		 * TSF and calculate dtim+cfp state for the result.
   2466 		 */
   2467 		tsf = ath_hal_gettsf64(ah);
   2468 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2469 		do {
   2470 			nexttbtt += intval;
   2471 			if (--dtimcount < 0) {
   2472 				dtimcount = dtimperiod - 1;
   2473 				if (--cfpcount < 0)
   2474 					cfpcount = cfpperiod - 1;
   2475 			}
   2476 		} while (nexttbtt < tsftu);
   2477 		memset(&bs, 0, sizeof(bs));
   2478 		bs.bs_intval = intval;
   2479 		bs.bs_nexttbtt = nexttbtt;
   2480 		bs.bs_dtimperiod = dtimperiod*intval;
   2481 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2482 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2483 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2484 		bs.bs_cfpmaxduration = 0;
   2485 #if 0
   2486 		/*
   2487 		 * The 802.11 layer records the offset to the DTIM
   2488 		 * bitmap while receiving beacons; use it here to
   2489 		 * enable h/w detection of our AID being marked in
   2490 		 * the bitmap vector (to indicate frames for us are
   2491 		 * pending at the AP).
   2492 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2493 		 * XXX enable based on h/w rev for newer chips
   2494 		 */
   2495 		bs.bs_timoffset = ni->ni_timoff;
   2496 #endif
   2497 		/*
   2498 		 * Calculate the number of consecutive beacons to miss
   2499 		 * before taking a BMISS interrupt.  The configuration
   2500 		 * is specified in ms, so we need to convert that to
   2501 		 * TU's and then calculate based on the beacon interval.
   2502 		 * Note that we clamp the result to at most 10 beacons.
   2503 		 */
   2504 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2505 		if (bs.bs_bmissthreshold > 10)
   2506 			bs.bs_bmissthreshold = 10;
   2507 		else if (bs.bs_bmissthreshold <= 0)
   2508 			bs.bs_bmissthreshold = 1;
   2509 
   2510 		/*
   2511 		 * Calculate sleep duration.  The configuration is
   2512 		 * given in ms.  We insure a multiple of the beacon
   2513 		 * period is used.  Also, if the sleep duration is
   2514 		 * greater than the DTIM period then it makes senses
   2515 		 * to make it a multiple of that.
   2516 		 *
   2517 		 * XXX fixed at 100ms
   2518 		 */
   2519 		bs.bs_sleepduration =
   2520 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2521 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2522 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2523 
   2524 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2525 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2526 			, __func__
   2527 			, tsf, tsftu
   2528 			, bs.bs_intval
   2529 			, bs.bs_nexttbtt
   2530 			, bs.bs_dtimperiod
   2531 			, bs.bs_nextdtim
   2532 			, bs.bs_bmissthreshold
   2533 			, bs.bs_sleepduration
   2534 			, bs.bs_cfpperiod
   2535 			, bs.bs_cfpmaxduration
   2536 			, bs.bs_cfpnext
   2537 			, bs.bs_timoffset
   2538 		);
   2539 		ath_hal_intrset(ah, 0);
   2540 		ath_hal_beacontimers(ah, &bs);
   2541 		sc->sc_imask |= HAL_INT_BMISS;
   2542 		ath_hal_intrset(ah, sc->sc_imask);
   2543 	} else {
   2544 		ath_hal_intrset(ah, 0);
   2545 		if (nexttbtt == intval)
   2546 			intval |= HAL_BEACON_RESET_TSF;
   2547 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2548 			/*
   2549 			 * In IBSS mode enable the beacon timers but only
   2550 			 * enable SWBA interrupts if we need to manually
   2551 			 * prepare beacon frames.  Otherwise we use a
   2552 			 * self-linked tx descriptor and let the hardware
   2553 			 * deal with things.
   2554 			 */
   2555 			intval |= HAL_BEACON_ENA;
   2556 			if (!sc->sc_hasveol)
   2557 				sc->sc_imask |= HAL_INT_SWBA;
   2558 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2559 				/*
   2560 				 * Pull nexttbtt forward to reflect
   2561 				 * the current TSF.
   2562 				 */
   2563 				tsf = ath_hal_gettsf64(ah);
   2564 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2565 				do {
   2566 					nexttbtt += intval;
   2567 				} while (nexttbtt < tsftu);
   2568 			}
   2569 			ath_beaconq_config(sc);
   2570 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2571 			/*
   2572 			 * In AP mode we enable the beacon timers and
   2573 			 * SWBA interrupts to prepare beacon frames.
   2574 			 */
   2575 			intval |= HAL_BEACON_ENA;
   2576 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2577 			ath_beaconq_config(sc);
   2578 		}
   2579 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2580 		sc->sc_bmisscount = 0;
   2581 		ath_hal_intrset(ah, sc->sc_imask);
   2582 		/*
   2583 		 * When using a self-linked beacon descriptor in
   2584 		 * ibss mode load it once here.
   2585 		 */
   2586 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2587 			ath_beacon_proc(sc, 0);
   2588 	}
   2589 	sc->sc_syncbeacon = 0;
   2590 #undef UNDEF
   2591 #undef TSF_TO_TU
   2592 }
   2593 
   2594 static int
   2595 ath_descdma_setup(struct ath_softc *sc,
   2596 	struct ath_descdma *dd, ath_bufhead *head,
   2597 	const char *name, int nbuf, int ndesc)
   2598 {
   2599 #define	DS2PHYS(_dd, _ds) \
   2600 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2601 	struct ifnet *ifp = &sc->sc_if;
   2602 	struct ath_desc *ds;
   2603 	struct ath_buf *bf;
   2604 	int i, bsize, error;
   2605 
   2606 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2607 	    __func__, name, nbuf, ndesc);
   2608 
   2609 	dd->dd_name = name;
   2610 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2611 
   2612 	/*
   2613 	 * Setup DMA descriptor area.
   2614 	 */
   2615 	dd->dd_dmat = sc->sc_dmat;
   2616 
   2617 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2618 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2619 
   2620 	if (error != 0) {
   2621 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2622 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2623 		goto fail0;
   2624 	}
   2625 
   2626 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2627 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2628 	if (error != 0) {
   2629 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2630 		    nbuf * ndesc, dd->dd_name, error);
   2631 		goto fail1;
   2632 	}
   2633 
   2634 	/* allocate descriptors */
   2635 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2636 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2637 	if (error != 0) {
   2638 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2639 			"error %u\n", dd->dd_name, error);
   2640 		goto fail2;
   2641 	}
   2642 
   2643 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2644 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2645 	if (error != 0) {
   2646 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2647 			dd->dd_name, error);
   2648 		goto fail3;
   2649 	}
   2650 
   2651 	ds = dd->dd_desc;
   2652 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2653 	DPRINTF(sc, ATH_DEBUG_RESET,
   2654 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2655 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2656 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2657 
   2658 	/* allocate rx buffers */
   2659 	bsize = sizeof(struct ath_buf) * nbuf;
   2660 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2661 	if (bf == NULL) {
   2662 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2663 			dd->dd_name, bsize);
   2664 		goto fail4;
   2665 	}
   2666 	dd->dd_bufptr = bf;
   2667 
   2668 	STAILQ_INIT(head);
   2669 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2670 		bf->bf_desc = ds;
   2671 		bf->bf_daddr = DS2PHYS(dd, ds);
   2672 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2673 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2674 		if (error != 0) {
   2675 			if_printf(ifp, "unable to create dmamap for %s "
   2676 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2677 			ath_descdma_cleanup(sc, dd, head);
   2678 			return error;
   2679 		}
   2680 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2681 	}
   2682 	return 0;
   2683 fail4:
   2684 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2685 fail3:
   2686 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2687 fail2:
   2688 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2689 fail1:
   2690 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2691 fail0:
   2692 	memset(dd, 0, sizeof(*dd));
   2693 	return error;
   2694 #undef DS2PHYS
   2695 }
   2696 
   2697 static void
   2698 ath_descdma_cleanup(struct ath_softc *sc,
   2699 	struct ath_descdma *dd, ath_bufhead *head)
   2700 {
   2701 	struct ath_buf *bf;
   2702 	struct ieee80211_node *ni;
   2703 
   2704 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2705 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2706 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2707 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2708 
   2709 	STAILQ_FOREACH(bf, head, bf_list) {
   2710 		if (bf->bf_m) {
   2711 			m_freem(bf->bf_m);
   2712 			bf->bf_m = NULL;
   2713 		}
   2714 		if (bf->bf_dmamap != NULL) {
   2715 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2716 			bf->bf_dmamap = NULL;
   2717 		}
   2718 		ni = bf->bf_node;
   2719 		bf->bf_node = NULL;
   2720 		if (ni != NULL) {
   2721 			/*
   2722 			 * Reclaim node reference.
   2723 			 */
   2724 			ieee80211_free_node(ni);
   2725 		}
   2726 	}
   2727 
   2728 	STAILQ_INIT(head);
   2729 	free(dd->dd_bufptr, M_ATHDEV);
   2730 	memset(dd, 0, sizeof(*dd));
   2731 }
   2732 
   2733 static int
   2734 ath_desc_alloc(struct ath_softc *sc)
   2735 {
   2736 	int error;
   2737 
   2738 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2739 			"rx", ath_rxbuf, 1);
   2740 	if (error != 0)
   2741 		return error;
   2742 
   2743 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2744 			"tx", ath_txbuf, ATH_TXDESC);
   2745 	if (error != 0) {
   2746 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2747 		return error;
   2748 	}
   2749 
   2750 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2751 			"beacon", 1, 1);
   2752 	if (error != 0) {
   2753 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2754 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2755 		return error;
   2756 	}
   2757 	return 0;
   2758 }
   2759 
   2760 static void
   2761 ath_desc_free(struct ath_softc *sc)
   2762 {
   2763 
   2764 	if (sc->sc_bdma.dd_desc_len != 0)
   2765 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2766 	if (sc->sc_txdma.dd_desc_len != 0)
   2767 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2768 	if (sc->sc_rxdma.dd_desc_len != 0)
   2769 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2770 }
   2771 
   2772 static struct ieee80211_node *
   2773 ath_node_alloc(struct ieee80211_node_table *nt)
   2774 {
   2775 	struct ieee80211com *ic = nt->nt_ic;
   2776 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2777 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2778 	struct ath_node *an;
   2779 
   2780 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2781 	if (an == NULL) {
   2782 		/* XXX stat+msg */
   2783 		return NULL;
   2784 	}
   2785 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2786 	ath_rate_node_init(sc, an);
   2787 
   2788 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2789 	return &an->an_node;
   2790 }
   2791 
   2792 static void
   2793 ath_node_free(struct ieee80211_node *ni)
   2794 {
   2795 	struct ieee80211com *ic = ni->ni_ic;
   2796         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2797 
   2798 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2799 
   2800 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2801 	sc->sc_node_free(ni);
   2802 }
   2803 
   2804 static u_int8_t
   2805 ath_node_getrssi(const struct ieee80211_node *ni)
   2806 {
   2807 #define	HAL_EP_RND(x, mul) \
   2808 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2809 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2810 	int32_t rssi;
   2811 
   2812 	/*
   2813 	 * When only one frame is received there will be no state in
   2814 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2815 	 */
   2816 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2817 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2818 	else
   2819 		rssi = ni->ni_rssi;
   2820 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2821 #undef HAL_EP_RND
   2822 }
   2823 
   2824 static int
   2825 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2826 {
   2827 	struct ath_hal *ah = sc->sc_ah;
   2828 	int error;
   2829 	struct mbuf *m;
   2830 	struct ath_desc *ds;
   2831 
   2832 	m = bf->bf_m;
   2833 	if (m == NULL) {
   2834 		/*
   2835 		 * NB: by assigning a page to the rx dma buffer we
   2836 		 * implicitly satisfy the Atheros requirement that
   2837 		 * this buffer be cache-line-aligned and sized to be
   2838 		 * multiple of the cache line size.  Not doing this
   2839 		 * causes weird stuff to happen (for the 5210 at least).
   2840 		 */
   2841 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2842 		if (m == NULL) {
   2843 			DPRINTF(sc, ATH_DEBUG_ANY,
   2844 				"%s: no mbuf/cluster\n", __func__);
   2845 			sc->sc_stats.ast_rx_nombuf++;
   2846 			return ENOMEM;
   2847 		}
   2848 		bf->bf_m = m;
   2849 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2850 
   2851 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2852 					     bf->bf_dmamap, m,
   2853 					     BUS_DMA_NOWAIT);
   2854 		if (error != 0) {
   2855 			DPRINTF(sc, ATH_DEBUG_ANY,
   2856 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2857 			    __func__, error);
   2858 			sc->sc_stats.ast_rx_busdma++;
   2859 			return error;
   2860 		}
   2861 		KASSERT(bf->bf_nseg == 1,
   2862 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2863 	}
   2864 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2865 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2866 
   2867 	/*
   2868 	 * Setup descriptors.  For receive we always terminate
   2869 	 * the descriptor list with a self-linked entry so we'll
   2870 	 * not get overrun under high load (as can happen with a
   2871 	 * 5212 when ANI processing enables PHY error frames).
   2872 	 *
   2873 	 * To insure the last descriptor is self-linked we create
   2874 	 * each descriptor as self-linked and add it to the end.  As
   2875 	 * each additional descriptor is added the previous self-linked
   2876 	 * entry is ``fixed'' naturally.  This should be safe even
   2877 	 * if DMA is happening.  When processing RX interrupts we
   2878 	 * never remove/process the last, self-linked, entry on the
   2879 	 * descriptor list.  This insures the hardware always has
   2880 	 * someplace to write a new frame.
   2881 	 */
   2882 	ds = bf->bf_desc;
   2883 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2884 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2885 	/* ds->ds_vdata = mtod(m, void *);	for radar */
   2886 	ath_hal_setuprxdesc(ah, ds
   2887 		, m->m_len		/* buffer size */
   2888 		, 0
   2889 	);
   2890 
   2891 	if (sc->sc_rxlink != NULL)
   2892 		*sc->sc_rxlink = bf->bf_daddr;
   2893 	sc->sc_rxlink = &ds->ds_link;
   2894 	return 0;
   2895 }
   2896 
   2897 /*
   2898  * Extend 15-bit time stamp from rx descriptor to
   2899  * a full 64-bit TSF using the specified TSF.
   2900  */
   2901 static inline u_int64_t
   2902 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2903 {
   2904 	if ((tsf & 0x7fff) < rstamp)
   2905 		tsf -= 0x8000;
   2906 	return ((tsf &~ 0x7fff) | rstamp);
   2907 }
   2908 
   2909 /*
   2910  * Intercept management frames to collect beacon rssi data
   2911  * and to do ibss merges.
   2912  */
   2913 static void
   2914 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2915 	struct ieee80211_node *ni,
   2916 	int subtype, int rssi, u_int32_t rstamp)
   2917 {
   2918 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2919 
   2920 	/*
   2921 	 * Call up first so subsequent work can use information
   2922 	 * potentially stored in the node (e.g. for ibss merge).
   2923 	 */
   2924 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2925 	switch (subtype) {
   2926 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2927 		/* update rssi statistics for use by the hal */
   2928 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2929 		if (sc->sc_syncbeacon &&
   2930 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2931 			/*
   2932 			 * Resync beacon timers using the tsf of the beacon
   2933 			 * frame we just received.
   2934 			 */
   2935 			ath_beacon_config(sc);
   2936 		}
   2937 		/* fall thru... */
   2938 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2939 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2940 		    ic->ic_state == IEEE80211_S_RUN) {
   2941 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2942 				ath_hal_gettsf64(sc->sc_ah));
   2943 
   2944 			/*
   2945 			 * Handle ibss merge as needed; check the tsf on the
   2946 			 * frame before attempting the merge.  The 802.11 spec
   2947 			 * says the station should change it's bssid to match
   2948 			 * the oldest station with the same ssid, where oldest
   2949 			 * is determined by the tsf.  Note that hardware
   2950 			 * reconfiguration happens through callback to
   2951 			 * ath_newstate as the state machine will go from
   2952 			 * RUN -> RUN when this happens.
   2953 			 */
   2954 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2955 				DPRINTF(sc, ATH_DEBUG_STATE,
   2956 				    "ibss merge, rstamp %u tsf %ju "
   2957 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2958 				    (uintmax_t)ni->ni_tstamp.tsf);
   2959 				(void) ieee80211_ibss_merge(ni);
   2960 			}
   2961 		}
   2962 		break;
   2963 	}
   2964 }
   2965 
   2966 /*
   2967  * Set the default antenna.
   2968  */
   2969 static void
   2970 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2971 {
   2972 	struct ath_hal *ah = sc->sc_ah;
   2973 
   2974 	/* XXX block beacon interrupts */
   2975 	ath_hal_setdefantenna(ah, antenna);
   2976 	if (sc->sc_defant != antenna)
   2977 		sc->sc_stats.ast_ant_defswitch++;
   2978 	sc->sc_defant = antenna;
   2979 	sc->sc_rxotherant = 0;
   2980 }
   2981 
   2982 static void
   2983 ath_handle_micerror(struct ieee80211com *ic,
   2984 	struct ieee80211_frame *wh, int keyix)
   2985 {
   2986 	struct ieee80211_node *ni;
   2987 
   2988 	/* XXX recheck MIC to deal w/ chips that lie */
   2989 	/* XXX discard MIC errors on !data frames */
   2990 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
   2991 	if (ni != NULL) {
   2992 		ieee80211_notify_michael_failure(ic, wh, keyix);
   2993 		ieee80211_free_node(ni);
   2994 	}
   2995 }
   2996 
   2997 static void
   2998 ath_rx_proc(void *arg, int npending)
   2999 {
   3000 #define	PA2DESC(_sc, _pa) \
   3001 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   3002 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   3003 	struct ath_softc *sc = arg;
   3004 	struct ath_buf *bf;
   3005 	struct ieee80211com *ic = &sc->sc_ic;
   3006 	struct ifnet *ifp = &sc->sc_if;
   3007 	struct ath_hal *ah = sc->sc_ah;
   3008 	struct ath_desc *ds;
   3009 	struct mbuf *m;
   3010 	struct ieee80211_node *ni;
   3011 	struct ath_node *an;
   3012 	int len, ngood, type;
   3013 	u_int phyerr;
   3014 	HAL_STATUS status;
   3015 	int16_t nf;
   3016 	u_int64_t tsf;
   3017 	uint8_t rxerr_tap, rxerr_mon;
   3018 
   3019 	NET_LOCK_GIANT();		/* XXX */
   3020 
   3021 	rxerr_tap =
   3022 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
   3023 
   3024 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
   3025 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3026 	else if (ifp->if_flags & IFF_PROMISC)
   3027 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3028 
   3029 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   3030 	ngood = 0;
   3031 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   3032 	tsf = ath_hal_gettsf64(ah);
   3033 	do {
   3034 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3035 		if (bf == NULL) {		/* NB: shouldn't happen */
   3036 			if_printf(ifp, "%s: no buffer!\n", __func__);
   3037 			break;
   3038 		}
   3039 		ds = bf->bf_desc;
   3040 		if (ds->ds_link == bf->bf_daddr) {
   3041 			/* NB: never process the self-linked entry at the end */
   3042 			break;
   3043 		}
   3044 		m = bf->bf_m;
   3045 		if (m == NULL) {		/* NB: shouldn't happen */
   3046 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   3047 			break;
   3048 		}
   3049 		/* XXX sync descriptor memory */
   3050 		/*
   3051 		 * Must provide the virtual address of the current
   3052 		 * descriptor, the physical address, and the virtual
   3053 		 * address of the next descriptor in the h/w chain.
   3054 		 * This allows the HAL to look ahead to see if the
   3055 		 * hardware is done with a descriptor by checking the
   3056 		 * done bit in the following descriptor and the address
   3057 		 * of the current descriptor the DMA engine is working
   3058 		 * on.  All this is necessary because of our use of
   3059 		 * a self-linked list to avoid rx overruns.
   3060 		 */
   3061 		status = ath_hal_rxprocdesc(ah, ds,
   3062 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   3063 				&ds->ds_rxstat);
   3064 #ifdef AR_DEBUG
   3065 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3066 			ath_printrxbuf(bf, status == HAL_OK);
   3067 #endif
   3068 		if (status == HAL_EINPROGRESS)
   3069 			break;
   3070 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3071 		if (ds->ds_rxstat.rs_more) {
   3072 			/*
   3073 			 * Frame spans multiple descriptors; this
   3074 			 * cannot happen yet as we don't support
   3075 			 * jumbograms.  If not in monitor mode,
   3076 			 * discard the frame.
   3077 			 */
   3078 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3079 				sc->sc_stats.ast_rx_toobig++;
   3080 				goto rx_next;
   3081 			}
   3082 			/* fall thru for monitor mode handling... */
   3083 		} else if (ds->ds_rxstat.rs_status != 0) {
   3084 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3085 				sc->sc_stats.ast_rx_crcerr++;
   3086 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3087 				sc->sc_stats.ast_rx_fifoerr++;
   3088 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3089 				sc->sc_stats.ast_rx_phyerr++;
   3090 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3091 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3092 				goto rx_next;
   3093 			}
   3094 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3095 				/*
   3096 				 * Decrypt error.  If the error occurred
   3097 				 * because there was no hardware key, then
   3098 				 * let the frame through so the upper layers
   3099 				 * can process it.  This is necessary for 5210
   3100 				 * parts which have no way to setup a ``clear''
   3101 				 * key cache entry.
   3102 				 *
   3103 				 * XXX do key cache faulting
   3104 				 */
   3105 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3106 					goto rx_accept;
   3107 				sc->sc_stats.ast_rx_badcrypt++;
   3108 			}
   3109 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3110 				sc->sc_stats.ast_rx_badmic++;
   3111 				/*
   3112 				 * Do minimal work required to hand off
   3113 				 * the 802.11 header for notifcation.
   3114 				 */
   3115 				/* XXX frag's and qos frames */
   3116 				len = ds->ds_rxstat.rs_datalen;
   3117 				if (len >= sizeof (struct ieee80211_frame)) {
   3118 					bus_dmamap_sync(sc->sc_dmat,
   3119 					    bf->bf_dmamap,
   3120 					    0, bf->bf_dmamap->dm_mapsize,
   3121 					    BUS_DMASYNC_POSTREAD);
   3122 					ath_handle_micerror(ic,
   3123 					    mtod(m, struct ieee80211_frame *),
   3124 					    sc->sc_splitmic ?
   3125 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
   3126 				}
   3127 			}
   3128 			ifp->if_ierrors++;
   3129 			/*
   3130 			 * Reject error frames, we normally don't want
   3131 			 * to see them in monitor mode (in monitor mode
   3132 			 * allow through packets that have crypto problems).
   3133 			 */
   3134 
   3135 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
   3136 				goto rx_next;
   3137 		}
   3138 rx_accept:
   3139 		/*
   3140 		 * Sync and unmap the frame.  At this point we're
   3141 		 * committed to passing the mbuf somewhere so clear
   3142 		 * bf_m; this means a new sk_buff must be allocated
   3143 		 * when the rx descriptor is setup again to receive
   3144 		 * another frame.
   3145 		 */
   3146 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3147 		    0, bf->bf_dmamap->dm_mapsize,
   3148 		    BUS_DMASYNC_POSTREAD);
   3149 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3150 		bf->bf_m = NULL;
   3151 
   3152 		m->m_pkthdr.rcvif = ifp;
   3153 		len = ds->ds_rxstat.rs_datalen;
   3154 		m->m_pkthdr.len = m->m_len = len;
   3155 
   3156 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3157 
   3158 #if NBPFILTER > 0
   3159 		if (sc->sc_drvbpf) {
   3160 			u_int8_t rix;
   3161 
   3162 			/*
   3163 			 * Discard anything shorter than an ack or cts.
   3164 			 */
   3165 			if (len < IEEE80211_ACK_LEN) {
   3166 				DPRINTF(sc, ATH_DEBUG_RECV,
   3167 					"%s: runt packet %d\n",
   3168 					__func__, len);
   3169 				sc->sc_stats.ast_rx_tooshort++;
   3170 				m_freem(m);
   3171 				goto rx_next;
   3172 			}
   3173 			rix = ds->ds_rxstat.rs_rate;
   3174 			sc->sc_rx_th.wr_tsf = htole64(
   3175 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3176 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3177 			if (ds->ds_rxstat.rs_status &
   3178 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
   3179 				sc->sc_rx_th.wr_flags |=
   3180 				    IEEE80211_RADIOTAP_F_BADFCS;
   3181 			}
   3182 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3183 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3184 			sc->sc_rx_th.wr_antnoise = nf;
   3185 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3186 
   3187 			bpf_mtap2(sc->sc_drvbpf,
   3188 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3189 		}
   3190 #endif
   3191 
   3192 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
   3193 			m_freem(m);
   3194 			goto rx_next;
   3195 		}
   3196 		/*
   3197 		 * From this point on we assume the frame is at least
   3198 		 * as large as ieee80211_frame_min; verify that.
   3199 		 */
   3200 		if (len < IEEE80211_MIN_LEN) {
   3201 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3202 				__func__, len);
   3203 			sc->sc_stats.ast_rx_tooshort++;
   3204 			m_freem(m);
   3205 			goto rx_next;
   3206 		}
   3207 
   3208 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3209 			ieee80211_dump_pkt(mtod(m, void *), len,
   3210 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3211 				   ds->ds_rxstat.rs_rssi);
   3212 		}
   3213 
   3214 		m_adj(m, -IEEE80211_CRC_LEN);
   3215 
   3216 		/*
   3217 		 * Locate the node for sender, track state, and then
   3218 		 * pass the (referenced) node up to the 802.11 layer
   3219 		 * for its use.
   3220 		 */
   3221 		ni = ieee80211_find_rxnode_withkey(ic,
   3222 			mtod(m, const struct ieee80211_frame_min *),
   3223 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3224 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3225 		/*
   3226 		 * Track rx rssi and do any rx antenna management.
   3227 		 */
   3228 		an = ATH_NODE(ni);
   3229 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3230 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3231 		/*
   3232 		 * Send frame up for processing.
   3233 		 */
   3234 		type = ieee80211_input(ic, m, ni,
   3235 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3236 		ieee80211_free_node(ni);
   3237 		if (sc->sc_diversity) {
   3238 			/*
   3239 			 * When using fast diversity, change the default rx
   3240 			 * antenna if diversity chooses the other antenna 3
   3241 			 * times in a row.
   3242 			 */
   3243 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3244 				if (++sc->sc_rxotherant >= 3)
   3245 					ath_setdefantenna(sc,
   3246 						ds->ds_rxstat.rs_antenna);
   3247 			} else
   3248 				sc->sc_rxotherant = 0;
   3249 		}
   3250 		if (sc->sc_softled) {
   3251 			/*
   3252 			 * Blink for any data frame.  Otherwise do a
   3253 			 * heartbeat-style blink when idle.  The latter
   3254 			 * is mainly for station mode where we depend on
   3255 			 * periodic beacon frames to trigger the poll event.
   3256 			 */
   3257 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3258 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3259 				ath_led_event(sc, ATH_LED_RX);
   3260 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3261 				ath_led_event(sc, ATH_LED_POLL);
   3262 		}
   3263 		/*
   3264 		 * Arrange to update the last rx timestamp only for
   3265 		 * frames from our ap when operating in station mode.
   3266 		 * This assumes the rx key is always setup when associated.
   3267 		 */
   3268 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3269 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3270 			ngood++;
   3271 rx_next:
   3272 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3273 	} while (ath_rxbuf_init(sc, bf) == 0);
   3274 
   3275 	/* rx signal state monitoring */
   3276 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3277 #if 0
   3278 	if (ath_hal_radar_event(ah))
   3279 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3280 #endif
   3281 	if (ngood)
   3282 		sc->sc_lastrx = tsf;
   3283 
   3284 #ifdef __NetBSD__
   3285 	/* XXX Why isn't this necessary in FreeBSD? */
   3286 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3287 		ath_start(ifp);
   3288 #endif /* __NetBSD__ */
   3289 
   3290 	NET_UNLOCK_GIANT();		/* XXX */
   3291 #undef PA2DESC
   3292 }
   3293 
   3294 /*
   3295  * Setup a h/w transmit queue.
   3296  */
   3297 static struct ath_txq *
   3298 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3299 {
   3300 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3301 	struct ath_hal *ah = sc->sc_ah;
   3302 	HAL_TXQ_INFO qi;
   3303 	int qnum;
   3304 
   3305 	memset(&qi, 0, sizeof(qi));
   3306 	qi.tqi_subtype = subtype;
   3307 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3308 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3309 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3310 	/*
   3311 	 * Enable interrupts only for EOL and DESC conditions.
   3312 	 * We mark tx descriptors to receive a DESC interrupt
   3313 	 * when a tx queue gets deep; otherwise waiting for the
   3314 	 * EOL to reap descriptors.  Note that this is done to
   3315 	 * reduce interrupt load and this only defers reaping
   3316 	 * descriptors, never transmitting frames.  Aside from
   3317 	 * reducing interrupts this also permits more concurrency.
   3318 	 * The only potential downside is if the tx queue backs
   3319 	 * up in which case the top half of the kernel may backup
   3320 	 * due to a lack of tx descriptors.
   3321 	 */
   3322 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3323 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3324 	if (qnum == -1) {
   3325 		/*
   3326 		 * NB: don't print a message, this happens
   3327 		 * normally on parts with too few tx queues
   3328 		 */
   3329 		return NULL;
   3330 	}
   3331 	if (qnum >= N(sc->sc_txq)) {
   3332 		device_printf(sc->sc_dev,
   3333 			"hal qnum %u out of range, max %zu!\n",
   3334 			qnum, N(sc->sc_txq));
   3335 		ath_hal_releasetxqueue(ah, qnum);
   3336 		return NULL;
   3337 	}
   3338 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3339 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3340 
   3341 		txq->axq_qnum = qnum;
   3342 		txq->axq_depth = 0;
   3343 		txq->axq_intrcnt = 0;
   3344 		txq->axq_link = NULL;
   3345 		STAILQ_INIT(&txq->axq_q);
   3346 		ATH_TXQ_LOCK_INIT(sc, txq);
   3347 		sc->sc_txqsetup |= 1<<qnum;
   3348 	}
   3349 	return &sc->sc_txq[qnum];
   3350 #undef N
   3351 }
   3352 
   3353 /*
   3354  * Setup a hardware data transmit queue for the specified
   3355  * access control.  The hal may not support all requested
   3356  * queues in which case it will return a reference to a
   3357  * previously setup queue.  We record the mapping from ac's
   3358  * to h/w queues for use by ath_tx_start and also track
   3359  * the set of h/w queues being used to optimize work in the
   3360  * transmit interrupt handler and related routines.
   3361  */
   3362 static int
   3363 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3364 {
   3365 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3366 	struct ath_txq *txq;
   3367 
   3368 	if (ac >= N(sc->sc_ac2q)) {
   3369 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3370 			ac, N(sc->sc_ac2q));
   3371 		return 0;
   3372 	}
   3373 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3374 	if (txq != NULL) {
   3375 		sc->sc_ac2q[ac] = txq;
   3376 		return 1;
   3377 	} else
   3378 		return 0;
   3379 #undef N
   3380 }
   3381 
   3382 /*
   3383  * Update WME parameters for a transmit queue.
   3384  */
   3385 static int
   3386 ath_txq_update(struct ath_softc *sc, int ac)
   3387 {
   3388 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3389 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3390 	struct ieee80211com *ic = &sc->sc_ic;
   3391 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3392 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3393 	struct ath_hal *ah = sc->sc_ah;
   3394 	HAL_TXQ_INFO qi;
   3395 
   3396 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3397 	qi.tqi_aifs = wmep->wmep_aifsn;
   3398 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3399 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3400 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3401 
   3402 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3403 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3404 			"parameters for %s traffic!\n",
   3405 			ieee80211_wme_acnames[ac]);
   3406 		return 0;
   3407 	} else {
   3408 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3409 		return 1;
   3410 	}
   3411 #undef ATH_TXOP_TO_US
   3412 #undef ATH_EXPONENT_TO_VALUE
   3413 }
   3414 
   3415 /*
   3416  * Callback from the 802.11 layer to update WME parameters.
   3417  */
   3418 static int
   3419 ath_wme_update(struct ieee80211com *ic)
   3420 {
   3421 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3422 
   3423 	return !ath_txq_update(sc, WME_AC_BE) ||
   3424 	    !ath_txq_update(sc, WME_AC_BK) ||
   3425 	    !ath_txq_update(sc, WME_AC_VI) ||
   3426 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3427 }
   3428 
   3429 /*
   3430  * Reclaim resources for a setup queue.
   3431  */
   3432 static void
   3433 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3434 {
   3435 
   3436 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3437 	ATH_TXQ_LOCK_DESTROY(txq);
   3438 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3439 }
   3440 
   3441 /*
   3442  * Reclaim all tx queue resources.
   3443  */
   3444 static void
   3445 ath_tx_cleanup(struct ath_softc *sc)
   3446 {
   3447 	int i;
   3448 
   3449 	ATH_TXBUF_LOCK_DESTROY(sc);
   3450 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3451 		if (ATH_TXQ_SETUP(sc, i))
   3452 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3453 }
   3454 
   3455 /*
   3456  * Defragment an mbuf chain, returning at most maxfrags separate
   3457  * mbufs+clusters.  If this is not possible NULL is returned and
   3458  * the original mbuf chain is left in it's present (potentially
   3459  * modified) state.  We use two techniques: collapsing consecutive
   3460  * mbufs and replacing consecutive mbufs by a cluster.
   3461  */
   3462 static struct mbuf *
   3463 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3464 {
   3465 	struct mbuf *m, *n, *n2, **prev;
   3466 	u_int curfrags;
   3467 
   3468 	/*
   3469 	 * Calculate the current number of frags.
   3470 	 */
   3471 	curfrags = 0;
   3472 	for (m = m0; m != NULL; m = m->m_next)
   3473 		curfrags++;
   3474 	/*
   3475 	 * First, try to collapse mbufs.  Note that we always collapse
   3476 	 * towards the front so we don't need to deal with moving the
   3477 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3478 	 * less data than the following.
   3479 	 */
   3480 	m = m0;
   3481 again:
   3482 	for (;;) {
   3483 		n = m->m_next;
   3484 		if (n == NULL)
   3485 			break;
   3486 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3487 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3488 				n->m_len);
   3489 			m->m_len += n->m_len;
   3490 			m->m_next = n->m_next;
   3491 			m_free(n);
   3492 			if (--curfrags <= maxfrags)
   3493 				return m0;
   3494 		} else
   3495 			m = n;
   3496 	}
   3497 	KASSERT(maxfrags > 1,
   3498 		("maxfrags %u, but normal collapse failed", maxfrags));
   3499 	/*
   3500 	 * Collapse consecutive mbufs to a cluster.
   3501 	 */
   3502 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3503 	while ((n = *prev) != NULL) {
   3504 		if ((n2 = n->m_next) != NULL &&
   3505 		    n->m_len + n2->m_len < MCLBYTES) {
   3506 			m = m_getcl(how, MT_DATA, 0);
   3507 			if (m == NULL)
   3508 				goto bad;
   3509 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3510 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3511 				n2->m_len);
   3512 			m->m_len = n->m_len + n2->m_len;
   3513 			m->m_next = n2->m_next;
   3514 			*prev = m;
   3515 			m_free(n);
   3516 			m_free(n2);
   3517 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3518 				return m0;
   3519 			/*
   3520 			 * Still not there, try the normal collapse
   3521 			 * again before we allocate another cluster.
   3522 			 */
   3523 			goto again;
   3524 		}
   3525 		prev = &n->m_next;
   3526 	}
   3527 	/*
   3528 	 * No place where we can collapse to a cluster; punt.
   3529 	 * This can occur if, for example, you request 2 frags
   3530 	 * but the packet requires that both be clusters (we
   3531 	 * never reallocate the first mbuf to avoid moving the
   3532 	 * packet header).
   3533 	 */
   3534 bad:
   3535 	return NULL;
   3536 }
   3537 
   3538 /*
   3539  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3540  */
   3541 static int
   3542 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3543 {
   3544 	int i;
   3545 
   3546 	for (i = 0; i < rt->rateCount; i++)
   3547 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3548 			return i;
   3549 	return 0;		/* NB: lowest rate */
   3550 }
   3551 
   3552 static void
   3553 ath_freetx(struct mbuf *m)
   3554 {
   3555 	struct mbuf *next;
   3556 
   3557 	do {
   3558 		next = m->m_nextpkt;
   3559 		m->m_nextpkt = NULL;
   3560 		m_freem(m);
   3561 	} while ((m = next) != NULL);
   3562 }
   3563 
   3564 static int
   3565 deduct_pad_bytes(int len, int hdrlen)
   3566 {
   3567 	/* XXX I am suspicious that this code, which I extracted
   3568 	 * XXX from ath_tx_start() for reuse, does the right thing.
   3569 	 */
   3570 	return len - (hdrlen & 3);
   3571 }
   3572 
   3573 static int
   3574 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3575     struct mbuf *m0)
   3576 {
   3577 	struct ieee80211com *ic = &sc->sc_ic;
   3578 	struct ath_hal *ah = sc->sc_ah;
   3579 	struct ifnet *ifp = &sc->sc_if;
   3580 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3581 	int i, error, iswep, ismcast, isfrag, ismrr;
   3582 	int keyix, hdrlen, pktlen, try0;
   3583 	u_int8_t rix, txrate, ctsrate;
   3584 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3585 	struct ath_desc *ds, *ds0;
   3586 	struct ath_txq *txq;
   3587 	struct ieee80211_frame *wh;
   3588 	u_int subtype, flags, ctsduration;
   3589 	HAL_PKT_TYPE atype;
   3590 	const HAL_RATE_TABLE *rt;
   3591 	HAL_BOOL shortPreamble;
   3592 	struct ath_node *an;
   3593 	struct mbuf *m;
   3594 	u_int pri;
   3595 
   3596 	wh = mtod(m0, struct ieee80211_frame *);
   3597 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3598 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3599 	isfrag = m0->m_flags & M_FRAG;
   3600 	hdrlen = ieee80211_anyhdrsize(wh);
   3601 	/*
   3602 	 * Packet length must not include any
   3603 	 * pad bytes; deduct them here.
   3604 	 */
   3605 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
   3606 
   3607 	if (iswep) {
   3608 		const struct ieee80211_cipher *cip;
   3609 		struct ieee80211_key *k;
   3610 
   3611 		/*
   3612 		 * Construct the 802.11 header+trailer for an encrypted
   3613 		 * frame. The only reason this can fail is because of an
   3614 		 * unknown or unsupported cipher/key type.
   3615 		 */
   3616 		k = ieee80211_crypto_encap(ic, ni, m0);
   3617 		if (k == NULL) {
   3618 			/*
   3619 			 * This can happen when the key is yanked after the
   3620 			 * frame was queued.  Just discard the frame; the
   3621 			 * 802.11 layer counts failures and provides
   3622 			 * debugging/diagnostics.
   3623 			 */
   3624 			ath_freetx(m0);
   3625 			return EIO;
   3626 		}
   3627 		/*
   3628 		 * Adjust the packet + header lengths for the crypto
   3629 		 * additions and calculate the h/w key index.  When
   3630 		 * a s/w mic is done the frame will have had any mic
   3631 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3632 		 * account for it. Otherwise we need to add it to the
   3633 		 * packet length.
   3634 		 */
   3635 		cip = k->wk_cipher;
   3636 		hdrlen += cip->ic_header;
   3637 		pktlen += cip->ic_header + cip->ic_trailer;
   3638 		/* NB: frags always have any TKIP MIC done in s/w */
   3639 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3640 			pktlen += cip->ic_miclen;
   3641 		keyix = k->wk_keyix;
   3642 
   3643 		/* packet header may have moved, reset our local pointer */
   3644 		wh = mtod(m0, struct ieee80211_frame *);
   3645 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3646 		/*
   3647 		 * Use station key cache slot, if assigned.
   3648 		 */
   3649 		keyix = ni->ni_ucastkey.wk_keyix;
   3650 		if (keyix == IEEE80211_KEYIX_NONE)
   3651 			keyix = HAL_TXKEYIX_INVALID;
   3652 	} else
   3653 		keyix = HAL_TXKEYIX_INVALID;
   3654 
   3655 	pktlen += IEEE80211_CRC_LEN;
   3656 
   3657 	/*
   3658 	 * Load the DMA map so any coalescing is done.  This
   3659 	 * also calculates the number of descriptors we need.
   3660 	 */
   3661 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3662 				     BUS_DMA_NOWAIT);
   3663 	if (error == EFBIG) {
   3664 		/* XXX packet requires too many descriptors */
   3665 		bf->bf_nseg = ATH_TXDESC+1;
   3666 	} else if (error != 0) {
   3667 		sc->sc_stats.ast_tx_busdma++;
   3668 		ath_freetx(m0);
   3669 		return error;
   3670 	}
   3671 	/*
   3672 	 * Discard null packets and check for packets that
   3673 	 * require too many TX descriptors.  We try to convert
   3674 	 * the latter to a cluster.
   3675 	 */
   3676 	if (error == EFBIG) {		/* too many desc's, linearize */
   3677 		sc->sc_stats.ast_tx_linear++;
   3678 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3679 		if (m == NULL) {
   3680 			ath_freetx(m0);
   3681 			sc->sc_stats.ast_tx_nombuf++;
   3682 			return ENOMEM;
   3683 		}
   3684 		m0 = m;
   3685 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3686 					     BUS_DMA_NOWAIT);
   3687 		if (error != 0) {
   3688 			sc->sc_stats.ast_tx_busdma++;
   3689 			ath_freetx(m0);
   3690 			return error;
   3691 		}
   3692 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3693 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3694 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3695 		sc->sc_stats.ast_tx_nodata++;
   3696 		ath_freetx(m0);
   3697 		return EIO;
   3698 	}
   3699 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3700 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3701             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3702 	bf->bf_m = m0;
   3703 	bf->bf_node = ni;			/* NB: held reference */
   3704 
   3705 	/* setup descriptors */
   3706 	ds = bf->bf_desc;
   3707 	rt = sc->sc_currates;
   3708 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3709 
   3710 	/*
   3711 	 * NB: the 802.11 layer marks whether or not we should
   3712 	 * use short preamble based on the current mode and
   3713 	 * negotiated parameters.
   3714 	 */
   3715 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3716 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3717 		shortPreamble = AH_TRUE;
   3718 		sc->sc_stats.ast_tx_shortpre++;
   3719 	} else {
   3720 		shortPreamble = AH_FALSE;
   3721 	}
   3722 
   3723 	an = ATH_NODE(ni);
   3724 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3725 	ismrr = 0;				/* default no multi-rate retry*/
   3726 	/*
   3727 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3728 	 * setup for rate calculations, and select h/w transmit queue.
   3729 	 */
   3730 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3731 	case IEEE80211_FC0_TYPE_MGT:
   3732 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3733 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3734 			atype = HAL_PKT_TYPE_BEACON;
   3735 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3736 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3737 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3738 			atype = HAL_PKT_TYPE_ATIM;
   3739 		else
   3740 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3741 		rix = sc->sc_minrateix;
   3742 		txrate = rt->info[rix].rateCode;
   3743 		if (shortPreamble)
   3744 			txrate |= rt->info[rix].shortPreamble;
   3745 		try0 = ATH_TXMGTTRY;
   3746 		/* NB: force all management frames to highest queue */
   3747 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3748 			/* NB: force all management frames to highest queue */
   3749 			pri = WME_AC_VO;
   3750 		} else
   3751 			pri = WME_AC_BE;
   3752 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3753 		break;
   3754 	case IEEE80211_FC0_TYPE_CTL:
   3755 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3756 		rix = sc->sc_minrateix;
   3757 		txrate = rt->info[rix].rateCode;
   3758 		if (shortPreamble)
   3759 			txrate |= rt->info[rix].shortPreamble;
   3760 		try0 = ATH_TXMGTTRY;
   3761 		/* NB: force all ctl frames to highest queue */
   3762 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3763 			/* NB: force all ctl frames to highest queue */
   3764 			pri = WME_AC_VO;
   3765 		} else
   3766 			pri = WME_AC_BE;
   3767 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3768 		break;
   3769 	case IEEE80211_FC0_TYPE_DATA:
   3770 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3771 		/*
   3772 		 * Data frames: multicast frames go out at a fixed rate,
   3773 		 * otherwise consult the rate control module for the
   3774 		 * rate to use.
   3775 		 */
   3776 		if (ismcast) {
   3777 			/*
   3778 			 * Check mcast rate setting in case it's changed.
   3779 			 * XXX move out of fastpath
   3780 			 */
   3781 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3782 				sc->sc_mcastrix =
   3783 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3784 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3785 			}
   3786 			rix = sc->sc_mcastrix;
   3787 			txrate = rt->info[rix].rateCode;
   3788 			try0 = 1;
   3789 		} else {
   3790 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3791 				&rix, &try0, &txrate);
   3792 			sc->sc_txrate = txrate;		/* for LED blinking */
   3793 			if (try0 != ATH_TXMAXTRY)
   3794 				ismrr = 1;
   3795 		}
   3796 		pri = M_WME_GETAC(m0);
   3797 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3798 			flags |= HAL_TXDESC_NOACK;
   3799 		break;
   3800 	default:
   3801 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3802 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3803 		/* XXX statistic */
   3804 		ath_freetx(m0);
   3805 		return EIO;
   3806 	}
   3807 	txq = sc->sc_ac2q[pri];
   3808 
   3809 	/*
   3810 	 * When servicing one or more stations in power-save mode
   3811 	 * multicast frames must be buffered until after the beacon.
   3812 	 * We use the CAB queue for that.
   3813 	 */
   3814 	if (ismcast && ic->ic_ps_sta) {
   3815 		txq = sc->sc_cabq;
   3816 		/* XXX? more bit in 802.11 frame header */
   3817 	}
   3818 
   3819 	/*
   3820 	 * Calculate miscellaneous flags.
   3821 	 */
   3822 	if (ismcast) {
   3823 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3824 	} else if (pktlen > ic->ic_rtsthreshold) {
   3825 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3826 		cix = rt->info[rix].controlRate;
   3827 		sc->sc_stats.ast_tx_rts++;
   3828 	}
   3829 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3830 		sc->sc_stats.ast_tx_noack++;
   3831 
   3832 	/*
   3833 	 * If 802.11g protection is enabled, determine whether
   3834 	 * to use RTS/CTS or just CTS.  Note that this is only
   3835 	 * done for OFDM unicast frames.
   3836 	 */
   3837 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3838 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3839 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3840 		/* XXX fragments must use CCK rates w/ protection */
   3841 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3842 			flags |= HAL_TXDESC_RTSENA;
   3843 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3844 			flags |= HAL_TXDESC_CTSENA;
   3845 		if (isfrag) {
   3846 			/*
   3847 			 * For frags it would be desirable to use the
   3848 			 * highest CCK rate for RTS/CTS.  But stations
   3849 			 * farther away may detect it at a lower CCK rate
   3850 			 * so use the configured protection rate instead
   3851 			 * (for now).
   3852 			 */
   3853 			cix = rt->info[sc->sc_protrix].controlRate;
   3854 		} else
   3855 			cix = rt->info[sc->sc_protrix].controlRate;
   3856 		sc->sc_stats.ast_tx_protect++;
   3857 	}
   3858 
   3859 	/*
   3860 	 * Calculate duration.  This logically belongs in the 802.11
   3861 	 * layer but it lacks sufficient information to calculate it.
   3862 	 */
   3863 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3864 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3865 		u_int16_t dur;
   3866 		/*
   3867 		 * XXX not right with fragmentation.
   3868 		 */
   3869 		if (shortPreamble)
   3870 			dur = rt->info[rix].spAckDuration;
   3871 		else
   3872 			dur = rt->info[rix].lpAckDuration;
   3873 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3874 			dur += dur;             /* additional SIFS+ACK */
   3875 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3876 			/*
   3877 			 * Include the size of next fragment so NAV is
   3878 			 * updated properly.  The last fragment uses only
   3879 			 * the ACK duration
   3880 			 */
   3881 			dur += ath_hal_computetxtime(ah, rt,
   3882 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
   3883 			        hdrlen) -
   3884 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
   3885 			    rix, shortPreamble);
   3886 		}
   3887 		if (isfrag) {
   3888 			/*
   3889 			 * Force hardware to use computed duration for next
   3890 			 * fragment by disabling multi-rate retry which updates
   3891 			 * duration based on the multi-rate duration table.
   3892 			 */
   3893 			try0 = ATH_TXMAXTRY;
   3894 		}
   3895 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3896 	}
   3897 
   3898 	/*
   3899 	 * Calculate RTS/CTS rate and duration if needed.
   3900 	 */
   3901 	ctsduration = 0;
   3902 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3903 		/*
   3904 		 * CTS transmit rate is derived from the transmit rate
   3905 		 * by looking in the h/w rate table.  We must also factor
   3906 		 * in whether or not a short preamble is to be used.
   3907 		 */
   3908 		/* NB: cix is set above where RTS/CTS is enabled */
   3909 		KASSERT(cix != 0xff, ("cix not setup"));
   3910 		ctsrate = rt->info[cix].rateCode;
   3911 		/*
   3912 		 * Compute the transmit duration based on the frame
   3913 		 * size and the size of an ACK frame.  We call into the
   3914 		 * HAL to do the computation since it depends on the
   3915 		 * characteristics of the actual PHY being used.
   3916 		 *
   3917 		 * NB: CTS is assumed the same size as an ACK so we can
   3918 		 *     use the precalculated ACK durations.
   3919 		 */
   3920 		if (shortPreamble) {
   3921 			ctsrate |= rt->info[cix].shortPreamble;
   3922 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3923 				ctsduration += rt->info[cix].spAckDuration;
   3924 			ctsduration += ath_hal_computetxtime(ah,
   3925 				rt, pktlen, rix, AH_TRUE);
   3926 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3927 				ctsduration += rt->info[rix].spAckDuration;
   3928 		} else {
   3929 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3930 				ctsduration += rt->info[cix].lpAckDuration;
   3931 			ctsduration += ath_hal_computetxtime(ah,
   3932 				rt, pktlen, rix, AH_FALSE);
   3933 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3934 				ctsduration += rt->info[rix].lpAckDuration;
   3935 		}
   3936 		/*
   3937 		 * Must disable multi-rate retry when using RTS/CTS.
   3938 		 */
   3939 		ismrr = 0;
   3940 		try0 = ATH_TXMGTTRY;		/* XXX */
   3941 	} else
   3942 		ctsrate = 0;
   3943 
   3944 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3945 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3946 			sc->sc_hwmap[txrate].ieeerate, -1);
   3947 #if NBPFILTER > 0
   3948 	if (ic->ic_rawbpf)
   3949 		bpf_mtap(ic->ic_rawbpf, m0);
   3950 	if (sc->sc_drvbpf) {
   3951 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3952 
   3953 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3954 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3955 		if (iswep)
   3956 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3957 		if (isfrag)
   3958 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3959 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3960 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3961 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3962 
   3963 		bpf_mtap2(sc->sc_drvbpf,
   3964 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3965 	}
   3966 #endif
   3967 
   3968 	/*
   3969 	 * Determine if a tx interrupt should be generated for
   3970 	 * this descriptor.  We take a tx interrupt to reap
   3971 	 * descriptors when the h/w hits an EOL condition or
   3972 	 * when the descriptor is specifically marked to generate
   3973 	 * an interrupt.  We periodically mark descriptors in this
   3974 	 * way to insure timely replenishing of the supply needed
   3975 	 * for sending frames.  Defering interrupts reduces system
   3976 	 * load and potentially allows more concurrent work to be
   3977 	 * done but if done to aggressively can cause senders to
   3978 	 * backup.
   3979 	 *
   3980 	 * NB: use >= to deal with sc_txintrperiod changing
   3981 	 *     dynamically through sysctl.
   3982 	 */
   3983 	if (flags & HAL_TXDESC_INTREQ) {
   3984 		txq->axq_intrcnt = 0;
   3985 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3986 		flags |= HAL_TXDESC_INTREQ;
   3987 		txq->axq_intrcnt = 0;
   3988 	}
   3989 
   3990 	/*
   3991 	 * Formulate first tx descriptor with tx controls.
   3992 	 */
   3993 	/* XXX check return value? */
   3994 	ath_hal_setuptxdesc(ah, ds
   3995 		, pktlen		/* packet length */
   3996 		, hdrlen		/* header length */
   3997 		, atype			/* Atheros packet type */
   3998 		, ni->ni_txpower	/* txpower */
   3999 		, txrate, try0		/* series 0 rate/tries */
   4000 		, keyix			/* key cache index */
   4001 		, sc->sc_txantenna	/* antenna mode */
   4002 		, flags			/* flags */
   4003 		, ctsrate		/* rts/cts rate */
   4004 		, ctsduration		/* rts/cts duration */
   4005 	);
   4006 	bf->bf_flags = flags;
   4007 	/*
   4008 	 * Setup the multi-rate retry state only when we're
   4009 	 * going to use it.  This assumes ath_hal_setuptxdesc
   4010 	 * initializes the descriptors (so we don't have to)
   4011 	 * when the hardware supports multi-rate retry and
   4012 	 * we don't use it.
   4013 	 */
   4014 	if (ismrr)
   4015 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   4016 
   4017 	/*
   4018 	 * Fillin the remainder of the descriptor info.
   4019 	 */
   4020 	ds0 = ds;
   4021 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   4022 		ds->ds_data = bf->bf_segs[i].ds_addr;
   4023 		if (i == bf->bf_nseg - 1)
   4024 			ds->ds_link = 0;
   4025 		else
   4026 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   4027 		ath_hal_filltxdesc(ah, ds
   4028 			, bf->bf_segs[i].ds_len	/* segment length */
   4029 			, i == 0		/* first segment */
   4030 			, i == bf->bf_nseg - 1	/* last segment */
   4031 			, ds0			/* first descriptor */
   4032 		);
   4033 
   4034 		/* NB: The desc swap function becomes void,
   4035 		 * if descriptor swapping is not enabled
   4036 		 */
   4037 		ath_desc_swap(ds);
   4038 
   4039 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4040 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   4041 			__func__, i, ds->ds_link, ds->ds_data,
   4042 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   4043 	}
   4044 	/*
   4045 	 * Insert the frame on the outbound list and
   4046 	 * pass it on to the hardware.
   4047 	 */
   4048 	ATH_TXQ_LOCK(txq);
   4049 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   4050 	if (txq->axq_link == NULL) {
   4051 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   4052 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4053 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   4054 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   4055 		    txq->axq_depth);
   4056 	} else {
   4057 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   4058 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4059 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   4060 		    __func__, txq->axq_qnum, txq->axq_link,
   4061 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   4062 	}
   4063 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   4064 	/*
   4065 	 * The CAB queue is started from the SWBA handler since
   4066 	 * frames only go out on DTIM and to avoid possible races.
   4067 	 */
   4068 	if (txq != sc->sc_cabq)
   4069 		ath_hal_txstart(ah, txq->axq_qnum);
   4070 	ATH_TXQ_UNLOCK(txq);
   4071 
   4072 	return 0;
   4073 }
   4074 
   4075 /*
   4076  * Process completed xmit descriptors from the specified queue.
   4077  */
   4078 static int
   4079 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4080 {
   4081 	struct ath_hal *ah = sc->sc_ah;
   4082 	struct ieee80211com *ic = &sc->sc_ic;
   4083 	struct ath_buf *bf;
   4084 	struct ath_desc *ds, *ds0;
   4085 	struct ieee80211_node *ni;
   4086 	struct ath_node *an;
   4087 	int sr, lr, pri, nacked;
   4088 	HAL_STATUS status;
   4089 
   4090 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4091 		__func__, txq->axq_qnum,
   4092 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4093 		txq->axq_link);
   4094 	nacked = 0;
   4095 	for (;;) {
   4096 		ATH_TXQ_LOCK(txq);
   4097 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4098 		bf = STAILQ_FIRST(&txq->axq_q);
   4099 		if (bf == NULL) {
   4100 			txq->axq_link = NULL;
   4101 			ATH_TXQ_UNLOCK(txq);
   4102 			break;
   4103 		}
   4104 		ds0 = &bf->bf_desc[0];
   4105 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4106 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
   4107 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4108 			ath_printtxbuf(bf, status == HAL_OK);
   4109 		if (status == HAL_EINPROGRESS) {
   4110 			ATH_TXQ_UNLOCK(txq);
   4111 			break;
   4112 		}
   4113 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4114 		ATH_TXQ_UNLOCK(txq);
   4115 
   4116 		ni = bf->bf_node;
   4117 		if (ni != NULL) {
   4118 			an = ATH_NODE(ni);
   4119 			if (ds->ds_txstat.ts_status == 0) {
   4120 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4121 				sc->sc_stats.ast_ant_tx[txant]++;
   4122 				sc->sc_ant_tx[txant]++;
   4123 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4124 					sc->sc_stats.ast_tx_altrate++;
   4125 				sc->sc_stats.ast_tx_rssi =
   4126 					ds->ds_txstat.ts_rssi;
   4127 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4128 					ds->ds_txstat.ts_rssi);
   4129 				pri = M_WME_GETAC(bf->bf_m);
   4130 				if (pri >= WME_AC_VO)
   4131 					ic->ic_wme.wme_hipri_traffic++;
   4132 				ni->ni_inact = ni->ni_inact_reload;
   4133 			} else {
   4134 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4135 					sc->sc_stats.ast_tx_xretries++;
   4136 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4137 					sc->sc_stats.ast_tx_fifoerr++;
   4138 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4139 					sc->sc_stats.ast_tx_filtered++;
   4140 			}
   4141 			sr = ds->ds_txstat.ts_shortretry;
   4142 			lr = ds->ds_txstat.ts_longretry;
   4143 			sc->sc_stats.ast_tx_shortretry += sr;
   4144 			sc->sc_stats.ast_tx_longretry += lr;
   4145 			/*
   4146 			 * Hand the descriptor to the rate control algorithm.
   4147 			 */
   4148 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4149 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4150 				/*
   4151 				 * If frame was ack'd update the last rx time
   4152 				 * used to workaround phantom bmiss interrupts.
   4153 				 */
   4154 				if (ds->ds_txstat.ts_status == 0)
   4155 					nacked++;
   4156 				ath_rate_tx_complete(sc, an, ds, ds0);
   4157 			}
   4158 			/*
   4159 			 * Reclaim reference to node.
   4160 			 *
   4161 			 * NB: the node may be reclaimed here if, for example
   4162 			 *     this is a DEAUTH message that was sent and the
   4163 			 *     node was timed out due to inactivity.
   4164 			 */
   4165 			ieee80211_free_node(ni);
   4166 		}
   4167 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4168 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4169 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4170 		m_freem(bf->bf_m);
   4171 		bf->bf_m = NULL;
   4172 		bf->bf_node = NULL;
   4173 
   4174 		ATH_TXBUF_LOCK(sc);
   4175 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4176 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4177 		ATH_TXBUF_UNLOCK(sc);
   4178 	}
   4179 	return nacked;
   4180 }
   4181 
   4182 static inline int
   4183 txqactive(struct ath_hal *ah, int qnum)
   4184 {
   4185 	u_int32_t txqs = 1<<qnum;
   4186 	ath_hal_gettxintrtxqs(ah, &txqs);
   4187 	return (txqs & (1<<qnum));
   4188 }
   4189 
   4190 /*
   4191  * Deferred processing of transmit interrupt; special-cased
   4192  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4193  */
   4194 static void
   4195 ath_tx_proc_q0(void *arg, int npending)
   4196 {
   4197 	struct ath_softc *sc = arg;
   4198 	struct ifnet *ifp = &sc->sc_if;
   4199 
   4200 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4201 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4202 	}
   4203 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4204 		ath_tx_processq(sc, sc->sc_cabq);
   4205 
   4206 	if (sc->sc_softled)
   4207 		ath_led_event(sc, ATH_LED_TX);
   4208 
   4209 	ath_start(ifp);
   4210 }
   4211 
   4212 /*
   4213  * Deferred processing of transmit interrupt; special-cased
   4214  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4215  */
   4216 static void
   4217 ath_tx_proc_q0123(void *arg, int npending)
   4218 {
   4219 	struct ath_softc *sc = arg;
   4220 	struct ifnet *ifp = &sc->sc_if;
   4221 	int nacked;
   4222 
   4223 	/*
   4224 	 * Process each active queue.
   4225 	 */
   4226 	nacked = 0;
   4227 	if (txqactive(sc->sc_ah, 0))
   4228 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4229 	if (txqactive(sc->sc_ah, 1))
   4230 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4231 	if (txqactive(sc->sc_ah, 2))
   4232 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4233 	if (txqactive(sc->sc_ah, 3))
   4234 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4235 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4236 		ath_tx_processq(sc, sc->sc_cabq);
   4237 	if (nacked) {
   4238 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4239 	}
   4240 
   4241 	if (sc->sc_softled)
   4242 		ath_led_event(sc, ATH_LED_TX);
   4243 
   4244 	ath_start(ifp);
   4245 }
   4246 
   4247 /*
   4248  * Deferred processing of transmit interrupt.
   4249  */
   4250 static void
   4251 ath_tx_proc(void *arg, int npending)
   4252 {
   4253 	struct ath_softc *sc = arg;
   4254 	struct ifnet *ifp = &sc->sc_if;
   4255 	int i, nacked;
   4256 
   4257 	/*
   4258 	 * Process each active queue.
   4259 	 */
   4260 	nacked = 0;
   4261 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4262 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4263 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4264 	if (nacked) {
   4265 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4266 	}
   4267 
   4268 	if (sc->sc_softled)
   4269 		ath_led_event(sc, ATH_LED_TX);
   4270 
   4271 	ath_start(ifp);
   4272 }
   4273 
   4274 static void
   4275 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4276 {
   4277 	struct ath_hal *ah = sc->sc_ah;
   4278 	struct ieee80211_node *ni;
   4279 	struct ath_buf *bf;
   4280 	struct ath_desc *ds;
   4281 
   4282 	/*
   4283 	 * NB: this assumes output has been stopped and
   4284 	 *     we do not need to block ath_tx_tasklet
   4285 	 */
   4286 	for (;;) {
   4287 		ATH_TXQ_LOCK(txq);
   4288 		bf = STAILQ_FIRST(&txq->axq_q);
   4289 		if (bf == NULL) {
   4290 			txq->axq_link = NULL;
   4291 			ATH_TXQ_UNLOCK(txq);
   4292 			break;
   4293 		}
   4294 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4295 		ATH_TXQ_UNLOCK(txq);
   4296 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4297 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4298 			ath_printtxbuf(bf,
   4299 				ath_hal_txprocdesc(ah, bf->bf_desc,
   4300 					&ds->ds_txstat) == HAL_OK);
   4301 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4302 		m_freem(bf->bf_m);
   4303 		bf->bf_m = NULL;
   4304 		ni = bf->bf_node;
   4305 		bf->bf_node = NULL;
   4306 		if (ni != NULL) {
   4307 			/*
   4308 			 * Reclaim node reference.
   4309 			 */
   4310 			ieee80211_free_node(ni);
   4311 		}
   4312 		ATH_TXBUF_LOCK(sc);
   4313 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4314 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4315 		ATH_TXBUF_UNLOCK(sc);
   4316 	}
   4317 }
   4318 
   4319 static void
   4320 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4321 {
   4322 	struct ath_hal *ah = sc->sc_ah;
   4323 
   4324 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4325 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4326 	    __func__, txq->axq_qnum,
   4327 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4328 	    txq->axq_link);
   4329 }
   4330 
   4331 /*
   4332  * Drain the transmit queues and reclaim resources.
   4333  */
   4334 static void
   4335 ath_draintxq(struct ath_softc *sc)
   4336 {
   4337 	struct ath_hal *ah = sc->sc_ah;
   4338 	int i;
   4339 
   4340 	/* XXX return value */
   4341 	if (device_is_active(sc->sc_dev)) {
   4342 		/* don't touch the hardware if marked invalid */
   4343 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4344 		DPRINTF(sc, ATH_DEBUG_RESET,
   4345 		    "%s: beacon queue %p\n", __func__,
   4346 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4347 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4348 			if (ATH_TXQ_SETUP(sc, i))
   4349 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4350 	}
   4351 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4352 		if (ATH_TXQ_SETUP(sc, i))
   4353 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4354 }
   4355 
   4356 /*
   4357  * Disable the receive h/w in preparation for a reset.
   4358  */
   4359 static void
   4360 ath_stoprecv(struct ath_softc *sc)
   4361 {
   4362 #define	PA2DESC(_sc, _pa) \
   4363 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4364 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4365 	struct ath_hal *ah = sc->sc_ah;
   4366 	u_int64_t tsf;
   4367 
   4368 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4369 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4370 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4371 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4372 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4373 		struct ath_buf *bf;
   4374 
   4375 		printf("%s: rx queue %p, link %p\n", __func__,
   4376 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4377 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4378 			struct ath_desc *ds = bf->bf_desc;
   4379 			tsf = ath_hal_gettsf64(sc->sc_ah);
   4380 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4381 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   4382 				&ds->ds_rxstat);
   4383 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4384 				ath_printrxbuf(bf, status == HAL_OK);
   4385 		}
   4386 	}
   4387 	sc->sc_rxlink = NULL;		/* just in case */
   4388 #undef PA2DESC
   4389 }
   4390 
   4391 /*
   4392  * Enable the receive h/w following a reset.
   4393  */
   4394 static int
   4395 ath_startrecv(struct ath_softc *sc)
   4396 {
   4397 	struct ath_hal *ah = sc->sc_ah;
   4398 	struct ath_buf *bf;
   4399 
   4400 	sc->sc_rxlink = NULL;
   4401 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4402 		int error = ath_rxbuf_init(sc, bf);
   4403 		if (error != 0) {
   4404 			DPRINTF(sc, ATH_DEBUG_RECV,
   4405 				"%s: ath_rxbuf_init failed %d\n",
   4406 				__func__, error);
   4407 			return error;
   4408 		}
   4409 	}
   4410 
   4411 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4412 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4413 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4414 	ath_mode_init(sc);		/* set filters, etc. */
   4415 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4416 	return 0;
   4417 }
   4418 
   4419 /*
   4420  * Update internal state after a channel change.
   4421  */
   4422 static void
   4423 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4424 {
   4425 	struct ieee80211com *ic = &sc->sc_ic;
   4426 	enum ieee80211_phymode mode;
   4427 	u_int16_t flags;
   4428 
   4429 	/*
   4430 	 * Change channels and update the h/w rate map
   4431 	 * if we're switching; e.g. 11a to 11b/g.
   4432 	 */
   4433 	mode = ieee80211_chan2mode(ic, chan);
   4434 	if (mode != sc->sc_curmode)
   4435 		ath_setcurmode(sc, mode);
   4436 	/*
   4437 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4438 	 * merged flags well so pick a unique mode for their use.
   4439 	 */
   4440 	if (IEEE80211_IS_CHAN_A(chan))
   4441 		flags = IEEE80211_CHAN_A;
   4442 	/* XXX 11g schizophrenia */
   4443 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4444 	    IEEE80211_IS_CHAN_PUREG(chan))
   4445 		flags = IEEE80211_CHAN_G;
   4446 	else
   4447 		flags = IEEE80211_CHAN_B;
   4448 	if (IEEE80211_IS_CHAN_T(chan))
   4449 		flags |= IEEE80211_CHAN_TURBO;
   4450 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4451 		htole16(chan->ic_freq);
   4452 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4453 		htole16(flags);
   4454 }
   4455 
   4456 #if 0
   4457 /*
   4458  * Poll for a channel clear indication; this is required
   4459  * for channels requiring DFS and not previously visited
   4460  * and/or with a recent radar detection.
   4461  */
   4462 static void
   4463 ath_dfswait(void *arg)
   4464 {
   4465 	struct ath_softc *sc = arg;
   4466 	struct ath_hal *ah = sc->sc_ah;
   4467 	HAL_CHANNEL hchan;
   4468 
   4469 	ath_hal_radar_wait(ah, &hchan);
   4470 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4471 		if_printf(&sc->sc_if,
   4472 		    "channel %u/0x%x/0x%x has interference\n",
   4473 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4474 		return;
   4475 	}
   4476 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4477 		/* XXX should not happen */
   4478 		return;
   4479 	}
   4480 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4481 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4482 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4483 		if_printf(&sc->sc_if,
   4484 		    "channel %u/0x%x/0x%x marked clear\n",
   4485 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4486 	} else
   4487 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4488 }
   4489 #endif
   4490 
   4491 /*
   4492  * Set/change channels.  If the channel is really being changed,
   4493  * it's done by reseting the chip.  To accomplish this we must
   4494  * first cleanup any pending DMA, then restart stuff after a la
   4495  * ath_init.
   4496  */
   4497 static int
   4498 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4499 {
   4500 	struct ath_hal *ah = sc->sc_ah;
   4501 	struct ieee80211com *ic = &sc->sc_ic;
   4502 	HAL_CHANNEL hchan;
   4503 
   4504 	/*
   4505 	 * Convert to a HAL channel description with
   4506 	 * the flags constrained to reflect the current
   4507 	 * operating mode.
   4508 	 */
   4509 	hchan.channel = chan->ic_freq;
   4510 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4511 
   4512 	DPRINTF(sc, ATH_DEBUG_RESET,
   4513 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4514 	    __func__,
   4515 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4516 		sc->sc_curchan.channelFlags),
   4517 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4518 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4519 	        hchan.channel, hchan.channelFlags);
   4520 	if (hchan.channel != sc->sc_curchan.channel ||
   4521 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4522 		HAL_STATUS status;
   4523 
   4524 		/*
   4525 		 * To switch channels clear any pending DMA operations;
   4526 		 * wait long enough for the RX fifo to drain, reset the
   4527 		 * hardware at the new frequency, and then re-enable
   4528 		 * the relevant bits of the h/w.
   4529 		 */
   4530 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4531 		ath_draintxq(sc);		/* clear pending tx frames */
   4532 		ath_stoprecv(sc);		/* turn off frame recv */
   4533 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4534 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4535 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4536 			    __func__, ieee80211_chan2ieee(ic, chan),
   4537 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4538 			return EIO;
   4539 		}
   4540 		sc->sc_curchan = hchan;
   4541 		ath_update_txpow(sc);		/* update tx power state */
   4542 		ath_restore_diversity(sc);
   4543 		sc->sc_calinterval = 1;
   4544 		sc->sc_caltries = 0;
   4545 
   4546 		/*
   4547 		 * Re-enable rx framework.
   4548 		 */
   4549 		if (ath_startrecv(sc) != 0) {
   4550 			if_printf(&sc->sc_if,
   4551 				"%s: unable to restart recv logic\n", __func__);
   4552 			return EIO;
   4553 		}
   4554 
   4555 		/*
   4556 		 * Change channels and update the h/w rate map
   4557 		 * if we're switching; e.g. 11a to 11b/g.
   4558 		 */
   4559 		ic->ic_ibss_chan = chan;
   4560 		ath_chan_change(sc, chan);
   4561 
   4562 #if 0
   4563 		/*
   4564 		 * Handle DFS required waiting period to determine
   4565 		 * if channel is clear of radar traffic.
   4566 		 */
   4567 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4568 #define	DFS_AND_NOT_CLEAR(_c) \
   4569 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4570 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4571 				if_printf(&sc->sc_if,
   4572 					"wait for DFS clear channel signal\n");
   4573 				/* XXX stop sndq */
   4574 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4575 				callout_reset(&sc->sc_dfs_ch,
   4576 					2 * hz, ath_dfswait, sc);
   4577 			} else
   4578 				callout_stop(&sc->sc_dfs_ch);
   4579 #undef DFS_NOT_CLEAR
   4580 		}
   4581 #endif
   4582 
   4583 		/*
   4584 		 * Re-enable interrupts.
   4585 		 */
   4586 		ath_hal_intrset(ah, sc->sc_imask);
   4587 	}
   4588 	return 0;
   4589 }
   4590 
   4591 static void
   4592 ath_next_scan(void *arg)
   4593 {
   4594 	struct ath_softc *sc = arg;
   4595 	struct ieee80211com *ic = &sc->sc_ic;
   4596 	int s;
   4597 
   4598 	/* don't call ath_start w/o network interrupts blocked */
   4599 	s = splnet();
   4600 
   4601 	if (ic->ic_state == IEEE80211_S_SCAN)
   4602 		ieee80211_next_scan(ic);
   4603 	splx(s);
   4604 }
   4605 
   4606 /*
   4607  * Periodically recalibrate the PHY to account
   4608  * for temperature/environment changes.
   4609  */
   4610 static void
   4611 ath_calibrate(void *arg)
   4612 {
   4613 	struct ath_softc *sc = arg;
   4614 	struct ath_hal *ah = sc->sc_ah;
   4615 	HAL_BOOL iqCalDone;
   4616 
   4617 	sc->sc_stats.ast_per_cal++;
   4618 
   4619 	ATH_LOCK(sc);
   4620 
   4621 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4622 		/*
   4623 		 * Rfgain is out of bounds, reset the chip
   4624 		 * to load new gain values.
   4625 		 */
   4626 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4627 			"%s: rfgain change\n", __func__);
   4628 		sc->sc_stats.ast_per_rfgain++;
   4629 		ath_reset(&sc->sc_if);
   4630 	}
   4631 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4632 		DPRINTF(sc, ATH_DEBUG_ANY,
   4633 			"%s: calibration of channel %u failed\n",
   4634 			__func__, sc->sc_curchan.channel);
   4635 		sc->sc_stats.ast_per_calfail++;
   4636 	}
   4637 	/*
   4638 	 * Calibrate noise floor data again in case of change.
   4639 	 */
   4640 	ath_hal_process_noisefloor(ah);
   4641 	/*
   4642 	 * Poll more frequently when the IQ calibration is in
   4643 	 * progress to speedup loading the final settings.
   4644 	 * We temper this aggressive polling with an exponential
   4645 	 * back off after 4 tries up to ath_calinterval.
   4646 	 */
   4647 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4648 		sc->sc_caltries = 0;
   4649 		sc->sc_calinterval = ath_calinterval;
   4650 	} else if (sc->sc_caltries > 4) {
   4651 		sc->sc_caltries = 0;
   4652 		sc->sc_calinterval <<= 1;
   4653 		if (sc->sc_calinterval > ath_calinterval)
   4654 			sc->sc_calinterval = ath_calinterval;
   4655 	}
   4656 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4657 		("bad calibration interval %u", sc->sc_calinterval));
   4658 
   4659 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4660 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4661 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4662 	sc->sc_caltries++;
   4663 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4664 		ath_calibrate, sc);
   4665 	ATH_UNLOCK(sc);
   4666 }
   4667 
   4668 static int
   4669 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4670 {
   4671 	struct ifnet *ifp = ic->ic_ifp;
   4672 	struct ath_softc *sc = ifp->if_softc;
   4673 	struct ath_hal *ah = sc->sc_ah;
   4674 	struct ieee80211_node *ni;
   4675 	int i, error;
   4676 	const u_int8_t *bssid;
   4677 	u_int32_t rfilt;
   4678 	static const HAL_LED_STATE leds[] = {
   4679 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4680 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4681 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4682 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4683 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4684 	};
   4685 
   4686 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4687 		ieee80211_state_name[ic->ic_state],
   4688 		ieee80211_state_name[nstate]);
   4689 
   4690 	callout_stop(&sc->sc_scan_ch);
   4691 	callout_stop(&sc->sc_cal_ch);
   4692 #if 0
   4693 	callout_stop(&sc->sc_dfs_ch);
   4694 #endif
   4695 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4696 
   4697 	if (nstate == IEEE80211_S_INIT) {
   4698 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4699 		/*
   4700 		 * NB: disable interrupts so we don't rx frames.
   4701 		 */
   4702 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4703 		/*
   4704 		 * Notify the rate control algorithm.
   4705 		 */
   4706 		ath_rate_newstate(sc, nstate);
   4707 		goto done;
   4708 	}
   4709 	ni = ic->ic_bss;
   4710 	error = ath_chan_set(sc, ic->ic_curchan);
   4711 	if (error != 0)
   4712 		goto bad;
   4713 	rfilt = ath_calcrxfilter(sc, nstate);
   4714 	if (nstate == IEEE80211_S_SCAN)
   4715 		bssid = ifp->if_broadcastaddr;
   4716 	else
   4717 		bssid = ni->ni_bssid;
   4718 	ath_hal_setrxfilter(ah, rfilt);
   4719 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4720 		 __func__, rfilt, ether_sprintf(bssid));
   4721 
   4722 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4723 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4724 	else
   4725 		ath_hal_setassocid(ah, bssid, 0);
   4726 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4727 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4728 			if (ath_hal_keyisvalid(ah, i))
   4729 				ath_hal_keysetmac(ah, i, bssid);
   4730 	}
   4731 
   4732 	/*
   4733 	 * Notify the rate control algorithm so rates
   4734 	 * are setup should ath_beacon_alloc be called.
   4735 	 */
   4736 	ath_rate_newstate(sc, nstate);
   4737 
   4738 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4739 		/* nothing to do */;
   4740 	} else if (nstate == IEEE80211_S_RUN) {
   4741 		DPRINTF(sc, ATH_DEBUG_STATE,
   4742 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4743 			"capinfo=0x%04x chan=%d\n"
   4744 			 , __func__
   4745 			 , ic->ic_flags
   4746 			 , ni->ni_intval
   4747 			 , ether_sprintf(ni->ni_bssid)
   4748 			 , ni->ni_capinfo
   4749 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4750 
   4751 		switch (ic->ic_opmode) {
   4752 		case IEEE80211_M_HOSTAP:
   4753 		case IEEE80211_M_IBSS:
   4754 			/*
   4755 			 * Allocate and setup the beacon frame.
   4756 			 *
   4757 			 * Stop any previous beacon DMA.  This may be
   4758 			 * necessary, for example, when an ibss merge
   4759 			 * causes reconfiguration; there will be a state
   4760 			 * transition from RUN->RUN that means we may
   4761 			 * be called with beacon transmission active.
   4762 			 */
   4763 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4764 			ath_beacon_free(sc);
   4765 			error = ath_beacon_alloc(sc, ni);
   4766 			if (error != 0)
   4767 				goto bad;
   4768 			/*
   4769 			 * If joining an adhoc network defer beacon timer
   4770 			 * configuration to the next beacon frame so we
   4771 			 * have a current TSF to use.  Otherwise we're
   4772 			 * starting an ibss/bss so there's no need to delay.
   4773 			 */
   4774 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4775 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4776 				sc->sc_syncbeacon = 1;
   4777 			else
   4778 				ath_beacon_config(sc);
   4779 			break;
   4780 		case IEEE80211_M_STA:
   4781 			/*
   4782 			 * Allocate a key cache slot to the station.
   4783 			 */
   4784 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4785 			    sc->sc_hasclrkey &&
   4786 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4787 				ath_setup_stationkey(ni);
   4788 			/*
   4789 			 * Defer beacon timer configuration to the next
   4790 			 * beacon frame so we have a current TSF to use
   4791 			 * (any TSF collected when scanning is likely old).
   4792 			 */
   4793 			sc->sc_syncbeacon = 1;
   4794 			break;
   4795 		default:
   4796 			break;
   4797 		}
   4798 		/*
   4799 		 * Let the hal process statistics collected during a
   4800 		 * scan so it can provide calibrated noise floor data.
   4801 		 */
   4802 		ath_hal_process_noisefloor(ah);
   4803 		/*
   4804 		 * Reset rssi stats; maybe not the best place...
   4805 		 */
   4806 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4807 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4808 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4809 	} else {
   4810 		ath_hal_intrset(ah,
   4811 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4812 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4813 	}
   4814 done:
   4815 	/*
   4816 	 * Invoke the parent method to complete the work.
   4817 	 */
   4818 	error = sc->sc_newstate(ic, nstate, arg);
   4819 	/*
   4820 	 * Finally, start any timers.
   4821 	 */
   4822 	if (nstate == IEEE80211_S_RUN) {
   4823 		/* start periodic recalibration timer */
   4824 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4825 			ath_calibrate, sc);
   4826 	} else if (nstate == IEEE80211_S_SCAN) {
   4827 		/* start ap/neighbor scan timer */
   4828 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4829 			ath_next_scan, sc);
   4830 	}
   4831 bad:
   4832 	return error;
   4833 }
   4834 
   4835 /*
   4836  * Allocate a key cache slot to the station so we can
   4837  * setup a mapping from key index to node. The key cache
   4838  * slot is needed for managing antenna state and for
   4839  * compression when stations do not use crypto.  We do
   4840  * it uniliaterally here; if crypto is employed this slot
   4841  * will be reassigned.
   4842  */
   4843 static void
   4844 ath_setup_stationkey(struct ieee80211_node *ni)
   4845 {
   4846 	struct ieee80211com *ic = ni->ni_ic;
   4847 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4848 	ieee80211_keyix keyix, rxkeyix;
   4849 
   4850 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4851 		/*
   4852 		 * Key cache is full; we'll fall back to doing
   4853 		 * the more expensive lookup in software.  Note
   4854 		 * this also means no h/w compression.
   4855 		 */
   4856 		/* XXX msg+statistic */
   4857 	} else {
   4858 		/* XXX locking? */
   4859 		ni->ni_ucastkey.wk_keyix = keyix;
   4860 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4861 		/* NB: this will create a pass-thru key entry */
   4862 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4863 	}
   4864 }
   4865 
   4866 /*
   4867  * Setup driver-specific state for a newly associated node.
   4868  * Note that we're called also on a re-associate, the isnew
   4869  * param tells us if this is the first time or not.
   4870  */
   4871 static void
   4872 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4873 {
   4874 	struct ieee80211com *ic = ni->ni_ic;
   4875 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4876 
   4877 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4878 	if (isnew &&
   4879 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4880 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4881 		    ("new assoc with a unicast key already setup (keyix %u)",
   4882 		    ni->ni_ucastkey.wk_keyix));
   4883 		ath_setup_stationkey(ni);
   4884 	}
   4885 }
   4886 
   4887 static int
   4888 ath_getchannels(struct ath_softc *sc, u_int cc,
   4889 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4890 {
   4891 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4892 	struct ieee80211com *ic = &sc->sc_ic;
   4893 	struct ifnet *ifp = &sc->sc_if;
   4894 	struct ath_hal *ah = sc->sc_ah;
   4895 	HAL_CHANNEL *chans;
   4896 	int i, ix, nchan;
   4897 
   4898 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4899 			M_TEMP, M_NOWAIT);
   4900 	if (chans == NULL) {
   4901 		if_printf(ifp, "unable to allocate channel table\n");
   4902 		return ENOMEM;
   4903 	}
   4904 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4905 	    NULL, 0, NULL,
   4906 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4907 		u_int32_t rd;
   4908 
   4909 		(void)ath_hal_getregdomain(ah, &rd);
   4910 		if_printf(ifp, "unable to collect channel list from hal; "
   4911 			"regdomain likely %u country code %u\n", rd, cc);
   4912 		free(chans, M_TEMP);
   4913 		return EINVAL;
   4914 	}
   4915 
   4916 	/*
   4917 	 * Convert HAL channels to ieee80211 ones and insert
   4918 	 * them in the table according to their channel number.
   4919 	 */
   4920 	for (i = 0; i < nchan; i++) {
   4921 		HAL_CHANNEL *c = &chans[i];
   4922 		u_int16_t flags;
   4923 
   4924 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4925 		if (ix > IEEE80211_CHAN_MAX) {
   4926 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4927 				ix, c->channel, c->channelFlags);
   4928 			continue;
   4929 		}
   4930 		if (ix < 0) {
   4931 			/* XXX can't handle stuff <2400 right now */
   4932 			if (bootverbose)
   4933 				if_printf(ifp, "hal channel %d (%u/%x) "
   4934 				    "cannot be handled; ignored\n",
   4935 				    ix, c->channel, c->channelFlags);
   4936 			continue;
   4937 		}
   4938 		/*
   4939 		 * Calculate net80211 flags; most are compatible
   4940 		 * but some need massaging.  Note the static turbo
   4941 		 * conversion can be removed once net80211 is updated
   4942 		 * to understand static vs. dynamic turbo.
   4943 		 */
   4944 		flags = c->channelFlags & COMPAT;
   4945 		if (c->channelFlags & CHANNEL_STURBO)
   4946 			flags |= IEEE80211_CHAN_TURBO;
   4947 		if (ic->ic_channels[ix].ic_freq == 0) {
   4948 			ic->ic_channels[ix].ic_freq = c->channel;
   4949 			ic->ic_channels[ix].ic_flags = flags;
   4950 		} else {
   4951 			/* channels overlap; e.g. 11g and 11b */
   4952 			ic->ic_channels[ix].ic_flags |= flags;
   4953 		}
   4954 	}
   4955 	free(chans, M_TEMP);
   4956 	return 0;
   4957 #undef COMPAT
   4958 }
   4959 
   4960 static void
   4961 ath_led_done(void *arg)
   4962 {
   4963 	struct ath_softc *sc = arg;
   4964 
   4965 	sc->sc_blinking = 0;
   4966 }
   4967 
   4968 /*
   4969  * Turn the LED off: flip the pin and then set a timer so no
   4970  * update will happen for the specified duration.
   4971  */
   4972 static void
   4973 ath_led_off(void *arg)
   4974 {
   4975 	struct ath_softc *sc = arg;
   4976 
   4977 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4978 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4979 }
   4980 
   4981 /*
   4982  * Blink the LED according to the specified on/off times.
   4983  */
   4984 static void
   4985 ath_led_blink(struct ath_softc *sc, int on, int off)
   4986 {
   4987 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4988 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4989 	sc->sc_blinking = 1;
   4990 	sc->sc_ledoff = off;
   4991 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4992 }
   4993 
   4994 static void
   4995 ath_led_event(struct ath_softc *sc, int event)
   4996 {
   4997 
   4998 	sc->sc_ledevent = ticks;	/* time of last event */
   4999 	if (sc->sc_blinking)		/* don't interrupt active blink */
   5000 		return;
   5001 	switch (event) {
   5002 	case ATH_LED_POLL:
   5003 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   5004 			sc->sc_hwmap[0].ledoff);
   5005 		break;
   5006 	case ATH_LED_TX:
   5007 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   5008 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   5009 		break;
   5010 	case ATH_LED_RX:
   5011 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   5012 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   5013 		break;
   5014 	}
   5015 }
   5016 
   5017 static void
   5018 ath_update_txpow(struct ath_softc *sc)
   5019 {
   5020 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   5021 	struct ieee80211com *ic = &sc->sc_ic;
   5022 	struct ath_hal *ah = sc->sc_ah;
   5023 	u_int32_t txpow;
   5024 
   5025 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   5026 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   5027 		/* read back in case value is clamped */
   5028 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   5029 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   5030 	}
   5031 	/*
   5032 	 * Fetch max tx power level for status requests.
   5033 	 */
   5034 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   5035 	ic->ic_bss->ni_txpower = txpow;
   5036 }
   5037 
   5038 static void
   5039 rate_setup(struct ath_softc *sc,
   5040 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   5041 {
   5042 	int i, maxrates;
   5043 
   5044 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   5045 		DPRINTF(sc, ATH_DEBUG_ANY,
   5046 			"%s: rate table too small (%u > %u)\n",
   5047 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   5048 		maxrates = IEEE80211_RATE_MAXSIZE;
   5049 	} else
   5050 		maxrates = rt->rateCount;
   5051 	for (i = 0; i < maxrates; i++)
   5052 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   5053 	rs->rs_nrates = maxrates;
   5054 }
   5055 
   5056 static int
   5057 ath_rate_setup(struct ath_softc *sc, u_int mode)
   5058 {
   5059 	struct ath_hal *ah = sc->sc_ah;
   5060 	struct ieee80211com *ic = &sc->sc_ic;
   5061 	const HAL_RATE_TABLE *rt;
   5062 
   5063 	switch (mode) {
   5064 	case IEEE80211_MODE_11A:
   5065 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   5066 		break;
   5067 	case IEEE80211_MODE_11B:
   5068 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   5069 		break;
   5070 	case IEEE80211_MODE_11G:
   5071 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   5072 		break;
   5073 	case IEEE80211_MODE_TURBO_A:
   5074 		/* XXX until static/dynamic turbo is fixed */
   5075 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5076 		break;
   5077 	case IEEE80211_MODE_TURBO_G:
   5078 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5079 		break;
   5080 	default:
   5081 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5082 			__func__, mode);
   5083 		return 0;
   5084 	}
   5085 	sc->sc_rates[mode] = rt;
   5086 	if (rt != NULL) {
   5087 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5088 		return 1;
   5089 	} else
   5090 		return 0;
   5091 }
   5092 
   5093 static void
   5094 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5095 {
   5096 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5097 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5098 	static const struct {
   5099 		u_int		rate;		/* tx/rx 802.11 rate */
   5100 		u_int16_t	timeOn;		/* LED on time (ms) */
   5101 		u_int16_t	timeOff;	/* LED off time (ms) */
   5102 	} blinkrates[] = {
   5103 		{ 108,  40,  10 },
   5104 		{  96,  44,  11 },
   5105 		{  72,  50,  13 },
   5106 		{  48,  57,  14 },
   5107 		{  36,  67,  16 },
   5108 		{  24,  80,  20 },
   5109 		{  22, 100,  25 },
   5110 		{  18, 133,  34 },
   5111 		{  12, 160,  40 },
   5112 		{  10, 200,  50 },
   5113 		{   6, 240,  58 },
   5114 		{   4, 267,  66 },
   5115 		{   2, 400, 100 },
   5116 		{   0, 500, 130 },
   5117 	};
   5118 	const HAL_RATE_TABLE *rt;
   5119 	int i, j;
   5120 
   5121 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5122 	rt = sc->sc_rates[mode];
   5123 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   5124 	for (i = 0; i < rt->rateCount; i++)
   5125 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5126 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5127 	for (i = 0; i < 32; i++) {
   5128 		u_int8_t ix = rt->rateCodeToIndex[i];
   5129 		if (ix == 0xff) {
   5130 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5131 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5132 			continue;
   5133 		}
   5134 		sc->sc_hwmap[i].ieeerate =
   5135 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5136 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5137 		if (rt->info[ix].shortPreamble ||
   5138 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5139 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5140 		/* NB: receive frames include FCS */
   5141 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5142 			IEEE80211_RADIOTAP_F_FCS;
   5143 		/* setup blink rate table to avoid per-packet lookup */
   5144 		for (j = 0; j < N(blinkrates)-1; j++)
   5145 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5146 				break;
   5147 		/* NB: this uses the last entry if the rate isn't found */
   5148 		/* XXX beware of overlow */
   5149 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5150 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5151 	}
   5152 	sc->sc_currates = rt;
   5153 	sc->sc_curmode = mode;
   5154 	/*
   5155 	 * All protection frames are transmited at 2Mb/s for
   5156 	 * 11g, otherwise at 1Mb/s.
   5157 	 */
   5158 	if (mode == IEEE80211_MODE_11G)
   5159 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5160 	else
   5161 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5162 	/* rate index used to send management frames */
   5163 	sc->sc_minrateix = 0;
   5164 	/*
   5165 	 * Setup multicast rate state.
   5166 	 */
   5167 	/* XXX layering violation */
   5168 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5169 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5170 	/* NB: caller is responsible for reseting rate control state */
   5171 #undef N
   5172 }
   5173 
   5174 #ifdef AR_DEBUG
   5175 static void
   5176 ath_printrxbuf(struct ath_buf *bf, int done)
   5177 {
   5178 	struct ath_desc *ds;
   5179 	int i;
   5180 
   5181 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5182 		printf("R%d (%p %" PRIx64
   5183 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
   5184 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5185 		    ds->ds_link, ds->ds_data,
   5186 		    ds->ds_ctl0, ds->ds_ctl1,
   5187 		    ds->ds_hw[0], ds->ds_hw[1],
   5188 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
   5189 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5190 	}
   5191 }
   5192 
   5193 static void
   5194 ath_printtxbuf(struct ath_buf *bf, int done)
   5195 {
   5196 	struct ath_desc *ds;
   5197 	int i;
   5198 
   5199 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5200 		printf("T%d (%p %" PRIx64
   5201 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5202 		    i, ds,
   5203 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5204 		    ds->ds_link, ds->ds_data,
   5205 		    ds->ds_ctl0, ds->ds_ctl1,
   5206 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5207 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5208 	}
   5209 }
   5210 #endif	/* AR_DEBUG */
   5211 
   5212 static void
   5213 ath_watchdog(struct ifnet *ifp)
   5214 {
   5215 	struct ath_softc *sc = ifp->if_softc;
   5216 	struct ieee80211com *ic = &sc->sc_ic;
   5217 	struct ath_txq *axq;
   5218 	int i;
   5219 
   5220 	ifp->if_timer = 0;
   5221 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   5222 	    !device_is_active(sc->sc_dev))
   5223 		return;
   5224 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5225 		if (!ATH_TXQ_SETUP(sc, i))
   5226 			continue;
   5227 		axq = &sc->sc_txq[i];
   5228 		ATH_TXQ_LOCK(axq);
   5229 		if (axq->axq_timer == 0)
   5230 			;
   5231 		else if (--axq->axq_timer == 0) {
   5232 			ATH_TXQ_UNLOCK(axq);
   5233 			if_printf(ifp, "device timeout (txq %d, "
   5234 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
   5235 			if (sc->sc_txintrperiod > 1)
   5236 				sc->sc_txintrperiod--;
   5237 			ath_reset(ifp);
   5238 			ifp->if_oerrors++;
   5239 			sc->sc_stats.ast_watchdog++;
   5240 			break;
   5241 		} else
   5242 			ifp->if_timer = 1;
   5243 		ATH_TXQ_UNLOCK(axq);
   5244 	}
   5245 	ieee80211_watchdog(ic);
   5246 }
   5247 
   5248 /*
   5249  * Diagnostic interface to the HAL.  This is used by various
   5250  * tools to do things like retrieve register contents for
   5251  * debugging.  The mechanism is intentionally opaque so that
   5252  * it can change frequently w/o concern for compatiblity.
   5253  */
   5254 static int
   5255 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5256 {
   5257 	struct ath_hal *ah = sc->sc_ah;
   5258 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5259 	void *indata = NULL;
   5260 	void *outdata = NULL;
   5261 	u_int32_t insize = ad->ad_in_size;
   5262 	u_int32_t outsize = ad->ad_out_size;
   5263 	int error = 0;
   5264 
   5265 	if (ad->ad_id & ATH_DIAG_IN) {
   5266 		/*
   5267 		 * Copy in data.
   5268 		 */
   5269 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5270 		if (indata == NULL) {
   5271 			error = ENOMEM;
   5272 			goto bad;
   5273 		}
   5274 		error = copyin(ad->ad_in_data, indata, insize);
   5275 		if (error)
   5276 			goto bad;
   5277 	}
   5278 	if (ad->ad_id & ATH_DIAG_DYN) {
   5279 		/*
   5280 		 * Allocate a buffer for the results (otherwise the HAL
   5281 		 * returns a pointer to a buffer where we can read the
   5282 		 * results).  Note that we depend on the HAL leaving this
   5283 		 * pointer for us to use below in reclaiming the buffer;
   5284 		 * may want to be more defensive.
   5285 		 */
   5286 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5287 		if (outdata == NULL) {
   5288 			error = ENOMEM;
   5289 			goto bad;
   5290 		}
   5291 	}
   5292 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5293 		if (outsize < ad->ad_out_size)
   5294 			ad->ad_out_size = outsize;
   5295 		if (outdata != NULL)
   5296 			error = copyout(outdata, ad->ad_out_data,
   5297 					ad->ad_out_size);
   5298 	} else {
   5299 		error = EINVAL;
   5300 	}
   5301 bad:
   5302 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5303 		free(indata, M_TEMP);
   5304 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5305 		free(outdata, M_TEMP);
   5306 	return error;
   5307 }
   5308 
   5309 static int
   5310 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5311 {
   5312 #define	IS_RUNNING(ifp) \
   5313 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5314 	struct ath_softc *sc = ifp->if_softc;
   5315 	struct ieee80211com *ic = &sc->sc_ic;
   5316 	struct ifreq *ifr = (struct ifreq *)data;
   5317 	int error = 0;
   5318 
   5319 	ATH_LOCK(sc);
   5320 	switch (cmd) {
   5321 	case SIOCSIFFLAGS:
   5322 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5323 			break;
   5324 		if (IS_RUNNING(ifp)) {
   5325 			/*
   5326 			 * To avoid rescanning another access point,
   5327 			 * do not call ath_init() here.  Instead,
   5328 			 * only reflect promisc mode settings.
   5329 			 */
   5330 			ath_mode_init(sc);
   5331 		} else if (ifp->if_flags & IFF_UP) {
   5332 			/*
   5333 			 * Beware of being called during attach/detach
   5334 			 * to reset promiscuous mode.  In that case we
   5335 			 * will still be marked UP but not RUNNING.
   5336 			 * However trying to re-init the interface
   5337 			 * is the wrong thing to do as we've already
   5338 			 * torn down much of our state.  There's
   5339 			 * probably a better way to deal with this.
   5340 			 */
   5341 			error = ath_init(sc);
   5342 		} else if (device_is_active(sc->sc_dev))
   5343 			ath_stop_locked(ifp, 1);
   5344 		break;
   5345 	case SIOCADDMULTI:
   5346 	case SIOCDELMULTI:
   5347 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5348 			if (ifp->if_flags & IFF_RUNNING)
   5349 				ath_mode_init(sc);
   5350 			error = 0;
   5351 		}
   5352 		break;
   5353 	case SIOCGATHSTATS:
   5354 		/* NB: embed these numbers to get a consistent view */
   5355 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5356 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5357 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5358 		ATH_UNLOCK(sc);
   5359 		/*
   5360 		 * NB: Drop the softc lock in case of a page fault;
   5361 		 * we'll accept any potential inconsisentcy in the
   5362 		 * statistics.  The alternative is to copy the data
   5363 		 * to a local structure.
   5364 		 */
   5365 		return copyout(&sc->sc_stats,
   5366 				ifr->ifr_data, sizeof (sc->sc_stats));
   5367 	case SIOCGATHDIAG:
   5368 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5369 		break;
   5370 	default:
   5371 		error = ieee80211_ioctl(ic, cmd, data);
   5372 		if (error != ENETRESET)
   5373 			;
   5374 		else if (IS_RUNNING(ifp) &&
   5375 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5376 			error = ath_init(sc);
   5377 		else
   5378 			error = 0;
   5379 		break;
   5380 	}
   5381 	ATH_UNLOCK(sc);
   5382 	return error;
   5383 #undef IS_RUNNING
   5384 }
   5385 
   5386 #if NBPFILTER > 0
   5387 static void
   5388 ath_bpfattach(struct ath_softc *sc)
   5389 {
   5390 	struct ifnet *ifp = &sc->sc_if;
   5391 
   5392 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5393 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5394 		&sc->sc_drvbpf);
   5395 	/*
   5396 	 * Initialize constant fields.
   5397 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5398 	 *     headers are properly aligned; this is a kludge to keep
   5399 	 *     certain applications happy.
   5400 	 *
   5401 	 * NB: the channel is setup each time we transition to the
   5402 	 *     RUN state to avoid filling it in for each frame.
   5403 	 */
   5404 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5405 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5406 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5407 
   5408 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5409 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5410 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5411 }
   5412 #endif
   5413 
   5414 /*
   5415  * Announce various information on device/driver attach.
   5416  */
   5417 static void
   5418 ath_announce(struct ath_softc *sc)
   5419 {
   5420 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5421 	struct ifnet *ifp = &sc->sc_if;
   5422 	struct ath_hal *ah = sc->sc_ah;
   5423 	u_int modes, cc;
   5424 
   5425 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5426 		ah->ah_macVersion, ah->ah_macRev,
   5427 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5428 	/*
   5429 	 * Print radio revision(s).  We check the wireless modes
   5430 	 * to avoid falsely printing revs for inoperable parts.
   5431 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5432 	 */
   5433 	ath_hal_getcountrycode(ah, &cc);
   5434 	modes = ath_hal_getwirelessmodes(ah, cc);
   5435 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5436 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5437 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5438 				ah->ah_analog5GhzRev >> 4,
   5439 				ah->ah_analog5GhzRev & 0xf,
   5440 				ah->ah_analog2GhzRev >> 4,
   5441 				ah->ah_analog2GhzRev & 0xf);
   5442 		else
   5443 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5444 				ah->ah_analog5GhzRev & 0xf);
   5445 	} else
   5446 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5447 			ah->ah_analog5GhzRev & 0xf);
   5448 	printf("\n");
   5449 	if (bootverbose) {
   5450 		int i;
   5451 		for (i = 0; i <= WME_AC_VO; i++) {
   5452 			struct ath_txq *txq = sc->sc_ac2q[i];
   5453 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5454 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5455 		}
   5456 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5457 			sc->sc_cabq->axq_qnum);
   5458 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5459 	}
   5460 	if (ath_rxbuf != ATH_RXBUF)
   5461 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5462 	if (ath_txbuf != ATH_TXBUF)
   5463 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5464 #undef HAL_MODE_DUALBAND
   5465 }
   5466