ath.c revision 1.108 1 /* $NetBSD: ath.c,v 1.108 2010/01/19 22:06:24 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.108 2010/01/19 22:06:24 pooka Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #include <sys/param.h>
57 #include <sys/reboot.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #include <sys/mbuf.h>
62 #include <sys/malloc.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/errno.h>
67 #include <sys/callout.h>
68 #include <sys/bus.h>
69 #include <sys/endian.h>
70
71 #include <net/if.h>
72 #include <net/if_dl.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_arp.h>
76 #include <net/if_ether.h>
77 #include <net/if_llc.h>
78
79 #include <net80211/ieee80211_netbsd.h>
80 #include <net80211/ieee80211_var.h>
81
82 #include <net/bpf.h>
83
84 #ifdef INET
85 #include <netinet/in.h>
86 #endif
87
88 #include <sys/device.h>
89 #include <dev/ic/ath_netbsd.h>
90
91 #define AR_DEBUG
92 #include <dev/ic/athvar.h>
93 #include "ah_desc.h"
94 #include "ah_devid.h" /* XXX for softled */
95 #include "opt_ah.h"
96
97 #ifdef ATH_TX99_DIAG
98 #include <dev/ath/ath_tx99/ath_tx99.h>
99 #endif
100
101 /* unaligned little endian access */
102 #define LE_READ_2(p) \
103 ((u_int16_t) \
104 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
105 #define LE_READ_4(p) \
106 ((u_int32_t) \
107 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
108 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
109
110 enum {
111 ATH_LED_TX,
112 ATH_LED_RX,
113 ATH_LED_POLL,
114 };
115
116 #ifdef AH_NEED_DESC_SWAP
117 #define HTOAH32(x) htole32(x)
118 #else
119 #define HTOAH32(x) (x)
120 #endif
121
122 static int ath_ifinit(struct ifnet *);
123 static int ath_init(struct ath_softc *);
124 static void ath_stop_locked(struct ifnet *, int);
125 static void ath_stop(struct ifnet *, int);
126 static void ath_start(struct ifnet *);
127 static int ath_media_change(struct ifnet *);
128 static void ath_watchdog(struct ifnet *);
129 static int ath_ioctl(struct ifnet *, u_long, void *);
130 static void ath_fatal_proc(void *, int);
131 static void ath_rxorn_proc(void *, int);
132 static void ath_bmiss_proc(void *, int);
133 static void ath_radar_proc(void *, int);
134 static int ath_key_alloc(struct ieee80211com *,
135 const struct ieee80211_key *,
136 ieee80211_keyix *, ieee80211_keyix *);
137 static int ath_key_delete(struct ieee80211com *,
138 const struct ieee80211_key *);
139 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
140 const u_int8_t mac[IEEE80211_ADDR_LEN]);
141 static void ath_key_update_begin(struct ieee80211com *);
142 static void ath_key_update_end(struct ieee80211com *);
143 static void ath_mode_init(struct ath_softc *);
144 static void ath_setslottime(struct ath_softc *);
145 static void ath_updateslot(struct ifnet *);
146 static int ath_beaconq_setup(struct ath_hal *);
147 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
148 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
149 static void ath_beacon_proc(void *, int);
150 static void ath_bstuck_proc(void *, int);
151 static void ath_beacon_free(struct ath_softc *);
152 static void ath_beacon_config(struct ath_softc *);
153 static void ath_descdma_cleanup(struct ath_softc *sc,
154 struct ath_descdma *, ath_bufhead *);
155 static int ath_desc_alloc(struct ath_softc *);
156 static void ath_desc_free(struct ath_softc *);
157 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
158 static void ath_node_free(struct ieee80211_node *);
159 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
160 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
161 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
162 struct ieee80211_node *ni,
163 int subtype, int rssi, u_int32_t rstamp);
164 static void ath_setdefantenna(struct ath_softc *, u_int);
165 static void ath_rx_proc(void *, int);
166 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
167 static int ath_tx_setup(struct ath_softc *, int, int);
168 static int ath_wme_update(struct ieee80211com *);
169 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
170 static void ath_tx_cleanup(struct ath_softc *);
171 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
172 struct ath_buf *, struct mbuf *);
173 static void ath_tx_proc_q0(void *, int);
174 static void ath_tx_proc_q0123(void *, int);
175 static void ath_tx_proc(void *, int);
176 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
177 static void ath_draintxq(struct ath_softc *);
178 static void ath_stoprecv(struct ath_softc *);
179 static int ath_startrecv(struct ath_softc *);
180 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
181 static void ath_next_scan(void *);
182 static void ath_calibrate(void *);
183 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
184 static void ath_setup_stationkey(struct ieee80211_node *);
185 static void ath_newassoc(struct ieee80211_node *, int);
186 static int ath_getchannels(struct ath_softc *, u_int cc,
187 HAL_BOOL outdoor, HAL_BOOL xchanmode);
188 static void ath_led_event(struct ath_softc *, int);
189 static void ath_update_txpow(struct ath_softc *);
190 static void ath_freetx(struct mbuf *);
191 static void ath_restore_diversity(struct ath_softc *);
192
193 static int ath_rate_setup(struct ath_softc *, u_int mode);
194 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
195
196 static void ath_bpfattach(struct ath_softc *);
197 static void ath_announce(struct ath_softc *);
198
199 int ath_dwelltime = 200; /* 5 channels/second */
200 int ath_calinterval = 30; /* calibrate every 30 secs */
201 int ath_outdoor = AH_TRUE; /* outdoor operation */
202 int ath_xchanmode = AH_TRUE; /* enable extended channels */
203 int ath_countrycode = CTRY_DEFAULT; /* country code */
204 int ath_regdomain = 0; /* regulatory domain */
205 int ath_debug = 0;
206 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
207 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
208
209 #ifdef AR_DEBUG
210 enum {
211 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
212 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
213 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
214 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
215 ATH_DEBUG_RATE = 0x00000010, /* rate control */
216 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
217 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
218 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
219 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
220 ATH_DEBUG_INTR = 0x00001000, /* ISR */
221 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
222 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
223 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
224 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
225 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
226 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
227 ATH_DEBUG_NODE = 0x00080000, /* node management */
228 ATH_DEBUG_LED = 0x00100000, /* led management */
229 ATH_DEBUG_FF = 0x00200000, /* fast frames */
230 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
231 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
232 ATH_DEBUG_ANY = 0xffffffff
233 };
234 #define IFF_DUMPPKTS(sc, m) \
235 ((sc->sc_debug & (m)) || \
236 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
237 #define DPRINTF(sc, m, fmt, ...) do { \
238 if (sc->sc_debug & (m)) \
239 printf(fmt, __VA_ARGS__); \
240 } while (0)
241 #define KEYPRINTF(sc, ix, hk, mac) do { \
242 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
243 ath_keyprint(__func__, ix, hk, mac); \
244 } while (0)
245 static void ath_printrxbuf(struct ath_buf *bf, int);
246 static void ath_printtxbuf(struct ath_buf *bf, int);
247 #else
248 #define IFF_DUMPPKTS(sc, m) \
249 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
250 #define DPRINTF(m, fmt, ...)
251 #define KEYPRINTF(sc, k, ix, mac)
252 #endif
253
254 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
255
256 int
257 ath_attach(u_int16_t devid, struct ath_softc *sc)
258 {
259 struct ifnet *ifp = &sc->sc_if;
260 struct ieee80211com *ic = &sc->sc_ic;
261 struct ath_hal *ah = NULL;
262 HAL_STATUS status;
263 int error = 0, i;
264
265 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
266
267 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
268
269 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
270
271 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
272 if (ah == NULL) {
273 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
274 status);
275 error = ENXIO;
276 goto bad;
277 }
278 if (ah->ah_abi != HAL_ABI_VERSION) {
279 if_printf(ifp, "HAL ABI mismatch detected "
280 "(HAL:0x%x != driver:0x%x)\n",
281 ah->ah_abi, HAL_ABI_VERSION);
282 error = ENXIO;
283 goto bad;
284 }
285 sc->sc_ah = ah;
286
287 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
288 "pmf-powerdown", false))
289 goto bad;
290
291 /*
292 * Check if the MAC has multi-rate retry support.
293 * We do this by trying to setup a fake extended
294 * descriptor. MAC's that don't have support will
295 * return false w/o doing anything. MAC's that do
296 * support it will return true w/o doing anything.
297 */
298 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
299
300 /*
301 * Check if the device has hardware counters for PHY
302 * errors. If so we need to enable the MIB interrupt
303 * so we can act on stat triggers.
304 */
305 if (ath_hal_hwphycounters(ah))
306 sc->sc_needmib = 1;
307
308 /*
309 * Get the hardware key cache size.
310 */
311 sc->sc_keymax = ath_hal_keycachesize(ah);
312 if (sc->sc_keymax > ATH_KEYMAX) {
313 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
314 ATH_KEYMAX, sc->sc_keymax);
315 sc->sc_keymax = ATH_KEYMAX;
316 }
317 /*
318 * Reset the key cache since some parts do not
319 * reset the contents on initial power up.
320 */
321 for (i = 0; i < sc->sc_keymax; i++)
322 ath_hal_keyreset(ah, i);
323 /*
324 * Mark key cache slots associated with global keys
325 * as in use. If we knew TKIP was not to be used we
326 * could leave the +32, +64, and +32+64 slots free.
327 * XXX only for splitmic.
328 */
329 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
330 setbit(sc->sc_keymap, i);
331 setbit(sc->sc_keymap, i+32);
332 setbit(sc->sc_keymap, i+64);
333 setbit(sc->sc_keymap, i+32+64);
334 }
335
336 /*
337 * Collect the channel list using the default country
338 * code and including outdoor channels. The 802.11 layer
339 * is resposible for filtering this list based on settings
340 * like the phy mode.
341 */
342 error = ath_getchannels(sc, ath_countrycode,
343 ath_outdoor, ath_xchanmode);
344 if (error != 0)
345 goto bad;
346
347 /*
348 * Setup rate tables for all potential media types.
349 */
350 ath_rate_setup(sc, IEEE80211_MODE_11A);
351 ath_rate_setup(sc, IEEE80211_MODE_11B);
352 ath_rate_setup(sc, IEEE80211_MODE_11G);
353 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
354 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
355 /* NB: setup here so ath_rate_update is happy */
356 ath_setcurmode(sc, IEEE80211_MODE_11A);
357
358 /*
359 * Allocate tx+rx descriptors and populate the lists.
360 */
361 error = ath_desc_alloc(sc);
362 if (error != 0) {
363 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
364 goto bad;
365 }
366 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
367 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
368 #if 0
369 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
370 #endif
371
372 ATH_TXBUF_LOCK_INIT(sc);
373
374 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
375 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
376 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
377 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
378 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
379 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
380
381 /*
382 * Allocate hardware transmit queues: one queue for
383 * beacon frames and one data queue for each QoS
384 * priority. Note that the hal handles reseting
385 * these queues at the needed time.
386 *
387 * XXX PS-Poll
388 */
389 sc->sc_bhalq = ath_beaconq_setup(ah);
390 if (sc->sc_bhalq == (u_int) -1) {
391 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
392 error = EIO;
393 goto bad2;
394 }
395 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
396 if (sc->sc_cabq == NULL) {
397 if_printf(ifp, "unable to setup CAB xmit queue!\n");
398 error = EIO;
399 goto bad2;
400 }
401 /* NB: insure BK queue is the lowest priority h/w queue */
402 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
403 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
404 ieee80211_wme_acnames[WME_AC_BK]);
405 error = EIO;
406 goto bad2;
407 }
408 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
409 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
410 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
411 /*
412 * Not enough hardware tx queues to properly do WME;
413 * just punt and assign them all to the same h/w queue.
414 * We could do a better job of this if, for example,
415 * we allocate queues when we switch from station to
416 * AP mode.
417 */
418 if (sc->sc_ac2q[WME_AC_VI] != NULL)
419 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
420 if (sc->sc_ac2q[WME_AC_BE] != NULL)
421 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
422 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
423 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
424 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
425 }
426
427 /*
428 * Special case certain configurations. Note the
429 * CAB queue is handled by these specially so don't
430 * include them when checking the txq setup mask.
431 */
432 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
433 case 0x01:
434 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
435 break;
436 case 0x0f:
437 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
438 break;
439 default:
440 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
441 break;
442 }
443
444 /*
445 * Setup rate control. Some rate control modules
446 * call back to change the anntena state so expose
447 * the necessary entry points.
448 * XXX maybe belongs in struct ath_ratectrl?
449 */
450 sc->sc_setdefantenna = ath_setdefantenna;
451 sc->sc_rc = ath_rate_attach(sc);
452 if (sc->sc_rc == NULL) {
453 error = EIO;
454 goto bad2;
455 }
456
457 sc->sc_blinking = 0;
458 sc->sc_ledstate = 1;
459 sc->sc_ledon = 0; /* low true */
460 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
461 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
462 /*
463 * Auto-enable soft led processing for IBM cards and for
464 * 5211 minipci cards. Users can also manually enable/disable
465 * support with a sysctl.
466 */
467 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
468 if (sc->sc_softled) {
469 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
470 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
471 }
472
473 ifp->if_softc = sc;
474 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
475 ifp->if_start = ath_start;
476 ifp->if_stop = ath_stop;
477 ifp->if_watchdog = ath_watchdog;
478 ifp->if_ioctl = ath_ioctl;
479 ifp->if_init = ath_ifinit;
480 IFQ_SET_READY(&ifp->if_snd);
481
482 ic->ic_ifp = ifp;
483 ic->ic_reset = ath_reset;
484 ic->ic_newassoc = ath_newassoc;
485 ic->ic_updateslot = ath_updateslot;
486 ic->ic_wme.wme_update = ath_wme_update;
487 /* XXX not right but it's not used anywhere important */
488 ic->ic_phytype = IEEE80211_T_OFDM;
489 ic->ic_opmode = IEEE80211_M_STA;
490 ic->ic_caps =
491 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
492 | IEEE80211_C_HOSTAP /* hostap mode */
493 | IEEE80211_C_MONITOR /* monitor mode */
494 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
495 | IEEE80211_C_SHSLOT /* short slot time supported */
496 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
497 | IEEE80211_C_TXFRAG /* handle tx frags */
498 ;
499 /*
500 * Query the hal to figure out h/w crypto support.
501 */
502 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
503 ic->ic_caps |= IEEE80211_C_WEP;
504 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
505 ic->ic_caps |= IEEE80211_C_AES;
506 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
507 ic->ic_caps |= IEEE80211_C_AES_CCM;
508 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
509 ic->ic_caps |= IEEE80211_C_CKIP;
510 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
511 ic->ic_caps |= IEEE80211_C_TKIP;
512 /*
513 * Check if h/w does the MIC and/or whether the
514 * separate key cache entries are required to
515 * handle both tx+rx MIC keys.
516 */
517 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
518 ic->ic_caps |= IEEE80211_C_TKIPMIC;
519
520 /*
521 * If the h/w supports storing tx+rx MIC keys
522 * in one cache slot automatically enable use.
523 */
524 if (ath_hal_hastkipsplit(ah) ||
525 !ath_hal_settkipsplit(ah, AH_FALSE))
526 sc->sc_splitmic = 1;
527
528 /*
529 * If the h/w can do TKIP MIC together with WME then
530 * we use it; otherwise we force the MIC to be done
531 * in software by the net80211 layer.
532 */
533 if (ath_hal_haswmetkipmic(ah))
534 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
535 }
536 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
537 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
538 /*
539 * Mark key cache slots associated with global keys
540 * as in use. If we knew TKIP was not to be used we
541 * could leave the +32, +64, and +32+64 slots free.
542 */
543 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
544 setbit(sc->sc_keymap, i);
545 setbit(sc->sc_keymap, i+64);
546 if (sc->sc_splitmic) {
547 setbit(sc->sc_keymap, i+32);
548 setbit(sc->sc_keymap, i+32+64);
549 }
550 }
551 /*
552 * TPC support can be done either with a global cap or
553 * per-packet support. The latter is not available on
554 * all parts. We're a bit pedantic here as all parts
555 * support a global cap.
556 */
557 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
558 ic->ic_caps |= IEEE80211_C_TXPMGT;
559
560 /*
561 * Mark WME capability only if we have sufficient
562 * hardware queues to do proper priority scheduling.
563 */
564 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
565 ic->ic_caps |= IEEE80211_C_WME;
566 /*
567 * Check for misc other capabilities.
568 */
569 if (ath_hal_hasbursting(ah))
570 ic->ic_caps |= IEEE80211_C_BURST;
571
572 /*
573 * Indicate we need the 802.11 header padded to a
574 * 32-bit boundary for 4-address and QoS frames.
575 */
576 ic->ic_flags |= IEEE80211_F_DATAPAD;
577
578 /*
579 * Query the hal about antenna support.
580 */
581 sc->sc_defant = ath_hal_getdefantenna(ah);
582
583 /*
584 * Not all chips have the VEOL support we want to
585 * use with IBSS beacons; check here for it.
586 */
587 sc->sc_hasveol = ath_hal_hasveol(ah);
588
589 /* get mac address from hardware */
590 ath_hal_getmac(ah, ic->ic_myaddr);
591
592 if_attach(ifp);
593 /* call MI attach routine. */
594 ieee80211_ifattach(ic);
595 /* override default methods */
596 ic->ic_node_alloc = ath_node_alloc;
597 sc->sc_node_free = ic->ic_node_free;
598 ic->ic_node_free = ath_node_free;
599 ic->ic_node_getrssi = ath_node_getrssi;
600 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
601 ic->ic_recv_mgmt = ath_recv_mgmt;
602 sc->sc_newstate = ic->ic_newstate;
603 ic->ic_newstate = ath_newstate;
604 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
605 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
606 ic->ic_crypto.cs_key_delete = ath_key_delete;
607 ic->ic_crypto.cs_key_set = ath_key_set;
608 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
609 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
610 /* complete initialization */
611 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
612
613 ath_bpfattach(sc);
614
615 sc->sc_flags |= ATH_ATTACHED;
616
617 /*
618 * Setup dynamic sysctl's now that country code and
619 * regdomain are available from the hal.
620 */
621 ath_sysctlattach(sc);
622
623 ieee80211_announce(ic);
624 ath_announce(sc);
625 return 0;
626 bad2:
627 ath_tx_cleanup(sc);
628 ath_desc_free(sc);
629 bad:
630 if (ah)
631 ath_hal_detach(ah);
632 /* XXX don't get under the abstraction like this */
633 sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
634 return error;
635 }
636
637 int
638 ath_detach(struct ath_softc *sc)
639 {
640 struct ifnet *ifp = &sc->sc_if;
641 int s;
642
643 if ((sc->sc_flags & ATH_ATTACHED) == 0)
644 return (0);
645
646 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
647 __func__, ifp->if_flags);
648
649 s = splnet();
650 ath_stop(ifp, 1);
651 bpf_ops->bpf_detach(ifp);
652 /*
653 * NB: the order of these is important:
654 * o call the 802.11 layer before detaching the hal to
655 * insure callbacks into the driver to delete global
656 * key cache entries can be handled
657 * o reclaim the tx queue data structures after calling
658 * the 802.11 layer as we'll get called back to reclaim
659 * node state and potentially want to use them
660 * o to cleanup the tx queues the hal is called, so detach
661 * it last
662 * Other than that, it's straightforward...
663 */
664 ieee80211_ifdetach(&sc->sc_ic);
665 #ifdef ATH_TX99_DIAG
666 if (sc->sc_tx99 != NULL)
667 sc->sc_tx99->detach(sc->sc_tx99);
668 #endif
669 ath_rate_detach(sc->sc_rc);
670 ath_desc_free(sc);
671 ath_tx_cleanup(sc);
672 sysctl_teardown(&sc->sc_sysctllog);
673 ath_hal_detach(sc->sc_ah);
674 if_detach(ifp);
675 splx(s);
676
677 return 0;
678 }
679
680 void
681 ath_suspend(struct ath_softc *sc)
682 {
683 #if notyet
684 /*
685 * Set the chip in full sleep mode. Note that we are
686 * careful to do this only when bringing the interface
687 * completely to a stop. When the chip is in this state
688 * it must be carefully woken up or references to
689 * registers in the PCI clock domain may freeze the bus
690 * (and system). This varies by chip and is mostly an
691 * issue with newer parts that go to sleep more quickly.
692 */
693 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
694 #endif
695 }
696
697 bool
698 ath_resume(struct ath_softc *sc)
699 {
700 struct ath_hal *ah = sc->sc_ah;
701 struct ieee80211com *ic = &sc->sc_ic;
702 HAL_STATUS status;
703 int i;
704
705 #if notyet
706 ath_hal_setpower(ah, HAL_PM_AWAKE);
707 #else
708 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
709 #endif
710
711 /*
712 * Reset the key cache since some parts do not
713 * reset the contents on initial power up.
714 */
715 for (i = 0; i < sc->sc_keymax; i++)
716 ath_hal_keyreset(ah, i);
717
718 ath_hal_resettxqueue(ah, sc->sc_bhalq);
719 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
720 if (ATH_TXQ_SETUP(sc, i))
721 ath_hal_resettxqueue(ah, i);
722
723 if (sc->sc_softled) {
724 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
725 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
726 }
727 return true;
728 }
729
730 /*
731 * Interrupt handler. Most of the actual processing is deferred.
732 */
733 int
734 ath_intr(void *arg)
735 {
736 struct ath_softc *sc = arg;
737 struct ifnet *ifp = &sc->sc_if;
738 struct ath_hal *ah = sc->sc_ah;
739 HAL_INT status;
740
741 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
742 /*
743 * The hardware is not ready/present, don't touch anything.
744 * Note this can happen early on if the IRQ is shared.
745 */
746 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
747 return 0;
748 }
749
750 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
751 return 0;
752
753 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
754 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
755 __func__, ifp->if_flags);
756 ath_hal_getisr(ah, &status); /* clear ISR */
757 ath_hal_intrset(ah, 0); /* disable further intr's */
758 return 1; /* XXX */
759 }
760 /*
761 * Figure out the reason(s) for the interrupt. Note
762 * that the hal returns a pseudo-ISR that may include
763 * bits we haven't explicitly enabled so we mask the
764 * value to insure we only process bits we requested.
765 */
766 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
767 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
768 status &= sc->sc_imask; /* discard unasked for bits */
769 if (status & HAL_INT_FATAL) {
770 /*
771 * Fatal errors are unrecoverable. Typically
772 * these are caused by DMA errors. Unfortunately
773 * the exact reason is not (presently) returned
774 * by the hal.
775 */
776 sc->sc_stats.ast_hardware++;
777 ath_hal_intrset(ah, 0); /* disable intr's until reset */
778 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
779 } else if (status & HAL_INT_RXORN) {
780 sc->sc_stats.ast_rxorn++;
781 ath_hal_intrset(ah, 0); /* disable intr's until reset */
782 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
783 } else {
784 if (status & HAL_INT_SWBA) {
785 /*
786 * Software beacon alert--time to send a beacon.
787 * Handle beacon transmission directly; deferring
788 * this is too slow to meet timing constraints
789 * under load.
790 */
791 ath_beacon_proc(sc, 0);
792 }
793 if (status & HAL_INT_RXEOL) {
794 /*
795 * NB: the hardware should re-read the link when
796 * RXE bit is written, but it doesn't work at
797 * least on older hardware revs.
798 */
799 sc->sc_stats.ast_rxeol++;
800 sc->sc_rxlink = NULL;
801 }
802 if (status & HAL_INT_TXURN) {
803 sc->sc_stats.ast_txurn++;
804 /* bump tx trigger level */
805 ath_hal_updatetxtriglevel(ah, AH_TRUE);
806 }
807 if (status & HAL_INT_RX)
808 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
809 if (status & HAL_INT_TX)
810 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
811 if (status & HAL_INT_BMISS) {
812 sc->sc_stats.ast_bmiss++;
813 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
814 }
815 if (status & HAL_INT_MIB) {
816 sc->sc_stats.ast_mib++;
817 /*
818 * Disable interrupts until we service the MIB
819 * interrupt; otherwise it will continue to fire.
820 */
821 ath_hal_intrset(ah, 0);
822 /*
823 * Let the hal handle the event. We assume it will
824 * clear whatever condition caused the interrupt.
825 */
826 ath_hal_mibevent(ah, &sc->sc_halstats);
827 ath_hal_intrset(ah, sc->sc_imask);
828 }
829 }
830 return 1;
831 }
832
833 /* Swap transmit descriptor.
834 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
835 * function.
836 */
837 static inline void
838 ath_desc_swap(struct ath_desc *ds)
839 {
840 #ifdef AH_NEED_DESC_SWAP
841 ds->ds_link = htole32(ds->ds_link);
842 ds->ds_data = htole32(ds->ds_data);
843 ds->ds_ctl0 = htole32(ds->ds_ctl0);
844 ds->ds_ctl1 = htole32(ds->ds_ctl1);
845 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
846 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
847 #endif
848 }
849
850 static void
851 ath_fatal_proc(void *arg, int pending)
852 {
853 struct ath_softc *sc = arg;
854 struct ifnet *ifp = &sc->sc_if;
855
856 if_printf(ifp, "hardware error; resetting\n");
857 ath_reset(ifp);
858 }
859
860 static void
861 ath_rxorn_proc(void *arg, int pending)
862 {
863 struct ath_softc *sc = arg;
864 struct ifnet *ifp = &sc->sc_if;
865
866 if_printf(ifp, "rx FIFO overrun; resetting\n");
867 ath_reset(ifp);
868 }
869
870 static void
871 ath_bmiss_proc(void *arg, int pending)
872 {
873 struct ath_softc *sc = arg;
874 struct ieee80211com *ic = &sc->sc_ic;
875
876 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
877 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
878 ("unexpect operating mode %u", ic->ic_opmode));
879 if (ic->ic_state == IEEE80211_S_RUN) {
880 u_int64_t lastrx = sc->sc_lastrx;
881 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
882
883 DPRINTF(sc, ATH_DEBUG_BEACON,
884 "%s: tsf %" PRIu64 " lastrx %" PRId64
885 " (%" PRIu64 ") bmiss %u\n",
886 __func__, tsf, tsf - lastrx, lastrx,
887 ic->ic_bmisstimeout*1024);
888 /*
889 * Workaround phantom bmiss interrupts by sanity-checking
890 * the time of our last rx'd frame. If it is within the
891 * beacon miss interval then ignore the interrupt. If it's
892 * truly a bmiss we'll get another interrupt soon and that'll
893 * be dispatched up for processing.
894 */
895 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
896 NET_LOCK_GIANT();
897 ieee80211_beacon_miss(ic);
898 NET_UNLOCK_GIANT();
899 } else
900 sc->sc_stats.ast_bmiss_phantom++;
901 }
902 }
903
904 static void
905 ath_radar_proc(void *arg, int pending)
906 {
907 #if 0
908 struct ath_softc *sc = arg;
909 struct ifnet *ifp = &sc->sc_if;
910 struct ath_hal *ah = sc->sc_ah;
911 HAL_CHANNEL hchan;
912
913 if (ath_hal_procdfs(ah, &hchan)) {
914 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
915 hchan.channel, hchan.channelFlags, hchan.privFlags);
916 /*
917 * Initiate channel change.
918 */
919 /* XXX not yet */
920 }
921 #endif
922 }
923
924 static u_int
925 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
926 {
927 #define N(a) (sizeof(a) / sizeof(a[0]))
928 static const u_int modeflags[] = {
929 0, /* IEEE80211_MODE_AUTO */
930 CHANNEL_A, /* IEEE80211_MODE_11A */
931 CHANNEL_B, /* IEEE80211_MODE_11B */
932 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
933 0, /* IEEE80211_MODE_FH */
934 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
935 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
936 };
937 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
938
939 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
940 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
941 return modeflags[mode];
942 #undef N
943 }
944
945 static int
946 ath_ifinit(struct ifnet *ifp)
947 {
948 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
949
950 return ath_init(sc);
951 }
952
953 static void
954 ath_settkipmic(struct ath_softc *sc)
955 {
956 struct ieee80211com *ic = &sc->sc_ic;
957 struct ath_hal *ah = sc->sc_ah;
958
959 if ((ic->ic_caps & IEEE80211_C_TKIP) &&
960 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
961 if (ic->ic_flags & IEEE80211_F_WME) {
962 (void)ath_hal_settkipmic(ah, AH_FALSE);
963 ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
964 } else {
965 (void)ath_hal_settkipmic(ah, AH_TRUE);
966 ic->ic_caps |= IEEE80211_C_TKIPMIC;
967 }
968 }
969 }
970
971 static int
972 ath_init(struct ath_softc *sc)
973 {
974 struct ifnet *ifp = &sc->sc_if;
975 struct ieee80211com *ic = &sc->sc_ic;
976 struct ath_hal *ah = sc->sc_ah;
977 HAL_STATUS status;
978 int error = 0;
979
980 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
981 __func__, ifp->if_flags);
982
983 if (device_is_active(sc->sc_dev)) {
984 ATH_LOCK(sc);
985 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
986 !device_is_active(sc->sc_dev))
987 return 0;
988 else
989 ATH_LOCK(sc);
990
991 /*
992 * Stop anything previously setup. This is safe
993 * whether this is the first time through or not.
994 */
995 ath_stop_locked(ifp, 0);
996
997 /*
998 * The basic interface to setting the hardware in a good
999 * state is ``reset''. On return the hardware is known to
1000 * be powered up and with interrupts disabled. This must
1001 * be followed by initialization of the appropriate bits
1002 * and then setup of the interrupt mask.
1003 */
1004 ath_settkipmic(sc);
1005 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1006 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1007 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1008 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1009 status);
1010 error = EIO;
1011 goto done;
1012 }
1013
1014 /*
1015 * This is needed only to setup initial state
1016 * but it's best done after a reset.
1017 */
1018 ath_update_txpow(sc);
1019 /*
1020 * Likewise this is set during reset so update
1021 * state cached in the driver.
1022 */
1023 ath_restore_diversity(sc);
1024 sc->sc_calinterval = 1;
1025 sc->sc_caltries = 0;
1026
1027 /*
1028 * Setup the hardware after reset: the key cache
1029 * is filled as needed and the receive engine is
1030 * set going. Frame transmit is handled entirely
1031 * in the frame output path; there's nothing to do
1032 * here except setup the interrupt mask.
1033 */
1034 if ((error = ath_startrecv(sc)) != 0) {
1035 if_printf(ifp, "unable to start recv logic\n");
1036 goto done;
1037 }
1038
1039 /*
1040 * Enable interrupts.
1041 */
1042 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1043 | HAL_INT_RXEOL | HAL_INT_RXORN
1044 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1045 /*
1046 * Enable MIB interrupts when there are hardware phy counters.
1047 * Note we only do this (at the moment) for station mode.
1048 */
1049 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1050 sc->sc_imask |= HAL_INT_MIB;
1051 ath_hal_intrset(ah, sc->sc_imask);
1052
1053 ifp->if_flags |= IFF_RUNNING;
1054 ic->ic_state = IEEE80211_S_INIT;
1055
1056 /*
1057 * The hardware should be ready to go now so it's safe
1058 * to kick the 802.11 state machine as it's likely to
1059 * immediately call back to us to send mgmt frames.
1060 */
1061 ath_chan_change(sc, ic->ic_curchan);
1062 #ifdef ATH_TX99_DIAG
1063 if (sc->sc_tx99 != NULL)
1064 sc->sc_tx99->start(sc->sc_tx99);
1065 else
1066 #endif
1067 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1068 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1069 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1070 } else
1071 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1072 done:
1073 ATH_UNLOCK(sc);
1074 return error;
1075 }
1076
1077 static void
1078 ath_stop_locked(struct ifnet *ifp, int disable)
1079 {
1080 struct ath_softc *sc = ifp->if_softc;
1081 struct ieee80211com *ic = &sc->sc_ic;
1082 struct ath_hal *ah = sc->sc_ah;
1083
1084 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1085 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1086
1087 ATH_LOCK_ASSERT(sc);
1088 if (ifp->if_flags & IFF_RUNNING) {
1089 /*
1090 * Shutdown the hardware and driver:
1091 * reset 802.11 state machine
1092 * turn off timers
1093 * disable interrupts
1094 * turn off the radio
1095 * clear transmit machinery
1096 * clear receive machinery
1097 * drain and release tx queues
1098 * reclaim beacon resources
1099 * power down hardware
1100 *
1101 * Note that some of this work is not possible if the
1102 * hardware is gone (invalid).
1103 */
1104 #ifdef ATH_TX99_DIAG
1105 if (sc->sc_tx99 != NULL)
1106 sc->sc_tx99->stop(sc->sc_tx99);
1107 #endif
1108 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1109 ifp->if_flags &= ~IFF_RUNNING;
1110 ifp->if_timer = 0;
1111 if (device_is_enabled(sc->sc_dev)) {
1112 if (sc->sc_softled) {
1113 callout_stop(&sc->sc_ledtimer);
1114 ath_hal_gpioset(ah, sc->sc_ledpin,
1115 !sc->sc_ledon);
1116 sc->sc_blinking = 0;
1117 }
1118 ath_hal_intrset(ah, 0);
1119 }
1120 ath_draintxq(sc);
1121 if (device_is_enabled(sc->sc_dev)) {
1122 ath_stoprecv(sc);
1123 ath_hal_phydisable(ah);
1124 } else
1125 sc->sc_rxlink = NULL;
1126 IF_PURGE(&ifp->if_snd);
1127 ath_beacon_free(sc);
1128 }
1129 if (disable)
1130 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1131 }
1132
1133 static void
1134 ath_stop(struct ifnet *ifp, int disable)
1135 {
1136 struct ath_softc *sc = ifp->if_softc;
1137
1138 ATH_LOCK(sc);
1139 ath_stop_locked(ifp, disable);
1140 ATH_UNLOCK(sc);
1141 }
1142
1143 static void
1144 ath_restore_diversity(struct ath_softc *sc)
1145 {
1146 struct ifnet *ifp = &sc->sc_if;
1147 struct ath_hal *ah = sc->sc_ah;
1148
1149 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1150 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1151 if_printf(ifp, "could not restore diversity setting %d\n",
1152 sc->sc_diversity);
1153 sc->sc_diversity = ath_hal_getdiversity(ah);
1154 }
1155 }
1156
1157 /*
1158 * Reset the hardware w/o losing operational state. This is
1159 * basically a more efficient way of doing ath_stop, ath_init,
1160 * followed by state transitions to the current 802.11
1161 * operational state. Used to recover from various errors and
1162 * to reset or reload hardware state.
1163 */
1164 int
1165 ath_reset(struct ifnet *ifp)
1166 {
1167 struct ath_softc *sc = ifp->if_softc;
1168 struct ieee80211com *ic = &sc->sc_ic;
1169 struct ath_hal *ah = sc->sc_ah;
1170 struct ieee80211_channel *c;
1171 HAL_STATUS status;
1172
1173 /*
1174 * Convert to a HAL channel description with the flags
1175 * constrained to reflect the current operating mode.
1176 */
1177 c = ic->ic_curchan;
1178 sc->sc_curchan.channel = c->ic_freq;
1179 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1180
1181 ath_hal_intrset(ah, 0); /* disable interrupts */
1182 ath_draintxq(sc); /* stop xmit side */
1183 ath_stoprecv(sc); /* stop recv side */
1184 ath_settkipmic(sc); /* configure TKIP MIC handling */
1185 /* NB: indicate channel change so we do a full reset */
1186 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1187 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1188 __func__, status);
1189 ath_update_txpow(sc); /* update tx power state */
1190 ath_restore_diversity(sc);
1191 sc->sc_calinterval = 1;
1192 sc->sc_caltries = 0;
1193 if (ath_startrecv(sc) != 0) /* restart recv */
1194 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1195 /*
1196 * We may be doing a reset in response to an ioctl
1197 * that changes the channel so update any state that
1198 * might change as a result.
1199 */
1200 ath_chan_change(sc, c);
1201 if (ic->ic_state == IEEE80211_S_RUN)
1202 ath_beacon_config(sc); /* restart beacons */
1203 ath_hal_intrset(ah, sc->sc_imask);
1204
1205 ath_start(ifp); /* restart xmit */
1206 return 0;
1207 }
1208
1209 /*
1210 * Cleanup driver resources when we run out of buffers
1211 * while processing fragments; return the tx buffers
1212 * allocated and drop node references.
1213 */
1214 static void
1215 ath_txfrag_cleanup(struct ath_softc *sc,
1216 ath_bufhead *frags, struct ieee80211_node *ni)
1217 {
1218 struct ath_buf *bf;
1219
1220 ATH_TXBUF_LOCK_ASSERT(sc);
1221
1222 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1223 STAILQ_REMOVE_HEAD(frags, bf_list);
1224 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1225 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1226 ieee80211_node_decref(ni);
1227 }
1228 }
1229
1230 /*
1231 * Setup xmit of a fragmented frame. Allocate a buffer
1232 * for each frag and bump the node reference count to
1233 * reflect the held reference to be setup by ath_tx_start.
1234 */
1235 static int
1236 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1237 struct mbuf *m0, struct ieee80211_node *ni)
1238 {
1239 struct mbuf *m;
1240 struct ath_buf *bf;
1241
1242 ATH_TXBUF_LOCK(sc);
1243 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1244 bf = STAILQ_FIRST(&sc->sc_txbuf);
1245 if (bf == NULL) { /* out of buffers, cleanup */
1246 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1247 __func__);
1248 sc->sc_if.if_flags |= IFF_OACTIVE;
1249 ath_txfrag_cleanup(sc, frags, ni);
1250 break;
1251 }
1252 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1253 ieee80211_node_incref(ni);
1254 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1255 }
1256 ATH_TXBUF_UNLOCK(sc);
1257
1258 return !STAILQ_EMPTY(frags);
1259 }
1260
1261 static void
1262 ath_start(struct ifnet *ifp)
1263 {
1264 struct ath_softc *sc = ifp->if_softc;
1265 struct ath_hal *ah = sc->sc_ah;
1266 struct ieee80211com *ic = &sc->sc_ic;
1267 struct ieee80211_node *ni;
1268 struct ath_buf *bf;
1269 struct mbuf *m, *next;
1270 struct ieee80211_frame *wh;
1271 struct ether_header *eh;
1272 ath_bufhead frags;
1273
1274 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1275 !device_is_active(sc->sc_dev))
1276 return;
1277 for (;;) {
1278 /*
1279 * Grab a TX buffer and associated resources.
1280 */
1281 ATH_TXBUF_LOCK(sc);
1282 bf = STAILQ_FIRST(&sc->sc_txbuf);
1283 if (bf != NULL)
1284 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1285 ATH_TXBUF_UNLOCK(sc);
1286 if (bf == NULL) {
1287 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1288 __func__);
1289 sc->sc_stats.ast_tx_qstop++;
1290 ifp->if_flags |= IFF_OACTIVE;
1291 break;
1292 }
1293 /*
1294 * Poll the management queue for frames; they
1295 * have priority over normal data frames.
1296 */
1297 IF_DEQUEUE(&ic->ic_mgtq, m);
1298 if (m == NULL) {
1299 /*
1300 * No data frames go out unless we're associated.
1301 */
1302 if (ic->ic_state != IEEE80211_S_RUN) {
1303 DPRINTF(sc, ATH_DEBUG_XMIT,
1304 "%s: discard data packet, state %s\n",
1305 __func__,
1306 ieee80211_state_name[ic->ic_state]);
1307 sc->sc_stats.ast_tx_discard++;
1308 ATH_TXBUF_LOCK(sc);
1309 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1310 ATH_TXBUF_UNLOCK(sc);
1311 break;
1312 }
1313 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1314 if (m == NULL) {
1315 ATH_TXBUF_LOCK(sc);
1316 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1317 ATH_TXBUF_UNLOCK(sc);
1318 break;
1319 }
1320 STAILQ_INIT(&frags);
1321 /*
1322 * Find the node for the destination so we can do
1323 * things like power save and fast frames aggregation.
1324 */
1325 if (m->m_len < sizeof(struct ether_header) &&
1326 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1327 ic->ic_stats.is_tx_nobuf++; /* XXX */
1328 ni = NULL;
1329 goto bad;
1330 }
1331 eh = mtod(m, struct ether_header *);
1332 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1333 if (ni == NULL) {
1334 /* NB: ieee80211_find_txnode does stat+msg */
1335 m_freem(m);
1336 goto bad;
1337 }
1338 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1339 (m->m_flags & M_PWR_SAV) == 0) {
1340 /*
1341 * Station in power save mode; pass the frame
1342 * to the 802.11 layer and continue. We'll get
1343 * the frame back when the time is right.
1344 */
1345 ieee80211_pwrsave(ic, ni, m);
1346 goto reclaim;
1347 }
1348 /* calculate priority so we can find the tx queue */
1349 if (ieee80211_classify(ic, m, ni)) {
1350 DPRINTF(sc, ATH_DEBUG_XMIT,
1351 "%s: discard, classification failure\n",
1352 __func__);
1353 m_freem(m);
1354 goto bad;
1355 }
1356 ifp->if_opackets++;
1357
1358 if (ifp->if_bpf)
1359 bpf_ops->bpf_mtap(ifp->if_bpf, m);
1360 /*
1361 * Encapsulate the packet in prep for transmission.
1362 */
1363 m = ieee80211_encap(ic, m, ni);
1364 if (m == NULL) {
1365 DPRINTF(sc, ATH_DEBUG_XMIT,
1366 "%s: encapsulation failure\n",
1367 __func__);
1368 sc->sc_stats.ast_tx_encap++;
1369 goto bad;
1370 }
1371 /*
1372 * Check for fragmentation. If this has frame
1373 * has been broken up verify we have enough
1374 * buffers to send all the fragments so all
1375 * go out or none...
1376 */
1377 if ((m->m_flags & M_FRAG) &&
1378 !ath_txfrag_setup(sc, &frags, m, ni)) {
1379 DPRINTF(sc, ATH_DEBUG_ANY,
1380 "%s: out of txfrag buffers\n", __func__);
1381 ic->ic_stats.is_tx_nobuf++; /* XXX */
1382 ath_freetx(m);
1383 goto bad;
1384 }
1385 } else {
1386 /*
1387 * Hack! The referenced node pointer is in the
1388 * rcvif field of the packet header. This is
1389 * placed there by ieee80211_mgmt_output because
1390 * we need to hold the reference with the frame
1391 * and there's no other way (other than packet
1392 * tags which we consider too expensive to use)
1393 * to pass it along.
1394 */
1395 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1396 m->m_pkthdr.rcvif = NULL;
1397
1398 wh = mtod(m, struct ieee80211_frame *);
1399 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1400 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1401 /* fill time stamp */
1402 u_int64_t tsf;
1403 u_int32_t *tstamp;
1404
1405 tsf = ath_hal_gettsf64(ah);
1406 /* XXX: adjust 100us delay to xmit */
1407 tsf += 100;
1408 tstamp = (u_int32_t *)&wh[1];
1409 tstamp[0] = htole32(tsf & 0xffffffff);
1410 tstamp[1] = htole32(tsf >> 32);
1411 }
1412 sc->sc_stats.ast_tx_mgmt++;
1413 }
1414
1415 nextfrag:
1416 next = m->m_nextpkt;
1417 if (ath_tx_start(sc, ni, bf, m)) {
1418 bad:
1419 ifp->if_oerrors++;
1420 reclaim:
1421 ATH_TXBUF_LOCK(sc);
1422 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1423 ath_txfrag_cleanup(sc, &frags, ni);
1424 ATH_TXBUF_UNLOCK(sc);
1425 if (ni != NULL)
1426 ieee80211_free_node(ni);
1427 continue;
1428 }
1429 if (next != NULL) {
1430 m = next;
1431 bf = STAILQ_FIRST(&frags);
1432 KASSERT(bf != NULL, ("no buf for txfrag"));
1433 STAILQ_REMOVE_HEAD(&frags, bf_list);
1434 goto nextfrag;
1435 }
1436
1437 ifp->if_timer = 1;
1438 }
1439 }
1440
1441 static int
1442 ath_media_change(struct ifnet *ifp)
1443 {
1444 #define IS_UP(ifp) \
1445 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1446 int error;
1447
1448 error = ieee80211_media_change(ifp);
1449 if (error == ENETRESET) {
1450 if (IS_UP(ifp))
1451 ath_init(ifp->if_softc); /* XXX lose error */
1452 error = 0;
1453 }
1454 return error;
1455 #undef IS_UP
1456 }
1457
1458 #ifdef AR_DEBUG
1459 static void
1460 ath_keyprint(const char *tag, u_int ix,
1461 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1462 {
1463 static const char *ciphers[] = {
1464 "WEP",
1465 "AES-OCB",
1466 "AES-CCM",
1467 "CKIP",
1468 "TKIP",
1469 "CLR",
1470 };
1471 int i, n;
1472
1473 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1474 for (i = 0, n = hk->kv_len; i < n; i++)
1475 printf("%02x", hk->kv_val[i]);
1476 printf(" mac %s", ether_sprintf(mac));
1477 if (hk->kv_type == HAL_CIPHER_TKIP) {
1478 printf(" mic ");
1479 for (i = 0; i < sizeof(hk->kv_mic); i++)
1480 printf("%02x", hk->kv_mic[i]);
1481 }
1482 printf("\n");
1483 }
1484 #endif
1485
1486 /*
1487 * Set a TKIP key into the hardware. This handles the
1488 * potential distribution of key state to multiple key
1489 * cache slots for TKIP.
1490 */
1491 static int
1492 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1493 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1494 {
1495 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1496 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1497 struct ath_hal *ah = sc->sc_ah;
1498
1499 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1500 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1501 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1502 if (sc->sc_splitmic) {
1503 /*
1504 * TX key goes at first index, RX key at the rx index.
1505 * The hal handles the MIC keys at index+64.
1506 */
1507 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1508 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1509 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1510 zerobssid))
1511 return 0;
1512
1513 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1514 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1515 /* XXX delete tx key on failure? */
1516 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1517 hk, mac);
1518 } else {
1519 /*
1520 * Room for both TX+RX MIC keys in one key cache
1521 * slot, just set key at the first index; the HAL
1522 * will handle the reset.
1523 */
1524 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1525 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1526 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1527 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1528 }
1529 } else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1530 if (sc->sc_splitmic) {
1531 /*
1532 * NB: must pass MIC key in expected location when
1533 * the keycache only holds one MIC key per entry.
1534 */
1535 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1536 } else
1537 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1538 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1539 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1540 } else if (k->wk_flags & IEEE80211_KEY_RECV) {
1541 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1542 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1543 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1544 }
1545 return 0;
1546 #undef IEEE80211_KEY_XR
1547 }
1548
1549 /*
1550 * Set a net80211 key into the hardware. This handles the
1551 * potential distribution of key state to multiple key
1552 * cache slots for TKIP with hardware MIC support.
1553 */
1554 static int
1555 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1556 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1557 struct ieee80211_node *bss)
1558 {
1559 #define N(a) (sizeof(a)/sizeof(a[0]))
1560 static const u_int8_t ciphermap[] = {
1561 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1562 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1563 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1564 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1565 (u_int8_t) -1, /* 4 is not allocated */
1566 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1567 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1568 };
1569 struct ath_hal *ah = sc->sc_ah;
1570 const struct ieee80211_cipher *cip = k->wk_cipher;
1571 u_int8_t gmac[IEEE80211_ADDR_LEN];
1572 const u_int8_t *mac;
1573 HAL_KEYVAL hk;
1574
1575 memset(&hk, 0, sizeof(hk));
1576 /*
1577 * Software crypto uses a "clear key" so non-crypto
1578 * state kept in the key cache are maintained and
1579 * so that rx frames have an entry to match.
1580 */
1581 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1582 KASSERT(cip->ic_cipher < N(ciphermap),
1583 ("invalid cipher type %u", cip->ic_cipher));
1584 hk.kv_type = ciphermap[cip->ic_cipher];
1585 hk.kv_len = k->wk_keylen;
1586 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1587 } else
1588 hk.kv_type = HAL_CIPHER_CLR;
1589
1590 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1591 /*
1592 * Group keys on hardware that supports multicast frame
1593 * key search use a mac that is the sender's address with
1594 * the high bit set instead of the app-specified address.
1595 */
1596 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1597 gmac[0] |= 0x80;
1598 mac = gmac;
1599 } else
1600 mac = mac0;
1601
1602 if ((hk.kv_type == HAL_CIPHER_TKIP &&
1603 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1604 return ath_keyset_tkip(sc, k, &hk, mac);
1605 } else {
1606 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1607 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1608 }
1609 #undef N
1610 }
1611
1612 /*
1613 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1614 * each key, one for decrypt/encrypt and the other for the MIC.
1615 */
1616 static u_int16_t
1617 key_alloc_2pair(struct ath_softc *sc,
1618 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1619 {
1620 #define N(a) (sizeof(a)/sizeof(a[0]))
1621 u_int i, keyix;
1622
1623 KASSERT(sc->sc_splitmic, ("key cache !split"));
1624 /* XXX could optimize */
1625 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1626 u_int8_t b = sc->sc_keymap[i];
1627 if (b != 0xff) {
1628 /*
1629 * One or more slots in this byte are free.
1630 */
1631 keyix = i*NBBY;
1632 while (b & 1) {
1633 again:
1634 keyix++;
1635 b >>= 1;
1636 }
1637 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1638 if (isset(sc->sc_keymap, keyix+32) ||
1639 isset(sc->sc_keymap, keyix+64) ||
1640 isset(sc->sc_keymap, keyix+32+64)) {
1641 /* full pair unavailable */
1642 /* XXX statistic */
1643 if (keyix == (i+1)*NBBY) {
1644 /* no slots were appropriate, advance */
1645 continue;
1646 }
1647 goto again;
1648 }
1649 setbit(sc->sc_keymap, keyix);
1650 setbit(sc->sc_keymap, keyix+64);
1651 setbit(sc->sc_keymap, keyix+32);
1652 setbit(sc->sc_keymap, keyix+32+64);
1653 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1654 "%s: key pair %u,%u %u,%u\n",
1655 __func__, keyix, keyix+64,
1656 keyix+32, keyix+32+64);
1657 *txkeyix = keyix;
1658 *rxkeyix = keyix+32;
1659 return keyix;
1660 }
1661 }
1662 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1663 return IEEE80211_KEYIX_NONE;
1664 #undef N
1665 }
1666
1667 /*
1668 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1669 * each key, one for decrypt/encrypt and the other for the MIC.
1670 */
1671 static int
1672 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1673 ieee80211_keyix *rxkeyix)
1674 {
1675 #define N(a) (sizeof(a)/sizeof(a[0]))
1676 u_int i, keyix;
1677
1678 KASSERT(!sc->sc_splitmic, ("key cache split"));
1679 /* XXX could optimize */
1680 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1681 uint8_t b = sc->sc_keymap[i];
1682 if (b != 0xff) {
1683 /*
1684 * One or more slots in this byte are free.
1685 */
1686 keyix = i*NBBY;
1687 while (b & 1) {
1688 again:
1689 keyix++;
1690 b >>= 1;
1691 }
1692 if (isset(sc->sc_keymap, keyix+64)) {
1693 /* full pair unavailable */
1694 /* XXX statistic */
1695 if (keyix == (i+1)*NBBY) {
1696 /* no slots were appropriate, advance */
1697 continue;
1698 }
1699 goto again;
1700 }
1701 setbit(sc->sc_keymap, keyix);
1702 setbit(sc->sc_keymap, keyix+64);
1703 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1704 "%s: key pair %u,%u\n",
1705 __func__, keyix, keyix+64);
1706 *txkeyix = *rxkeyix = keyix;
1707 return 1;
1708 }
1709 }
1710 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1711 return 0;
1712 #undef N
1713 }
1714
1715 /*
1716 * Allocate a single key cache slot.
1717 */
1718 static int
1719 key_alloc_single(struct ath_softc *sc,
1720 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1721 {
1722 #define N(a) (sizeof(a)/sizeof(a[0]))
1723 u_int i, keyix;
1724
1725 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1726 for (i = 0; i < N(sc->sc_keymap); i++) {
1727 u_int8_t b = sc->sc_keymap[i];
1728 if (b != 0xff) {
1729 /*
1730 * One or more slots are free.
1731 */
1732 keyix = i*NBBY;
1733 while (b & 1)
1734 keyix++, b >>= 1;
1735 setbit(sc->sc_keymap, keyix);
1736 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1737 __func__, keyix);
1738 *txkeyix = *rxkeyix = keyix;
1739 return 1;
1740 }
1741 }
1742 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1743 return 0;
1744 #undef N
1745 }
1746
1747 /*
1748 * Allocate one or more key cache slots for a uniacst key. The
1749 * key itself is needed only to identify the cipher. For hardware
1750 * TKIP with split cipher+MIC keys we allocate two key cache slot
1751 * pairs so that we can setup separate TX and RX MIC keys. Note
1752 * that the MIC key for a TKIP key at slot i is assumed by the
1753 * hardware to be at slot i+64. This limits TKIP keys to the first
1754 * 64 entries.
1755 */
1756 static int
1757 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1758 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1759 {
1760 struct ath_softc *sc = ic->ic_ifp->if_softc;
1761
1762 /*
1763 * Group key allocation must be handled specially for
1764 * parts that do not support multicast key cache search
1765 * functionality. For those parts the key id must match
1766 * the h/w key index so lookups find the right key. On
1767 * parts w/ the key search facility we install the sender's
1768 * mac address (with the high bit set) and let the hardware
1769 * find the key w/o using the key id. This is preferred as
1770 * it permits us to support multiple users for adhoc and/or
1771 * multi-station operation.
1772 */
1773 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1774 if (!(&ic->ic_nw_keys[0] <= k &&
1775 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1776 /* should not happen */
1777 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1778 "%s: bogus group key\n", __func__);
1779 return 0;
1780 }
1781 /*
1782 * XXX we pre-allocate the global keys so
1783 * have no way to check if they've already been allocated.
1784 */
1785 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1786 return 1;
1787 }
1788
1789 /*
1790 * We allocate two pair for TKIP when using the h/w to do
1791 * the MIC. For everything else, including software crypto,
1792 * we allocate a single entry. Note that s/w crypto requires
1793 * a pass-through slot on the 5211 and 5212. The 5210 does
1794 * not support pass-through cache entries and we map all
1795 * those requests to slot 0.
1796 */
1797 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1798 return key_alloc_single(sc, keyix, rxkeyix);
1799 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1800 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1801 if (sc->sc_splitmic)
1802 return key_alloc_2pair(sc, keyix, rxkeyix);
1803 else
1804 return key_alloc_pair(sc, keyix, rxkeyix);
1805 } else {
1806 return key_alloc_single(sc, keyix, rxkeyix);
1807 }
1808 }
1809
1810 /*
1811 * Delete an entry in the key cache allocated by ath_key_alloc.
1812 */
1813 static int
1814 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1815 {
1816 struct ath_softc *sc = ic->ic_ifp->if_softc;
1817 struct ath_hal *ah = sc->sc_ah;
1818 const struct ieee80211_cipher *cip = k->wk_cipher;
1819 u_int keyix = k->wk_keyix;
1820
1821 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1822
1823 if (!device_has_power(sc->sc_dev)) {
1824 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1825 k->wk_keyix);
1826 }
1827
1828 ath_hal_keyreset(ah, keyix);
1829 /*
1830 * Handle split tx/rx keying required for TKIP with h/w MIC.
1831 */
1832 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1833 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1834 ath_hal_keyreset(ah, keyix+32); /* RX key */
1835 if (keyix >= IEEE80211_WEP_NKID) {
1836 /*
1837 * Don't touch keymap entries for global keys so
1838 * they are never considered for dynamic allocation.
1839 */
1840 clrbit(sc->sc_keymap, keyix);
1841 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1842 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1843 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1844 if (sc->sc_splitmic) {
1845 /* +32 for RX key, +32+64 for RX key MIC */
1846 clrbit(sc->sc_keymap, keyix+32);
1847 clrbit(sc->sc_keymap, keyix+32+64);
1848 }
1849 }
1850 }
1851 return 1;
1852 }
1853
1854 /*
1855 * Set the key cache contents for the specified key. Key cache
1856 * slot(s) must already have been allocated by ath_key_alloc.
1857 */
1858 static int
1859 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1860 const u_int8_t mac[IEEE80211_ADDR_LEN])
1861 {
1862 struct ath_softc *sc = ic->ic_ifp->if_softc;
1863
1864 if (!device_has_power(sc->sc_dev)) {
1865 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1866 k->wk_keyix);
1867 }
1868 return ath_keyset(sc, k, mac, ic->ic_bss);
1869 }
1870
1871 /*
1872 * Block/unblock tx+rx processing while a key change is done.
1873 * We assume the caller serializes key management operations
1874 * so we only need to worry about synchronization with other
1875 * uses that originate in the driver.
1876 */
1877 static void
1878 ath_key_update_begin(struct ieee80211com *ic)
1879 {
1880 struct ifnet *ifp = ic->ic_ifp;
1881 struct ath_softc *sc = ifp->if_softc;
1882
1883 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1884 #if 0
1885 tasklet_disable(&sc->sc_rxtq);
1886 #endif
1887 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1888 }
1889
1890 static void
1891 ath_key_update_end(struct ieee80211com *ic)
1892 {
1893 struct ifnet *ifp = ic->ic_ifp;
1894 struct ath_softc *sc = ifp->if_softc;
1895
1896 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1897 IF_UNLOCK(&ifp->if_snd);
1898 #if 0
1899 tasklet_enable(&sc->sc_rxtq);
1900 #endif
1901 }
1902
1903 /*
1904 * Calculate the receive filter according to the
1905 * operating mode and state:
1906 *
1907 * o always accept unicast, broadcast, and multicast traffic
1908 * o maintain current state of phy error reception (the hal
1909 * may enable phy error frames for noise immunity work)
1910 * o probe request frames are accepted only when operating in
1911 * hostap, adhoc, or monitor modes
1912 * o enable promiscuous mode according to the interface state
1913 * o accept beacons:
1914 * - when operating in adhoc mode so the 802.11 layer creates
1915 * node table entries for peers,
1916 * - when operating in station mode for collecting rssi data when
1917 * the station is otherwise quiet, or
1918 * - when scanning
1919 */
1920 static u_int32_t
1921 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1922 {
1923 struct ieee80211com *ic = &sc->sc_ic;
1924 struct ath_hal *ah = sc->sc_ah;
1925 struct ifnet *ifp = &sc->sc_if;
1926 u_int32_t rfilt;
1927
1928 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1929 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1930 if (ic->ic_opmode != IEEE80211_M_STA)
1931 rfilt |= HAL_RX_FILTER_PROBEREQ;
1932 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1933 (ifp->if_flags & IFF_PROMISC))
1934 rfilt |= HAL_RX_FILTER_PROM;
1935 if (ifp->if_flags & IFF_PROMISC)
1936 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1937 if (ic->ic_opmode == IEEE80211_M_STA ||
1938 ic->ic_opmode == IEEE80211_M_IBSS ||
1939 state == IEEE80211_S_SCAN)
1940 rfilt |= HAL_RX_FILTER_BEACON;
1941 return rfilt;
1942 }
1943
1944 static void
1945 ath_mode_init(struct ath_softc *sc)
1946 {
1947 struct ifnet *ifp = &sc->sc_if;
1948 struct ieee80211com *ic = &sc->sc_ic;
1949 struct ath_hal *ah = sc->sc_ah;
1950 struct ether_multi *enm;
1951 struct ether_multistep estep;
1952 u_int32_t rfilt, mfilt[2], val;
1953 int i;
1954 uint8_t pos;
1955
1956 /* configure rx filter */
1957 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1958 ath_hal_setrxfilter(ah, rfilt);
1959
1960 /* configure operational mode */
1961 ath_hal_setopmode(ah);
1962
1963 /* Write keys to hardware; it may have been powered down. */
1964 ath_key_update_begin(ic);
1965 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1966 ath_key_set(ic,
1967 &ic->ic_crypto.cs_nw_keys[i],
1968 ic->ic_myaddr);
1969 }
1970 ath_key_update_end(ic);
1971
1972 /*
1973 * Handle any link-level address change. Note that we only
1974 * need to force ic_myaddr; any other addresses are handled
1975 * as a byproduct of the ifnet code marking the interface
1976 * down then up.
1977 *
1978 * XXX should get from lladdr instead of arpcom but that's more work
1979 */
1980 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1981 ath_hal_setmac(ah, ic->ic_myaddr);
1982
1983 /* calculate and install multicast filter */
1984 ifp->if_flags &= ~IFF_ALLMULTI;
1985 mfilt[0] = mfilt[1] = 0;
1986 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1987 while (enm != NULL) {
1988 void *dl;
1989 /* XXX Punt on ranges. */
1990 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1991 mfilt[0] = mfilt[1] = 0xffffffff;
1992 ifp->if_flags |= IFF_ALLMULTI;
1993 break;
1994 }
1995 dl = enm->enm_addrlo;
1996 val = LE_READ_4((char *)dl + 0);
1997 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1998 val = LE_READ_4((char *)dl + 3);
1999 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2000 pos &= 0x3f;
2001 mfilt[pos / 32] |= (1 << (pos % 32));
2002
2003 ETHER_NEXT_MULTI(estep, enm);
2004 }
2005
2006 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2007 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2008 __func__, rfilt, mfilt[0], mfilt[1]);
2009 }
2010
2011 /*
2012 * Set the slot time based on the current setting.
2013 */
2014 static void
2015 ath_setslottime(struct ath_softc *sc)
2016 {
2017 struct ieee80211com *ic = &sc->sc_ic;
2018 struct ath_hal *ah = sc->sc_ah;
2019
2020 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2021 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2022 else
2023 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2024 sc->sc_updateslot = OK;
2025 }
2026
2027 /*
2028 * Callback from the 802.11 layer to update the
2029 * slot time based on the current setting.
2030 */
2031 static void
2032 ath_updateslot(struct ifnet *ifp)
2033 {
2034 struct ath_softc *sc = ifp->if_softc;
2035 struct ieee80211com *ic = &sc->sc_ic;
2036
2037 /*
2038 * When not coordinating the BSS, change the hardware
2039 * immediately. For other operation we defer the change
2040 * until beacon updates have propagated to the stations.
2041 */
2042 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2043 sc->sc_updateslot = UPDATE;
2044 else
2045 ath_setslottime(sc);
2046 }
2047
2048 /*
2049 * Setup a h/w transmit queue for beacons.
2050 */
2051 static int
2052 ath_beaconq_setup(struct ath_hal *ah)
2053 {
2054 HAL_TXQ_INFO qi;
2055
2056 memset(&qi, 0, sizeof(qi));
2057 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2058 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2059 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2060 /* NB: for dynamic turbo, don't enable any other interrupts */
2061 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2062 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2063 }
2064
2065 /*
2066 * Setup the transmit queue parameters for the beacon queue.
2067 */
2068 static int
2069 ath_beaconq_config(struct ath_softc *sc)
2070 {
2071 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2072 struct ieee80211com *ic = &sc->sc_ic;
2073 struct ath_hal *ah = sc->sc_ah;
2074 HAL_TXQ_INFO qi;
2075
2076 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2077 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2078 /*
2079 * Always burst out beacon and CAB traffic.
2080 */
2081 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2082 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2083 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2084 } else {
2085 struct wmeParams *wmep =
2086 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2087 /*
2088 * Adhoc mode; important thing is to use 2x cwmin.
2089 */
2090 qi.tqi_aifs = wmep->wmep_aifsn;
2091 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2092 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2093 }
2094
2095 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2096 device_printf(sc->sc_dev, "unable to update parameters for "
2097 "beacon hardware queue!\n");
2098 return 0;
2099 } else {
2100 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2101 return 1;
2102 }
2103 #undef ATH_EXPONENT_TO_VALUE
2104 }
2105
2106 /*
2107 * Allocate and setup an initial beacon frame.
2108 */
2109 static int
2110 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2111 {
2112 struct ieee80211com *ic = ni->ni_ic;
2113 struct ath_buf *bf;
2114 struct mbuf *m;
2115 int error;
2116
2117 bf = STAILQ_FIRST(&sc->sc_bbuf);
2118 if (bf == NULL) {
2119 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2120 sc->sc_stats.ast_be_nombuf++; /* XXX */
2121 return ENOMEM; /* XXX */
2122 }
2123 /*
2124 * NB: the beacon data buffer must be 32-bit aligned;
2125 * we assume the mbuf routines will return us something
2126 * with this alignment (perhaps should assert).
2127 */
2128 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2129 if (m == NULL) {
2130 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2131 __func__);
2132 sc->sc_stats.ast_be_nombuf++;
2133 return ENOMEM;
2134 }
2135 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2136 BUS_DMA_NOWAIT);
2137 if (error == 0) {
2138 bf->bf_m = m;
2139 bf->bf_node = ieee80211_ref_node(ni);
2140 } else {
2141 m_freem(m);
2142 }
2143 return error;
2144 }
2145
2146 /*
2147 * Setup the beacon frame for transmit.
2148 */
2149 static void
2150 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2151 {
2152 #define USE_SHPREAMBLE(_ic) \
2153 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2154 == IEEE80211_F_SHPREAMBLE)
2155 struct ieee80211_node *ni = bf->bf_node;
2156 struct ieee80211com *ic = ni->ni_ic;
2157 struct mbuf *m = bf->bf_m;
2158 struct ath_hal *ah = sc->sc_ah;
2159 struct ath_desc *ds;
2160 int flags, antenna;
2161 const HAL_RATE_TABLE *rt;
2162 u_int8_t rix, rate;
2163
2164 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2165 __func__, m, m->m_len);
2166
2167 /* setup descriptors */
2168 ds = bf->bf_desc;
2169
2170 flags = HAL_TXDESC_NOACK;
2171 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2172 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2173 flags |= HAL_TXDESC_VEOL;
2174 /*
2175 * Let hardware handle antenna switching unless
2176 * the user has selected a transmit antenna
2177 * (sc_txantenna is not 0).
2178 */
2179 antenna = sc->sc_txantenna;
2180 } else {
2181 ds->ds_link = 0;
2182 /*
2183 * Switch antenna every 4 beacons, unless the user
2184 * has selected a transmit antenna (sc_txantenna
2185 * is not 0).
2186 *
2187 * XXX assumes two antenna
2188 */
2189 if (sc->sc_txantenna == 0)
2190 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2191 else
2192 antenna = sc->sc_txantenna;
2193 }
2194
2195 KASSERT(bf->bf_nseg == 1,
2196 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2197 ds->ds_data = bf->bf_segs[0].ds_addr;
2198 /*
2199 * Calculate rate code.
2200 * XXX everything at min xmit rate
2201 */
2202 rix = sc->sc_minrateix;
2203 rt = sc->sc_currates;
2204 rate = rt->info[rix].rateCode;
2205 if (USE_SHPREAMBLE(ic))
2206 rate |= rt->info[rix].shortPreamble;
2207 ath_hal_setuptxdesc(ah, ds
2208 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2209 , sizeof(struct ieee80211_frame)/* header length */
2210 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2211 , ni->ni_txpower /* txpower XXX */
2212 , rate, 1 /* series 0 rate/tries */
2213 , HAL_TXKEYIX_INVALID /* no encryption */
2214 , antenna /* antenna mode */
2215 , flags /* no ack, veol for beacons */
2216 , 0 /* rts/cts rate */
2217 , 0 /* rts/cts duration */
2218 );
2219 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2220 ath_hal_filltxdesc(ah, ds
2221 , roundup(m->m_len, 4) /* buffer length */
2222 , AH_TRUE /* first segment */
2223 , AH_TRUE /* last segment */
2224 , ds /* first descriptor */
2225 );
2226
2227 /* NB: The desc swap function becomes void, if descriptor swapping
2228 * is not enabled
2229 */
2230 ath_desc_swap(ds);
2231
2232 #undef USE_SHPREAMBLE
2233 }
2234
2235 /*
2236 * Transmit a beacon frame at SWBA. Dynamic updates to the
2237 * frame contents are done as needed and the slot time is
2238 * also adjusted based on current state.
2239 */
2240 static void
2241 ath_beacon_proc(void *arg, int pending)
2242 {
2243 struct ath_softc *sc = arg;
2244 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2245 struct ieee80211_node *ni = bf->bf_node;
2246 struct ieee80211com *ic = ni->ni_ic;
2247 struct ath_hal *ah = sc->sc_ah;
2248 struct mbuf *m;
2249 int ncabq, error, otherant;
2250
2251 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2252 __func__, pending);
2253
2254 if (ic->ic_opmode == IEEE80211_M_STA ||
2255 ic->ic_opmode == IEEE80211_M_MONITOR ||
2256 bf == NULL || bf->bf_m == NULL) {
2257 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2258 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2259 return;
2260 }
2261 /*
2262 * Check if the previous beacon has gone out. If
2263 * not don't try to post another, skip this period
2264 * and wait for the next. Missed beacons indicate
2265 * a problem and should not occur. If we miss too
2266 * many consecutive beacons reset the device.
2267 */
2268 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2269 sc->sc_bmisscount++;
2270 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2271 "%s: missed %u consecutive beacons\n",
2272 __func__, sc->sc_bmisscount);
2273 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2274 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2275 return;
2276 }
2277 if (sc->sc_bmisscount != 0) {
2278 DPRINTF(sc, ATH_DEBUG_BEACON,
2279 "%s: resume beacon xmit after %u misses\n",
2280 __func__, sc->sc_bmisscount);
2281 sc->sc_bmisscount = 0;
2282 }
2283
2284 /*
2285 * Update dynamic beacon contents. If this returns
2286 * non-zero then we need to remap the memory because
2287 * the beacon frame changed size (probably because
2288 * of the TIM bitmap).
2289 */
2290 m = bf->bf_m;
2291 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2292 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2293 /* XXX too conservative? */
2294 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2295 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2296 BUS_DMA_NOWAIT);
2297 if (error != 0) {
2298 if_printf(&sc->sc_if,
2299 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2300 __func__, error);
2301 return;
2302 }
2303 }
2304
2305 /*
2306 * Handle slot time change when a non-ERP station joins/leaves
2307 * an 11g network. The 802.11 layer notifies us via callback,
2308 * we mark updateslot, then wait one beacon before effecting
2309 * the change. This gives associated stations at least one
2310 * beacon interval to note the state change.
2311 */
2312 /* XXX locking */
2313 if (sc->sc_updateslot == UPDATE)
2314 sc->sc_updateslot = COMMIT; /* commit next beacon */
2315 else if (sc->sc_updateslot == COMMIT)
2316 ath_setslottime(sc); /* commit change to h/w */
2317
2318 /*
2319 * Check recent per-antenna transmit statistics and flip
2320 * the default antenna if noticeably more frames went out
2321 * on the non-default antenna.
2322 * XXX assumes 2 anntenae
2323 */
2324 otherant = sc->sc_defant & 1 ? 2 : 1;
2325 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2326 ath_setdefantenna(sc, otherant);
2327 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2328
2329 /*
2330 * Construct tx descriptor.
2331 */
2332 ath_beacon_setup(sc, bf);
2333
2334 /*
2335 * Stop any current dma and put the new frame on the queue.
2336 * This should never fail since we check above that no frames
2337 * are still pending on the queue.
2338 */
2339 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2340 DPRINTF(sc, ATH_DEBUG_ANY,
2341 "%s: beacon queue %u did not stop?\n",
2342 __func__, sc->sc_bhalq);
2343 }
2344 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2345 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2346
2347 /*
2348 * Enable the CAB queue before the beacon queue to
2349 * insure cab frames are triggered by this beacon.
2350 */
2351 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2352 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2353 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2354 ath_hal_txstart(ah, sc->sc_bhalq);
2355 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2356 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2357 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2358
2359 sc->sc_stats.ast_be_xmit++;
2360 }
2361
2362 /*
2363 * Reset the hardware after detecting beacons have stopped.
2364 */
2365 static void
2366 ath_bstuck_proc(void *arg, int pending)
2367 {
2368 struct ath_softc *sc = arg;
2369 struct ifnet *ifp = &sc->sc_if;
2370
2371 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2372 sc->sc_bmisscount);
2373 ath_reset(ifp);
2374 }
2375
2376 /*
2377 * Reclaim beacon resources.
2378 */
2379 static void
2380 ath_beacon_free(struct ath_softc *sc)
2381 {
2382 struct ath_buf *bf;
2383
2384 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2385 if (bf->bf_m != NULL) {
2386 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2387 m_freem(bf->bf_m);
2388 bf->bf_m = NULL;
2389 }
2390 if (bf->bf_node != NULL) {
2391 ieee80211_free_node(bf->bf_node);
2392 bf->bf_node = NULL;
2393 }
2394 }
2395 }
2396
2397 /*
2398 * Configure the beacon and sleep timers.
2399 *
2400 * When operating as an AP this resets the TSF and sets
2401 * up the hardware to notify us when we need to issue beacons.
2402 *
2403 * When operating in station mode this sets up the beacon
2404 * timers according to the timestamp of the last received
2405 * beacon and the current TSF, configures PCF and DTIM
2406 * handling, programs the sleep registers so the hardware
2407 * will wakeup in time to receive beacons, and configures
2408 * the beacon miss handling so we'll receive a BMISS
2409 * interrupt when we stop seeing beacons from the AP
2410 * we've associated with.
2411 */
2412 static void
2413 ath_beacon_config(struct ath_softc *sc)
2414 {
2415 #define TSF_TO_TU(_h,_l) \
2416 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2417 #define FUDGE 2
2418 struct ath_hal *ah = sc->sc_ah;
2419 struct ieee80211com *ic = &sc->sc_ic;
2420 struct ieee80211_node *ni = ic->ic_bss;
2421 u_int32_t nexttbtt, intval, tsftu;
2422 u_int64_t tsf;
2423
2424 /* extract tstamp from last beacon and convert to TU */
2425 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2426 LE_READ_4(ni->ni_tstamp.data));
2427 /* NB: the beacon interval is kept internally in TU's */
2428 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2429 if (nexttbtt == 0) /* e.g. for ap mode */
2430 nexttbtt = intval;
2431 else if (intval) /* NB: can be 0 for monitor mode */
2432 nexttbtt = roundup(nexttbtt, intval);
2433 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2434 __func__, nexttbtt, intval, ni->ni_intval);
2435 if (ic->ic_opmode == IEEE80211_M_STA) {
2436 HAL_BEACON_STATE bs;
2437 int dtimperiod, dtimcount;
2438 int cfpperiod, cfpcount;
2439
2440 /*
2441 * Setup dtim and cfp parameters according to
2442 * last beacon we received (which may be none).
2443 */
2444 dtimperiod = ni->ni_dtim_period;
2445 if (dtimperiod <= 0) /* NB: 0 if not known */
2446 dtimperiod = 1;
2447 dtimcount = ni->ni_dtim_count;
2448 if (dtimcount >= dtimperiod) /* NB: sanity check */
2449 dtimcount = 0; /* XXX? */
2450 cfpperiod = 1; /* NB: no PCF support yet */
2451 cfpcount = 0;
2452 /*
2453 * Pull nexttbtt forward to reflect the current
2454 * TSF and calculate dtim+cfp state for the result.
2455 */
2456 tsf = ath_hal_gettsf64(ah);
2457 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2458 do {
2459 nexttbtt += intval;
2460 if (--dtimcount < 0) {
2461 dtimcount = dtimperiod - 1;
2462 if (--cfpcount < 0)
2463 cfpcount = cfpperiod - 1;
2464 }
2465 } while (nexttbtt < tsftu);
2466 memset(&bs, 0, sizeof(bs));
2467 bs.bs_intval = intval;
2468 bs.bs_nexttbtt = nexttbtt;
2469 bs.bs_dtimperiod = dtimperiod*intval;
2470 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2471 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2472 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2473 bs.bs_cfpmaxduration = 0;
2474 #if 0
2475 /*
2476 * The 802.11 layer records the offset to the DTIM
2477 * bitmap while receiving beacons; use it here to
2478 * enable h/w detection of our AID being marked in
2479 * the bitmap vector (to indicate frames for us are
2480 * pending at the AP).
2481 * XXX do DTIM handling in s/w to WAR old h/w bugs
2482 * XXX enable based on h/w rev for newer chips
2483 */
2484 bs.bs_timoffset = ni->ni_timoff;
2485 #endif
2486 /*
2487 * Calculate the number of consecutive beacons to miss
2488 * before taking a BMISS interrupt. The configuration
2489 * is specified in ms, so we need to convert that to
2490 * TU's and then calculate based on the beacon interval.
2491 * Note that we clamp the result to at most 10 beacons.
2492 */
2493 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2494 if (bs.bs_bmissthreshold > 10)
2495 bs.bs_bmissthreshold = 10;
2496 else if (bs.bs_bmissthreshold <= 0)
2497 bs.bs_bmissthreshold = 1;
2498
2499 /*
2500 * Calculate sleep duration. The configuration is
2501 * given in ms. We insure a multiple of the beacon
2502 * period is used. Also, if the sleep duration is
2503 * greater than the DTIM period then it makes senses
2504 * to make it a multiple of that.
2505 *
2506 * XXX fixed at 100ms
2507 */
2508 bs.bs_sleepduration =
2509 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2510 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2511 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2512
2513 DPRINTF(sc, ATH_DEBUG_BEACON,
2514 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2515 , __func__
2516 , tsf, tsftu
2517 , bs.bs_intval
2518 , bs.bs_nexttbtt
2519 , bs.bs_dtimperiod
2520 , bs.bs_nextdtim
2521 , bs.bs_bmissthreshold
2522 , bs.bs_sleepduration
2523 , bs.bs_cfpperiod
2524 , bs.bs_cfpmaxduration
2525 , bs.bs_cfpnext
2526 , bs.bs_timoffset
2527 );
2528 ath_hal_intrset(ah, 0);
2529 ath_hal_beacontimers(ah, &bs);
2530 sc->sc_imask |= HAL_INT_BMISS;
2531 ath_hal_intrset(ah, sc->sc_imask);
2532 } else {
2533 ath_hal_intrset(ah, 0);
2534 if (nexttbtt == intval)
2535 intval |= HAL_BEACON_RESET_TSF;
2536 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2537 /*
2538 * In IBSS mode enable the beacon timers but only
2539 * enable SWBA interrupts if we need to manually
2540 * prepare beacon frames. Otherwise we use a
2541 * self-linked tx descriptor and let the hardware
2542 * deal with things.
2543 */
2544 intval |= HAL_BEACON_ENA;
2545 if (!sc->sc_hasveol)
2546 sc->sc_imask |= HAL_INT_SWBA;
2547 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2548 /*
2549 * Pull nexttbtt forward to reflect
2550 * the current TSF.
2551 */
2552 tsf = ath_hal_gettsf64(ah);
2553 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2554 do {
2555 nexttbtt += intval;
2556 } while (nexttbtt < tsftu);
2557 }
2558 ath_beaconq_config(sc);
2559 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2560 /*
2561 * In AP mode we enable the beacon timers and
2562 * SWBA interrupts to prepare beacon frames.
2563 */
2564 intval |= HAL_BEACON_ENA;
2565 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2566 ath_beaconq_config(sc);
2567 }
2568 ath_hal_beaconinit(ah, nexttbtt, intval);
2569 sc->sc_bmisscount = 0;
2570 ath_hal_intrset(ah, sc->sc_imask);
2571 /*
2572 * When using a self-linked beacon descriptor in
2573 * ibss mode load it once here.
2574 */
2575 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2576 ath_beacon_proc(sc, 0);
2577 }
2578 sc->sc_syncbeacon = 0;
2579 #undef UNDEF
2580 #undef TSF_TO_TU
2581 }
2582
2583 static int
2584 ath_descdma_setup(struct ath_softc *sc,
2585 struct ath_descdma *dd, ath_bufhead *head,
2586 const char *name, int nbuf, int ndesc)
2587 {
2588 #define DS2PHYS(_dd, _ds) \
2589 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2590 struct ifnet *ifp = &sc->sc_if;
2591 struct ath_desc *ds;
2592 struct ath_buf *bf;
2593 int i, bsize, error;
2594
2595 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2596 __func__, name, nbuf, ndesc);
2597
2598 dd->dd_name = name;
2599 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2600
2601 /*
2602 * Setup DMA descriptor area.
2603 */
2604 dd->dd_dmat = sc->sc_dmat;
2605
2606 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2607 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2608
2609 if (error != 0) {
2610 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2611 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2612 goto fail0;
2613 }
2614
2615 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2616 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2617 if (error != 0) {
2618 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2619 nbuf * ndesc, dd->dd_name, error);
2620 goto fail1;
2621 }
2622
2623 /* allocate descriptors */
2624 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2625 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2626 if (error != 0) {
2627 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2628 "error %u\n", dd->dd_name, error);
2629 goto fail2;
2630 }
2631
2632 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2633 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2634 if (error != 0) {
2635 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2636 dd->dd_name, error);
2637 goto fail3;
2638 }
2639
2640 ds = dd->dd_desc;
2641 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2642 DPRINTF(sc, ATH_DEBUG_RESET,
2643 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2644 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2645 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2646
2647 /* allocate rx buffers */
2648 bsize = sizeof(struct ath_buf) * nbuf;
2649 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2650 if (bf == NULL) {
2651 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2652 dd->dd_name, bsize);
2653 goto fail4;
2654 }
2655 dd->dd_bufptr = bf;
2656
2657 STAILQ_INIT(head);
2658 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2659 bf->bf_desc = ds;
2660 bf->bf_daddr = DS2PHYS(dd, ds);
2661 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2662 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2663 if (error != 0) {
2664 if_printf(ifp, "unable to create dmamap for %s "
2665 "buffer %u, error %u\n", dd->dd_name, i, error);
2666 ath_descdma_cleanup(sc, dd, head);
2667 return error;
2668 }
2669 STAILQ_INSERT_TAIL(head, bf, bf_list);
2670 }
2671 return 0;
2672 fail4:
2673 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2674 fail3:
2675 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2676 fail2:
2677 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2678 fail1:
2679 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2680 fail0:
2681 memset(dd, 0, sizeof(*dd));
2682 return error;
2683 #undef DS2PHYS
2684 }
2685
2686 static void
2687 ath_descdma_cleanup(struct ath_softc *sc,
2688 struct ath_descdma *dd, ath_bufhead *head)
2689 {
2690 struct ath_buf *bf;
2691 struct ieee80211_node *ni;
2692
2693 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2694 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2695 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2696 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2697
2698 STAILQ_FOREACH(bf, head, bf_list) {
2699 if (bf->bf_m) {
2700 m_freem(bf->bf_m);
2701 bf->bf_m = NULL;
2702 }
2703 if (bf->bf_dmamap != NULL) {
2704 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2705 bf->bf_dmamap = NULL;
2706 }
2707 ni = bf->bf_node;
2708 bf->bf_node = NULL;
2709 if (ni != NULL) {
2710 /*
2711 * Reclaim node reference.
2712 */
2713 ieee80211_free_node(ni);
2714 }
2715 }
2716
2717 STAILQ_INIT(head);
2718 free(dd->dd_bufptr, M_ATHDEV);
2719 memset(dd, 0, sizeof(*dd));
2720 }
2721
2722 static int
2723 ath_desc_alloc(struct ath_softc *sc)
2724 {
2725 int error;
2726
2727 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2728 "rx", ath_rxbuf, 1);
2729 if (error != 0)
2730 return error;
2731
2732 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2733 "tx", ath_txbuf, ATH_TXDESC);
2734 if (error != 0) {
2735 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2736 return error;
2737 }
2738
2739 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2740 "beacon", 1, 1);
2741 if (error != 0) {
2742 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2743 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2744 return error;
2745 }
2746 return 0;
2747 }
2748
2749 static void
2750 ath_desc_free(struct ath_softc *sc)
2751 {
2752
2753 if (sc->sc_bdma.dd_desc_len != 0)
2754 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2755 if (sc->sc_txdma.dd_desc_len != 0)
2756 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2757 if (sc->sc_rxdma.dd_desc_len != 0)
2758 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2759 }
2760
2761 static struct ieee80211_node *
2762 ath_node_alloc(struct ieee80211_node_table *nt)
2763 {
2764 struct ieee80211com *ic = nt->nt_ic;
2765 struct ath_softc *sc = ic->ic_ifp->if_softc;
2766 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2767 struct ath_node *an;
2768
2769 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2770 if (an == NULL) {
2771 /* XXX stat+msg */
2772 return NULL;
2773 }
2774 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2775 ath_rate_node_init(sc, an);
2776
2777 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2778 return &an->an_node;
2779 }
2780
2781 static void
2782 ath_node_free(struct ieee80211_node *ni)
2783 {
2784 struct ieee80211com *ic = ni->ni_ic;
2785 struct ath_softc *sc = ic->ic_ifp->if_softc;
2786
2787 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2788
2789 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2790 sc->sc_node_free(ni);
2791 }
2792
2793 static u_int8_t
2794 ath_node_getrssi(const struct ieee80211_node *ni)
2795 {
2796 #define HAL_EP_RND(x, mul) \
2797 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2798 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2799 int32_t rssi;
2800
2801 /*
2802 * When only one frame is received there will be no state in
2803 * avgrssi so fallback on the value recorded by the 802.11 layer.
2804 */
2805 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2806 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2807 else
2808 rssi = ni->ni_rssi;
2809 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2810 #undef HAL_EP_RND
2811 }
2812
2813 static int
2814 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2815 {
2816 struct ath_hal *ah = sc->sc_ah;
2817 int error;
2818 struct mbuf *m;
2819 struct ath_desc *ds;
2820
2821 m = bf->bf_m;
2822 if (m == NULL) {
2823 /*
2824 * NB: by assigning a page to the rx dma buffer we
2825 * implicitly satisfy the Atheros requirement that
2826 * this buffer be cache-line-aligned and sized to be
2827 * multiple of the cache line size. Not doing this
2828 * causes weird stuff to happen (for the 5210 at least).
2829 */
2830 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2831 if (m == NULL) {
2832 DPRINTF(sc, ATH_DEBUG_ANY,
2833 "%s: no mbuf/cluster\n", __func__);
2834 sc->sc_stats.ast_rx_nombuf++;
2835 return ENOMEM;
2836 }
2837 bf->bf_m = m;
2838 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2839
2840 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2841 bf->bf_dmamap, m,
2842 BUS_DMA_NOWAIT);
2843 if (error != 0) {
2844 DPRINTF(sc, ATH_DEBUG_ANY,
2845 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2846 __func__, error);
2847 sc->sc_stats.ast_rx_busdma++;
2848 return error;
2849 }
2850 KASSERT(bf->bf_nseg == 1,
2851 ("multi-segment packet; nseg %u", bf->bf_nseg));
2852 }
2853 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2854 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2855
2856 /*
2857 * Setup descriptors. For receive we always terminate
2858 * the descriptor list with a self-linked entry so we'll
2859 * not get overrun under high load (as can happen with a
2860 * 5212 when ANI processing enables PHY error frames).
2861 *
2862 * To insure the last descriptor is self-linked we create
2863 * each descriptor as self-linked and add it to the end. As
2864 * each additional descriptor is added the previous self-linked
2865 * entry is ``fixed'' naturally. This should be safe even
2866 * if DMA is happening. When processing RX interrupts we
2867 * never remove/process the last, self-linked, entry on the
2868 * descriptor list. This insures the hardware always has
2869 * someplace to write a new frame.
2870 */
2871 ds = bf->bf_desc;
2872 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2873 ds->ds_data = bf->bf_segs[0].ds_addr;
2874 /* ds->ds_vdata = mtod(m, void *); for radar */
2875 ath_hal_setuprxdesc(ah, ds
2876 , m->m_len /* buffer size */
2877 , 0
2878 );
2879
2880 if (sc->sc_rxlink != NULL)
2881 *sc->sc_rxlink = bf->bf_daddr;
2882 sc->sc_rxlink = &ds->ds_link;
2883 return 0;
2884 }
2885
2886 /*
2887 * Extend 15-bit time stamp from rx descriptor to
2888 * a full 64-bit TSF using the specified TSF.
2889 */
2890 static inline u_int64_t
2891 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2892 {
2893 if ((tsf & 0x7fff) < rstamp)
2894 tsf -= 0x8000;
2895 return ((tsf &~ 0x7fff) | rstamp);
2896 }
2897
2898 /*
2899 * Intercept management frames to collect beacon rssi data
2900 * and to do ibss merges.
2901 */
2902 static void
2903 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2904 struct ieee80211_node *ni,
2905 int subtype, int rssi, u_int32_t rstamp)
2906 {
2907 struct ath_softc *sc = ic->ic_ifp->if_softc;
2908
2909 /*
2910 * Call up first so subsequent work can use information
2911 * potentially stored in the node (e.g. for ibss merge).
2912 */
2913 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2914 switch (subtype) {
2915 case IEEE80211_FC0_SUBTYPE_BEACON:
2916 /* update rssi statistics for use by the hal */
2917 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2918 if (sc->sc_syncbeacon &&
2919 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2920 /*
2921 * Resync beacon timers using the tsf of the beacon
2922 * frame we just received.
2923 */
2924 ath_beacon_config(sc);
2925 }
2926 /* fall thru... */
2927 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2928 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2929 ic->ic_state == IEEE80211_S_RUN) {
2930 u_int64_t tsf = ath_extend_tsf(rstamp,
2931 ath_hal_gettsf64(sc->sc_ah));
2932
2933 /*
2934 * Handle ibss merge as needed; check the tsf on the
2935 * frame before attempting the merge. The 802.11 spec
2936 * says the station should change it's bssid to match
2937 * the oldest station with the same ssid, where oldest
2938 * is determined by the tsf. Note that hardware
2939 * reconfiguration happens through callback to
2940 * ath_newstate as the state machine will go from
2941 * RUN -> RUN when this happens.
2942 */
2943 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2944 DPRINTF(sc, ATH_DEBUG_STATE,
2945 "ibss merge, rstamp %u tsf %ju "
2946 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2947 (uintmax_t)ni->ni_tstamp.tsf);
2948 (void) ieee80211_ibss_merge(ni);
2949 }
2950 }
2951 break;
2952 }
2953 }
2954
2955 /*
2956 * Set the default antenna.
2957 */
2958 static void
2959 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2960 {
2961 struct ath_hal *ah = sc->sc_ah;
2962
2963 /* XXX block beacon interrupts */
2964 ath_hal_setdefantenna(ah, antenna);
2965 if (sc->sc_defant != antenna)
2966 sc->sc_stats.ast_ant_defswitch++;
2967 sc->sc_defant = antenna;
2968 sc->sc_rxotherant = 0;
2969 }
2970
2971 static void
2972 ath_handle_micerror(struct ieee80211com *ic,
2973 struct ieee80211_frame *wh, int keyix)
2974 {
2975 struct ieee80211_node *ni;
2976
2977 /* XXX recheck MIC to deal w/ chips that lie */
2978 /* XXX discard MIC errors on !data frames */
2979 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2980 if (ni != NULL) {
2981 ieee80211_notify_michael_failure(ic, wh, keyix);
2982 ieee80211_free_node(ni);
2983 }
2984 }
2985
2986 static void
2987 ath_rx_proc(void *arg, int npending)
2988 {
2989 #define PA2DESC(_sc, _pa) \
2990 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2991 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2992 struct ath_softc *sc = arg;
2993 struct ath_buf *bf;
2994 struct ieee80211com *ic = &sc->sc_ic;
2995 struct ifnet *ifp = &sc->sc_if;
2996 struct ath_hal *ah = sc->sc_ah;
2997 struct ath_desc *ds;
2998 struct mbuf *m;
2999 struct ieee80211_node *ni;
3000 struct ath_node *an;
3001 int len, ngood, type;
3002 u_int phyerr;
3003 HAL_STATUS status;
3004 int16_t nf;
3005 u_int64_t tsf;
3006 uint8_t rxerr_tap, rxerr_mon;
3007
3008 NET_LOCK_GIANT(); /* XXX */
3009
3010 rxerr_tap =
3011 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3012
3013 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3014 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3015 else if (ifp->if_flags & IFF_PROMISC)
3016 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3017
3018 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3019 ngood = 0;
3020 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3021 tsf = ath_hal_gettsf64(ah);
3022 do {
3023 bf = STAILQ_FIRST(&sc->sc_rxbuf);
3024 if (bf == NULL) { /* NB: shouldn't happen */
3025 if_printf(ifp, "%s: no buffer!\n", __func__);
3026 break;
3027 }
3028 ds = bf->bf_desc;
3029 if (ds->ds_link == bf->bf_daddr) {
3030 /* NB: never process the self-linked entry at the end */
3031 break;
3032 }
3033 m = bf->bf_m;
3034 if (m == NULL) { /* NB: shouldn't happen */
3035 if_printf(ifp, "%s: no mbuf!\n", __func__);
3036 break;
3037 }
3038 /* XXX sync descriptor memory */
3039 /*
3040 * Must provide the virtual address of the current
3041 * descriptor, the physical address, and the virtual
3042 * address of the next descriptor in the h/w chain.
3043 * This allows the HAL to look ahead to see if the
3044 * hardware is done with a descriptor by checking the
3045 * done bit in the following descriptor and the address
3046 * of the current descriptor the DMA engine is working
3047 * on. All this is necessary because of our use of
3048 * a self-linked list to avoid rx overruns.
3049 */
3050 status = ath_hal_rxprocdesc(ah, ds,
3051 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3052 &ds->ds_rxstat);
3053 #ifdef AR_DEBUG
3054 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3055 ath_printrxbuf(bf, status == HAL_OK);
3056 #endif
3057 if (status == HAL_EINPROGRESS)
3058 break;
3059 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3060 if (ds->ds_rxstat.rs_more) {
3061 /*
3062 * Frame spans multiple descriptors; this
3063 * cannot happen yet as we don't support
3064 * jumbograms. If not in monitor mode,
3065 * discard the frame.
3066 */
3067 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3068 sc->sc_stats.ast_rx_toobig++;
3069 goto rx_next;
3070 }
3071 /* fall thru for monitor mode handling... */
3072 } else if (ds->ds_rxstat.rs_status != 0) {
3073 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3074 sc->sc_stats.ast_rx_crcerr++;
3075 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3076 sc->sc_stats.ast_rx_fifoerr++;
3077 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3078 sc->sc_stats.ast_rx_phyerr++;
3079 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3080 sc->sc_stats.ast_rx_phy[phyerr]++;
3081 goto rx_next;
3082 }
3083 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3084 /*
3085 * Decrypt error. If the error occurred
3086 * because there was no hardware key, then
3087 * let the frame through so the upper layers
3088 * can process it. This is necessary for 5210
3089 * parts which have no way to setup a ``clear''
3090 * key cache entry.
3091 *
3092 * XXX do key cache faulting
3093 */
3094 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3095 goto rx_accept;
3096 sc->sc_stats.ast_rx_badcrypt++;
3097 }
3098 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3099 sc->sc_stats.ast_rx_badmic++;
3100 /*
3101 * Do minimal work required to hand off
3102 * the 802.11 header for notifcation.
3103 */
3104 /* XXX frag's and qos frames */
3105 len = ds->ds_rxstat.rs_datalen;
3106 if (len >= sizeof (struct ieee80211_frame)) {
3107 bus_dmamap_sync(sc->sc_dmat,
3108 bf->bf_dmamap,
3109 0, bf->bf_dmamap->dm_mapsize,
3110 BUS_DMASYNC_POSTREAD);
3111 ath_handle_micerror(ic,
3112 mtod(m, struct ieee80211_frame *),
3113 sc->sc_splitmic ?
3114 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3115 }
3116 }
3117 ifp->if_ierrors++;
3118 /*
3119 * Reject error frames, we normally don't want
3120 * to see them in monitor mode (in monitor mode
3121 * allow through packets that have crypto problems).
3122 */
3123
3124 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3125 goto rx_next;
3126 }
3127 rx_accept:
3128 /*
3129 * Sync and unmap the frame. At this point we're
3130 * committed to passing the mbuf somewhere so clear
3131 * bf_m; this means a new sk_buff must be allocated
3132 * when the rx descriptor is setup again to receive
3133 * another frame.
3134 */
3135 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3136 0, bf->bf_dmamap->dm_mapsize,
3137 BUS_DMASYNC_POSTREAD);
3138 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3139 bf->bf_m = NULL;
3140
3141 m->m_pkthdr.rcvif = ifp;
3142 len = ds->ds_rxstat.rs_datalen;
3143 m->m_pkthdr.len = m->m_len = len;
3144
3145 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3146
3147 if (sc->sc_drvbpf) {
3148 u_int8_t rix;
3149
3150 /*
3151 * Discard anything shorter than an ack or cts.
3152 */
3153 if (len < IEEE80211_ACK_LEN) {
3154 DPRINTF(sc, ATH_DEBUG_RECV,
3155 "%s: runt packet %d\n",
3156 __func__, len);
3157 sc->sc_stats.ast_rx_tooshort++;
3158 m_freem(m);
3159 goto rx_next;
3160 }
3161 rix = ds->ds_rxstat.rs_rate;
3162 sc->sc_rx_th.wr_tsf = htole64(
3163 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3164 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3165 if (ds->ds_rxstat.rs_status &
3166 (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3167 sc->sc_rx_th.wr_flags |=
3168 IEEE80211_RADIOTAP_F_BADFCS;
3169 }
3170 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3171 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3172 sc->sc_rx_th.wr_antnoise = nf;
3173 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3174
3175 bpf_ops->bpf_mtap2(sc->sc_drvbpf,
3176 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3177 }
3178
3179 if (ds->ds_rxstat.rs_status & rxerr_tap) {
3180 m_freem(m);
3181 goto rx_next;
3182 }
3183 /*
3184 * From this point on we assume the frame is at least
3185 * as large as ieee80211_frame_min; verify that.
3186 */
3187 if (len < IEEE80211_MIN_LEN) {
3188 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3189 __func__, len);
3190 sc->sc_stats.ast_rx_tooshort++;
3191 m_freem(m);
3192 goto rx_next;
3193 }
3194
3195 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3196 ieee80211_dump_pkt(mtod(m, void *), len,
3197 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3198 ds->ds_rxstat.rs_rssi);
3199 }
3200
3201 m_adj(m, -IEEE80211_CRC_LEN);
3202
3203 /*
3204 * Locate the node for sender, track state, and then
3205 * pass the (referenced) node up to the 802.11 layer
3206 * for its use.
3207 */
3208 ni = ieee80211_find_rxnode_withkey(ic,
3209 mtod(m, const struct ieee80211_frame_min *),
3210 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3211 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3212 /*
3213 * Track rx rssi and do any rx antenna management.
3214 */
3215 an = ATH_NODE(ni);
3216 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3217 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3218 /*
3219 * Send frame up for processing.
3220 */
3221 type = ieee80211_input(ic, m, ni,
3222 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3223 ieee80211_free_node(ni);
3224 if (sc->sc_diversity) {
3225 /*
3226 * When using fast diversity, change the default rx
3227 * antenna if diversity chooses the other antenna 3
3228 * times in a row.
3229 */
3230 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3231 if (++sc->sc_rxotherant >= 3)
3232 ath_setdefantenna(sc,
3233 ds->ds_rxstat.rs_antenna);
3234 } else
3235 sc->sc_rxotherant = 0;
3236 }
3237 if (sc->sc_softled) {
3238 /*
3239 * Blink for any data frame. Otherwise do a
3240 * heartbeat-style blink when idle. The latter
3241 * is mainly for station mode where we depend on
3242 * periodic beacon frames to trigger the poll event.
3243 */
3244 if (type == IEEE80211_FC0_TYPE_DATA) {
3245 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3246 ath_led_event(sc, ATH_LED_RX);
3247 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3248 ath_led_event(sc, ATH_LED_POLL);
3249 }
3250 /*
3251 * Arrange to update the last rx timestamp only for
3252 * frames from our ap when operating in station mode.
3253 * This assumes the rx key is always setup when associated.
3254 */
3255 if (ic->ic_opmode == IEEE80211_M_STA &&
3256 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3257 ngood++;
3258 rx_next:
3259 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3260 } while (ath_rxbuf_init(sc, bf) == 0);
3261
3262 /* rx signal state monitoring */
3263 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3264 #if 0
3265 if (ath_hal_radar_event(ah))
3266 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3267 #endif
3268 if (ngood)
3269 sc->sc_lastrx = tsf;
3270
3271 #ifdef __NetBSD__
3272 /* XXX Why isn't this necessary in FreeBSD? */
3273 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3274 ath_start(ifp);
3275 #endif /* __NetBSD__ */
3276
3277 NET_UNLOCK_GIANT(); /* XXX */
3278 #undef PA2DESC
3279 }
3280
3281 /*
3282 * Setup a h/w transmit queue.
3283 */
3284 static struct ath_txq *
3285 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3286 {
3287 #define N(a) (sizeof(a)/sizeof(a[0]))
3288 struct ath_hal *ah = sc->sc_ah;
3289 HAL_TXQ_INFO qi;
3290 int qnum;
3291
3292 memset(&qi, 0, sizeof(qi));
3293 qi.tqi_subtype = subtype;
3294 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3295 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3296 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3297 /*
3298 * Enable interrupts only for EOL and DESC conditions.
3299 * We mark tx descriptors to receive a DESC interrupt
3300 * when a tx queue gets deep; otherwise waiting for the
3301 * EOL to reap descriptors. Note that this is done to
3302 * reduce interrupt load and this only defers reaping
3303 * descriptors, never transmitting frames. Aside from
3304 * reducing interrupts this also permits more concurrency.
3305 * The only potential downside is if the tx queue backs
3306 * up in which case the top half of the kernel may backup
3307 * due to a lack of tx descriptors.
3308 */
3309 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3310 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3311 if (qnum == -1) {
3312 /*
3313 * NB: don't print a message, this happens
3314 * normally on parts with too few tx queues
3315 */
3316 return NULL;
3317 }
3318 if (qnum >= N(sc->sc_txq)) {
3319 device_printf(sc->sc_dev,
3320 "hal qnum %u out of range, max %zu!\n",
3321 qnum, N(sc->sc_txq));
3322 ath_hal_releasetxqueue(ah, qnum);
3323 return NULL;
3324 }
3325 if (!ATH_TXQ_SETUP(sc, qnum)) {
3326 struct ath_txq *txq = &sc->sc_txq[qnum];
3327
3328 txq->axq_qnum = qnum;
3329 txq->axq_depth = 0;
3330 txq->axq_intrcnt = 0;
3331 txq->axq_link = NULL;
3332 STAILQ_INIT(&txq->axq_q);
3333 ATH_TXQ_LOCK_INIT(sc, txq);
3334 sc->sc_txqsetup |= 1<<qnum;
3335 }
3336 return &sc->sc_txq[qnum];
3337 #undef N
3338 }
3339
3340 /*
3341 * Setup a hardware data transmit queue for the specified
3342 * access control. The hal may not support all requested
3343 * queues in which case it will return a reference to a
3344 * previously setup queue. We record the mapping from ac's
3345 * to h/w queues for use by ath_tx_start and also track
3346 * the set of h/w queues being used to optimize work in the
3347 * transmit interrupt handler and related routines.
3348 */
3349 static int
3350 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3351 {
3352 #define N(a) (sizeof(a)/sizeof(a[0]))
3353 struct ath_txq *txq;
3354
3355 if (ac >= N(sc->sc_ac2q)) {
3356 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3357 ac, N(sc->sc_ac2q));
3358 return 0;
3359 }
3360 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3361 if (txq != NULL) {
3362 sc->sc_ac2q[ac] = txq;
3363 return 1;
3364 } else
3365 return 0;
3366 #undef N
3367 }
3368
3369 /*
3370 * Update WME parameters for a transmit queue.
3371 */
3372 static int
3373 ath_txq_update(struct ath_softc *sc, int ac)
3374 {
3375 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3376 #define ATH_TXOP_TO_US(v) (v<<5)
3377 struct ieee80211com *ic = &sc->sc_ic;
3378 struct ath_txq *txq = sc->sc_ac2q[ac];
3379 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3380 struct ath_hal *ah = sc->sc_ah;
3381 HAL_TXQ_INFO qi;
3382
3383 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3384 qi.tqi_aifs = wmep->wmep_aifsn;
3385 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3386 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3387 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3388
3389 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3390 device_printf(sc->sc_dev, "unable to update hardware queue "
3391 "parameters for %s traffic!\n",
3392 ieee80211_wme_acnames[ac]);
3393 return 0;
3394 } else {
3395 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3396 return 1;
3397 }
3398 #undef ATH_TXOP_TO_US
3399 #undef ATH_EXPONENT_TO_VALUE
3400 }
3401
3402 /*
3403 * Callback from the 802.11 layer to update WME parameters.
3404 */
3405 static int
3406 ath_wme_update(struct ieee80211com *ic)
3407 {
3408 struct ath_softc *sc = ic->ic_ifp->if_softc;
3409
3410 return !ath_txq_update(sc, WME_AC_BE) ||
3411 !ath_txq_update(sc, WME_AC_BK) ||
3412 !ath_txq_update(sc, WME_AC_VI) ||
3413 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3414 }
3415
3416 /*
3417 * Reclaim resources for a setup queue.
3418 */
3419 static void
3420 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3421 {
3422
3423 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3424 ATH_TXQ_LOCK_DESTROY(txq);
3425 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3426 }
3427
3428 /*
3429 * Reclaim all tx queue resources.
3430 */
3431 static void
3432 ath_tx_cleanup(struct ath_softc *sc)
3433 {
3434 int i;
3435
3436 ATH_TXBUF_LOCK_DESTROY(sc);
3437 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3438 if (ATH_TXQ_SETUP(sc, i))
3439 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3440 }
3441
3442 /*
3443 * Defragment an mbuf chain, returning at most maxfrags separate
3444 * mbufs+clusters. If this is not possible NULL is returned and
3445 * the original mbuf chain is left in it's present (potentially
3446 * modified) state. We use two techniques: collapsing consecutive
3447 * mbufs and replacing consecutive mbufs by a cluster.
3448 */
3449 static struct mbuf *
3450 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3451 {
3452 struct mbuf *m, *n, *n2, **prev;
3453 u_int curfrags;
3454
3455 /*
3456 * Calculate the current number of frags.
3457 */
3458 curfrags = 0;
3459 for (m = m0; m != NULL; m = m->m_next)
3460 curfrags++;
3461 /*
3462 * First, try to collapse mbufs. Note that we always collapse
3463 * towards the front so we don't need to deal with moving the
3464 * pkthdr. This may be suboptimal if the first mbuf has much
3465 * less data than the following.
3466 */
3467 m = m0;
3468 again:
3469 for (;;) {
3470 n = m->m_next;
3471 if (n == NULL)
3472 break;
3473 if (n->m_len < M_TRAILINGSPACE(m)) {
3474 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3475 n->m_len);
3476 m->m_len += n->m_len;
3477 m->m_next = n->m_next;
3478 m_free(n);
3479 if (--curfrags <= maxfrags)
3480 return m0;
3481 } else
3482 m = n;
3483 }
3484 KASSERT(maxfrags > 1,
3485 ("maxfrags %u, but normal collapse failed", maxfrags));
3486 /*
3487 * Collapse consecutive mbufs to a cluster.
3488 */
3489 prev = &m0->m_next; /* NB: not the first mbuf */
3490 while ((n = *prev) != NULL) {
3491 if ((n2 = n->m_next) != NULL &&
3492 n->m_len + n2->m_len < MCLBYTES) {
3493 m = m_getcl(how, MT_DATA, 0);
3494 if (m == NULL)
3495 goto bad;
3496 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3497 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3498 n2->m_len);
3499 m->m_len = n->m_len + n2->m_len;
3500 m->m_next = n2->m_next;
3501 *prev = m;
3502 m_free(n);
3503 m_free(n2);
3504 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3505 return m0;
3506 /*
3507 * Still not there, try the normal collapse
3508 * again before we allocate another cluster.
3509 */
3510 goto again;
3511 }
3512 prev = &n->m_next;
3513 }
3514 /*
3515 * No place where we can collapse to a cluster; punt.
3516 * This can occur if, for example, you request 2 frags
3517 * but the packet requires that both be clusters (we
3518 * never reallocate the first mbuf to avoid moving the
3519 * packet header).
3520 */
3521 bad:
3522 return NULL;
3523 }
3524
3525 /*
3526 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3527 */
3528 static int
3529 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3530 {
3531 int i;
3532
3533 for (i = 0; i < rt->rateCount; i++)
3534 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3535 return i;
3536 return 0; /* NB: lowest rate */
3537 }
3538
3539 static void
3540 ath_freetx(struct mbuf *m)
3541 {
3542 struct mbuf *next;
3543
3544 do {
3545 next = m->m_nextpkt;
3546 m->m_nextpkt = NULL;
3547 m_freem(m);
3548 } while ((m = next) != NULL);
3549 }
3550
3551 static int
3552 deduct_pad_bytes(int len, int hdrlen)
3553 {
3554 /* XXX I am suspicious that this code, which I extracted
3555 * XXX from ath_tx_start() for reuse, does the right thing.
3556 */
3557 return len - (hdrlen & 3);
3558 }
3559
3560 static int
3561 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3562 struct mbuf *m0)
3563 {
3564 struct ieee80211com *ic = &sc->sc_ic;
3565 struct ath_hal *ah = sc->sc_ah;
3566 struct ifnet *ifp = &sc->sc_if;
3567 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3568 int i, error, iswep, ismcast, isfrag, ismrr;
3569 int keyix, hdrlen, pktlen, try0;
3570 u_int8_t rix, txrate, ctsrate;
3571 u_int8_t cix = 0xff; /* NB: silence compiler */
3572 struct ath_desc *ds, *ds0;
3573 struct ath_txq *txq;
3574 struct ieee80211_frame *wh;
3575 u_int subtype, flags, ctsduration;
3576 HAL_PKT_TYPE atype;
3577 const HAL_RATE_TABLE *rt;
3578 HAL_BOOL shortPreamble;
3579 struct ath_node *an;
3580 struct mbuf *m;
3581 u_int pri;
3582
3583 wh = mtod(m0, struct ieee80211_frame *);
3584 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3585 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3586 isfrag = m0->m_flags & M_FRAG;
3587 hdrlen = ieee80211_anyhdrsize(wh);
3588 /*
3589 * Packet length must not include any
3590 * pad bytes; deduct them here.
3591 */
3592 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3593
3594 if (iswep) {
3595 const struct ieee80211_cipher *cip;
3596 struct ieee80211_key *k;
3597
3598 /*
3599 * Construct the 802.11 header+trailer for an encrypted
3600 * frame. The only reason this can fail is because of an
3601 * unknown or unsupported cipher/key type.
3602 */
3603 k = ieee80211_crypto_encap(ic, ni, m0);
3604 if (k == NULL) {
3605 /*
3606 * This can happen when the key is yanked after the
3607 * frame was queued. Just discard the frame; the
3608 * 802.11 layer counts failures and provides
3609 * debugging/diagnostics.
3610 */
3611 ath_freetx(m0);
3612 return EIO;
3613 }
3614 /*
3615 * Adjust the packet + header lengths for the crypto
3616 * additions and calculate the h/w key index. When
3617 * a s/w mic is done the frame will have had any mic
3618 * added to it prior to entry so m0->m_pkthdr.len above will
3619 * account for it. Otherwise we need to add it to the
3620 * packet length.
3621 */
3622 cip = k->wk_cipher;
3623 hdrlen += cip->ic_header;
3624 pktlen += cip->ic_header + cip->ic_trailer;
3625 /* NB: frags always have any TKIP MIC done in s/w */
3626 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3627 pktlen += cip->ic_miclen;
3628 keyix = k->wk_keyix;
3629
3630 /* packet header may have moved, reset our local pointer */
3631 wh = mtod(m0, struct ieee80211_frame *);
3632 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3633 /*
3634 * Use station key cache slot, if assigned.
3635 */
3636 keyix = ni->ni_ucastkey.wk_keyix;
3637 if (keyix == IEEE80211_KEYIX_NONE)
3638 keyix = HAL_TXKEYIX_INVALID;
3639 } else
3640 keyix = HAL_TXKEYIX_INVALID;
3641
3642 pktlen += IEEE80211_CRC_LEN;
3643
3644 /*
3645 * Load the DMA map so any coalescing is done. This
3646 * also calculates the number of descriptors we need.
3647 */
3648 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3649 BUS_DMA_NOWAIT);
3650 if (error == EFBIG) {
3651 /* XXX packet requires too many descriptors */
3652 bf->bf_nseg = ATH_TXDESC+1;
3653 } else if (error != 0) {
3654 sc->sc_stats.ast_tx_busdma++;
3655 ath_freetx(m0);
3656 return error;
3657 }
3658 /*
3659 * Discard null packets and check for packets that
3660 * require too many TX descriptors. We try to convert
3661 * the latter to a cluster.
3662 */
3663 if (error == EFBIG) { /* too many desc's, linearize */
3664 sc->sc_stats.ast_tx_linear++;
3665 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3666 if (m == NULL) {
3667 ath_freetx(m0);
3668 sc->sc_stats.ast_tx_nombuf++;
3669 return ENOMEM;
3670 }
3671 m0 = m;
3672 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3673 BUS_DMA_NOWAIT);
3674 if (error != 0) {
3675 sc->sc_stats.ast_tx_busdma++;
3676 ath_freetx(m0);
3677 return error;
3678 }
3679 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3680 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3681 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3682 sc->sc_stats.ast_tx_nodata++;
3683 ath_freetx(m0);
3684 return EIO;
3685 }
3686 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3687 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3688 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3689 bf->bf_m = m0;
3690 bf->bf_node = ni; /* NB: held reference */
3691
3692 /* setup descriptors */
3693 ds = bf->bf_desc;
3694 rt = sc->sc_currates;
3695 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3696
3697 /*
3698 * NB: the 802.11 layer marks whether or not we should
3699 * use short preamble based on the current mode and
3700 * negotiated parameters.
3701 */
3702 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3703 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3704 shortPreamble = AH_TRUE;
3705 sc->sc_stats.ast_tx_shortpre++;
3706 } else {
3707 shortPreamble = AH_FALSE;
3708 }
3709
3710 an = ATH_NODE(ni);
3711 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3712 ismrr = 0; /* default no multi-rate retry*/
3713 /*
3714 * Calculate Atheros packet type from IEEE80211 packet header,
3715 * setup for rate calculations, and select h/w transmit queue.
3716 */
3717 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3718 case IEEE80211_FC0_TYPE_MGT:
3719 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3720 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3721 atype = HAL_PKT_TYPE_BEACON;
3722 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3723 atype = HAL_PKT_TYPE_PROBE_RESP;
3724 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3725 atype = HAL_PKT_TYPE_ATIM;
3726 else
3727 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3728 rix = sc->sc_minrateix;
3729 txrate = rt->info[rix].rateCode;
3730 if (shortPreamble)
3731 txrate |= rt->info[rix].shortPreamble;
3732 try0 = ATH_TXMGTTRY;
3733 /* NB: force all management frames to highest queue */
3734 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3735 /* NB: force all management frames to highest queue */
3736 pri = WME_AC_VO;
3737 } else
3738 pri = WME_AC_BE;
3739 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3740 break;
3741 case IEEE80211_FC0_TYPE_CTL:
3742 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3743 rix = sc->sc_minrateix;
3744 txrate = rt->info[rix].rateCode;
3745 if (shortPreamble)
3746 txrate |= rt->info[rix].shortPreamble;
3747 try0 = ATH_TXMGTTRY;
3748 /* NB: force all ctl frames to highest queue */
3749 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3750 /* NB: force all ctl frames to highest queue */
3751 pri = WME_AC_VO;
3752 } else
3753 pri = WME_AC_BE;
3754 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3755 break;
3756 case IEEE80211_FC0_TYPE_DATA:
3757 atype = HAL_PKT_TYPE_NORMAL; /* default */
3758 /*
3759 * Data frames: multicast frames go out at a fixed rate,
3760 * otherwise consult the rate control module for the
3761 * rate to use.
3762 */
3763 if (ismcast) {
3764 /*
3765 * Check mcast rate setting in case it's changed.
3766 * XXX move out of fastpath
3767 */
3768 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3769 sc->sc_mcastrix =
3770 ath_tx_findrix(rt, ic->ic_mcast_rate);
3771 sc->sc_mcastrate = ic->ic_mcast_rate;
3772 }
3773 rix = sc->sc_mcastrix;
3774 txrate = rt->info[rix].rateCode;
3775 try0 = 1;
3776 } else {
3777 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3778 &rix, &try0, &txrate);
3779 sc->sc_txrate = txrate; /* for LED blinking */
3780 if (try0 != ATH_TXMAXTRY)
3781 ismrr = 1;
3782 }
3783 pri = M_WME_GETAC(m0);
3784 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3785 flags |= HAL_TXDESC_NOACK;
3786 break;
3787 default:
3788 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3789 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3790 /* XXX statistic */
3791 ath_freetx(m0);
3792 return EIO;
3793 }
3794 txq = sc->sc_ac2q[pri];
3795
3796 /*
3797 * When servicing one or more stations in power-save mode
3798 * multicast frames must be buffered until after the beacon.
3799 * We use the CAB queue for that.
3800 */
3801 if (ismcast && ic->ic_ps_sta) {
3802 txq = sc->sc_cabq;
3803 /* XXX? more bit in 802.11 frame header */
3804 }
3805
3806 /*
3807 * Calculate miscellaneous flags.
3808 */
3809 if (ismcast) {
3810 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3811 } else if (pktlen > ic->ic_rtsthreshold) {
3812 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3813 cix = rt->info[rix].controlRate;
3814 sc->sc_stats.ast_tx_rts++;
3815 }
3816 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3817 sc->sc_stats.ast_tx_noack++;
3818
3819 /*
3820 * If 802.11g protection is enabled, determine whether
3821 * to use RTS/CTS or just CTS. Note that this is only
3822 * done for OFDM unicast frames.
3823 */
3824 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3825 rt->info[rix].phy == IEEE80211_T_OFDM &&
3826 (flags & HAL_TXDESC_NOACK) == 0) {
3827 /* XXX fragments must use CCK rates w/ protection */
3828 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3829 flags |= HAL_TXDESC_RTSENA;
3830 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3831 flags |= HAL_TXDESC_CTSENA;
3832 if (isfrag) {
3833 /*
3834 * For frags it would be desirable to use the
3835 * highest CCK rate for RTS/CTS. But stations
3836 * farther away may detect it at a lower CCK rate
3837 * so use the configured protection rate instead
3838 * (for now).
3839 */
3840 cix = rt->info[sc->sc_protrix].controlRate;
3841 } else
3842 cix = rt->info[sc->sc_protrix].controlRate;
3843 sc->sc_stats.ast_tx_protect++;
3844 }
3845
3846 /*
3847 * Calculate duration. This logically belongs in the 802.11
3848 * layer but it lacks sufficient information to calculate it.
3849 */
3850 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3851 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3852 u_int16_t dur;
3853 /*
3854 * XXX not right with fragmentation.
3855 */
3856 if (shortPreamble)
3857 dur = rt->info[rix].spAckDuration;
3858 else
3859 dur = rt->info[rix].lpAckDuration;
3860 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3861 dur += dur; /* additional SIFS+ACK */
3862 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3863 /*
3864 * Include the size of next fragment so NAV is
3865 * updated properly. The last fragment uses only
3866 * the ACK duration
3867 */
3868 dur += ath_hal_computetxtime(ah, rt,
3869 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3870 hdrlen) -
3871 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3872 rix, shortPreamble);
3873 }
3874 if (isfrag) {
3875 /*
3876 * Force hardware to use computed duration for next
3877 * fragment by disabling multi-rate retry which updates
3878 * duration based on the multi-rate duration table.
3879 */
3880 try0 = ATH_TXMAXTRY;
3881 }
3882 *(u_int16_t *)wh->i_dur = htole16(dur);
3883 }
3884
3885 /*
3886 * Calculate RTS/CTS rate and duration if needed.
3887 */
3888 ctsduration = 0;
3889 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3890 /*
3891 * CTS transmit rate is derived from the transmit rate
3892 * by looking in the h/w rate table. We must also factor
3893 * in whether or not a short preamble is to be used.
3894 */
3895 /* NB: cix is set above where RTS/CTS is enabled */
3896 KASSERT(cix != 0xff, ("cix not setup"));
3897 ctsrate = rt->info[cix].rateCode;
3898 /*
3899 * Compute the transmit duration based on the frame
3900 * size and the size of an ACK frame. We call into the
3901 * HAL to do the computation since it depends on the
3902 * characteristics of the actual PHY being used.
3903 *
3904 * NB: CTS is assumed the same size as an ACK so we can
3905 * use the precalculated ACK durations.
3906 */
3907 if (shortPreamble) {
3908 ctsrate |= rt->info[cix].shortPreamble;
3909 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3910 ctsduration += rt->info[cix].spAckDuration;
3911 ctsduration += ath_hal_computetxtime(ah,
3912 rt, pktlen, rix, AH_TRUE);
3913 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3914 ctsduration += rt->info[rix].spAckDuration;
3915 } else {
3916 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3917 ctsduration += rt->info[cix].lpAckDuration;
3918 ctsduration += ath_hal_computetxtime(ah,
3919 rt, pktlen, rix, AH_FALSE);
3920 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3921 ctsduration += rt->info[rix].lpAckDuration;
3922 }
3923 /*
3924 * Must disable multi-rate retry when using RTS/CTS.
3925 */
3926 ismrr = 0;
3927 try0 = ATH_TXMGTTRY; /* XXX */
3928 } else
3929 ctsrate = 0;
3930
3931 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3932 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3933 sc->sc_hwmap[txrate].ieeerate, -1);
3934 if (ic->ic_rawbpf)
3935 bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
3936 if (sc->sc_drvbpf) {
3937 u_int64_t tsf = ath_hal_gettsf64(ah);
3938
3939 sc->sc_tx_th.wt_tsf = htole64(tsf);
3940 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3941 if (iswep)
3942 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3943 if (isfrag)
3944 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3945 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3946 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3947 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3948
3949 bpf_ops->bpf_mtap2(sc->sc_drvbpf,
3950 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3951 }
3952
3953 /*
3954 * Determine if a tx interrupt should be generated for
3955 * this descriptor. We take a tx interrupt to reap
3956 * descriptors when the h/w hits an EOL condition or
3957 * when the descriptor is specifically marked to generate
3958 * an interrupt. We periodically mark descriptors in this
3959 * way to insure timely replenishing of the supply needed
3960 * for sending frames. Defering interrupts reduces system
3961 * load and potentially allows more concurrent work to be
3962 * done but if done to aggressively can cause senders to
3963 * backup.
3964 *
3965 * NB: use >= to deal with sc_txintrperiod changing
3966 * dynamically through sysctl.
3967 */
3968 if (flags & HAL_TXDESC_INTREQ) {
3969 txq->axq_intrcnt = 0;
3970 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3971 flags |= HAL_TXDESC_INTREQ;
3972 txq->axq_intrcnt = 0;
3973 }
3974
3975 /*
3976 * Formulate first tx descriptor with tx controls.
3977 */
3978 /* XXX check return value? */
3979 ath_hal_setuptxdesc(ah, ds
3980 , pktlen /* packet length */
3981 , hdrlen /* header length */
3982 , atype /* Atheros packet type */
3983 , ni->ni_txpower /* txpower */
3984 , txrate, try0 /* series 0 rate/tries */
3985 , keyix /* key cache index */
3986 , sc->sc_txantenna /* antenna mode */
3987 , flags /* flags */
3988 , ctsrate /* rts/cts rate */
3989 , ctsduration /* rts/cts duration */
3990 );
3991 bf->bf_flags = flags;
3992 /*
3993 * Setup the multi-rate retry state only when we're
3994 * going to use it. This assumes ath_hal_setuptxdesc
3995 * initializes the descriptors (so we don't have to)
3996 * when the hardware supports multi-rate retry and
3997 * we don't use it.
3998 */
3999 if (ismrr)
4000 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4001
4002 /*
4003 * Fillin the remainder of the descriptor info.
4004 */
4005 ds0 = ds;
4006 for (i = 0; i < bf->bf_nseg; i++, ds++) {
4007 ds->ds_data = bf->bf_segs[i].ds_addr;
4008 if (i == bf->bf_nseg - 1)
4009 ds->ds_link = 0;
4010 else
4011 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4012 ath_hal_filltxdesc(ah, ds
4013 , bf->bf_segs[i].ds_len /* segment length */
4014 , i == 0 /* first segment */
4015 , i == bf->bf_nseg - 1 /* last segment */
4016 , ds0 /* first descriptor */
4017 );
4018
4019 /* NB: The desc swap function becomes void,
4020 * if descriptor swapping is not enabled
4021 */
4022 ath_desc_swap(ds);
4023
4024 DPRINTF(sc, ATH_DEBUG_XMIT,
4025 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
4026 __func__, i, ds->ds_link, ds->ds_data,
4027 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4028 }
4029 /*
4030 * Insert the frame on the outbound list and
4031 * pass it on to the hardware.
4032 */
4033 ATH_TXQ_LOCK(txq);
4034 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4035 if (txq->axq_link == NULL) {
4036 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4037 DPRINTF(sc, ATH_DEBUG_XMIT,
4038 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4039 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4040 txq->axq_depth);
4041 } else {
4042 *txq->axq_link = HTOAH32(bf->bf_daddr);
4043 DPRINTF(sc, ATH_DEBUG_XMIT,
4044 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4045 __func__, txq->axq_qnum, txq->axq_link,
4046 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4047 }
4048 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4049 /*
4050 * The CAB queue is started from the SWBA handler since
4051 * frames only go out on DTIM and to avoid possible races.
4052 */
4053 if (txq != sc->sc_cabq)
4054 ath_hal_txstart(ah, txq->axq_qnum);
4055 ATH_TXQ_UNLOCK(txq);
4056
4057 return 0;
4058 }
4059
4060 /*
4061 * Process completed xmit descriptors from the specified queue.
4062 */
4063 static int
4064 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4065 {
4066 struct ath_hal *ah = sc->sc_ah;
4067 struct ieee80211com *ic = &sc->sc_ic;
4068 struct ath_buf *bf;
4069 struct ath_desc *ds, *ds0;
4070 struct ieee80211_node *ni;
4071 struct ath_node *an;
4072 int sr, lr, pri, nacked;
4073 HAL_STATUS status;
4074
4075 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4076 __func__, txq->axq_qnum,
4077 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4078 txq->axq_link);
4079 nacked = 0;
4080 for (;;) {
4081 ATH_TXQ_LOCK(txq);
4082 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4083 bf = STAILQ_FIRST(&txq->axq_q);
4084 if (bf == NULL) {
4085 txq->axq_link = NULL;
4086 ATH_TXQ_UNLOCK(txq);
4087 break;
4088 }
4089 ds0 = &bf->bf_desc[0];
4090 ds = &bf->bf_desc[bf->bf_nseg - 1];
4091 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4092 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4093 ath_printtxbuf(bf, status == HAL_OK);
4094 if (status == HAL_EINPROGRESS) {
4095 ATH_TXQ_UNLOCK(txq);
4096 break;
4097 }
4098 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4099 ATH_TXQ_UNLOCK(txq);
4100
4101 ni = bf->bf_node;
4102 if (ni != NULL) {
4103 an = ATH_NODE(ni);
4104 if (ds->ds_txstat.ts_status == 0) {
4105 u_int8_t txant = ds->ds_txstat.ts_antenna;
4106 sc->sc_stats.ast_ant_tx[txant]++;
4107 sc->sc_ant_tx[txant]++;
4108 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4109 sc->sc_stats.ast_tx_altrate++;
4110 sc->sc_stats.ast_tx_rssi =
4111 ds->ds_txstat.ts_rssi;
4112 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4113 ds->ds_txstat.ts_rssi);
4114 pri = M_WME_GETAC(bf->bf_m);
4115 if (pri >= WME_AC_VO)
4116 ic->ic_wme.wme_hipri_traffic++;
4117 ni->ni_inact = ni->ni_inact_reload;
4118 } else {
4119 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4120 sc->sc_stats.ast_tx_xretries++;
4121 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4122 sc->sc_stats.ast_tx_fifoerr++;
4123 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4124 sc->sc_stats.ast_tx_filtered++;
4125 }
4126 sr = ds->ds_txstat.ts_shortretry;
4127 lr = ds->ds_txstat.ts_longretry;
4128 sc->sc_stats.ast_tx_shortretry += sr;
4129 sc->sc_stats.ast_tx_longretry += lr;
4130 /*
4131 * Hand the descriptor to the rate control algorithm.
4132 */
4133 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4134 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4135 /*
4136 * If frame was ack'd update the last rx time
4137 * used to workaround phantom bmiss interrupts.
4138 */
4139 if (ds->ds_txstat.ts_status == 0)
4140 nacked++;
4141 ath_rate_tx_complete(sc, an, ds, ds0);
4142 }
4143 /*
4144 * Reclaim reference to node.
4145 *
4146 * NB: the node may be reclaimed here if, for example
4147 * this is a DEAUTH message that was sent and the
4148 * node was timed out due to inactivity.
4149 */
4150 ieee80211_free_node(ni);
4151 }
4152 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4153 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4154 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4155 m_freem(bf->bf_m);
4156 bf->bf_m = NULL;
4157 bf->bf_node = NULL;
4158
4159 ATH_TXBUF_LOCK(sc);
4160 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4161 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4162 ATH_TXBUF_UNLOCK(sc);
4163 }
4164 return nacked;
4165 }
4166
4167 static inline int
4168 txqactive(struct ath_hal *ah, int qnum)
4169 {
4170 u_int32_t txqs = 1<<qnum;
4171 ath_hal_gettxintrtxqs(ah, &txqs);
4172 return (txqs & (1<<qnum));
4173 }
4174
4175 /*
4176 * Deferred processing of transmit interrupt; special-cased
4177 * for a single hardware transmit queue (e.g. 5210 and 5211).
4178 */
4179 static void
4180 ath_tx_proc_q0(void *arg, int npending)
4181 {
4182 struct ath_softc *sc = arg;
4183 struct ifnet *ifp = &sc->sc_if;
4184
4185 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4186 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4187 }
4188 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4189 ath_tx_processq(sc, sc->sc_cabq);
4190
4191 if (sc->sc_softled)
4192 ath_led_event(sc, ATH_LED_TX);
4193
4194 ath_start(ifp);
4195 }
4196
4197 /*
4198 * Deferred processing of transmit interrupt; special-cased
4199 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4200 */
4201 static void
4202 ath_tx_proc_q0123(void *arg, int npending)
4203 {
4204 struct ath_softc *sc = arg;
4205 struct ifnet *ifp = &sc->sc_if;
4206 int nacked;
4207
4208 /*
4209 * Process each active queue.
4210 */
4211 nacked = 0;
4212 if (txqactive(sc->sc_ah, 0))
4213 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4214 if (txqactive(sc->sc_ah, 1))
4215 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4216 if (txqactive(sc->sc_ah, 2))
4217 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4218 if (txqactive(sc->sc_ah, 3))
4219 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4220 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4221 ath_tx_processq(sc, sc->sc_cabq);
4222 if (nacked) {
4223 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4224 }
4225
4226 if (sc->sc_softled)
4227 ath_led_event(sc, ATH_LED_TX);
4228
4229 ath_start(ifp);
4230 }
4231
4232 /*
4233 * Deferred processing of transmit interrupt.
4234 */
4235 static void
4236 ath_tx_proc(void *arg, int npending)
4237 {
4238 struct ath_softc *sc = arg;
4239 struct ifnet *ifp = &sc->sc_if;
4240 int i, nacked;
4241
4242 /*
4243 * Process each active queue.
4244 */
4245 nacked = 0;
4246 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4247 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4248 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4249 if (nacked) {
4250 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4251 }
4252
4253 if (sc->sc_softled)
4254 ath_led_event(sc, ATH_LED_TX);
4255
4256 ath_start(ifp);
4257 }
4258
4259 static void
4260 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4261 {
4262 struct ath_hal *ah = sc->sc_ah;
4263 struct ieee80211_node *ni;
4264 struct ath_buf *bf;
4265 struct ath_desc *ds;
4266
4267 /*
4268 * NB: this assumes output has been stopped and
4269 * we do not need to block ath_tx_tasklet
4270 */
4271 for (;;) {
4272 ATH_TXQ_LOCK(txq);
4273 bf = STAILQ_FIRST(&txq->axq_q);
4274 if (bf == NULL) {
4275 txq->axq_link = NULL;
4276 ATH_TXQ_UNLOCK(txq);
4277 break;
4278 }
4279 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4280 ATH_TXQ_UNLOCK(txq);
4281 ds = &bf->bf_desc[bf->bf_nseg - 1];
4282 if (sc->sc_debug & ATH_DEBUG_RESET)
4283 ath_printtxbuf(bf,
4284 ath_hal_txprocdesc(ah, bf->bf_desc,
4285 &ds->ds_txstat) == HAL_OK);
4286 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4287 m_freem(bf->bf_m);
4288 bf->bf_m = NULL;
4289 ni = bf->bf_node;
4290 bf->bf_node = NULL;
4291 if (ni != NULL) {
4292 /*
4293 * Reclaim node reference.
4294 */
4295 ieee80211_free_node(ni);
4296 }
4297 ATH_TXBUF_LOCK(sc);
4298 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4299 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4300 ATH_TXBUF_UNLOCK(sc);
4301 }
4302 }
4303
4304 static void
4305 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4306 {
4307 struct ath_hal *ah = sc->sc_ah;
4308
4309 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4310 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4311 __func__, txq->axq_qnum,
4312 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4313 txq->axq_link);
4314 }
4315
4316 /*
4317 * Drain the transmit queues and reclaim resources.
4318 */
4319 static void
4320 ath_draintxq(struct ath_softc *sc)
4321 {
4322 struct ath_hal *ah = sc->sc_ah;
4323 int i;
4324
4325 /* XXX return value */
4326 if (device_is_active(sc->sc_dev)) {
4327 /* don't touch the hardware if marked invalid */
4328 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4329 DPRINTF(sc, ATH_DEBUG_RESET,
4330 "%s: beacon queue %p\n", __func__,
4331 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4332 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4333 if (ATH_TXQ_SETUP(sc, i))
4334 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4335 }
4336 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4337 if (ATH_TXQ_SETUP(sc, i))
4338 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4339 }
4340
4341 /*
4342 * Disable the receive h/w in preparation for a reset.
4343 */
4344 static void
4345 ath_stoprecv(struct ath_softc *sc)
4346 {
4347 #define PA2DESC(_sc, _pa) \
4348 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4349 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4350 struct ath_hal *ah = sc->sc_ah;
4351 u_int64_t tsf;
4352
4353 ath_hal_stoppcurecv(ah); /* disable PCU */
4354 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4355 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4356 DELAY(3000); /* 3ms is long enough for 1 frame */
4357 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4358 struct ath_buf *bf;
4359
4360 printf("%s: rx queue %p, link %p\n", __func__,
4361 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4362 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4363 struct ath_desc *ds = bf->bf_desc;
4364 tsf = ath_hal_gettsf64(sc->sc_ah);
4365 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4366 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4367 &ds->ds_rxstat);
4368 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4369 ath_printrxbuf(bf, status == HAL_OK);
4370 }
4371 }
4372 sc->sc_rxlink = NULL; /* just in case */
4373 #undef PA2DESC
4374 }
4375
4376 /*
4377 * Enable the receive h/w following a reset.
4378 */
4379 static int
4380 ath_startrecv(struct ath_softc *sc)
4381 {
4382 struct ath_hal *ah = sc->sc_ah;
4383 struct ath_buf *bf;
4384
4385 sc->sc_rxlink = NULL;
4386 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4387 int error = ath_rxbuf_init(sc, bf);
4388 if (error != 0) {
4389 DPRINTF(sc, ATH_DEBUG_RECV,
4390 "%s: ath_rxbuf_init failed %d\n",
4391 __func__, error);
4392 return error;
4393 }
4394 }
4395
4396 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4397 ath_hal_putrxbuf(ah, bf->bf_daddr);
4398 ath_hal_rxena(ah); /* enable recv descriptors */
4399 ath_mode_init(sc); /* set filters, etc. */
4400 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4401 return 0;
4402 }
4403
4404 /*
4405 * Update internal state after a channel change.
4406 */
4407 static void
4408 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4409 {
4410 struct ieee80211com *ic = &sc->sc_ic;
4411 enum ieee80211_phymode mode;
4412 u_int16_t flags;
4413
4414 /*
4415 * Change channels and update the h/w rate map
4416 * if we're switching; e.g. 11a to 11b/g.
4417 */
4418 mode = ieee80211_chan2mode(ic, chan);
4419 if (mode != sc->sc_curmode)
4420 ath_setcurmode(sc, mode);
4421 /*
4422 * Update BPF state. NB: ethereal et. al. don't handle
4423 * merged flags well so pick a unique mode for their use.
4424 */
4425 if (IEEE80211_IS_CHAN_A(chan))
4426 flags = IEEE80211_CHAN_A;
4427 /* XXX 11g schizophrenia */
4428 else if (IEEE80211_IS_CHAN_G(chan) ||
4429 IEEE80211_IS_CHAN_PUREG(chan))
4430 flags = IEEE80211_CHAN_G;
4431 else
4432 flags = IEEE80211_CHAN_B;
4433 if (IEEE80211_IS_CHAN_T(chan))
4434 flags |= IEEE80211_CHAN_TURBO;
4435 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4436 htole16(chan->ic_freq);
4437 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4438 htole16(flags);
4439 }
4440
4441 #if 0
4442 /*
4443 * Poll for a channel clear indication; this is required
4444 * for channels requiring DFS and not previously visited
4445 * and/or with a recent radar detection.
4446 */
4447 static void
4448 ath_dfswait(void *arg)
4449 {
4450 struct ath_softc *sc = arg;
4451 struct ath_hal *ah = sc->sc_ah;
4452 HAL_CHANNEL hchan;
4453
4454 ath_hal_radar_wait(ah, &hchan);
4455 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4456 if_printf(&sc->sc_if,
4457 "channel %u/0x%x/0x%x has interference\n",
4458 hchan.channel, hchan.channelFlags, hchan.privFlags);
4459 return;
4460 }
4461 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4462 /* XXX should not happen */
4463 return;
4464 }
4465 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4466 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4467 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4468 if_printf(&sc->sc_if,
4469 "channel %u/0x%x/0x%x marked clear\n",
4470 hchan.channel, hchan.channelFlags, hchan.privFlags);
4471 } else
4472 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4473 }
4474 #endif
4475
4476 /*
4477 * Set/change channels. If the channel is really being changed,
4478 * it's done by reseting the chip. To accomplish this we must
4479 * first cleanup any pending DMA, then restart stuff after a la
4480 * ath_init.
4481 */
4482 static int
4483 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4484 {
4485 struct ath_hal *ah = sc->sc_ah;
4486 struct ieee80211com *ic = &sc->sc_ic;
4487 HAL_CHANNEL hchan;
4488
4489 /*
4490 * Convert to a HAL channel description with
4491 * the flags constrained to reflect the current
4492 * operating mode.
4493 */
4494 hchan.channel = chan->ic_freq;
4495 hchan.channelFlags = ath_chan2flags(ic, chan);
4496
4497 DPRINTF(sc, ATH_DEBUG_RESET,
4498 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4499 __func__,
4500 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4501 sc->sc_curchan.channelFlags),
4502 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4503 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4504 hchan.channel, hchan.channelFlags);
4505 if (hchan.channel != sc->sc_curchan.channel ||
4506 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4507 HAL_STATUS status;
4508
4509 /*
4510 * To switch channels clear any pending DMA operations;
4511 * wait long enough for the RX fifo to drain, reset the
4512 * hardware at the new frequency, and then re-enable
4513 * the relevant bits of the h/w.
4514 */
4515 ath_hal_intrset(ah, 0); /* disable interrupts */
4516 ath_draintxq(sc); /* clear pending tx frames */
4517 ath_stoprecv(sc); /* turn off frame recv */
4518 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4519 if_printf(ic->ic_ifp, "%s: unable to reset "
4520 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4521 __func__, ieee80211_chan2ieee(ic, chan),
4522 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4523 return EIO;
4524 }
4525 sc->sc_curchan = hchan;
4526 ath_update_txpow(sc); /* update tx power state */
4527 ath_restore_diversity(sc);
4528 sc->sc_calinterval = 1;
4529 sc->sc_caltries = 0;
4530
4531 /*
4532 * Re-enable rx framework.
4533 */
4534 if (ath_startrecv(sc) != 0) {
4535 if_printf(&sc->sc_if,
4536 "%s: unable to restart recv logic\n", __func__);
4537 return EIO;
4538 }
4539
4540 /*
4541 * Change channels and update the h/w rate map
4542 * if we're switching; e.g. 11a to 11b/g.
4543 */
4544 ic->ic_ibss_chan = chan;
4545 ath_chan_change(sc, chan);
4546
4547 #if 0
4548 /*
4549 * Handle DFS required waiting period to determine
4550 * if channel is clear of radar traffic.
4551 */
4552 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4553 #define DFS_AND_NOT_CLEAR(_c) \
4554 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4555 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4556 if_printf(&sc->sc_if,
4557 "wait for DFS clear channel signal\n");
4558 /* XXX stop sndq */
4559 sc->sc_if.if_flags |= IFF_OACTIVE;
4560 callout_reset(&sc->sc_dfs_ch,
4561 2 * hz, ath_dfswait, sc);
4562 } else
4563 callout_stop(&sc->sc_dfs_ch);
4564 #undef DFS_NOT_CLEAR
4565 }
4566 #endif
4567
4568 /*
4569 * Re-enable interrupts.
4570 */
4571 ath_hal_intrset(ah, sc->sc_imask);
4572 }
4573 return 0;
4574 }
4575
4576 static void
4577 ath_next_scan(void *arg)
4578 {
4579 struct ath_softc *sc = arg;
4580 struct ieee80211com *ic = &sc->sc_ic;
4581 int s;
4582
4583 /* don't call ath_start w/o network interrupts blocked */
4584 s = splnet();
4585
4586 if (ic->ic_state == IEEE80211_S_SCAN)
4587 ieee80211_next_scan(ic);
4588 splx(s);
4589 }
4590
4591 /*
4592 * Periodically recalibrate the PHY to account
4593 * for temperature/environment changes.
4594 */
4595 static void
4596 ath_calibrate(void *arg)
4597 {
4598 struct ath_softc *sc = arg;
4599 struct ath_hal *ah = sc->sc_ah;
4600 HAL_BOOL iqCalDone;
4601
4602 sc->sc_stats.ast_per_cal++;
4603
4604 ATH_LOCK(sc);
4605
4606 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4607 /*
4608 * Rfgain is out of bounds, reset the chip
4609 * to load new gain values.
4610 */
4611 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4612 "%s: rfgain change\n", __func__);
4613 sc->sc_stats.ast_per_rfgain++;
4614 ath_reset(&sc->sc_if);
4615 }
4616 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4617 DPRINTF(sc, ATH_DEBUG_ANY,
4618 "%s: calibration of channel %u failed\n",
4619 __func__, sc->sc_curchan.channel);
4620 sc->sc_stats.ast_per_calfail++;
4621 }
4622 /*
4623 * Calibrate noise floor data again in case of change.
4624 */
4625 ath_hal_process_noisefloor(ah);
4626 /*
4627 * Poll more frequently when the IQ calibration is in
4628 * progress to speedup loading the final settings.
4629 * We temper this aggressive polling with an exponential
4630 * back off after 4 tries up to ath_calinterval.
4631 */
4632 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4633 sc->sc_caltries = 0;
4634 sc->sc_calinterval = ath_calinterval;
4635 } else if (sc->sc_caltries > 4) {
4636 sc->sc_caltries = 0;
4637 sc->sc_calinterval <<= 1;
4638 if (sc->sc_calinterval > ath_calinterval)
4639 sc->sc_calinterval = ath_calinterval;
4640 }
4641 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4642 ("bad calibration interval %u", sc->sc_calinterval));
4643
4644 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4645 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4646 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4647 sc->sc_caltries++;
4648 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4649 ath_calibrate, sc);
4650 ATH_UNLOCK(sc);
4651 }
4652
4653 static int
4654 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4655 {
4656 struct ifnet *ifp = ic->ic_ifp;
4657 struct ath_softc *sc = ifp->if_softc;
4658 struct ath_hal *ah = sc->sc_ah;
4659 struct ieee80211_node *ni;
4660 int i, error;
4661 const u_int8_t *bssid;
4662 u_int32_t rfilt;
4663 static const HAL_LED_STATE leds[] = {
4664 HAL_LED_INIT, /* IEEE80211_S_INIT */
4665 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4666 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4667 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4668 HAL_LED_RUN, /* IEEE80211_S_RUN */
4669 };
4670
4671 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4672 ieee80211_state_name[ic->ic_state],
4673 ieee80211_state_name[nstate]);
4674
4675 callout_stop(&sc->sc_scan_ch);
4676 callout_stop(&sc->sc_cal_ch);
4677 #if 0
4678 callout_stop(&sc->sc_dfs_ch);
4679 #endif
4680 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4681
4682 if (nstate == IEEE80211_S_INIT) {
4683 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4684 /*
4685 * NB: disable interrupts so we don't rx frames.
4686 */
4687 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4688 /*
4689 * Notify the rate control algorithm.
4690 */
4691 ath_rate_newstate(sc, nstate);
4692 goto done;
4693 }
4694 ni = ic->ic_bss;
4695 error = ath_chan_set(sc, ic->ic_curchan);
4696 if (error != 0)
4697 goto bad;
4698 rfilt = ath_calcrxfilter(sc, nstate);
4699 if (nstate == IEEE80211_S_SCAN)
4700 bssid = ifp->if_broadcastaddr;
4701 else
4702 bssid = ni->ni_bssid;
4703 ath_hal_setrxfilter(ah, rfilt);
4704 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4705 __func__, rfilt, ether_sprintf(bssid));
4706
4707 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4708 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4709 else
4710 ath_hal_setassocid(ah, bssid, 0);
4711 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4712 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4713 if (ath_hal_keyisvalid(ah, i))
4714 ath_hal_keysetmac(ah, i, bssid);
4715 }
4716
4717 /*
4718 * Notify the rate control algorithm so rates
4719 * are setup should ath_beacon_alloc be called.
4720 */
4721 ath_rate_newstate(sc, nstate);
4722
4723 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4724 /* nothing to do */;
4725 } else if (nstate == IEEE80211_S_RUN) {
4726 DPRINTF(sc, ATH_DEBUG_STATE,
4727 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4728 "capinfo=0x%04x chan=%d\n"
4729 , __func__
4730 , ic->ic_flags
4731 , ni->ni_intval
4732 , ether_sprintf(ni->ni_bssid)
4733 , ni->ni_capinfo
4734 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4735
4736 switch (ic->ic_opmode) {
4737 case IEEE80211_M_HOSTAP:
4738 case IEEE80211_M_IBSS:
4739 /*
4740 * Allocate and setup the beacon frame.
4741 *
4742 * Stop any previous beacon DMA. This may be
4743 * necessary, for example, when an ibss merge
4744 * causes reconfiguration; there will be a state
4745 * transition from RUN->RUN that means we may
4746 * be called with beacon transmission active.
4747 */
4748 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4749 ath_beacon_free(sc);
4750 error = ath_beacon_alloc(sc, ni);
4751 if (error != 0)
4752 goto bad;
4753 /*
4754 * If joining an adhoc network defer beacon timer
4755 * configuration to the next beacon frame so we
4756 * have a current TSF to use. Otherwise we're
4757 * starting an ibss/bss so there's no need to delay.
4758 */
4759 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4760 ic->ic_bss->ni_tstamp.tsf != 0)
4761 sc->sc_syncbeacon = 1;
4762 else
4763 ath_beacon_config(sc);
4764 break;
4765 case IEEE80211_M_STA:
4766 /*
4767 * Allocate a key cache slot to the station.
4768 */
4769 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4770 sc->sc_hasclrkey &&
4771 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4772 ath_setup_stationkey(ni);
4773 /*
4774 * Defer beacon timer configuration to the next
4775 * beacon frame so we have a current TSF to use
4776 * (any TSF collected when scanning is likely old).
4777 */
4778 sc->sc_syncbeacon = 1;
4779 break;
4780 default:
4781 break;
4782 }
4783 /*
4784 * Let the hal process statistics collected during a
4785 * scan so it can provide calibrated noise floor data.
4786 */
4787 ath_hal_process_noisefloor(ah);
4788 /*
4789 * Reset rssi stats; maybe not the best place...
4790 */
4791 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4792 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4793 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4794 } else {
4795 ath_hal_intrset(ah,
4796 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4797 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4798 }
4799 done:
4800 /*
4801 * Invoke the parent method to complete the work.
4802 */
4803 error = sc->sc_newstate(ic, nstate, arg);
4804 /*
4805 * Finally, start any timers.
4806 */
4807 if (nstate == IEEE80211_S_RUN) {
4808 /* start periodic recalibration timer */
4809 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4810 ath_calibrate, sc);
4811 } else if (nstate == IEEE80211_S_SCAN) {
4812 /* start ap/neighbor scan timer */
4813 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4814 ath_next_scan, sc);
4815 }
4816 bad:
4817 return error;
4818 }
4819
4820 /*
4821 * Allocate a key cache slot to the station so we can
4822 * setup a mapping from key index to node. The key cache
4823 * slot is needed for managing antenna state and for
4824 * compression when stations do not use crypto. We do
4825 * it uniliaterally here; if crypto is employed this slot
4826 * will be reassigned.
4827 */
4828 static void
4829 ath_setup_stationkey(struct ieee80211_node *ni)
4830 {
4831 struct ieee80211com *ic = ni->ni_ic;
4832 struct ath_softc *sc = ic->ic_ifp->if_softc;
4833 ieee80211_keyix keyix, rxkeyix;
4834
4835 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4836 /*
4837 * Key cache is full; we'll fall back to doing
4838 * the more expensive lookup in software. Note
4839 * this also means no h/w compression.
4840 */
4841 /* XXX msg+statistic */
4842 } else {
4843 /* XXX locking? */
4844 ni->ni_ucastkey.wk_keyix = keyix;
4845 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4846 /* NB: this will create a pass-thru key entry */
4847 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4848 }
4849 }
4850
4851 /*
4852 * Setup driver-specific state for a newly associated node.
4853 * Note that we're called also on a re-associate, the isnew
4854 * param tells us if this is the first time or not.
4855 */
4856 static void
4857 ath_newassoc(struct ieee80211_node *ni, int isnew)
4858 {
4859 struct ieee80211com *ic = ni->ni_ic;
4860 struct ath_softc *sc = ic->ic_ifp->if_softc;
4861
4862 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4863 if (isnew &&
4864 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4865 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4866 ("new assoc with a unicast key already setup (keyix %u)",
4867 ni->ni_ucastkey.wk_keyix));
4868 ath_setup_stationkey(ni);
4869 }
4870 }
4871
4872 static int
4873 ath_getchannels(struct ath_softc *sc, u_int cc,
4874 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4875 {
4876 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4877 struct ieee80211com *ic = &sc->sc_ic;
4878 struct ifnet *ifp = &sc->sc_if;
4879 struct ath_hal *ah = sc->sc_ah;
4880 HAL_CHANNEL *chans;
4881 int i, ix, nchan;
4882
4883 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4884 M_TEMP, M_NOWAIT);
4885 if (chans == NULL) {
4886 if_printf(ifp, "unable to allocate channel table\n");
4887 return ENOMEM;
4888 }
4889 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4890 NULL, 0, NULL,
4891 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4892 u_int32_t rd;
4893
4894 (void)ath_hal_getregdomain(ah, &rd);
4895 if_printf(ifp, "unable to collect channel list from hal; "
4896 "regdomain likely %u country code %u\n", rd, cc);
4897 free(chans, M_TEMP);
4898 return EINVAL;
4899 }
4900
4901 /*
4902 * Convert HAL channels to ieee80211 ones and insert
4903 * them in the table according to their channel number.
4904 */
4905 for (i = 0; i < nchan; i++) {
4906 HAL_CHANNEL *c = &chans[i];
4907 u_int16_t flags;
4908
4909 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4910 if (ix > IEEE80211_CHAN_MAX) {
4911 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4912 ix, c->channel, c->channelFlags);
4913 continue;
4914 }
4915 if (ix < 0) {
4916 /* XXX can't handle stuff <2400 right now */
4917 if (bootverbose)
4918 if_printf(ifp, "hal channel %d (%u/%x) "
4919 "cannot be handled; ignored\n",
4920 ix, c->channel, c->channelFlags);
4921 continue;
4922 }
4923 /*
4924 * Calculate net80211 flags; most are compatible
4925 * but some need massaging. Note the static turbo
4926 * conversion can be removed once net80211 is updated
4927 * to understand static vs. dynamic turbo.
4928 */
4929 flags = c->channelFlags & COMPAT;
4930 if (c->channelFlags & CHANNEL_STURBO)
4931 flags |= IEEE80211_CHAN_TURBO;
4932 if (ic->ic_channels[ix].ic_freq == 0) {
4933 ic->ic_channels[ix].ic_freq = c->channel;
4934 ic->ic_channels[ix].ic_flags = flags;
4935 } else {
4936 /* channels overlap; e.g. 11g and 11b */
4937 ic->ic_channels[ix].ic_flags |= flags;
4938 }
4939 }
4940 free(chans, M_TEMP);
4941 return 0;
4942 #undef COMPAT
4943 }
4944
4945 static void
4946 ath_led_done(void *arg)
4947 {
4948 struct ath_softc *sc = arg;
4949
4950 sc->sc_blinking = 0;
4951 }
4952
4953 /*
4954 * Turn the LED off: flip the pin and then set a timer so no
4955 * update will happen for the specified duration.
4956 */
4957 static void
4958 ath_led_off(void *arg)
4959 {
4960 struct ath_softc *sc = arg;
4961
4962 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4963 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4964 }
4965
4966 /*
4967 * Blink the LED according to the specified on/off times.
4968 */
4969 static void
4970 ath_led_blink(struct ath_softc *sc, int on, int off)
4971 {
4972 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4973 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4974 sc->sc_blinking = 1;
4975 sc->sc_ledoff = off;
4976 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4977 }
4978
4979 static void
4980 ath_led_event(struct ath_softc *sc, int event)
4981 {
4982
4983 sc->sc_ledevent = ticks; /* time of last event */
4984 if (sc->sc_blinking) /* don't interrupt active blink */
4985 return;
4986 switch (event) {
4987 case ATH_LED_POLL:
4988 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4989 sc->sc_hwmap[0].ledoff);
4990 break;
4991 case ATH_LED_TX:
4992 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4993 sc->sc_hwmap[sc->sc_txrate].ledoff);
4994 break;
4995 case ATH_LED_RX:
4996 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4997 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4998 break;
4999 }
5000 }
5001
5002 static void
5003 ath_update_txpow(struct ath_softc *sc)
5004 {
5005 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5006 struct ieee80211com *ic = &sc->sc_ic;
5007 struct ath_hal *ah = sc->sc_ah;
5008 u_int32_t txpow;
5009
5010 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5011 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5012 /* read back in case value is clamped */
5013 (void)ath_hal_gettxpowlimit(ah, &txpow);
5014 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5015 }
5016 /*
5017 * Fetch max tx power level for status requests.
5018 */
5019 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5020 ic->ic_bss->ni_txpower = txpow;
5021 }
5022
5023 static void
5024 rate_setup(struct ath_softc *sc,
5025 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5026 {
5027 int i, maxrates;
5028
5029 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5030 DPRINTF(sc, ATH_DEBUG_ANY,
5031 "%s: rate table too small (%u > %u)\n",
5032 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5033 maxrates = IEEE80211_RATE_MAXSIZE;
5034 } else
5035 maxrates = rt->rateCount;
5036 for (i = 0; i < maxrates; i++)
5037 rs->rs_rates[i] = rt->info[i].dot11Rate;
5038 rs->rs_nrates = maxrates;
5039 }
5040
5041 static int
5042 ath_rate_setup(struct ath_softc *sc, u_int mode)
5043 {
5044 struct ath_hal *ah = sc->sc_ah;
5045 struct ieee80211com *ic = &sc->sc_ic;
5046 const HAL_RATE_TABLE *rt;
5047
5048 switch (mode) {
5049 case IEEE80211_MODE_11A:
5050 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5051 break;
5052 case IEEE80211_MODE_11B:
5053 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5054 break;
5055 case IEEE80211_MODE_11G:
5056 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5057 break;
5058 case IEEE80211_MODE_TURBO_A:
5059 /* XXX until static/dynamic turbo is fixed */
5060 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5061 break;
5062 case IEEE80211_MODE_TURBO_G:
5063 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5064 break;
5065 default:
5066 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5067 __func__, mode);
5068 return 0;
5069 }
5070 sc->sc_rates[mode] = rt;
5071 if (rt != NULL) {
5072 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5073 return 1;
5074 } else
5075 return 0;
5076 }
5077
5078 static void
5079 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5080 {
5081 #define N(a) (sizeof(a)/sizeof(a[0]))
5082 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5083 static const struct {
5084 u_int rate; /* tx/rx 802.11 rate */
5085 u_int16_t timeOn; /* LED on time (ms) */
5086 u_int16_t timeOff; /* LED off time (ms) */
5087 } blinkrates[] = {
5088 { 108, 40, 10 },
5089 { 96, 44, 11 },
5090 { 72, 50, 13 },
5091 { 48, 57, 14 },
5092 { 36, 67, 16 },
5093 { 24, 80, 20 },
5094 { 22, 100, 25 },
5095 { 18, 133, 34 },
5096 { 12, 160, 40 },
5097 { 10, 200, 50 },
5098 { 6, 240, 58 },
5099 { 4, 267, 66 },
5100 { 2, 400, 100 },
5101 { 0, 500, 130 },
5102 };
5103 const HAL_RATE_TABLE *rt;
5104 int i, j;
5105
5106 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5107 rt = sc->sc_rates[mode];
5108 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5109 for (i = 0; i < rt->rateCount; i++)
5110 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5111 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5112 for (i = 0; i < 32; i++) {
5113 u_int8_t ix = rt->rateCodeToIndex[i];
5114 if (ix == 0xff) {
5115 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5116 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5117 continue;
5118 }
5119 sc->sc_hwmap[i].ieeerate =
5120 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5121 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5122 if (rt->info[ix].shortPreamble ||
5123 rt->info[ix].phy == IEEE80211_T_OFDM)
5124 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5125 /* NB: receive frames include FCS */
5126 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5127 IEEE80211_RADIOTAP_F_FCS;
5128 /* setup blink rate table to avoid per-packet lookup */
5129 for (j = 0; j < N(blinkrates)-1; j++)
5130 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5131 break;
5132 /* NB: this uses the last entry if the rate isn't found */
5133 /* XXX beware of overlow */
5134 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5135 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5136 }
5137 sc->sc_currates = rt;
5138 sc->sc_curmode = mode;
5139 /*
5140 * All protection frames are transmited at 2Mb/s for
5141 * 11g, otherwise at 1Mb/s.
5142 */
5143 if (mode == IEEE80211_MODE_11G)
5144 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5145 else
5146 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5147 /* rate index used to send management frames */
5148 sc->sc_minrateix = 0;
5149 /*
5150 * Setup multicast rate state.
5151 */
5152 /* XXX layering violation */
5153 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5154 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5155 /* NB: caller is responsible for reseting rate control state */
5156 #undef N
5157 }
5158
5159 #ifdef AR_DEBUG
5160 static void
5161 ath_printrxbuf(struct ath_buf *bf, int done)
5162 {
5163 struct ath_desc *ds;
5164 int i;
5165
5166 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5167 printf("R%d (%p %" PRIx64
5168 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5169 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5170 ds->ds_link, ds->ds_data,
5171 ds->ds_ctl0, ds->ds_ctl1,
5172 ds->ds_hw[0], ds->ds_hw[1],
5173 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5174 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5175 }
5176 }
5177
5178 static void
5179 ath_printtxbuf(struct ath_buf *bf, int done)
5180 {
5181 struct ath_desc *ds;
5182 int i;
5183
5184 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5185 printf("T%d (%p %" PRIx64
5186 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5187 i, ds,
5188 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5189 ds->ds_link, ds->ds_data,
5190 ds->ds_ctl0, ds->ds_ctl1,
5191 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5192 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5193 }
5194 }
5195 #endif /* AR_DEBUG */
5196
5197 static void
5198 ath_watchdog(struct ifnet *ifp)
5199 {
5200 struct ath_softc *sc = ifp->if_softc;
5201 struct ieee80211com *ic = &sc->sc_ic;
5202 struct ath_txq *axq;
5203 int i;
5204
5205 ifp->if_timer = 0;
5206 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5207 !device_is_active(sc->sc_dev))
5208 return;
5209 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5210 if (!ATH_TXQ_SETUP(sc, i))
5211 continue;
5212 axq = &sc->sc_txq[i];
5213 ATH_TXQ_LOCK(axq);
5214 if (axq->axq_timer == 0)
5215 ;
5216 else if (--axq->axq_timer == 0) {
5217 ATH_TXQ_UNLOCK(axq);
5218 if_printf(ifp, "device timeout (txq %d, "
5219 "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5220 if (sc->sc_txintrperiod > 1)
5221 sc->sc_txintrperiod--;
5222 ath_reset(ifp);
5223 ifp->if_oerrors++;
5224 sc->sc_stats.ast_watchdog++;
5225 break;
5226 } else
5227 ifp->if_timer = 1;
5228 ATH_TXQ_UNLOCK(axq);
5229 }
5230 ieee80211_watchdog(ic);
5231 }
5232
5233 /*
5234 * Diagnostic interface to the HAL. This is used by various
5235 * tools to do things like retrieve register contents for
5236 * debugging. The mechanism is intentionally opaque so that
5237 * it can change frequently w/o concern for compatiblity.
5238 */
5239 static int
5240 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5241 {
5242 struct ath_hal *ah = sc->sc_ah;
5243 u_int id = ad->ad_id & ATH_DIAG_ID;
5244 void *indata = NULL;
5245 void *outdata = NULL;
5246 u_int32_t insize = ad->ad_in_size;
5247 u_int32_t outsize = ad->ad_out_size;
5248 int error = 0;
5249
5250 if (ad->ad_id & ATH_DIAG_IN) {
5251 /*
5252 * Copy in data.
5253 */
5254 indata = malloc(insize, M_TEMP, M_NOWAIT);
5255 if (indata == NULL) {
5256 error = ENOMEM;
5257 goto bad;
5258 }
5259 error = copyin(ad->ad_in_data, indata, insize);
5260 if (error)
5261 goto bad;
5262 }
5263 if (ad->ad_id & ATH_DIAG_DYN) {
5264 /*
5265 * Allocate a buffer for the results (otherwise the HAL
5266 * returns a pointer to a buffer where we can read the
5267 * results). Note that we depend on the HAL leaving this
5268 * pointer for us to use below in reclaiming the buffer;
5269 * may want to be more defensive.
5270 */
5271 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5272 if (outdata == NULL) {
5273 error = ENOMEM;
5274 goto bad;
5275 }
5276 }
5277 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5278 if (outsize < ad->ad_out_size)
5279 ad->ad_out_size = outsize;
5280 if (outdata != NULL)
5281 error = copyout(outdata, ad->ad_out_data,
5282 ad->ad_out_size);
5283 } else {
5284 error = EINVAL;
5285 }
5286 bad:
5287 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5288 free(indata, M_TEMP);
5289 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5290 free(outdata, M_TEMP);
5291 return error;
5292 }
5293
5294 static int
5295 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5296 {
5297 #define IS_RUNNING(ifp) \
5298 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5299 struct ath_softc *sc = ifp->if_softc;
5300 struct ieee80211com *ic = &sc->sc_ic;
5301 struct ifreq *ifr = (struct ifreq *)data;
5302 int error = 0;
5303
5304 ATH_LOCK(sc);
5305 switch (cmd) {
5306 case SIOCSIFFLAGS:
5307 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5308 break;
5309 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5310 case IFF_UP|IFF_RUNNING:
5311 /*
5312 * To avoid rescanning another access point,
5313 * do not call ath_init() here. Instead,
5314 * only reflect promisc mode settings.
5315 */
5316 ath_mode_init(sc);
5317 break;
5318 case IFF_UP:
5319 /*
5320 * Beware of being called during attach/detach
5321 * to reset promiscuous mode. In that case we
5322 * will still be marked UP but not RUNNING.
5323 * However trying to re-init the interface
5324 * is the wrong thing to do as we've already
5325 * torn down much of our state. There's
5326 * probably a better way to deal with this.
5327 */
5328 error = ath_init(sc);
5329 break;
5330 case IFF_RUNNING:
5331 ath_stop_locked(ifp, 1);
5332 break;
5333 case 0:
5334 break;
5335 }
5336 break;
5337 case SIOCADDMULTI:
5338 case SIOCDELMULTI:
5339 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5340 if (ifp->if_flags & IFF_RUNNING)
5341 ath_mode_init(sc);
5342 error = 0;
5343 }
5344 break;
5345 case SIOCGATHSTATS:
5346 /* NB: embed these numbers to get a consistent view */
5347 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5348 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5349 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5350 ATH_UNLOCK(sc);
5351 /*
5352 * NB: Drop the softc lock in case of a page fault;
5353 * we'll accept any potential inconsisentcy in the
5354 * statistics. The alternative is to copy the data
5355 * to a local structure.
5356 */
5357 return copyout(&sc->sc_stats,
5358 ifr->ifr_data, sizeof (sc->sc_stats));
5359 case SIOCGATHDIAG:
5360 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5361 break;
5362 default:
5363 error = ieee80211_ioctl(ic, cmd, data);
5364 if (error != ENETRESET)
5365 ;
5366 else if (IS_RUNNING(ifp) &&
5367 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5368 error = ath_init(sc);
5369 else
5370 error = 0;
5371 break;
5372 }
5373 ATH_UNLOCK(sc);
5374 return error;
5375 #undef IS_RUNNING
5376 }
5377
5378 static void
5379 ath_bpfattach(struct ath_softc *sc)
5380 {
5381 struct ifnet *ifp = &sc->sc_if;
5382
5383 bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO,
5384 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5385 &sc->sc_drvbpf);
5386
5387 /*
5388 * Initialize constant fields.
5389 * XXX make header lengths a multiple of 32-bits so subsequent
5390 * headers are properly aligned; this is a kludge to keep
5391 * certain applications happy.
5392 *
5393 * NB: the channel is setup each time we transition to the
5394 * RUN state to avoid filling it in for each frame.
5395 */
5396 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5397 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5398 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5399
5400 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5401 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5402 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5403 }
5404
5405 /*
5406 * Announce various information on device/driver attach.
5407 */
5408 static void
5409 ath_announce(struct ath_softc *sc)
5410 {
5411 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5412 struct ifnet *ifp = &sc->sc_if;
5413 struct ath_hal *ah = sc->sc_ah;
5414 u_int modes, cc;
5415
5416 if_printf(ifp, "mac %d.%d phy %d.%d",
5417 ah->ah_macVersion, ah->ah_macRev,
5418 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5419 /*
5420 * Print radio revision(s). We check the wireless modes
5421 * to avoid falsely printing revs for inoperable parts.
5422 * Dual-band radio revs are returned in the 5 GHz rev number.
5423 */
5424 ath_hal_getcountrycode(ah, &cc);
5425 modes = ath_hal_getwirelessmodes(ah, cc);
5426 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5427 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5428 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5429 ah->ah_analog5GhzRev >> 4,
5430 ah->ah_analog5GhzRev & 0xf,
5431 ah->ah_analog2GhzRev >> 4,
5432 ah->ah_analog2GhzRev & 0xf);
5433 else
5434 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5435 ah->ah_analog5GhzRev & 0xf);
5436 } else
5437 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5438 ah->ah_analog5GhzRev & 0xf);
5439 printf("\n");
5440 if (bootverbose) {
5441 int i;
5442 for (i = 0; i <= WME_AC_VO; i++) {
5443 struct ath_txq *txq = sc->sc_ac2q[i];
5444 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5445 txq->axq_qnum, ieee80211_wme_acnames[i]);
5446 }
5447 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5448 sc->sc_cabq->axq_qnum);
5449 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5450 }
5451 if (ath_rxbuf != ATH_RXBUF)
5452 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5453 if (ath_txbuf != ATH_TXBUF)
5454 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5455 #undef HAL_MODE_DUALBAND
5456 }
5457