Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.104
      1 /*	$NetBSD: ath.c,v 1.104 2008/12/11 05:45:29 alc Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.104 2008/12/11 05:45:29 alc Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/reboot.h>
     62 #include <sys/systm.h>
     63 #include <sys/types.h>
     64 #include <sys/sysctl.h>
     65 #include <sys/mbuf.h>
     66 #include <sys/malloc.h>
     67 #include <sys/kernel.h>
     68 #include <sys/socket.h>
     69 #include <sys/sockio.h>
     70 #include <sys/errno.h>
     71 #include <sys/callout.h>
     72 #include <sys/bus.h>
     73 #include <sys/endian.h>
     74 
     75 #include <net/if.h>
     76 #include <net/if_dl.h>
     77 #include <net/if_media.h>
     78 #include <net/if_types.h>
     79 #include <net/if_arp.h>
     80 #include <net/if_ether.h>
     81 #include <net/if_llc.h>
     82 
     83 #include <net80211/ieee80211_netbsd.h>
     84 #include <net80211/ieee80211_var.h>
     85 
     86 #if NBPFILTER > 0
     87 #include <net/bpf.h>
     88 #endif
     89 
     90 #ifdef INET
     91 #include <netinet/in.h>
     92 #endif
     93 
     94 #include <sys/device.h>
     95 #include <dev/ic/ath_netbsd.h>
     96 
     97 #define	AR_DEBUG
     98 #include <dev/ic/athvar.h>
     99 #include "ah_desc.h"
    100 #include "ah_devid.h"	/* XXX for softled */
    101 #include "opt_ah.h"
    102 
    103 #ifdef ATH_TX99_DIAG
    104 #include <dev/ath/ath_tx99/ath_tx99.h>
    105 #endif
    106 
    107 /* unaligned little endian access */
    108 #define LE_READ_2(p)							\
    109 	((u_int16_t)							\
    110 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    111 #define LE_READ_4(p)							\
    112 	((u_int32_t)							\
    113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    114 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    115 
    116 enum {
    117 	ATH_LED_TX,
    118 	ATH_LED_RX,
    119 	ATH_LED_POLL,
    120 };
    121 
    122 #ifdef	AH_NEED_DESC_SWAP
    123 #define	HTOAH32(x)	htole32(x)
    124 #else
    125 #define	HTOAH32(x)	(x)
    126 #endif
    127 
    128 static int	ath_ifinit(struct ifnet *);
    129 static int	ath_init(struct ath_softc *);
    130 static void	ath_stop_locked(struct ifnet *, int);
    131 static void	ath_stop(struct ifnet *, int);
    132 static void	ath_start(struct ifnet *);
    133 static int	ath_media_change(struct ifnet *);
    134 static void	ath_watchdog(struct ifnet *);
    135 static int	ath_ioctl(struct ifnet *, u_long, void *);
    136 static void	ath_fatal_proc(void *, int);
    137 static void	ath_rxorn_proc(void *, int);
    138 static void	ath_bmiss_proc(void *, int);
    139 static void	ath_radar_proc(void *, int);
    140 static int	ath_key_alloc(struct ieee80211com *,
    141 			const struct ieee80211_key *,
    142 			ieee80211_keyix *, ieee80211_keyix *);
    143 static int	ath_key_delete(struct ieee80211com *,
    144 			const struct ieee80211_key *);
    145 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    146 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    147 static void	ath_key_update_begin(struct ieee80211com *);
    148 static void	ath_key_update_end(struct ieee80211com *);
    149 static void	ath_mode_init(struct ath_softc *);
    150 static void	ath_setslottime(struct ath_softc *);
    151 static void	ath_updateslot(struct ifnet *);
    152 static int	ath_beaconq_setup(struct ath_hal *);
    153 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    154 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    155 static void	ath_beacon_proc(void *, int);
    156 static void	ath_bstuck_proc(void *, int);
    157 static void	ath_beacon_free(struct ath_softc *);
    158 static void	ath_beacon_config(struct ath_softc *);
    159 static void	ath_descdma_cleanup(struct ath_softc *sc,
    160 			struct ath_descdma *, ath_bufhead *);
    161 static int	ath_desc_alloc(struct ath_softc *);
    162 static void	ath_desc_free(struct ath_softc *);
    163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    164 static void	ath_node_free(struct ieee80211_node *);
    165 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    166 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    167 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    168 			struct ieee80211_node *ni,
    169 			int subtype, int rssi, u_int32_t rstamp);
    170 static void	ath_setdefantenna(struct ath_softc *, u_int);
    171 static void	ath_rx_proc(void *, int);
    172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    173 static int	ath_tx_setup(struct ath_softc *, int, int);
    174 static int	ath_wme_update(struct ieee80211com *);
    175 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    176 static void	ath_tx_cleanup(struct ath_softc *);
    177 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    178 			     struct ath_buf *, struct mbuf *);
    179 static void	ath_tx_proc_q0(void *, int);
    180 static void	ath_tx_proc_q0123(void *, int);
    181 static void	ath_tx_proc(void *, int);
    182 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    183 static void	ath_draintxq(struct ath_softc *);
    184 static void	ath_stoprecv(struct ath_softc *);
    185 static int	ath_startrecv(struct ath_softc *);
    186 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    187 static void	ath_next_scan(void *);
    188 static void	ath_calibrate(void *);
    189 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    190 static void	ath_setup_stationkey(struct ieee80211_node *);
    191 static void	ath_newassoc(struct ieee80211_node *, int);
    192 static int	ath_getchannels(struct ath_softc *, u_int cc,
    193 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    194 static void	ath_led_event(struct ath_softc *, int);
    195 static void	ath_update_txpow(struct ath_softc *);
    196 static void	ath_freetx(struct mbuf *);
    197 static void	ath_restore_diversity(struct ath_softc *);
    198 
    199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    201 
    202 #if NBPFILTER > 0
    203 static void	ath_bpfattach(struct ath_softc *);
    204 #endif
    205 static void	ath_announce(struct ath_softc *);
    206 
    207 int ath_dwelltime = 200;		/* 5 channels/second */
    208 int ath_calinterval = 30;		/* calibrate every 30 secs */
    209 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    210 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    211 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    212 int ath_regdomain = 0;			/* regulatory domain */
    213 int ath_debug = 0;
    214 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    215 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    216 
    217 #ifdef AR_DEBUG
    218 enum {
    219 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    220 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    221 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    222 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    223 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    224 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    225 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    226 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    227 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    228 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    229 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    230 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    231 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    232 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    233 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    234 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    235 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    236 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    237 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    238 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    239 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    240 	ATH_DEBUG_ANY		= 0xffffffff
    241 };
    242 #define	IFF_DUMPPKTS(sc, m) \
    243 	((sc->sc_debug & (m)) || \
    244 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    245 #define	DPRINTF(sc, m, fmt, ...) do {				\
    246 	if (sc->sc_debug & (m))					\
    247 		printf(fmt, __VA_ARGS__);			\
    248 } while (0)
    249 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    250 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    251 		ath_keyprint(__func__, ix, hk, mac);		\
    252 } while (0)
    253 static	void ath_printrxbuf(struct ath_buf *bf, int);
    254 static	void ath_printtxbuf(struct ath_buf *bf, int);
    255 #else
    256 #define        IFF_DUMPPKTS(sc, m) \
    257 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    258 #define        DPRINTF(m, fmt, ...)
    259 #define        KEYPRINTF(sc, k, ix, mac)
    260 #endif
    261 
    262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    263 
    264 int
    265 ath_attach(u_int16_t devid, struct ath_softc *sc)
    266 {
    267 	struct ifnet *ifp = &sc->sc_if;
    268 	struct ieee80211com *ic = &sc->sc_ic;
    269 	struct ath_hal *ah = NULL;
    270 	HAL_STATUS status;
    271 	int error = 0, i;
    272 
    273 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    274 
    275 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    276 
    277 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    278 	if (ah == NULL) {
    279 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    280 			status);
    281 		error = ENXIO;
    282 		goto bad;
    283 	}
    284 	if (ah->ah_abi != HAL_ABI_VERSION) {
    285 		if_printf(ifp, "HAL ABI mismatch detected "
    286 			"(HAL:0x%x != driver:0x%x)\n",
    287 			ah->ah_abi, HAL_ABI_VERSION);
    288 		error = ENXIO;
    289 		goto bad;
    290 	}
    291 	sc->sc_ah = ah;
    292 
    293 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
    294 	    "pmf-powerdown", false))
    295 		goto bad;
    296 
    297 	/*
    298 	 * Check if the MAC has multi-rate retry support.
    299 	 * We do this by trying to setup a fake extended
    300 	 * descriptor.  MAC's that don't have support will
    301 	 * return false w/o doing anything.  MAC's that do
    302 	 * support it will return true w/o doing anything.
    303 	 */
    304 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    305 
    306 	/*
    307 	 * Check if the device has hardware counters for PHY
    308 	 * errors.  If so we need to enable the MIB interrupt
    309 	 * so we can act on stat triggers.
    310 	 */
    311 	if (ath_hal_hwphycounters(ah))
    312 		sc->sc_needmib = 1;
    313 
    314 	/*
    315 	 * Get the hardware key cache size.
    316 	 */
    317 	sc->sc_keymax = ath_hal_keycachesize(ah);
    318 	if (sc->sc_keymax > ATH_KEYMAX) {
    319 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    320 			ATH_KEYMAX, sc->sc_keymax);
    321 		sc->sc_keymax = ATH_KEYMAX;
    322 	}
    323 	/*
    324 	 * Reset the key cache since some parts do not
    325 	 * reset the contents on initial power up.
    326 	 */
    327 	for (i = 0; i < sc->sc_keymax; i++)
    328 		ath_hal_keyreset(ah, i);
    329 	/*
    330 	 * Mark key cache slots associated with global keys
    331 	 * as in use.  If we knew TKIP was not to be used we
    332 	 * could leave the +32, +64, and +32+64 slots free.
    333 	 * XXX only for splitmic.
    334 	 */
    335 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    336 		setbit(sc->sc_keymap, i);
    337 		setbit(sc->sc_keymap, i+32);
    338 		setbit(sc->sc_keymap, i+64);
    339 		setbit(sc->sc_keymap, i+32+64);
    340 	}
    341 
    342 	/*
    343 	 * Collect the channel list using the default country
    344 	 * code and including outdoor channels.  The 802.11 layer
    345 	 * is resposible for filtering this list based on settings
    346 	 * like the phy mode.
    347 	 */
    348 	error = ath_getchannels(sc, ath_countrycode,
    349 			ath_outdoor, ath_xchanmode);
    350 	if (error != 0)
    351 		goto bad;
    352 
    353 	/*
    354 	 * Setup rate tables for all potential media types.
    355 	 */
    356 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    357 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    358 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    359 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    360 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    361 	/* NB: setup here so ath_rate_update is happy */
    362 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    363 
    364 	/*
    365 	 * Allocate tx+rx descriptors and populate the lists.
    366 	 */
    367 	error = ath_desc_alloc(sc);
    368 	if (error != 0) {
    369 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    370 		goto bad;
    371 	}
    372 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    373 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    374 #if 0
    375 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    376 #endif
    377 
    378 	ATH_TXBUF_LOCK_INIT(sc);
    379 
    380 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    381 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    382 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    383 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    384 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    385 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    386 
    387 	/*
    388 	 * Allocate hardware transmit queues: one queue for
    389 	 * beacon frames and one data queue for each QoS
    390 	 * priority.  Note that the hal handles reseting
    391 	 * these queues at the needed time.
    392 	 *
    393 	 * XXX PS-Poll
    394 	 */
    395 	sc->sc_bhalq = ath_beaconq_setup(ah);
    396 	if (sc->sc_bhalq == (u_int) -1) {
    397 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    398 		error = EIO;
    399 		goto bad2;
    400 	}
    401 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    402 	if (sc->sc_cabq == NULL) {
    403 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    404 		error = EIO;
    405 		goto bad2;
    406 	}
    407 	/* NB: insure BK queue is the lowest priority h/w queue */
    408 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    409 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    410 			ieee80211_wme_acnames[WME_AC_BK]);
    411 		error = EIO;
    412 		goto bad2;
    413 	}
    414 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    415 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    416 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    417 		/*
    418 		 * Not enough hardware tx queues to properly do WME;
    419 		 * just punt and assign them all to the same h/w queue.
    420 		 * We could do a better job of this if, for example,
    421 		 * we allocate queues when we switch from station to
    422 		 * AP mode.
    423 		 */
    424 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    425 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    426 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    427 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    428 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    429 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    430 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    431 	}
    432 
    433 	/*
    434 	 * Special case certain configurations.  Note the
    435 	 * CAB queue is handled by these specially so don't
    436 	 * include them when checking the txq setup mask.
    437 	 */
    438 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    439 	case 0x01:
    440 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    441 		break;
    442 	case 0x0f:
    443 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    444 		break;
    445 	default:
    446 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    447 		break;
    448 	}
    449 
    450 	/*
    451 	 * Setup rate control.  Some rate control modules
    452 	 * call back to change the anntena state so expose
    453 	 * the necessary entry points.
    454 	 * XXX maybe belongs in struct ath_ratectrl?
    455 	 */
    456 	sc->sc_setdefantenna = ath_setdefantenna;
    457 	sc->sc_rc = ath_rate_attach(sc);
    458 	if (sc->sc_rc == NULL) {
    459 		error = EIO;
    460 		goto bad2;
    461 	}
    462 
    463 	sc->sc_blinking = 0;
    464 	sc->sc_ledstate = 1;
    465 	sc->sc_ledon = 0;			/* low true */
    466 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    467 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    468 	/*
    469 	 * Auto-enable soft led processing for IBM cards and for
    470 	 * 5211 minipci cards.  Users can also manually enable/disable
    471 	 * support with a sysctl.
    472 	 */
    473 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    474 	if (sc->sc_softled) {
    475 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    476 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    477 	}
    478 
    479 	ifp->if_softc = sc;
    480 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    481 	ifp->if_start = ath_start;
    482 	ifp->if_stop = ath_stop;
    483 	ifp->if_watchdog = ath_watchdog;
    484 	ifp->if_ioctl = ath_ioctl;
    485 	ifp->if_init = ath_ifinit;
    486 	IFQ_SET_READY(&ifp->if_snd);
    487 
    488 	ic->ic_ifp = ifp;
    489 	ic->ic_reset = ath_reset;
    490 	ic->ic_newassoc = ath_newassoc;
    491 	ic->ic_updateslot = ath_updateslot;
    492 	ic->ic_wme.wme_update = ath_wme_update;
    493 	/* XXX not right but it's not used anywhere important */
    494 	ic->ic_phytype = IEEE80211_T_OFDM;
    495 	ic->ic_opmode = IEEE80211_M_STA;
    496 	ic->ic_caps =
    497 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    498 		| IEEE80211_C_HOSTAP		/* hostap mode */
    499 		| IEEE80211_C_MONITOR		/* monitor mode */
    500 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    501 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    502 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    503 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    504 		;
    505 	/*
    506 	 * Query the hal to figure out h/w crypto support.
    507 	 */
    508 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    509 		ic->ic_caps |= IEEE80211_C_WEP;
    510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    511 		ic->ic_caps |= IEEE80211_C_AES;
    512 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    513 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    514 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    515 		ic->ic_caps |= IEEE80211_C_CKIP;
    516 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    517 		ic->ic_caps |= IEEE80211_C_TKIP;
    518 #if 0
    519 		/*
    520 		 * Check if h/w does the MIC and/or whether the
    521 		 * separate key cache entries are required to
    522 		 * handle both tx+rx MIC keys.
    523 		 */
    524 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) {
    525 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    526 			/*
    527 			 * Check if h/w does MIC correctly when
    528 			 * WMM is turned on.
    529 			 */
    530 			if (ath_hal_wmetkipmic(ah))
    531 				ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
    532 		}
    533 #endif
    534 
    535 		/*
    536 		 * If the h/w supports storing tx+rx MIC keys
    537 		 * in one cache slot automatically enable use.
    538 		 */
    539 		if (ath_hal_tkipsplit(ah) ||
    540 		    !ath_hal_settkipsplit(ah, AH_FALSE))
    541 			sc->sc_splitmic = 1;
    542 	}
    543 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    544 #if 0
    545 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    546 #endif
    547 	/*
    548 	 * TPC support can be done either with a global cap or
    549 	 * per-packet support.  The latter is not available on
    550 	 * all parts.  We're a bit pedantic here as all parts
    551 	 * support a global cap.
    552 	 */
    553 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    554 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    555 
    556 	/*
    557 	 * Mark WME capability only if we have sufficient
    558 	 * hardware queues to do proper priority scheduling.
    559 	 */
    560 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    561 		ic->ic_caps |= IEEE80211_C_WME;
    562 	/*
    563 	 * Check for misc other capabilities.
    564 	 */
    565 	if (ath_hal_hasbursting(ah))
    566 		ic->ic_caps |= IEEE80211_C_BURST;
    567 
    568 	/*
    569 	 * Indicate we need the 802.11 header padded to a
    570 	 * 32-bit boundary for 4-address and QoS frames.
    571 	 */
    572 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    573 
    574 	/*
    575 	 * Query the hal about antenna support.
    576 	 */
    577 	sc->sc_defant = ath_hal_getdefantenna(ah);
    578 
    579 	/*
    580 	 * Not all chips have the VEOL support we want to
    581 	 * use with IBSS beacons; check here for it.
    582 	 */
    583 	sc->sc_hasveol = ath_hal_hasveol(ah);
    584 
    585 	/* get mac address from hardware */
    586 	ath_hal_getmac(ah, ic->ic_myaddr);
    587 
    588 	if_attach(ifp);
    589 	/* call MI attach routine. */
    590 	ieee80211_ifattach(ic);
    591 	/* override default methods */
    592 	ic->ic_node_alloc = ath_node_alloc;
    593 	sc->sc_node_free = ic->ic_node_free;
    594 	ic->ic_node_free = ath_node_free;
    595 	ic->ic_node_getrssi = ath_node_getrssi;
    596 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    597 	ic->ic_recv_mgmt = ath_recv_mgmt;
    598 	sc->sc_newstate = ic->ic_newstate;
    599 	ic->ic_newstate = ath_newstate;
    600 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    601 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    602 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    603 	ic->ic_crypto.cs_key_set = ath_key_set;
    604 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    605 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    606 	/* complete initialization */
    607 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    608 
    609 #if NBPFILTER > 0
    610 	ath_bpfattach(sc);
    611 #endif
    612 
    613 	sc->sc_flags |= ATH_ATTACHED;
    614 
    615 	/*
    616 	 * Setup dynamic sysctl's now that country code and
    617 	 * regdomain are available from the hal.
    618 	 */
    619 	ath_sysctlattach(sc);
    620 
    621 	ieee80211_announce(ic);
    622 	ath_announce(sc);
    623 	return 0;
    624 bad2:
    625 	ath_tx_cleanup(sc);
    626 	ath_desc_free(sc);
    627 bad:
    628 	if (ah)
    629 		ath_hal_detach(ah);
    630 	/* XXX don't get under the abstraction like this */
    631 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
    632 	return error;
    633 }
    634 
    635 int
    636 ath_detach(struct ath_softc *sc)
    637 {
    638 	struct ifnet *ifp = &sc->sc_if;
    639 	int s;
    640 
    641 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    642 		return (0);
    643 
    644 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    645 		__func__, ifp->if_flags);
    646 
    647 	s = splnet();
    648 	ath_stop(ifp, 1);
    649 #if NBPFILTER > 0
    650 	bpfdetach(ifp);
    651 #endif
    652 	/*
    653 	 * NB: the order of these is important:
    654 	 * o call the 802.11 layer before detaching the hal to
    655 	 *   insure callbacks into the driver to delete global
    656 	 *   key cache entries can be handled
    657 	 * o reclaim the tx queue data structures after calling
    658 	 *   the 802.11 layer as we'll get called back to reclaim
    659 	 *   node state and potentially want to use them
    660 	 * o to cleanup the tx queues the hal is called, so detach
    661 	 *   it last
    662 	 * Other than that, it's straightforward...
    663 	 */
    664 	ieee80211_ifdetach(&sc->sc_ic);
    665 #ifdef ATH_TX99_DIAG
    666 	if (sc->sc_tx99 != NULL)
    667 		sc->sc_tx99->detach(sc->sc_tx99);
    668 #endif
    669 	ath_rate_detach(sc->sc_rc);
    670 	ath_desc_free(sc);
    671 	ath_tx_cleanup(sc);
    672 	sysctl_teardown(&sc->sc_sysctllog);
    673 	ath_hal_detach(sc->sc_ah);
    674 	if_detach(ifp);
    675 	splx(s);
    676 
    677 	return 0;
    678 }
    679 
    680 void
    681 ath_suspend(struct ath_softc *sc)
    682 {
    683 #if notyet
    684 	/*
    685 	 * Set the chip in full sleep mode.  Note that we are
    686 	 * careful to do this only when bringing the interface
    687 	 * completely to a stop.  When the chip is in this state
    688 	 * it must be carefully woken up or references to
    689 	 * registers in the PCI clock domain may freeze the bus
    690 	 * (and system).  This varies by chip and is mostly an
    691 	 * issue with newer parts that go to sleep more quickly.
    692 	 */
    693 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
    694 #endif
    695 }
    696 
    697 bool
    698 ath_resume(struct ath_softc *sc)
    699 {
    700 	struct ath_hal *ah = sc->sc_ah;
    701 	struct ieee80211com *ic = &sc->sc_ic;
    702 	HAL_STATUS status;
    703 	int i;
    704 
    705 #if notyet
    706 	ath_hal_setpower(ah, HAL_PM_AWAKE);
    707 #else
    708 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
    709 #endif
    710 
    711 	/*
    712 	 * Reset the key cache since some parts do not
    713 	 * reset the contents on initial power up.
    714 	 */
    715 	for (i = 0; i < sc->sc_keymax; i++)
    716 		ath_hal_keyreset(ah, i);
    717 
    718 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
    719 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
    720 		if (ATH_TXQ_SETUP(sc, i))
    721 			ath_hal_resettxqueue(ah, i);
    722 
    723 	if (sc->sc_softled) {
    724 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    725 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    726 	}
    727 	return true;
    728 }
    729 
    730 /*
    731  * Interrupt handler.  Most of the actual processing is deferred.
    732  */
    733 int
    734 ath_intr(void *arg)
    735 {
    736 	struct ath_softc *sc = arg;
    737 	struct ifnet *ifp = &sc->sc_if;
    738 	struct ath_hal *ah = sc->sc_ah;
    739 	HAL_INT status;
    740 
    741 	if (!device_is_active(sc->sc_dev)) {
    742 		/*
    743 		 * The hardware is not ready/present, don't touch anything.
    744 		 * Note this can happen early on if the IRQ is shared.
    745 		 */
    746 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    747 		return 0;
    748 	}
    749 
    750 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    751 		return 0;
    752 
    753 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    754 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    755 			__func__, ifp->if_flags);
    756 		ath_hal_getisr(ah, &status);	/* clear ISR */
    757 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    758 		return 1; /* XXX */
    759 	}
    760 	/*
    761 	 * Figure out the reason(s) for the interrupt.  Note
    762 	 * that the hal returns a pseudo-ISR that may include
    763 	 * bits we haven't explicitly enabled so we mask the
    764 	 * value to insure we only process bits we requested.
    765 	 */
    766 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    767 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    768 	status &= sc->sc_imask;			/* discard unasked for bits */
    769 	if (status & HAL_INT_FATAL) {
    770 		/*
    771 		 * Fatal errors are unrecoverable.  Typically
    772 		 * these are caused by DMA errors.  Unfortunately
    773 		 * the exact reason is not (presently) returned
    774 		 * by the hal.
    775 		 */
    776 		sc->sc_stats.ast_hardware++;
    777 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    778 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    779 	} else if (status & HAL_INT_RXORN) {
    780 		sc->sc_stats.ast_rxorn++;
    781 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    782 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    783 	} else {
    784 		if (status & HAL_INT_SWBA) {
    785 			/*
    786 			 * Software beacon alert--time to send a beacon.
    787 			 * Handle beacon transmission directly; deferring
    788 			 * this is too slow to meet timing constraints
    789 			 * under load.
    790 			 */
    791 			ath_beacon_proc(sc, 0);
    792 		}
    793 		if (status & HAL_INT_RXEOL) {
    794 			/*
    795 			 * NB: the hardware should re-read the link when
    796 			 *     RXE bit is written, but it doesn't work at
    797 			 *     least on older hardware revs.
    798 			 */
    799 			sc->sc_stats.ast_rxeol++;
    800 			sc->sc_rxlink = NULL;
    801 		}
    802 		if (status & HAL_INT_TXURN) {
    803 			sc->sc_stats.ast_txurn++;
    804 			/* bump tx trigger level */
    805 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    806 		}
    807 		if (status & HAL_INT_RX)
    808 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    809 		if (status & HAL_INT_TX)
    810 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    811 		if (status & HAL_INT_BMISS) {
    812 			sc->sc_stats.ast_bmiss++;
    813 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    814 		}
    815 		if (status & HAL_INT_MIB) {
    816 			sc->sc_stats.ast_mib++;
    817 			/*
    818 			 * Disable interrupts until we service the MIB
    819 			 * interrupt; otherwise it will continue to fire.
    820 			 */
    821 			ath_hal_intrset(ah, 0);
    822 			/*
    823 			 * Let the hal handle the event.  We assume it will
    824 			 * clear whatever condition caused the interrupt.
    825 			 */
    826 			ath_hal_mibevent(ah, &sc->sc_halstats);
    827 			ath_hal_intrset(ah, sc->sc_imask);
    828 		}
    829 	}
    830 	return 1;
    831 }
    832 
    833 /* Swap transmit descriptor.
    834  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    835  * function.
    836  */
    837 static inline void
    838 ath_desc_swap(struct ath_desc *ds)
    839 {
    840 #ifdef AH_NEED_DESC_SWAP
    841 	ds->ds_link = htole32(ds->ds_link);
    842 	ds->ds_data = htole32(ds->ds_data);
    843 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    844 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    845 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    846 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    847 #endif
    848 }
    849 
    850 static void
    851 ath_fatal_proc(void *arg, int pending)
    852 {
    853 	struct ath_softc *sc = arg;
    854 	struct ifnet *ifp = &sc->sc_if;
    855 
    856 	if_printf(ifp, "hardware error; resetting\n");
    857 	ath_reset(ifp);
    858 }
    859 
    860 static void
    861 ath_rxorn_proc(void *arg, int pending)
    862 {
    863 	struct ath_softc *sc = arg;
    864 	struct ifnet *ifp = &sc->sc_if;
    865 
    866 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    867 	ath_reset(ifp);
    868 }
    869 
    870 static void
    871 ath_bmiss_proc(void *arg, int pending)
    872 {
    873 	struct ath_softc *sc = arg;
    874 	struct ieee80211com *ic = &sc->sc_ic;
    875 
    876 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    877 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    878 		("unexpect operating mode %u", ic->ic_opmode));
    879 	if (ic->ic_state == IEEE80211_S_RUN) {
    880 		u_int64_t lastrx = sc->sc_lastrx;
    881 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    882 
    883 		DPRINTF(sc, ATH_DEBUG_BEACON,
    884 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    885 		    " (%" PRIu64 ") bmiss %u\n",
    886 		    __func__, tsf, tsf - lastrx, lastrx,
    887 		    ic->ic_bmisstimeout*1024);
    888 		/*
    889 		 * Workaround phantom bmiss interrupts by sanity-checking
    890 		 * the time of our last rx'd frame.  If it is within the
    891 		 * beacon miss interval then ignore the interrupt.  If it's
    892 		 * truly a bmiss we'll get another interrupt soon and that'll
    893 		 * be dispatched up for processing.
    894 		 */
    895 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    896 			NET_LOCK_GIANT();
    897 			ieee80211_beacon_miss(ic);
    898 			NET_UNLOCK_GIANT();
    899 		} else
    900 			sc->sc_stats.ast_bmiss_phantom++;
    901 	}
    902 }
    903 
    904 static void
    905 ath_radar_proc(void *arg, int pending)
    906 {
    907 #if 0
    908 	struct ath_softc *sc = arg;
    909 	struct ifnet *ifp = &sc->sc_if;
    910 	struct ath_hal *ah = sc->sc_ah;
    911 	HAL_CHANNEL hchan;
    912 
    913 	if (ath_hal_procdfs(ah, &hchan)) {
    914 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    915 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    916 		/*
    917 		 * Initiate channel change.
    918 		 */
    919 		/* XXX not yet */
    920 	}
    921 #endif
    922 }
    923 
    924 static u_int
    925 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    926 {
    927 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    928 	static const u_int modeflags[] = {
    929 		0,			/* IEEE80211_MODE_AUTO */
    930 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    931 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    932 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    933 		0,			/* IEEE80211_MODE_FH */
    934 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    935 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    936 	};
    937 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    938 
    939 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    940 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    941 	return modeflags[mode];
    942 #undef N
    943 }
    944 
    945 static int
    946 ath_ifinit(struct ifnet *ifp)
    947 {
    948 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    949 
    950 	return ath_init(sc);
    951 }
    952 
    953 static int
    954 ath_init(struct ath_softc *sc)
    955 {
    956 	struct ifnet *ifp = &sc->sc_if;
    957 	struct ieee80211com *ic = &sc->sc_ic;
    958 	struct ath_hal *ah = sc->sc_ah;
    959 	HAL_STATUS status;
    960 	int error = 0;
    961 
    962 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    963 		__func__, ifp->if_flags);
    964 
    965 	if (device_is_active(sc->sc_dev)) {
    966 		ATH_LOCK(sc);
    967 	} else if (!pmf_device_resume_self(sc->sc_dev))
    968 		return ENXIO;
    969 	else
    970 		ATH_LOCK(sc);
    971 
    972 	/*
    973 	 * Stop anything previously setup.  This is safe
    974 	 * whether this is the first time through or not.
    975 	 */
    976 	ath_stop_locked(ifp, 0);
    977 
    978 	int dummy;	/* XXX: gcc */
    979 	/* Whether we should enable h/w TKIP MIC */
    980 	if ((ic->ic_caps & IEEE80211_C_WME) &&
    981 	    ((ic->ic_caps & IEEE80211_C_WME_TKIPMIC) ||
    982 	    !(ic->ic_flags & IEEE80211_F_WME))) {
    983 		dummy = ath_hal_settkipmic(ah, AH_TRUE);
    984 	} else {
    985 		dummy = ath_hal_settkipmic(ah, AH_FALSE);
    986 	}
    987 
    988 
    989 	/*
    990 	 * The basic interface to setting the hardware in a good
    991 	 * state is ``reset''.  On return the hardware is known to
    992 	 * be powered up and with interrupts disabled.  This must
    993 	 * be followed by initialization of the appropriate bits
    994 	 * and then setup of the interrupt mask.
    995 	 */
    996 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
    997 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
    998 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
    999 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1000 			status);
   1001 		error = EIO;
   1002 		goto done;
   1003 	}
   1004 
   1005 	/*
   1006 	 * This is needed only to setup initial state
   1007 	 * but it's best done after a reset.
   1008 	 */
   1009 	ath_update_txpow(sc);
   1010 	/*
   1011 	 * Likewise this is set during reset so update
   1012 	 * state cached in the driver.
   1013 	 */
   1014 	ath_restore_diversity(sc);
   1015 	sc->sc_calinterval = 1;
   1016 	sc->sc_caltries = 0;
   1017 
   1018 	/*
   1019 	 * Setup the hardware after reset: the key cache
   1020 	 * is filled as needed and the receive engine is
   1021 	 * set going.  Frame transmit is handled entirely
   1022 	 * in the frame output path; there's nothing to do
   1023 	 * here except setup the interrupt mask.
   1024 	 */
   1025 	if ((error = ath_startrecv(sc)) != 0) {
   1026 		if_printf(ifp, "unable to start recv logic\n");
   1027 		goto done;
   1028 	}
   1029 
   1030 	/*
   1031 	 * Enable interrupts.
   1032 	 */
   1033 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1034 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1035 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1036 	/*
   1037 	 * Enable MIB interrupts when there are hardware phy counters.
   1038 	 * Note we only do this (at the moment) for station mode.
   1039 	 */
   1040 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1041 		sc->sc_imask |= HAL_INT_MIB;
   1042 	ath_hal_intrset(ah, sc->sc_imask);
   1043 
   1044 	ifp->if_flags |= IFF_RUNNING;
   1045 	ic->ic_state = IEEE80211_S_INIT;
   1046 
   1047 	/*
   1048 	 * The hardware should be ready to go now so it's safe
   1049 	 * to kick the 802.11 state machine as it's likely to
   1050 	 * immediately call back to us to send mgmt frames.
   1051 	 */
   1052 	ath_chan_change(sc, ic->ic_curchan);
   1053 #ifdef ATH_TX99_DIAG
   1054 	if (sc->sc_tx99 != NULL)
   1055 		sc->sc_tx99->start(sc->sc_tx99);
   1056 	else
   1057 #endif
   1058 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1059 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1060 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1061 	} else
   1062 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1063 done:
   1064 	ATH_UNLOCK(sc);
   1065 	return error;
   1066 }
   1067 
   1068 static void
   1069 ath_stop_locked(struct ifnet *ifp, int disable)
   1070 {
   1071 	struct ath_softc *sc = ifp->if_softc;
   1072 	struct ieee80211com *ic = &sc->sc_ic;
   1073 	struct ath_hal *ah = sc->sc_ah;
   1074 
   1075 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
   1076 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
   1077 
   1078 	ATH_LOCK_ASSERT(sc);
   1079 	if (ifp->if_flags & IFF_RUNNING) {
   1080 		/*
   1081 		 * Shutdown the hardware and driver:
   1082 		 *    reset 802.11 state machine
   1083 		 *    turn off timers
   1084 		 *    disable interrupts
   1085 		 *    turn off the radio
   1086 		 *    clear transmit machinery
   1087 		 *    clear receive machinery
   1088 		 *    drain and release tx queues
   1089 		 *    reclaim beacon resources
   1090 		 *    power down hardware
   1091 		 *
   1092 		 * Note that some of this work is not possible if the
   1093 		 * hardware is gone (invalid).
   1094 		 */
   1095 #ifdef ATH_TX99_DIAG
   1096 		if (sc->sc_tx99 != NULL)
   1097 			sc->sc_tx99->stop(sc->sc_tx99);
   1098 #endif
   1099 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1100 		ifp->if_flags &= ~IFF_RUNNING;
   1101 		ifp->if_timer = 0;
   1102 		if (device_is_enabled(sc->sc_dev)) {
   1103 			if (sc->sc_softled) {
   1104 				callout_stop(&sc->sc_ledtimer);
   1105 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1106 					!sc->sc_ledon);
   1107 				sc->sc_blinking = 0;
   1108 			}
   1109 			ath_hal_intrset(ah, 0);
   1110 		}
   1111 		ath_draintxq(sc);
   1112 		if (device_is_enabled(sc->sc_dev)) {
   1113 			ath_stoprecv(sc);
   1114 			ath_hal_phydisable(ah);
   1115 		} else
   1116 			sc->sc_rxlink = NULL;
   1117 		IF_PURGE(&ifp->if_snd);
   1118 		ath_beacon_free(sc);
   1119 		if (disable)
   1120 			pmf_device_suspend_self(sc->sc_dev);
   1121 	}
   1122 }
   1123 
   1124 static void
   1125 ath_stop(struct ifnet *ifp, int disable)
   1126 {
   1127 	struct ath_softc *sc = ifp->if_softc;
   1128 
   1129 	ATH_LOCK(sc);
   1130 	ath_stop_locked(ifp, disable);
   1131 	ATH_UNLOCK(sc);
   1132 }
   1133 
   1134 static void
   1135 ath_restore_diversity(struct ath_softc *sc)
   1136 {
   1137 	struct ifnet *ifp = &sc->sc_if;
   1138 	struct ath_hal *ah = sc->sc_ah;
   1139 
   1140 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1141 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1142 		if_printf(ifp, "could not restore diversity setting %d\n",
   1143 		    sc->sc_diversity);
   1144 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1145 	}
   1146 }
   1147 
   1148 /*
   1149  * Reset the hardware w/o losing operational state.  This is
   1150  * basically a more efficient way of doing ath_stop, ath_init,
   1151  * followed by state transitions to the current 802.11
   1152  * operational state.  Used to recover from various errors and
   1153  * to reset or reload hardware state.
   1154  */
   1155 int
   1156 ath_reset(struct ifnet *ifp)
   1157 {
   1158 	struct ath_softc *sc = ifp->if_softc;
   1159 	struct ieee80211com *ic = &sc->sc_ic;
   1160 	struct ath_hal *ah = sc->sc_ah;
   1161 	struct ieee80211_channel *c;
   1162 	HAL_STATUS status;
   1163 
   1164 	/*
   1165 	 * Convert to a HAL channel description with the flags
   1166 	 * constrained to reflect the current operating mode.
   1167 	 */
   1168 	c = ic->ic_curchan;
   1169 	sc->sc_curchan.channel = c->ic_freq;
   1170 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1171 
   1172 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1173 	ath_draintxq(sc);		/* stop xmit side */
   1174 	ath_stoprecv(sc);		/* stop recv side */
   1175 	/* NB: indicate channel change so we do a full reset */
   1176 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1177 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1178 			__func__, status);
   1179 	ath_update_txpow(sc);		/* update tx power state */
   1180 	ath_restore_diversity(sc);
   1181 	sc->sc_calinterval = 1;
   1182 	sc->sc_caltries = 0;
   1183 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1184 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1185 	/*
   1186 	 * We may be doing a reset in response to an ioctl
   1187 	 * that changes the channel so update any state that
   1188 	 * might change as a result.
   1189 	 */
   1190 	ath_chan_change(sc, c);
   1191 	if (ic->ic_state == IEEE80211_S_RUN)
   1192 		ath_beacon_config(sc);	/* restart beacons */
   1193 	ath_hal_intrset(ah, sc->sc_imask);
   1194 
   1195 	ath_start(ifp);			/* restart xmit */
   1196 	return 0;
   1197 }
   1198 
   1199 /*
   1200  * Cleanup driver resources when we run out of buffers
   1201  * while processing fragments; return the tx buffers
   1202  * allocated and drop node references.
   1203  */
   1204 static void
   1205 ath_txfrag_cleanup(struct ath_softc *sc,
   1206 	ath_bufhead *frags, struct ieee80211_node *ni)
   1207 {
   1208 	struct ath_buf *bf;
   1209 
   1210 	ATH_TXBUF_LOCK_ASSERT(sc);
   1211 
   1212 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1213 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1214 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1215 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1216 		ieee80211_node_decref(ni);
   1217 	}
   1218 }
   1219 
   1220 /*
   1221  * Setup xmit of a fragmented frame.  Allocate a buffer
   1222  * for each frag and bump the node reference count to
   1223  * reflect the held reference to be setup by ath_tx_start.
   1224  */
   1225 static int
   1226 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1227 	struct mbuf *m0, struct ieee80211_node *ni)
   1228 {
   1229 	struct mbuf *m;
   1230 	struct ath_buf *bf;
   1231 
   1232 	ATH_TXBUF_LOCK(sc);
   1233 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1234 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1235 		if (bf == NULL) {       /* out of buffers, cleanup */
   1236 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1237 				__func__);
   1238 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1239 			ath_txfrag_cleanup(sc, frags, ni);
   1240 			break;
   1241 		}
   1242 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1243 		ieee80211_node_incref(ni);
   1244 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1245 	}
   1246 	ATH_TXBUF_UNLOCK(sc);
   1247 
   1248 	return !STAILQ_EMPTY(frags);
   1249 }
   1250 
   1251 static void
   1252 ath_start(struct ifnet *ifp)
   1253 {
   1254 	struct ath_softc *sc = ifp->if_softc;
   1255 	struct ath_hal *ah = sc->sc_ah;
   1256 	struct ieee80211com *ic = &sc->sc_ic;
   1257 	struct ieee80211_node *ni;
   1258 	struct ath_buf *bf;
   1259 	struct mbuf *m, *next;
   1260 	struct ieee80211_frame *wh;
   1261 	struct ether_header *eh;
   1262 	ath_bufhead frags;
   1263 
   1264 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   1265 	    !device_is_active(sc->sc_dev))
   1266 		return;
   1267 	for (;;) {
   1268 		/*
   1269 		 * Grab a TX buffer and associated resources.
   1270 		 */
   1271 		ATH_TXBUF_LOCK(sc);
   1272 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1273 		if (bf != NULL)
   1274 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1275 		ATH_TXBUF_UNLOCK(sc);
   1276 		if (bf == NULL) {
   1277 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1278 				__func__);
   1279 			sc->sc_stats.ast_tx_qstop++;
   1280 			ifp->if_flags |= IFF_OACTIVE;
   1281 			break;
   1282 		}
   1283 		/*
   1284 		 * Poll the management queue for frames; they
   1285 		 * have priority over normal data frames.
   1286 		 */
   1287 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1288 		if (m == NULL) {
   1289 			/*
   1290 			 * No data frames go out unless we're associated.
   1291 			 */
   1292 			if (ic->ic_state != IEEE80211_S_RUN) {
   1293 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1294 				    "%s: discard data packet, state %s\n",
   1295 				    __func__,
   1296 				    ieee80211_state_name[ic->ic_state]);
   1297 				sc->sc_stats.ast_tx_discard++;
   1298 				ATH_TXBUF_LOCK(sc);
   1299 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1300 				ATH_TXBUF_UNLOCK(sc);
   1301 				break;
   1302 			}
   1303 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1304 			if (m == NULL) {
   1305 				ATH_TXBUF_LOCK(sc);
   1306 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1307 				ATH_TXBUF_UNLOCK(sc);
   1308 				break;
   1309 			}
   1310 			STAILQ_INIT(&frags);
   1311 			/*
   1312 			 * Find the node for the destination so we can do
   1313 			 * things like power save and fast frames aggregation.
   1314 			 */
   1315 			if (m->m_len < sizeof(struct ether_header) &&
   1316 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1317 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1318 				ni = NULL;
   1319 				goto bad;
   1320 			}
   1321 			eh = mtod(m, struct ether_header *);
   1322 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1323 			if (ni == NULL) {
   1324 				/* NB: ieee80211_find_txnode does stat+msg */
   1325 				m_freem(m);
   1326 				goto bad;
   1327 			}
   1328 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1329 			    (m->m_flags & M_PWR_SAV) == 0) {
   1330 				/*
   1331 				 * Station in power save mode; pass the frame
   1332 				 * to the 802.11 layer and continue.  We'll get
   1333 				 * the frame back when the time is right.
   1334 				 */
   1335 				ieee80211_pwrsave(ic, ni, m);
   1336 				goto reclaim;
   1337 			}
   1338 			/* calculate priority so we can find the tx queue */
   1339 			if (ieee80211_classify(ic, m, ni)) {
   1340 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1341 					"%s: discard, classification failure\n",
   1342 					__func__);
   1343 				m_freem(m);
   1344 				goto bad;
   1345 			}
   1346 			ifp->if_opackets++;
   1347 
   1348 #if NBPFILTER > 0
   1349 			if (ifp->if_bpf)
   1350 				bpf_mtap(ifp->if_bpf, m);
   1351 #endif
   1352 			/*
   1353 			 * Encapsulate the packet in prep for transmission.
   1354 			 */
   1355 			m = ieee80211_encap(ic, m, ni);
   1356 			if (m == NULL) {
   1357 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1358 					"%s: encapsulation failure\n",
   1359 					__func__);
   1360 				sc->sc_stats.ast_tx_encap++;
   1361 				goto bad;
   1362 			}
   1363 			/*
   1364 			 * Check for fragmentation.  If this has frame
   1365 			 * has been broken up verify we have enough
   1366 			 * buffers to send all the fragments so all
   1367 			 * go out or none...
   1368 			 */
   1369 			if ((m->m_flags & M_FRAG) &&
   1370 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1371 				DPRINTF(sc, ATH_DEBUG_ANY,
   1372 				    "%s: out of txfrag buffers\n", __func__);
   1373 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1374 				ath_freetx(m);
   1375 				goto bad;
   1376 			}
   1377 		} else {
   1378 			/*
   1379 			 * Hack!  The referenced node pointer is in the
   1380 			 * rcvif field of the packet header.  This is
   1381 			 * placed there by ieee80211_mgmt_output because
   1382 			 * we need to hold the reference with the frame
   1383 			 * and there's no other way (other than packet
   1384 			 * tags which we consider too expensive to use)
   1385 			 * to pass it along.
   1386 			 */
   1387 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1388 			m->m_pkthdr.rcvif = NULL;
   1389 
   1390 			wh = mtod(m, struct ieee80211_frame *);
   1391 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1392 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1393 				/* fill time stamp */
   1394 				u_int64_t tsf;
   1395 				u_int32_t *tstamp;
   1396 
   1397 				tsf = ath_hal_gettsf64(ah);
   1398 				/* XXX: adjust 100us delay to xmit */
   1399 				tsf += 100;
   1400 				tstamp = (u_int32_t *)&wh[1];
   1401 				tstamp[0] = htole32(tsf & 0xffffffff);
   1402 				tstamp[1] = htole32(tsf >> 32);
   1403 			}
   1404 			sc->sc_stats.ast_tx_mgmt++;
   1405 		}
   1406 
   1407 	nextfrag:
   1408 		next = m->m_nextpkt;
   1409 		if (ath_tx_start(sc, ni, bf, m)) {
   1410 	bad:
   1411 			ifp->if_oerrors++;
   1412 	reclaim:
   1413 			ATH_TXBUF_LOCK(sc);
   1414 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1415 			ath_txfrag_cleanup(sc, &frags, ni);
   1416 			ATH_TXBUF_UNLOCK(sc);
   1417 			if (ni != NULL)
   1418 				ieee80211_free_node(ni);
   1419 			continue;
   1420 		}
   1421 		if (next != NULL) {
   1422 			m = next;
   1423 			bf = STAILQ_FIRST(&frags);
   1424 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1425 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1426 			goto nextfrag;
   1427 		}
   1428 
   1429 		ifp->if_timer = 1;
   1430 	}
   1431 }
   1432 
   1433 static int
   1434 ath_media_change(struct ifnet *ifp)
   1435 {
   1436 #define	IS_UP(ifp) \
   1437 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1438 	int error;
   1439 
   1440 	error = ieee80211_media_change(ifp);
   1441 	if (error == ENETRESET) {
   1442 		if (IS_UP(ifp))
   1443 			ath_init(ifp->if_softc);	/* XXX lose error */
   1444 		error = 0;
   1445 	}
   1446 	return error;
   1447 #undef IS_UP
   1448 }
   1449 
   1450 #ifdef AR_DEBUG
   1451 static void
   1452 ath_keyprint(const char *tag, u_int ix,
   1453 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1454 {
   1455 	static const char *ciphers[] = {
   1456 		"WEP",
   1457 		"AES-OCB",
   1458 		"AES-CCM",
   1459 		"CKIP",
   1460 		"TKIP",
   1461 		"CLR",
   1462 	};
   1463 	int i, n;
   1464 
   1465 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1466 	for (i = 0, n = hk->kv_len; i < n; i++)
   1467 		printf("%02x", hk->kv_val[i]);
   1468 	printf(" mac %s", ether_sprintf(mac));
   1469 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1470 		printf(" mic ");
   1471 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1472 			printf("%02x", hk->kv_mic[i]);
   1473 	}
   1474 	printf("\n");
   1475 }
   1476 #endif
   1477 
   1478 /*
   1479  * Set a TKIP key into the hardware.  This handles the
   1480  * potential distribution of key state to multiple key
   1481  * cache slots for TKIP.
   1482  */
   1483 static int
   1484 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1485 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1486 {
   1487 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1488 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1489 	struct ath_hal *ah = sc->sc_ah;
   1490 
   1491 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1492 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1493 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1494 		if (sc->sc_splitmic) {
   1495 			/*
   1496 			 * TX key goes at first index, RX key at the rx index.
   1497 			 * The hal handles the MIC keys at index+64.
   1498 			 */
   1499 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1500 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1501 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
   1502 						zerobssid))
   1503 				return 0;
   1504 
   1505 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1506 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1507 			/* XXX delete tx key on failure? */
   1508 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
   1509 					hk, mac);
   1510 		} else {
   1511 			/*
   1512 			 * Room for both TX+RX MIC keys in one key cache
   1513 			 * slot, just set key at the first index; the HAL
   1514 			 * will handle the reset.
   1515 			 */
   1516 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1517 #if HAL_ABI_VERSION > 0x06052200
   1518 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1519 #endif
   1520 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1521 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1522 		}
   1523 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
   1524 		/*
   1525 		 * TX/RX key goes at first index.
   1526 		 * The hal handles the MIC keys are index+64.
   1527 		 */
   1528 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
   1529 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
   1530 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1531 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1532 	}
   1533 	return 0;
   1534 #undef IEEE80211_KEY_XR
   1535 }
   1536 
   1537 /*
   1538  * Set a net80211 key into the hardware.  This handles the
   1539  * potential distribution of key state to multiple key
   1540  * cache slots for TKIP with hardware MIC support.
   1541  */
   1542 static int
   1543 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1544 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1545 	struct ieee80211_node *bss)
   1546 {
   1547 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1548 	static const u_int8_t ciphermap[] = {
   1549 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1550 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1551 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1552 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1553 		(u_int8_t) -1,		/* 4 is not allocated */
   1554 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1555 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1556 	};
   1557 	struct ath_hal *ah = sc->sc_ah;
   1558 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1559 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1560 	const u_int8_t *mac;
   1561 	HAL_KEYVAL hk;
   1562 
   1563 	memset(&hk, 0, sizeof(hk));
   1564 	/*
   1565 	 * Software crypto uses a "clear key" so non-crypto
   1566 	 * state kept in the key cache are maintained and
   1567 	 * so that rx frames have an entry to match.
   1568 	 */
   1569 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1570 		KASSERT(cip->ic_cipher < N(ciphermap),
   1571 			("invalid cipher type %u", cip->ic_cipher));
   1572 		hk.kv_type = ciphermap[cip->ic_cipher];
   1573 		hk.kv_len = k->wk_keylen;
   1574 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1575 	} else
   1576 		hk.kv_type = HAL_CIPHER_CLR;
   1577 
   1578 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1579 		/*
   1580 		 * Group keys on hardware that supports multicast frame
   1581 		 * key search use a mac that is the sender's address with
   1582 		 * the high bit set instead of the app-specified address.
   1583 		 */
   1584 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1585 		gmac[0] |= 0x80;
   1586 		mac = gmac;
   1587 	} else
   1588 		mac = mac0;
   1589 
   1590 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
   1591 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) && sc->sc_splitmic) {
   1592 		return ath_keyset_tkip(sc, k, &hk, mac);
   1593 	} else {
   1594 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1595 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
   1596 	}
   1597 #undef N
   1598 }
   1599 
   1600 /*
   1601  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1602  * each key, one for decrypt/encrypt and the other for the MIC.
   1603  */
   1604 static u_int16_t
   1605 key_alloc_2pair(struct ath_softc *sc,
   1606 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1607 {
   1608 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1609 	u_int i, keyix;
   1610 
   1611 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1612 	/* XXX could optimize */
   1613 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1614 		u_int8_t b = sc->sc_keymap[i];
   1615 		if (b != 0xff) {
   1616 			/*
   1617 			 * One or more slots in this byte are free.
   1618 			 */
   1619 			keyix = i*NBBY;
   1620 			while (b & 1) {
   1621 		again:
   1622 				keyix++;
   1623 				b >>= 1;
   1624 			}
   1625 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1626 			if (isset(sc->sc_keymap, keyix+32) ||
   1627 			    isset(sc->sc_keymap, keyix+64) ||
   1628 			    isset(sc->sc_keymap, keyix+32+64)) {
   1629 				/* full pair unavailable */
   1630 				/* XXX statistic */
   1631 				if (keyix == (i+1)*NBBY) {
   1632 					/* no slots were appropriate, advance */
   1633 					continue;
   1634 				}
   1635 				goto again;
   1636 			}
   1637 			setbit(sc->sc_keymap, keyix);
   1638 			setbit(sc->sc_keymap, keyix+64);
   1639 			setbit(sc->sc_keymap, keyix+32);
   1640 			setbit(sc->sc_keymap, keyix+32+64);
   1641 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1642 				"%s: key pair %u,%u %u,%u\n",
   1643 				__func__, keyix, keyix+64,
   1644 				keyix+32, keyix+32+64);
   1645 			*txkeyix = keyix;
   1646 			*rxkeyix = keyix+32;
   1647 			return keyix;
   1648 		}
   1649 	}
   1650 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1651 	return IEEE80211_KEYIX_NONE;
   1652 #undef N
   1653 }
   1654 
   1655 /*
   1656  * Allocate a single key cache slot.
   1657  */
   1658 static int
   1659 key_alloc_single(struct ath_softc *sc,
   1660 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1661 {
   1662 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1663 	u_int i, keyix;
   1664 
   1665 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1666 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1667 		u_int8_t b = sc->sc_keymap[i];
   1668 		if (b != 0xff) {
   1669 			/*
   1670 			 * One or more slots are free.
   1671 			 */
   1672 			keyix = i*NBBY;
   1673 			while (b & 1)
   1674 				keyix++, b >>= 1;
   1675 			setbit(sc->sc_keymap, keyix);
   1676 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1677 				__func__, keyix);
   1678 			*txkeyix = *rxkeyix = keyix;
   1679 			return 1;
   1680 		}
   1681 	}
   1682 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1683 	return 0;
   1684 #undef N
   1685 }
   1686 
   1687 /*
   1688  * Allocate one or more key cache slots for a uniacst key.  The
   1689  * key itself is needed only to identify the cipher.  For hardware
   1690  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1691  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1692  * that the MIC key for a TKIP key at slot i is assumed by the
   1693  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1694  * 64 entries.
   1695  */
   1696 static int
   1697 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1698 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1699 {
   1700 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1701 
   1702 	/*
   1703 	 * Group key allocation must be handled specially for
   1704 	 * parts that do not support multicast key cache search
   1705 	 * functionality.  For those parts the key id must match
   1706 	 * the h/w key index so lookups find the right key.  On
   1707 	 * parts w/ the key search facility we install the sender's
   1708 	 * mac address (with the high bit set) and let the hardware
   1709 	 * find the key w/o using the key id.  This is preferred as
   1710 	 * it permits us to support multiple users for adhoc and/or
   1711 	 * multi-station operation.
   1712 	 */
   1713 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1714 		if (!(&ic->ic_nw_keys[0] <= k &&
   1715 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1716 			/* should not happen */
   1717 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1718 				"%s: bogus group key\n", __func__);
   1719 			return 0;
   1720 		}
   1721 		/*
   1722 		 * XXX we pre-allocate the global keys so
   1723 		 * have no way to check if they've already been allocated.
   1724 		 */
   1725 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1726 		return 1;
   1727 	}
   1728 
   1729 	/*
   1730 	 * We allocate two pair for TKIP when using the h/w to do
   1731 	 * the MIC.  For everything else, including software crypto,
   1732 	 * we allocate a single entry.  Note that s/w crypto requires
   1733 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1734 	 * not support pass-through cache entries and we map all
   1735 	 * those requests to slot 0.
   1736 	 */
   1737 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1738 		return key_alloc_single(sc, keyix, rxkeyix);
   1739 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1740 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
   1741 		return key_alloc_2pair(sc, keyix, rxkeyix);
   1742 	} else {
   1743 		return key_alloc_single(sc, keyix, rxkeyix);
   1744 	}
   1745 }
   1746 
   1747 /*
   1748  * Delete an entry in the key cache allocated by ath_key_alloc.
   1749  */
   1750 static int
   1751 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1752 {
   1753 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1754 	struct ath_hal *ah = sc->sc_ah;
   1755 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1756 	u_int keyix = k->wk_keyix;
   1757 
   1758 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1759 
   1760 	if (!device_has_power(sc->sc_dev)) {
   1761 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
   1762 		    k->wk_keyix);
   1763 	}
   1764 
   1765 	ath_hal_keyreset(ah, keyix);
   1766 	/*
   1767 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1768 	 */
   1769 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1770 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1771 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1772 	if (keyix >= IEEE80211_WEP_NKID) {
   1773 		/*
   1774 		 * Don't touch keymap entries for global keys so
   1775 		 * they are never considered for dynamic allocation.
   1776 		 */
   1777 		clrbit(sc->sc_keymap, keyix);
   1778 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1779 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
   1780 		    sc->sc_splitmic) {
   1781 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1782 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
   1783 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
   1784 		}
   1785 	}
   1786 	return 1;
   1787 }
   1788 
   1789 /*
   1790  * Set the key cache contents for the specified key.  Key cache
   1791  * slot(s) must already have been allocated by ath_key_alloc.
   1792  */
   1793 static int
   1794 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1795 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1796 {
   1797 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1798 
   1799 	if (!device_has_power(sc->sc_dev)) {
   1800 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
   1801 		    k->wk_keyix);
   1802 	}
   1803 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1804 }
   1805 
   1806 /*
   1807  * Block/unblock tx+rx processing while a key change is done.
   1808  * We assume the caller serializes key management operations
   1809  * so we only need to worry about synchronization with other
   1810  * uses that originate in the driver.
   1811  */
   1812 static void
   1813 ath_key_update_begin(struct ieee80211com *ic)
   1814 {
   1815 	struct ifnet *ifp = ic->ic_ifp;
   1816 	struct ath_softc *sc = ifp->if_softc;
   1817 
   1818 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1819 #if 0
   1820 	tasklet_disable(&sc->sc_rxtq);
   1821 #endif
   1822 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1823 }
   1824 
   1825 static void
   1826 ath_key_update_end(struct ieee80211com *ic)
   1827 {
   1828 	struct ifnet *ifp = ic->ic_ifp;
   1829 	struct ath_softc *sc = ifp->if_softc;
   1830 
   1831 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1832 	IF_UNLOCK(&ifp->if_snd);
   1833 #if 0
   1834 	tasklet_enable(&sc->sc_rxtq);
   1835 #endif
   1836 }
   1837 
   1838 /*
   1839  * Calculate the receive filter according to the
   1840  * operating mode and state:
   1841  *
   1842  * o always accept unicast, broadcast, and multicast traffic
   1843  * o maintain current state of phy error reception (the hal
   1844  *   may enable phy error frames for noise immunity work)
   1845  * o probe request frames are accepted only when operating in
   1846  *   hostap, adhoc, or monitor modes
   1847  * o enable promiscuous mode according to the interface state
   1848  * o accept beacons:
   1849  *   - when operating in adhoc mode so the 802.11 layer creates
   1850  *     node table entries for peers,
   1851  *   - when operating in station mode for collecting rssi data when
   1852  *     the station is otherwise quiet, or
   1853  *   - when scanning
   1854  */
   1855 static u_int32_t
   1856 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1857 {
   1858 	struct ieee80211com *ic = &sc->sc_ic;
   1859 	struct ath_hal *ah = sc->sc_ah;
   1860 	struct ifnet *ifp = &sc->sc_if;
   1861 	u_int32_t rfilt;
   1862 
   1863 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1864 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1865 	if (ic->ic_opmode != IEEE80211_M_STA)
   1866 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1867 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1868 	    (ifp->if_flags & IFF_PROMISC))
   1869 		rfilt |= HAL_RX_FILTER_PROM;
   1870 	if (ifp->if_flags & IFF_PROMISC)
   1871 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
   1872 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1873 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1874 	    state == IEEE80211_S_SCAN)
   1875 		rfilt |= HAL_RX_FILTER_BEACON;
   1876 	return rfilt;
   1877 }
   1878 
   1879 static void
   1880 ath_mode_init(struct ath_softc *sc)
   1881 {
   1882 	struct ifnet *ifp = &sc->sc_if;
   1883 	struct ieee80211com *ic = &sc->sc_ic;
   1884 	struct ath_hal *ah = sc->sc_ah;
   1885 	struct ether_multi *enm;
   1886 	struct ether_multistep estep;
   1887 	u_int32_t rfilt, mfilt[2], val;
   1888 	int i;
   1889 	uint8_t pos;
   1890 
   1891 	/* configure rx filter */
   1892 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1893 	ath_hal_setrxfilter(ah, rfilt);
   1894 
   1895 	/* configure operational mode */
   1896 	ath_hal_setopmode(ah);
   1897 
   1898 	/* Write keys to hardware; it may have been powered down. */
   1899 	ath_key_update_begin(ic);
   1900 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1901 		ath_key_set(ic,
   1902 			    &ic->ic_crypto.cs_nw_keys[i],
   1903 			    ic->ic_myaddr);
   1904 	}
   1905 	ath_key_update_end(ic);
   1906 
   1907 	/*
   1908 	 * Handle any link-level address change.  Note that we only
   1909 	 * need to force ic_myaddr; any other addresses are handled
   1910 	 * as a byproduct of the ifnet code marking the interface
   1911 	 * down then up.
   1912 	 *
   1913 	 * XXX should get from lladdr instead of arpcom but that's more work
   1914 	 */
   1915 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1916 	ath_hal_setmac(ah, ic->ic_myaddr);
   1917 
   1918 	/* calculate and install multicast filter */
   1919 	ifp->if_flags &= ~IFF_ALLMULTI;
   1920 	mfilt[0] = mfilt[1] = 0;
   1921 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1922 	while (enm != NULL) {
   1923 		void *dl;
   1924 		/* XXX Punt on ranges. */
   1925 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1926 			mfilt[0] = mfilt[1] = 0xffffffff;
   1927 			ifp->if_flags |= IFF_ALLMULTI;
   1928 			break;
   1929 		}
   1930 		dl = enm->enm_addrlo;
   1931 		val = LE_READ_4((char *)dl + 0);
   1932 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1933 		val = LE_READ_4((char *)dl + 3);
   1934 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1935 		pos &= 0x3f;
   1936 		mfilt[pos / 32] |= (1 << (pos % 32));
   1937 
   1938 		ETHER_NEXT_MULTI(estep, enm);
   1939 	}
   1940 
   1941 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1942 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1943 		__func__, rfilt, mfilt[0], mfilt[1]);
   1944 }
   1945 
   1946 /*
   1947  * Set the slot time based on the current setting.
   1948  */
   1949 static void
   1950 ath_setslottime(struct ath_softc *sc)
   1951 {
   1952 	struct ieee80211com *ic = &sc->sc_ic;
   1953 	struct ath_hal *ah = sc->sc_ah;
   1954 
   1955 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1956 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   1957 	else
   1958 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   1959 	sc->sc_updateslot = OK;
   1960 }
   1961 
   1962 /*
   1963  * Callback from the 802.11 layer to update the
   1964  * slot time based on the current setting.
   1965  */
   1966 static void
   1967 ath_updateslot(struct ifnet *ifp)
   1968 {
   1969 	struct ath_softc *sc = ifp->if_softc;
   1970 	struct ieee80211com *ic = &sc->sc_ic;
   1971 
   1972 	/*
   1973 	 * When not coordinating the BSS, change the hardware
   1974 	 * immediately.  For other operation we defer the change
   1975 	 * until beacon updates have propagated to the stations.
   1976 	 */
   1977 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   1978 		sc->sc_updateslot = UPDATE;
   1979 	else
   1980 		ath_setslottime(sc);
   1981 }
   1982 
   1983 /*
   1984  * Setup a h/w transmit queue for beacons.
   1985  */
   1986 static int
   1987 ath_beaconq_setup(struct ath_hal *ah)
   1988 {
   1989 	HAL_TXQ_INFO qi;
   1990 
   1991 	memset(&qi, 0, sizeof(qi));
   1992 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   1993 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   1994 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   1995 	/* NB: for dynamic turbo, don't enable any other interrupts */
   1996 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   1997 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   1998 }
   1999 
   2000 /*
   2001  * Setup the transmit queue parameters for the beacon queue.
   2002  */
   2003 static int
   2004 ath_beaconq_config(struct ath_softc *sc)
   2005 {
   2006 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2007 	struct ieee80211com *ic = &sc->sc_ic;
   2008 	struct ath_hal *ah = sc->sc_ah;
   2009 	HAL_TXQ_INFO qi;
   2010 
   2011 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2012 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2013 		/*
   2014 		 * Always burst out beacon and CAB traffic.
   2015 		 */
   2016 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2017 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2018 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2019 	} else {
   2020 		struct wmeParams *wmep =
   2021 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2022 		/*
   2023 		 * Adhoc mode; important thing is to use 2x cwmin.
   2024 		 */
   2025 		qi.tqi_aifs = wmep->wmep_aifsn;
   2026 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2027 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2028 	}
   2029 
   2030 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2031 		device_printf(sc->sc_dev, "unable to update parameters for "
   2032 			"beacon hardware queue!\n");
   2033 		return 0;
   2034 	} else {
   2035 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2036 		return 1;
   2037 	}
   2038 #undef ATH_EXPONENT_TO_VALUE
   2039 }
   2040 
   2041 /*
   2042  * Allocate and setup an initial beacon frame.
   2043  */
   2044 static int
   2045 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2046 {
   2047 	struct ieee80211com *ic = ni->ni_ic;
   2048 	struct ath_buf *bf;
   2049 	struct mbuf *m;
   2050 	int error;
   2051 
   2052 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2053 	if (bf == NULL) {
   2054 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2055 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2056 		return ENOMEM;			/* XXX */
   2057 	}
   2058 	/*
   2059 	 * NB: the beacon data buffer must be 32-bit aligned;
   2060 	 * we assume the mbuf routines will return us something
   2061 	 * with this alignment (perhaps should assert).
   2062 	 */
   2063 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2064 	if (m == NULL) {
   2065 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2066 			__func__);
   2067 		sc->sc_stats.ast_be_nombuf++;
   2068 		return ENOMEM;
   2069 	}
   2070 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2071 				     BUS_DMA_NOWAIT);
   2072 	if (error == 0) {
   2073 		bf->bf_m = m;
   2074 		bf->bf_node = ieee80211_ref_node(ni);
   2075 	} else {
   2076 		m_freem(m);
   2077 	}
   2078 	return error;
   2079 }
   2080 
   2081 /*
   2082  * Setup the beacon frame for transmit.
   2083  */
   2084 static void
   2085 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2086 {
   2087 #define	USE_SHPREAMBLE(_ic) \
   2088 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2089 		== IEEE80211_F_SHPREAMBLE)
   2090 	struct ieee80211_node *ni = bf->bf_node;
   2091 	struct ieee80211com *ic = ni->ni_ic;
   2092 	struct mbuf *m = bf->bf_m;
   2093 	struct ath_hal *ah = sc->sc_ah;
   2094 	struct ath_desc *ds;
   2095 	int flags, antenna;
   2096 	const HAL_RATE_TABLE *rt;
   2097 	u_int8_t rix, rate;
   2098 
   2099 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2100 		__func__, m, m->m_len);
   2101 
   2102 	/* setup descriptors */
   2103 	ds = bf->bf_desc;
   2104 
   2105 	flags = HAL_TXDESC_NOACK;
   2106 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2107 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2108 		flags |= HAL_TXDESC_VEOL;
   2109 		/*
   2110 		 * Let hardware handle antenna switching unless
   2111 		 * the user has selected a transmit antenna
   2112 		 * (sc_txantenna is not 0).
   2113 		 */
   2114 		antenna = sc->sc_txantenna;
   2115 	} else {
   2116 		ds->ds_link = 0;
   2117 		/*
   2118 		 * Switch antenna every 4 beacons, unless the user
   2119 		 * has selected a transmit antenna (sc_txantenna
   2120 		 * is not 0).
   2121 		 *
   2122 		 * XXX assumes two antenna
   2123 		 */
   2124 		if (sc->sc_txantenna == 0)
   2125 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2126 		else
   2127 			antenna = sc->sc_txantenna;
   2128 	}
   2129 
   2130 	KASSERT(bf->bf_nseg == 1,
   2131 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2132 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2133 	/*
   2134 	 * Calculate rate code.
   2135 	 * XXX everything at min xmit rate
   2136 	 */
   2137 	rix = sc->sc_minrateix;
   2138 	rt = sc->sc_currates;
   2139 	rate = rt->info[rix].rateCode;
   2140 	if (USE_SHPREAMBLE(ic))
   2141 		rate |= rt->info[rix].shortPreamble;
   2142 	ath_hal_setuptxdesc(ah, ds
   2143 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2144 		, sizeof(struct ieee80211_frame)/* header length */
   2145 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2146 		, ni->ni_txpower		/* txpower XXX */
   2147 		, rate, 1			/* series 0 rate/tries */
   2148 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2149 		, antenna			/* antenna mode */
   2150 		, flags				/* no ack, veol for beacons */
   2151 		, 0				/* rts/cts rate */
   2152 		, 0				/* rts/cts duration */
   2153 	);
   2154 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2155 	ath_hal_filltxdesc(ah, ds
   2156 		, roundup(m->m_len, 4)		/* buffer length */
   2157 		, AH_TRUE			/* first segment */
   2158 		, AH_TRUE			/* last segment */
   2159 		, ds				/* first descriptor */
   2160 	);
   2161 
   2162 	/* NB: The desc swap function becomes void, if descriptor swapping
   2163 	 * is not enabled
   2164 	 */
   2165 	ath_desc_swap(ds);
   2166 
   2167 #undef USE_SHPREAMBLE
   2168 }
   2169 
   2170 /*
   2171  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2172  * frame contents are done as needed and the slot time is
   2173  * also adjusted based on current state.
   2174  */
   2175 static void
   2176 ath_beacon_proc(void *arg, int pending)
   2177 {
   2178 	struct ath_softc *sc = arg;
   2179 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2180 	struct ieee80211_node *ni = bf->bf_node;
   2181 	struct ieee80211com *ic = ni->ni_ic;
   2182 	struct ath_hal *ah = sc->sc_ah;
   2183 	struct mbuf *m;
   2184 	int ncabq, error, otherant;
   2185 
   2186 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2187 		__func__, pending);
   2188 
   2189 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2190 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2191 	    bf == NULL || bf->bf_m == NULL) {
   2192 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2193 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2194 		return;
   2195 	}
   2196 	/*
   2197 	 * Check if the previous beacon has gone out.  If
   2198 	 * not don't try to post another, skip this period
   2199 	 * and wait for the next.  Missed beacons indicate
   2200 	 * a problem and should not occur.  If we miss too
   2201 	 * many consecutive beacons reset the device.
   2202 	 */
   2203 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2204 		sc->sc_bmisscount++;
   2205 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2206 			"%s: missed %u consecutive beacons\n",
   2207 			__func__, sc->sc_bmisscount);
   2208 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2209 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2210 		return;
   2211 	}
   2212 	if (sc->sc_bmisscount != 0) {
   2213 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2214 			"%s: resume beacon xmit after %u misses\n",
   2215 			__func__, sc->sc_bmisscount);
   2216 		sc->sc_bmisscount = 0;
   2217 	}
   2218 
   2219 	/*
   2220 	 * Update dynamic beacon contents.  If this returns
   2221 	 * non-zero then we need to remap the memory because
   2222 	 * the beacon frame changed size (probably because
   2223 	 * of the TIM bitmap).
   2224 	 */
   2225 	m = bf->bf_m;
   2226 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2227 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2228 		/* XXX too conservative? */
   2229 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2230 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2231 					     BUS_DMA_NOWAIT);
   2232 		if (error != 0) {
   2233 			if_printf(&sc->sc_if,
   2234 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2235 			    __func__, error);
   2236 			return;
   2237 		}
   2238 	}
   2239 
   2240 	/*
   2241 	 * Handle slot time change when a non-ERP station joins/leaves
   2242 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2243 	 * we mark updateslot, then wait one beacon before effecting
   2244 	 * the change.  This gives associated stations at least one
   2245 	 * beacon interval to note the state change.
   2246 	 */
   2247 	/* XXX locking */
   2248 	if (sc->sc_updateslot == UPDATE)
   2249 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2250 	else if (sc->sc_updateslot == COMMIT)
   2251 		ath_setslottime(sc);		/* commit change to h/w */
   2252 
   2253 	/*
   2254 	 * Check recent per-antenna transmit statistics and flip
   2255 	 * the default antenna if noticeably more frames went out
   2256 	 * on the non-default antenna.
   2257 	 * XXX assumes 2 anntenae
   2258 	 */
   2259 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2260 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2261 		ath_setdefantenna(sc, otherant);
   2262 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2263 
   2264 	/*
   2265 	 * Construct tx descriptor.
   2266 	 */
   2267 	ath_beacon_setup(sc, bf);
   2268 
   2269 	/*
   2270 	 * Stop any current dma and put the new frame on the queue.
   2271 	 * This should never fail since we check above that no frames
   2272 	 * are still pending on the queue.
   2273 	 */
   2274 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2275 		DPRINTF(sc, ATH_DEBUG_ANY,
   2276 			"%s: beacon queue %u did not stop?\n",
   2277 			__func__, sc->sc_bhalq);
   2278 	}
   2279 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2280 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2281 
   2282 	/*
   2283 	 * Enable the CAB queue before the beacon queue to
   2284 	 * insure cab frames are triggered by this beacon.
   2285 	 */
   2286 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2287 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2288 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2289 	ath_hal_txstart(ah, sc->sc_bhalq);
   2290 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2291 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2292 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2293 
   2294 	sc->sc_stats.ast_be_xmit++;
   2295 }
   2296 
   2297 /*
   2298  * Reset the hardware after detecting beacons have stopped.
   2299  */
   2300 static void
   2301 ath_bstuck_proc(void *arg, int pending)
   2302 {
   2303 	struct ath_softc *sc = arg;
   2304 	struct ifnet *ifp = &sc->sc_if;
   2305 
   2306 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2307 		sc->sc_bmisscount);
   2308 	ath_reset(ifp);
   2309 }
   2310 
   2311 /*
   2312  * Reclaim beacon resources.
   2313  */
   2314 static void
   2315 ath_beacon_free(struct ath_softc *sc)
   2316 {
   2317 	struct ath_buf *bf;
   2318 
   2319 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2320 		if (bf->bf_m != NULL) {
   2321 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2322 			m_freem(bf->bf_m);
   2323 			bf->bf_m = NULL;
   2324 		}
   2325 		if (bf->bf_node != NULL) {
   2326 			ieee80211_free_node(bf->bf_node);
   2327 			bf->bf_node = NULL;
   2328 		}
   2329 	}
   2330 }
   2331 
   2332 /*
   2333  * Configure the beacon and sleep timers.
   2334  *
   2335  * When operating as an AP this resets the TSF and sets
   2336  * up the hardware to notify us when we need to issue beacons.
   2337  *
   2338  * When operating in station mode this sets up the beacon
   2339  * timers according to the timestamp of the last received
   2340  * beacon and the current TSF, configures PCF and DTIM
   2341  * handling, programs the sleep registers so the hardware
   2342  * will wakeup in time to receive beacons, and configures
   2343  * the beacon miss handling so we'll receive a BMISS
   2344  * interrupt when we stop seeing beacons from the AP
   2345  * we've associated with.
   2346  */
   2347 static void
   2348 ath_beacon_config(struct ath_softc *sc)
   2349 {
   2350 #define	TSF_TO_TU(_h,_l) \
   2351 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2352 #define	FUDGE	2
   2353 	struct ath_hal *ah = sc->sc_ah;
   2354 	struct ieee80211com *ic = &sc->sc_ic;
   2355 	struct ieee80211_node *ni = ic->ic_bss;
   2356 	u_int32_t nexttbtt, intval, tsftu;
   2357 	u_int64_t tsf;
   2358 
   2359 	/* extract tstamp from last beacon and convert to TU */
   2360 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2361 			     LE_READ_4(ni->ni_tstamp.data));
   2362 	/* NB: the beacon interval is kept internally in TU's */
   2363 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2364 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2365 		nexttbtt = intval;
   2366 	else if (intval)		/* NB: can be 0 for monitor mode */
   2367 		nexttbtt = roundup(nexttbtt, intval);
   2368 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2369 		__func__, nexttbtt, intval, ni->ni_intval);
   2370 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2371 		HAL_BEACON_STATE bs;
   2372 		int dtimperiod, dtimcount;
   2373 		int cfpperiod, cfpcount;
   2374 
   2375 		/*
   2376 		 * Setup dtim and cfp parameters according to
   2377 		 * last beacon we received (which may be none).
   2378 		 */
   2379 		dtimperiod = ni->ni_dtim_period;
   2380 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2381 			dtimperiod = 1;
   2382 		dtimcount = ni->ni_dtim_count;
   2383 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2384 			dtimcount = 0;		/* XXX? */
   2385 		cfpperiod = 1;			/* NB: no PCF support yet */
   2386 		cfpcount = 0;
   2387 		/*
   2388 		 * Pull nexttbtt forward to reflect the current
   2389 		 * TSF and calculate dtim+cfp state for the result.
   2390 		 */
   2391 		tsf = ath_hal_gettsf64(ah);
   2392 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2393 		do {
   2394 			nexttbtt += intval;
   2395 			if (--dtimcount < 0) {
   2396 				dtimcount = dtimperiod - 1;
   2397 				if (--cfpcount < 0)
   2398 					cfpcount = cfpperiod - 1;
   2399 			}
   2400 		} while (nexttbtt < tsftu);
   2401 		memset(&bs, 0, sizeof(bs));
   2402 		bs.bs_intval = intval;
   2403 		bs.bs_nexttbtt = nexttbtt;
   2404 		bs.bs_dtimperiod = dtimperiod*intval;
   2405 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2406 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2407 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2408 		bs.bs_cfpmaxduration = 0;
   2409 #if 0
   2410 		/*
   2411 		 * The 802.11 layer records the offset to the DTIM
   2412 		 * bitmap while receiving beacons; use it here to
   2413 		 * enable h/w detection of our AID being marked in
   2414 		 * the bitmap vector (to indicate frames for us are
   2415 		 * pending at the AP).
   2416 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2417 		 * XXX enable based on h/w rev for newer chips
   2418 		 */
   2419 		bs.bs_timoffset = ni->ni_timoff;
   2420 #endif
   2421 		/*
   2422 		 * Calculate the number of consecutive beacons to miss
   2423 		 * before taking a BMISS interrupt.  The configuration
   2424 		 * is specified in ms, so we need to convert that to
   2425 		 * TU's and then calculate based on the beacon interval.
   2426 		 * Note that we clamp the result to at most 10 beacons.
   2427 		 */
   2428 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2429 		if (bs.bs_bmissthreshold > 10)
   2430 			bs.bs_bmissthreshold = 10;
   2431 		else if (bs.bs_bmissthreshold <= 0)
   2432 			bs.bs_bmissthreshold = 1;
   2433 
   2434 		/*
   2435 		 * Calculate sleep duration.  The configuration is
   2436 		 * given in ms.  We insure a multiple of the beacon
   2437 		 * period is used.  Also, if the sleep duration is
   2438 		 * greater than the DTIM period then it makes senses
   2439 		 * to make it a multiple of that.
   2440 		 *
   2441 		 * XXX fixed at 100ms
   2442 		 */
   2443 		bs.bs_sleepduration =
   2444 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2445 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2446 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2447 
   2448 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2449 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2450 			, __func__
   2451 			, tsf, tsftu
   2452 			, bs.bs_intval
   2453 			, bs.bs_nexttbtt
   2454 			, bs.bs_dtimperiod
   2455 			, bs.bs_nextdtim
   2456 			, bs.bs_bmissthreshold
   2457 			, bs.bs_sleepduration
   2458 			, bs.bs_cfpperiod
   2459 			, bs.bs_cfpmaxduration
   2460 			, bs.bs_cfpnext
   2461 			, bs.bs_timoffset
   2462 		);
   2463 		ath_hal_intrset(ah, 0);
   2464 		ath_hal_beacontimers(ah, &bs);
   2465 		sc->sc_imask |= HAL_INT_BMISS;
   2466 		ath_hal_intrset(ah, sc->sc_imask);
   2467 	} else {
   2468 		ath_hal_intrset(ah, 0);
   2469 		if (nexttbtt == intval)
   2470 			intval |= HAL_BEACON_RESET_TSF;
   2471 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2472 			/*
   2473 			 * In IBSS mode enable the beacon timers but only
   2474 			 * enable SWBA interrupts if we need to manually
   2475 			 * prepare beacon frames.  Otherwise we use a
   2476 			 * self-linked tx descriptor and let the hardware
   2477 			 * deal with things.
   2478 			 */
   2479 			intval |= HAL_BEACON_ENA;
   2480 			if (!sc->sc_hasveol)
   2481 				sc->sc_imask |= HAL_INT_SWBA;
   2482 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2483 				/*
   2484 				 * Pull nexttbtt forward to reflect
   2485 				 * the current TSF.
   2486 				 */
   2487 				tsf = ath_hal_gettsf64(ah);
   2488 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2489 				do {
   2490 					nexttbtt += intval;
   2491 				} while (nexttbtt < tsftu);
   2492 			}
   2493 			ath_beaconq_config(sc);
   2494 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2495 			/*
   2496 			 * In AP mode we enable the beacon timers and
   2497 			 * SWBA interrupts to prepare beacon frames.
   2498 			 */
   2499 			intval |= HAL_BEACON_ENA;
   2500 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2501 			ath_beaconq_config(sc);
   2502 		}
   2503 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2504 		sc->sc_bmisscount = 0;
   2505 		ath_hal_intrset(ah, sc->sc_imask);
   2506 		/*
   2507 		 * When using a self-linked beacon descriptor in
   2508 		 * ibss mode load it once here.
   2509 		 */
   2510 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2511 			ath_beacon_proc(sc, 0);
   2512 	}
   2513 	sc->sc_syncbeacon = 0;
   2514 #undef UNDEF
   2515 #undef TSF_TO_TU
   2516 }
   2517 
   2518 static int
   2519 ath_descdma_setup(struct ath_softc *sc,
   2520 	struct ath_descdma *dd, ath_bufhead *head,
   2521 	const char *name, int nbuf, int ndesc)
   2522 {
   2523 #define	DS2PHYS(_dd, _ds) \
   2524 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2525 	struct ifnet *ifp = &sc->sc_if;
   2526 	struct ath_desc *ds;
   2527 	struct ath_buf *bf;
   2528 	int i, bsize, error;
   2529 
   2530 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2531 	    __func__, name, nbuf, ndesc);
   2532 
   2533 	dd->dd_name = name;
   2534 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2535 
   2536 	/*
   2537 	 * Setup DMA descriptor area.
   2538 	 */
   2539 	dd->dd_dmat = sc->sc_dmat;
   2540 
   2541 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2542 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2543 
   2544 	if (error != 0) {
   2545 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2546 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2547 		goto fail0;
   2548 	}
   2549 
   2550 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2551 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2552 	if (error != 0) {
   2553 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2554 		    nbuf * ndesc, dd->dd_name, error);
   2555 		goto fail1;
   2556 	}
   2557 
   2558 	/* allocate descriptors */
   2559 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2560 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2561 	if (error != 0) {
   2562 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2563 			"error %u\n", dd->dd_name, error);
   2564 		goto fail2;
   2565 	}
   2566 
   2567 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2568 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2569 	if (error != 0) {
   2570 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2571 			dd->dd_name, error);
   2572 		goto fail3;
   2573 	}
   2574 
   2575 	ds = dd->dd_desc;
   2576 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2577 	DPRINTF(sc, ATH_DEBUG_RESET,
   2578 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2579 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2580 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2581 
   2582 	/* allocate rx buffers */
   2583 	bsize = sizeof(struct ath_buf) * nbuf;
   2584 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2585 	if (bf == NULL) {
   2586 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2587 			dd->dd_name, bsize);
   2588 		goto fail4;
   2589 	}
   2590 	dd->dd_bufptr = bf;
   2591 
   2592 	STAILQ_INIT(head);
   2593 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2594 		bf->bf_desc = ds;
   2595 		bf->bf_daddr = DS2PHYS(dd, ds);
   2596 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2597 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2598 		if (error != 0) {
   2599 			if_printf(ifp, "unable to create dmamap for %s "
   2600 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2601 			ath_descdma_cleanup(sc, dd, head);
   2602 			return error;
   2603 		}
   2604 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2605 	}
   2606 	return 0;
   2607 fail4:
   2608 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2609 fail3:
   2610 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2611 fail2:
   2612 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2613 fail1:
   2614 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2615 fail0:
   2616 	memset(dd, 0, sizeof(*dd));
   2617 	return error;
   2618 #undef DS2PHYS
   2619 }
   2620 
   2621 static void
   2622 ath_descdma_cleanup(struct ath_softc *sc,
   2623 	struct ath_descdma *dd, ath_bufhead *head)
   2624 {
   2625 	struct ath_buf *bf;
   2626 	struct ieee80211_node *ni;
   2627 
   2628 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2629 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2630 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2631 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2632 
   2633 	STAILQ_FOREACH(bf, head, bf_list) {
   2634 		if (bf->bf_m) {
   2635 			m_freem(bf->bf_m);
   2636 			bf->bf_m = NULL;
   2637 		}
   2638 		if (bf->bf_dmamap != NULL) {
   2639 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2640 			bf->bf_dmamap = NULL;
   2641 		}
   2642 		ni = bf->bf_node;
   2643 		bf->bf_node = NULL;
   2644 		if (ni != NULL) {
   2645 			/*
   2646 			 * Reclaim node reference.
   2647 			 */
   2648 			ieee80211_free_node(ni);
   2649 		}
   2650 	}
   2651 
   2652 	STAILQ_INIT(head);
   2653 	free(dd->dd_bufptr, M_ATHDEV);
   2654 	memset(dd, 0, sizeof(*dd));
   2655 }
   2656 
   2657 static int
   2658 ath_desc_alloc(struct ath_softc *sc)
   2659 {
   2660 	int error;
   2661 
   2662 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2663 			"rx", ath_rxbuf, 1);
   2664 	if (error != 0)
   2665 		return error;
   2666 
   2667 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2668 			"tx", ath_txbuf, ATH_TXDESC);
   2669 	if (error != 0) {
   2670 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2671 		return error;
   2672 	}
   2673 
   2674 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2675 			"beacon", 1, 1);
   2676 	if (error != 0) {
   2677 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2678 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2679 		return error;
   2680 	}
   2681 	return 0;
   2682 }
   2683 
   2684 static void
   2685 ath_desc_free(struct ath_softc *sc)
   2686 {
   2687 
   2688 	if (sc->sc_bdma.dd_desc_len != 0)
   2689 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2690 	if (sc->sc_txdma.dd_desc_len != 0)
   2691 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2692 	if (sc->sc_rxdma.dd_desc_len != 0)
   2693 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2694 }
   2695 
   2696 static struct ieee80211_node *
   2697 ath_node_alloc(struct ieee80211_node_table *nt)
   2698 {
   2699 	struct ieee80211com *ic = nt->nt_ic;
   2700 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2701 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2702 	struct ath_node *an;
   2703 
   2704 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2705 	if (an == NULL) {
   2706 		/* XXX stat+msg */
   2707 		return NULL;
   2708 	}
   2709 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2710 	ath_rate_node_init(sc, an);
   2711 
   2712 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2713 	return &an->an_node;
   2714 }
   2715 
   2716 static void
   2717 ath_node_free(struct ieee80211_node *ni)
   2718 {
   2719 	struct ieee80211com *ic = ni->ni_ic;
   2720         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2721 
   2722 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2723 
   2724 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2725 	sc->sc_node_free(ni);
   2726 }
   2727 
   2728 static u_int8_t
   2729 ath_node_getrssi(const struct ieee80211_node *ni)
   2730 {
   2731 #define	HAL_EP_RND(x, mul) \
   2732 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2733 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2734 	int32_t rssi;
   2735 
   2736 	/*
   2737 	 * When only one frame is received there will be no state in
   2738 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2739 	 */
   2740 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2741 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2742 	else
   2743 		rssi = ni->ni_rssi;
   2744 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2745 #undef HAL_EP_RND
   2746 }
   2747 
   2748 static int
   2749 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2750 {
   2751 	struct ath_hal *ah = sc->sc_ah;
   2752 	int error;
   2753 	struct mbuf *m;
   2754 	struct ath_desc *ds;
   2755 
   2756 	m = bf->bf_m;
   2757 	if (m == NULL) {
   2758 		/*
   2759 		 * NB: by assigning a page to the rx dma buffer we
   2760 		 * implicitly satisfy the Atheros requirement that
   2761 		 * this buffer be cache-line-aligned and sized to be
   2762 		 * multiple of the cache line size.  Not doing this
   2763 		 * causes weird stuff to happen (for the 5210 at least).
   2764 		 */
   2765 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2766 		if (m == NULL) {
   2767 			DPRINTF(sc, ATH_DEBUG_ANY,
   2768 				"%s: no mbuf/cluster\n", __func__);
   2769 			sc->sc_stats.ast_rx_nombuf++;
   2770 			return ENOMEM;
   2771 		}
   2772 		bf->bf_m = m;
   2773 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2774 
   2775 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2776 					     bf->bf_dmamap, m,
   2777 					     BUS_DMA_NOWAIT);
   2778 		if (error != 0) {
   2779 			DPRINTF(sc, ATH_DEBUG_ANY,
   2780 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2781 			    __func__, error);
   2782 			sc->sc_stats.ast_rx_busdma++;
   2783 			return error;
   2784 		}
   2785 		KASSERT(bf->bf_nseg == 1,
   2786 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2787 	}
   2788 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2789 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2790 
   2791 	/*
   2792 	 * Setup descriptors.  For receive we always terminate
   2793 	 * the descriptor list with a self-linked entry so we'll
   2794 	 * not get overrun under high load (as can happen with a
   2795 	 * 5212 when ANI processing enables PHY error frames).
   2796 	 *
   2797 	 * To insure the last descriptor is self-linked we create
   2798 	 * each descriptor as self-linked and add it to the end.  As
   2799 	 * each additional descriptor is added the previous self-linked
   2800 	 * entry is ``fixed'' naturally.  This should be safe even
   2801 	 * if DMA is happening.  When processing RX interrupts we
   2802 	 * never remove/process the last, self-linked, entry on the
   2803 	 * descriptor list.  This insures the hardware always has
   2804 	 * someplace to write a new frame.
   2805 	 */
   2806 	ds = bf->bf_desc;
   2807 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2808 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2809 	/* ds->ds_vdata = mtod(m, void *);	for radar */
   2810 	ath_hal_setuprxdesc(ah, ds
   2811 		, m->m_len		/* buffer size */
   2812 		, 0
   2813 	);
   2814 
   2815 	if (sc->sc_rxlink != NULL)
   2816 		*sc->sc_rxlink = bf->bf_daddr;
   2817 	sc->sc_rxlink = &ds->ds_link;
   2818 	return 0;
   2819 }
   2820 
   2821 /*
   2822  * Extend 15-bit time stamp from rx descriptor to
   2823  * a full 64-bit TSF using the specified TSF.
   2824  */
   2825 static inline u_int64_t
   2826 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2827 {
   2828 	if ((tsf & 0x7fff) < rstamp)
   2829 		tsf -= 0x8000;
   2830 	return ((tsf &~ 0x7fff) | rstamp);
   2831 }
   2832 
   2833 /*
   2834  * Intercept management frames to collect beacon rssi data
   2835  * and to do ibss merges.
   2836  */
   2837 static void
   2838 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2839 	struct ieee80211_node *ni,
   2840 	int subtype, int rssi, u_int32_t rstamp)
   2841 {
   2842 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2843 
   2844 	/*
   2845 	 * Call up first so subsequent work can use information
   2846 	 * potentially stored in the node (e.g. for ibss merge).
   2847 	 */
   2848 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2849 	switch (subtype) {
   2850 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2851 		/* update rssi statistics for use by the hal */
   2852 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2853 		if (sc->sc_syncbeacon &&
   2854 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2855 			/*
   2856 			 * Resync beacon timers using the tsf of the beacon
   2857 			 * frame we just received.
   2858 			 */
   2859 			ath_beacon_config(sc);
   2860 		}
   2861 		/* fall thru... */
   2862 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2863 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2864 		    ic->ic_state == IEEE80211_S_RUN) {
   2865 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2866 				ath_hal_gettsf64(sc->sc_ah));
   2867 
   2868 			/*
   2869 			 * Handle ibss merge as needed; check the tsf on the
   2870 			 * frame before attempting the merge.  The 802.11 spec
   2871 			 * says the station should change it's bssid to match
   2872 			 * the oldest station with the same ssid, where oldest
   2873 			 * is determined by the tsf.  Note that hardware
   2874 			 * reconfiguration happens through callback to
   2875 			 * ath_newstate as the state machine will go from
   2876 			 * RUN -> RUN when this happens.
   2877 			 */
   2878 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2879 				DPRINTF(sc, ATH_DEBUG_STATE,
   2880 				    "ibss merge, rstamp %u tsf %ju "
   2881 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2882 				    (uintmax_t)ni->ni_tstamp.tsf);
   2883 				(void) ieee80211_ibss_merge(ni);
   2884 			}
   2885 		}
   2886 		break;
   2887 	}
   2888 }
   2889 
   2890 /*
   2891  * Set the default antenna.
   2892  */
   2893 static void
   2894 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2895 {
   2896 	struct ath_hal *ah = sc->sc_ah;
   2897 
   2898 	/* XXX block beacon interrupts */
   2899 	ath_hal_setdefantenna(ah, antenna);
   2900 	if (sc->sc_defant != antenna)
   2901 		sc->sc_stats.ast_ant_defswitch++;
   2902 	sc->sc_defant = antenna;
   2903 	sc->sc_rxotherant = 0;
   2904 }
   2905 
   2906 static void
   2907 ath_handle_micerror(struct ieee80211com *ic,
   2908 	struct ieee80211_frame *wh, int keyix)
   2909 {
   2910 	struct ieee80211_node *ni;
   2911 
   2912 	/* XXX recheck MIC to deal w/ chips that lie */
   2913 	/* XXX discard MIC errors on !data frames */
   2914 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
   2915 	if (ni != NULL) {
   2916 		ieee80211_notify_michael_failure(ic, wh, keyix);
   2917 		ieee80211_free_node(ni);
   2918 	}
   2919 }
   2920 
   2921 static void
   2922 ath_rx_proc(void *arg, int npending)
   2923 {
   2924 #define	PA2DESC(_sc, _pa) \
   2925 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2926 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2927 	struct ath_softc *sc = arg;
   2928 	struct ath_buf *bf;
   2929 	struct ieee80211com *ic = &sc->sc_ic;
   2930 	struct ifnet *ifp = &sc->sc_if;
   2931 	struct ath_hal *ah = sc->sc_ah;
   2932 	struct ath_desc *ds;
   2933 	struct mbuf *m;
   2934 	struct ieee80211_node *ni;
   2935 	struct ath_node *an;
   2936 	int len, ngood, type;
   2937 	u_int phyerr;
   2938 	HAL_STATUS status;
   2939 	int16_t nf;
   2940 	u_int64_t tsf;
   2941 	uint8_t rxerr_tap, rxerr_mon;
   2942 
   2943 	NET_LOCK_GIANT();		/* XXX */
   2944 
   2945 	rxerr_tap =
   2946 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
   2947 
   2948 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
   2949 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   2950 	else if (ifp->if_flags & IFF_PROMISC)
   2951 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   2952 
   2953 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   2954 	ngood = 0;
   2955 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   2956 	tsf = ath_hal_gettsf64(ah);
   2957 	do {
   2958 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   2959 		if (bf == NULL) {		/* NB: shouldn't happen */
   2960 			if_printf(ifp, "%s: no buffer!\n", __func__);
   2961 			break;
   2962 		}
   2963 		ds = bf->bf_desc;
   2964 		if (ds->ds_link == bf->bf_daddr) {
   2965 			/* NB: never process the self-linked entry at the end */
   2966 			break;
   2967 		}
   2968 		m = bf->bf_m;
   2969 		if (m == NULL) {		/* NB: shouldn't happen */
   2970 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   2971 			break;
   2972 		}
   2973 		/* XXX sync descriptor memory */
   2974 		/*
   2975 		 * Must provide the virtual address of the current
   2976 		 * descriptor, the physical address, and the virtual
   2977 		 * address of the next descriptor in the h/w chain.
   2978 		 * This allows the HAL to look ahead to see if the
   2979 		 * hardware is done with a descriptor by checking the
   2980 		 * done bit in the following descriptor and the address
   2981 		 * of the current descriptor the DMA engine is working
   2982 		 * on.  All this is necessary because of our use of
   2983 		 * a self-linked list to avoid rx overruns.
   2984 		 */
   2985 		status = ath_hal_rxprocdesc(ah, ds,
   2986 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   2987 				tsf, &ds->ds_rxstat);
   2988 #ifdef AR_DEBUG
   2989 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   2990 			ath_printrxbuf(bf, status == HAL_OK);
   2991 #endif
   2992 		if (status == HAL_EINPROGRESS)
   2993 			break;
   2994 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   2995 		if (ds->ds_rxstat.rs_more) {
   2996 			/*
   2997 			 * Frame spans multiple descriptors; this
   2998 			 * cannot happen yet as we don't support
   2999 			 * jumbograms.  If not in monitor mode,
   3000 			 * discard the frame.
   3001 			 */
   3002 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3003 				sc->sc_stats.ast_rx_toobig++;
   3004 				goto rx_next;
   3005 			}
   3006 			/* fall thru for monitor mode handling... */
   3007 		} else if (ds->ds_rxstat.rs_status != 0) {
   3008 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3009 				sc->sc_stats.ast_rx_crcerr++;
   3010 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3011 				sc->sc_stats.ast_rx_fifoerr++;
   3012 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3013 				sc->sc_stats.ast_rx_phyerr++;
   3014 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3015 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3016 				goto rx_next;
   3017 			}
   3018 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3019 				/*
   3020 				 * Decrypt error.  If the error occurred
   3021 				 * because there was no hardware key, then
   3022 				 * let the frame through so the upper layers
   3023 				 * can process it.  This is necessary for 5210
   3024 				 * parts which have no way to setup a ``clear''
   3025 				 * key cache entry.
   3026 				 *
   3027 				 * XXX do key cache faulting
   3028 				 */
   3029 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3030 					goto rx_accept;
   3031 				sc->sc_stats.ast_rx_badcrypt++;
   3032 			}
   3033 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3034 				sc->sc_stats.ast_rx_badmic++;
   3035 				/*
   3036 				 * Do minimal work required to hand off
   3037 				 * the 802.11 header for notifcation.
   3038 				 */
   3039 				/* XXX frag's and qos frames */
   3040 				len = ds->ds_rxstat.rs_datalen;
   3041 				if (len >= sizeof (struct ieee80211_frame)) {
   3042 					bus_dmamap_sync(sc->sc_dmat,
   3043 					    bf->bf_dmamap,
   3044 					    0, bf->bf_dmamap->dm_mapsize,
   3045 					    BUS_DMASYNC_POSTREAD);
   3046 					ath_handle_micerror(ic,
   3047 					    mtod(m, struct ieee80211_frame *),
   3048 					    sc->sc_splitmic ?
   3049 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
   3050 				}
   3051 			}
   3052 			ifp->if_ierrors++;
   3053 			/*
   3054 			 * Reject error frames, we normally don't want
   3055 			 * to see them in monitor mode (in monitor mode
   3056 			 * allow through packets that have crypto problems).
   3057 			 */
   3058 
   3059 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
   3060 				goto rx_next;
   3061 		}
   3062 rx_accept:
   3063 		/*
   3064 		 * Sync and unmap the frame.  At this point we're
   3065 		 * committed to passing the mbuf somewhere so clear
   3066 		 * bf_m; this means a new sk_buff must be allocated
   3067 		 * when the rx descriptor is setup again to receive
   3068 		 * another frame.
   3069 		 */
   3070 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3071 		    0, bf->bf_dmamap->dm_mapsize,
   3072 		    BUS_DMASYNC_POSTREAD);
   3073 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3074 		bf->bf_m = NULL;
   3075 
   3076 		m->m_pkthdr.rcvif = ifp;
   3077 		len = ds->ds_rxstat.rs_datalen;
   3078 		m->m_pkthdr.len = m->m_len = len;
   3079 
   3080 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3081 
   3082 #if NBPFILTER > 0
   3083 		if (sc->sc_drvbpf) {
   3084 			u_int8_t rix;
   3085 
   3086 			/*
   3087 			 * Discard anything shorter than an ack or cts.
   3088 			 */
   3089 			if (len < IEEE80211_ACK_LEN) {
   3090 				DPRINTF(sc, ATH_DEBUG_RECV,
   3091 					"%s: runt packet %d\n",
   3092 					__func__, len);
   3093 				sc->sc_stats.ast_rx_tooshort++;
   3094 				m_freem(m);
   3095 				goto rx_next;
   3096 			}
   3097 			rix = ds->ds_rxstat.rs_rate;
   3098 			sc->sc_rx_th.wr_tsf = htole64(
   3099 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3100 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3101 			if (ds->ds_rxstat.rs_status &
   3102 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
   3103 				sc->sc_rx_th.wr_flags |=
   3104 				    IEEE80211_RADIOTAP_F_BADFCS;
   3105 			}
   3106 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3107 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3108 			sc->sc_rx_th.wr_antnoise = nf;
   3109 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3110 
   3111 			bpf_mtap2(sc->sc_drvbpf,
   3112 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   3113 		}
   3114 #endif
   3115 
   3116 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
   3117 			m_freem(m);
   3118 			goto rx_next;
   3119 		}
   3120 		/*
   3121 		 * From this point on we assume the frame is at least
   3122 		 * as large as ieee80211_frame_min; verify that.
   3123 		 */
   3124 		if (len < IEEE80211_MIN_LEN) {
   3125 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3126 				__func__, len);
   3127 			sc->sc_stats.ast_rx_tooshort++;
   3128 			m_freem(m);
   3129 			goto rx_next;
   3130 		}
   3131 
   3132 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3133 			ieee80211_dump_pkt(mtod(m, void *), len,
   3134 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3135 				   ds->ds_rxstat.rs_rssi);
   3136 		}
   3137 
   3138 		m_adj(m, -IEEE80211_CRC_LEN);
   3139 
   3140 		/*
   3141 		 * Locate the node for sender, track state, and then
   3142 		 * pass the (referenced) node up to the 802.11 layer
   3143 		 * for its use.
   3144 		 */
   3145 		ni = ieee80211_find_rxnode_withkey(ic,
   3146 			mtod(m, const struct ieee80211_frame_min *),
   3147 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3148 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3149 		/*
   3150 		 * Track rx rssi and do any rx antenna management.
   3151 		 */
   3152 		an = ATH_NODE(ni);
   3153 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3154 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3155 		/*
   3156 		 * Send frame up for processing.
   3157 		 */
   3158 		type = ieee80211_input(ic, m, ni,
   3159 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3160 		ieee80211_free_node(ni);
   3161 		if (sc->sc_diversity) {
   3162 			/*
   3163 			 * When using fast diversity, change the default rx
   3164 			 * antenna if diversity chooses the other antenna 3
   3165 			 * times in a row.
   3166 			 */
   3167 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3168 				if (++sc->sc_rxotherant >= 3)
   3169 					ath_setdefantenna(sc,
   3170 						ds->ds_rxstat.rs_antenna);
   3171 			} else
   3172 				sc->sc_rxotherant = 0;
   3173 		}
   3174 		if (sc->sc_softled) {
   3175 			/*
   3176 			 * Blink for any data frame.  Otherwise do a
   3177 			 * heartbeat-style blink when idle.  The latter
   3178 			 * is mainly for station mode where we depend on
   3179 			 * periodic beacon frames to trigger the poll event.
   3180 			 */
   3181 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3182 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3183 				ath_led_event(sc, ATH_LED_RX);
   3184 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3185 				ath_led_event(sc, ATH_LED_POLL);
   3186 		}
   3187 		/*
   3188 		 * Arrange to update the last rx timestamp only for
   3189 		 * frames from our ap when operating in station mode.
   3190 		 * This assumes the rx key is always setup when associated.
   3191 		 */
   3192 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3193 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3194 			ngood++;
   3195 rx_next:
   3196 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3197 	} while (ath_rxbuf_init(sc, bf) == 0);
   3198 
   3199 	/* rx signal state monitoring */
   3200 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3201 #if 0
   3202 	if (ath_hal_radar_event(ah))
   3203 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3204 #endif
   3205 	if (ngood)
   3206 		sc->sc_lastrx = tsf;
   3207 
   3208 #ifdef __NetBSD__
   3209 	/* XXX Why isn't this necessary in FreeBSD? */
   3210 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3211 		ath_start(ifp);
   3212 #endif /* __NetBSD__ */
   3213 
   3214 	NET_UNLOCK_GIANT();		/* XXX */
   3215 #undef PA2DESC
   3216 }
   3217 
   3218 /*
   3219  * Setup a h/w transmit queue.
   3220  */
   3221 static struct ath_txq *
   3222 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3223 {
   3224 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3225 	struct ath_hal *ah = sc->sc_ah;
   3226 	HAL_TXQ_INFO qi;
   3227 	int qnum;
   3228 
   3229 	memset(&qi, 0, sizeof(qi));
   3230 	qi.tqi_subtype = subtype;
   3231 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3232 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3233 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3234 	/*
   3235 	 * Enable interrupts only for EOL and DESC conditions.
   3236 	 * We mark tx descriptors to receive a DESC interrupt
   3237 	 * when a tx queue gets deep; otherwise waiting for the
   3238 	 * EOL to reap descriptors.  Note that this is done to
   3239 	 * reduce interrupt load and this only defers reaping
   3240 	 * descriptors, never transmitting frames.  Aside from
   3241 	 * reducing interrupts this also permits more concurrency.
   3242 	 * The only potential downside is if the tx queue backs
   3243 	 * up in which case the top half of the kernel may backup
   3244 	 * due to a lack of tx descriptors.
   3245 	 */
   3246 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3247 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3248 	if (qnum == -1) {
   3249 		/*
   3250 		 * NB: don't print a message, this happens
   3251 		 * normally on parts with too few tx queues
   3252 		 */
   3253 		return NULL;
   3254 	}
   3255 	if (qnum >= N(sc->sc_txq)) {
   3256 		device_printf(sc->sc_dev,
   3257 			"hal qnum %u out of range, max %zu!\n",
   3258 			qnum, N(sc->sc_txq));
   3259 		ath_hal_releasetxqueue(ah, qnum);
   3260 		return NULL;
   3261 	}
   3262 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3263 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3264 
   3265 		txq->axq_qnum = qnum;
   3266 		txq->axq_depth = 0;
   3267 		txq->axq_intrcnt = 0;
   3268 		txq->axq_link = NULL;
   3269 		STAILQ_INIT(&txq->axq_q);
   3270 		ATH_TXQ_LOCK_INIT(sc, txq);
   3271 		sc->sc_txqsetup |= 1<<qnum;
   3272 	}
   3273 	return &sc->sc_txq[qnum];
   3274 #undef N
   3275 }
   3276 
   3277 /*
   3278  * Setup a hardware data transmit queue for the specified
   3279  * access control.  The hal may not support all requested
   3280  * queues in which case it will return a reference to a
   3281  * previously setup queue.  We record the mapping from ac's
   3282  * to h/w queues for use by ath_tx_start and also track
   3283  * the set of h/w queues being used to optimize work in the
   3284  * transmit interrupt handler and related routines.
   3285  */
   3286 static int
   3287 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3288 {
   3289 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3290 	struct ath_txq *txq;
   3291 
   3292 	if (ac >= N(sc->sc_ac2q)) {
   3293 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3294 			ac, N(sc->sc_ac2q));
   3295 		return 0;
   3296 	}
   3297 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3298 	if (txq != NULL) {
   3299 		sc->sc_ac2q[ac] = txq;
   3300 		return 1;
   3301 	} else
   3302 		return 0;
   3303 #undef N
   3304 }
   3305 
   3306 /*
   3307  * Update WME parameters for a transmit queue.
   3308  */
   3309 static int
   3310 ath_txq_update(struct ath_softc *sc, int ac)
   3311 {
   3312 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3313 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3314 	struct ieee80211com *ic = &sc->sc_ic;
   3315 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3316 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3317 	struct ath_hal *ah = sc->sc_ah;
   3318 	HAL_TXQ_INFO qi;
   3319 
   3320 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3321 	qi.tqi_aifs = wmep->wmep_aifsn;
   3322 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3323 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3324 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3325 
   3326 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3327 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3328 			"parameters for %s traffic!\n",
   3329 			ieee80211_wme_acnames[ac]);
   3330 		return 0;
   3331 	} else {
   3332 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3333 		return 1;
   3334 	}
   3335 #undef ATH_TXOP_TO_US
   3336 #undef ATH_EXPONENT_TO_VALUE
   3337 }
   3338 
   3339 /*
   3340  * Callback from the 802.11 layer to update WME parameters.
   3341  */
   3342 static int
   3343 ath_wme_update(struct ieee80211com *ic)
   3344 {
   3345 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3346 
   3347 	return !ath_txq_update(sc, WME_AC_BE) ||
   3348 	    !ath_txq_update(sc, WME_AC_BK) ||
   3349 	    !ath_txq_update(sc, WME_AC_VI) ||
   3350 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3351 }
   3352 
   3353 /*
   3354  * Reclaim resources for a setup queue.
   3355  */
   3356 static void
   3357 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3358 {
   3359 
   3360 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3361 	ATH_TXQ_LOCK_DESTROY(txq);
   3362 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3363 }
   3364 
   3365 /*
   3366  * Reclaim all tx queue resources.
   3367  */
   3368 static void
   3369 ath_tx_cleanup(struct ath_softc *sc)
   3370 {
   3371 	int i;
   3372 
   3373 	ATH_TXBUF_LOCK_DESTROY(sc);
   3374 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3375 		if (ATH_TXQ_SETUP(sc, i))
   3376 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3377 }
   3378 
   3379 /*
   3380  * Defragment an mbuf chain, returning at most maxfrags separate
   3381  * mbufs+clusters.  If this is not possible NULL is returned and
   3382  * the original mbuf chain is left in it's present (potentially
   3383  * modified) state.  We use two techniques: collapsing consecutive
   3384  * mbufs and replacing consecutive mbufs by a cluster.
   3385  */
   3386 static struct mbuf *
   3387 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3388 {
   3389 	struct mbuf *m, *n, *n2, **prev;
   3390 	u_int curfrags;
   3391 
   3392 	/*
   3393 	 * Calculate the current number of frags.
   3394 	 */
   3395 	curfrags = 0;
   3396 	for (m = m0; m != NULL; m = m->m_next)
   3397 		curfrags++;
   3398 	/*
   3399 	 * First, try to collapse mbufs.  Note that we always collapse
   3400 	 * towards the front so we don't need to deal with moving the
   3401 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3402 	 * less data than the following.
   3403 	 */
   3404 	m = m0;
   3405 again:
   3406 	for (;;) {
   3407 		n = m->m_next;
   3408 		if (n == NULL)
   3409 			break;
   3410 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3411 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3412 				n->m_len);
   3413 			m->m_len += n->m_len;
   3414 			m->m_next = n->m_next;
   3415 			m_free(n);
   3416 			if (--curfrags <= maxfrags)
   3417 				return m0;
   3418 		} else
   3419 			m = n;
   3420 	}
   3421 	KASSERT(maxfrags > 1,
   3422 		("maxfrags %u, but normal collapse failed", maxfrags));
   3423 	/*
   3424 	 * Collapse consecutive mbufs to a cluster.
   3425 	 */
   3426 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3427 	while ((n = *prev) != NULL) {
   3428 		if ((n2 = n->m_next) != NULL &&
   3429 		    n->m_len + n2->m_len < MCLBYTES) {
   3430 			m = m_getcl(how, MT_DATA, 0);
   3431 			if (m == NULL)
   3432 				goto bad;
   3433 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3434 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3435 				n2->m_len);
   3436 			m->m_len = n->m_len + n2->m_len;
   3437 			m->m_next = n2->m_next;
   3438 			*prev = m;
   3439 			m_free(n);
   3440 			m_free(n2);
   3441 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3442 				return m0;
   3443 			/*
   3444 			 * Still not there, try the normal collapse
   3445 			 * again before we allocate another cluster.
   3446 			 */
   3447 			goto again;
   3448 		}
   3449 		prev = &n->m_next;
   3450 	}
   3451 	/*
   3452 	 * No place where we can collapse to a cluster; punt.
   3453 	 * This can occur if, for example, you request 2 frags
   3454 	 * but the packet requires that both be clusters (we
   3455 	 * never reallocate the first mbuf to avoid moving the
   3456 	 * packet header).
   3457 	 */
   3458 bad:
   3459 	return NULL;
   3460 }
   3461 
   3462 /*
   3463  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3464  */
   3465 static int
   3466 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3467 {
   3468 	int i;
   3469 
   3470 	for (i = 0; i < rt->rateCount; i++)
   3471 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3472 			return i;
   3473 	return 0;		/* NB: lowest rate */
   3474 }
   3475 
   3476 static void
   3477 ath_freetx(struct mbuf *m)
   3478 {
   3479 	struct mbuf *next;
   3480 
   3481 	do {
   3482 		next = m->m_nextpkt;
   3483 		m->m_nextpkt = NULL;
   3484 		m_freem(m);
   3485 	} while ((m = next) != NULL);
   3486 }
   3487 
   3488 static int
   3489 deduct_pad_bytes(int len, int hdrlen)
   3490 {
   3491 	/* XXX I am suspicious that this code, which I extracted
   3492 	 * XXX from ath_tx_start() for reuse, does the right thing.
   3493 	 */
   3494 	return len - (hdrlen & 3);
   3495 }
   3496 
   3497 static int
   3498 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3499     struct mbuf *m0)
   3500 {
   3501 	struct ieee80211com *ic = &sc->sc_ic;
   3502 	struct ath_hal *ah = sc->sc_ah;
   3503 	struct ifnet *ifp = &sc->sc_if;
   3504 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3505 	int i, error, iswep, ismcast, isfrag, ismrr;
   3506 	int keyix, hdrlen, pktlen, try0;
   3507 	u_int8_t rix, txrate, ctsrate;
   3508 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3509 	struct ath_desc *ds, *ds0;
   3510 	struct ath_txq *txq;
   3511 	struct ieee80211_frame *wh;
   3512 	u_int subtype, flags, ctsduration;
   3513 	HAL_PKT_TYPE atype;
   3514 	const HAL_RATE_TABLE *rt;
   3515 	HAL_BOOL shortPreamble;
   3516 	struct ath_node *an;
   3517 	struct mbuf *m;
   3518 	u_int pri;
   3519 
   3520 	wh = mtod(m0, struct ieee80211_frame *);
   3521 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3522 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3523 	isfrag = m0->m_flags & M_FRAG;
   3524 	hdrlen = ieee80211_anyhdrsize(wh);
   3525 	/*
   3526 	 * Packet length must not include any
   3527 	 * pad bytes; deduct them here.
   3528 	 */
   3529 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
   3530 
   3531 	if (iswep) {
   3532 		const struct ieee80211_cipher *cip;
   3533 		struct ieee80211_key *k;
   3534 
   3535 		/*
   3536 		 * Construct the 802.11 header+trailer for an encrypted
   3537 		 * frame. The only reason this can fail is because of an
   3538 		 * unknown or unsupported cipher/key type.
   3539 		 */
   3540 		k = ieee80211_crypto_encap(ic, ni, m0);
   3541 		if (k == NULL) {
   3542 			/*
   3543 			 * This can happen when the key is yanked after the
   3544 			 * frame was queued.  Just discard the frame; the
   3545 			 * 802.11 layer counts failures and provides
   3546 			 * debugging/diagnostics.
   3547 			 */
   3548 			ath_freetx(m0);
   3549 			return EIO;
   3550 		}
   3551 		/*
   3552 		 * Adjust the packet + header lengths for the crypto
   3553 		 * additions and calculate the h/w key index.  When
   3554 		 * a s/w mic is done the frame will have had any mic
   3555 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3556 		 * account for it. Otherwise we need to add it to the
   3557 		 * packet length.
   3558 		 */
   3559 		cip = k->wk_cipher;
   3560 		hdrlen += cip->ic_header;
   3561 		pktlen += cip->ic_header + cip->ic_trailer;
   3562 		/* NB: frags always have any TKIP MIC done in s/w */
   3563 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3564 			pktlen += cip->ic_miclen;
   3565 		keyix = k->wk_keyix;
   3566 
   3567 		/* packet header may have moved, reset our local pointer */
   3568 		wh = mtod(m0, struct ieee80211_frame *);
   3569 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3570 		/*
   3571 		 * Use station key cache slot, if assigned.
   3572 		 */
   3573 		keyix = ni->ni_ucastkey.wk_keyix;
   3574 		if (keyix == IEEE80211_KEYIX_NONE)
   3575 			keyix = HAL_TXKEYIX_INVALID;
   3576 	} else
   3577 		keyix = HAL_TXKEYIX_INVALID;
   3578 
   3579 	pktlen += IEEE80211_CRC_LEN;
   3580 
   3581 	/*
   3582 	 * Load the DMA map so any coalescing is done.  This
   3583 	 * also calculates the number of descriptors we need.
   3584 	 */
   3585 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3586 				     BUS_DMA_NOWAIT);
   3587 	if (error == EFBIG) {
   3588 		/* XXX packet requires too many descriptors */
   3589 		bf->bf_nseg = ATH_TXDESC+1;
   3590 	} else if (error != 0) {
   3591 		sc->sc_stats.ast_tx_busdma++;
   3592 		ath_freetx(m0);
   3593 		return error;
   3594 	}
   3595 	/*
   3596 	 * Discard null packets and check for packets that
   3597 	 * require too many TX descriptors.  We try to convert
   3598 	 * the latter to a cluster.
   3599 	 */
   3600 	if (error == EFBIG) {		/* too many desc's, linearize */
   3601 		sc->sc_stats.ast_tx_linear++;
   3602 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3603 		if (m == NULL) {
   3604 			ath_freetx(m0);
   3605 			sc->sc_stats.ast_tx_nombuf++;
   3606 			return ENOMEM;
   3607 		}
   3608 		m0 = m;
   3609 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3610 					     BUS_DMA_NOWAIT);
   3611 		if (error != 0) {
   3612 			sc->sc_stats.ast_tx_busdma++;
   3613 			ath_freetx(m0);
   3614 			return error;
   3615 		}
   3616 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3617 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3618 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3619 		sc->sc_stats.ast_tx_nodata++;
   3620 		ath_freetx(m0);
   3621 		return EIO;
   3622 	}
   3623 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3624 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3625             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3626 	bf->bf_m = m0;
   3627 	bf->bf_node = ni;			/* NB: held reference */
   3628 
   3629 	/* setup descriptors */
   3630 	ds = bf->bf_desc;
   3631 	rt = sc->sc_currates;
   3632 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3633 
   3634 	/*
   3635 	 * NB: the 802.11 layer marks whether or not we should
   3636 	 * use short preamble based on the current mode and
   3637 	 * negotiated parameters.
   3638 	 */
   3639 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3640 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3641 		shortPreamble = AH_TRUE;
   3642 		sc->sc_stats.ast_tx_shortpre++;
   3643 	} else {
   3644 		shortPreamble = AH_FALSE;
   3645 	}
   3646 
   3647 	an = ATH_NODE(ni);
   3648 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3649 	ismrr = 0;				/* default no multi-rate retry*/
   3650 	/*
   3651 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3652 	 * setup for rate calculations, and select h/w transmit queue.
   3653 	 */
   3654 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3655 	case IEEE80211_FC0_TYPE_MGT:
   3656 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3657 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3658 			atype = HAL_PKT_TYPE_BEACON;
   3659 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3660 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3661 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3662 			atype = HAL_PKT_TYPE_ATIM;
   3663 		else
   3664 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3665 		rix = sc->sc_minrateix;
   3666 		txrate = rt->info[rix].rateCode;
   3667 		if (shortPreamble)
   3668 			txrate |= rt->info[rix].shortPreamble;
   3669 		try0 = ATH_TXMGTTRY;
   3670 		/* NB: force all management frames to highest queue */
   3671 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3672 			/* NB: force all management frames to highest queue */
   3673 			pri = WME_AC_VO;
   3674 		} else
   3675 			pri = WME_AC_BE;
   3676 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3677 		break;
   3678 	case IEEE80211_FC0_TYPE_CTL:
   3679 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3680 		rix = sc->sc_minrateix;
   3681 		txrate = rt->info[rix].rateCode;
   3682 		if (shortPreamble)
   3683 			txrate |= rt->info[rix].shortPreamble;
   3684 		try0 = ATH_TXMGTTRY;
   3685 		/* NB: force all ctl frames to highest queue */
   3686 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3687 			/* NB: force all ctl frames to highest queue */
   3688 			pri = WME_AC_VO;
   3689 		} else
   3690 			pri = WME_AC_BE;
   3691 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3692 		break;
   3693 	case IEEE80211_FC0_TYPE_DATA:
   3694 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3695 		/*
   3696 		 * Data frames: multicast frames go out at a fixed rate,
   3697 		 * otherwise consult the rate control module for the
   3698 		 * rate to use.
   3699 		 */
   3700 		if (ismcast) {
   3701 			/*
   3702 			 * Check mcast rate setting in case it's changed.
   3703 			 * XXX move out of fastpath
   3704 			 */
   3705 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3706 				sc->sc_mcastrix =
   3707 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3708 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3709 			}
   3710 			rix = sc->sc_mcastrix;
   3711 			txrate = rt->info[rix].rateCode;
   3712 			try0 = 1;
   3713 		} else {
   3714 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3715 				&rix, &try0, &txrate);
   3716 			sc->sc_txrate = txrate;		/* for LED blinking */
   3717 			if (try0 != ATH_TXMAXTRY)
   3718 				ismrr = 1;
   3719 		}
   3720 		pri = M_WME_GETAC(m0);
   3721 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3722 			flags |= HAL_TXDESC_NOACK;
   3723 		break;
   3724 	default:
   3725 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3726 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3727 		/* XXX statistic */
   3728 		ath_freetx(m0);
   3729 		return EIO;
   3730 	}
   3731 	txq = sc->sc_ac2q[pri];
   3732 
   3733 	/*
   3734 	 * When servicing one or more stations in power-save mode
   3735 	 * multicast frames must be buffered until after the beacon.
   3736 	 * We use the CAB queue for that.
   3737 	 */
   3738 	if (ismcast && ic->ic_ps_sta) {
   3739 		txq = sc->sc_cabq;
   3740 		/* XXX? more bit in 802.11 frame header */
   3741 	}
   3742 
   3743 	/*
   3744 	 * Calculate miscellaneous flags.
   3745 	 */
   3746 	if (ismcast) {
   3747 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3748 	} else if (pktlen > ic->ic_rtsthreshold) {
   3749 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3750 		cix = rt->info[rix].controlRate;
   3751 		sc->sc_stats.ast_tx_rts++;
   3752 	}
   3753 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3754 		sc->sc_stats.ast_tx_noack++;
   3755 
   3756 	/*
   3757 	 * If 802.11g protection is enabled, determine whether
   3758 	 * to use RTS/CTS or just CTS.  Note that this is only
   3759 	 * done for OFDM unicast frames.
   3760 	 */
   3761 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3762 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3763 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3764 		/* XXX fragments must use CCK rates w/ protection */
   3765 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3766 			flags |= HAL_TXDESC_RTSENA;
   3767 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3768 			flags |= HAL_TXDESC_CTSENA;
   3769 		if (isfrag) {
   3770 			/*
   3771 			 * For frags it would be desirable to use the
   3772 			 * highest CCK rate for RTS/CTS.  But stations
   3773 			 * farther away may detect it at a lower CCK rate
   3774 			 * so use the configured protection rate instead
   3775 			 * (for now).
   3776 			 */
   3777 			cix = rt->info[sc->sc_protrix].controlRate;
   3778 		} else
   3779 			cix = rt->info[sc->sc_protrix].controlRate;
   3780 		sc->sc_stats.ast_tx_protect++;
   3781 	}
   3782 
   3783 	/*
   3784 	 * Calculate duration.  This logically belongs in the 802.11
   3785 	 * layer but it lacks sufficient information to calculate it.
   3786 	 */
   3787 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3788 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3789 		u_int16_t dur;
   3790 		/*
   3791 		 * XXX not right with fragmentation.
   3792 		 */
   3793 		if (shortPreamble)
   3794 			dur = rt->info[rix].spAckDuration;
   3795 		else
   3796 			dur = rt->info[rix].lpAckDuration;
   3797 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3798 			dur += dur;             /* additional SIFS+ACK */
   3799 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3800 			/*
   3801 			 * Include the size of next fragment so NAV is
   3802 			 * updated properly.  The last fragment uses only
   3803 			 * the ACK duration
   3804 			 */
   3805 			dur += ath_hal_computetxtime(ah, rt,
   3806 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
   3807 			        hdrlen) -
   3808 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
   3809 			    rix, shortPreamble);
   3810 		}
   3811 		if (isfrag) {
   3812 			/*
   3813 			 * Force hardware to use computed duration for next
   3814 			 * fragment by disabling multi-rate retry which updates
   3815 			 * duration based on the multi-rate duration table.
   3816 			 */
   3817 			try0 = ATH_TXMAXTRY;
   3818 		}
   3819 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3820 	}
   3821 
   3822 	/*
   3823 	 * Calculate RTS/CTS rate and duration if needed.
   3824 	 */
   3825 	ctsduration = 0;
   3826 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3827 		/*
   3828 		 * CTS transmit rate is derived from the transmit rate
   3829 		 * by looking in the h/w rate table.  We must also factor
   3830 		 * in whether or not a short preamble is to be used.
   3831 		 */
   3832 		/* NB: cix is set above where RTS/CTS is enabled */
   3833 		KASSERT(cix != 0xff, ("cix not setup"));
   3834 		ctsrate = rt->info[cix].rateCode;
   3835 		/*
   3836 		 * Compute the transmit duration based on the frame
   3837 		 * size and the size of an ACK frame.  We call into the
   3838 		 * HAL to do the computation since it depends on the
   3839 		 * characteristics of the actual PHY being used.
   3840 		 *
   3841 		 * NB: CTS is assumed the same size as an ACK so we can
   3842 		 *     use the precalculated ACK durations.
   3843 		 */
   3844 		if (shortPreamble) {
   3845 			ctsrate |= rt->info[cix].shortPreamble;
   3846 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3847 				ctsduration += rt->info[cix].spAckDuration;
   3848 			ctsduration += ath_hal_computetxtime(ah,
   3849 				rt, pktlen, rix, AH_TRUE);
   3850 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3851 				ctsduration += rt->info[rix].spAckDuration;
   3852 		} else {
   3853 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3854 				ctsduration += rt->info[cix].lpAckDuration;
   3855 			ctsduration += ath_hal_computetxtime(ah,
   3856 				rt, pktlen, rix, AH_FALSE);
   3857 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3858 				ctsduration += rt->info[rix].lpAckDuration;
   3859 		}
   3860 		/*
   3861 		 * Must disable multi-rate retry when using RTS/CTS.
   3862 		 */
   3863 		ismrr = 0;
   3864 		try0 = ATH_TXMGTTRY;		/* XXX */
   3865 	} else
   3866 		ctsrate = 0;
   3867 
   3868 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3869 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3870 			sc->sc_hwmap[txrate].ieeerate, -1);
   3871 #if NBPFILTER > 0
   3872 	if (ic->ic_rawbpf)
   3873 		bpf_mtap(ic->ic_rawbpf, m0);
   3874 	if (sc->sc_drvbpf) {
   3875 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3876 
   3877 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3878 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3879 		if (iswep)
   3880 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3881 		if (isfrag)
   3882 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3883 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3884 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3885 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3886 
   3887 		bpf_mtap2(sc->sc_drvbpf,
   3888 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3889 	}
   3890 #endif
   3891 
   3892 	/*
   3893 	 * Determine if a tx interrupt should be generated for
   3894 	 * this descriptor.  We take a tx interrupt to reap
   3895 	 * descriptors when the h/w hits an EOL condition or
   3896 	 * when the descriptor is specifically marked to generate
   3897 	 * an interrupt.  We periodically mark descriptors in this
   3898 	 * way to insure timely replenishing of the supply needed
   3899 	 * for sending frames.  Defering interrupts reduces system
   3900 	 * load and potentially allows more concurrent work to be
   3901 	 * done but if done to aggressively can cause senders to
   3902 	 * backup.
   3903 	 *
   3904 	 * NB: use >= to deal with sc_txintrperiod changing
   3905 	 *     dynamically through sysctl.
   3906 	 */
   3907 	if (flags & HAL_TXDESC_INTREQ) {
   3908 		txq->axq_intrcnt = 0;
   3909 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3910 		flags |= HAL_TXDESC_INTREQ;
   3911 		txq->axq_intrcnt = 0;
   3912 	}
   3913 
   3914 	/*
   3915 	 * Formulate first tx descriptor with tx controls.
   3916 	 */
   3917 	/* XXX check return value? */
   3918 	ath_hal_setuptxdesc(ah, ds
   3919 		, pktlen		/* packet length */
   3920 		, hdrlen		/* header length */
   3921 		, atype			/* Atheros packet type */
   3922 		, ni->ni_txpower	/* txpower */
   3923 		, txrate, try0		/* series 0 rate/tries */
   3924 		, keyix			/* key cache index */
   3925 		, sc->sc_txantenna	/* antenna mode */
   3926 		, flags			/* flags */
   3927 		, ctsrate		/* rts/cts rate */
   3928 		, ctsduration		/* rts/cts duration */
   3929 	);
   3930 	bf->bf_flags = flags;
   3931 	/*
   3932 	 * Setup the multi-rate retry state only when we're
   3933 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3934 	 * initializes the descriptors (so we don't have to)
   3935 	 * when the hardware supports multi-rate retry and
   3936 	 * we don't use it.
   3937 	 */
   3938 	if (ismrr)
   3939 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   3940 
   3941 	/*
   3942 	 * Fillin the remainder of the descriptor info.
   3943 	 */
   3944 	ds0 = ds;
   3945 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   3946 		ds->ds_data = bf->bf_segs[i].ds_addr;
   3947 		if (i == bf->bf_nseg - 1)
   3948 			ds->ds_link = 0;
   3949 		else
   3950 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   3951 		ath_hal_filltxdesc(ah, ds
   3952 			, bf->bf_segs[i].ds_len	/* segment length */
   3953 			, i == 0		/* first segment */
   3954 			, i == bf->bf_nseg - 1	/* last segment */
   3955 			, ds0			/* first descriptor */
   3956 		);
   3957 
   3958 		/* NB: The desc swap function becomes void,
   3959 		 * if descriptor swapping is not enabled
   3960 		 */
   3961 		ath_desc_swap(ds);
   3962 
   3963 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3964 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   3965 			__func__, i, ds->ds_link, ds->ds_data,
   3966 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   3967 	}
   3968 	/*
   3969 	 * Insert the frame on the outbound list and
   3970 	 * pass it on to the hardware.
   3971 	 */
   3972 	ATH_TXQ_LOCK(txq);
   3973 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   3974 	if (txq->axq_link == NULL) {
   3975 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   3976 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3977 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   3978 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   3979 		    txq->axq_depth);
   3980 	} else {
   3981 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   3982 		DPRINTF(sc, ATH_DEBUG_XMIT,
   3983 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   3984 		    __func__, txq->axq_qnum, txq->axq_link,
   3985 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   3986 	}
   3987 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   3988 	/*
   3989 	 * The CAB queue is started from the SWBA handler since
   3990 	 * frames only go out on DTIM and to avoid possible races.
   3991 	 */
   3992 	if (txq != sc->sc_cabq)
   3993 		ath_hal_txstart(ah, txq->axq_qnum);
   3994 	ATH_TXQ_UNLOCK(txq);
   3995 
   3996 	return 0;
   3997 }
   3998 
   3999 /*
   4000  * Process completed xmit descriptors from the specified queue.
   4001  */
   4002 static int
   4003 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4004 {
   4005 	struct ath_hal *ah = sc->sc_ah;
   4006 	struct ieee80211com *ic = &sc->sc_ic;
   4007 	struct ath_buf *bf;
   4008 	struct ath_desc *ds, *ds0;
   4009 	struct ieee80211_node *ni;
   4010 	struct ath_node *an;
   4011 	int sr, lr, pri, nacked;
   4012 	HAL_STATUS status;
   4013 
   4014 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4015 		__func__, txq->axq_qnum,
   4016 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4017 		txq->axq_link);
   4018 	nacked = 0;
   4019 	for (;;) {
   4020 		ATH_TXQ_LOCK(txq);
   4021 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4022 		bf = STAILQ_FIRST(&txq->axq_q);
   4023 		if (bf == NULL) {
   4024 			txq->axq_link = NULL;
   4025 			ATH_TXQ_UNLOCK(txq);
   4026 			break;
   4027 		}
   4028 		ds0 = &bf->bf_desc[0];
   4029 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4030 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
   4031 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4032 			ath_printtxbuf(bf, status == HAL_OK);
   4033 		if (status == HAL_EINPROGRESS) {
   4034 			ATH_TXQ_UNLOCK(txq);
   4035 			break;
   4036 		}
   4037 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4038 		ATH_TXQ_UNLOCK(txq);
   4039 
   4040 		ni = bf->bf_node;
   4041 		if (ni != NULL) {
   4042 			an = ATH_NODE(ni);
   4043 			if (ds->ds_txstat.ts_status == 0) {
   4044 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4045 				sc->sc_stats.ast_ant_tx[txant]++;
   4046 				sc->sc_ant_tx[txant]++;
   4047 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4048 					sc->sc_stats.ast_tx_altrate++;
   4049 				sc->sc_stats.ast_tx_rssi =
   4050 					ds->ds_txstat.ts_rssi;
   4051 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4052 					ds->ds_txstat.ts_rssi);
   4053 				pri = M_WME_GETAC(bf->bf_m);
   4054 				if (pri >= WME_AC_VO)
   4055 					ic->ic_wme.wme_hipri_traffic++;
   4056 				ni->ni_inact = ni->ni_inact_reload;
   4057 			} else {
   4058 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4059 					sc->sc_stats.ast_tx_xretries++;
   4060 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4061 					sc->sc_stats.ast_tx_fifoerr++;
   4062 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4063 					sc->sc_stats.ast_tx_filtered++;
   4064 			}
   4065 			sr = ds->ds_txstat.ts_shortretry;
   4066 			lr = ds->ds_txstat.ts_longretry;
   4067 			sc->sc_stats.ast_tx_shortretry += sr;
   4068 			sc->sc_stats.ast_tx_longretry += lr;
   4069 			/*
   4070 			 * Hand the descriptor to the rate control algorithm.
   4071 			 */
   4072 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4073 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4074 				/*
   4075 				 * If frame was ack'd update the last rx time
   4076 				 * used to workaround phantom bmiss interrupts.
   4077 				 */
   4078 				if (ds->ds_txstat.ts_status == 0)
   4079 					nacked++;
   4080 				ath_rate_tx_complete(sc, an, ds, ds0);
   4081 			}
   4082 			/*
   4083 			 * Reclaim reference to node.
   4084 			 *
   4085 			 * NB: the node may be reclaimed here if, for example
   4086 			 *     this is a DEAUTH message that was sent and the
   4087 			 *     node was timed out due to inactivity.
   4088 			 */
   4089 			ieee80211_free_node(ni);
   4090 		}
   4091 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4092 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4093 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4094 		m_freem(bf->bf_m);
   4095 		bf->bf_m = NULL;
   4096 		bf->bf_node = NULL;
   4097 
   4098 		ATH_TXBUF_LOCK(sc);
   4099 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4100 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4101 		ATH_TXBUF_UNLOCK(sc);
   4102 	}
   4103 	return nacked;
   4104 }
   4105 
   4106 static inline int
   4107 txqactive(struct ath_hal *ah, int qnum)
   4108 {
   4109 	u_int32_t txqs = 1<<qnum;
   4110 	ath_hal_gettxintrtxqs(ah, &txqs);
   4111 	return (txqs & (1<<qnum));
   4112 }
   4113 
   4114 /*
   4115  * Deferred processing of transmit interrupt; special-cased
   4116  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4117  */
   4118 static void
   4119 ath_tx_proc_q0(void *arg, int npending)
   4120 {
   4121 	struct ath_softc *sc = arg;
   4122 	struct ifnet *ifp = &sc->sc_if;
   4123 
   4124 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4125 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4126 	}
   4127 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4128 		ath_tx_processq(sc, sc->sc_cabq);
   4129 
   4130 	if (sc->sc_softled)
   4131 		ath_led_event(sc, ATH_LED_TX);
   4132 
   4133 	ath_start(ifp);
   4134 }
   4135 
   4136 /*
   4137  * Deferred processing of transmit interrupt; special-cased
   4138  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4139  */
   4140 static void
   4141 ath_tx_proc_q0123(void *arg, int npending)
   4142 {
   4143 	struct ath_softc *sc = arg;
   4144 	struct ifnet *ifp = &sc->sc_if;
   4145 	int nacked;
   4146 
   4147 	/*
   4148 	 * Process each active queue.
   4149 	 */
   4150 	nacked = 0;
   4151 	if (txqactive(sc->sc_ah, 0))
   4152 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4153 	if (txqactive(sc->sc_ah, 1))
   4154 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4155 	if (txqactive(sc->sc_ah, 2))
   4156 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4157 	if (txqactive(sc->sc_ah, 3))
   4158 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4159 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4160 		ath_tx_processq(sc, sc->sc_cabq);
   4161 	if (nacked) {
   4162 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4163 	}
   4164 
   4165 	if (sc->sc_softled)
   4166 		ath_led_event(sc, ATH_LED_TX);
   4167 
   4168 	ath_start(ifp);
   4169 }
   4170 
   4171 /*
   4172  * Deferred processing of transmit interrupt.
   4173  */
   4174 static void
   4175 ath_tx_proc(void *arg, int npending)
   4176 {
   4177 	struct ath_softc *sc = arg;
   4178 	struct ifnet *ifp = &sc->sc_if;
   4179 	int i, nacked;
   4180 
   4181 	/*
   4182 	 * Process each active queue.
   4183 	 */
   4184 	nacked = 0;
   4185 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4186 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4187 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4188 	if (nacked) {
   4189 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4190 	}
   4191 
   4192 	if (sc->sc_softled)
   4193 		ath_led_event(sc, ATH_LED_TX);
   4194 
   4195 	ath_start(ifp);
   4196 }
   4197 
   4198 static void
   4199 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4200 {
   4201 	struct ath_hal *ah = sc->sc_ah;
   4202 	struct ieee80211_node *ni;
   4203 	struct ath_buf *bf;
   4204 	struct ath_desc *ds;
   4205 
   4206 	/*
   4207 	 * NB: this assumes output has been stopped and
   4208 	 *     we do not need to block ath_tx_tasklet
   4209 	 */
   4210 	for (;;) {
   4211 		ATH_TXQ_LOCK(txq);
   4212 		bf = STAILQ_FIRST(&txq->axq_q);
   4213 		if (bf == NULL) {
   4214 			txq->axq_link = NULL;
   4215 			ATH_TXQ_UNLOCK(txq);
   4216 			break;
   4217 		}
   4218 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4219 		ATH_TXQ_UNLOCK(txq);
   4220 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4221 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4222 			ath_printtxbuf(bf,
   4223 				ath_hal_txprocdesc(ah, bf->bf_desc,
   4224 					&ds->ds_txstat) == HAL_OK);
   4225 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4226 		m_freem(bf->bf_m);
   4227 		bf->bf_m = NULL;
   4228 		ni = bf->bf_node;
   4229 		bf->bf_node = NULL;
   4230 		if (ni != NULL) {
   4231 			/*
   4232 			 * Reclaim node reference.
   4233 			 */
   4234 			ieee80211_free_node(ni);
   4235 		}
   4236 		ATH_TXBUF_LOCK(sc);
   4237 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4238 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4239 		ATH_TXBUF_UNLOCK(sc);
   4240 	}
   4241 }
   4242 
   4243 static void
   4244 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4245 {
   4246 	struct ath_hal *ah = sc->sc_ah;
   4247 
   4248 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4249 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4250 	    __func__, txq->axq_qnum,
   4251 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4252 	    txq->axq_link);
   4253 }
   4254 
   4255 /*
   4256  * Drain the transmit queues and reclaim resources.
   4257  */
   4258 static void
   4259 ath_draintxq(struct ath_softc *sc)
   4260 {
   4261 	struct ath_hal *ah = sc->sc_ah;
   4262 	int i;
   4263 
   4264 	/* XXX return value */
   4265 	if (device_is_active(sc->sc_dev)) {
   4266 		/* don't touch the hardware if marked invalid */
   4267 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4268 		DPRINTF(sc, ATH_DEBUG_RESET,
   4269 		    "%s: beacon queue %p\n", __func__,
   4270 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4271 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4272 			if (ATH_TXQ_SETUP(sc, i))
   4273 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4274 	}
   4275 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4276 		if (ATH_TXQ_SETUP(sc, i))
   4277 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4278 }
   4279 
   4280 /*
   4281  * Disable the receive h/w in preparation for a reset.
   4282  */
   4283 static void
   4284 ath_stoprecv(struct ath_softc *sc)
   4285 {
   4286 #define	PA2DESC(_sc, _pa) \
   4287 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4288 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4289 	struct ath_hal *ah = sc->sc_ah;
   4290 	u_int64_t tsf;
   4291 
   4292 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4293 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4294 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4295 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4296 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4297 		struct ath_buf *bf;
   4298 
   4299 		printf("%s: rx queue %p, link %p\n", __func__,
   4300 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4301 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4302 			struct ath_desc *ds = bf->bf_desc;
   4303 			tsf = ath_hal_gettsf64(sc->sc_ah);
   4304 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4305 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   4306 				tsf, &ds->ds_rxstat);
   4307 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4308 				ath_printrxbuf(bf, status == HAL_OK);
   4309 		}
   4310 	}
   4311 	sc->sc_rxlink = NULL;		/* just in case */
   4312 #undef PA2DESC
   4313 }
   4314 
   4315 /*
   4316  * Enable the receive h/w following a reset.
   4317  */
   4318 static int
   4319 ath_startrecv(struct ath_softc *sc)
   4320 {
   4321 	struct ath_hal *ah = sc->sc_ah;
   4322 	struct ath_buf *bf;
   4323 
   4324 	sc->sc_rxlink = NULL;
   4325 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4326 		int error = ath_rxbuf_init(sc, bf);
   4327 		if (error != 0) {
   4328 			DPRINTF(sc, ATH_DEBUG_RECV,
   4329 				"%s: ath_rxbuf_init failed %d\n",
   4330 				__func__, error);
   4331 			return error;
   4332 		}
   4333 	}
   4334 
   4335 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4336 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4337 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4338 	ath_mode_init(sc);		/* set filters, etc. */
   4339 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4340 	return 0;
   4341 }
   4342 
   4343 /*
   4344  * Update internal state after a channel change.
   4345  */
   4346 static void
   4347 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4348 {
   4349 	struct ieee80211com *ic = &sc->sc_ic;
   4350 	enum ieee80211_phymode mode;
   4351 	u_int16_t flags;
   4352 
   4353 	/*
   4354 	 * Change channels and update the h/w rate map
   4355 	 * if we're switching; e.g. 11a to 11b/g.
   4356 	 */
   4357 	mode = ieee80211_chan2mode(ic, chan);
   4358 	if (mode != sc->sc_curmode)
   4359 		ath_setcurmode(sc, mode);
   4360 	/*
   4361 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4362 	 * merged flags well so pick a unique mode for their use.
   4363 	 */
   4364 	if (IEEE80211_IS_CHAN_A(chan))
   4365 		flags = IEEE80211_CHAN_A;
   4366 	/* XXX 11g schizophrenia */
   4367 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4368 	    IEEE80211_IS_CHAN_PUREG(chan))
   4369 		flags = IEEE80211_CHAN_G;
   4370 	else
   4371 		flags = IEEE80211_CHAN_B;
   4372 	if (IEEE80211_IS_CHAN_T(chan))
   4373 		flags |= IEEE80211_CHAN_TURBO;
   4374 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4375 		htole16(chan->ic_freq);
   4376 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4377 		htole16(flags);
   4378 }
   4379 
   4380 #if 0
   4381 /*
   4382  * Poll for a channel clear indication; this is required
   4383  * for channels requiring DFS and not previously visited
   4384  * and/or with a recent radar detection.
   4385  */
   4386 static void
   4387 ath_dfswait(void *arg)
   4388 {
   4389 	struct ath_softc *sc = arg;
   4390 	struct ath_hal *ah = sc->sc_ah;
   4391 	HAL_CHANNEL hchan;
   4392 
   4393 	ath_hal_radar_wait(ah, &hchan);
   4394 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4395 		if_printf(&sc->sc_if,
   4396 		    "channel %u/0x%x/0x%x has interference\n",
   4397 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4398 		return;
   4399 	}
   4400 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4401 		/* XXX should not happen */
   4402 		return;
   4403 	}
   4404 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4405 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4406 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4407 		if_printf(&sc->sc_if,
   4408 		    "channel %u/0x%x/0x%x marked clear\n",
   4409 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4410 	} else
   4411 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4412 }
   4413 #endif
   4414 
   4415 /*
   4416  * Set/change channels.  If the channel is really being changed,
   4417  * it's done by reseting the chip.  To accomplish this we must
   4418  * first cleanup any pending DMA, then restart stuff after a la
   4419  * ath_init.
   4420  */
   4421 static int
   4422 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4423 {
   4424 	struct ath_hal *ah = sc->sc_ah;
   4425 	struct ieee80211com *ic = &sc->sc_ic;
   4426 	HAL_CHANNEL hchan;
   4427 
   4428 	/*
   4429 	 * Convert to a HAL channel description with
   4430 	 * the flags constrained to reflect the current
   4431 	 * operating mode.
   4432 	 */
   4433 	hchan.channel = chan->ic_freq;
   4434 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4435 
   4436 	DPRINTF(sc, ATH_DEBUG_RESET,
   4437 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4438 	    __func__,
   4439 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4440 		sc->sc_curchan.channelFlags),
   4441 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4442 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4443 	        hchan.channel, hchan.channelFlags);
   4444 	if (hchan.channel != sc->sc_curchan.channel ||
   4445 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4446 		HAL_STATUS status;
   4447 
   4448 		/*
   4449 		 * To switch channels clear any pending DMA operations;
   4450 		 * wait long enough for the RX fifo to drain, reset the
   4451 		 * hardware at the new frequency, and then re-enable
   4452 		 * the relevant bits of the h/w.
   4453 		 */
   4454 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4455 		ath_draintxq(sc);		/* clear pending tx frames */
   4456 		ath_stoprecv(sc);		/* turn off frame recv */
   4457 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4458 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4459 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4460 			    __func__, ieee80211_chan2ieee(ic, chan),
   4461 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4462 			return EIO;
   4463 		}
   4464 		sc->sc_curchan = hchan;
   4465 		ath_update_txpow(sc);		/* update tx power state */
   4466 		ath_restore_diversity(sc);
   4467 		sc->sc_calinterval = 1;
   4468 		sc->sc_caltries = 0;
   4469 
   4470 		/*
   4471 		 * Re-enable rx framework.
   4472 		 */
   4473 		if (ath_startrecv(sc) != 0) {
   4474 			if_printf(&sc->sc_if,
   4475 				"%s: unable to restart recv logic\n", __func__);
   4476 			return EIO;
   4477 		}
   4478 
   4479 		/*
   4480 		 * Change channels and update the h/w rate map
   4481 		 * if we're switching; e.g. 11a to 11b/g.
   4482 		 */
   4483 		ic->ic_ibss_chan = chan;
   4484 		ath_chan_change(sc, chan);
   4485 
   4486 #if 0
   4487 		/*
   4488 		 * Handle DFS required waiting period to determine
   4489 		 * if channel is clear of radar traffic.
   4490 		 */
   4491 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4492 #define	DFS_AND_NOT_CLEAR(_c) \
   4493 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4494 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4495 				if_printf(&sc->sc_if,
   4496 					"wait for DFS clear channel signal\n");
   4497 				/* XXX stop sndq */
   4498 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4499 				callout_reset(&sc->sc_dfs_ch,
   4500 					2 * hz, ath_dfswait, sc);
   4501 			} else
   4502 				callout_stop(&sc->sc_dfs_ch);
   4503 #undef DFS_NOT_CLEAR
   4504 		}
   4505 #endif
   4506 
   4507 		/*
   4508 		 * Re-enable interrupts.
   4509 		 */
   4510 		ath_hal_intrset(ah, sc->sc_imask);
   4511 	}
   4512 	return 0;
   4513 }
   4514 
   4515 static void
   4516 ath_next_scan(void *arg)
   4517 {
   4518 	struct ath_softc *sc = arg;
   4519 	struct ieee80211com *ic = &sc->sc_ic;
   4520 	int s;
   4521 
   4522 	/* don't call ath_start w/o network interrupts blocked */
   4523 	s = splnet();
   4524 
   4525 	if (ic->ic_state == IEEE80211_S_SCAN)
   4526 		ieee80211_next_scan(ic);
   4527 	splx(s);
   4528 }
   4529 
   4530 /*
   4531  * Periodically recalibrate the PHY to account
   4532  * for temperature/environment changes.
   4533  */
   4534 static void
   4535 ath_calibrate(void *arg)
   4536 {
   4537 	struct ath_softc *sc = arg;
   4538 	struct ath_hal *ah = sc->sc_ah;
   4539 	HAL_BOOL iqCalDone;
   4540 
   4541 	sc->sc_stats.ast_per_cal++;
   4542 
   4543 	ATH_LOCK(sc);
   4544 
   4545 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4546 		/*
   4547 		 * Rfgain is out of bounds, reset the chip
   4548 		 * to load new gain values.
   4549 		 */
   4550 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4551 			"%s: rfgain change\n", __func__);
   4552 		sc->sc_stats.ast_per_rfgain++;
   4553 		ath_reset(&sc->sc_if);
   4554 	}
   4555 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4556 		DPRINTF(sc, ATH_DEBUG_ANY,
   4557 			"%s: calibration of channel %u failed\n",
   4558 			__func__, sc->sc_curchan.channel);
   4559 		sc->sc_stats.ast_per_calfail++;
   4560 	}
   4561 	/*
   4562 	 * Calibrate noise floor data again in case of change.
   4563 	 */
   4564 	ath_hal_process_noisefloor(ah);
   4565 	/*
   4566 	 * Poll more frequently when the IQ calibration is in
   4567 	 * progress to speedup loading the final settings.
   4568 	 * We temper this aggressive polling with an exponential
   4569 	 * back off after 4 tries up to ath_calinterval.
   4570 	 */
   4571 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4572 		sc->sc_caltries = 0;
   4573 		sc->sc_calinterval = ath_calinterval;
   4574 	} else if (sc->sc_caltries > 4) {
   4575 		sc->sc_caltries = 0;
   4576 		sc->sc_calinterval <<= 1;
   4577 		if (sc->sc_calinterval > ath_calinterval)
   4578 			sc->sc_calinterval = ath_calinterval;
   4579 	}
   4580 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4581 		("bad calibration interval %u", sc->sc_calinterval));
   4582 
   4583 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4584 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4585 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4586 	sc->sc_caltries++;
   4587 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4588 		ath_calibrate, sc);
   4589 	ATH_UNLOCK(sc);
   4590 }
   4591 
   4592 static int
   4593 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4594 {
   4595 	struct ifnet *ifp = ic->ic_ifp;
   4596 	struct ath_softc *sc = ifp->if_softc;
   4597 	struct ath_hal *ah = sc->sc_ah;
   4598 	struct ieee80211_node *ni;
   4599 	int i, error;
   4600 	const u_int8_t *bssid;
   4601 	u_int32_t rfilt;
   4602 	static const HAL_LED_STATE leds[] = {
   4603 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4604 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4605 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4606 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4607 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4608 	};
   4609 
   4610 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4611 		ieee80211_state_name[ic->ic_state],
   4612 		ieee80211_state_name[nstate]);
   4613 
   4614 	callout_stop(&sc->sc_scan_ch);
   4615 	callout_stop(&sc->sc_cal_ch);
   4616 #if 0
   4617 	callout_stop(&sc->sc_dfs_ch);
   4618 #endif
   4619 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4620 
   4621 	if (nstate == IEEE80211_S_INIT) {
   4622 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4623 		/*
   4624 		 * NB: disable interrupts so we don't rx frames.
   4625 		 */
   4626 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4627 		/*
   4628 		 * Notify the rate control algorithm.
   4629 		 */
   4630 		ath_rate_newstate(sc, nstate);
   4631 		goto done;
   4632 	}
   4633 	ni = ic->ic_bss;
   4634 	error = ath_chan_set(sc, ic->ic_curchan);
   4635 	if (error != 0)
   4636 		goto bad;
   4637 	rfilt = ath_calcrxfilter(sc, nstate);
   4638 	if (nstate == IEEE80211_S_SCAN)
   4639 		bssid = ifp->if_broadcastaddr;
   4640 	else
   4641 		bssid = ni->ni_bssid;
   4642 	ath_hal_setrxfilter(ah, rfilt);
   4643 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4644 		 __func__, rfilt, ether_sprintf(bssid));
   4645 
   4646 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4647 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4648 	else
   4649 		ath_hal_setassocid(ah, bssid, 0);
   4650 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4651 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4652 			if (ath_hal_keyisvalid(ah, i))
   4653 				ath_hal_keysetmac(ah, i, bssid);
   4654 	}
   4655 
   4656 	/*
   4657 	 * Notify the rate control algorithm so rates
   4658 	 * are setup should ath_beacon_alloc be called.
   4659 	 */
   4660 	ath_rate_newstate(sc, nstate);
   4661 
   4662 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4663 		/* nothing to do */;
   4664 	} else if (nstate == IEEE80211_S_RUN) {
   4665 		DPRINTF(sc, ATH_DEBUG_STATE,
   4666 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4667 			"capinfo=0x%04x chan=%d\n"
   4668 			 , __func__
   4669 			 , ic->ic_flags
   4670 			 , ni->ni_intval
   4671 			 , ether_sprintf(ni->ni_bssid)
   4672 			 , ni->ni_capinfo
   4673 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4674 
   4675 		switch (ic->ic_opmode) {
   4676 		case IEEE80211_M_HOSTAP:
   4677 		case IEEE80211_M_IBSS:
   4678 			/*
   4679 			 * Allocate and setup the beacon frame.
   4680 			 *
   4681 			 * Stop any previous beacon DMA.  This may be
   4682 			 * necessary, for example, when an ibss merge
   4683 			 * causes reconfiguration; there will be a state
   4684 			 * transition from RUN->RUN that means we may
   4685 			 * be called with beacon transmission active.
   4686 			 */
   4687 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4688 			ath_beacon_free(sc);
   4689 			error = ath_beacon_alloc(sc, ni);
   4690 			if (error != 0)
   4691 				goto bad;
   4692 			/*
   4693 			 * If joining an adhoc network defer beacon timer
   4694 			 * configuration to the next beacon frame so we
   4695 			 * have a current TSF to use.  Otherwise we're
   4696 			 * starting an ibss/bss so there's no need to delay.
   4697 			 */
   4698 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4699 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4700 				sc->sc_syncbeacon = 1;
   4701 			else
   4702 				ath_beacon_config(sc);
   4703 			break;
   4704 		case IEEE80211_M_STA:
   4705 			/*
   4706 			 * Allocate a key cache slot to the station.
   4707 			 */
   4708 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4709 			    sc->sc_hasclrkey &&
   4710 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4711 				ath_setup_stationkey(ni);
   4712 			/*
   4713 			 * Defer beacon timer configuration to the next
   4714 			 * beacon frame so we have a current TSF to use
   4715 			 * (any TSF collected when scanning is likely old).
   4716 			 */
   4717 			sc->sc_syncbeacon = 1;
   4718 			break;
   4719 		default:
   4720 			break;
   4721 		}
   4722 		/*
   4723 		 * Let the hal process statistics collected during a
   4724 		 * scan so it can provide calibrated noise floor data.
   4725 		 */
   4726 		ath_hal_process_noisefloor(ah);
   4727 		/*
   4728 		 * Reset rssi stats; maybe not the best place...
   4729 		 */
   4730 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4731 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4732 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4733 	} else {
   4734 		ath_hal_intrset(ah,
   4735 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4736 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4737 	}
   4738 done:
   4739 	/*
   4740 	 * Invoke the parent method to complete the work.
   4741 	 */
   4742 	error = sc->sc_newstate(ic, nstate, arg);
   4743 	/*
   4744 	 * Finally, start any timers.
   4745 	 */
   4746 	if (nstate == IEEE80211_S_RUN) {
   4747 		/* start periodic recalibration timer */
   4748 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4749 			ath_calibrate, sc);
   4750 	} else if (nstate == IEEE80211_S_SCAN) {
   4751 		/* start ap/neighbor scan timer */
   4752 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4753 			ath_next_scan, sc);
   4754 	}
   4755 bad:
   4756 	return error;
   4757 }
   4758 
   4759 /*
   4760  * Allocate a key cache slot to the station so we can
   4761  * setup a mapping from key index to node. The key cache
   4762  * slot is needed for managing antenna state and for
   4763  * compression when stations do not use crypto.  We do
   4764  * it uniliaterally here; if crypto is employed this slot
   4765  * will be reassigned.
   4766  */
   4767 static void
   4768 ath_setup_stationkey(struct ieee80211_node *ni)
   4769 {
   4770 	struct ieee80211com *ic = ni->ni_ic;
   4771 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4772 	ieee80211_keyix keyix, rxkeyix;
   4773 
   4774 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4775 		/*
   4776 		 * Key cache is full; we'll fall back to doing
   4777 		 * the more expensive lookup in software.  Note
   4778 		 * this also means no h/w compression.
   4779 		 */
   4780 		/* XXX msg+statistic */
   4781 	} else {
   4782 		/* XXX locking? */
   4783 		ni->ni_ucastkey.wk_keyix = keyix;
   4784 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4785 		/* NB: this will create a pass-thru key entry */
   4786 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4787 	}
   4788 }
   4789 
   4790 /*
   4791  * Setup driver-specific state for a newly associated node.
   4792  * Note that we're called also on a re-associate, the isnew
   4793  * param tells us if this is the first time or not.
   4794  */
   4795 static void
   4796 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4797 {
   4798 	struct ieee80211com *ic = ni->ni_ic;
   4799 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4800 
   4801 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4802 	if (isnew &&
   4803 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4804 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4805 		    ("new assoc with a unicast key already setup (keyix %u)",
   4806 		    ni->ni_ucastkey.wk_keyix));
   4807 		ath_setup_stationkey(ni);
   4808 	}
   4809 }
   4810 
   4811 static int
   4812 ath_getchannels(struct ath_softc *sc, u_int cc,
   4813 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4814 {
   4815 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4816 	struct ieee80211com *ic = &sc->sc_ic;
   4817 	struct ifnet *ifp = &sc->sc_if;
   4818 	struct ath_hal *ah = sc->sc_ah;
   4819 	HAL_CHANNEL *chans;
   4820 	int i, ix, nchan;
   4821 
   4822 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4823 			M_TEMP, M_NOWAIT);
   4824 	if (chans == NULL) {
   4825 		if_printf(ifp, "unable to allocate channel table\n");
   4826 		return ENOMEM;
   4827 	}
   4828 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4829 	    NULL, 0, NULL,
   4830 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4831 		u_int32_t rd;
   4832 
   4833 		(void)ath_hal_getregdomain(ah, &rd);
   4834 		if_printf(ifp, "unable to collect channel list from hal; "
   4835 			"regdomain likely %u country code %u\n", rd, cc);
   4836 		free(chans, M_TEMP);
   4837 		return EINVAL;
   4838 	}
   4839 
   4840 	/*
   4841 	 * Convert HAL channels to ieee80211 ones and insert
   4842 	 * them in the table according to their channel number.
   4843 	 */
   4844 	for (i = 0; i < nchan; i++) {
   4845 		HAL_CHANNEL *c = &chans[i];
   4846 		u_int16_t flags;
   4847 
   4848 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4849 		if (ix > IEEE80211_CHAN_MAX) {
   4850 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4851 				ix, c->channel, c->channelFlags);
   4852 			continue;
   4853 		}
   4854 		if (ix < 0) {
   4855 			/* XXX can't handle stuff <2400 right now */
   4856 			if (bootverbose)
   4857 				if_printf(ifp, "hal channel %d (%u/%x) "
   4858 				    "cannot be handled; ignored\n",
   4859 				    ix, c->channel, c->channelFlags);
   4860 			continue;
   4861 		}
   4862 		/*
   4863 		 * Calculate net80211 flags; most are compatible
   4864 		 * but some need massaging.  Note the static turbo
   4865 		 * conversion can be removed once net80211 is updated
   4866 		 * to understand static vs. dynamic turbo.
   4867 		 */
   4868 		flags = c->channelFlags & COMPAT;
   4869 		if (c->channelFlags & CHANNEL_STURBO)
   4870 			flags |= IEEE80211_CHAN_TURBO;
   4871 		if (ic->ic_channels[ix].ic_freq == 0) {
   4872 			ic->ic_channels[ix].ic_freq = c->channel;
   4873 			ic->ic_channels[ix].ic_flags = flags;
   4874 		} else {
   4875 			/* channels overlap; e.g. 11g and 11b */
   4876 			ic->ic_channels[ix].ic_flags |= flags;
   4877 		}
   4878 	}
   4879 	free(chans, M_TEMP);
   4880 	return 0;
   4881 #undef COMPAT
   4882 }
   4883 
   4884 static void
   4885 ath_led_done(void *arg)
   4886 {
   4887 	struct ath_softc *sc = arg;
   4888 
   4889 	sc->sc_blinking = 0;
   4890 }
   4891 
   4892 /*
   4893  * Turn the LED off: flip the pin and then set a timer so no
   4894  * update will happen for the specified duration.
   4895  */
   4896 static void
   4897 ath_led_off(void *arg)
   4898 {
   4899 	struct ath_softc *sc = arg;
   4900 
   4901 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4902 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4903 }
   4904 
   4905 /*
   4906  * Blink the LED according to the specified on/off times.
   4907  */
   4908 static void
   4909 ath_led_blink(struct ath_softc *sc, int on, int off)
   4910 {
   4911 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4912 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4913 	sc->sc_blinking = 1;
   4914 	sc->sc_ledoff = off;
   4915 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4916 }
   4917 
   4918 static void
   4919 ath_led_event(struct ath_softc *sc, int event)
   4920 {
   4921 
   4922 	sc->sc_ledevent = ticks;	/* time of last event */
   4923 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4924 		return;
   4925 	switch (event) {
   4926 	case ATH_LED_POLL:
   4927 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4928 			sc->sc_hwmap[0].ledoff);
   4929 		break;
   4930 	case ATH_LED_TX:
   4931 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4932 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4933 		break;
   4934 	case ATH_LED_RX:
   4935 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4936 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4937 		break;
   4938 	}
   4939 }
   4940 
   4941 static void
   4942 ath_update_txpow(struct ath_softc *sc)
   4943 {
   4944 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4945 	struct ieee80211com *ic = &sc->sc_ic;
   4946 	struct ath_hal *ah = sc->sc_ah;
   4947 	u_int32_t txpow;
   4948 
   4949 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   4950 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   4951 		/* read back in case value is clamped */
   4952 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   4953 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   4954 	}
   4955 	/*
   4956 	 * Fetch max tx power level for status requests.
   4957 	 */
   4958 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   4959 	ic->ic_bss->ni_txpower = txpow;
   4960 }
   4961 
   4962 static void
   4963 rate_setup(struct ath_softc *sc,
   4964 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   4965 {
   4966 	int i, maxrates;
   4967 
   4968 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   4969 		DPRINTF(sc, ATH_DEBUG_ANY,
   4970 			"%s: rate table too small (%u > %u)\n",
   4971 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   4972 		maxrates = IEEE80211_RATE_MAXSIZE;
   4973 	} else
   4974 		maxrates = rt->rateCount;
   4975 	for (i = 0; i < maxrates; i++)
   4976 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   4977 	rs->rs_nrates = maxrates;
   4978 }
   4979 
   4980 static int
   4981 ath_rate_setup(struct ath_softc *sc, u_int mode)
   4982 {
   4983 	struct ath_hal *ah = sc->sc_ah;
   4984 	struct ieee80211com *ic = &sc->sc_ic;
   4985 	const HAL_RATE_TABLE *rt;
   4986 
   4987 	switch (mode) {
   4988 	case IEEE80211_MODE_11A:
   4989 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   4990 		break;
   4991 	case IEEE80211_MODE_11B:
   4992 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   4993 		break;
   4994 	case IEEE80211_MODE_11G:
   4995 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   4996 		break;
   4997 	case IEEE80211_MODE_TURBO_A:
   4998 		/* XXX until static/dynamic turbo is fixed */
   4999 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5000 		break;
   5001 	case IEEE80211_MODE_TURBO_G:
   5002 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5003 		break;
   5004 	default:
   5005 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5006 			__func__, mode);
   5007 		return 0;
   5008 	}
   5009 	sc->sc_rates[mode] = rt;
   5010 	if (rt != NULL) {
   5011 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5012 		return 1;
   5013 	} else
   5014 		return 0;
   5015 }
   5016 
   5017 static void
   5018 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5019 {
   5020 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5021 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5022 	static const struct {
   5023 		u_int		rate;		/* tx/rx 802.11 rate */
   5024 		u_int16_t	timeOn;		/* LED on time (ms) */
   5025 		u_int16_t	timeOff;	/* LED off time (ms) */
   5026 	} blinkrates[] = {
   5027 		{ 108,  40,  10 },
   5028 		{  96,  44,  11 },
   5029 		{  72,  50,  13 },
   5030 		{  48,  57,  14 },
   5031 		{  36,  67,  16 },
   5032 		{  24,  80,  20 },
   5033 		{  22, 100,  25 },
   5034 		{  18, 133,  34 },
   5035 		{  12, 160,  40 },
   5036 		{  10, 200,  50 },
   5037 		{   6, 240,  58 },
   5038 		{   4, 267,  66 },
   5039 		{   2, 400, 100 },
   5040 		{   0, 500, 130 },
   5041 	};
   5042 	const HAL_RATE_TABLE *rt;
   5043 	int i, j;
   5044 
   5045 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5046 	rt = sc->sc_rates[mode];
   5047 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   5048 	for (i = 0; i < rt->rateCount; i++)
   5049 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5050 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5051 	for (i = 0; i < 32; i++) {
   5052 		u_int8_t ix = rt->rateCodeToIndex[i];
   5053 		if (ix == 0xff) {
   5054 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5055 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5056 			continue;
   5057 		}
   5058 		sc->sc_hwmap[i].ieeerate =
   5059 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5060 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5061 		if (rt->info[ix].shortPreamble ||
   5062 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5063 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5064 		/* NB: receive frames include FCS */
   5065 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5066 			IEEE80211_RADIOTAP_F_FCS;
   5067 		/* setup blink rate table to avoid per-packet lookup */
   5068 		for (j = 0; j < N(blinkrates)-1; j++)
   5069 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5070 				break;
   5071 		/* NB: this uses the last entry if the rate isn't found */
   5072 		/* XXX beware of overlow */
   5073 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5074 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5075 	}
   5076 	sc->sc_currates = rt;
   5077 	sc->sc_curmode = mode;
   5078 	/*
   5079 	 * All protection frames are transmited at 2Mb/s for
   5080 	 * 11g, otherwise at 1Mb/s.
   5081 	 */
   5082 	if (mode == IEEE80211_MODE_11G)
   5083 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5084 	else
   5085 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5086 	/* rate index used to send management frames */
   5087 	sc->sc_minrateix = 0;
   5088 	/*
   5089 	 * Setup multicast rate state.
   5090 	 */
   5091 	/* XXX layering violation */
   5092 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5093 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5094 	/* NB: caller is responsible for reseting rate control state */
   5095 #undef N
   5096 }
   5097 
   5098 #ifdef AR_DEBUG
   5099 static void
   5100 ath_printrxbuf(struct ath_buf *bf, int done)
   5101 {
   5102 	struct ath_desc *ds;
   5103 	int i;
   5104 
   5105 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5106 		printf("R%d (%p %" PRIx64
   5107 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
   5108 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5109 		    ds->ds_link, ds->ds_data,
   5110 		    ds->ds_ctl0, ds->ds_ctl1,
   5111 		    ds->ds_hw[0], ds->ds_hw[1],
   5112 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
   5113 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5114 	}
   5115 }
   5116 
   5117 static void
   5118 ath_printtxbuf(struct ath_buf *bf, int done)
   5119 {
   5120 	struct ath_desc *ds;
   5121 	int i;
   5122 
   5123 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5124 		printf("T%d (%p %" PRIx64
   5125 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5126 		    i, ds,
   5127 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5128 		    ds->ds_link, ds->ds_data,
   5129 		    ds->ds_ctl0, ds->ds_ctl1,
   5130 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5131 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5132 	}
   5133 }
   5134 #endif	/* AR_DEBUG */
   5135 
   5136 static void
   5137 ath_watchdog(struct ifnet *ifp)
   5138 {
   5139 	struct ath_softc *sc = ifp->if_softc;
   5140 	struct ieee80211com *ic = &sc->sc_ic;
   5141 	struct ath_txq *axq;
   5142 	int i;
   5143 
   5144 	ifp->if_timer = 0;
   5145 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   5146 	    !device_is_active(sc->sc_dev))
   5147 		return;
   5148 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5149 		if (!ATH_TXQ_SETUP(sc, i))
   5150 			continue;
   5151 		axq = &sc->sc_txq[i];
   5152 		ATH_TXQ_LOCK(axq);
   5153 		if (axq->axq_timer == 0)
   5154 			;
   5155 		else if (--axq->axq_timer == 0) {
   5156 			ATH_TXQ_UNLOCK(axq);
   5157 			if_printf(ifp, "device timeout (txq %d, "
   5158 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
   5159 			if (sc->sc_txintrperiod > 1)
   5160 				sc->sc_txintrperiod--;
   5161 			ath_reset(ifp);
   5162 			ifp->if_oerrors++;
   5163 			sc->sc_stats.ast_watchdog++;
   5164 			break;
   5165 		} else
   5166 			ifp->if_timer = 1;
   5167 		ATH_TXQ_UNLOCK(axq);
   5168 	}
   5169 	ieee80211_watchdog(ic);
   5170 }
   5171 
   5172 /*
   5173  * Diagnostic interface to the HAL.  This is used by various
   5174  * tools to do things like retrieve register contents for
   5175  * debugging.  The mechanism is intentionally opaque so that
   5176  * it can change frequently w/o concern for compatiblity.
   5177  */
   5178 static int
   5179 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5180 {
   5181 	struct ath_hal *ah = sc->sc_ah;
   5182 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5183 	void *indata = NULL;
   5184 	void *outdata = NULL;
   5185 	u_int32_t insize = ad->ad_in_size;
   5186 	u_int32_t outsize = ad->ad_out_size;
   5187 	int error = 0;
   5188 
   5189 	if (ad->ad_id & ATH_DIAG_IN) {
   5190 		/*
   5191 		 * Copy in data.
   5192 		 */
   5193 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5194 		if (indata == NULL) {
   5195 			error = ENOMEM;
   5196 			goto bad;
   5197 		}
   5198 		error = copyin(ad->ad_in_data, indata, insize);
   5199 		if (error)
   5200 			goto bad;
   5201 	}
   5202 	if (ad->ad_id & ATH_DIAG_DYN) {
   5203 		/*
   5204 		 * Allocate a buffer for the results (otherwise the HAL
   5205 		 * returns a pointer to a buffer where we can read the
   5206 		 * results).  Note that we depend on the HAL leaving this
   5207 		 * pointer for us to use below in reclaiming the buffer;
   5208 		 * may want to be more defensive.
   5209 		 */
   5210 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5211 		if (outdata == NULL) {
   5212 			error = ENOMEM;
   5213 			goto bad;
   5214 		}
   5215 	}
   5216 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5217 		if (outsize < ad->ad_out_size)
   5218 			ad->ad_out_size = outsize;
   5219 		if (outdata != NULL)
   5220 			error = copyout(outdata, ad->ad_out_data,
   5221 					ad->ad_out_size);
   5222 	} else {
   5223 		error = EINVAL;
   5224 	}
   5225 bad:
   5226 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5227 		free(indata, M_TEMP);
   5228 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5229 		free(outdata, M_TEMP);
   5230 	return error;
   5231 }
   5232 
   5233 static int
   5234 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5235 {
   5236 #define	IS_RUNNING(ifp) \
   5237 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5238 	struct ath_softc *sc = ifp->if_softc;
   5239 	struct ieee80211com *ic = &sc->sc_ic;
   5240 	struct ifreq *ifr = (struct ifreq *)data;
   5241 	int error = 0;
   5242 
   5243 	ATH_LOCK(sc);
   5244 	switch (cmd) {
   5245 	case SIOCSIFFLAGS:
   5246 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5247 			break;
   5248 		if (IS_RUNNING(ifp)) {
   5249 			/*
   5250 			 * To avoid rescanning another access point,
   5251 			 * do not call ath_init() here.  Instead,
   5252 			 * only reflect promisc mode settings.
   5253 			 */
   5254 			ath_mode_init(sc);
   5255 		} else if (ifp->if_flags & IFF_UP) {
   5256 			/*
   5257 			 * Beware of being called during attach/detach
   5258 			 * to reset promiscuous mode.  In that case we
   5259 			 * will still be marked UP but not RUNNING.
   5260 			 * However trying to re-init the interface
   5261 			 * is the wrong thing to do as we've already
   5262 			 * torn down much of our state.  There's
   5263 			 * probably a better way to deal with this.
   5264 			 */
   5265 			error = ath_init(sc);
   5266 		} else if (device_is_active(sc->sc_dev))
   5267 			ath_stop_locked(ifp, 1);
   5268 		break;
   5269 	case SIOCADDMULTI:
   5270 	case SIOCDELMULTI:
   5271 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5272 			if (ifp->if_flags & IFF_RUNNING)
   5273 				ath_mode_init(sc);
   5274 			error = 0;
   5275 		}
   5276 		break;
   5277 	case SIOCGATHSTATS:
   5278 		/* NB: embed these numbers to get a consistent view */
   5279 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5280 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5281 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5282 		ATH_UNLOCK(sc);
   5283 		/*
   5284 		 * NB: Drop the softc lock in case of a page fault;
   5285 		 * we'll accept any potential inconsisentcy in the
   5286 		 * statistics.  The alternative is to copy the data
   5287 		 * to a local structure.
   5288 		 */
   5289 		return copyout(&sc->sc_stats,
   5290 				ifr->ifr_data, sizeof (sc->sc_stats));
   5291 	case SIOCGATHDIAG:
   5292 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5293 		break;
   5294 	default:
   5295 		error = ieee80211_ioctl(ic, cmd, data);
   5296 		if (error != ENETRESET)
   5297 			;
   5298 		else if (IS_RUNNING(ifp) &&
   5299 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5300 			error = ath_init(sc);
   5301 		else
   5302 			error = 0;
   5303 		break;
   5304 	}
   5305 	ATH_UNLOCK(sc);
   5306 	return error;
   5307 #undef IS_RUNNING
   5308 }
   5309 
   5310 #if NBPFILTER > 0
   5311 static void
   5312 ath_bpfattach(struct ath_softc *sc)
   5313 {
   5314 	struct ifnet *ifp = &sc->sc_if;
   5315 
   5316 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
   5317 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5318 		&sc->sc_drvbpf);
   5319 	/*
   5320 	 * Initialize constant fields.
   5321 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5322 	 *     headers are properly aligned; this is a kludge to keep
   5323 	 *     certain applications happy.
   5324 	 *
   5325 	 * NB: the channel is setup each time we transition to the
   5326 	 *     RUN state to avoid filling it in for each frame.
   5327 	 */
   5328 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5329 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5330 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5331 
   5332 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5333 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5334 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5335 }
   5336 #endif
   5337 
   5338 /*
   5339  * Announce various information on device/driver attach.
   5340  */
   5341 static void
   5342 ath_announce(struct ath_softc *sc)
   5343 {
   5344 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5345 	struct ifnet *ifp = &sc->sc_if;
   5346 	struct ath_hal *ah = sc->sc_ah;
   5347 	u_int modes, cc;
   5348 
   5349 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5350 		ah->ah_macVersion, ah->ah_macRev,
   5351 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5352 	/*
   5353 	 * Print radio revision(s).  We check the wireless modes
   5354 	 * to avoid falsely printing revs for inoperable parts.
   5355 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5356 	 */
   5357 	ath_hal_getcountrycode(ah, &cc);
   5358 	modes = ath_hal_getwirelessmodes(ah, cc);
   5359 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5360 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5361 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5362 				ah->ah_analog5GhzRev >> 4,
   5363 				ah->ah_analog5GhzRev & 0xf,
   5364 				ah->ah_analog2GhzRev >> 4,
   5365 				ah->ah_analog2GhzRev & 0xf);
   5366 		else
   5367 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5368 				ah->ah_analog5GhzRev & 0xf);
   5369 	} else
   5370 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5371 			ah->ah_analog5GhzRev & 0xf);
   5372 	printf("\n");
   5373 	if (bootverbose) {
   5374 		int i;
   5375 		for (i = 0; i <= WME_AC_VO; i++) {
   5376 			struct ath_txq *txq = sc->sc_ac2q[i];
   5377 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5378 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5379 		}
   5380 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5381 			sc->sc_cabq->axq_qnum);
   5382 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5383 	}
   5384 	if (ath_rxbuf != ATH_RXBUF)
   5385 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5386 	if (ath_txbuf != ATH_TXBUF)
   5387 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5388 #undef HAL_MODE_DUALBAND
   5389 }
   5390