ath.c revision 1.104 1 /* $NetBSD: ath.c,v 1.104 2008/12/11 05:45:29 alc Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.104 2008/12/11 05:45:29 alc Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/errno.h>
71 #include <sys/callout.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/if_ether.h>
81 #include <net/if_llc.h>
82
83 #include <net80211/ieee80211_netbsd.h>
84 #include <net80211/ieee80211_var.h>
85
86 #if NBPFILTER > 0
87 #include <net/bpf.h>
88 #endif
89
90 #ifdef INET
91 #include <netinet/in.h>
92 #endif
93
94 #include <sys/device.h>
95 #include <dev/ic/ath_netbsd.h>
96
97 #define AR_DEBUG
98 #include <dev/ic/athvar.h>
99 #include "ah_desc.h"
100 #include "ah_devid.h" /* XXX for softled */
101 #include "opt_ah.h"
102
103 #ifdef ATH_TX99_DIAG
104 #include <dev/ath/ath_tx99/ath_tx99.h>
105 #endif
106
107 /* unaligned little endian access */
108 #define LE_READ_2(p) \
109 ((u_int16_t) \
110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
111 #define LE_READ_4(p) \
112 ((u_int32_t) \
113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
114 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
115
116 enum {
117 ATH_LED_TX,
118 ATH_LED_RX,
119 ATH_LED_POLL,
120 };
121
122 #ifdef AH_NEED_DESC_SWAP
123 #define HTOAH32(x) htole32(x)
124 #else
125 #define HTOAH32(x) (x)
126 #endif
127
128 static int ath_ifinit(struct ifnet *);
129 static int ath_init(struct ath_softc *);
130 static void ath_stop_locked(struct ifnet *, int);
131 static void ath_stop(struct ifnet *, int);
132 static void ath_start(struct ifnet *);
133 static int ath_media_change(struct ifnet *);
134 static void ath_watchdog(struct ifnet *);
135 static int ath_ioctl(struct ifnet *, u_long, void *);
136 static void ath_fatal_proc(void *, int);
137 static void ath_rxorn_proc(void *, int);
138 static void ath_bmiss_proc(void *, int);
139 static void ath_radar_proc(void *, int);
140 static int ath_key_alloc(struct ieee80211com *,
141 const struct ieee80211_key *,
142 ieee80211_keyix *, ieee80211_keyix *);
143 static int ath_key_delete(struct ieee80211com *,
144 const struct ieee80211_key *);
145 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
146 const u_int8_t mac[IEEE80211_ADDR_LEN]);
147 static void ath_key_update_begin(struct ieee80211com *);
148 static void ath_key_update_end(struct ieee80211com *);
149 static void ath_mode_init(struct ath_softc *);
150 static void ath_setslottime(struct ath_softc *);
151 static void ath_updateslot(struct ifnet *);
152 static int ath_beaconq_setup(struct ath_hal *);
153 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
154 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
155 static void ath_beacon_proc(void *, int);
156 static void ath_bstuck_proc(void *, int);
157 static void ath_beacon_free(struct ath_softc *);
158 static void ath_beacon_config(struct ath_softc *);
159 static void ath_descdma_cleanup(struct ath_softc *sc,
160 struct ath_descdma *, ath_bufhead *);
161 static int ath_desc_alloc(struct ath_softc *);
162 static void ath_desc_free(struct ath_softc *);
163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
164 static void ath_node_free(struct ieee80211_node *);
165 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
166 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
167 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
168 struct ieee80211_node *ni,
169 int subtype, int rssi, u_int32_t rstamp);
170 static void ath_setdefantenna(struct ath_softc *, u_int);
171 static void ath_rx_proc(void *, int);
172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
173 static int ath_tx_setup(struct ath_softc *, int, int);
174 static int ath_wme_update(struct ieee80211com *);
175 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
176 static void ath_tx_cleanup(struct ath_softc *);
177 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
178 struct ath_buf *, struct mbuf *);
179 static void ath_tx_proc_q0(void *, int);
180 static void ath_tx_proc_q0123(void *, int);
181 static void ath_tx_proc(void *, int);
182 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
183 static void ath_draintxq(struct ath_softc *);
184 static void ath_stoprecv(struct ath_softc *);
185 static int ath_startrecv(struct ath_softc *);
186 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
187 static void ath_next_scan(void *);
188 static void ath_calibrate(void *);
189 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
190 static void ath_setup_stationkey(struct ieee80211_node *);
191 static void ath_newassoc(struct ieee80211_node *, int);
192 static int ath_getchannels(struct ath_softc *, u_int cc,
193 HAL_BOOL outdoor, HAL_BOOL xchanmode);
194 static void ath_led_event(struct ath_softc *, int);
195 static void ath_update_txpow(struct ath_softc *);
196 static void ath_freetx(struct mbuf *);
197 static void ath_restore_diversity(struct ath_softc *);
198
199 static int ath_rate_setup(struct ath_softc *, u_int mode);
200 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201
202 #if NBPFILTER > 0
203 static void ath_bpfattach(struct ath_softc *);
204 #endif
205 static void ath_announce(struct ath_softc *);
206
207 int ath_dwelltime = 200; /* 5 channels/second */
208 int ath_calinterval = 30; /* calibrate every 30 secs */
209 int ath_outdoor = AH_TRUE; /* outdoor operation */
210 int ath_xchanmode = AH_TRUE; /* enable extended channels */
211 int ath_countrycode = CTRY_DEFAULT; /* country code */
212 int ath_regdomain = 0; /* regulatory domain */
213 int ath_debug = 0;
214 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
215 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
216
217 #ifdef AR_DEBUG
218 enum {
219 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
220 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
221 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
222 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
223 ATH_DEBUG_RATE = 0x00000010, /* rate control */
224 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
225 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
226 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
227 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
228 ATH_DEBUG_INTR = 0x00001000, /* ISR */
229 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
230 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
231 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
232 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
233 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
234 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
235 ATH_DEBUG_NODE = 0x00080000, /* node management */
236 ATH_DEBUG_LED = 0x00100000, /* led management */
237 ATH_DEBUG_FF = 0x00200000, /* fast frames */
238 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
239 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
240 ATH_DEBUG_ANY = 0xffffffff
241 };
242 #define IFF_DUMPPKTS(sc, m) \
243 ((sc->sc_debug & (m)) || \
244 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define DPRINTF(sc, m, fmt, ...) do { \
246 if (sc->sc_debug & (m)) \
247 printf(fmt, __VA_ARGS__); \
248 } while (0)
249 #define KEYPRINTF(sc, ix, hk, mac) do { \
250 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
251 ath_keyprint(__func__, ix, hk, mac); \
252 } while (0)
253 static void ath_printrxbuf(struct ath_buf *bf, int);
254 static void ath_printtxbuf(struct ath_buf *bf, int);
255 #else
256 #define IFF_DUMPPKTS(sc, m) \
257 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
258 #define DPRINTF(m, fmt, ...)
259 #define KEYPRINTF(sc, k, ix, mac)
260 #endif
261
262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
263
264 int
265 ath_attach(u_int16_t devid, struct ath_softc *sc)
266 {
267 struct ifnet *ifp = &sc->sc_if;
268 struct ieee80211com *ic = &sc->sc_ic;
269 struct ath_hal *ah = NULL;
270 HAL_STATUS status;
271 int error = 0, i;
272
273 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
274
275 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
276
277 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
278 if (ah == NULL) {
279 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
280 status);
281 error = ENXIO;
282 goto bad;
283 }
284 if (ah->ah_abi != HAL_ABI_VERSION) {
285 if_printf(ifp, "HAL ABI mismatch detected "
286 "(HAL:0x%x != driver:0x%x)\n",
287 ah->ah_abi, HAL_ABI_VERSION);
288 error = ENXIO;
289 goto bad;
290 }
291 sc->sc_ah = ah;
292
293 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
294 "pmf-powerdown", false))
295 goto bad;
296
297 /*
298 * Check if the MAC has multi-rate retry support.
299 * We do this by trying to setup a fake extended
300 * descriptor. MAC's that don't have support will
301 * return false w/o doing anything. MAC's that do
302 * support it will return true w/o doing anything.
303 */
304 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
305
306 /*
307 * Check if the device has hardware counters for PHY
308 * errors. If so we need to enable the MIB interrupt
309 * so we can act on stat triggers.
310 */
311 if (ath_hal_hwphycounters(ah))
312 sc->sc_needmib = 1;
313
314 /*
315 * Get the hardware key cache size.
316 */
317 sc->sc_keymax = ath_hal_keycachesize(ah);
318 if (sc->sc_keymax > ATH_KEYMAX) {
319 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
320 ATH_KEYMAX, sc->sc_keymax);
321 sc->sc_keymax = ATH_KEYMAX;
322 }
323 /*
324 * Reset the key cache since some parts do not
325 * reset the contents on initial power up.
326 */
327 for (i = 0; i < sc->sc_keymax; i++)
328 ath_hal_keyreset(ah, i);
329 /*
330 * Mark key cache slots associated with global keys
331 * as in use. If we knew TKIP was not to be used we
332 * could leave the +32, +64, and +32+64 slots free.
333 * XXX only for splitmic.
334 */
335 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
336 setbit(sc->sc_keymap, i);
337 setbit(sc->sc_keymap, i+32);
338 setbit(sc->sc_keymap, i+64);
339 setbit(sc->sc_keymap, i+32+64);
340 }
341
342 /*
343 * Collect the channel list using the default country
344 * code and including outdoor channels. The 802.11 layer
345 * is resposible for filtering this list based on settings
346 * like the phy mode.
347 */
348 error = ath_getchannels(sc, ath_countrycode,
349 ath_outdoor, ath_xchanmode);
350 if (error != 0)
351 goto bad;
352
353 /*
354 * Setup rate tables for all potential media types.
355 */
356 ath_rate_setup(sc, IEEE80211_MODE_11A);
357 ath_rate_setup(sc, IEEE80211_MODE_11B);
358 ath_rate_setup(sc, IEEE80211_MODE_11G);
359 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
360 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
361 /* NB: setup here so ath_rate_update is happy */
362 ath_setcurmode(sc, IEEE80211_MODE_11A);
363
364 /*
365 * Allocate tx+rx descriptors and populate the lists.
366 */
367 error = ath_desc_alloc(sc);
368 if (error != 0) {
369 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
370 goto bad;
371 }
372 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
373 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
374 #if 0
375 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
376 #endif
377
378 ATH_TXBUF_LOCK_INIT(sc);
379
380 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
381 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
382 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
383 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
384 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
385 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
386
387 /*
388 * Allocate hardware transmit queues: one queue for
389 * beacon frames and one data queue for each QoS
390 * priority. Note that the hal handles reseting
391 * these queues at the needed time.
392 *
393 * XXX PS-Poll
394 */
395 sc->sc_bhalq = ath_beaconq_setup(ah);
396 if (sc->sc_bhalq == (u_int) -1) {
397 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
398 error = EIO;
399 goto bad2;
400 }
401 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
402 if (sc->sc_cabq == NULL) {
403 if_printf(ifp, "unable to setup CAB xmit queue!\n");
404 error = EIO;
405 goto bad2;
406 }
407 /* NB: insure BK queue is the lowest priority h/w queue */
408 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
409 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
410 ieee80211_wme_acnames[WME_AC_BK]);
411 error = EIO;
412 goto bad2;
413 }
414 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
415 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
416 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
417 /*
418 * Not enough hardware tx queues to properly do WME;
419 * just punt and assign them all to the same h/w queue.
420 * We could do a better job of this if, for example,
421 * we allocate queues when we switch from station to
422 * AP mode.
423 */
424 if (sc->sc_ac2q[WME_AC_VI] != NULL)
425 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
426 if (sc->sc_ac2q[WME_AC_BE] != NULL)
427 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
428 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
429 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
430 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
431 }
432
433 /*
434 * Special case certain configurations. Note the
435 * CAB queue is handled by these specially so don't
436 * include them when checking the txq setup mask.
437 */
438 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
439 case 0x01:
440 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
441 break;
442 case 0x0f:
443 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
444 break;
445 default:
446 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
447 break;
448 }
449
450 /*
451 * Setup rate control. Some rate control modules
452 * call back to change the anntena state so expose
453 * the necessary entry points.
454 * XXX maybe belongs in struct ath_ratectrl?
455 */
456 sc->sc_setdefantenna = ath_setdefantenna;
457 sc->sc_rc = ath_rate_attach(sc);
458 if (sc->sc_rc == NULL) {
459 error = EIO;
460 goto bad2;
461 }
462
463 sc->sc_blinking = 0;
464 sc->sc_ledstate = 1;
465 sc->sc_ledon = 0; /* low true */
466 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
467 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
468 /*
469 * Auto-enable soft led processing for IBM cards and for
470 * 5211 minipci cards. Users can also manually enable/disable
471 * support with a sysctl.
472 */
473 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
474 if (sc->sc_softled) {
475 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
476 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
477 }
478
479 ifp->if_softc = sc;
480 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
481 ifp->if_start = ath_start;
482 ifp->if_stop = ath_stop;
483 ifp->if_watchdog = ath_watchdog;
484 ifp->if_ioctl = ath_ioctl;
485 ifp->if_init = ath_ifinit;
486 IFQ_SET_READY(&ifp->if_snd);
487
488 ic->ic_ifp = ifp;
489 ic->ic_reset = ath_reset;
490 ic->ic_newassoc = ath_newassoc;
491 ic->ic_updateslot = ath_updateslot;
492 ic->ic_wme.wme_update = ath_wme_update;
493 /* XXX not right but it's not used anywhere important */
494 ic->ic_phytype = IEEE80211_T_OFDM;
495 ic->ic_opmode = IEEE80211_M_STA;
496 ic->ic_caps =
497 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
498 | IEEE80211_C_HOSTAP /* hostap mode */
499 | IEEE80211_C_MONITOR /* monitor mode */
500 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
501 | IEEE80211_C_SHSLOT /* short slot time supported */
502 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
503 | IEEE80211_C_TXFRAG /* handle tx frags */
504 ;
505 /*
506 * Query the hal to figure out h/w crypto support.
507 */
508 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
509 ic->ic_caps |= IEEE80211_C_WEP;
510 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
511 ic->ic_caps |= IEEE80211_C_AES;
512 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
513 ic->ic_caps |= IEEE80211_C_AES_CCM;
514 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
515 ic->ic_caps |= IEEE80211_C_CKIP;
516 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
517 ic->ic_caps |= IEEE80211_C_TKIP;
518 #if 0
519 /*
520 * Check if h/w does the MIC and/or whether the
521 * separate key cache entries are required to
522 * handle both tx+rx MIC keys.
523 */
524 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) {
525 ic->ic_caps |= IEEE80211_C_TKIPMIC;
526 /*
527 * Check if h/w does MIC correctly when
528 * WMM is turned on.
529 */
530 if (ath_hal_wmetkipmic(ah))
531 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
532 }
533 #endif
534
535 /*
536 * If the h/w supports storing tx+rx MIC keys
537 * in one cache slot automatically enable use.
538 */
539 if (ath_hal_tkipsplit(ah) ||
540 !ath_hal_settkipsplit(ah, AH_FALSE))
541 sc->sc_splitmic = 1;
542 }
543 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
544 #if 0
545 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
546 #endif
547 /*
548 * TPC support can be done either with a global cap or
549 * per-packet support. The latter is not available on
550 * all parts. We're a bit pedantic here as all parts
551 * support a global cap.
552 */
553 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
554 ic->ic_caps |= IEEE80211_C_TXPMGT;
555
556 /*
557 * Mark WME capability only if we have sufficient
558 * hardware queues to do proper priority scheduling.
559 */
560 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
561 ic->ic_caps |= IEEE80211_C_WME;
562 /*
563 * Check for misc other capabilities.
564 */
565 if (ath_hal_hasbursting(ah))
566 ic->ic_caps |= IEEE80211_C_BURST;
567
568 /*
569 * Indicate we need the 802.11 header padded to a
570 * 32-bit boundary for 4-address and QoS frames.
571 */
572 ic->ic_flags |= IEEE80211_F_DATAPAD;
573
574 /*
575 * Query the hal about antenna support.
576 */
577 sc->sc_defant = ath_hal_getdefantenna(ah);
578
579 /*
580 * Not all chips have the VEOL support we want to
581 * use with IBSS beacons; check here for it.
582 */
583 sc->sc_hasveol = ath_hal_hasveol(ah);
584
585 /* get mac address from hardware */
586 ath_hal_getmac(ah, ic->ic_myaddr);
587
588 if_attach(ifp);
589 /* call MI attach routine. */
590 ieee80211_ifattach(ic);
591 /* override default methods */
592 ic->ic_node_alloc = ath_node_alloc;
593 sc->sc_node_free = ic->ic_node_free;
594 ic->ic_node_free = ath_node_free;
595 ic->ic_node_getrssi = ath_node_getrssi;
596 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
597 ic->ic_recv_mgmt = ath_recv_mgmt;
598 sc->sc_newstate = ic->ic_newstate;
599 ic->ic_newstate = ath_newstate;
600 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
601 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
602 ic->ic_crypto.cs_key_delete = ath_key_delete;
603 ic->ic_crypto.cs_key_set = ath_key_set;
604 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
605 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
606 /* complete initialization */
607 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
608
609 #if NBPFILTER > 0
610 ath_bpfattach(sc);
611 #endif
612
613 sc->sc_flags |= ATH_ATTACHED;
614
615 /*
616 * Setup dynamic sysctl's now that country code and
617 * regdomain are available from the hal.
618 */
619 ath_sysctlattach(sc);
620
621 ieee80211_announce(ic);
622 ath_announce(sc);
623 return 0;
624 bad2:
625 ath_tx_cleanup(sc);
626 ath_desc_free(sc);
627 bad:
628 if (ah)
629 ath_hal_detach(ah);
630 /* XXX don't get under the abstraction like this */
631 sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
632 return error;
633 }
634
635 int
636 ath_detach(struct ath_softc *sc)
637 {
638 struct ifnet *ifp = &sc->sc_if;
639 int s;
640
641 if ((sc->sc_flags & ATH_ATTACHED) == 0)
642 return (0);
643
644 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
645 __func__, ifp->if_flags);
646
647 s = splnet();
648 ath_stop(ifp, 1);
649 #if NBPFILTER > 0
650 bpfdetach(ifp);
651 #endif
652 /*
653 * NB: the order of these is important:
654 * o call the 802.11 layer before detaching the hal to
655 * insure callbacks into the driver to delete global
656 * key cache entries can be handled
657 * o reclaim the tx queue data structures after calling
658 * the 802.11 layer as we'll get called back to reclaim
659 * node state and potentially want to use them
660 * o to cleanup the tx queues the hal is called, so detach
661 * it last
662 * Other than that, it's straightforward...
663 */
664 ieee80211_ifdetach(&sc->sc_ic);
665 #ifdef ATH_TX99_DIAG
666 if (sc->sc_tx99 != NULL)
667 sc->sc_tx99->detach(sc->sc_tx99);
668 #endif
669 ath_rate_detach(sc->sc_rc);
670 ath_desc_free(sc);
671 ath_tx_cleanup(sc);
672 sysctl_teardown(&sc->sc_sysctllog);
673 ath_hal_detach(sc->sc_ah);
674 if_detach(ifp);
675 splx(s);
676
677 return 0;
678 }
679
680 void
681 ath_suspend(struct ath_softc *sc)
682 {
683 #if notyet
684 /*
685 * Set the chip in full sleep mode. Note that we are
686 * careful to do this only when bringing the interface
687 * completely to a stop. When the chip is in this state
688 * it must be carefully woken up or references to
689 * registers in the PCI clock domain may freeze the bus
690 * (and system). This varies by chip and is mostly an
691 * issue with newer parts that go to sleep more quickly.
692 */
693 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
694 #endif
695 }
696
697 bool
698 ath_resume(struct ath_softc *sc)
699 {
700 struct ath_hal *ah = sc->sc_ah;
701 struct ieee80211com *ic = &sc->sc_ic;
702 HAL_STATUS status;
703 int i;
704
705 #if notyet
706 ath_hal_setpower(ah, HAL_PM_AWAKE);
707 #else
708 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
709 #endif
710
711 /*
712 * Reset the key cache since some parts do not
713 * reset the contents on initial power up.
714 */
715 for (i = 0; i < sc->sc_keymax; i++)
716 ath_hal_keyreset(ah, i);
717
718 ath_hal_resettxqueue(ah, sc->sc_bhalq);
719 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
720 if (ATH_TXQ_SETUP(sc, i))
721 ath_hal_resettxqueue(ah, i);
722
723 if (sc->sc_softled) {
724 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
725 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
726 }
727 return true;
728 }
729
730 /*
731 * Interrupt handler. Most of the actual processing is deferred.
732 */
733 int
734 ath_intr(void *arg)
735 {
736 struct ath_softc *sc = arg;
737 struct ifnet *ifp = &sc->sc_if;
738 struct ath_hal *ah = sc->sc_ah;
739 HAL_INT status;
740
741 if (!device_is_active(sc->sc_dev)) {
742 /*
743 * The hardware is not ready/present, don't touch anything.
744 * Note this can happen early on if the IRQ is shared.
745 */
746 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
747 return 0;
748 }
749
750 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
751 return 0;
752
753 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
754 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
755 __func__, ifp->if_flags);
756 ath_hal_getisr(ah, &status); /* clear ISR */
757 ath_hal_intrset(ah, 0); /* disable further intr's */
758 return 1; /* XXX */
759 }
760 /*
761 * Figure out the reason(s) for the interrupt. Note
762 * that the hal returns a pseudo-ISR that may include
763 * bits we haven't explicitly enabled so we mask the
764 * value to insure we only process bits we requested.
765 */
766 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
767 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
768 status &= sc->sc_imask; /* discard unasked for bits */
769 if (status & HAL_INT_FATAL) {
770 /*
771 * Fatal errors are unrecoverable. Typically
772 * these are caused by DMA errors. Unfortunately
773 * the exact reason is not (presently) returned
774 * by the hal.
775 */
776 sc->sc_stats.ast_hardware++;
777 ath_hal_intrset(ah, 0); /* disable intr's until reset */
778 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
779 } else if (status & HAL_INT_RXORN) {
780 sc->sc_stats.ast_rxorn++;
781 ath_hal_intrset(ah, 0); /* disable intr's until reset */
782 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
783 } else {
784 if (status & HAL_INT_SWBA) {
785 /*
786 * Software beacon alert--time to send a beacon.
787 * Handle beacon transmission directly; deferring
788 * this is too slow to meet timing constraints
789 * under load.
790 */
791 ath_beacon_proc(sc, 0);
792 }
793 if (status & HAL_INT_RXEOL) {
794 /*
795 * NB: the hardware should re-read the link when
796 * RXE bit is written, but it doesn't work at
797 * least on older hardware revs.
798 */
799 sc->sc_stats.ast_rxeol++;
800 sc->sc_rxlink = NULL;
801 }
802 if (status & HAL_INT_TXURN) {
803 sc->sc_stats.ast_txurn++;
804 /* bump tx trigger level */
805 ath_hal_updatetxtriglevel(ah, AH_TRUE);
806 }
807 if (status & HAL_INT_RX)
808 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
809 if (status & HAL_INT_TX)
810 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
811 if (status & HAL_INT_BMISS) {
812 sc->sc_stats.ast_bmiss++;
813 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
814 }
815 if (status & HAL_INT_MIB) {
816 sc->sc_stats.ast_mib++;
817 /*
818 * Disable interrupts until we service the MIB
819 * interrupt; otherwise it will continue to fire.
820 */
821 ath_hal_intrset(ah, 0);
822 /*
823 * Let the hal handle the event. We assume it will
824 * clear whatever condition caused the interrupt.
825 */
826 ath_hal_mibevent(ah, &sc->sc_halstats);
827 ath_hal_intrset(ah, sc->sc_imask);
828 }
829 }
830 return 1;
831 }
832
833 /* Swap transmit descriptor.
834 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
835 * function.
836 */
837 static inline void
838 ath_desc_swap(struct ath_desc *ds)
839 {
840 #ifdef AH_NEED_DESC_SWAP
841 ds->ds_link = htole32(ds->ds_link);
842 ds->ds_data = htole32(ds->ds_data);
843 ds->ds_ctl0 = htole32(ds->ds_ctl0);
844 ds->ds_ctl1 = htole32(ds->ds_ctl1);
845 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
846 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
847 #endif
848 }
849
850 static void
851 ath_fatal_proc(void *arg, int pending)
852 {
853 struct ath_softc *sc = arg;
854 struct ifnet *ifp = &sc->sc_if;
855
856 if_printf(ifp, "hardware error; resetting\n");
857 ath_reset(ifp);
858 }
859
860 static void
861 ath_rxorn_proc(void *arg, int pending)
862 {
863 struct ath_softc *sc = arg;
864 struct ifnet *ifp = &sc->sc_if;
865
866 if_printf(ifp, "rx FIFO overrun; resetting\n");
867 ath_reset(ifp);
868 }
869
870 static void
871 ath_bmiss_proc(void *arg, int pending)
872 {
873 struct ath_softc *sc = arg;
874 struct ieee80211com *ic = &sc->sc_ic;
875
876 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
877 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
878 ("unexpect operating mode %u", ic->ic_opmode));
879 if (ic->ic_state == IEEE80211_S_RUN) {
880 u_int64_t lastrx = sc->sc_lastrx;
881 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
882
883 DPRINTF(sc, ATH_DEBUG_BEACON,
884 "%s: tsf %" PRIu64 " lastrx %" PRId64
885 " (%" PRIu64 ") bmiss %u\n",
886 __func__, tsf, tsf - lastrx, lastrx,
887 ic->ic_bmisstimeout*1024);
888 /*
889 * Workaround phantom bmiss interrupts by sanity-checking
890 * the time of our last rx'd frame. If it is within the
891 * beacon miss interval then ignore the interrupt. If it's
892 * truly a bmiss we'll get another interrupt soon and that'll
893 * be dispatched up for processing.
894 */
895 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
896 NET_LOCK_GIANT();
897 ieee80211_beacon_miss(ic);
898 NET_UNLOCK_GIANT();
899 } else
900 sc->sc_stats.ast_bmiss_phantom++;
901 }
902 }
903
904 static void
905 ath_radar_proc(void *arg, int pending)
906 {
907 #if 0
908 struct ath_softc *sc = arg;
909 struct ifnet *ifp = &sc->sc_if;
910 struct ath_hal *ah = sc->sc_ah;
911 HAL_CHANNEL hchan;
912
913 if (ath_hal_procdfs(ah, &hchan)) {
914 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
915 hchan.channel, hchan.channelFlags, hchan.privFlags);
916 /*
917 * Initiate channel change.
918 */
919 /* XXX not yet */
920 }
921 #endif
922 }
923
924 static u_int
925 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
926 {
927 #define N(a) (sizeof(a) / sizeof(a[0]))
928 static const u_int modeflags[] = {
929 0, /* IEEE80211_MODE_AUTO */
930 CHANNEL_A, /* IEEE80211_MODE_11A */
931 CHANNEL_B, /* IEEE80211_MODE_11B */
932 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
933 0, /* IEEE80211_MODE_FH */
934 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
935 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
936 };
937 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
938
939 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
940 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
941 return modeflags[mode];
942 #undef N
943 }
944
945 static int
946 ath_ifinit(struct ifnet *ifp)
947 {
948 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
949
950 return ath_init(sc);
951 }
952
953 static int
954 ath_init(struct ath_softc *sc)
955 {
956 struct ifnet *ifp = &sc->sc_if;
957 struct ieee80211com *ic = &sc->sc_ic;
958 struct ath_hal *ah = sc->sc_ah;
959 HAL_STATUS status;
960 int error = 0;
961
962 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
963 __func__, ifp->if_flags);
964
965 if (device_is_active(sc->sc_dev)) {
966 ATH_LOCK(sc);
967 } else if (!pmf_device_resume_self(sc->sc_dev))
968 return ENXIO;
969 else
970 ATH_LOCK(sc);
971
972 /*
973 * Stop anything previously setup. This is safe
974 * whether this is the first time through or not.
975 */
976 ath_stop_locked(ifp, 0);
977
978 int dummy; /* XXX: gcc */
979 /* Whether we should enable h/w TKIP MIC */
980 if ((ic->ic_caps & IEEE80211_C_WME) &&
981 ((ic->ic_caps & IEEE80211_C_WME_TKIPMIC) ||
982 !(ic->ic_flags & IEEE80211_F_WME))) {
983 dummy = ath_hal_settkipmic(ah, AH_TRUE);
984 } else {
985 dummy = ath_hal_settkipmic(ah, AH_FALSE);
986 }
987
988
989 /*
990 * The basic interface to setting the hardware in a good
991 * state is ``reset''. On return the hardware is known to
992 * be powered up and with interrupts disabled. This must
993 * be followed by initialization of the appropriate bits
994 * and then setup of the interrupt mask.
995 */
996 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
997 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
998 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
999 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1000 status);
1001 error = EIO;
1002 goto done;
1003 }
1004
1005 /*
1006 * This is needed only to setup initial state
1007 * but it's best done after a reset.
1008 */
1009 ath_update_txpow(sc);
1010 /*
1011 * Likewise this is set during reset so update
1012 * state cached in the driver.
1013 */
1014 ath_restore_diversity(sc);
1015 sc->sc_calinterval = 1;
1016 sc->sc_caltries = 0;
1017
1018 /*
1019 * Setup the hardware after reset: the key cache
1020 * is filled as needed and the receive engine is
1021 * set going. Frame transmit is handled entirely
1022 * in the frame output path; there's nothing to do
1023 * here except setup the interrupt mask.
1024 */
1025 if ((error = ath_startrecv(sc)) != 0) {
1026 if_printf(ifp, "unable to start recv logic\n");
1027 goto done;
1028 }
1029
1030 /*
1031 * Enable interrupts.
1032 */
1033 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1034 | HAL_INT_RXEOL | HAL_INT_RXORN
1035 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1036 /*
1037 * Enable MIB interrupts when there are hardware phy counters.
1038 * Note we only do this (at the moment) for station mode.
1039 */
1040 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1041 sc->sc_imask |= HAL_INT_MIB;
1042 ath_hal_intrset(ah, sc->sc_imask);
1043
1044 ifp->if_flags |= IFF_RUNNING;
1045 ic->ic_state = IEEE80211_S_INIT;
1046
1047 /*
1048 * The hardware should be ready to go now so it's safe
1049 * to kick the 802.11 state machine as it's likely to
1050 * immediately call back to us to send mgmt frames.
1051 */
1052 ath_chan_change(sc, ic->ic_curchan);
1053 #ifdef ATH_TX99_DIAG
1054 if (sc->sc_tx99 != NULL)
1055 sc->sc_tx99->start(sc->sc_tx99);
1056 else
1057 #endif
1058 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1059 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1060 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1061 } else
1062 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1063 done:
1064 ATH_UNLOCK(sc);
1065 return error;
1066 }
1067
1068 static void
1069 ath_stop_locked(struct ifnet *ifp, int disable)
1070 {
1071 struct ath_softc *sc = ifp->if_softc;
1072 struct ieee80211com *ic = &sc->sc_ic;
1073 struct ath_hal *ah = sc->sc_ah;
1074
1075 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1076 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1077
1078 ATH_LOCK_ASSERT(sc);
1079 if (ifp->if_flags & IFF_RUNNING) {
1080 /*
1081 * Shutdown the hardware and driver:
1082 * reset 802.11 state machine
1083 * turn off timers
1084 * disable interrupts
1085 * turn off the radio
1086 * clear transmit machinery
1087 * clear receive machinery
1088 * drain and release tx queues
1089 * reclaim beacon resources
1090 * power down hardware
1091 *
1092 * Note that some of this work is not possible if the
1093 * hardware is gone (invalid).
1094 */
1095 #ifdef ATH_TX99_DIAG
1096 if (sc->sc_tx99 != NULL)
1097 sc->sc_tx99->stop(sc->sc_tx99);
1098 #endif
1099 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1100 ifp->if_flags &= ~IFF_RUNNING;
1101 ifp->if_timer = 0;
1102 if (device_is_enabled(sc->sc_dev)) {
1103 if (sc->sc_softled) {
1104 callout_stop(&sc->sc_ledtimer);
1105 ath_hal_gpioset(ah, sc->sc_ledpin,
1106 !sc->sc_ledon);
1107 sc->sc_blinking = 0;
1108 }
1109 ath_hal_intrset(ah, 0);
1110 }
1111 ath_draintxq(sc);
1112 if (device_is_enabled(sc->sc_dev)) {
1113 ath_stoprecv(sc);
1114 ath_hal_phydisable(ah);
1115 } else
1116 sc->sc_rxlink = NULL;
1117 IF_PURGE(&ifp->if_snd);
1118 ath_beacon_free(sc);
1119 if (disable)
1120 pmf_device_suspend_self(sc->sc_dev);
1121 }
1122 }
1123
1124 static void
1125 ath_stop(struct ifnet *ifp, int disable)
1126 {
1127 struct ath_softc *sc = ifp->if_softc;
1128
1129 ATH_LOCK(sc);
1130 ath_stop_locked(ifp, disable);
1131 ATH_UNLOCK(sc);
1132 }
1133
1134 static void
1135 ath_restore_diversity(struct ath_softc *sc)
1136 {
1137 struct ifnet *ifp = &sc->sc_if;
1138 struct ath_hal *ah = sc->sc_ah;
1139
1140 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1141 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1142 if_printf(ifp, "could not restore diversity setting %d\n",
1143 sc->sc_diversity);
1144 sc->sc_diversity = ath_hal_getdiversity(ah);
1145 }
1146 }
1147
1148 /*
1149 * Reset the hardware w/o losing operational state. This is
1150 * basically a more efficient way of doing ath_stop, ath_init,
1151 * followed by state transitions to the current 802.11
1152 * operational state. Used to recover from various errors and
1153 * to reset or reload hardware state.
1154 */
1155 int
1156 ath_reset(struct ifnet *ifp)
1157 {
1158 struct ath_softc *sc = ifp->if_softc;
1159 struct ieee80211com *ic = &sc->sc_ic;
1160 struct ath_hal *ah = sc->sc_ah;
1161 struct ieee80211_channel *c;
1162 HAL_STATUS status;
1163
1164 /*
1165 * Convert to a HAL channel description with the flags
1166 * constrained to reflect the current operating mode.
1167 */
1168 c = ic->ic_curchan;
1169 sc->sc_curchan.channel = c->ic_freq;
1170 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1171
1172 ath_hal_intrset(ah, 0); /* disable interrupts */
1173 ath_draintxq(sc); /* stop xmit side */
1174 ath_stoprecv(sc); /* stop recv side */
1175 /* NB: indicate channel change so we do a full reset */
1176 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1177 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1178 __func__, status);
1179 ath_update_txpow(sc); /* update tx power state */
1180 ath_restore_diversity(sc);
1181 sc->sc_calinterval = 1;
1182 sc->sc_caltries = 0;
1183 if (ath_startrecv(sc) != 0) /* restart recv */
1184 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1185 /*
1186 * We may be doing a reset in response to an ioctl
1187 * that changes the channel so update any state that
1188 * might change as a result.
1189 */
1190 ath_chan_change(sc, c);
1191 if (ic->ic_state == IEEE80211_S_RUN)
1192 ath_beacon_config(sc); /* restart beacons */
1193 ath_hal_intrset(ah, sc->sc_imask);
1194
1195 ath_start(ifp); /* restart xmit */
1196 return 0;
1197 }
1198
1199 /*
1200 * Cleanup driver resources when we run out of buffers
1201 * while processing fragments; return the tx buffers
1202 * allocated and drop node references.
1203 */
1204 static void
1205 ath_txfrag_cleanup(struct ath_softc *sc,
1206 ath_bufhead *frags, struct ieee80211_node *ni)
1207 {
1208 struct ath_buf *bf;
1209
1210 ATH_TXBUF_LOCK_ASSERT(sc);
1211
1212 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1213 STAILQ_REMOVE_HEAD(frags, bf_list);
1214 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1215 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1216 ieee80211_node_decref(ni);
1217 }
1218 }
1219
1220 /*
1221 * Setup xmit of a fragmented frame. Allocate a buffer
1222 * for each frag and bump the node reference count to
1223 * reflect the held reference to be setup by ath_tx_start.
1224 */
1225 static int
1226 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1227 struct mbuf *m0, struct ieee80211_node *ni)
1228 {
1229 struct mbuf *m;
1230 struct ath_buf *bf;
1231
1232 ATH_TXBUF_LOCK(sc);
1233 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1234 bf = STAILQ_FIRST(&sc->sc_txbuf);
1235 if (bf == NULL) { /* out of buffers, cleanup */
1236 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1237 __func__);
1238 sc->sc_if.if_flags |= IFF_OACTIVE;
1239 ath_txfrag_cleanup(sc, frags, ni);
1240 break;
1241 }
1242 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1243 ieee80211_node_incref(ni);
1244 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1245 }
1246 ATH_TXBUF_UNLOCK(sc);
1247
1248 return !STAILQ_EMPTY(frags);
1249 }
1250
1251 static void
1252 ath_start(struct ifnet *ifp)
1253 {
1254 struct ath_softc *sc = ifp->if_softc;
1255 struct ath_hal *ah = sc->sc_ah;
1256 struct ieee80211com *ic = &sc->sc_ic;
1257 struct ieee80211_node *ni;
1258 struct ath_buf *bf;
1259 struct mbuf *m, *next;
1260 struct ieee80211_frame *wh;
1261 struct ether_header *eh;
1262 ath_bufhead frags;
1263
1264 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1265 !device_is_active(sc->sc_dev))
1266 return;
1267 for (;;) {
1268 /*
1269 * Grab a TX buffer and associated resources.
1270 */
1271 ATH_TXBUF_LOCK(sc);
1272 bf = STAILQ_FIRST(&sc->sc_txbuf);
1273 if (bf != NULL)
1274 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1275 ATH_TXBUF_UNLOCK(sc);
1276 if (bf == NULL) {
1277 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1278 __func__);
1279 sc->sc_stats.ast_tx_qstop++;
1280 ifp->if_flags |= IFF_OACTIVE;
1281 break;
1282 }
1283 /*
1284 * Poll the management queue for frames; they
1285 * have priority over normal data frames.
1286 */
1287 IF_DEQUEUE(&ic->ic_mgtq, m);
1288 if (m == NULL) {
1289 /*
1290 * No data frames go out unless we're associated.
1291 */
1292 if (ic->ic_state != IEEE80211_S_RUN) {
1293 DPRINTF(sc, ATH_DEBUG_XMIT,
1294 "%s: discard data packet, state %s\n",
1295 __func__,
1296 ieee80211_state_name[ic->ic_state]);
1297 sc->sc_stats.ast_tx_discard++;
1298 ATH_TXBUF_LOCK(sc);
1299 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1300 ATH_TXBUF_UNLOCK(sc);
1301 break;
1302 }
1303 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1304 if (m == NULL) {
1305 ATH_TXBUF_LOCK(sc);
1306 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1307 ATH_TXBUF_UNLOCK(sc);
1308 break;
1309 }
1310 STAILQ_INIT(&frags);
1311 /*
1312 * Find the node for the destination so we can do
1313 * things like power save and fast frames aggregation.
1314 */
1315 if (m->m_len < sizeof(struct ether_header) &&
1316 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1317 ic->ic_stats.is_tx_nobuf++; /* XXX */
1318 ni = NULL;
1319 goto bad;
1320 }
1321 eh = mtod(m, struct ether_header *);
1322 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1323 if (ni == NULL) {
1324 /* NB: ieee80211_find_txnode does stat+msg */
1325 m_freem(m);
1326 goto bad;
1327 }
1328 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1329 (m->m_flags & M_PWR_SAV) == 0) {
1330 /*
1331 * Station in power save mode; pass the frame
1332 * to the 802.11 layer and continue. We'll get
1333 * the frame back when the time is right.
1334 */
1335 ieee80211_pwrsave(ic, ni, m);
1336 goto reclaim;
1337 }
1338 /* calculate priority so we can find the tx queue */
1339 if (ieee80211_classify(ic, m, ni)) {
1340 DPRINTF(sc, ATH_DEBUG_XMIT,
1341 "%s: discard, classification failure\n",
1342 __func__);
1343 m_freem(m);
1344 goto bad;
1345 }
1346 ifp->if_opackets++;
1347
1348 #if NBPFILTER > 0
1349 if (ifp->if_bpf)
1350 bpf_mtap(ifp->if_bpf, m);
1351 #endif
1352 /*
1353 * Encapsulate the packet in prep for transmission.
1354 */
1355 m = ieee80211_encap(ic, m, ni);
1356 if (m == NULL) {
1357 DPRINTF(sc, ATH_DEBUG_XMIT,
1358 "%s: encapsulation failure\n",
1359 __func__);
1360 sc->sc_stats.ast_tx_encap++;
1361 goto bad;
1362 }
1363 /*
1364 * Check for fragmentation. If this has frame
1365 * has been broken up verify we have enough
1366 * buffers to send all the fragments so all
1367 * go out or none...
1368 */
1369 if ((m->m_flags & M_FRAG) &&
1370 !ath_txfrag_setup(sc, &frags, m, ni)) {
1371 DPRINTF(sc, ATH_DEBUG_ANY,
1372 "%s: out of txfrag buffers\n", __func__);
1373 ic->ic_stats.is_tx_nobuf++; /* XXX */
1374 ath_freetx(m);
1375 goto bad;
1376 }
1377 } else {
1378 /*
1379 * Hack! The referenced node pointer is in the
1380 * rcvif field of the packet header. This is
1381 * placed there by ieee80211_mgmt_output because
1382 * we need to hold the reference with the frame
1383 * and there's no other way (other than packet
1384 * tags which we consider too expensive to use)
1385 * to pass it along.
1386 */
1387 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1388 m->m_pkthdr.rcvif = NULL;
1389
1390 wh = mtod(m, struct ieee80211_frame *);
1391 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1392 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1393 /* fill time stamp */
1394 u_int64_t tsf;
1395 u_int32_t *tstamp;
1396
1397 tsf = ath_hal_gettsf64(ah);
1398 /* XXX: adjust 100us delay to xmit */
1399 tsf += 100;
1400 tstamp = (u_int32_t *)&wh[1];
1401 tstamp[0] = htole32(tsf & 0xffffffff);
1402 tstamp[1] = htole32(tsf >> 32);
1403 }
1404 sc->sc_stats.ast_tx_mgmt++;
1405 }
1406
1407 nextfrag:
1408 next = m->m_nextpkt;
1409 if (ath_tx_start(sc, ni, bf, m)) {
1410 bad:
1411 ifp->if_oerrors++;
1412 reclaim:
1413 ATH_TXBUF_LOCK(sc);
1414 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1415 ath_txfrag_cleanup(sc, &frags, ni);
1416 ATH_TXBUF_UNLOCK(sc);
1417 if (ni != NULL)
1418 ieee80211_free_node(ni);
1419 continue;
1420 }
1421 if (next != NULL) {
1422 m = next;
1423 bf = STAILQ_FIRST(&frags);
1424 KASSERT(bf != NULL, ("no buf for txfrag"));
1425 STAILQ_REMOVE_HEAD(&frags, bf_list);
1426 goto nextfrag;
1427 }
1428
1429 ifp->if_timer = 1;
1430 }
1431 }
1432
1433 static int
1434 ath_media_change(struct ifnet *ifp)
1435 {
1436 #define IS_UP(ifp) \
1437 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1438 int error;
1439
1440 error = ieee80211_media_change(ifp);
1441 if (error == ENETRESET) {
1442 if (IS_UP(ifp))
1443 ath_init(ifp->if_softc); /* XXX lose error */
1444 error = 0;
1445 }
1446 return error;
1447 #undef IS_UP
1448 }
1449
1450 #ifdef AR_DEBUG
1451 static void
1452 ath_keyprint(const char *tag, u_int ix,
1453 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1454 {
1455 static const char *ciphers[] = {
1456 "WEP",
1457 "AES-OCB",
1458 "AES-CCM",
1459 "CKIP",
1460 "TKIP",
1461 "CLR",
1462 };
1463 int i, n;
1464
1465 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1466 for (i = 0, n = hk->kv_len; i < n; i++)
1467 printf("%02x", hk->kv_val[i]);
1468 printf(" mac %s", ether_sprintf(mac));
1469 if (hk->kv_type == HAL_CIPHER_TKIP) {
1470 printf(" mic ");
1471 for (i = 0; i < sizeof(hk->kv_mic); i++)
1472 printf("%02x", hk->kv_mic[i]);
1473 }
1474 printf("\n");
1475 }
1476 #endif
1477
1478 /*
1479 * Set a TKIP key into the hardware. This handles the
1480 * potential distribution of key state to multiple key
1481 * cache slots for TKIP.
1482 */
1483 static int
1484 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1485 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1486 {
1487 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1488 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1489 struct ath_hal *ah = sc->sc_ah;
1490
1491 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1492 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1493 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1494 if (sc->sc_splitmic) {
1495 /*
1496 * TX key goes at first index, RX key at the rx index.
1497 * The hal handles the MIC keys at index+64.
1498 */
1499 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1500 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1501 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1502 zerobssid))
1503 return 0;
1504
1505 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1506 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1507 /* XXX delete tx key on failure? */
1508 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1509 hk, mac);
1510 } else {
1511 /*
1512 * Room for both TX+RX MIC keys in one key cache
1513 * slot, just set key at the first index; the HAL
1514 * will handle the reset.
1515 */
1516 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1517 #if HAL_ABI_VERSION > 0x06052200
1518 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1519 #endif
1520 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1521 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1522 }
1523 } else if (k->wk_flags & IEEE80211_KEY_XR) {
1524 /*
1525 * TX/RX key goes at first index.
1526 * The hal handles the MIC keys are index+64.
1527 */
1528 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1529 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1530 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1531 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1532 }
1533 return 0;
1534 #undef IEEE80211_KEY_XR
1535 }
1536
1537 /*
1538 * Set a net80211 key into the hardware. This handles the
1539 * potential distribution of key state to multiple key
1540 * cache slots for TKIP with hardware MIC support.
1541 */
1542 static int
1543 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1544 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1545 struct ieee80211_node *bss)
1546 {
1547 #define N(a) (sizeof(a)/sizeof(a[0]))
1548 static const u_int8_t ciphermap[] = {
1549 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1550 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1551 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1552 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1553 (u_int8_t) -1, /* 4 is not allocated */
1554 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1555 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1556 };
1557 struct ath_hal *ah = sc->sc_ah;
1558 const struct ieee80211_cipher *cip = k->wk_cipher;
1559 u_int8_t gmac[IEEE80211_ADDR_LEN];
1560 const u_int8_t *mac;
1561 HAL_KEYVAL hk;
1562
1563 memset(&hk, 0, sizeof(hk));
1564 /*
1565 * Software crypto uses a "clear key" so non-crypto
1566 * state kept in the key cache are maintained and
1567 * so that rx frames have an entry to match.
1568 */
1569 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1570 KASSERT(cip->ic_cipher < N(ciphermap),
1571 ("invalid cipher type %u", cip->ic_cipher));
1572 hk.kv_type = ciphermap[cip->ic_cipher];
1573 hk.kv_len = k->wk_keylen;
1574 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1575 } else
1576 hk.kv_type = HAL_CIPHER_CLR;
1577
1578 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1579 /*
1580 * Group keys on hardware that supports multicast frame
1581 * key search use a mac that is the sender's address with
1582 * the high bit set instead of the app-specified address.
1583 */
1584 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1585 gmac[0] |= 0x80;
1586 mac = gmac;
1587 } else
1588 mac = mac0;
1589
1590 if ((hk.kv_type == HAL_CIPHER_TKIP &&
1591 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) && sc->sc_splitmic) {
1592 return ath_keyset_tkip(sc, k, &hk, mac);
1593 } else {
1594 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1595 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1596 }
1597 #undef N
1598 }
1599
1600 /*
1601 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1602 * each key, one for decrypt/encrypt and the other for the MIC.
1603 */
1604 static u_int16_t
1605 key_alloc_2pair(struct ath_softc *sc,
1606 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1607 {
1608 #define N(a) (sizeof(a)/sizeof(a[0]))
1609 u_int i, keyix;
1610
1611 KASSERT(sc->sc_splitmic, ("key cache !split"));
1612 /* XXX could optimize */
1613 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1614 u_int8_t b = sc->sc_keymap[i];
1615 if (b != 0xff) {
1616 /*
1617 * One or more slots in this byte are free.
1618 */
1619 keyix = i*NBBY;
1620 while (b & 1) {
1621 again:
1622 keyix++;
1623 b >>= 1;
1624 }
1625 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1626 if (isset(sc->sc_keymap, keyix+32) ||
1627 isset(sc->sc_keymap, keyix+64) ||
1628 isset(sc->sc_keymap, keyix+32+64)) {
1629 /* full pair unavailable */
1630 /* XXX statistic */
1631 if (keyix == (i+1)*NBBY) {
1632 /* no slots were appropriate, advance */
1633 continue;
1634 }
1635 goto again;
1636 }
1637 setbit(sc->sc_keymap, keyix);
1638 setbit(sc->sc_keymap, keyix+64);
1639 setbit(sc->sc_keymap, keyix+32);
1640 setbit(sc->sc_keymap, keyix+32+64);
1641 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1642 "%s: key pair %u,%u %u,%u\n",
1643 __func__, keyix, keyix+64,
1644 keyix+32, keyix+32+64);
1645 *txkeyix = keyix;
1646 *rxkeyix = keyix+32;
1647 return keyix;
1648 }
1649 }
1650 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1651 return IEEE80211_KEYIX_NONE;
1652 #undef N
1653 }
1654
1655 /*
1656 * Allocate a single key cache slot.
1657 */
1658 static int
1659 key_alloc_single(struct ath_softc *sc,
1660 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1661 {
1662 #define N(a) (sizeof(a)/sizeof(a[0]))
1663 u_int i, keyix;
1664
1665 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1666 for (i = 0; i < N(sc->sc_keymap); i++) {
1667 u_int8_t b = sc->sc_keymap[i];
1668 if (b != 0xff) {
1669 /*
1670 * One or more slots are free.
1671 */
1672 keyix = i*NBBY;
1673 while (b & 1)
1674 keyix++, b >>= 1;
1675 setbit(sc->sc_keymap, keyix);
1676 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1677 __func__, keyix);
1678 *txkeyix = *rxkeyix = keyix;
1679 return 1;
1680 }
1681 }
1682 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1683 return 0;
1684 #undef N
1685 }
1686
1687 /*
1688 * Allocate one or more key cache slots for a uniacst key. The
1689 * key itself is needed only to identify the cipher. For hardware
1690 * TKIP with split cipher+MIC keys we allocate two key cache slot
1691 * pairs so that we can setup separate TX and RX MIC keys. Note
1692 * that the MIC key for a TKIP key at slot i is assumed by the
1693 * hardware to be at slot i+64. This limits TKIP keys to the first
1694 * 64 entries.
1695 */
1696 static int
1697 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1698 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1699 {
1700 struct ath_softc *sc = ic->ic_ifp->if_softc;
1701
1702 /*
1703 * Group key allocation must be handled specially for
1704 * parts that do not support multicast key cache search
1705 * functionality. For those parts the key id must match
1706 * the h/w key index so lookups find the right key. On
1707 * parts w/ the key search facility we install the sender's
1708 * mac address (with the high bit set) and let the hardware
1709 * find the key w/o using the key id. This is preferred as
1710 * it permits us to support multiple users for adhoc and/or
1711 * multi-station operation.
1712 */
1713 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1714 if (!(&ic->ic_nw_keys[0] <= k &&
1715 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1716 /* should not happen */
1717 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1718 "%s: bogus group key\n", __func__);
1719 return 0;
1720 }
1721 /*
1722 * XXX we pre-allocate the global keys so
1723 * have no way to check if they've already been allocated.
1724 */
1725 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1726 return 1;
1727 }
1728
1729 /*
1730 * We allocate two pair for TKIP when using the h/w to do
1731 * the MIC. For everything else, including software crypto,
1732 * we allocate a single entry. Note that s/w crypto requires
1733 * a pass-through slot on the 5211 and 5212. The 5210 does
1734 * not support pass-through cache entries and we map all
1735 * those requests to slot 0.
1736 */
1737 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1738 return key_alloc_single(sc, keyix, rxkeyix);
1739 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1740 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1741 return key_alloc_2pair(sc, keyix, rxkeyix);
1742 } else {
1743 return key_alloc_single(sc, keyix, rxkeyix);
1744 }
1745 }
1746
1747 /*
1748 * Delete an entry in the key cache allocated by ath_key_alloc.
1749 */
1750 static int
1751 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1752 {
1753 struct ath_softc *sc = ic->ic_ifp->if_softc;
1754 struct ath_hal *ah = sc->sc_ah;
1755 const struct ieee80211_cipher *cip = k->wk_cipher;
1756 u_int keyix = k->wk_keyix;
1757
1758 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1759
1760 if (!device_has_power(sc->sc_dev)) {
1761 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1762 k->wk_keyix);
1763 }
1764
1765 ath_hal_keyreset(ah, keyix);
1766 /*
1767 * Handle split tx/rx keying required for TKIP with h/w MIC.
1768 */
1769 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1770 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1771 ath_hal_keyreset(ah, keyix+32); /* RX key */
1772 if (keyix >= IEEE80211_WEP_NKID) {
1773 /*
1774 * Don't touch keymap entries for global keys so
1775 * they are never considered for dynamic allocation.
1776 */
1777 clrbit(sc->sc_keymap, keyix);
1778 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1779 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1780 sc->sc_splitmic) {
1781 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1782 clrbit(sc->sc_keymap, keyix+32); /* RX key */
1783 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */
1784 }
1785 }
1786 return 1;
1787 }
1788
1789 /*
1790 * Set the key cache contents for the specified key. Key cache
1791 * slot(s) must already have been allocated by ath_key_alloc.
1792 */
1793 static int
1794 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1795 const u_int8_t mac[IEEE80211_ADDR_LEN])
1796 {
1797 struct ath_softc *sc = ic->ic_ifp->if_softc;
1798
1799 if (!device_has_power(sc->sc_dev)) {
1800 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1801 k->wk_keyix);
1802 }
1803 return ath_keyset(sc, k, mac, ic->ic_bss);
1804 }
1805
1806 /*
1807 * Block/unblock tx+rx processing while a key change is done.
1808 * We assume the caller serializes key management operations
1809 * so we only need to worry about synchronization with other
1810 * uses that originate in the driver.
1811 */
1812 static void
1813 ath_key_update_begin(struct ieee80211com *ic)
1814 {
1815 struct ifnet *ifp = ic->ic_ifp;
1816 struct ath_softc *sc = ifp->if_softc;
1817
1818 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1819 #if 0
1820 tasklet_disable(&sc->sc_rxtq);
1821 #endif
1822 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1823 }
1824
1825 static void
1826 ath_key_update_end(struct ieee80211com *ic)
1827 {
1828 struct ifnet *ifp = ic->ic_ifp;
1829 struct ath_softc *sc = ifp->if_softc;
1830
1831 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1832 IF_UNLOCK(&ifp->if_snd);
1833 #if 0
1834 tasklet_enable(&sc->sc_rxtq);
1835 #endif
1836 }
1837
1838 /*
1839 * Calculate the receive filter according to the
1840 * operating mode and state:
1841 *
1842 * o always accept unicast, broadcast, and multicast traffic
1843 * o maintain current state of phy error reception (the hal
1844 * may enable phy error frames for noise immunity work)
1845 * o probe request frames are accepted only when operating in
1846 * hostap, adhoc, or monitor modes
1847 * o enable promiscuous mode according to the interface state
1848 * o accept beacons:
1849 * - when operating in adhoc mode so the 802.11 layer creates
1850 * node table entries for peers,
1851 * - when operating in station mode for collecting rssi data when
1852 * the station is otherwise quiet, or
1853 * - when scanning
1854 */
1855 static u_int32_t
1856 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1857 {
1858 struct ieee80211com *ic = &sc->sc_ic;
1859 struct ath_hal *ah = sc->sc_ah;
1860 struct ifnet *ifp = &sc->sc_if;
1861 u_int32_t rfilt;
1862
1863 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1864 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1865 if (ic->ic_opmode != IEEE80211_M_STA)
1866 rfilt |= HAL_RX_FILTER_PROBEREQ;
1867 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1868 (ifp->if_flags & IFF_PROMISC))
1869 rfilt |= HAL_RX_FILTER_PROM;
1870 if (ifp->if_flags & IFF_PROMISC)
1871 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1872 if (ic->ic_opmode == IEEE80211_M_STA ||
1873 ic->ic_opmode == IEEE80211_M_IBSS ||
1874 state == IEEE80211_S_SCAN)
1875 rfilt |= HAL_RX_FILTER_BEACON;
1876 return rfilt;
1877 }
1878
1879 static void
1880 ath_mode_init(struct ath_softc *sc)
1881 {
1882 struct ifnet *ifp = &sc->sc_if;
1883 struct ieee80211com *ic = &sc->sc_ic;
1884 struct ath_hal *ah = sc->sc_ah;
1885 struct ether_multi *enm;
1886 struct ether_multistep estep;
1887 u_int32_t rfilt, mfilt[2], val;
1888 int i;
1889 uint8_t pos;
1890
1891 /* configure rx filter */
1892 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1893 ath_hal_setrxfilter(ah, rfilt);
1894
1895 /* configure operational mode */
1896 ath_hal_setopmode(ah);
1897
1898 /* Write keys to hardware; it may have been powered down. */
1899 ath_key_update_begin(ic);
1900 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1901 ath_key_set(ic,
1902 &ic->ic_crypto.cs_nw_keys[i],
1903 ic->ic_myaddr);
1904 }
1905 ath_key_update_end(ic);
1906
1907 /*
1908 * Handle any link-level address change. Note that we only
1909 * need to force ic_myaddr; any other addresses are handled
1910 * as a byproduct of the ifnet code marking the interface
1911 * down then up.
1912 *
1913 * XXX should get from lladdr instead of arpcom but that's more work
1914 */
1915 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1916 ath_hal_setmac(ah, ic->ic_myaddr);
1917
1918 /* calculate and install multicast filter */
1919 ifp->if_flags &= ~IFF_ALLMULTI;
1920 mfilt[0] = mfilt[1] = 0;
1921 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1922 while (enm != NULL) {
1923 void *dl;
1924 /* XXX Punt on ranges. */
1925 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1926 mfilt[0] = mfilt[1] = 0xffffffff;
1927 ifp->if_flags |= IFF_ALLMULTI;
1928 break;
1929 }
1930 dl = enm->enm_addrlo;
1931 val = LE_READ_4((char *)dl + 0);
1932 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1933 val = LE_READ_4((char *)dl + 3);
1934 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1935 pos &= 0x3f;
1936 mfilt[pos / 32] |= (1 << (pos % 32));
1937
1938 ETHER_NEXT_MULTI(estep, enm);
1939 }
1940
1941 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1942 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1943 __func__, rfilt, mfilt[0], mfilt[1]);
1944 }
1945
1946 /*
1947 * Set the slot time based on the current setting.
1948 */
1949 static void
1950 ath_setslottime(struct ath_softc *sc)
1951 {
1952 struct ieee80211com *ic = &sc->sc_ic;
1953 struct ath_hal *ah = sc->sc_ah;
1954
1955 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1956 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1957 else
1958 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1959 sc->sc_updateslot = OK;
1960 }
1961
1962 /*
1963 * Callback from the 802.11 layer to update the
1964 * slot time based on the current setting.
1965 */
1966 static void
1967 ath_updateslot(struct ifnet *ifp)
1968 {
1969 struct ath_softc *sc = ifp->if_softc;
1970 struct ieee80211com *ic = &sc->sc_ic;
1971
1972 /*
1973 * When not coordinating the BSS, change the hardware
1974 * immediately. For other operation we defer the change
1975 * until beacon updates have propagated to the stations.
1976 */
1977 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1978 sc->sc_updateslot = UPDATE;
1979 else
1980 ath_setslottime(sc);
1981 }
1982
1983 /*
1984 * Setup a h/w transmit queue for beacons.
1985 */
1986 static int
1987 ath_beaconq_setup(struct ath_hal *ah)
1988 {
1989 HAL_TXQ_INFO qi;
1990
1991 memset(&qi, 0, sizeof(qi));
1992 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1993 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1994 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1995 /* NB: for dynamic turbo, don't enable any other interrupts */
1996 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1997 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1998 }
1999
2000 /*
2001 * Setup the transmit queue parameters for the beacon queue.
2002 */
2003 static int
2004 ath_beaconq_config(struct ath_softc *sc)
2005 {
2006 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2007 struct ieee80211com *ic = &sc->sc_ic;
2008 struct ath_hal *ah = sc->sc_ah;
2009 HAL_TXQ_INFO qi;
2010
2011 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2012 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2013 /*
2014 * Always burst out beacon and CAB traffic.
2015 */
2016 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2017 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2018 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2019 } else {
2020 struct wmeParams *wmep =
2021 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2022 /*
2023 * Adhoc mode; important thing is to use 2x cwmin.
2024 */
2025 qi.tqi_aifs = wmep->wmep_aifsn;
2026 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2027 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2028 }
2029
2030 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2031 device_printf(sc->sc_dev, "unable to update parameters for "
2032 "beacon hardware queue!\n");
2033 return 0;
2034 } else {
2035 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2036 return 1;
2037 }
2038 #undef ATH_EXPONENT_TO_VALUE
2039 }
2040
2041 /*
2042 * Allocate and setup an initial beacon frame.
2043 */
2044 static int
2045 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2046 {
2047 struct ieee80211com *ic = ni->ni_ic;
2048 struct ath_buf *bf;
2049 struct mbuf *m;
2050 int error;
2051
2052 bf = STAILQ_FIRST(&sc->sc_bbuf);
2053 if (bf == NULL) {
2054 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2055 sc->sc_stats.ast_be_nombuf++; /* XXX */
2056 return ENOMEM; /* XXX */
2057 }
2058 /*
2059 * NB: the beacon data buffer must be 32-bit aligned;
2060 * we assume the mbuf routines will return us something
2061 * with this alignment (perhaps should assert).
2062 */
2063 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2064 if (m == NULL) {
2065 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2066 __func__);
2067 sc->sc_stats.ast_be_nombuf++;
2068 return ENOMEM;
2069 }
2070 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2071 BUS_DMA_NOWAIT);
2072 if (error == 0) {
2073 bf->bf_m = m;
2074 bf->bf_node = ieee80211_ref_node(ni);
2075 } else {
2076 m_freem(m);
2077 }
2078 return error;
2079 }
2080
2081 /*
2082 * Setup the beacon frame for transmit.
2083 */
2084 static void
2085 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2086 {
2087 #define USE_SHPREAMBLE(_ic) \
2088 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2089 == IEEE80211_F_SHPREAMBLE)
2090 struct ieee80211_node *ni = bf->bf_node;
2091 struct ieee80211com *ic = ni->ni_ic;
2092 struct mbuf *m = bf->bf_m;
2093 struct ath_hal *ah = sc->sc_ah;
2094 struct ath_desc *ds;
2095 int flags, antenna;
2096 const HAL_RATE_TABLE *rt;
2097 u_int8_t rix, rate;
2098
2099 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2100 __func__, m, m->m_len);
2101
2102 /* setup descriptors */
2103 ds = bf->bf_desc;
2104
2105 flags = HAL_TXDESC_NOACK;
2106 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2107 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2108 flags |= HAL_TXDESC_VEOL;
2109 /*
2110 * Let hardware handle antenna switching unless
2111 * the user has selected a transmit antenna
2112 * (sc_txantenna is not 0).
2113 */
2114 antenna = sc->sc_txantenna;
2115 } else {
2116 ds->ds_link = 0;
2117 /*
2118 * Switch antenna every 4 beacons, unless the user
2119 * has selected a transmit antenna (sc_txantenna
2120 * is not 0).
2121 *
2122 * XXX assumes two antenna
2123 */
2124 if (sc->sc_txantenna == 0)
2125 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2126 else
2127 antenna = sc->sc_txantenna;
2128 }
2129
2130 KASSERT(bf->bf_nseg == 1,
2131 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2132 ds->ds_data = bf->bf_segs[0].ds_addr;
2133 /*
2134 * Calculate rate code.
2135 * XXX everything at min xmit rate
2136 */
2137 rix = sc->sc_minrateix;
2138 rt = sc->sc_currates;
2139 rate = rt->info[rix].rateCode;
2140 if (USE_SHPREAMBLE(ic))
2141 rate |= rt->info[rix].shortPreamble;
2142 ath_hal_setuptxdesc(ah, ds
2143 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2144 , sizeof(struct ieee80211_frame)/* header length */
2145 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2146 , ni->ni_txpower /* txpower XXX */
2147 , rate, 1 /* series 0 rate/tries */
2148 , HAL_TXKEYIX_INVALID /* no encryption */
2149 , antenna /* antenna mode */
2150 , flags /* no ack, veol for beacons */
2151 , 0 /* rts/cts rate */
2152 , 0 /* rts/cts duration */
2153 );
2154 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2155 ath_hal_filltxdesc(ah, ds
2156 , roundup(m->m_len, 4) /* buffer length */
2157 , AH_TRUE /* first segment */
2158 , AH_TRUE /* last segment */
2159 , ds /* first descriptor */
2160 );
2161
2162 /* NB: The desc swap function becomes void, if descriptor swapping
2163 * is not enabled
2164 */
2165 ath_desc_swap(ds);
2166
2167 #undef USE_SHPREAMBLE
2168 }
2169
2170 /*
2171 * Transmit a beacon frame at SWBA. Dynamic updates to the
2172 * frame contents are done as needed and the slot time is
2173 * also adjusted based on current state.
2174 */
2175 static void
2176 ath_beacon_proc(void *arg, int pending)
2177 {
2178 struct ath_softc *sc = arg;
2179 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2180 struct ieee80211_node *ni = bf->bf_node;
2181 struct ieee80211com *ic = ni->ni_ic;
2182 struct ath_hal *ah = sc->sc_ah;
2183 struct mbuf *m;
2184 int ncabq, error, otherant;
2185
2186 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2187 __func__, pending);
2188
2189 if (ic->ic_opmode == IEEE80211_M_STA ||
2190 ic->ic_opmode == IEEE80211_M_MONITOR ||
2191 bf == NULL || bf->bf_m == NULL) {
2192 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2193 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2194 return;
2195 }
2196 /*
2197 * Check if the previous beacon has gone out. If
2198 * not don't try to post another, skip this period
2199 * and wait for the next. Missed beacons indicate
2200 * a problem and should not occur. If we miss too
2201 * many consecutive beacons reset the device.
2202 */
2203 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2204 sc->sc_bmisscount++;
2205 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2206 "%s: missed %u consecutive beacons\n",
2207 __func__, sc->sc_bmisscount);
2208 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2209 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2210 return;
2211 }
2212 if (sc->sc_bmisscount != 0) {
2213 DPRINTF(sc, ATH_DEBUG_BEACON,
2214 "%s: resume beacon xmit after %u misses\n",
2215 __func__, sc->sc_bmisscount);
2216 sc->sc_bmisscount = 0;
2217 }
2218
2219 /*
2220 * Update dynamic beacon contents. If this returns
2221 * non-zero then we need to remap the memory because
2222 * the beacon frame changed size (probably because
2223 * of the TIM bitmap).
2224 */
2225 m = bf->bf_m;
2226 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2227 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2228 /* XXX too conservative? */
2229 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2230 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2231 BUS_DMA_NOWAIT);
2232 if (error != 0) {
2233 if_printf(&sc->sc_if,
2234 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2235 __func__, error);
2236 return;
2237 }
2238 }
2239
2240 /*
2241 * Handle slot time change when a non-ERP station joins/leaves
2242 * an 11g network. The 802.11 layer notifies us via callback,
2243 * we mark updateslot, then wait one beacon before effecting
2244 * the change. This gives associated stations at least one
2245 * beacon interval to note the state change.
2246 */
2247 /* XXX locking */
2248 if (sc->sc_updateslot == UPDATE)
2249 sc->sc_updateslot = COMMIT; /* commit next beacon */
2250 else if (sc->sc_updateslot == COMMIT)
2251 ath_setslottime(sc); /* commit change to h/w */
2252
2253 /*
2254 * Check recent per-antenna transmit statistics and flip
2255 * the default antenna if noticeably more frames went out
2256 * on the non-default antenna.
2257 * XXX assumes 2 anntenae
2258 */
2259 otherant = sc->sc_defant & 1 ? 2 : 1;
2260 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2261 ath_setdefantenna(sc, otherant);
2262 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2263
2264 /*
2265 * Construct tx descriptor.
2266 */
2267 ath_beacon_setup(sc, bf);
2268
2269 /*
2270 * Stop any current dma and put the new frame on the queue.
2271 * This should never fail since we check above that no frames
2272 * are still pending on the queue.
2273 */
2274 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2275 DPRINTF(sc, ATH_DEBUG_ANY,
2276 "%s: beacon queue %u did not stop?\n",
2277 __func__, sc->sc_bhalq);
2278 }
2279 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2280 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2281
2282 /*
2283 * Enable the CAB queue before the beacon queue to
2284 * insure cab frames are triggered by this beacon.
2285 */
2286 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2287 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2288 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2289 ath_hal_txstart(ah, sc->sc_bhalq);
2290 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2291 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2292 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2293
2294 sc->sc_stats.ast_be_xmit++;
2295 }
2296
2297 /*
2298 * Reset the hardware after detecting beacons have stopped.
2299 */
2300 static void
2301 ath_bstuck_proc(void *arg, int pending)
2302 {
2303 struct ath_softc *sc = arg;
2304 struct ifnet *ifp = &sc->sc_if;
2305
2306 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2307 sc->sc_bmisscount);
2308 ath_reset(ifp);
2309 }
2310
2311 /*
2312 * Reclaim beacon resources.
2313 */
2314 static void
2315 ath_beacon_free(struct ath_softc *sc)
2316 {
2317 struct ath_buf *bf;
2318
2319 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2320 if (bf->bf_m != NULL) {
2321 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2322 m_freem(bf->bf_m);
2323 bf->bf_m = NULL;
2324 }
2325 if (bf->bf_node != NULL) {
2326 ieee80211_free_node(bf->bf_node);
2327 bf->bf_node = NULL;
2328 }
2329 }
2330 }
2331
2332 /*
2333 * Configure the beacon and sleep timers.
2334 *
2335 * When operating as an AP this resets the TSF and sets
2336 * up the hardware to notify us when we need to issue beacons.
2337 *
2338 * When operating in station mode this sets up the beacon
2339 * timers according to the timestamp of the last received
2340 * beacon and the current TSF, configures PCF and DTIM
2341 * handling, programs the sleep registers so the hardware
2342 * will wakeup in time to receive beacons, and configures
2343 * the beacon miss handling so we'll receive a BMISS
2344 * interrupt when we stop seeing beacons from the AP
2345 * we've associated with.
2346 */
2347 static void
2348 ath_beacon_config(struct ath_softc *sc)
2349 {
2350 #define TSF_TO_TU(_h,_l) \
2351 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2352 #define FUDGE 2
2353 struct ath_hal *ah = sc->sc_ah;
2354 struct ieee80211com *ic = &sc->sc_ic;
2355 struct ieee80211_node *ni = ic->ic_bss;
2356 u_int32_t nexttbtt, intval, tsftu;
2357 u_int64_t tsf;
2358
2359 /* extract tstamp from last beacon and convert to TU */
2360 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2361 LE_READ_4(ni->ni_tstamp.data));
2362 /* NB: the beacon interval is kept internally in TU's */
2363 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2364 if (nexttbtt == 0) /* e.g. for ap mode */
2365 nexttbtt = intval;
2366 else if (intval) /* NB: can be 0 for monitor mode */
2367 nexttbtt = roundup(nexttbtt, intval);
2368 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2369 __func__, nexttbtt, intval, ni->ni_intval);
2370 if (ic->ic_opmode == IEEE80211_M_STA) {
2371 HAL_BEACON_STATE bs;
2372 int dtimperiod, dtimcount;
2373 int cfpperiod, cfpcount;
2374
2375 /*
2376 * Setup dtim and cfp parameters according to
2377 * last beacon we received (which may be none).
2378 */
2379 dtimperiod = ni->ni_dtim_period;
2380 if (dtimperiod <= 0) /* NB: 0 if not known */
2381 dtimperiod = 1;
2382 dtimcount = ni->ni_dtim_count;
2383 if (dtimcount >= dtimperiod) /* NB: sanity check */
2384 dtimcount = 0; /* XXX? */
2385 cfpperiod = 1; /* NB: no PCF support yet */
2386 cfpcount = 0;
2387 /*
2388 * Pull nexttbtt forward to reflect the current
2389 * TSF and calculate dtim+cfp state for the result.
2390 */
2391 tsf = ath_hal_gettsf64(ah);
2392 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2393 do {
2394 nexttbtt += intval;
2395 if (--dtimcount < 0) {
2396 dtimcount = dtimperiod - 1;
2397 if (--cfpcount < 0)
2398 cfpcount = cfpperiod - 1;
2399 }
2400 } while (nexttbtt < tsftu);
2401 memset(&bs, 0, sizeof(bs));
2402 bs.bs_intval = intval;
2403 bs.bs_nexttbtt = nexttbtt;
2404 bs.bs_dtimperiod = dtimperiod*intval;
2405 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2406 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2407 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2408 bs.bs_cfpmaxduration = 0;
2409 #if 0
2410 /*
2411 * The 802.11 layer records the offset to the DTIM
2412 * bitmap while receiving beacons; use it here to
2413 * enable h/w detection of our AID being marked in
2414 * the bitmap vector (to indicate frames for us are
2415 * pending at the AP).
2416 * XXX do DTIM handling in s/w to WAR old h/w bugs
2417 * XXX enable based on h/w rev for newer chips
2418 */
2419 bs.bs_timoffset = ni->ni_timoff;
2420 #endif
2421 /*
2422 * Calculate the number of consecutive beacons to miss
2423 * before taking a BMISS interrupt. The configuration
2424 * is specified in ms, so we need to convert that to
2425 * TU's and then calculate based on the beacon interval.
2426 * Note that we clamp the result to at most 10 beacons.
2427 */
2428 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2429 if (bs.bs_bmissthreshold > 10)
2430 bs.bs_bmissthreshold = 10;
2431 else if (bs.bs_bmissthreshold <= 0)
2432 bs.bs_bmissthreshold = 1;
2433
2434 /*
2435 * Calculate sleep duration. The configuration is
2436 * given in ms. We insure a multiple of the beacon
2437 * period is used. Also, if the sleep duration is
2438 * greater than the DTIM period then it makes senses
2439 * to make it a multiple of that.
2440 *
2441 * XXX fixed at 100ms
2442 */
2443 bs.bs_sleepduration =
2444 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2445 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2446 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2447
2448 DPRINTF(sc, ATH_DEBUG_BEACON,
2449 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2450 , __func__
2451 , tsf, tsftu
2452 , bs.bs_intval
2453 , bs.bs_nexttbtt
2454 , bs.bs_dtimperiod
2455 , bs.bs_nextdtim
2456 , bs.bs_bmissthreshold
2457 , bs.bs_sleepduration
2458 , bs.bs_cfpperiod
2459 , bs.bs_cfpmaxduration
2460 , bs.bs_cfpnext
2461 , bs.bs_timoffset
2462 );
2463 ath_hal_intrset(ah, 0);
2464 ath_hal_beacontimers(ah, &bs);
2465 sc->sc_imask |= HAL_INT_BMISS;
2466 ath_hal_intrset(ah, sc->sc_imask);
2467 } else {
2468 ath_hal_intrset(ah, 0);
2469 if (nexttbtt == intval)
2470 intval |= HAL_BEACON_RESET_TSF;
2471 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2472 /*
2473 * In IBSS mode enable the beacon timers but only
2474 * enable SWBA interrupts if we need to manually
2475 * prepare beacon frames. Otherwise we use a
2476 * self-linked tx descriptor and let the hardware
2477 * deal with things.
2478 */
2479 intval |= HAL_BEACON_ENA;
2480 if (!sc->sc_hasveol)
2481 sc->sc_imask |= HAL_INT_SWBA;
2482 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2483 /*
2484 * Pull nexttbtt forward to reflect
2485 * the current TSF.
2486 */
2487 tsf = ath_hal_gettsf64(ah);
2488 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2489 do {
2490 nexttbtt += intval;
2491 } while (nexttbtt < tsftu);
2492 }
2493 ath_beaconq_config(sc);
2494 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2495 /*
2496 * In AP mode we enable the beacon timers and
2497 * SWBA interrupts to prepare beacon frames.
2498 */
2499 intval |= HAL_BEACON_ENA;
2500 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2501 ath_beaconq_config(sc);
2502 }
2503 ath_hal_beaconinit(ah, nexttbtt, intval);
2504 sc->sc_bmisscount = 0;
2505 ath_hal_intrset(ah, sc->sc_imask);
2506 /*
2507 * When using a self-linked beacon descriptor in
2508 * ibss mode load it once here.
2509 */
2510 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2511 ath_beacon_proc(sc, 0);
2512 }
2513 sc->sc_syncbeacon = 0;
2514 #undef UNDEF
2515 #undef TSF_TO_TU
2516 }
2517
2518 static int
2519 ath_descdma_setup(struct ath_softc *sc,
2520 struct ath_descdma *dd, ath_bufhead *head,
2521 const char *name, int nbuf, int ndesc)
2522 {
2523 #define DS2PHYS(_dd, _ds) \
2524 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2525 struct ifnet *ifp = &sc->sc_if;
2526 struct ath_desc *ds;
2527 struct ath_buf *bf;
2528 int i, bsize, error;
2529
2530 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2531 __func__, name, nbuf, ndesc);
2532
2533 dd->dd_name = name;
2534 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2535
2536 /*
2537 * Setup DMA descriptor area.
2538 */
2539 dd->dd_dmat = sc->sc_dmat;
2540
2541 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2542 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2543
2544 if (error != 0) {
2545 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2546 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2547 goto fail0;
2548 }
2549
2550 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2551 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2552 if (error != 0) {
2553 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2554 nbuf * ndesc, dd->dd_name, error);
2555 goto fail1;
2556 }
2557
2558 /* allocate descriptors */
2559 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2560 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2561 if (error != 0) {
2562 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2563 "error %u\n", dd->dd_name, error);
2564 goto fail2;
2565 }
2566
2567 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2568 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2569 if (error != 0) {
2570 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2571 dd->dd_name, error);
2572 goto fail3;
2573 }
2574
2575 ds = dd->dd_desc;
2576 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2577 DPRINTF(sc, ATH_DEBUG_RESET,
2578 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2579 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2580 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2581
2582 /* allocate rx buffers */
2583 bsize = sizeof(struct ath_buf) * nbuf;
2584 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2585 if (bf == NULL) {
2586 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2587 dd->dd_name, bsize);
2588 goto fail4;
2589 }
2590 dd->dd_bufptr = bf;
2591
2592 STAILQ_INIT(head);
2593 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2594 bf->bf_desc = ds;
2595 bf->bf_daddr = DS2PHYS(dd, ds);
2596 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2597 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2598 if (error != 0) {
2599 if_printf(ifp, "unable to create dmamap for %s "
2600 "buffer %u, error %u\n", dd->dd_name, i, error);
2601 ath_descdma_cleanup(sc, dd, head);
2602 return error;
2603 }
2604 STAILQ_INSERT_TAIL(head, bf, bf_list);
2605 }
2606 return 0;
2607 fail4:
2608 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2609 fail3:
2610 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2611 fail2:
2612 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2613 fail1:
2614 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2615 fail0:
2616 memset(dd, 0, sizeof(*dd));
2617 return error;
2618 #undef DS2PHYS
2619 }
2620
2621 static void
2622 ath_descdma_cleanup(struct ath_softc *sc,
2623 struct ath_descdma *dd, ath_bufhead *head)
2624 {
2625 struct ath_buf *bf;
2626 struct ieee80211_node *ni;
2627
2628 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2629 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2630 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2631 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2632
2633 STAILQ_FOREACH(bf, head, bf_list) {
2634 if (bf->bf_m) {
2635 m_freem(bf->bf_m);
2636 bf->bf_m = NULL;
2637 }
2638 if (bf->bf_dmamap != NULL) {
2639 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2640 bf->bf_dmamap = NULL;
2641 }
2642 ni = bf->bf_node;
2643 bf->bf_node = NULL;
2644 if (ni != NULL) {
2645 /*
2646 * Reclaim node reference.
2647 */
2648 ieee80211_free_node(ni);
2649 }
2650 }
2651
2652 STAILQ_INIT(head);
2653 free(dd->dd_bufptr, M_ATHDEV);
2654 memset(dd, 0, sizeof(*dd));
2655 }
2656
2657 static int
2658 ath_desc_alloc(struct ath_softc *sc)
2659 {
2660 int error;
2661
2662 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2663 "rx", ath_rxbuf, 1);
2664 if (error != 0)
2665 return error;
2666
2667 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2668 "tx", ath_txbuf, ATH_TXDESC);
2669 if (error != 0) {
2670 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2671 return error;
2672 }
2673
2674 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2675 "beacon", 1, 1);
2676 if (error != 0) {
2677 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2678 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2679 return error;
2680 }
2681 return 0;
2682 }
2683
2684 static void
2685 ath_desc_free(struct ath_softc *sc)
2686 {
2687
2688 if (sc->sc_bdma.dd_desc_len != 0)
2689 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2690 if (sc->sc_txdma.dd_desc_len != 0)
2691 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2692 if (sc->sc_rxdma.dd_desc_len != 0)
2693 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2694 }
2695
2696 static struct ieee80211_node *
2697 ath_node_alloc(struct ieee80211_node_table *nt)
2698 {
2699 struct ieee80211com *ic = nt->nt_ic;
2700 struct ath_softc *sc = ic->ic_ifp->if_softc;
2701 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2702 struct ath_node *an;
2703
2704 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2705 if (an == NULL) {
2706 /* XXX stat+msg */
2707 return NULL;
2708 }
2709 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2710 ath_rate_node_init(sc, an);
2711
2712 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2713 return &an->an_node;
2714 }
2715
2716 static void
2717 ath_node_free(struct ieee80211_node *ni)
2718 {
2719 struct ieee80211com *ic = ni->ni_ic;
2720 struct ath_softc *sc = ic->ic_ifp->if_softc;
2721
2722 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2723
2724 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2725 sc->sc_node_free(ni);
2726 }
2727
2728 static u_int8_t
2729 ath_node_getrssi(const struct ieee80211_node *ni)
2730 {
2731 #define HAL_EP_RND(x, mul) \
2732 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2733 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2734 int32_t rssi;
2735
2736 /*
2737 * When only one frame is received there will be no state in
2738 * avgrssi so fallback on the value recorded by the 802.11 layer.
2739 */
2740 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2741 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2742 else
2743 rssi = ni->ni_rssi;
2744 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2745 #undef HAL_EP_RND
2746 }
2747
2748 static int
2749 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2750 {
2751 struct ath_hal *ah = sc->sc_ah;
2752 int error;
2753 struct mbuf *m;
2754 struct ath_desc *ds;
2755
2756 m = bf->bf_m;
2757 if (m == NULL) {
2758 /*
2759 * NB: by assigning a page to the rx dma buffer we
2760 * implicitly satisfy the Atheros requirement that
2761 * this buffer be cache-line-aligned and sized to be
2762 * multiple of the cache line size. Not doing this
2763 * causes weird stuff to happen (for the 5210 at least).
2764 */
2765 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2766 if (m == NULL) {
2767 DPRINTF(sc, ATH_DEBUG_ANY,
2768 "%s: no mbuf/cluster\n", __func__);
2769 sc->sc_stats.ast_rx_nombuf++;
2770 return ENOMEM;
2771 }
2772 bf->bf_m = m;
2773 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2774
2775 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2776 bf->bf_dmamap, m,
2777 BUS_DMA_NOWAIT);
2778 if (error != 0) {
2779 DPRINTF(sc, ATH_DEBUG_ANY,
2780 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2781 __func__, error);
2782 sc->sc_stats.ast_rx_busdma++;
2783 return error;
2784 }
2785 KASSERT(bf->bf_nseg == 1,
2786 ("multi-segment packet; nseg %u", bf->bf_nseg));
2787 }
2788 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2789 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2790
2791 /*
2792 * Setup descriptors. For receive we always terminate
2793 * the descriptor list with a self-linked entry so we'll
2794 * not get overrun under high load (as can happen with a
2795 * 5212 when ANI processing enables PHY error frames).
2796 *
2797 * To insure the last descriptor is self-linked we create
2798 * each descriptor as self-linked and add it to the end. As
2799 * each additional descriptor is added the previous self-linked
2800 * entry is ``fixed'' naturally. This should be safe even
2801 * if DMA is happening. When processing RX interrupts we
2802 * never remove/process the last, self-linked, entry on the
2803 * descriptor list. This insures the hardware always has
2804 * someplace to write a new frame.
2805 */
2806 ds = bf->bf_desc;
2807 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2808 ds->ds_data = bf->bf_segs[0].ds_addr;
2809 /* ds->ds_vdata = mtod(m, void *); for radar */
2810 ath_hal_setuprxdesc(ah, ds
2811 , m->m_len /* buffer size */
2812 , 0
2813 );
2814
2815 if (sc->sc_rxlink != NULL)
2816 *sc->sc_rxlink = bf->bf_daddr;
2817 sc->sc_rxlink = &ds->ds_link;
2818 return 0;
2819 }
2820
2821 /*
2822 * Extend 15-bit time stamp from rx descriptor to
2823 * a full 64-bit TSF using the specified TSF.
2824 */
2825 static inline u_int64_t
2826 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2827 {
2828 if ((tsf & 0x7fff) < rstamp)
2829 tsf -= 0x8000;
2830 return ((tsf &~ 0x7fff) | rstamp);
2831 }
2832
2833 /*
2834 * Intercept management frames to collect beacon rssi data
2835 * and to do ibss merges.
2836 */
2837 static void
2838 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2839 struct ieee80211_node *ni,
2840 int subtype, int rssi, u_int32_t rstamp)
2841 {
2842 struct ath_softc *sc = ic->ic_ifp->if_softc;
2843
2844 /*
2845 * Call up first so subsequent work can use information
2846 * potentially stored in the node (e.g. for ibss merge).
2847 */
2848 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2849 switch (subtype) {
2850 case IEEE80211_FC0_SUBTYPE_BEACON:
2851 /* update rssi statistics for use by the hal */
2852 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2853 if (sc->sc_syncbeacon &&
2854 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2855 /*
2856 * Resync beacon timers using the tsf of the beacon
2857 * frame we just received.
2858 */
2859 ath_beacon_config(sc);
2860 }
2861 /* fall thru... */
2862 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2863 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2864 ic->ic_state == IEEE80211_S_RUN) {
2865 u_int64_t tsf = ath_extend_tsf(rstamp,
2866 ath_hal_gettsf64(sc->sc_ah));
2867
2868 /*
2869 * Handle ibss merge as needed; check the tsf on the
2870 * frame before attempting the merge. The 802.11 spec
2871 * says the station should change it's bssid to match
2872 * the oldest station with the same ssid, where oldest
2873 * is determined by the tsf. Note that hardware
2874 * reconfiguration happens through callback to
2875 * ath_newstate as the state machine will go from
2876 * RUN -> RUN when this happens.
2877 */
2878 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2879 DPRINTF(sc, ATH_DEBUG_STATE,
2880 "ibss merge, rstamp %u tsf %ju "
2881 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2882 (uintmax_t)ni->ni_tstamp.tsf);
2883 (void) ieee80211_ibss_merge(ni);
2884 }
2885 }
2886 break;
2887 }
2888 }
2889
2890 /*
2891 * Set the default antenna.
2892 */
2893 static void
2894 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2895 {
2896 struct ath_hal *ah = sc->sc_ah;
2897
2898 /* XXX block beacon interrupts */
2899 ath_hal_setdefantenna(ah, antenna);
2900 if (sc->sc_defant != antenna)
2901 sc->sc_stats.ast_ant_defswitch++;
2902 sc->sc_defant = antenna;
2903 sc->sc_rxotherant = 0;
2904 }
2905
2906 static void
2907 ath_handle_micerror(struct ieee80211com *ic,
2908 struct ieee80211_frame *wh, int keyix)
2909 {
2910 struct ieee80211_node *ni;
2911
2912 /* XXX recheck MIC to deal w/ chips that lie */
2913 /* XXX discard MIC errors on !data frames */
2914 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2915 if (ni != NULL) {
2916 ieee80211_notify_michael_failure(ic, wh, keyix);
2917 ieee80211_free_node(ni);
2918 }
2919 }
2920
2921 static void
2922 ath_rx_proc(void *arg, int npending)
2923 {
2924 #define PA2DESC(_sc, _pa) \
2925 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2926 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2927 struct ath_softc *sc = arg;
2928 struct ath_buf *bf;
2929 struct ieee80211com *ic = &sc->sc_ic;
2930 struct ifnet *ifp = &sc->sc_if;
2931 struct ath_hal *ah = sc->sc_ah;
2932 struct ath_desc *ds;
2933 struct mbuf *m;
2934 struct ieee80211_node *ni;
2935 struct ath_node *an;
2936 int len, ngood, type;
2937 u_int phyerr;
2938 HAL_STATUS status;
2939 int16_t nf;
2940 u_int64_t tsf;
2941 uint8_t rxerr_tap, rxerr_mon;
2942
2943 NET_LOCK_GIANT(); /* XXX */
2944
2945 rxerr_tap =
2946 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
2947
2948 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
2949 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
2950 else if (ifp->if_flags & IFF_PROMISC)
2951 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
2952
2953 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2954 ngood = 0;
2955 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2956 tsf = ath_hal_gettsf64(ah);
2957 do {
2958 bf = STAILQ_FIRST(&sc->sc_rxbuf);
2959 if (bf == NULL) { /* NB: shouldn't happen */
2960 if_printf(ifp, "%s: no buffer!\n", __func__);
2961 break;
2962 }
2963 ds = bf->bf_desc;
2964 if (ds->ds_link == bf->bf_daddr) {
2965 /* NB: never process the self-linked entry at the end */
2966 break;
2967 }
2968 m = bf->bf_m;
2969 if (m == NULL) { /* NB: shouldn't happen */
2970 if_printf(ifp, "%s: no mbuf!\n", __func__);
2971 break;
2972 }
2973 /* XXX sync descriptor memory */
2974 /*
2975 * Must provide the virtual address of the current
2976 * descriptor, the physical address, and the virtual
2977 * address of the next descriptor in the h/w chain.
2978 * This allows the HAL to look ahead to see if the
2979 * hardware is done with a descriptor by checking the
2980 * done bit in the following descriptor and the address
2981 * of the current descriptor the DMA engine is working
2982 * on. All this is necessary because of our use of
2983 * a self-linked list to avoid rx overruns.
2984 */
2985 status = ath_hal_rxprocdesc(ah, ds,
2986 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
2987 tsf, &ds->ds_rxstat);
2988 #ifdef AR_DEBUG
2989 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2990 ath_printrxbuf(bf, status == HAL_OK);
2991 #endif
2992 if (status == HAL_EINPROGRESS)
2993 break;
2994 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2995 if (ds->ds_rxstat.rs_more) {
2996 /*
2997 * Frame spans multiple descriptors; this
2998 * cannot happen yet as we don't support
2999 * jumbograms. If not in monitor mode,
3000 * discard the frame.
3001 */
3002 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3003 sc->sc_stats.ast_rx_toobig++;
3004 goto rx_next;
3005 }
3006 /* fall thru for monitor mode handling... */
3007 } else if (ds->ds_rxstat.rs_status != 0) {
3008 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3009 sc->sc_stats.ast_rx_crcerr++;
3010 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3011 sc->sc_stats.ast_rx_fifoerr++;
3012 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3013 sc->sc_stats.ast_rx_phyerr++;
3014 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3015 sc->sc_stats.ast_rx_phy[phyerr]++;
3016 goto rx_next;
3017 }
3018 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3019 /*
3020 * Decrypt error. If the error occurred
3021 * because there was no hardware key, then
3022 * let the frame through so the upper layers
3023 * can process it. This is necessary for 5210
3024 * parts which have no way to setup a ``clear''
3025 * key cache entry.
3026 *
3027 * XXX do key cache faulting
3028 */
3029 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3030 goto rx_accept;
3031 sc->sc_stats.ast_rx_badcrypt++;
3032 }
3033 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3034 sc->sc_stats.ast_rx_badmic++;
3035 /*
3036 * Do minimal work required to hand off
3037 * the 802.11 header for notifcation.
3038 */
3039 /* XXX frag's and qos frames */
3040 len = ds->ds_rxstat.rs_datalen;
3041 if (len >= sizeof (struct ieee80211_frame)) {
3042 bus_dmamap_sync(sc->sc_dmat,
3043 bf->bf_dmamap,
3044 0, bf->bf_dmamap->dm_mapsize,
3045 BUS_DMASYNC_POSTREAD);
3046 ath_handle_micerror(ic,
3047 mtod(m, struct ieee80211_frame *),
3048 sc->sc_splitmic ?
3049 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3050 }
3051 }
3052 ifp->if_ierrors++;
3053 /*
3054 * Reject error frames, we normally don't want
3055 * to see them in monitor mode (in monitor mode
3056 * allow through packets that have crypto problems).
3057 */
3058
3059 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3060 goto rx_next;
3061 }
3062 rx_accept:
3063 /*
3064 * Sync and unmap the frame. At this point we're
3065 * committed to passing the mbuf somewhere so clear
3066 * bf_m; this means a new sk_buff must be allocated
3067 * when the rx descriptor is setup again to receive
3068 * another frame.
3069 */
3070 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3071 0, bf->bf_dmamap->dm_mapsize,
3072 BUS_DMASYNC_POSTREAD);
3073 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3074 bf->bf_m = NULL;
3075
3076 m->m_pkthdr.rcvif = ifp;
3077 len = ds->ds_rxstat.rs_datalen;
3078 m->m_pkthdr.len = m->m_len = len;
3079
3080 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3081
3082 #if NBPFILTER > 0
3083 if (sc->sc_drvbpf) {
3084 u_int8_t rix;
3085
3086 /*
3087 * Discard anything shorter than an ack or cts.
3088 */
3089 if (len < IEEE80211_ACK_LEN) {
3090 DPRINTF(sc, ATH_DEBUG_RECV,
3091 "%s: runt packet %d\n",
3092 __func__, len);
3093 sc->sc_stats.ast_rx_tooshort++;
3094 m_freem(m);
3095 goto rx_next;
3096 }
3097 rix = ds->ds_rxstat.rs_rate;
3098 sc->sc_rx_th.wr_tsf = htole64(
3099 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3100 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3101 if (ds->ds_rxstat.rs_status &
3102 (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3103 sc->sc_rx_th.wr_flags |=
3104 IEEE80211_RADIOTAP_F_BADFCS;
3105 }
3106 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3107 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3108 sc->sc_rx_th.wr_antnoise = nf;
3109 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3110
3111 bpf_mtap2(sc->sc_drvbpf,
3112 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3113 }
3114 #endif
3115
3116 if (ds->ds_rxstat.rs_status & rxerr_tap) {
3117 m_freem(m);
3118 goto rx_next;
3119 }
3120 /*
3121 * From this point on we assume the frame is at least
3122 * as large as ieee80211_frame_min; verify that.
3123 */
3124 if (len < IEEE80211_MIN_LEN) {
3125 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3126 __func__, len);
3127 sc->sc_stats.ast_rx_tooshort++;
3128 m_freem(m);
3129 goto rx_next;
3130 }
3131
3132 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3133 ieee80211_dump_pkt(mtod(m, void *), len,
3134 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3135 ds->ds_rxstat.rs_rssi);
3136 }
3137
3138 m_adj(m, -IEEE80211_CRC_LEN);
3139
3140 /*
3141 * Locate the node for sender, track state, and then
3142 * pass the (referenced) node up to the 802.11 layer
3143 * for its use.
3144 */
3145 ni = ieee80211_find_rxnode_withkey(ic,
3146 mtod(m, const struct ieee80211_frame_min *),
3147 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3148 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3149 /*
3150 * Track rx rssi and do any rx antenna management.
3151 */
3152 an = ATH_NODE(ni);
3153 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3154 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3155 /*
3156 * Send frame up for processing.
3157 */
3158 type = ieee80211_input(ic, m, ni,
3159 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3160 ieee80211_free_node(ni);
3161 if (sc->sc_diversity) {
3162 /*
3163 * When using fast diversity, change the default rx
3164 * antenna if diversity chooses the other antenna 3
3165 * times in a row.
3166 */
3167 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3168 if (++sc->sc_rxotherant >= 3)
3169 ath_setdefantenna(sc,
3170 ds->ds_rxstat.rs_antenna);
3171 } else
3172 sc->sc_rxotherant = 0;
3173 }
3174 if (sc->sc_softled) {
3175 /*
3176 * Blink for any data frame. Otherwise do a
3177 * heartbeat-style blink when idle. The latter
3178 * is mainly for station mode where we depend on
3179 * periodic beacon frames to trigger the poll event.
3180 */
3181 if (type == IEEE80211_FC0_TYPE_DATA) {
3182 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3183 ath_led_event(sc, ATH_LED_RX);
3184 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3185 ath_led_event(sc, ATH_LED_POLL);
3186 }
3187 /*
3188 * Arrange to update the last rx timestamp only for
3189 * frames from our ap when operating in station mode.
3190 * This assumes the rx key is always setup when associated.
3191 */
3192 if (ic->ic_opmode == IEEE80211_M_STA &&
3193 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3194 ngood++;
3195 rx_next:
3196 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3197 } while (ath_rxbuf_init(sc, bf) == 0);
3198
3199 /* rx signal state monitoring */
3200 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3201 #if 0
3202 if (ath_hal_radar_event(ah))
3203 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3204 #endif
3205 if (ngood)
3206 sc->sc_lastrx = tsf;
3207
3208 #ifdef __NetBSD__
3209 /* XXX Why isn't this necessary in FreeBSD? */
3210 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3211 ath_start(ifp);
3212 #endif /* __NetBSD__ */
3213
3214 NET_UNLOCK_GIANT(); /* XXX */
3215 #undef PA2DESC
3216 }
3217
3218 /*
3219 * Setup a h/w transmit queue.
3220 */
3221 static struct ath_txq *
3222 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3223 {
3224 #define N(a) (sizeof(a)/sizeof(a[0]))
3225 struct ath_hal *ah = sc->sc_ah;
3226 HAL_TXQ_INFO qi;
3227 int qnum;
3228
3229 memset(&qi, 0, sizeof(qi));
3230 qi.tqi_subtype = subtype;
3231 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3232 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3233 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3234 /*
3235 * Enable interrupts only for EOL and DESC conditions.
3236 * We mark tx descriptors to receive a DESC interrupt
3237 * when a tx queue gets deep; otherwise waiting for the
3238 * EOL to reap descriptors. Note that this is done to
3239 * reduce interrupt load and this only defers reaping
3240 * descriptors, never transmitting frames. Aside from
3241 * reducing interrupts this also permits more concurrency.
3242 * The only potential downside is if the tx queue backs
3243 * up in which case the top half of the kernel may backup
3244 * due to a lack of tx descriptors.
3245 */
3246 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3247 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3248 if (qnum == -1) {
3249 /*
3250 * NB: don't print a message, this happens
3251 * normally on parts with too few tx queues
3252 */
3253 return NULL;
3254 }
3255 if (qnum >= N(sc->sc_txq)) {
3256 device_printf(sc->sc_dev,
3257 "hal qnum %u out of range, max %zu!\n",
3258 qnum, N(sc->sc_txq));
3259 ath_hal_releasetxqueue(ah, qnum);
3260 return NULL;
3261 }
3262 if (!ATH_TXQ_SETUP(sc, qnum)) {
3263 struct ath_txq *txq = &sc->sc_txq[qnum];
3264
3265 txq->axq_qnum = qnum;
3266 txq->axq_depth = 0;
3267 txq->axq_intrcnt = 0;
3268 txq->axq_link = NULL;
3269 STAILQ_INIT(&txq->axq_q);
3270 ATH_TXQ_LOCK_INIT(sc, txq);
3271 sc->sc_txqsetup |= 1<<qnum;
3272 }
3273 return &sc->sc_txq[qnum];
3274 #undef N
3275 }
3276
3277 /*
3278 * Setup a hardware data transmit queue for the specified
3279 * access control. The hal may not support all requested
3280 * queues in which case it will return a reference to a
3281 * previously setup queue. We record the mapping from ac's
3282 * to h/w queues for use by ath_tx_start and also track
3283 * the set of h/w queues being used to optimize work in the
3284 * transmit interrupt handler and related routines.
3285 */
3286 static int
3287 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3288 {
3289 #define N(a) (sizeof(a)/sizeof(a[0]))
3290 struct ath_txq *txq;
3291
3292 if (ac >= N(sc->sc_ac2q)) {
3293 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3294 ac, N(sc->sc_ac2q));
3295 return 0;
3296 }
3297 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3298 if (txq != NULL) {
3299 sc->sc_ac2q[ac] = txq;
3300 return 1;
3301 } else
3302 return 0;
3303 #undef N
3304 }
3305
3306 /*
3307 * Update WME parameters for a transmit queue.
3308 */
3309 static int
3310 ath_txq_update(struct ath_softc *sc, int ac)
3311 {
3312 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3313 #define ATH_TXOP_TO_US(v) (v<<5)
3314 struct ieee80211com *ic = &sc->sc_ic;
3315 struct ath_txq *txq = sc->sc_ac2q[ac];
3316 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3317 struct ath_hal *ah = sc->sc_ah;
3318 HAL_TXQ_INFO qi;
3319
3320 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3321 qi.tqi_aifs = wmep->wmep_aifsn;
3322 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3323 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3324 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3325
3326 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3327 device_printf(sc->sc_dev, "unable to update hardware queue "
3328 "parameters for %s traffic!\n",
3329 ieee80211_wme_acnames[ac]);
3330 return 0;
3331 } else {
3332 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3333 return 1;
3334 }
3335 #undef ATH_TXOP_TO_US
3336 #undef ATH_EXPONENT_TO_VALUE
3337 }
3338
3339 /*
3340 * Callback from the 802.11 layer to update WME parameters.
3341 */
3342 static int
3343 ath_wme_update(struct ieee80211com *ic)
3344 {
3345 struct ath_softc *sc = ic->ic_ifp->if_softc;
3346
3347 return !ath_txq_update(sc, WME_AC_BE) ||
3348 !ath_txq_update(sc, WME_AC_BK) ||
3349 !ath_txq_update(sc, WME_AC_VI) ||
3350 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3351 }
3352
3353 /*
3354 * Reclaim resources for a setup queue.
3355 */
3356 static void
3357 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3358 {
3359
3360 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3361 ATH_TXQ_LOCK_DESTROY(txq);
3362 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3363 }
3364
3365 /*
3366 * Reclaim all tx queue resources.
3367 */
3368 static void
3369 ath_tx_cleanup(struct ath_softc *sc)
3370 {
3371 int i;
3372
3373 ATH_TXBUF_LOCK_DESTROY(sc);
3374 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3375 if (ATH_TXQ_SETUP(sc, i))
3376 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3377 }
3378
3379 /*
3380 * Defragment an mbuf chain, returning at most maxfrags separate
3381 * mbufs+clusters. If this is not possible NULL is returned and
3382 * the original mbuf chain is left in it's present (potentially
3383 * modified) state. We use two techniques: collapsing consecutive
3384 * mbufs and replacing consecutive mbufs by a cluster.
3385 */
3386 static struct mbuf *
3387 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3388 {
3389 struct mbuf *m, *n, *n2, **prev;
3390 u_int curfrags;
3391
3392 /*
3393 * Calculate the current number of frags.
3394 */
3395 curfrags = 0;
3396 for (m = m0; m != NULL; m = m->m_next)
3397 curfrags++;
3398 /*
3399 * First, try to collapse mbufs. Note that we always collapse
3400 * towards the front so we don't need to deal with moving the
3401 * pkthdr. This may be suboptimal if the first mbuf has much
3402 * less data than the following.
3403 */
3404 m = m0;
3405 again:
3406 for (;;) {
3407 n = m->m_next;
3408 if (n == NULL)
3409 break;
3410 if (n->m_len < M_TRAILINGSPACE(m)) {
3411 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3412 n->m_len);
3413 m->m_len += n->m_len;
3414 m->m_next = n->m_next;
3415 m_free(n);
3416 if (--curfrags <= maxfrags)
3417 return m0;
3418 } else
3419 m = n;
3420 }
3421 KASSERT(maxfrags > 1,
3422 ("maxfrags %u, but normal collapse failed", maxfrags));
3423 /*
3424 * Collapse consecutive mbufs to a cluster.
3425 */
3426 prev = &m0->m_next; /* NB: not the first mbuf */
3427 while ((n = *prev) != NULL) {
3428 if ((n2 = n->m_next) != NULL &&
3429 n->m_len + n2->m_len < MCLBYTES) {
3430 m = m_getcl(how, MT_DATA, 0);
3431 if (m == NULL)
3432 goto bad;
3433 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3434 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3435 n2->m_len);
3436 m->m_len = n->m_len + n2->m_len;
3437 m->m_next = n2->m_next;
3438 *prev = m;
3439 m_free(n);
3440 m_free(n2);
3441 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3442 return m0;
3443 /*
3444 * Still not there, try the normal collapse
3445 * again before we allocate another cluster.
3446 */
3447 goto again;
3448 }
3449 prev = &n->m_next;
3450 }
3451 /*
3452 * No place where we can collapse to a cluster; punt.
3453 * This can occur if, for example, you request 2 frags
3454 * but the packet requires that both be clusters (we
3455 * never reallocate the first mbuf to avoid moving the
3456 * packet header).
3457 */
3458 bad:
3459 return NULL;
3460 }
3461
3462 /*
3463 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3464 */
3465 static int
3466 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3467 {
3468 int i;
3469
3470 for (i = 0; i < rt->rateCount; i++)
3471 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3472 return i;
3473 return 0; /* NB: lowest rate */
3474 }
3475
3476 static void
3477 ath_freetx(struct mbuf *m)
3478 {
3479 struct mbuf *next;
3480
3481 do {
3482 next = m->m_nextpkt;
3483 m->m_nextpkt = NULL;
3484 m_freem(m);
3485 } while ((m = next) != NULL);
3486 }
3487
3488 static int
3489 deduct_pad_bytes(int len, int hdrlen)
3490 {
3491 /* XXX I am suspicious that this code, which I extracted
3492 * XXX from ath_tx_start() for reuse, does the right thing.
3493 */
3494 return len - (hdrlen & 3);
3495 }
3496
3497 static int
3498 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3499 struct mbuf *m0)
3500 {
3501 struct ieee80211com *ic = &sc->sc_ic;
3502 struct ath_hal *ah = sc->sc_ah;
3503 struct ifnet *ifp = &sc->sc_if;
3504 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3505 int i, error, iswep, ismcast, isfrag, ismrr;
3506 int keyix, hdrlen, pktlen, try0;
3507 u_int8_t rix, txrate, ctsrate;
3508 u_int8_t cix = 0xff; /* NB: silence compiler */
3509 struct ath_desc *ds, *ds0;
3510 struct ath_txq *txq;
3511 struct ieee80211_frame *wh;
3512 u_int subtype, flags, ctsduration;
3513 HAL_PKT_TYPE atype;
3514 const HAL_RATE_TABLE *rt;
3515 HAL_BOOL shortPreamble;
3516 struct ath_node *an;
3517 struct mbuf *m;
3518 u_int pri;
3519
3520 wh = mtod(m0, struct ieee80211_frame *);
3521 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3522 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3523 isfrag = m0->m_flags & M_FRAG;
3524 hdrlen = ieee80211_anyhdrsize(wh);
3525 /*
3526 * Packet length must not include any
3527 * pad bytes; deduct them here.
3528 */
3529 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3530
3531 if (iswep) {
3532 const struct ieee80211_cipher *cip;
3533 struct ieee80211_key *k;
3534
3535 /*
3536 * Construct the 802.11 header+trailer for an encrypted
3537 * frame. The only reason this can fail is because of an
3538 * unknown or unsupported cipher/key type.
3539 */
3540 k = ieee80211_crypto_encap(ic, ni, m0);
3541 if (k == NULL) {
3542 /*
3543 * This can happen when the key is yanked after the
3544 * frame was queued. Just discard the frame; the
3545 * 802.11 layer counts failures and provides
3546 * debugging/diagnostics.
3547 */
3548 ath_freetx(m0);
3549 return EIO;
3550 }
3551 /*
3552 * Adjust the packet + header lengths for the crypto
3553 * additions and calculate the h/w key index. When
3554 * a s/w mic is done the frame will have had any mic
3555 * added to it prior to entry so m0->m_pkthdr.len above will
3556 * account for it. Otherwise we need to add it to the
3557 * packet length.
3558 */
3559 cip = k->wk_cipher;
3560 hdrlen += cip->ic_header;
3561 pktlen += cip->ic_header + cip->ic_trailer;
3562 /* NB: frags always have any TKIP MIC done in s/w */
3563 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3564 pktlen += cip->ic_miclen;
3565 keyix = k->wk_keyix;
3566
3567 /* packet header may have moved, reset our local pointer */
3568 wh = mtod(m0, struct ieee80211_frame *);
3569 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3570 /*
3571 * Use station key cache slot, if assigned.
3572 */
3573 keyix = ni->ni_ucastkey.wk_keyix;
3574 if (keyix == IEEE80211_KEYIX_NONE)
3575 keyix = HAL_TXKEYIX_INVALID;
3576 } else
3577 keyix = HAL_TXKEYIX_INVALID;
3578
3579 pktlen += IEEE80211_CRC_LEN;
3580
3581 /*
3582 * Load the DMA map so any coalescing is done. This
3583 * also calculates the number of descriptors we need.
3584 */
3585 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3586 BUS_DMA_NOWAIT);
3587 if (error == EFBIG) {
3588 /* XXX packet requires too many descriptors */
3589 bf->bf_nseg = ATH_TXDESC+1;
3590 } else if (error != 0) {
3591 sc->sc_stats.ast_tx_busdma++;
3592 ath_freetx(m0);
3593 return error;
3594 }
3595 /*
3596 * Discard null packets and check for packets that
3597 * require too many TX descriptors. We try to convert
3598 * the latter to a cluster.
3599 */
3600 if (error == EFBIG) { /* too many desc's, linearize */
3601 sc->sc_stats.ast_tx_linear++;
3602 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3603 if (m == NULL) {
3604 ath_freetx(m0);
3605 sc->sc_stats.ast_tx_nombuf++;
3606 return ENOMEM;
3607 }
3608 m0 = m;
3609 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3610 BUS_DMA_NOWAIT);
3611 if (error != 0) {
3612 sc->sc_stats.ast_tx_busdma++;
3613 ath_freetx(m0);
3614 return error;
3615 }
3616 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3617 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3618 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3619 sc->sc_stats.ast_tx_nodata++;
3620 ath_freetx(m0);
3621 return EIO;
3622 }
3623 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3624 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3625 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3626 bf->bf_m = m0;
3627 bf->bf_node = ni; /* NB: held reference */
3628
3629 /* setup descriptors */
3630 ds = bf->bf_desc;
3631 rt = sc->sc_currates;
3632 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3633
3634 /*
3635 * NB: the 802.11 layer marks whether or not we should
3636 * use short preamble based on the current mode and
3637 * negotiated parameters.
3638 */
3639 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3640 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3641 shortPreamble = AH_TRUE;
3642 sc->sc_stats.ast_tx_shortpre++;
3643 } else {
3644 shortPreamble = AH_FALSE;
3645 }
3646
3647 an = ATH_NODE(ni);
3648 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3649 ismrr = 0; /* default no multi-rate retry*/
3650 /*
3651 * Calculate Atheros packet type from IEEE80211 packet header,
3652 * setup for rate calculations, and select h/w transmit queue.
3653 */
3654 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3655 case IEEE80211_FC0_TYPE_MGT:
3656 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3657 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3658 atype = HAL_PKT_TYPE_BEACON;
3659 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3660 atype = HAL_PKT_TYPE_PROBE_RESP;
3661 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3662 atype = HAL_PKT_TYPE_ATIM;
3663 else
3664 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3665 rix = sc->sc_minrateix;
3666 txrate = rt->info[rix].rateCode;
3667 if (shortPreamble)
3668 txrate |= rt->info[rix].shortPreamble;
3669 try0 = ATH_TXMGTTRY;
3670 /* NB: force all management frames to highest queue */
3671 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3672 /* NB: force all management frames to highest queue */
3673 pri = WME_AC_VO;
3674 } else
3675 pri = WME_AC_BE;
3676 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3677 break;
3678 case IEEE80211_FC0_TYPE_CTL:
3679 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3680 rix = sc->sc_minrateix;
3681 txrate = rt->info[rix].rateCode;
3682 if (shortPreamble)
3683 txrate |= rt->info[rix].shortPreamble;
3684 try0 = ATH_TXMGTTRY;
3685 /* NB: force all ctl frames to highest queue */
3686 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3687 /* NB: force all ctl frames to highest queue */
3688 pri = WME_AC_VO;
3689 } else
3690 pri = WME_AC_BE;
3691 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3692 break;
3693 case IEEE80211_FC0_TYPE_DATA:
3694 atype = HAL_PKT_TYPE_NORMAL; /* default */
3695 /*
3696 * Data frames: multicast frames go out at a fixed rate,
3697 * otherwise consult the rate control module for the
3698 * rate to use.
3699 */
3700 if (ismcast) {
3701 /*
3702 * Check mcast rate setting in case it's changed.
3703 * XXX move out of fastpath
3704 */
3705 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3706 sc->sc_mcastrix =
3707 ath_tx_findrix(rt, ic->ic_mcast_rate);
3708 sc->sc_mcastrate = ic->ic_mcast_rate;
3709 }
3710 rix = sc->sc_mcastrix;
3711 txrate = rt->info[rix].rateCode;
3712 try0 = 1;
3713 } else {
3714 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3715 &rix, &try0, &txrate);
3716 sc->sc_txrate = txrate; /* for LED blinking */
3717 if (try0 != ATH_TXMAXTRY)
3718 ismrr = 1;
3719 }
3720 pri = M_WME_GETAC(m0);
3721 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3722 flags |= HAL_TXDESC_NOACK;
3723 break;
3724 default:
3725 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3726 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3727 /* XXX statistic */
3728 ath_freetx(m0);
3729 return EIO;
3730 }
3731 txq = sc->sc_ac2q[pri];
3732
3733 /*
3734 * When servicing one or more stations in power-save mode
3735 * multicast frames must be buffered until after the beacon.
3736 * We use the CAB queue for that.
3737 */
3738 if (ismcast && ic->ic_ps_sta) {
3739 txq = sc->sc_cabq;
3740 /* XXX? more bit in 802.11 frame header */
3741 }
3742
3743 /*
3744 * Calculate miscellaneous flags.
3745 */
3746 if (ismcast) {
3747 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3748 } else if (pktlen > ic->ic_rtsthreshold) {
3749 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3750 cix = rt->info[rix].controlRate;
3751 sc->sc_stats.ast_tx_rts++;
3752 }
3753 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3754 sc->sc_stats.ast_tx_noack++;
3755
3756 /*
3757 * If 802.11g protection is enabled, determine whether
3758 * to use RTS/CTS or just CTS. Note that this is only
3759 * done for OFDM unicast frames.
3760 */
3761 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3762 rt->info[rix].phy == IEEE80211_T_OFDM &&
3763 (flags & HAL_TXDESC_NOACK) == 0) {
3764 /* XXX fragments must use CCK rates w/ protection */
3765 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3766 flags |= HAL_TXDESC_RTSENA;
3767 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3768 flags |= HAL_TXDESC_CTSENA;
3769 if (isfrag) {
3770 /*
3771 * For frags it would be desirable to use the
3772 * highest CCK rate for RTS/CTS. But stations
3773 * farther away may detect it at a lower CCK rate
3774 * so use the configured protection rate instead
3775 * (for now).
3776 */
3777 cix = rt->info[sc->sc_protrix].controlRate;
3778 } else
3779 cix = rt->info[sc->sc_protrix].controlRate;
3780 sc->sc_stats.ast_tx_protect++;
3781 }
3782
3783 /*
3784 * Calculate duration. This logically belongs in the 802.11
3785 * layer but it lacks sufficient information to calculate it.
3786 */
3787 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3788 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3789 u_int16_t dur;
3790 /*
3791 * XXX not right with fragmentation.
3792 */
3793 if (shortPreamble)
3794 dur = rt->info[rix].spAckDuration;
3795 else
3796 dur = rt->info[rix].lpAckDuration;
3797 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3798 dur += dur; /* additional SIFS+ACK */
3799 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3800 /*
3801 * Include the size of next fragment so NAV is
3802 * updated properly. The last fragment uses only
3803 * the ACK duration
3804 */
3805 dur += ath_hal_computetxtime(ah, rt,
3806 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3807 hdrlen) -
3808 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3809 rix, shortPreamble);
3810 }
3811 if (isfrag) {
3812 /*
3813 * Force hardware to use computed duration for next
3814 * fragment by disabling multi-rate retry which updates
3815 * duration based on the multi-rate duration table.
3816 */
3817 try0 = ATH_TXMAXTRY;
3818 }
3819 *(u_int16_t *)wh->i_dur = htole16(dur);
3820 }
3821
3822 /*
3823 * Calculate RTS/CTS rate and duration if needed.
3824 */
3825 ctsduration = 0;
3826 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3827 /*
3828 * CTS transmit rate is derived from the transmit rate
3829 * by looking in the h/w rate table. We must also factor
3830 * in whether or not a short preamble is to be used.
3831 */
3832 /* NB: cix is set above where RTS/CTS is enabled */
3833 KASSERT(cix != 0xff, ("cix not setup"));
3834 ctsrate = rt->info[cix].rateCode;
3835 /*
3836 * Compute the transmit duration based on the frame
3837 * size and the size of an ACK frame. We call into the
3838 * HAL to do the computation since it depends on the
3839 * characteristics of the actual PHY being used.
3840 *
3841 * NB: CTS is assumed the same size as an ACK so we can
3842 * use the precalculated ACK durations.
3843 */
3844 if (shortPreamble) {
3845 ctsrate |= rt->info[cix].shortPreamble;
3846 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3847 ctsduration += rt->info[cix].spAckDuration;
3848 ctsduration += ath_hal_computetxtime(ah,
3849 rt, pktlen, rix, AH_TRUE);
3850 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3851 ctsduration += rt->info[rix].spAckDuration;
3852 } else {
3853 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3854 ctsduration += rt->info[cix].lpAckDuration;
3855 ctsduration += ath_hal_computetxtime(ah,
3856 rt, pktlen, rix, AH_FALSE);
3857 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3858 ctsduration += rt->info[rix].lpAckDuration;
3859 }
3860 /*
3861 * Must disable multi-rate retry when using RTS/CTS.
3862 */
3863 ismrr = 0;
3864 try0 = ATH_TXMGTTRY; /* XXX */
3865 } else
3866 ctsrate = 0;
3867
3868 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3869 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3870 sc->sc_hwmap[txrate].ieeerate, -1);
3871 #if NBPFILTER > 0
3872 if (ic->ic_rawbpf)
3873 bpf_mtap(ic->ic_rawbpf, m0);
3874 if (sc->sc_drvbpf) {
3875 u_int64_t tsf = ath_hal_gettsf64(ah);
3876
3877 sc->sc_tx_th.wt_tsf = htole64(tsf);
3878 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3879 if (iswep)
3880 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3881 if (isfrag)
3882 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3883 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3884 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3885 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3886
3887 bpf_mtap2(sc->sc_drvbpf,
3888 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3889 }
3890 #endif
3891
3892 /*
3893 * Determine if a tx interrupt should be generated for
3894 * this descriptor. We take a tx interrupt to reap
3895 * descriptors when the h/w hits an EOL condition or
3896 * when the descriptor is specifically marked to generate
3897 * an interrupt. We periodically mark descriptors in this
3898 * way to insure timely replenishing of the supply needed
3899 * for sending frames. Defering interrupts reduces system
3900 * load and potentially allows more concurrent work to be
3901 * done but if done to aggressively can cause senders to
3902 * backup.
3903 *
3904 * NB: use >= to deal with sc_txintrperiod changing
3905 * dynamically through sysctl.
3906 */
3907 if (flags & HAL_TXDESC_INTREQ) {
3908 txq->axq_intrcnt = 0;
3909 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3910 flags |= HAL_TXDESC_INTREQ;
3911 txq->axq_intrcnt = 0;
3912 }
3913
3914 /*
3915 * Formulate first tx descriptor with tx controls.
3916 */
3917 /* XXX check return value? */
3918 ath_hal_setuptxdesc(ah, ds
3919 , pktlen /* packet length */
3920 , hdrlen /* header length */
3921 , atype /* Atheros packet type */
3922 , ni->ni_txpower /* txpower */
3923 , txrate, try0 /* series 0 rate/tries */
3924 , keyix /* key cache index */
3925 , sc->sc_txantenna /* antenna mode */
3926 , flags /* flags */
3927 , ctsrate /* rts/cts rate */
3928 , ctsduration /* rts/cts duration */
3929 );
3930 bf->bf_flags = flags;
3931 /*
3932 * Setup the multi-rate retry state only when we're
3933 * going to use it. This assumes ath_hal_setuptxdesc
3934 * initializes the descriptors (so we don't have to)
3935 * when the hardware supports multi-rate retry and
3936 * we don't use it.
3937 */
3938 if (ismrr)
3939 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3940
3941 /*
3942 * Fillin the remainder of the descriptor info.
3943 */
3944 ds0 = ds;
3945 for (i = 0; i < bf->bf_nseg; i++, ds++) {
3946 ds->ds_data = bf->bf_segs[i].ds_addr;
3947 if (i == bf->bf_nseg - 1)
3948 ds->ds_link = 0;
3949 else
3950 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3951 ath_hal_filltxdesc(ah, ds
3952 , bf->bf_segs[i].ds_len /* segment length */
3953 , i == 0 /* first segment */
3954 , i == bf->bf_nseg - 1 /* last segment */
3955 , ds0 /* first descriptor */
3956 );
3957
3958 /* NB: The desc swap function becomes void,
3959 * if descriptor swapping is not enabled
3960 */
3961 ath_desc_swap(ds);
3962
3963 DPRINTF(sc, ATH_DEBUG_XMIT,
3964 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
3965 __func__, i, ds->ds_link, ds->ds_data,
3966 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3967 }
3968 /*
3969 * Insert the frame on the outbound list and
3970 * pass it on to the hardware.
3971 */
3972 ATH_TXQ_LOCK(txq);
3973 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3974 if (txq->axq_link == NULL) {
3975 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3976 DPRINTF(sc, ATH_DEBUG_XMIT,
3977 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3978 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3979 txq->axq_depth);
3980 } else {
3981 *txq->axq_link = HTOAH32(bf->bf_daddr);
3982 DPRINTF(sc, ATH_DEBUG_XMIT,
3983 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3984 __func__, txq->axq_qnum, txq->axq_link,
3985 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3986 }
3987 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3988 /*
3989 * The CAB queue is started from the SWBA handler since
3990 * frames only go out on DTIM and to avoid possible races.
3991 */
3992 if (txq != sc->sc_cabq)
3993 ath_hal_txstart(ah, txq->axq_qnum);
3994 ATH_TXQ_UNLOCK(txq);
3995
3996 return 0;
3997 }
3998
3999 /*
4000 * Process completed xmit descriptors from the specified queue.
4001 */
4002 static int
4003 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4004 {
4005 struct ath_hal *ah = sc->sc_ah;
4006 struct ieee80211com *ic = &sc->sc_ic;
4007 struct ath_buf *bf;
4008 struct ath_desc *ds, *ds0;
4009 struct ieee80211_node *ni;
4010 struct ath_node *an;
4011 int sr, lr, pri, nacked;
4012 HAL_STATUS status;
4013
4014 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4015 __func__, txq->axq_qnum,
4016 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4017 txq->axq_link);
4018 nacked = 0;
4019 for (;;) {
4020 ATH_TXQ_LOCK(txq);
4021 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4022 bf = STAILQ_FIRST(&txq->axq_q);
4023 if (bf == NULL) {
4024 txq->axq_link = NULL;
4025 ATH_TXQ_UNLOCK(txq);
4026 break;
4027 }
4028 ds0 = &bf->bf_desc[0];
4029 ds = &bf->bf_desc[bf->bf_nseg - 1];
4030 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4031 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4032 ath_printtxbuf(bf, status == HAL_OK);
4033 if (status == HAL_EINPROGRESS) {
4034 ATH_TXQ_UNLOCK(txq);
4035 break;
4036 }
4037 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4038 ATH_TXQ_UNLOCK(txq);
4039
4040 ni = bf->bf_node;
4041 if (ni != NULL) {
4042 an = ATH_NODE(ni);
4043 if (ds->ds_txstat.ts_status == 0) {
4044 u_int8_t txant = ds->ds_txstat.ts_antenna;
4045 sc->sc_stats.ast_ant_tx[txant]++;
4046 sc->sc_ant_tx[txant]++;
4047 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4048 sc->sc_stats.ast_tx_altrate++;
4049 sc->sc_stats.ast_tx_rssi =
4050 ds->ds_txstat.ts_rssi;
4051 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4052 ds->ds_txstat.ts_rssi);
4053 pri = M_WME_GETAC(bf->bf_m);
4054 if (pri >= WME_AC_VO)
4055 ic->ic_wme.wme_hipri_traffic++;
4056 ni->ni_inact = ni->ni_inact_reload;
4057 } else {
4058 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4059 sc->sc_stats.ast_tx_xretries++;
4060 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4061 sc->sc_stats.ast_tx_fifoerr++;
4062 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4063 sc->sc_stats.ast_tx_filtered++;
4064 }
4065 sr = ds->ds_txstat.ts_shortretry;
4066 lr = ds->ds_txstat.ts_longretry;
4067 sc->sc_stats.ast_tx_shortretry += sr;
4068 sc->sc_stats.ast_tx_longretry += lr;
4069 /*
4070 * Hand the descriptor to the rate control algorithm.
4071 */
4072 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4073 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4074 /*
4075 * If frame was ack'd update the last rx time
4076 * used to workaround phantom bmiss interrupts.
4077 */
4078 if (ds->ds_txstat.ts_status == 0)
4079 nacked++;
4080 ath_rate_tx_complete(sc, an, ds, ds0);
4081 }
4082 /*
4083 * Reclaim reference to node.
4084 *
4085 * NB: the node may be reclaimed here if, for example
4086 * this is a DEAUTH message that was sent and the
4087 * node was timed out due to inactivity.
4088 */
4089 ieee80211_free_node(ni);
4090 }
4091 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4092 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4093 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4094 m_freem(bf->bf_m);
4095 bf->bf_m = NULL;
4096 bf->bf_node = NULL;
4097
4098 ATH_TXBUF_LOCK(sc);
4099 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4100 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4101 ATH_TXBUF_UNLOCK(sc);
4102 }
4103 return nacked;
4104 }
4105
4106 static inline int
4107 txqactive(struct ath_hal *ah, int qnum)
4108 {
4109 u_int32_t txqs = 1<<qnum;
4110 ath_hal_gettxintrtxqs(ah, &txqs);
4111 return (txqs & (1<<qnum));
4112 }
4113
4114 /*
4115 * Deferred processing of transmit interrupt; special-cased
4116 * for a single hardware transmit queue (e.g. 5210 and 5211).
4117 */
4118 static void
4119 ath_tx_proc_q0(void *arg, int npending)
4120 {
4121 struct ath_softc *sc = arg;
4122 struct ifnet *ifp = &sc->sc_if;
4123
4124 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4125 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4126 }
4127 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4128 ath_tx_processq(sc, sc->sc_cabq);
4129
4130 if (sc->sc_softled)
4131 ath_led_event(sc, ATH_LED_TX);
4132
4133 ath_start(ifp);
4134 }
4135
4136 /*
4137 * Deferred processing of transmit interrupt; special-cased
4138 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4139 */
4140 static void
4141 ath_tx_proc_q0123(void *arg, int npending)
4142 {
4143 struct ath_softc *sc = arg;
4144 struct ifnet *ifp = &sc->sc_if;
4145 int nacked;
4146
4147 /*
4148 * Process each active queue.
4149 */
4150 nacked = 0;
4151 if (txqactive(sc->sc_ah, 0))
4152 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4153 if (txqactive(sc->sc_ah, 1))
4154 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4155 if (txqactive(sc->sc_ah, 2))
4156 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4157 if (txqactive(sc->sc_ah, 3))
4158 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4159 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4160 ath_tx_processq(sc, sc->sc_cabq);
4161 if (nacked) {
4162 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4163 }
4164
4165 if (sc->sc_softled)
4166 ath_led_event(sc, ATH_LED_TX);
4167
4168 ath_start(ifp);
4169 }
4170
4171 /*
4172 * Deferred processing of transmit interrupt.
4173 */
4174 static void
4175 ath_tx_proc(void *arg, int npending)
4176 {
4177 struct ath_softc *sc = arg;
4178 struct ifnet *ifp = &sc->sc_if;
4179 int i, nacked;
4180
4181 /*
4182 * Process each active queue.
4183 */
4184 nacked = 0;
4185 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4186 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4187 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4188 if (nacked) {
4189 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4190 }
4191
4192 if (sc->sc_softled)
4193 ath_led_event(sc, ATH_LED_TX);
4194
4195 ath_start(ifp);
4196 }
4197
4198 static void
4199 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4200 {
4201 struct ath_hal *ah = sc->sc_ah;
4202 struct ieee80211_node *ni;
4203 struct ath_buf *bf;
4204 struct ath_desc *ds;
4205
4206 /*
4207 * NB: this assumes output has been stopped and
4208 * we do not need to block ath_tx_tasklet
4209 */
4210 for (;;) {
4211 ATH_TXQ_LOCK(txq);
4212 bf = STAILQ_FIRST(&txq->axq_q);
4213 if (bf == NULL) {
4214 txq->axq_link = NULL;
4215 ATH_TXQ_UNLOCK(txq);
4216 break;
4217 }
4218 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4219 ATH_TXQ_UNLOCK(txq);
4220 ds = &bf->bf_desc[bf->bf_nseg - 1];
4221 if (sc->sc_debug & ATH_DEBUG_RESET)
4222 ath_printtxbuf(bf,
4223 ath_hal_txprocdesc(ah, bf->bf_desc,
4224 &ds->ds_txstat) == HAL_OK);
4225 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4226 m_freem(bf->bf_m);
4227 bf->bf_m = NULL;
4228 ni = bf->bf_node;
4229 bf->bf_node = NULL;
4230 if (ni != NULL) {
4231 /*
4232 * Reclaim node reference.
4233 */
4234 ieee80211_free_node(ni);
4235 }
4236 ATH_TXBUF_LOCK(sc);
4237 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4238 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4239 ATH_TXBUF_UNLOCK(sc);
4240 }
4241 }
4242
4243 static void
4244 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4245 {
4246 struct ath_hal *ah = sc->sc_ah;
4247
4248 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4249 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4250 __func__, txq->axq_qnum,
4251 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4252 txq->axq_link);
4253 }
4254
4255 /*
4256 * Drain the transmit queues and reclaim resources.
4257 */
4258 static void
4259 ath_draintxq(struct ath_softc *sc)
4260 {
4261 struct ath_hal *ah = sc->sc_ah;
4262 int i;
4263
4264 /* XXX return value */
4265 if (device_is_active(sc->sc_dev)) {
4266 /* don't touch the hardware if marked invalid */
4267 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4268 DPRINTF(sc, ATH_DEBUG_RESET,
4269 "%s: beacon queue %p\n", __func__,
4270 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4271 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4272 if (ATH_TXQ_SETUP(sc, i))
4273 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4274 }
4275 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4276 if (ATH_TXQ_SETUP(sc, i))
4277 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4278 }
4279
4280 /*
4281 * Disable the receive h/w in preparation for a reset.
4282 */
4283 static void
4284 ath_stoprecv(struct ath_softc *sc)
4285 {
4286 #define PA2DESC(_sc, _pa) \
4287 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4288 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4289 struct ath_hal *ah = sc->sc_ah;
4290 u_int64_t tsf;
4291
4292 ath_hal_stoppcurecv(ah); /* disable PCU */
4293 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4294 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4295 DELAY(3000); /* 3ms is long enough for 1 frame */
4296 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4297 struct ath_buf *bf;
4298
4299 printf("%s: rx queue %p, link %p\n", __func__,
4300 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4301 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4302 struct ath_desc *ds = bf->bf_desc;
4303 tsf = ath_hal_gettsf64(sc->sc_ah);
4304 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4305 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4306 tsf, &ds->ds_rxstat);
4307 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4308 ath_printrxbuf(bf, status == HAL_OK);
4309 }
4310 }
4311 sc->sc_rxlink = NULL; /* just in case */
4312 #undef PA2DESC
4313 }
4314
4315 /*
4316 * Enable the receive h/w following a reset.
4317 */
4318 static int
4319 ath_startrecv(struct ath_softc *sc)
4320 {
4321 struct ath_hal *ah = sc->sc_ah;
4322 struct ath_buf *bf;
4323
4324 sc->sc_rxlink = NULL;
4325 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4326 int error = ath_rxbuf_init(sc, bf);
4327 if (error != 0) {
4328 DPRINTF(sc, ATH_DEBUG_RECV,
4329 "%s: ath_rxbuf_init failed %d\n",
4330 __func__, error);
4331 return error;
4332 }
4333 }
4334
4335 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4336 ath_hal_putrxbuf(ah, bf->bf_daddr);
4337 ath_hal_rxena(ah); /* enable recv descriptors */
4338 ath_mode_init(sc); /* set filters, etc. */
4339 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4340 return 0;
4341 }
4342
4343 /*
4344 * Update internal state after a channel change.
4345 */
4346 static void
4347 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4348 {
4349 struct ieee80211com *ic = &sc->sc_ic;
4350 enum ieee80211_phymode mode;
4351 u_int16_t flags;
4352
4353 /*
4354 * Change channels and update the h/w rate map
4355 * if we're switching; e.g. 11a to 11b/g.
4356 */
4357 mode = ieee80211_chan2mode(ic, chan);
4358 if (mode != sc->sc_curmode)
4359 ath_setcurmode(sc, mode);
4360 /*
4361 * Update BPF state. NB: ethereal et. al. don't handle
4362 * merged flags well so pick a unique mode for their use.
4363 */
4364 if (IEEE80211_IS_CHAN_A(chan))
4365 flags = IEEE80211_CHAN_A;
4366 /* XXX 11g schizophrenia */
4367 else if (IEEE80211_IS_CHAN_G(chan) ||
4368 IEEE80211_IS_CHAN_PUREG(chan))
4369 flags = IEEE80211_CHAN_G;
4370 else
4371 flags = IEEE80211_CHAN_B;
4372 if (IEEE80211_IS_CHAN_T(chan))
4373 flags |= IEEE80211_CHAN_TURBO;
4374 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4375 htole16(chan->ic_freq);
4376 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4377 htole16(flags);
4378 }
4379
4380 #if 0
4381 /*
4382 * Poll for a channel clear indication; this is required
4383 * for channels requiring DFS and not previously visited
4384 * and/or with a recent radar detection.
4385 */
4386 static void
4387 ath_dfswait(void *arg)
4388 {
4389 struct ath_softc *sc = arg;
4390 struct ath_hal *ah = sc->sc_ah;
4391 HAL_CHANNEL hchan;
4392
4393 ath_hal_radar_wait(ah, &hchan);
4394 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4395 if_printf(&sc->sc_if,
4396 "channel %u/0x%x/0x%x has interference\n",
4397 hchan.channel, hchan.channelFlags, hchan.privFlags);
4398 return;
4399 }
4400 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4401 /* XXX should not happen */
4402 return;
4403 }
4404 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4405 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4406 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4407 if_printf(&sc->sc_if,
4408 "channel %u/0x%x/0x%x marked clear\n",
4409 hchan.channel, hchan.channelFlags, hchan.privFlags);
4410 } else
4411 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4412 }
4413 #endif
4414
4415 /*
4416 * Set/change channels. If the channel is really being changed,
4417 * it's done by reseting the chip. To accomplish this we must
4418 * first cleanup any pending DMA, then restart stuff after a la
4419 * ath_init.
4420 */
4421 static int
4422 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4423 {
4424 struct ath_hal *ah = sc->sc_ah;
4425 struct ieee80211com *ic = &sc->sc_ic;
4426 HAL_CHANNEL hchan;
4427
4428 /*
4429 * Convert to a HAL channel description with
4430 * the flags constrained to reflect the current
4431 * operating mode.
4432 */
4433 hchan.channel = chan->ic_freq;
4434 hchan.channelFlags = ath_chan2flags(ic, chan);
4435
4436 DPRINTF(sc, ATH_DEBUG_RESET,
4437 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4438 __func__,
4439 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4440 sc->sc_curchan.channelFlags),
4441 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4442 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4443 hchan.channel, hchan.channelFlags);
4444 if (hchan.channel != sc->sc_curchan.channel ||
4445 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4446 HAL_STATUS status;
4447
4448 /*
4449 * To switch channels clear any pending DMA operations;
4450 * wait long enough for the RX fifo to drain, reset the
4451 * hardware at the new frequency, and then re-enable
4452 * the relevant bits of the h/w.
4453 */
4454 ath_hal_intrset(ah, 0); /* disable interrupts */
4455 ath_draintxq(sc); /* clear pending tx frames */
4456 ath_stoprecv(sc); /* turn off frame recv */
4457 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4458 if_printf(ic->ic_ifp, "%s: unable to reset "
4459 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4460 __func__, ieee80211_chan2ieee(ic, chan),
4461 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4462 return EIO;
4463 }
4464 sc->sc_curchan = hchan;
4465 ath_update_txpow(sc); /* update tx power state */
4466 ath_restore_diversity(sc);
4467 sc->sc_calinterval = 1;
4468 sc->sc_caltries = 0;
4469
4470 /*
4471 * Re-enable rx framework.
4472 */
4473 if (ath_startrecv(sc) != 0) {
4474 if_printf(&sc->sc_if,
4475 "%s: unable to restart recv logic\n", __func__);
4476 return EIO;
4477 }
4478
4479 /*
4480 * Change channels and update the h/w rate map
4481 * if we're switching; e.g. 11a to 11b/g.
4482 */
4483 ic->ic_ibss_chan = chan;
4484 ath_chan_change(sc, chan);
4485
4486 #if 0
4487 /*
4488 * Handle DFS required waiting period to determine
4489 * if channel is clear of radar traffic.
4490 */
4491 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4492 #define DFS_AND_NOT_CLEAR(_c) \
4493 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4494 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4495 if_printf(&sc->sc_if,
4496 "wait for DFS clear channel signal\n");
4497 /* XXX stop sndq */
4498 sc->sc_if.if_flags |= IFF_OACTIVE;
4499 callout_reset(&sc->sc_dfs_ch,
4500 2 * hz, ath_dfswait, sc);
4501 } else
4502 callout_stop(&sc->sc_dfs_ch);
4503 #undef DFS_NOT_CLEAR
4504 }
4505 #endif
4506
4507 /*
4508 * Re-enable interrupts.
4509 */
4510 ath_hal_intrset(ah, sc->sc_imask);
4511 }
4512 return 0;
4513 }
4514
4515 static void
4516 ath_next_scan(void *arg)
4517 {
4518 struct ath_softc *sc = arg;
4519 struct ieee80211com *ic = &sc->sc_ic;
4520 int s;
4521
4522 /* don't call ath_start w/o network interrupts blocked */
4523 s = splnet();
4524
4525 if (ic->ic_state == IEEE80211_S_SCAN)
4526 ieee80211_next_scan(ic);
4527 splx(s);
4528 }
4529
4530 /*
4531 * Periodically recalibrate the PHY to account
4532 * for temperature/environment changes.
4533 */
4534 static void
4535 ath_calibrate(void *arg)
4536 {
4537 struct ath_softc *sc = arg;
4538 struct ath_hal *ah = sc->sc_ah;
4539 HAL_BOOL iqCalDone;
4540
4541 sc->sc_stats.ast_per_cal++;
4542
4543 ATH_LOCK(sc);
4544
4545 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4546 /*
4547 * Rfgain is out of bounds, reset the chip
4548 * to load new gain values.
4549 */
4550 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4551 "%s: rfgain change\n", __func__);
4552 sc->sc_stats.ast_per_rfgain++;
4553 ath_reset(&sc->sc_if);
4554 }
4555 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4556 DPRINTF(sc, ATH_DEBUG_ANY,
4557 "%s: calibration of channel %u failed\n",
4558 __func__, sc->sc_curchan.channel);
4559 sc->sc_stats.ast_per_calfail++;
4560 }
4561 /*
4562 * Calibrate noise floor data again in case of change.
4563 */
4564 ath_hal_process_noisefloor(ah);
4565 /*
4566 * Poll more frequently when the IQ calibration is in
4567 * progress to speedup loading the final settings.
4568 * We temper this aggressive polling with an exponential
4569 * back off after 4 tries up to ath_calinterval.
4570 */
4571 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4572 sc->sc_caltries = 0;
4573 sc->sc_calinterval = ath_calinterval;
4574 } else if (sc->sc_caltries > 4) {
4575 sc->sc_caltries = 0;
4576 sc->sc_calinterval <<= 1;
4577 if (sc->sc_calinterval > ath_calinterval)
4578 sc->sc_calinterval = ath_calinterval;
4579 }
4580 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4581 ("bad calibration interval %u", sc->sc_calinterval));
4582
4583 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4584 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4585 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4586 sc->sc_caltries++;
4587 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4588 ath_calibrate, sc);
4589 ATH_UNLOCK(sc);
4590 }
4591
4592 static int
4593 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4594 {
4595 struct ifnet *ifp = ic->ic_ifp;
4596 struct ath_softc *sc = ifp->if_softc;
4597 struct ath_hal *ah = sc->sc_ah;
4598 struct ieee80211_node *ni;
4599 int i, error;
4600 const u_int8_t *bssid;
4601 u_int32_t rfilt;
4602 static const HAL_LED_STATE leds[] = {
4603 HAL_LED_INIT, /* IEEE80211_S_INIT */
4604 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4605 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4606 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4607 HAL_LED_RUN, /* IEEE80211_S_RUN */
4608 };
4609
4610 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4611 ieee80211_state_name[ic->ic_state],
4612 ieee80211_state_name[nstate]);
4613
4614 callout_stop(&sc->sc_scan_ch);
4615 callout_stop(&sc->sc_cal_ch);
4616 #if 0
4617 callout_stop(&sc->sc_dfs_ch);
4618 #endif
4619 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4620
4621 if (nstate == IEEE80211_S_INIT) {
4622 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4623 /*
4624 * NB: disable interrupts so we don't rx frames.
4625 */
4626 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4627 /*
4628 * Notify the rate control algorithm.
4629 */
4630 ath_rate_newstate(sc, nstate);
4631 goto done;
4632 }
4633 ni = ic->ic_bss;
4634 error = ath_chan_set(sc, ic->ic_curchan);
4635 if (error != 0)
4636 goto bad;
4637 rfilt = ath_calcrxfilter(sc, nstate);
4638 if (nstate == IEEE80211_S_SCAN)
4639 bssid = ifp->if_broadcastaddr;
4640 else
4641 bssid = ni->ni_bssid;
4642 ath_hal_setrxfilter(ah, rfilt);
4643 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4644 __func__, rfilt, ether_sprintf(bssid));
4645
4646 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4647 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4648 else
4649 ath_hal_setassocid(ah, bssid, 0);
4650 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4651 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4652 if (ath_hal_keyisvalid(ah, i))
4653 ath_hal_keysetmac(ah, i, bssid);
4654 }
4655
4656 /*
4657 * Notify the rate control algorithm so rates
4658 * are setup should ath_beacon_alloc be called.
4659 */
4660 ath_rate_newstate(sc, nstate);
4661
4662 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4663 /* nothing to do */;
4664 } else if (nstate == IEEE80211_S_RUN) {
4665 DPRINTF(sc, ATH_DEBUG_STATE,
4666 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4667 "capinfo=0x%04x chan=%d\n"
4668 , __func__
4669 , ic->ic_flags
4670 , ni->ni_intval
4671 , ether_sprintf(ni->ni_bssid)
4672 , ni->ni_capinfo
4673 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4674
4675 switch (ic->ic_opmode) {
4676 case IEEE80211_M_HOSTAP:
4677 case IEEE80211_M_IBSS:
4678 /*
4679 * Allocate and setup the beacon frame.
4680 *
4681 * Stop any previous beacon DMA. This may be
4682 * necessary, for example, when an ibss merge
4683 * causes reconfiguration; there will be a state
4684 * transition from RUN->RUN that means we may
4685 * be called with beacon transmission active.
4686 */
4687 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4688 ath_beacon_free(sc);
4689 error = ath_beacon_alloc(sc, ni);
4690 if (error != 0)
4691 goto bad;
4692 /*
4693 * If joining an adhoc network defer beacon timer
4694 * configuration to the next beacon frame so we
4695 * have a current TSF to use. Otherwise we're
4696 * starting an ibss/bss so there's no need to delay.
4697 */
4698 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4699 ic->ic_bss->ni_tstamp.tsf != 0)
4700 sc->sc_syncbeacon = 1;
4701 else
4702 ath_beacon_config(sc);
4703 break;
4704 case IEEE80211_M_STA:
4705 /*
4706 * Allocate a key cache slot to the station.
4707 */
4708 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4709 sc->sc_hasclrkey &&
4710 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4711 ath_setup_stationkey(ni);
4712 /*
4713 * Defer beacon timer configuration to the next
4714 * beacon frame so we have a current TSF to use
4715 * (any TSF collected when scanning is likely old).
4716 */
4717 sc->sc_syncbeacon = 1;
4718 break;
4719 default:
4720 break;
4721 }
4722 /*
4723 * Let the hal process statistics collected during a
4724 * scan so it can provide calibrated noise floor data.
4725 */
4726 ath_hal_process_noisefloor(ah);
4727 /*
4728 * Reset rssi stats; maybe not the best place...
4729 */
4730 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4731 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4732 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4733 } else {
4734 ath_hal_intrset(ah,
4735 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4736 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4737 }
4738 done:
4739 /*
4740 * Invoke the parent method to complete the work.
4741 */
4742 error = sc->sc_newstate(ic, nstate, arg);
4743 /*
4744 * Finally, start any timers.
4745 */
4746 if (nstate == IEEE80211_S_RUN) {
4747 /* start periodic recalibration timer */
4748 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4749 ath_calibrate, sc);
4750 } else if (nstate == IEEE80211_S_SCAN) {
4751 /* start ap/neighbor scan timer */
4752 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4753 ath_next_scan, sc);
4754 }
4755 bad:
4756 return error;
4757 }
4758
4759 /*
4760 * Allocate a key cache slot to the station so we can
4761 * setup a mapping from key index to node. The key cache
4762 * slot is needed for managing antenna state and for
4763 * compression when stations do not use crypto. We do
4764 * it uniliaterally here; if crypto is employed this slot
4765 * will be reassigned.
4766 */
4767 static void
4768 ath_setup_stationkey(struct ieee80211_node *ni)
4769 {
4770 struct ieee80211com *ic = ni->ni_ic;
4771 struct ath_softc *sc = ic->ic_ifp->if_softc;
4772 ieee80211_keyix keyix, rxkeyix;
4773
4774 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4775 /*
4776 * Key cache is full; we'll fall back to doing
4777 * the more expensive lookup in software. Note
4778 * this also means no h/w compression.
4779 */
4780 /* XXX msg+statistic */
4781 } else {
4782 /* XXX locking? */
4783 ni->ni_ucastkey.wk_keyix = keyix;
4784 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4785 /* NB: this will create a pass-thru key entry */
4786 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4787 }
4788 }
4789
4790 /*
4791 * Setup driver-specific state for a newly associated node.
4792 * Note that we're called also on a re-associate, the isnew
4793 * param tells us if this is the first time or not.
4794 */
4795 static void
4796 ath_newassoc(struct ieee80211_node *ni, int isnew)
4797 {
4798 struct ieee80211com *ic = ni->ni_ic;
4799 struct ath_softc *sc = ic->ic_ifp->if_softc;
4800
4801 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4802 if (isnew &&
4803 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4804 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4805 ("new assoc with a unicast key already setup (keyix %u)",
4806 ni->ni_ucastkey.wk_keyix));
4807 ath_setup_stationkey(ni);
4808 }
4809 }
4810
4811 static int
4812 ath_getchannels(struct ath_softc *sc, u_int cc,
4813 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4814 {
4815 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4816 struct ieee80211com *ic = &sc->sc_ic;
4817 struct ifnet *ifp = &sc->sc_if;
4818 struct ath_hal *ah = sc->sc_ah;
4819 HAL_CHANNEL *chans;
4820 int i, ix, nchan;
4821
4822 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4823 M_TEMP, M_NOWAIT);
4824 if (chans == NULL) {
4825 if_printf(ifp, "unable to allocate channel table\n");
4826 return ENOMEM;
4827 }
4828 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4829 NULL, 0, NULL,
4830 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4831 u_int32_t rd;
4832
4833 (void)ath_hal_getregdomain(ah, &rd);
4834 if_printf(ifp, "unable to collect channel list from hal; "
4835 "regdomain likely %u country code %u\n", rd, cc);
4836 free(chans, M_TEMP);
4837 return EINVAL;
4838 }
4839
4840 /*
4841 * Convert HAL channels to ieee80211 ones and insert
4842 * them in the table according to their channel number.
4843 */
4844 for (i = 0; i < nchan; i++) {
4845 HAL_CHANNEL *c = &chans[i];
4846 u_int16_t flags;
4847
4848 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4849 if (ix > IEEE80211_CHAN_MAX) {
4850 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4851 ix, c->channel, c->channelFlags);
4852 continue;
4853 }
4854 if (ix < 0) {
4855 /* XXX can't handle stuff <2400 right now */
4856 if (bootverbose)
4857 if_printf(ifp, "hal channel %d (%u/%x) "
4858 "cannot be handled; ignored\n",
4859 ix, c->channel, c->channelFlags);
4860 continue;
4861 }
4862 /*
4863 * Calculate net80211 flags; most are compatible
4864 * but some need massaging. Note the static turbo
4865 * conversion can be removed once net80211 is updated
4866 * to understand static vs. dynamic turbo.
4867 */
4868 flags = c->channelFlags & COMPAT;
4869 if (c->channelFlags & CHANNEL_STURBO)
4870 flags |= IEEE80211_CHAN_TURBO;
4871 if (ic->ic_channels[ix].ic_freq == 0) {
4872 ic->ic_channels[ix].ic_freq = c->channel;
4873 ic->ic_channels[ix].ic_flags = flags;
4874 } else {
4875 /* channels overlap; e.g. 11g and 11b */
4876 ic->ic_channels[ix].ic_flags |= flags;
4877 }
4878 }
4879 free(chans, M_TEMP);
4880 return 0;
4881 #undef COMPAT
4882 }
4883
4884 static void
4885 ath_led_done(void *arg)
4886 {
4887 struct ath_softc *sc = arg;
4888
4889 sc->sc_blinking = 0;
4890 }
4891
4892 /*
4893 * Turn the LED off: flip the pin and then set a timer so no
4894 * update will happen for the specified duration.
4895 */
4896 static void
4897 ath_led_off(void *arg)
4898 {
4899 struct ath_softc *sc = arg;
4900
4901 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4902 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4903 }
4904
4905 /*
4906 * Blink the LED according to the specified on/off times.
4907 */
4908 static void
4909 ath_led_blink(struct ath_softc *sc, int on, int off)
4910 {
4911 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4912 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4913 sc->sc_blinking = 1;
4914 sc->sc_ledoff = off;
4915 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4916 }
4917
4918 static void
4919 ath_led_event(struct ath_softc *sc, int event)
4920 {
4921
4922 sc->sc_ledevent = ticks; /* time of last event */
4923 if (sc->sc_blinking) /* don't interrupt active blink */
4924 return;
4925 switch (event) {
4926 case ATH_LED_POLL:
4927 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4928 sc->sc_hwmap[0].ledoff);
4929 break;
4930 case ATH_LED_TX:
4931 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4932 sc->sc_hwmap[sc->sc_txrate].ledoff);
4933 break;
4934 case ATH_LED_RX:
4935 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4936 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4937 break;
4938 }
4939 }
4940
4941 static void
4942 ath_update_txpow(struct ath_softc *sc)
4943 {
4944 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4945 struct ieee80211com *ic = &sc->sc_ic;
4946 struct ath_hal *ah = sc->sc_ah;
4947 u_int32_t txpow;
4948
4949 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4950 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4951 /* read back in case value is clamped */
4952 (void)ath_hal_gettxpowlimit(ah, &txpow);
4953 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4954 }
4955 /*
4956 * Fetch max tx power level for status requests.
4957 */
4958 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4959 ic->ic_bss->ni_txpower = txpow;
4960 }
4961
4962 static void
4963 rate_setup(struct ath_softc *sc,
4964 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4965 {
4966 int i, maxrates;
4967
4968 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4969 DPRINTF(sc, ATH_DEBUG_ANY,
4970 "%s: rate table too small (%u > %u)\n",
4971 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4972 maxrates = IEEE80211_RATE_MAXSIZE;
4973 } else
4974 maxrates = rt->rateCount;
4975 for (i = 0; i < maxrates; i++)
4976 rs->rs_rates[i] = rt->info[i].dot11Rate;
4977 rs->rs_nrates = maxrates;
4978 }
4979
4980 static int
4981 ath_rate_setup(struct ath_softc *sc, u_int mode)
4982 {
4983 struct ath_hal *ah = sc->sc_ah;
4984 struct ieee80211com *ic = &sc->sc_ic;
4985 const HAL_RATE_TABLE *rt;
4986
4987 switch (mode) {
4988 case IEEE80211_MODE_11A:
4989 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4990 break;
4991 case IEEE80211_MODE_11B:
4992 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4993 break;
4994 case IEEE80211_MODE_11G:
4995 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4996 break;
4997 case IEEE80211_MODE_TURBO_A:
4998 /* XXX until static/dynamic turbo is fixed */
4999 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5000 break;
5001 case IEEE80211_MODE_TURBO_G:
5002 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5003 break;
5004 default:
5005 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5006 __func__, mode);
5007 return 0;
5008 }
5009 sc->sc_rates[mode] = rt;
5010 if (rt != NULL) {
5011 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5012 return 1;
5013 } else
5014 return 0;
5015 }
5016
5017 static void
5018 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5019 {
5020 #define N(a) (sizeof(a)/sizeof(a[0]))
5021 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5022 static const struct {
5023 u_int rate; /* tx/rx 802.11 rate */
5024 u_int16_t timeOn; /* LED on time (ms) */
5025 u_int16_t timeOff; /* LED off time (ms) */
5026 } blinkrates[] = {
5027 { 108, 40, 10 },
5028 { 96, 44, 11 },
5029 { 72, 50, 13 },
5030 { 48, 57, 14 },
5031 { 36, 67, 16 },
5032 { 24, 80, 20 },
5033 { 22, 100, 25 },
5034 { 18, 133, 34 },
5035 { 12, 160, 40 },
5036 { 10, 200, 50 },
5037 { 6, 240, 58 },
5038 { 4, 267, 66 },
5039 { 2, 400, 100 },
5040 { 0, 500, 130 },
5041 };
5042 const HAL_RATE_TABLE *rt;
5043 int i, j;
5044
5045 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5046 rt = sc->sc_rates[mode];
5047 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5048 for (i = 0; i < rt->rateCount; i++)
5049 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5050 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5051 for (i = 0; i < 32; i++) {
5052 u_int8_t ix = rt->rateCodeToIndex[i];
5053 if (ix == 0xff) {
5054 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5055 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5056 continue;
5057 }
5058 sc->sc_hwmap[i].ieeerate =
5059 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5060 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5061 if (rt->info[ix].shortPreamble ||
5062 rt->info[ix].phy == IEEE80211_T_OFDM)
5063 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5064 /* NB: receive frames include FCS */
5065 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5066 IEEE80211_RADIOTAP_F_FCS;
5067 /* setup blink rate table to avoid per-packet lookup */
5068 for (j = 0; j < N(blinkrates)-1; j++)
5069 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5070 break;
5071 /* NB: this uses the last entry if the rate isn't found */
5072 /* XXX beware of overlow */
5073 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5074 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5075 }
5076 sc->sc_currates = rt;
5077 sc->sc_curmode = mode;
5078 /*
5079 * All protection frames are transmited at 2Mb/s for
5080 * 11g, otherwise at 1Mb/s.
5081 */
5082 if (mode == IEEE80211_MODE_11G)
5083 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5084 else
5085 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5086 /* rate index used to send management frames */
5087 sc->sc_minrateix = 0;
5088 /*
5089 * Setup multicast rate state.
5090 */
5091 /* XXX layering violation */
5092 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5093 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5094 /* NB: caller is responsible for reseting rate control state */
5095 #undef N
5096 }
5097
5098 #ifdef AR_DEBUG
5099 static void
5100 ath_printrxbuf(struct ath_buf *bf, int done)
5101 {
5102 struct ath_desc *ds;
5103 int i;
5104
5105 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5106 printf("R%d (%p %" PRIx64
5107 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5108 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5109 ds->ds_link, ds->ds_data,
5110 ds->ds_ctl0, ds->ds_ctl1,
5111 ds->ds_hw[0], ds->ds_hw[1],
5112 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5113 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5114 }
5115 }
5116
5117 static void
5118 ath_printtxbuf(struct ath_buf *bf, int done)
5119 {
5120 struct ath_desc *ds;
5121 int i;
5122
5123 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5124 printf("T%d (%p %" PRIx64
5125 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5126 i, ds,
5127 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5128 ds->ds_link, ds->ds_data,
5129 ds->ds_ctl0, ds->ds_ctl1,
5130 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5131 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5132 }
5133 }
5134 #endif /* AR_DEBUG */
5135
5136 static void
5137 ath_watchdog(struct ifnet *ifp)
5138 {
5139 struct ath_softc *sc = ifp->if_softc;
5140 struct ieee80211com *ic = &sc->sc_ic;
5141 struct ath_txq *axq;
5142 int i;
5143
5144 ifp->if_timer = 0;
5145 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5146 !device_is_active(sc->sc_dev))
5147 return;
5148 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5149 if (!ATH_TXQ_SETUP(sc, i))
5150 continue;
5151 axq = &sc->sc_txq[i];
5152 ATH_TXQ_LOCK(axq);
5153 if (axq->axq_timer == 0)
5154 ;
5155 else if (--axq->axq_timer == 0) {
5156 ATH_TXQ_UNLOCK(axq);
5157 if_printf(ifp, "device timeout (txq %d, "
5158 "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5159 if (sc->sc_txintrperiod > 1)
5160 sc->sc_txintrperiod--;
5161 ath_reset(ifp);
5162 ifp->if_oerrors++;
5163 sc->sc_stats.ast_watchdog++;
5164 break;
5165 } else
5166 ifp->if_timer = 1;
5167 ATH_TXQ_UNLOCK(axq);
5168 }
5169 ieee80211_watchdog(ic);
5170 }
5171
5172 /*
5173 * Diagnostic interface to the HAL. This is used by various
5174 * tools to do things like retrieve register contents for
5175 * debugging. The mechanism is intentionally opaque so that
5176 * it can change frequently w/o concern for compatiblity.
5177 */
5178 static int
5179 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5180 {
5181 struct ath_hal *ah = sc->sc_ah;
5182 u_int id = ad->ad_id & ATH_DIAG_ID;
5183 void *indata = NULL;
5184 void *outdata = NULL;
5185 u_int32_t insize = ad->ad_in_size;
5186 u_int32_t outsize = ad->ad_out_size;
5187 int error = 0;
5188
5189 if (ad->ad_id & ATH_DIAG_IN) {
5190 /*
5191 * Copy in data.
5192 */
5193 indata = malloc(insize, M_TEMP, M_NOWAIT);
5194 if (indata == NULL) {
5195 error = ENOMEM;
5196 goto bad;
5197 }
5198 error = copyin(ad->ad_in_data, indata, insize);
5199 if (error)
5200 goto bad;
5201 }
5202 if (ad->ad_id & ATH_DIAG_DYN) {
5203 /*
5204 * Allocate a buffer for the results (otherwise the HAL
5205 * returns a pointer to a buffer where we can read the
5206 * results). Note that we depend on the HAL leaving this
5207 * pointer for us to use below in reclaiming the buffer;
5208 * may want to be more defensive.
5209 */
5210 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5211 if (outdata == NULL) {
5212 error = ENOMEM;
5213 goto bad;
5214 }
5215 }
5216 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5217 if (outsize < ad->ad_out_size)
5218 ad->ad_out_size = outsize;
5219 if (outdata != NULL)
5220 error = copyout(outdata, ad->ad_out_data,
5221 ad->ad_out_size);
5222 } else {
5223 error = EINVAL;
5224 }
5225 bad:
5226 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5227 free(indata, M_TEMP);
5228 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5229 free(outdata, M_TEMP);
5230 return error;
5231 }
5232
5233 static int
5234 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5235 {
5236 #define IS_RUNNING(ifp) \
5237 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5238 struct ath_softc *sc = ifp->if_softc;
5239 struct ieee80211com *ic = &sc->sc_ic;
5240 struct ifreq *ifr = (struct ifreq *)data;
5241 int error = 0;
5242
5243 ATH_LOCK(sc);
5244 switch (cmd) {
5245 case SIOCSIFFLAGS:
5246 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5247 break;
5248 if (IS_RUNNING(ifp)) {
5249 /*
5250 * To avoid rescanning another access point,
5251 * do not call ath_init() here. Instead,
5252 * only reflect promisc mode settings.
5253 */
5254 ath_mode_init(sc);
5255 } else if (ifp->if_flags & IFF_UP) {
5256 /*
5257 * Beware of being called during attach/detach
5258 * to reset promiscuous mode. In that case we
5259 * will still be marked UP but not RUNNING.
5260 * However trying to re-init the interface
5261 * is the wrong thing to do as we've already
5262 * torn down much of our state. There's
5263 * probably a better way to deal with this.
5264 */
5265 error = ath_init(sc);
5266 } else if (device_is_active(sc->sc_dev))
5267 ath_stop_locked(ifp, 1);
5268 break;
5269 case SIOCADDMULTI:
5270 case SIOCDELMULTI:
5271 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5272 if (ifp->if_flags & IFF_RUNNING)
5273 ath_mode_init(sc);
5274 error = 0;
5275 }
5276 break;
5277 case SIOCGATHSTATS:
5278 /* NB: embed these numbers to get a consistent view */
5279 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5280 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5281 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5282 ATH_UNLOCK(sc);
5283 /*
5284 * NB: Drop the softc lock in case of a page fault;
5285 * we'll accept any potential inconsisentcy in the
5286 * statistics. The alternative is to copy the data
5287 * to a local structure.
5288 */
5289 return copyout(&sc->sc_stats,
5290 ifr->ifr_data, sizeof (sc->sc_stats));
5291 case SIOCGATHDIAG:
5292 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5293 break;
5294 default:
5295 error = ieee80211_ioctl(ic, cmd, data);
5296 if (error != ENETRESET)
5297 ;
5298 else if (IS_RUNNING(ifp) &&
5299 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5300 error = ath_init(sc);
5301 else
5302 error = 0;
5303 break;
5304 }
5305 ATH_UNLOCK(sc);
5306 return error;
5307 #undef IS_RUNNING
5308 }
5309
5310 #if NBPFILTER > 0
5311 static void
5312 ath_bpfattach(struct ath_softc *sc)
5313 {
5314 struct ifnet *ifp = &sc->sc_if;
5315
5316 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5317 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5318 &sc->sc_drvbpf);
5319 /*
5320 * Initialize constant fields.
5321 * XXX make header lengths a multiple of 32-bits so subsequent
5322 * headers are properly aligned; this is a kludge to keep
5323 * certain applications happy.
5324 *
5325 * NB: the channel is setup each time we transition to the
5326 * RUN state to avoid filling it in for each frame.
5327 */
5328 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5329 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5330 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5331
5332 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5333 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5334 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5335 }
5336 #endif
5337
5338 /*
5339 * Announce various information on device/driver attach.
5340 */
5341 static void
5342 ath_announce(struct ath_softc *sc)
5343 {
5344 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5345 struct ifnet *ifp = &sc->sc_if;
5346 struct ath_hal *ah = sc->sc_ah;
5347 u_int modes, cc;
5348
5349 if_printf(ifp, "mac %d.%d phy %d.%d",
5350 ah->ah_macVersion, ah->ah_macRev,
5351 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5352 /*
5353 * Print radio revision(s). We check the wireless modes
5354 * to avoid falsely printing revs for inoperable parts.
5355 * Dual-band radio revs are returned in the 5 GHz rev number.
5356 */
5357 ath_hal_getcountrycode(ah, &cc);
5358 modes = ath_hal_getwirelessmodes(ah, cc);
5359 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5360 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5361 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5362 ah->ah_analog5GhzRev >> 4,
5363 ah->ah_analog5GhzRev & 0xf,
5364 ah->ah_analog2GhzRev >> 4,
5365 ah->ah_analog2GhzRev & 0xf);
5366 else
5367 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5368 ah->ah_analog5GhzRev & 0xf);
5369 } else
5370 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5371 ah->ah_analog5GhzRev & 0xf);
5372 printf("\n");
5373 if (bootverbose) {
5374 int i;
5375 for (i = 0; i <= WME_AC_VO; i++) {
5376 struct ath_txq *txq = sc->sc_ac2q[i];
5377 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5378 txq->axq_qnum, ieee80211_wme_acnames[i]);
5379 }
5380 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5381 sc->sc_cabq->axq_qnum);
5382 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5383 }
5384 if (ath_rxbuf != ATH_RXBUF)
5385 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5386 if (ath_txbuf != ATH_TXBUF)
5387 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5388 #undef HAL_MODE_DUALBAND
5389 }
5390