ath.c revision 1.108.4.1 1 /* $NetBSD: ath.c,v 1.108.4.1 2010/05/30 05:17:20 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.108.4.1 2010/05/30 05:17:20 rmind Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #include <sys/param.h>
57 #include <sys/reboot.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #include <sys/mbuf.h>
62 #include <sys/malloc.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/errno.h>
67 #include <sys/callout.h>
68 #include <sys/bus.h>
69 #include <sys/endian.h>
70
71 #include <net/if.h>
72 #include <net/if_dl.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_arp.h>
76 #include <net/if_ether.h>
77 #include <net/if_llc.h>
78
79 #include <net80211/ieee80211_netbsd.h>
80 #include <net80211/ieee80211_var.h>
81
82 #include <net/bpf.h>
83
84 #ifdef INET
85 #include <netinet/in.h>
86 #endif
87
88 #include <sys/device.h>
89 #include <dev/ic/ath_netbsd.h>
90
91 #define AR_DEBUG
92 #include <dev/ic/athvar.h>
93 #include "ah_desc.h"
94 #include "ah_devid.h" /* XXX for softled */
95 #include "opt_ah.h"
96
97 #ifdef ATH_TX99_DIAG
98 #include <dev/ath/ath_tx99/ath_tx99.h>
99 #endif
100
101 /* unaligned little endian access */
102 #define LE_READ_2(p) \
103 ((u_int16_t) \
104 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
105 #define LE_READ_4(p) \
106 ((u_int32_t) \
107 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
108 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
109
110 enum {
111 ATH_LED_TX,
112 ATH_LED_RX,
113 ATH_LED_POLL,
114 };
115
116 #ifdef AH_NEED_DESC_SWAP
117 #define HTOAH32(x) htole32(x)
118 #else
119 #define HTOAH32(x) (x)
120 #endif
121
122 static int ath_ifinit(struct ifnet *);
123 static int ath_init(struct ath_softc *);
124 static void ath_stop_locked(struct ifnet *, int);
125 static void ath_stop(struct ifnet *, int);
126 static void ath_start(struct ifnet *);
127 static int ath_media_change(struct ifnet *);
128 static void ath_watchdog(struct ifnet *);
129 static int ath_ioctl(struct ifnet *, u_long, void *);
130 static void ath_fatal_proc(void *, int);
131 static void ath_rxorn_proc(void *, int);
132 static void ath_bmiss_proc(void *, int);
133 static void ath_radar_proc(void *, int);
134 static int ath_key_alloc(struct ieee80211com *,
135 const struct ieee80211_key *,
136 ieee80211_keyix *, ieee80211_keyix *);
137 static int ath_key_delete(struct ieee80211com *,
138 const struct ieee80211_key *);
139 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
140 const u_int8_t mac[IEEE80211_ADDR_LEN]);
141 static void ath_key_update_begin(struct ieee80211com *);
142 static void ath_key_update_end(struct ieee80211com *);
143 static void ath_mode_init(struct ath_softc *);
144 static void ath_setslottime(struct ath_softc *);
145 static void ath_updateslot(struct ifnet *);
146 static int ath_beaconq_setup(struct ath_hal *);
147 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
148 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
149 static void ath_beacon_proc(void *, int);
150 static void ath_bstuck_proc(void *, int);
151 static void ath_beacon_free(struct ath_softc *);
152 static void ath_beacon_config(struct ath_softc *);
153 static void ath_descdma_cleanup(struct ath_softc *sc,
154 struct ath_descdma *, ath_bufhead *);
155 static int ath_desc_alloc(struct ath_softc *);
156 static void ath_desc_free(struct ath_softc *);
157 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
158 static void ath_node_free(struct ieee80211_node *);
159 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
160 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
161 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
162 struct ieee80211_node *ni,
163 int subtype, int rssi, u_int32_t rstamp);
164 static void ath_setdefantenna(struct ath_softc *, u_int);
165 static void ath_rx_proc(void *, int);
166 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
167 static int ath_tx_setup(struct ath_softc *, int, int);
168 static int ath_wme_update(struct ieee80211com *);
169 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
170 static void ath_tx_cleanup(struct ath_softc *);
171 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
172 struct ath_buf *, struct mbuf *);
173 static void ath_tx_proc_q0(void *, int);
174 static void ath_tx_proc_q0123(void *, int);
175 static void ath_tx_proc(void *, int);
176 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
177 static void ath_draintxq(struct ath_softc *);
178 static void ath_stoprecv(struct ath_softc *);
179 static int ath_startrecv(struct ath_softc *);
180 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
181 static void ath_next_scan(void *);
182 static void ath_calibrate(void *);
183 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
184 static void ath_setup_stationkey(struct ieee80211_node *);
185 static void ath_newassoc(struct ieee80211_node *, int);
186 static int ath_getchannels(struct ath_softc *, u_int cc,
187 HAL_BOOL outdoor, HAL_BOOL xchanmode);
188 static void ath_led_event(struct ath_softc *, int);
189 static void ath_update_txpow(struct ath_softc *);
190 static void ath_freetx(struct mbuf *);
191 static void ath_restore_diversity(struct ath_softc *);
192
193 static int ath_rate_setup(struct ath_softc *, u_int mode);
194 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
195
196 static void ath_bpfattach(struct ath_softc *);
197 static void ath_announce(struct ath_softc *);
198
199 int ath_dwelltime = 200; /* 5 channels/second */
200 int ath_calinterval = 30; /* calibrate every 30 secs */
201 int ath_outdoor = AH_TRUE; /* outdoor operation */
202 int ath_xchanmode = AH_TRUE; /* enable extended channels */
203 int ath_countrycode = CTRY_DEFAULT; /* country code */
204 int ath_regdomain = 0; /* regulatory domain */
205 int ath_debug = 0;
206 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
207 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
208
209 #ifdef AR_DEBUG
210 enum {
211 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
212 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
213 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
214 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
215 ATH_DEBUG_RATE = 0x00000010, /* rate control */
216 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
217 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
218 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
219 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
220 ATH_DEBUG_INTR = 0x00001000, /* ISR */
221 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
222 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
223 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
224 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
225 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
226 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
227 ATH_DEBUG_NODE = 0x00080000, /* node management */
228 ATH_DEBUG_LED = 0x00100000, /* led management */
229 ATH_DEBUG_FF = 0x00200000, /* fast frames */
230 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
231 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
232 ATH_DEBUG_ANY = 0xffffffff
233 };
234 #define IFF_DUMPPKTS(sc, m) \
235 ((sc->sc_debug & (m)) || \
236 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
237 #define DPRINTF(sc, m, fmt, ...) do { \
238 if (sc->sc_debug & (m)) \
239 printf(fmt, __VA_ARGS__); \
240 } while (0)
241 #define KEYPRINTF(sc, ix, hk, mac) do { \
242 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
243 ath_keyprint(__func__, ix, hk, mac); \
244 } while (0)
245 static void ath_printrxbuf(struct ath_buf *bf, int);
246 static void ath_printtxbuf(struct ath_buf *bf, int);
247 #else
248 #define IFF_DUMPPKTS(sc, m) \
249 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
250 #define DPRINTF(m, fmt, ...)
251 #define KEYPRINTF(sc, k, ix, mac)
252 #endif
253
254 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
255
256 int
257 ath_attach(u_int16_t devid, struct ath_softc *sc)
258 {
259 struct ifnet *ifp = &sc->sc_if;
260 struct ieee80211com *ic = &sc->sc_ic;
261 struct ath_hal *ah = NULL;
262 HAL_STATUS status;
263 int error = 0, i;
264
265 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
266
267 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
268
269 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
270
271 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
272 if (ah == NULL) {
273 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
274 status);
275 error = ENXIO;
276 goto bad;
277 }
278 if (ah->ah_abi != HAL_ABI_VERSION) {
279 if_printf(ifp, "HAL ABI mismatch detected "
280 "(HAL:0x%x != driver:0x%x)\n",
281 ah->ah_abi, HAL_ABI_VERSION);
282 error = ENXIO;
283 goto bad;
284 }
285 sc->sc_ah = ah;
286
287 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
288 "pmf-powerdown", false))
289 goto bad;
290
291 /*
292 * Check if the MAC has multi-rate retry support.
293 * We do this by trying to setup a fake extended
294 * descriptor. MAC's that don't have support will
295 * return false w/o doing anything. MAC's that do
296 * support it will return true w/o doing anything.
297 */
298 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
299
300 /*
301 * Check if the device has hardware counters for PHY
302 * errors. If so we need to enable the MIB interrupt
303 * so we can act on stat triggers.
304 */
305 if (ath_hal_hwphycounters(ah))
306 sc->sc_needmib = 1;
307
308 /*
309 * Get the hardware key cache size.
310 */
311 sc->sc_keymax = ath_hal_keycachesize(ah);
312 if (sc->sc_keymax > ATH_KEYMAX) {
313 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
314 ATH_KEYMAX, sc->sc_keymax);
315 sc->sc_keymax = ATH_KEYMAX;
316 }
317 /*
318 * Reset the key cache since some parts do not
319 * reset the contents on initial power up.
320 */
321 for (i = 0; i < sc->sc_keymax; i++)
322 ath_hal_keyreset(ah, i);
323 /*
324 * Mark key cache slots associated with global keys
325 * as in use. If we knew TKIP was not to be used we
326 * could leave the +32, +64, and +32+64 slots free.
327 * XXX only for splitmic.
328 */
329 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
330 setbit(sc->sc_keymap, i);
331 setbit(sc->sc_keymap, i+32);
332 setbit(sc->sc_keymap, i+64);
333 setbit(sc->sc_keymap, i+32+64);
334 }
335
336 /*
337 * Collect the channel list using the default country
338 * code and including outdoor channels. The 802.11 layer
339 * is resposible for filtering this list based on settings
340 * like the phy mode.
341 */
342 error = ath_getchannels(sc, ath_countrycode,
343 ath_outdoor, ath_xchanmode);
344 if (error != 0)
345 goto bad;
346
347 /*
348 * Setup rate tables for all potential media types.
349 */
350 ath_rate_setup(sc, IEEE80211_MODE_11A);
351 ath_rate_setup(sc, IEEE80211_MODE_11B);
352 ath_rate_setup(sc, IEEE80211_MODE_11G);
353 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
354 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
355 /* NB: setup here so ath_rate_update is happy */
356 ath_setcurmode(sc, IEEE80211_MODE_11A);
357
358 /*
359 * Allocate tx+rx descriptors and populate the lists.
360 */
361 error = ath_desc_alloc(sc);
362 if (error != 0) {
363 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
364 goto bad;
365 }
366 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
367 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
368 #if 0
369 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
370 #endif
371
372 ATH_TXBUF_LOCK_INIT(sc);
373
374 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
375 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
376 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
377 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
378 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
379 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
380
381 /*
382 * Allocate hardware transmit queues: one queue for
383 * beacon frames and one data queue for each QoS
384 * priority. Note that the hal handles reseting
385 * these queues at the needed time.
386 *
387 * XXX PS-Poll
388 */
389 sc->sc_bhalq = ath_beaconq_setup(ah);
390 if (sc->sc_bhalq == (u_int) -1) {
391 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
392 error = EIO;
393 goto bad2;
394 }
395 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
396 if (sc->sc_cabq == NULL) {
397 if_printf(ifp, "unable to setup CAB xmit queue!\n");
398 error = EIO;
399 goto bad2;
400 }
401 /* NB: insure BK queue is the lowest priority h/w queue */
402 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
403 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
404 ieee80211_wme_acnames[WME_AC_BK]);
405 error = EIO;
406 goto bad2;
407 }
408 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
409 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
410 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
411 /*
412 * Not enough hardware tx queues to properly do WME;
413 * just punt and assign them all to the same h/w queue.
414 * We could do a better job of this if, for example,
415 * we allocate queues when we switch from station to
416 * AP mode.
417 */
418 if (sc->sc_ac2q[WME_AC_VI] != NULL)
419 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
420 if (sc->sc_ac2q[WME_AC_BE] != NULL)
421 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
422 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
423 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
424 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
425 }
426
427 /*
428 * Special case certain configurations. Note the
429 * CAB queue is handled by these specially so don't
430 * include them when checking the txq setup mask.
431 */
432 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
433 case 0x01:
434 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
435 break;
436 case 0x0f:
437 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
438 break;
439 default:
440 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
441 break;
442 }
443
444 /*
445 * Setup rate control. Some rate control modules
446 * call back to change the anntena state so expose
447 * the necessary entry points.
448 * XXX maybe belongs in struct ath_ratectrl?
449 */
450 sc->sc_setdefantenna = ath_setdefantenna;
451 sc->sc_rc = ath_rate_attach(sc);
452 if (sc->sc_rc == NULL) {
453 error = EIO;
454 goto bad2;
455 }
456
457 sc->sc_blinking = 0;
458 sc->sc_ledstate = 1;
459 sc->sc_ledon = 0; /* low true */
460 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
461 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
462 /*
463 * Auto-enable soft led processing for IBM cards and for
464 * 5211 minipci cards. Users can also manually enable/disable
465 * support with a sysctl.
466 */
467 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
468 if (sc->sc_softled) {
469 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
470 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
471 }
472
473 ifp->if_softc = sc;
474 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
475 ifp->if_start = ath_start;
476 ifp->if_stop = ath_stop;
477 ifp->if_watchdog = ath_watchdog;
478 ifp->if_ioctl = ath_ioctl;
479 ifp->if_init = ath_ifinit;
480 IFQ_SET_READY(&ifp->if_snd);
481
482 ic->ic_ifp = ifp;
483 ic->ic_reset = ath_reset;
484 ic->ic_newassoc = ath_newassoc;
485 ic->ic_updateslot = ath_updateslot;
486 ic->ic_wme.wme_update = ath_wme_update;
487 /* XXX not right but it's not used anywhere important */
488 ic->ic_phytype = IEEE80211_T_OFDM;
489 ic->ic_opmode = IEEE80211_M_STA;
490 ic->ic_caps =
491 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
492 | IEEE80211_C_HOSTAP /* hostap mode */
493 | IEEE80211_C_MONITOR /* monitor mode */
494 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
495 | IEEE80211_C_SHSLOT /* short slot time supported */
496 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
497 | IEEE80211_C_TXFRAG /* handle tx frags */
498 ;
499 /*
500 * Query the hal to figure out h/w crypto support.
501 */
502 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
503 ic->ic_caps |= IEEE80211_C_WEP;
504 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
505 ic->ic_caps |= IEEE80211_C_AES;
506 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
507 ic->ic_caps |= IEEE80211_C_AES_CCM;
508 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
509 ic->ic_caps |= IEEE80211_C_CKIP;
510 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
511 ic->ic_caps |= IEEE80211_C_TKIP;
512 /*
513 * Check if h/w does the MIC and/or whether the
514 * separate key cache entries are required to
515 * handle both tx+rx MIC keys.
516 */
517 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
518 ic->ic_caps |= IEEE80211_C_TKIPMIC;
519
520 /*
521 * If the h/w supports storing tx+rx MIC keys
522 * in one cache slot automatically enable use.
523 */
524 if (ath_hal_hastkipsplit(ah) ||
525 !ath_hal_settkipsplit(ah, AH_FALSE))
526 sc->sc_splitmic = 1;
527
528 /*
529 * If the h/w can do TKIP MIC together with WME then
530 * we use it; otherwise we force the MIC to be done
531 * in software by the net80211 layer.
532 */
533 if (ath_hal_haswmetkipmic(ah))
534 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
535 }
536 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
537 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
538 /*
539 * Mark key cache slots associated with global keys
540 * as in use. If we knew TKIP was not to be used we
541 * could leave the +32, +64, and +32+64 slots free.
542 */
543 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
544 setbit(sc->sc_keymap, i);
545 setbit(sc->sc_keymap, i+64);
546 if (sc->sc_splitmic) {
547 setbit(sc->sc_keymap, i+32);
548 setbit(sc->sc_keymap, i+32+64);
549 }
550 }
551 /*
552 * TPC support can be done either with a global cap or
553 * per-packet support. The latter is not available on
554 * all parts. We're a bit pedantic here as all parts
555 * support a global cap.
556 */
557 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
558 ic->ic_caps |= IEEE80211_C_TXPMGT;
559
560 /*
561 * Mark WME capability only if we have sufficient
562 * hardware queues to do proper priority scheduling.
563 */
564 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
565 ic->ic_caps |= IEEE80211_C_WME;
566 /*
567 * Check for misc other capabilities.
568 */
569 if (ath_hal_hasbursting(ah))
570 ic->ic_caps |= IEEE80211_C_BURST;
571
572 /*
573 * Indicate we need the 802.11 header padded to a
574 * 32-bit boundary for 4-address and QoS frames.
575 */
576 ic->ic_flags |= IEEE80211_F_DATAPAD;
577
578 /*
579 * Query the hal about antenna support.
580 */
581 sc->sc_defant = ath_hal_getdefantenna(ah);
582
583 /*
584 * Not all chips have the VEOL support we want to
585 * use with IBSS beacons; check here for it.
586 */
587 sc->sc_hasveol = ath_hal_hasveol(ah);
588
589 /* get mac address from hardware */
590 ath_hal_getmac(ah, ic->ic_myaddr);
591
592 if_attach(ifp);
593 /* call MI attach routine. */
594 ieee80211_ifattach(ic);
595 /* override default methods */
596 ic->ic_node_alloc = ath_node_alloc;
597 sc->sc_node_free = ic->ic_node_free;
598 ic->ic_node_free = ath_node_free;
599 ic->ic_node_getrssi = ath_node_getrssi;
600 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
601 ic->ic_recv_mgmt = ath_recv_mgmt;
602 sc->sc_newstate = ic->ic_newstate;
603 ic->ic_newstate = ath_newstate;
604 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
605 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
606 ic->ic_crypto.cs_key_delete = ath_key_delete;
607 ic->ic_crypto.cs_key_set = ath_key_set;
608 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
609 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
610 /* complete initialization */
611 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
612
613 ath_bpfattach(sc);
614
615 sc->sc_flags |= ATH_ATTACHED;
616
617 /*
618 * Setup dynamic sysctl's now that country code and
619 * regdomain are available from the hal.
620 */
621 ath_sysctlattach(sc);
622
623 ieee80211_announce(ic);
624 ath_announce(sc);
625 return 0;
626 bad2:
627 ath_tx_cleanup(sc);
628 ath_desc_free(sc);
629 bad:
630 if (ah)
631 ath_hal_detach(ah);
632 /* XXX don't get under the abstraction like this */
633 sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
634 return error;
635 }
636
637 int
638 ath_detach(struct ath_softc *sc)
639 {
640 struct ifnet *ifp = &sc->sc_if;
641 int s;
642
643 if ((sc->sc_flags & ATH_ATTACHED) == 0)
644 return (0);
645
646 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
647 __func__, ifp->if_flags);
648
649 s = splnet();
650 ath_stop(ifp, 1);
651 bpf_detach(ifp);
652 /*
653 * NB: the order of these is important:
654 * o call the 802.11 layer before detaching the hal to
655 * insure callbacks into the driver to delete global
656 * key cache entries can be handled
657 * o reclaim the tx queue data structures after calling
658 * the 802.11 layer as we'll get called back to reclaim
659 * node state and potentially want to use them
660 * o to cleanup the tx queues the hal is called, so detach
661 * it last
662 * Other than that, it's straightforward...
663 */
664 ieee80211_ifdetach(&sc->sc_ic);
665 #ifdef ATH_TX99_DIAG
666 if (sc->sc_tx99 != NULL)
667 sc->sc_tx99->detach(sc->sc_tx99);
668 #endif
669 ath_rate_detach(sc->sc_rc);
670 ath_desc_free(sc);
671 ath_tx_cleanup(sc);
672 sysctl_teardown(&sc->sc_sysctllog);
673 ath_hal_detach(sc->sc_ah);
674 if_detach(ifp);
675 splx(s);
676
677 return 0;
678 }
679
680 void
681 ath_suspend(struct ath_softc *sc)
682 {
683 #if notyet
684 /*
685 * Set the chip in full sleep mode. Note that we are
686 * careful to do this only when bringing the interface
687 * completely to a stop. When the chip is in this state
688 * it must be carefully woken up or references to
689 * registers in the PCI clock domain may freeze the bus
690 * (and system). This varies by chip and is mostly an
691 * issue with newer parts that go to sleep more quickly.
692 */
693 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
694 #endif
695 }
696
697 bool
698 ath_resume(struct ath_softc *sc)
699 {
700 struct ath_hal *ah = sc->sc_ah;
701 struct ieee80211com *ic = &sc->sc_ic;
702 HAL_STATUS status;
703 int i;
704
705 #if notyet
706 ath_hal_setpower(ah, HAL_PM_AWAKE);
707 #else
708 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
709 #endif
710
711 /*
712 * Reset the key cache since some parts do not
713 * reset the contents on initial power up.
714 */
715 for (i = 0; i < sc->sc_keymax; i++)
716 ath_hal_keyreset(ah, i);
717
718 ath_hal_resettxqueue(ah, sc->sc_bhalq);
719 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
720 if (ATH_TXQ_SETUP(sc, i))
721 ath_hal_resettxqueue(ah, i);
722
723 if (sc->sc_softled) {
724 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
725 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
726 }
727 return true;
728 }
729
730 /*
731 * Interrupt handler. Most of the actual processing is deferred.
732 */
733 int
734 ath_intr(void *arg)
735 {
736 struct ath_softc *sc = arg;
737 struct ifnet *ifp = &sc->sc_if;
738 struct ath_hal *ah = sc->sc_ah;
739 HAL_INT status;
740
741 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
742 /*
743 * The hardware is not ready/present, don't touch anything.
744 * Note this can happen early on if the IRQ is shared.
745 */
746 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
747 return 0;
748 }
749
750 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
751 return 0;
752
753 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
754 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
755 __func__, ifp->if_flags);
756 ath_hal_getisr(ah, &status); /* clear ISR */
757 ath_hal_intrset(ah, 0); /* disable further intr's */
758 return 1; /* XXX */
759 }
760 /*
761 * Figure out the reason(s) for the interrupt. Note
762 * that the hal returns a pseudo-ISR that may include
763 * bits we haven't explicitly enabled so we mask the
764 * value to insure we only process bits we requested.
765 */
766 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
767 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
768 status &= sc->sc_imask; /* discard unasked for bits */
769 if (status & HAL_INT_FATAL) {
770 /*
771 * Fatal errors are unrecoverable. Typically
772 * these are caused by DMA errors. Unfortunately
773 * the exact reason is not (presently) returned
774 * by the hal.
775 */
776 sc->sc_stats.ast_hardware++;
777 ath_hal_intrset(ah, 0); /* disable intr's until reset */
778 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
779 } else if (status & HAL_INT_RXORN) {
780 sc->sc_stats.ast_rxorn++;
781 ath_hal_intrset(ah, 0); /* disable intr's until reset */
782 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
783 } else {
784 if (status & HAL_INT_SWBA) {
785 /*
786 * Software beacon alert--time to send a beacon.
787 * Handle beacon transmission directly; deferring
788 * this is too slow to meet timing constraints
789 * under load.
790 */
791 ath_beacon_proc(sc, 0);
792 }
793 if (status & HAL_INT_RXEOL) {
794 /*
795 * NB: the hardware should re-read the link when
796 * RXE bit is written, but it doesn't work at
797 * least on older hardware revs.
798 */
799 sc->sc_stats.ast_rxeol++;
800 sc->sc_rxlink = NULL;
801 }
802 if (status & HAL_INT_TXURN) {
803 sc->sc_stats.ast_txurn++;
804 /* bump tx trigger level */
805 ath_hal_updatetxtriglevel(ah, AH_TRUE);
806 }
807 if (status & HAL_INT_RX)
808 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
809 if (status & HAL_INT_TX)
810 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
811 if (status & HAL_INT_BMISS) {
812 sc->sc_stats.ast_bmiss++;
813 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
814 }
815 if (status & HAL_INT_MIB) {
816 sc->sc_stats.ast_mib++;
817 /*
818 * Disable interrupts until we service the MIB
819 * interrupt; otherwise it will continue to fire.
820 */
821 ath_hal_intrset(ah, 0);
822 /*
823 * Let the hal handle the event. We assume it will
824 * clear whatever condition caused the interrupt.
825 */
826 ath_hal_mibevent(ah, &sc->sc_halstats);
827 ath_hal_intrset(ah, sc->sc_imask);
828 }
829 }
830 return 1;
831 }
832
833 /* Swap transmit descriptor.
834 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
835 * function.
836 */
837 static inline void
838 ath_desc_swap(struct ath_desc *ds)
839 {
840 #ifdef AH_NEED_DESC_SWAP
841 ds->ds_link = htole32(ds->ds_link);
842 ds->ds_data = htole32(ds->ds_data);
843 ds->ds_ctl0 = htole32(ds->ds_ctl0);
844 ds->ds_ctl1 = htole32(ds->ds_ctl1);
845 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
846 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
847 #endif
848 }
849
850 static void
851 ath_fatal_proc(void *arg, int pending)
852 {
853 struct ath_softc *sc = arg;
854 struct ifnet *ifp = &sc->sc_if;
855
856 if_printf(ifp, "hardware error; resetting\n");
857 ath_reset(ifp);
858 }
859
860 static void
861 ath_rxorn_proc(void *arg, int pending)
862 {
863 struct ath_softc *sc = arg;
864 struct ifnet *ifp = &sc->sc_if;
865
866 if_printf(ifp, "rx FIFO overrun; resetting\n");
867 ath_reset(ifp);
868 }
869
870 static void
871 ath_bmiss_proc(void *arg, int pending)
872 {
873 struct ath_softc *sc = arg;
874 struct ieee80211com *ic = &sc->sc_ic;
875
876 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
877 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
878 ("unexpect operating mode %u", ic->ic_opmode));
879 if (ic->ic_state == IEEE80211_S_RUN) {
880 u_int64_t lastrx = sc->sc_lastrx;
881 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
882
883 DPRINTF(sc, ATH_DEBUG_BEACON,
884 "%s: tsf %" PRIu64 " lastrx %" PRId64
885 " (%" PRIu64 ") bmiss %u\n",
886 __func__, tsf, tsf - lastrx, lastrx,
887 ic->ic_bmisstimeout*1024);
888 /*
889 * Workaround phantom bmiss interrupts by sanity-checking
890 * the time of our last rx'd frame. If it is within the
891 * beacon miss interval then ignore the interrupt. If it's
892 * truly a bmiss we'll get another interrupt soon and that'll
893 * be dispatched up for processing.
894 */
895 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
896 NET_LOCK_GIANT();
897 ieee80211_beacon_miss(ic);
898 NET_UNLOCK_GIANT();
899 } else
900 sc->sc_stats.ast_bmiss_phantom++;
901 }
902 }
903
904 static void
905 ath_radar_proc(void *arg, int pending)
906 {
907 #if 0
908 struct ath_softc *sc = arg;
909 struct ifnet *ifp = &sc->sc_if;
910 struct ath_hal *ah = sc->sc_ah;
911 HAL_CHANNEL hchan;
912
913 if (ath_hal_procdfs(ah, &hchan)) {
914 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
915 hchan.channel, hchan.channelFlags, hchan.privFlags);
916 /*
917 * Initiate channel change.
918 */
919 /* XXX not yet */
920 }
921 #endif
922 }
923
924 static u_int
925 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
926 {
927 #define N(a) (sizeof(a) / sizeof(a[0]))
928 static const u_int modeflags[] = {
929 0, /* IEEE80211_MODE_AUTO */
930 CHANNEL_A, /* IEEE80211_MODE_11A */
931 CHANNEL_B, /* IEEE80211_MODE_11B */
932 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
933 0, /* IEEE80211_MODE_FH */
934 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
935 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
936 };
937 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
938
939 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
940 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
941 return modeflags[mode];
942 #undef N
943 }
944
945 static int
946 ath_ifinit(struct ifnet *ifp)
947 {
948 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
949
950 return ath_init(sc);
951 }
952
953 static void
954 ath_settkipmic(struct ath_softc *sc)
955 {
956 struct ieee80211com *ic = &sc->sc_ic;
957 struct ath_hal *ah = sc->sc_ah;
958
959 if ((ic->ic_caps & IEEE80211_C_TKIP) &&
960 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
961 if (ic->ic_flags & IEEE80211_F_WME) {
962 (void)ath_hal_settkipmic(ah, AH_FALSE);
963 ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
964 } else {
965 (void)ath_hal_settkipmic(ah, AH_TRUE);
966 ic->ic_caps |= IEEE80211_C_TKIPMIC;
967 }
968 }
969 }
970
971 static int
972 ath_init(struct ath_softc *sc)
973 {
974 struct ifnet *ifp = &sc->sc_if;
975 struct ieee80211com *ic = &sc->sc_ic;
976 struct ath_hal *ah = sc->sc_ah;
977 HAL_STATUS status;
978 int error = 0;
979
980 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
981 __func__, ifp->if_flags);
982
983 if (device_is_active(sc->sc_dev)) {
984 ATH_LOCK(sc);
985 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
986 !device_is_active(sc->sc_dev))
987 return 0;
988 else
989 ATH_LOCK(sc);
990
991 /*
992 * Stop anything previously setup. This is safe
993 * whether this is the first time through or not.
994 */
995 ath_stop_locked(ifp, 0);
996
997 /*
998 * The basic interface to setting the hardware in a good
999 * state is ``reset''. On return the hardware is known to
1000 * be powered up and with interrupts disabled. This must
1001 * be followed by initialization of the appropriate bits
1002 * and then setup of the interrupt mask.
1003 */
1004 ath_settkipmic(sc);
1005 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1006 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1007 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1008 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1009 status);
1010 error = EIO;
1011 goto done;
1012 }
1013
1014 /*
1015 * This is needed only to setup initial state
1016 * but it's best done after a reset.
1017 */
1018 ath_update_txpow(sc);
1019 /*
1020 * Likewise this is set during reset so update
1021 * state cached in the driver.
1022 */
1023 ath_restore_diversity(sc);
1024 sc->sc_calinterval = 1;
1025 sc->sc_caltries = 0;
1026
1027 /*
1028 * Setup the hardware after reset: the key cache
1029 * is filled as needed and the receive engine is
1030 * set going. Frame transmit is handled entirely
1031 * in the frame output path; there's nothing to do
1032 * here except setup the interrupt mask.
1033 */
1034 if ((error = ath_startrecv(sc)) != 0) {
1035 if_printf(ifp, "unable to start recv logic\n");
1036 goto done;
1037 }
1038
1039 /*
1040 * Enable interrupts.
1041 */
1042 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1043 | HAL_INT_RXEOL | HAL_INT_RXORN
1044 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1045 /*
1046 * Enable MIB interrupts when there are hardware phy counters.
1047 * Note we only do this (at the moment) for station mode.
1048 */
1049 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1050 sc->sc_imask |= HAL_INT_MIB;
1051 ath_hal_intrset(ah, sc->sc_imask);
1052
1053 ifp->if_flags |= IFF_RUNNING;
1054 ic->ic_state = IEEE80211_S_INIT;
1055
1056 /*
1057 * The hardware should be ready to go now so it's safe
1058 * to kick the 802.11 state machine as it's likely to
1059 * immediately call back to us to send mgmt frames.
1060 */
1061 ath_chan_change(sc, ic->ic_curchan);
1062 #ifdef ATH_TX99_DIAG
1063 if (sc->sc_tx99 != NULL)
1064 sc->sc_tx99->start(sc->sc_tx99);
1065 else
1066 #endif
1067 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1068 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1069 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1070 } else
1071 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1072 done:
1073 ATH_UNLOCK(sc);
1074 return error;
1075 }
1076
1077 static void
1078 ath_stop_locked(struct ifnet *ifp, int disable)
1079 {
1080 struct ath_softc *sc = ifp->if_softc;
1081 struct ieee80211com *ic = &sc->sc_ic;
1082 struct ath_hal *ah = sc->sc_ah;
1083
1084 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1085 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1086
1087 ATH_LOCK_ASSERT(sc);
1088 if (ifp->if_flags & IFF_RUNNING) {
1089 /*
1090 * Shutdown the hardware and driver:
1091 * reset 802.11 state machine
1092 * turn off timers
1093 * disable interrupts
1094 * turn off the radio
1095 * clear transmit machinery
1096 * clear receive machinery
1097 * drain and release tx queues
1098 * reclaim beacon resources
1099 * power down hardware
1100 *
1101 * Note that some of this work is not possible if the
1102 * hardware is gone (invalid).
1103 */
1104 #ifdef ATH_TX99_DIAG
1105 if (sc->sc_tx99 != NULL)
1106 sc->sc_tx99->stop(sc->sc_tx99);
1107 #endif
1108 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1109 ifp->if_flags &= ~IFF_RUNNING;
1110 ifp->if_timer = 0;
1111 if (device_is_enabled(sc->sc_dev)) {
1112 if (sc->sc_softled) {
1113 callout_stop(&sc->sc_ledtimer);
1114 ath_hal_gpioset(ah, sc->sc_ledpin,
1115 !sc->sc_ledon);
1116 sc->sc_blinking = 0;
1117 }
1118 ath_hal_intrset(ah, 0);
1119 }
1120 ath_draintxq(sc);
1121 if (device_is_enabled(sc->sc_dev)) {
1122 ath_stoprecv(sc);
1123 ath_hal_phydisable(ah);
1124 } else
1125 sc->sc_rxlink = NULL;
1126 IF_PURGE(&ifp->if_snd);
1127 ath_beacon_free(sc);
1128 }
1129 if (disable)
1130 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1131 }
1132
1133 static void
1134 ath_stop(struct ifnet *ifp, int disable)
1135 {
1136 struct ath_softc *sc = ifp->if_softc;
1137
1138 ATH_LOCK(sc);
1139 ath_stop_locked(ifp, disable);
1140 ATH_UNLOCK(sc);
1141 }
1142
1143 static void
1144 ath_restore_diversity(struct ath_softc *sc)
1145 {
1146 struct ifnet *ifp = &sc->sc_if;
1147 struct ath_hal *ah = sc->sc_ah;
1148
1149 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1150 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1151 if_printf(ifp, "could not restore diversity setting %d\n",
1152 sc->sc_diversity);
1153 sc->sc_diversity = ath_hal_getdiversity(ah);
1154 }
1155 }
1156
1157 /*
1158 * Reset the hardware w/o losing operational state. This is
1159 * basically a more efficient way of doing ath_stop, ath_init,
1160 * followed by state transitions to the current 802.11
1161 * operational state. Used to recover from various errors and
1162 * to reset or reload hardware state.
1163 */
1164 int
1165 ath_reset(struct ifnet *ifp)
1166 {
1167 struct ath_softc *sc = ifp->if_softc;
1168 struct ieee80211com *ic = &sc->sc_ic;
1169 struct ath_hal *ah = sc->sc_ah;
1170 struct ieee80211_channel *c;
1171 HAL_STATUS status;
1172
1173 /*
1174 * Convert to a HAL channel description with the flags
1175 * constrained to reflect the current operating mode.
1176 */
1177 c = ic->ic_curchan;
1178 sc->sc_curchan.channel = c->ic_freq;
1179 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1180
1181 ath_hal_intrset(ah, 0); /* disable interrupts */
1182 ath_draintxq(sc); /* stop xmit side */
1183 ath_stoprecv(sc); /* stop recv side */
1184 ath_settkipmic(sc); /* configure TKIP MIC handling */
1185 /* NB: indicate channel change so we do a full reset */
1186 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1187 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1188 __func__, status);
1189 ath_update_txpow(sc); /* update tx power state */
1190 ath_restore_diversity(sc);
1191 sc->sc_calinterval = 1;
1192 sc->sc_caltries = 0;
1193 if (ath_startrecv(sc) != 0) /* restart recv */
1194 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1195 /*
1196 * We may be doing a reset in response to an ioctl
1197 * that changes the channel so update any state that
1198 * might change as a result.
1199 */
1200 ath_chan_change(sc, c);
1201 if (ic->ic_state == IEEE80211_S_RUN)
1202 ath_beacon_config(sc); /* restart beacons */
1203 ath_hal_intrset(ah, sc->sc_imask);
1204
1205 ath_start(ifp); /* restart xmit */
1206 return 0;
1207 }
1208
1209 /*
1210 * Cleanup driver resources when we run out of buffers
1211 * while processing fragments; return the tx buffers
1212 * allocated and drop node references.
1213 */
1214 static void
1215 ath_txfrag_cleanup(struct ath_softc *sc,
1216 ath_bufhead *frags, struct ieee80211_node *ni)
1217 {
1218 struct ath_buf *bf;
1219
1220 ATH_TXBUF_LOCK_ASSERT(sc);
1221
1222 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1223 STAILQ_REMOVE_HEAD(frags, bf_list);
1224 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1225 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1226 ieee80211_node_decref(ni);
1227 }
1228 }
1229
1230 /*
1231 * Setup xmit of a fragmented frame. Allocate a buffer
1232 * for each frag and bump the node reference count to
1233 * reflect the held reference to be setup by ath_tx_start.
1234 */
1235 static int
1236 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1237 struct mbuf *m0, struct ieee80211_node *ni)
1238 {
1239 struct mbuf *m;
1240 struct ath_buf *bf;
1241
1242 ATH_TXBUF_LOCK(sc);
1243 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1244 bf = STAILQ_FIRST(&sc->sc_txbuf);
1245 if (bf == NULL) { /* out of buffers, cleanup */
1246 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1247 __func__);
1248 sc->sc_if.if_flags |= IFF_OACTIVE;
1249 ath_txfrag_cleanup(sc, frags, ni);
1250 break;
1251 }
1252 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1253 ieee80211_node_incref(ni);
1254 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1255 }
1256 ATH_TXBUF_UNLOCK(sc);
1257
1258 return !STAILQ_EMPTY(frags);
1259 }
1260
1261 static void
1262 ath_start(struct ifnet *ifp)
1263 {
1264 struct ath_softc *sc = ifp->if_softc;
1265 struct ath_hal *ah = sc->sc_ah;
1266 struct ieee80211com *ic = &sc->sc_ic;
1267 struct ieee80211_node *ni;
1268 struct ath_buf *bf;
1269 struct mbuf *m, *next;
1270 struct ieee80211_frame *wh;
1271 struct ether_header *eh;
1272 ath_bufhead frags;
1273
1274 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1275 !device_is_active(sc->sc_dev))
1276 return;
1277 for (;;) {
1278 /*
1279 * Grab a TX buffer and associated resources.
1280 */
1281 ATH_TXBUF_LOCK(sc);
1282 bf = STAILQ_FIRST(&sc->sc_txbuf);
1283 if (bf != NULL)
1284 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1285 ATH_TXBUF_UNLOCK(sc);
1286 if (bf == NULL) {
1287 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1288 __func__);
1289 sc->sc_stats.ast_tx_qstop++;
1290 ifp->if_flags |= IFF_OACTIVE;
1291 break;
1292 }
1293 /*
1294 * Poll the management queue for frames; they
1295 * have priority over normal data frames.
1296 */
1297 IF_DEQUEUE(&ic->ic_mgtq, m);
1298 if (m == NULL) {
1299 /*
1300 * No data frames go out unless we're associated.
1301 */
1302 if (ic->ic_state != IEEE80211_S_RUN) {
1303 DPRINTF(sc, ATH_DEBUG_XMIT,
1304 "%s: discard data packet, state %s\n",
1305 __func__,
1306 ieee80211_state_name[ic->ic_state]);
1307 sc->sc_stats.ast_tx_discard++;
1308 ATH_TXBUF_LOCK(sc);
1309 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1310 ATH_TXBUF_UNLOCK(sc);
1311 break;
1312 }
1313 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1314 if (m == NULL) {
1315 ATH_TXBUF_LOCK(sc);
1316 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1317 ATH_TXBUF_UNLOCK(sc);
1318 break;
1319 }
1320 STAILQ_INIT(&frags);
1321 /*
1322 * Find the node for the destination so we can do
1323 * things like power save and fast frames aggregation.
1324 */
1325 if (m->m_len < sizeof(struct ether_header) &&
1326 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1327 ic->ic_stats.is_tx_nobuf++; /* XXX */
1328 ni = NULL;
1329 goto bad;
1330 }
1331 eh = mtod(m, struct ether_header *);
1332 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1333 if (ni == NULL) {
1334 /* NB: ieee80211_find_txnode does stat+msg */
1335 m_freem(m);
1336 goto bad;
1337 }
1338 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1339 (m->m_flags & M_PWR_SAV) == 0) {
1340 /*
1341 * Station in power save mode; pass the frame
1342 * to the 802.11 layer and continue. We'll get
1343 * the frame back when the time is right.
1344 */
1345 ieee80211_pwrsave(ic, ni, m);
1346 goto reclaim;
1347 }
1348 /* calculate priority so we can find the tx queue */
1349 if (ieee80211_classify(ic, m, ni)) {
1350 DPRINTF(sc, ATH_DEBUG_XMIT,
1351 "%s: discard, classification failure\n",
1352 __func__);
1353 m_freem(m);
1354 goto bad;
1355 }
1356 ifp->if_opackets++;
1357
1358 bpf_mtap(ifp, m);
1359 /*
1360 * Encapsulate the packet in prep for transmission.
1361 */
1362 m = ieee80211_encap(ic, m, ni);
1363 if (m == NULL) {
1364 DPRINTF(sc, ATH_DEBUG_XMIT,
1365 "%s: encapsulation failure\n",
1366 __func__);
1367 sc->sc_stats.ast_tx_encap++;
1368 goto bad;
1369 }
1370 /*
1371 * Check for fragmentation. If this has frame
1372 * has been broken up verify we have enough
1373 * buffers to send all the fragments so all
1374 * go out or none...
1375 */
1376 if ((m->m_flags & M_FRAG) &&
1377 !ath_txfrag_setup(sc, &frags, m, ni)) {
1378 DPRINTF(sc, ATH_DEBUG_ANY,
1379 "%s: out of txfrag buffers\n", __func__);
1380 ic->ic_stats.is_tx_nobuf++; /* XXX */
1381 ath_freetx(m);
1382 goto bad;
1383 }
1384 } else {
1385 /*
1386 * Hack! The referenced node pointer is in the
1387 * rcvif field of the packet header. This is
1388 * placed there by ieee80211_mgmt_output because
1389 * we need to hold the reference with the frame
1390 * and there's no other way (other than packet
1391 * tags which we consider too expensive to use)
1392 * to pass it along.
1393 */
1394 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1395 m->m_pkthdr.rcvif = NULL;
1396
1397 wh = mtod(m, struct ieee80211_frame *);
1398 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1399 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1400 /* fill time stamp */
1401 u_int64_t tsf;
1402 u_int32_t *tstamp;
1403
1404 tsf = ath_hal_gettsf64(ah);
1405 /* XXX: adjust 100us delay to xmit */
1406 tsf += 100;
1407 tstamp = (u_int32_t *)&wh[1];
1408 tstamp[0] = htole32(tsf & 0xffffffff);
1409 tstamp[1] = htole32(tsf >> 32);
1410 }
1411 sc->sc_stats.ast_tx_mgmt++;
1412 }
1413
1414 nextfrag:
1415 next = m->m_nextpkt;
1416 if (ath_tx_start(sc, ni, bf, m)) {
1417 bad:
1418 ifp->if_oerrors++;
1419 reclaim:
1420 ATH_TXBUF_LOCK(sc);
1421 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1422 ath_txfrag_cleanup(sc, &frags, ni);
1423 ATH_TXBUF_UNLOCK(sc);
1424 if (ni != NULL)
1425 ieee80211_free_node(ni);
1426 continue;
1427 }
1428 if (next != NULL) {
1429 m = next;
1430 bf = STAILQ_FIRST(&frags);
1431 KASSERT(bf != NULL, ("no buf for txfrag"));
1432 STAILQ_REMOVE_HEAD(&frags, bf_list);
1433 goto nextfrag;
1434 }
1435
1436 ifp->if_timer = 1;
1437 }
1438 }
1439
1440 static int
1441 ath_media_change(struct ifnet *ifp)
1442 {
1443 #define IS_UP(ifp) \
1444 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1445 int error;
1446
1447 error = ieee80211_media_change(ifp);
1448 if (error == ENETRESET) {
1449 if (IS_UP(ifp))
1450 ath_init(ifp->if_softc); /* XXX lose error */
1451 error = 0;
1452 }
1453 return error;
1454 #undef IS_UP
1455 }
1456
1457 #ifdef AR_DEBUG
1458 static void
1459 ath_keyprint(const char *tag, u_int ix,
1460 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1461 {
1462 static const char *ciphers[] = {
1463 "WEP",
1464 "AES-OCB",
1465 "AES-CCM",
1466 "CKIP",
1467 "TKIP",
1468 "CLR",
1469 };
1470 int i, n;
1471
1472 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1473 for (i = 0, n = hk->kv_len; i < n; i++)
1474 printf("%02x", hk->kv_val[i]);
1475 printf(" mac %s", ether_sprintf(mac));
1476 if (hk->kv_type == HAL_CIPHER_TKIP) {
1477 printf(" mic ");
1478 for (i = 0; i < sizeof(hk->kv_mic); i++)
1479 printf("%02x", hk->kv_mic[i]);
1480 }
1481 printf("\n");
1482 }
1483 #endif
1484
1485 /*
1486 * Set a TKIP key into the hardware. This handles the
1487 * potential distribution of key state to multiple key
1488 * cache slots for TKIP.
1489 */
1490 static int
1491 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1492 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1493 {
1494 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1495 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1496 struct ath_hal *ah = sc->sc_ah;
1497
1498 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1499 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1500 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1501 if (sc->sc_splitmic) {
1502 /*
1503 * TX key goes at first index, RX key at the rx index.
1504 * The hal handles the MIC keys at index+64.
1505 */
1506 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1507 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1508 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1509 zerobssid))
1510 return 0;
1511
1512 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1513 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1514 /* XXX delete tx key on failure? */
1515 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1516 hk, mac);
1517 } else {
1518 /*
1519 * Room for both TX+RX MIC keys in one key cache
1520 * slot, just set key at the first index; the HAL
1521 * will handle the reset.
1522 */
1523 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1524 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1525 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1526 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1527 }
1528 } else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1529 if (sc->sc_splitmic) {
1530 /*
1531 * NB: must pass MIC key in expected location when
1532 * the keycache only holds one MIC key per entry.
1533 */
1534 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1535 } else
1536 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1537 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1538 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1539 } else if (k->wk_flags & IEEE80211_KEY_RECV) {
1540 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1541 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1542 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1543 }
1544 return 0;
1545 #undef IEEE80211_KEY_XR
1546 }
1547
1548 /*
1549 * Set a net80211 key into the hardware. This handles the
1550 * potential distribution of key state to multiple key
1551 * cache slots for TKIP with hardware MIC support.
1552 */
1553 static int
1554 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1555 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1556 struct ieee80211_node *bss)
1557 {
1558 #define N(a) (sizeof(a)/sizeof(a[0]))
1559 static const u_int8_t ciphermap[] = {
1560 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1561 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1562 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1563 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1564 (u_int8_t) -1, /* 4 is not allocated */
1565 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1566 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1567 };
1568 struct ath_hal *ah = sc->sc_ah;
1569 const struct ieee80211_cipher *cip = k->wk_cipher;
1570 u_int8_t gmac[IEEE80211_ADDR_LEN];
1571 const u_int8_t *mac;
1572 HAL_KEYVAL hk;
1573
1574 memset(&hk, 0, sizeof(hk));
1575 /*
1576 * Software crypto uses a "clear key" so non-crypto
1577 * state kept in the key cache are maintained and
1578 * so that rx frames have an entry to match.
1579 */
1580 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1581 KASSERT(cip->ic_cipher < N(ciphermap),
1582 ("invalid cipher type %u", cip->ic_cipher));
1583 hk.kv_type = ciphermap[cip->ic_cipher];
1584 hk.kv_len = k->wk_keylen;
1585 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1586 } else
1587 hk.kv_type = HAL_CIPHER_CLR;
1588
1589 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1590 /*
1591 * Group keys on hardware that supports multicast frame
1592 * key search use a mac that is the sender's address with
1593 * the high bit set instead of the app-specified address.
1594 */
1595 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1596 gmac[0] |= 0x80;
1597 mac = gmac;
1598 } else
1599 mac = mac0;
1600
1601 if ((hk.kv_type == HAL_CIPHER_TKIP &&
1602 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1603 return ath_keyset_tkip(sc, k, &hk, mac);
1604 } else {
1605 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1606 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1607 }
1608 #undef N
1609 }
1610
1611 /*
1612 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1613 * each key, one for decrypt/encrypt and the other for the MIC.
1614 */
1615 static u_int16_t
1616 key_alloc_2pair(struct ath_softc *sc,
1617 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1618 {
1619 #define N(a) (sizeof(a)/sizeof(a[0]))
1620 u_int i, keyix;
1621
1622 KASSERT(sc->sc_splitmic, ("key cache !split"));
1623 /* XXX could optimize */
1624 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1625 u_int8_t b = sc->sc_keymap[i];
1626 if (b != 0xff) {
1627 /*
1628 * One or more slots in this byte are free.
1629 */
1630 keyix = i*NBBY;
1631 while (b & 1) {
1632 again:
1633 keyix++;
1634 b >>= 1;
1635 }
1636 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1637 if (isset(sc->sc_keymap, keyix+32) ||
1638 isset(sc->sc_keymap, keyix+64) ||
1639 isset(sc->sc_keymap, keyix+32+64)) {
1640 /* full pair unavailable */
1641 /* XXX statistic */
1642 if (keyix == (i+1)*NBBY) {
1643 /* no slots were appropriate, advance */
1644 continue;
1645 }
1646 goto again;
1647 }
1648 setbit(sc->sc_keymap, keyix);
1649 setbit(sc->sc_keymap, keyix+64);
1650 setbit(sc->sc_keymap, keyix+32);
1651 setbit(sc->sc_keymap, keyix+32+64);
1652 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1653 "%s: key pair %u,%u %u,%u\n",
1654 __func__, keyix, keyix+64,
1655 keyix+32, keyix+32+64);
1656 *txkeyix = keyix;
1657 *rxkeyix = keyix+32;
1658 return keyix;
1659 }
1660 }
1661 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1662 return IEEE80211_KEYIX_NONE;
1663 #undef N
1664 }
1665
1666 /*
1667 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1668 * each key, one for decrypt/encrypt and the other for the MIC.
1669 */
1670 static int
1671 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1672 ieee80211_keyix *rxkeyix)
1673 {
1674 #define N(a) (sizeof(a)/sizeof(a[0]))
1675 u_int i, keyix;
1676
1677 KASSERT(!sc->sc_splitmic, ("key cache split"));
1678 /* XXX could optimize */
1679 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1680 uint8_t b = sc->sc_keymap[i];
1681 if (b != 0xff) {
1682 /*
1683 * One or more slots in this byte are free.
1684 */
1685 keyix = i*NBBY;
1686 while (b & 1) {
1687 again:
1688 keyix++;
1689 b >>= 1;
1690 }
1691 if (isset(sc->sc_keymap, keyix+64)) {
1692 /* full pair unavailable */
1693 /* XXX statistic */
1694 if (keyix == (i+1)*NBBY) {
1695 /* no slots were appropriate, advance */
1696 continue;
1697 }
1698 goto again;
1699 }
1700 setbit(sc->sc_keymap, keyix);
1701 setbit(sc->sc_keymap, keyix+64);
1702 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1703 "%s: key pair %u,%u\n",
1704 __func__, keyix, keyix+64);
1705 *txkeyix = *rxkeyix = keyix;
1706 return 1;
1707 }
1708 }
1709 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1710 return 0;
1711 #undef N
1712 }
1713
1714 /*
1715 * Allocate a single key cache slot.
1716 */
1717 static int
1718 key_alloc_single(struct ath_softc *sc,
1719 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1720 {
1721 #define N(a) (sizeof(a)/sizeof(a[0]))
1722 u_int i, keyix;
1723
1724 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1725 for (i = 0; i < N(sc->sc_keymap); i++) {
1726 u_int8_t b = sc->sc_keymap[i];
1727 if (b != 0xff) {
1728 /*
1729 * One or more slots are free.
1730 */
1731 keyix = i*NBBY;
1732 while (b & 1)
1733 keyix++, b >>= 1;
1734 setbit(sc->sc_keymap, keyix);
1735 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1736 __func__, keyix);
1737 *txkeyix = *rxkeyix = keyix;
1738 return 1;
1739 }
1740 }
1741 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1742 return 0;
1743 #undef N
1744 }
1745
1746 /*
1747 * Allocate one or more key cache slots for a uniacst key. The
1748 * key itself is needed only to identify the cipher. For hardware
1749 * TKIP with split cipher+MIC keys we allocate two key cache slot
1750 * pairs so that we can setup separate TX and RX MIC keys. Note
1751 * that the MIC key for a TKIP key at slot i is assumed by the
1752 * hardware to be at slot i+64. This limits TKIP keys to the first
1753 * 64 entries.
1754 */
1755 static int
1756 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1757 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1758 {
1759 struct ath_softc *sc = ic->ic_ifp->if_softc;
1760
1761 /*
1762 * Group key allocation must be handled specially for
1763 * parts that do not support multicast key cache search
1764 * functionality. For those parts the key id must match
1765 * the h/w key index so lookups find the right key. On
1766 * parts w/ the key search facility we install the sender's
1767 * mac address (with the high bit set) and let the hardware
1768 * find the key w/o using the key id. This is preferred as
1769 * it permits us to support multiple users for adhoc and/or
1770 * multi-station operation.
1771 */
1772 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1773 if (!(&ic->ic_nw_keys[0] <= k &&
1774 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1775 /* should not happen */
1776 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1777 "%s: bogus group key\n", __func__);
1778 return 0;
1779 }
1780 /*
1781 * XXX we pre-allocate the global keys so
1782 * have no way to check if they've already been allocated.
1783 */
1784 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1785 return 1;
1786 }
1787
1788 /*
1789 * We allocate two pair for TKIP when using the h/w to do
1790 * the MIC. For everything else, including software crypto,
1791 * we allocate a single entry. Note that s/w crypto requires
1792 * a pass-through slot on the 5211 and 5212. The 5210 does
1793 * not support pass-through cache entries and we map all
1794 * those requests to slot 0.
1795 */
1796 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1797 return key_alloc_single(sc, keyix, rxkeyix);
1798 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1799 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1800 if (sc->sc_splitmic)
1801 return key_alloc_2pair(sc, keyix, rxkeyix);
1802 else
1803 return key_alloc_pair(sc, keyix, rxkeyix);
1804 } else {
1805 return key_alloc_single(sc, keyix, rxkeyix);
1806 }
1807 }
1808
1809 /*
1810 * Delete an entry in the key cache allocated by ath_key_alloc.
1811 */
1812 static int
1813 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1814 {
1815 struct ath_softc *sc = ic->ic_ifp->if_softc;
1816 struct ath_hal *ah = sc->sc_ah;
1817 const struct ieee80211_cipher *cip = k->wk_cipher;
1818 u_int keyix = k->wk_keyix;
1819
1820 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1821
1822 if (!device_has_power(sc->sc_dev)) {
1823 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1824 k->wk_keyix);
1825 }
1826
1827 ath_hal_keyreset(ah, keyix);
1828 /*
1829 * Handle split tx/rx keying required for TKIP with h/w MIC.
1830 */
1831 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1832 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1833 ath_hal_keyreset(ah, keyix+32); /* RX key */
1834 if (keyix >= IEEE80211_WEP_NKID) {
1835 /*
1836 * Don't touch keymap entries for global keys so
1837 * they are never considered for dynamic allocation.
1838 */
1839 clrbit(sc->sc_keymap, keyix);
1840 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1841 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1842 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1843 if (sc->sc_splitmic) {
1844 /* +32 for RX key, +32+64 for RX key MIC */
1845 clrbit(sc->sc_keymap, keyix+32);
1846 clrbit(sc->sc_keymap, keyix+32+64);
1847 }
1848 }
1849 }
1850 return 1;
1851 }
1852
1853 /*
1854 * Set the key cache contents for the specified key. Key cache
1855 * slot(s) must already have been allocated by ath_key_alloc.
1856 */
1857 static int
1858 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1859 const u_int8_t mac[IEEE80211_ADDR_LEN])
1860 {
1861 struct ath_softc *sc = ic->ic_ifp->if_softc;
1862
1863 if (!device_has_power(sc->sc_dev)) {
1864 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1865 k->wk_keyix);
1866 }
1867 return ath_keyset(sc, k, mac, ic->ic_bss);
1868 }
1869
1870 /*
1871 * Block/unblock tx+rx processing while a key change is done.
1872 * We assume the caller serializes key management operations
1873 * so we only need to worry about synchronization with other
1874 * uses that originate in the driver.
1875 */
1876 static void
1877 ath_key_update_begin(struct ieee80211com *ic)
1878 {
1879 struct ifnet *ifp = ic->ic_ifp;
1880 struct ath_softc *sc = ifp->if_softc;
1881
1882 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1883 #if 0
1884 tasklet_disable(&sc->sc_rxtq);
1885 #endif
1886 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1887 }
1888
1889 static void
1890 ath_key_update_end(struct ieee80211com *ic)
1891 {
1892 struct ifnet *ifp = ic->ic_ifp;
1893 struct ath_softc *sc = ifp->if_softc;
1894
1895 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1896 IF_UNLOCK(&ifp->if_snd);
1897 #if 0
1898 tasklet_enable(&sc->sc_rxtq);
1899 #endif
1900 }
1901
1902 /*
1903 * Calculate the receive filter according to the
1904 * operating mode and state:
1905 *
1906 * o always accept unicast, broadcast, and multicast traffic
1907 * o maintain current state of phy error reception (the hal
1908 * may enable phy error frames for noise immunity work)
1909 * o probe request frames are accepted only when operating in
1910 * hostap, adhoc, or monitor modes
1911 * o enable promiscuous mode according to the interface state
1912 * o accept beacons:
1913 * - when operating in adhoc mode so the 802.11 layer creates
1914 * node table entries for peers,
1915 * - when operating in station mode for collecting rssi data when
1916 * the station is otherwise quiet, or
1917 * - when scanning
1918 */
1919 static u_int32_t
1920 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1921 {
1922 struct ieee80211com *ic = &sc->sc_ic;
1923 struct ath_hal *ah = sc->sc_ah;
1924 struct ifnet *ifp = &sc->sc_if;
1925 u_int32_t rfilt;
1926
1927 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1928 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1929 if (ic->ic_opmode != IEEE80211_M_STA)
1930 rfilt |= HAL_RX_FILTER_PROBEREQ;
1931 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1932 (ifp->if_flags & IFF_PROMISC))
1933 rfilt |= HAL_RX_FILTER_PROM;
1934 if (ifp->if_flags & IFF_PROMISC)
1935 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1936 if (ic->ic_opmode == IEEE80211_M_STA ||
1937 ic->ic_opmode == IEEE80211_M_IBSS ||
1938 state == IEEE80211_S_SCAN)
1939 rfilt |= HAL_RX_FILTER_BEACON;
1940 return rfilt;
1941 }
1942
1943 static void
1944 ath_mode_init(struct ath_softc *sc)
1945 {
1946 struct ifnet *ifp = &sc->sc_if;
1947 struct ieee80211com *ic = &sc->sc_ic;
1948 struct ath_hal *ah = sc->sc_ah;
1949 struct ether_multi *enm;
1950 struct ether_multistep estep;
1951 u_int32_t rfilt, mfilt[2], val;
1952 int i;
1953 uint8_t pos;
1954
1955 /* configure rx filter */
1956 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1957 ath_hal_setrxfilter(ah, rfilt);
1958
1959 /* configure operational mode */
1960 ath_hal_setopmode(ah);
1961
1962 /* Write keys to hardware; it may have been powered down. */
1963 ath_key_update_begin(ic);
1964 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1965 ath_key_set(ic,
1966 &ic->ic_crypto.cs_nw_keys[i],
1967 ic->ic_myaddr);
1968 }
1969 ath_key_update_end(ic);
1970
1971 /*
1972 * Handle any link-level address change. Note that we only
1973 * need to force ic_myaddr; any other addresses are handled
1974 * as a byproduct of the ifnet code marking the interface
1975 * down then up.
1976 *
1977 * XXX should get from lladdr instead of arpcom but that's more work
1978 */
1979 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1980 ath_hal_setmac(ah, ic->ic_myaddr);
1981
1982 /* calculate and install multicast filter */
1983 ifp->if_flags &= ~IFF_ALLMULTI;
1984 mfilt[0] = mfilt[1] = 0;
1985 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1986 while (enm != NULL) {
1987 void *dl;
1988 /* XXX Punt on ranges. */
1989 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1990 mfilt[0] = mfilt[1] = 0xffffffff;
1991 ifp->if_flags |= IFF_ALLMULTI;
1992 break;
1993 }
1994 dl = enm->enm_addrlo;
1995 val = LE_READ_4((char *)dl + 0);
1996 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1997 val = LE_READ_4((char *)dl + 3);
1998 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1999 pos &= 0x3f;
2000 mfilt[pos / 32] |= (1 << (pos % 32));
2001
2002 ETHER_NEXT_MULTI(estep, enm);
2003 }
2004
2005 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2006 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2007 __func__, rfilt, mfilt[0], mfilt[1]);
2008 }
2009
2010 /*
2011 * Set the slot time based on the current setting.
2012 */
2013 static void
2014 ath_setslottime(struct ath_softc *sc)
2015 {
2016 struct ieee80211com *ic = &sc->sc_ic;
2017 struct ath_hal *ah = sc->sc_ah;
2018
2019 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2020 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2021 else
2022 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2023 sc->sc_updateslot = OK;
2024 }
2025
2026 /*
2027 * Callback from the 802.11 layer to update the
2028 * slot time based on the current setting.
2029 */
2030 static void
2031 ath_updateslot(struct ifnet *ifp)
2032 {
2033 struct ath_softc *sc = ifp->if_softc;
2034 struct ieee80211com *ic = &sc->sc_ic;
2035
2036 /*
2037 * When not coordinating the BSS, change the hardware
2038 * immediately. For other operation we defer the change
2039 * until beacon updates have propagated to the stations.
2040 */
2041 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2042 sc->sc_updateslot = UPDATE;
2043 else
2044 ath_setslottime(sc);
2045 }
2046
2047 /*
2048 * Setup a h/w transmit queue for beacons.
2049 */
2050 static int
2051 ath_beaconq_setup(struct ath_hal *ah)
2052 {
2053 HAL_TXQ_INFO qi;
2054
2055 memset(&qi, 0, sizeof(qi));
2056 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2057 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2058 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2059 /* NB: for dynamic turbo, don't enable any other interrupts */
2060 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2061 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2062 }
2063
2064 /*
2065 * Setup the transmit queue parameters for the beacon queue.
2066 */
2067 static int
2068 ath_beaconq_config(struct ath_softc *sc)
2069 {
2070 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2071 struct ieee80211com *ic = &sc->sc_ic;
2072 struct ath_hal *ah = sc->sc_ah;
2073 HAL_TXQ_INFO qi;
2074
2075 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2076 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2077 /*
2078 * Always burst out beacon and CAB traffic.
2079 */
2080 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2081 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2082 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2083 } else {
2084 struct wmeParams *wmep =
2085 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2086 /*
2087 * Adhoc mode; important thing is to use 2x cwmin.
2088 */
2089 qi.tqi_aifs = wmep->wmep_aifsn;
2090 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2091 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2092 }
2093
2094 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2095 device_printf(sc->sc_dev, "unable to update parameters for "
2096 "beacon hardware queue!\n");
2097 return 0;
2098 } else {
2099 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2100 return 1;
2101 }
2102 #undef ATH_EXPONENT_TO_VALUE
2103 }
2104
2105 /*
2106 * Allocate and setup an initial beacon frame.
2107 */
2108 static int
2109 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2110 {
2111 struct ieee80211com *ic = ni->ni_ic;
2112 struct ath_buf *bf;
2113 struct mbuf *m;
2114 int error;
2115
2116 bf = STAILQ_FIRST(&sc->sc_bbuf);
2117 if (bf == NULL) {
2118 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2119 sc->sc_stats.ast_be_nombuf++; /* XXX */
2120 return ENOMEM; /* XXX */
2121 }
2122 /*
2123 * NB: the beacon data buffer must be 32-bit aligned;
2124 * we assume the mbuf routines will return us something
2125 * with this alignment (perhaps should assert).
2126 */
2127 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2128 if (m == NULL) {
2129 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2130 __func__);
2131 sc->sc_stats.ast_be_nombuf++;
2132 return ENOMEM;
2133 }
2134 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2135 BUS_DMA_NOWAIT);
2136 if (error == 0) {
2137 bf->bf_m = m;
2138 bf->bf_node = ieee80211_ref_node(ni);
2139 } else {
2140 m_freem(m);
2141 }
2142 return error;
2143 }
2144
2145 /*
2146 * Setup the beacon frame for transmit.
2147 */
2148 static void
2149 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2150 {
2151 #define USE_SHPREAMBLE(_ic) \
2152 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2153 == IEEE80211_F_SHPREAMBLE)
2154 struct ieee80211_node *ni = bf->bf_node;
2155 struct ieee80211com *ic = ni->ni_ic;
2156 struct mbuf *m = bf->bf_m;
2157 struct ath_hal *ah = sc->sc_ah;
2158 struct ath_desc *ds;
2159 int flags, antenna;
2160 const HAL_RATE_TABLE *rt;
2161 u_int8_t rix, rate;
2162
2163 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2164 __func__, m, m->m_len);
2165
2166 /* setup descriptors */
2167 ds = bf->bf_desc;
2168
2169 flags = HAL_TXDESC_NOACK;
2170 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2171 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2172 flags |= HAL_TXDESC_VEOL;
2173 /*
2174 * Let hardware handle antenna switching unless
2175 * the user has selected a transmit antenna
2176 * (sc_txantenna is not 0).
2177 */
2178 antenna = sc->sc_txantenna;
2179 } else {
2180 ds->ds_link = 0;
2181 /*
2182 * Switch antenna every 4 beacons, unless the user
2183 * has selected a transmit antenna (sc_txantenna
2184 * is not 0).
2185 *
2186 * XXX assumes two antenna
2187 */
2188 if (sc->sc_txantenna == 0)
2189 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2190 else
2191 antenna = sc->sc_txantenna;
2192 }
2193
2194 KASSERT(bf->bf_nseg == 1,
2195 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2196 ds->ds_data = bf->bf_segs[0].ds_addr;
2197 /*
2198 * Calculate rate code.
2199 * XXX everything at min xmit rate
2200 */
2201 rix = sc->sc_minrateix;
2202 rt = sc->sc_currates;
2203 rate = rt->info[rix].rateCode;
2204 if (USE_SHPREAMBLE(ic))
2205 rate |= rt->info[rix].shortPreamble;
2206 ath_hal_setuptxdesc(ah, ds
2207 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2208 , sizeof(struct ieee80211_frame)/* header length */
2209 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2210 , ni->ni_txpower /* txpower XXX */
2211 , rate, 1 /* series 0 rate/tries */
2212 , HAL_TXKEYIX_INVALID /* no encryption */
2213 , antenna /* antenna mode */
2214 , flags /* no ack, veol for beacons */
2215 , 0 /* rts/cts rate */
2216 , 0 /* rts/cts duration */
2217 );
2218 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2219 ath_hal_filltxdesc(ah, ds
2220 , roundup(m->m_len, 4) /* buffer length */
2221 , AH_TRUE /* first segment */
2222 , AH_TRUE /* last segment */
2223 , ds /* first descriptor */
2224 );
2225
2226 /* NB: The desc swap function becomes void, if descriptor swapping
2227 * is not enabled
2228 */
2229 ath_desc_swap(ds);
2230
2231 #undef USE_SHPREAMBLE
2232 }
2233
2234 /*
2235 * Transmit a beacon frame at SWBA. Dynamic updates to the
2236 * frame contents are done as needed and the slot time is
2237 * also adjusted based on current state.
2238 */
2239 static void
2240 ath_beacon_proc(void *arg, int pending)
2241 {
2242 struct ath_softc *sc = arg;
2243 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2244 struct ieee80211_node *ni = bf->bf_node;
2245 struct ieee80211com *ic = ni->ni_ic;
2246 struct ath_hal *ah = sc->sc_ah;
2247 struct mbuf *m;
2248 int ncabq, error, otherant;
2249
2250 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2251 __func__, pending);
2252
2253 if (ic->ic_opmode == IEEE80211_M_STA ||
2254 ic->ic_opmode == IEEE80211_M_MONITOR ||
2255 bf == NULL || bf->bf_m == NULL) {
2256 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2257 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2258 return;
2259 }
2260 /*
2261 * Check if the previous beacon has gone out. If
2262 * not don't try to post another, skip this period
2263 * and wait for the next. Missed beacons indicate
2264 * a problem and should not occur. If we miss too
2265 * many consecutive beacons reset the device.
2266 */
2267 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2268 sc->sc_bmisscount++;
2269 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2270 "%s: missed %u consecutive beacons\n",
2271 __func__, sc->sc_bmisscount);
2272 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2273 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2274 return;
2275 }
2276 if (sc->sc_bmisscount != 0) {
2277 DPRINTF(sc, ATH_DEBUG_BEACON,
2278 "%s: resume beacon xmit after %u misses\n",
2279 __func__, sc->sc_bmisscount);
2280 sc->sc_bmisscount = 0;
2281 }
2282
2283 /*
2284 * Update dynamic beacon contents. If this returns
2285 * non-zero then we need to remap the memory because
2286 * the beacon frame changed size (probably because
2287 * of the TIM bitmap).
2288 */
2289 m = bf->bf_m;
2290 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2291 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2292 /* XXX too conservative? */
2293 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2294 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2295 BUS_DMA_NOWAIT);
2296 if (error != 0) {
2297 if_printf(&sc->sc_if,
2298 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2299 __func__, error);
2300 return;
2301 }
2302 }
2303
2304 /*
2305 * Handle slot time change when a non-ERP station joins/leaves
2306 * an 11g network. The 802.11 layer notifies us via callback,
2307 * we mark updateslot, then wait one beacon before effecting
2308 * the change. This gives associated stations at least one
2309 * beacon interval to note the state change.
2310 */
2311 /* XXX locking */
2312 if (sc->sc_updateslot == UPDATE)
2313 sc->sc_updateslot = COMMIT; /* commit next beacon */
2314 else if (sc->sc_updateslot == COMMIT)
2315 ath_setslottime(sc); /* commit change to h/w */
2316
2317 /*
2318 * Check recent per-antenna transmit statistics and flip
2319 * the default antenna if noticeably more frames went out
2320 * on the non-default antenna.
2321 * XXX assumes 2 anntenae
2322 */
2323 otherant = sc->sc_defant & 1 ? 2 : 1;
2324 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2325 ath_setdefantenna(sc, otherant);
2326 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2327
2328 /*
2329 * Construct tx descriptor.
2330 */
2331 ath_beacon_setup(sc, bf);
2332
2333 /*
2334 * Stop any current dma and put the new frame on the queue.
2335 * This should never fail since we check above that no frames
2336 * are still pending on the queue.
2337 */
2338 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2339 DPRINTF(sc, ATH_DEBUG_ANY,
2340 "%s: beacon queue %u did not stop?\n",
2341 __func__, sc->sc_bhalq);
2342 }
2343 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2344 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2345
2346 /*
2347 * Enable the CAB queue before the beacon queue to
2348 * insure cab frames are triggered by this beacon.
2349 */
2350 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2351 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2352 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2353 ath_hal_txstart(ah, sc->sc_bhalq);
2354 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2355 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2356 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2357
2358 sc->sc_stats.ast_be_xmit++;
2359 }
2360
2361 /*
2362 * Reset the hardware after detecting beacons have stopped.
2363 */
2364 static void
2365 ath_bstuck_proc(void *arg, int pending)
2366 {
2367 struct ath_softc *sc = arg;
2368 struct ifnet *ifp = &sc->sc_if;
2369
2370 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2371 sc->sc_bmisscount);
2372 ath_reset(ifp);
2373 }
2374
2375 /*
2376 * Reclaim beacon resources.
2377 */
2378 static void
2379 ath_beacon_free(struct ath_softc *sc)
2380 {
2381 struct ath_buf *bf;
2382
2383 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2384 if (bf->bf_m != NULL) {
2385 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2386 m_freem(bf->bf_m);
2387 bf->bf_m = NULL;
2388 }
2389 if (bf->bf_node != NULL) {
2390 ieee80211_free_node(bf->bf_node);
2391 bf->bf_node = NULL;
2392 }
2393 }
2394 }
2395
2396 /*
2397 * Configure the beacon and sleep timers.
2398 *
2399 * When operating as an AP this resets the TSF and sets
2400 * up the hardware to notify us when we need to issue beacons.
2401 *
2402 * When operating in station mode this sets up the beacon
2403 * timers according to the timestamp of the last received
2404 * beacon and the current TSF, configures PCF and DTIM
2405 * handling, programs the sleep registers so the hardware
2406 * will wakeup in time to receive beacons, and configures
2407 * the beacon miss handling so we'll receive a BMISS
2408 * interrupt when we stop seeing beacons from the AP
2409 * we've associated with.
2410 */
2411 static void
2412 ath_beacon_config(struct ath_softc *sc)
2413 {
2414 #define TSF_TO_TU(_h,_l) \
2415 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2416 #define FUDGE 2
2417 struct ath_hal *ah = sc->sc_ah;
2418 struct ieee80211com *ic = &sc->sc_ic;
2419 struct ieee80211_node *ni = ic->ic_bss;
2420 u_int32_t nexttbtt, intval, tsftu;
2421 u_int64_t tsf;
2422
2423 /* extract tstamp from last beacon and convert to TU */
2424 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2425 LE_READ_4(ni->ni_tstamp.data));
2426 /* NB: the beacon interval is kept internally in TU's */
2427 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2428 if (nexttbtt == 0) /* e.g. for ap mode */
2429 nexttbtt = intval;
2430 else if (intval) /* NB: can be 0 for monitor mode */
2431 nexttbtt = roundup(nexttbtt, intval);
2432 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2433 __func__, nexttbtt, intval, ni->ni_intval);
2434 if (ic->ic_opmode == IEEE80211_M_STA) {
2435 HAL_BEACON_STATE bs;
2436 int dtimperiod, dtimcount;
2437 int cfpperiod, cfpcount;
2438
2439 /*
2440 * Setup dtim and cfp parameters according to
2441 * last beacon we received (which may be none).
2442 */
2443 dtimperiod = ni->ni_dtim_period;
2444 if (dtimperiod <= 0) /* NB: 0 if not known */
2445 dtimperiod = 1;
2446 dtimcount = ni->ni_dtim_count;
2447 if (dtimcount >= dtimperiod) /* NB: sanity check */
2448 dtimcount = 0; /* XXX? */
2449 cfpperiod = 1; /* NB: no PCF support yet */
2450 cfpcount = 0;
2451 /*
2452 * Pull nexttbtt forward to reflect the current
2453 * TSF and calculate dtim+cfp state for the result.
2454 */
2455 tsf = ath_hal_gettsf64(ah);
2456 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2457 do {
2458 nexttbtt += intval;
2459 if (--dtimcount < 0) {
2460 dtimcount = dtimperiod - 1;
2461 if (--cfpcount < 0)
2462 cfpcount = cfpperiod - 1;
2463 }
2464 } while (nexttbtt < tsftu);
2465 memset(&bs, 0, sizeof(bs));
2466 bs.bs_intval = intval;
2467 bs.bs_nexttbtt = nexttbtt;
2468 bs.bs_dtimperiod = dtimperiod*intval;
2469 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2470 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2471 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2472 bs.bs_cfpmaxduration = 0;
2473 #if 0
2474 /*
2475 * The 802.11 layer records the offset to the DTIM
2476 * bitmap while receiving beacons; use it here to
2477 * enable h/w detection of our AID being marked in
2478 * the bitmap vector (to indicate frames for us are
2479 * pending at the AP).
2480 * XXX do DTIM handling in s/w to WAR old h/w bugs
2481 * XXX enable based on h/w rev for newer chips
2482 */
2483 bs.bs_timoffset = ni->ni_timoff;
2484 #endif
2485 /*
2486 * Calculate the number of consecutive beacons to miss
2487 * before taking a BMISS interrupt. The configuration
2488 * is specified in ms, so we need to convert that to
2489 * TU's and then calculate based on the beacon interval.
2490 * Note that we clamp the result to at most 10 beacons.
2491 */
2492 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2493 if (bs.bs_bmissthreshold > 10)
2494 bs.bs_bmissthreshold = 10;
2495 else if (bs.bs_bmissthreshold <= 0)
2496 bs.bs_bmissthreshold = 1;
2497
2498 /*
2499 * Calculate sleep duration. The configuration is
2500 * given in ms. We insure a multiple of the beacon
2501 * period is used. Also, if the sleep duration is
2502 * greater than the DTIM period then it makes senses
2503 * to make it a multiple of that.
2504 *
2505 * XXX fixed at 100ms
2506 */
2507 bs.bs_sleepduration =
2508 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2509 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2510 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2511
2512 DPRINTF(sc, ATH_DEBUG_BEACON,
2513 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2514 , __func__
2515 , tsf, tsftu
2516 , bs.bs_intval
2517 , bs.bs_nexttbtt
2518 , bs.bs_dtimperiod
2519 , bs.bs_nextdtim
2520 , bs.bs_bmissthreshold
2521 , bs.bs_sleepduration
2522 , bs.bs_cfpperiod
2523 , bs.bs_cfpmaxduration
2524 , bs.bs_cfpnext
2525 , bs.bs_timoffset
2526 );
2527 ath_hal_intrset(ah, 0);
2528 ath_hal_beacontimers(ah, &bs);
2529 sc->sc_imask |= HAL_INT_BMISS;
2530 ath_hal_intrset(ah, sc->sc_imask);
2531 } else {
2532 ath_hal_intrset(ah, 0);
2533 if (nexttbtt == intval)
2534 intval |= HAL_BEACON_RESET_TSF;
2535 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2536 /*
2537 * In IBSS mode enable the beacon timers but only
2538 * enable SWBA interrupts if we need to manually
2539 * prepare beacon frames. Otherwise we use a
2540 * self-linked tx descriptor and let the hardware
2541 * deal with things.
2542 */
2543 intval |= HAL_BEACON_ENA;
2544 if (!sc->sc_hasveol)
2545 sc->sc_imask |= HAL_INT_SWBA;
2546 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2547 /*
2548 * Pull nexttbtt forward to reflect
2549 * the current TSF.
2550 */
2551 tsf = ath_hal_gettsf64(ah);
2552 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2553 do {
2554 nexttbtt += intval;
2555 } while (nexttbtt < tsftu);
2556 }
2557 ath_beaconq_config(sc);
2558 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2559 /*
2560 * In AP mode we enable the beacon timers and
2561 * SWBA interrupts to prepare beacon frames.
2562 */
2563 intval |= HAL_BEACON_ENA;
2564 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2565 ath_beaconq_config(sc);
2566 }
2567 ath_hal_beaconinit(ah, nexttbtt, intval);
2568 sc->sc_bmisscount = 0;
2569 ath_hal_intrset(ah, sc->sc_imask);
2570 /*
2571 * When using a self-linked beacon descriptor in
2572 * ibss mode load it once here.
2573 */
2574 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2575 ath_beacon_proc(sc, 0);
2576 }
2577 sc->sc_syncbeacon = 0;
2578 #undef UNDEF
2579 #undef TSF_TO_TU
2580 }
2581
2582 static int
2583 ath_descdma_setup(struct ath_softc *sc,
2584 struct ath_descdma *dd, ath_bufhead *head,
2585 const char *name, int nbuf, int ndesc)
2586 {
2587 #define DS2PHYS(_dd, _ds) \
2588 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2589 struct ifnet *ifp = &sc->sc_if;
2590 struct ath_desc *ds;
2591 struct ath_buf *bf;
2592 int i, bsize, error;
2593
2594 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2595 __func__, name, nbuf, ndesc);
2596
2597 dd->dd_name = name;
2598 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2599
2600 /*
2601 * Setup DMA descriptor area.
2602 */
2603 dd->dd_dmat = sc->sc_dmat;
2604
2605 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2606 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2607
2608 if (error != 0) {
2609 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2610 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2611 goto fail0;
2612 }
2613
2614 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2615 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2616 if (error != 0) {
2617 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2618 nbuf * ndesc, dd->dd_name, error);
2619 goto fail1;
2620 }
2621
2622 /* allocate descriptors */
2623 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2624 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2625 if (error != 0) {
2626 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2627 "error %u\n", dd->dd_name, error);
2628 goto fail2;
2629 }
2630
2631 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2632 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2633 if (error != 0) {
2634 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2635 dd->dd_name, error);
2636 goto fail3;
2637 }
2638
2639 ds = dd->dd_desc;
2640 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2641 DPRINTF(sc, ATH_DEBUG_RESET,
2642 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2643 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2644 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2645
2646 /* allocate rx buffers */
2647 bsize = sizeof(struct ath_buf) * nbuf;
2648 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2649 if (bf == NULL) {
2650 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2651 dd->dd_name, bsize);
2652 goto fail4;
2653 }
2654 dd->dd_bufptr = bf;
2655
2656 STAILQ_INIT(head);
2657 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2658 bf->bf_desc = ds;
2659 bf->bf_daddr = DS2PHYS(dd, ds);
2660 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2661 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2662 if (error != 0) {
2663 if_printf(ifp, "unable to create dmamap for %s "
2664 "buffer %u, error %u\n", dd->dd_name, i, error);
2665 ath_descdma_cleanup(sc, dd, head);
2666 return error;
2667 }
2668 STAILQ_INSERT_TAIL(head, bf, bf_list);
2669 }
2670 return 0;
2671 fail4:
2672 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2673 fail3:
2674 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2675 fail2:
2676 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2677 fail1:
2678 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2679 fail0:
2680 memset(dd, 0, sizeof(*dd));
2681 return error;
2682 #undef DS2PHYS
2683 }
2684
2685 static void
2686 ath_descdma_cleanup(struct ath_softc *sc,
2687 struct ath_descdma *dd, ath_bufhead *head)
2688 {
2689 struct ath_buf *bf;
2690 struct ieee80211_node *ni;
2691
2692 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2693 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2694 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2695 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2696
2697 STAILQ_FOREACH(bf, head, bf_list) {
2698 if (bf->bf_m) {
2699 m_freem(bf->bf_m);
2700 bf->bf_m = NULL;
2701 }
2702 if (bf->bf_dmamap != NULL) {
2703 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2704 bf->bf_dmamap = NULL;
2705 }
2706 ni = bf->bf_node;
2707 bf->bf_node = NULL;
2708 if (ni != NULL) {
2709 /*
2710 * Reclaim node reference.
2711 */
2712 ieee80211_free_node(ni);
2713 }
2714 }
2715
2716 STAILQ_INIT(head);
2717 free(dd->dd_bufptr, M_ATHDEV);
2718 memset(dd, 0, sizeof(*dd));
2719 }
2720
2721 static int
2722 ath_desc_alloc(struct ath_softc *sc)
2723 {
2724 int error;
2725
2726 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2727 "rx", ath_rxbuf, 1);
2728 if (error != 0)
2729 return error;
2730
2731 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2732 "tx", ath_txbuf, ATH_TXDESC);
2733 if (error != 0) {
2734 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2735 return error;
2736 }
2737
2738 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2739 "beacon", 1, 1);
2740 if (error != 0) {
2741 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2742 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2743 return error;
2744 }
2745 return 0;
2746 }
2747
2748 static void
2749 ath_desc_free(struct ath_softc *sc)
2750 {
2751
2752 if (sc->sc_bdma.dd_desc_len != 0)
2753 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2754 if (sc->sc_txdma.dd_desc_len != 0)
2755 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2756 if (sc->sc_rxdma.dd_desc_len != 0)
2757 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2758 }
2759
2760 static struct ieee80211_node *
2761 ath_node_alloc(struct ieee80211_node_table *nt)
2762 {
2763 struct ieee80211com *ic = nt->nt_ic;
2764 struct ath_softc *sc = ic->ic_ifp->if_softc;
2765 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2766 struct ath_node *an;
2767
2768 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2769 if (an == NULL) {
2770 /* XXX stat+msg */
2771 return NULL;
2772 }
2773 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2774 ath_rate_node_init(sc, an);
2775
2776 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2777 return &an->an_node;
2778 }
2779
2780 static void
2781 ath_node_free(struct ieee80211_node *ni)
2782 {
2783 struct ieee80211com *ic = ni->ni_ic;
2784 struct ath_softc *sc = ic->ic_ifp->if_softc;
2785
2786 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2787
2788 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2789 sc->sc_node_free(ni);
2790 }
2791
2792 static u_int8_t
2793 ath_node_getrssi(const struct ieee80211_node *ni)
2794 {
2795 #define HAL_EP_RND(x, mul) \
2796 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2797 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2798 int32_t rssi;
2799
2800 /*
2801 * When only one frame is received there will be no state in
2802 * avgrssi so fallback on the value recorded by the 802.11 layer.
2803 */
2804 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2805 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2806 else
2807 rssi = ni->ni_rssi;
2808 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2809 #undef HAL_EP_RND
2810 }
2811
2812 static int
2813 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2814 {
2815 struct ath_hal *ah = sc->sc_ah;
2816 int error;
2817 struct mbuf *m;
2818 struct ath_desc *ds;
2819
2820 m = bf->bf_m;
2821 if (m == NULL) {
2822 /*
2823 * NB: by assigning a page to the rx dma buffer we
2824 * implicitly satisfy the Atheros requirement that
2825 * this buffer be cache-line-aligned and sized to be
2826 * multiple of the cache line size. Not doing this
2827 * causes weird stuff to happen (for the 5210 at least).
2828 */
2829 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2830 if (m == NULL) {
2831 DPRINTF(sc, ATH_DEBUG_ANY,
2832 "%s: no mbuf/cluster\n", __func__);
2833 sc->sc_stats.ast_rx_nombuf++;
2834 return ENOMEM;
2835 }
2836 bf->bf_m = m;
2837 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2838
2839 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2840 bf->bf_dmamap, m,
2841 BUS_DMA_NOWAIT);
2842 if (error != 0) {
2843 DPRINTF(sc, ATH_DEBUG_ANY,
2844 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2845 __func__, error);
2846 sc->sc_stats.ast_rx_busdma++;
2847 return error;
2848 }
2849 KASSERT(bf->bf_nseg == 1,
2850 ("multi-segment packet; nseg %u", bf->bf_nseg));
2851 }
2852 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2853 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2854
2855 /*
2856 * Setup descriptors. For receive we always terminate
2857 * the descriptor list with a self-linked entry so we'll
2858 * not get overrun under high load (as can happen with a
2859 * 5212 when ANI processing enables PHY error frames).
2860 *
2861 * To insure the last descriptor is self-linked we create
2862 * each descriptor as self-linked and add it to the end. As
2863 * each additional descriptor is added the previous self-linked
2864 * entry is ``fixed'' naturally. This should be safe even
2865 * if DMA is happening. When processing RX interrupts we
2866 * never remove/process the last, self-linked, entry on the
2867 * descriptor list. This insures the hardware always has
2868 * someplace to write a new frame.
2869 */
2870 ds = bf->bf_desc;
2871 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2872 ds->ds_data = bf->bf_segs[0].ds_addr;
2873 /* ds->ds_vdata = mtod(m, void *); for radar */
2874 ath_hal_setuprxdesc(ah, ds
2875 , m->m_len /* buffer size */
2876 , 0
2877 );
2878
2879 if (sc->sc_rxlink != NULL)
2880 *sc->sc_rxlink = bf->bf_daddr;
2881 sc->sc_rxlink = &ds->ds_link;
2882 return 0;
2883 }
2884
2885 /*
2886 * Extend 15-bit time stamp from rx descriptor to
2887 * a full 64-bit TSF using the specified TSF.
2888 */
2889 static inline u_int64_t
2890 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2891 {
2892 if ((tsf & 0x7fff) < rstamp)
2893 tsf -= 0x8000;
2894 return ((tsf &~ 0x7fff) | rstamp);
2895 }
2896
2897 /*
2898 * Intercept management frames to collect beacon rssi data
2899 * and to do ibss merges.
2900 */
2901 static void
2902 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2903 struct ieee80211_node *ni,
2904 int subtype, int rssi, u_int32_t rstamp)
2905 {
2906 struct ath_softc *sc = ic->ic_ifp->if_softc;
2907
2908 /*
2909 * Call up first so subsequent work can use information
2910 * potentially stored in the node (e.g. for ibss merge).
2911 */
2912 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2913 switch (subtype) {
2914 case IEEE80211_FC0_SUBTYPE_BEACON:
2915 /* update rssi statistics for use by the hal */
2916 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2917 if (sc->sc_syncbeacon &&
2918 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2919 /*
2920 * Resync beacon timers using the tsf of the beacon
2921 * frame we just received.
2922 */
2923 ath_beacon_config(sc);
2924 }
2925 /* fall thru... */
2926 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2927 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2928 ic->ic_state == IEEE80211_S_RUN) {
2929 u_int64_t tsf = ath_extend_tsf(rstamp,
2930 ath_hal_gettsf64(sc->sc_ah));
2931
2932 /*
2933 * Handle ibss merge as needed; check the tsf on the
2934 * frame before attempting the merge. The 802.11 spec
2935 * says the station should change it's bssid to match
2936 * the oldest station with the same ssid, where oldest
2937 * is determined by the tsf. Note that hardware
2938 * reconfiguration happens through callback to
2939 * ath_newstate as the state machine will go from
2940 * RUN -> RUN when this happens.
2941 */
2942 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2943 DPRINTF(sc, ATH_DEBUG_STATE,
2944 "ibss merge, rstamp %u tsf %ju "
2945 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2946 (uintmax_t)ni->ni_tstamp.tsf);
2947 (void) ieee80211_ibss_merge(ni);
2948 }
2949 }
2950 break;
2951 }
2952 }
2953
2954 /*
2955 * Set the default antenna.
2956 */
2957 static void
2958 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2959 {
2960 struct ath_hal *ah = sc->sc_ah;
2961
2962 /* XXX block beacon interrupts */
2963 ath_hal_setdefantenna(ah, antenna);
2964 if (sc->sc_defant != antenna)
2965 sc->sc_stats.ast_ant_defswitch++;
2966 sc->sc_defant = antenna;
2967 sc->sc_rxotherant = 0;
2968 }
2969
2970 static void
2971 ath_handle_micerror(struct ieee80211com *ic,
2972 struct ieee80211_frame *wh, int keyix)
2973 {
2974 struct ieee80211_node *ni;
2975
2976 /* XXX recheck MIC to deal w/ chips that lie */
2977 /* XXX discard MIC errors on !data frames */
2978 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2979 if (ni != NULL) {
2980 ieee80211_notify_michael_failure(ic, wh, keyix);
2981 ieee80211_free_node(ni);
2982 }
2983 }
2984
2985 static void
2986 ath_rx_proc(void *arg, int npending)
2987 {
2988 #define PA2DESC(_sc, _pa) \
2989 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2990 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2991 struct ath_softc *sc = arg;
2992 struct ath_buf *bf;
2993 struct ieee80211com *ic = &sc->sc_ic;
2994 struct ifnet *ifp = &sc->sc_if;
2995 struct ath_hal *ah = sc->sc_ah;
2996 struct ath_desc *ds;
2997 struct mbuf *m;
2998 struct ieee80211_node *ni;
2999 struct ath_node *an;
3000 int len, ngood, type;
3001 u_int phyerr;
3002 HAL_STATUS status;
3003 int16_t nf;
3004 u_int64_t tsf;
3005 uint8_t rxerr_tap, rxerr_mon;
3006
3007 NET_LOCK_GIANT(); /* XXX */
3008
3009 rxerr_tap =
3010 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3011
3012 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3013 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3014 else if (ifp->if_flags & IFF_PROMISC)
3015 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3016
3017 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3018 ngood = 0;
3019 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3020 tsf = ath_hal_gettsf64(ah);
3021 do {
3022 bf = STAILQ_FIRST(&sc->sc_rxbuf);
3023 if (bf == NULL) { /* NB: shouldn't happen */
3024 if_printf(ifp, "%s: no buffer!\n", __func__);
3025 break;
3026 }
3027 ds = bf->bf_desc;
3028 if (ds->ds_link == bf->bf_daddr) {
3029 /* NB: never process the self-linked entry at the end */
3030 break;
3031 }
3032 m = bf->bf_m;
3033 if (m == NULL) { /* NB: shouldn't happen */
3034 if_printf(ifp, "%s: no mbuf!\n", __func__);
3035 break;
3036 }
3037 /* XXX sync descriptor memory */
3038 /*
3039 * Must provide the virtual address of the current
3040 * descriptor, the physical address, and the virtual
3041 * address of the next descriptor in the h/w chain.
3042 * This allows the HAL to look ahead to see if the
3043 * hardware is done with a descriptor by checking the
3044 * done bit in the following descriptor and the address
3045 * of the current descriptor the DMA engine is working
3046 * on. All this is necessary because of our use of
3047 * a self-linked list to avoid rx overruns.
3048 */
3049 status = ath_hal_rxprocdesc(ah, ds,
3050 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3051 &ds->ds_rxstat);
3052 #ifdef AR_DEBUG
3053 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3054 ath_printrxbuf(bf, status == HAL_OK);
3055 #endif
3056 if (status == HAL_EINPROGRESS)
3057 break;
3058 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3059 if (ds->ds_rxstat.rs_more) {
3060 /*
3061 * Frame spans multiple descriptors; this
3062 * cannot happen yet as we don't support
3063 * jumbograms. If not in monitor mode,
3064 * discard the frame.
3065 */
3066 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3067 sc->sc_stats.ast_rx_toobig++;
3068 goto rx_next;
3069 }
3070 /* fall thru for monitor mode handling... */
3071 } else if (ds->ds_rxstat.rs_status != 0) {
3072 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3073 sc->sc_stats.ast_rx_crcerr++;
3074 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3075 sc->sc_stats.ast_rx_fifoerr++;
3076 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3077 sc->sc_stats.ast_rx_phyerr++;
3078 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3079 sc->sc_stats.ast_rx_phy[phyerr]++;
3080 goto rx_next;
3081 }
3082 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3083 /*
3084 * Decrypt error. If the error occurred
3085 * because there was no hardware key, then
3086 * let the frame through so the upper layers
3087 * can process it. This is necessary for 5210
3088 * parts which have no way to setup a ``clear''
3089 * key cache entry.
3090 *
3091 * XXX do key cache faulting
3092 */
3093 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3094 goto rx_accept;
3095 sc->sc_stats.ast_rx_badcrypt++;
3096 }
3097 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3098 sc->sc_stats.ast_rx_badmic++;
3099 /*
3100 * Do minimal work required to hand off
3101 * the 802.11 header for notifcation.
3102 */
3103 /* XXX frag's and qos frames */
3104 len = ds->ds_rxstat.rs_datalen;
3105 if (len >= sizeof (struct ieee80211_frame)) {
3106 bus_dmamap_sync(sc->sc_dmat,
3107 bf->bf_dmamap,
3108 0, bf->bf_dmamap->dm_mapsize,
3109 BUS_DMASYNC_POSTREAD);
3110 ath_handle_micerror(ic,
3111 mtod(m, struct ieee80211_frame *),
3112 sc->sc_splitmic ?
3113 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3114 }
3115 }
3116 ifp->if_ierrors++;
3117 /*
3118 * Reject error frames, we normally don't want
3119 * to see them in monitor mode (in monitor mode
3120 * allow through packets that have crypto problems).
3121 */
3122
3123 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3124 goto rx_next;
3125 }
3126 rx_accept:
3127 /*
3128 * Sync and unmap the frame. At this point we're
3129 * committed to passing the mbuf somewhere so clear
3130 * bf_m; this means a new sk_buff must be allocated
3131 * when the rx descriptor is setup again to receive
3132 * another frame.
3133 */
3134 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3135 0, bf->bf_dmamap->dm_mapsize,
3136 BUS_DMASYNC_POSTREAD);
3137 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3138 bf->bf_m = NULL;
3139
3140 m->m_pkthdr.rcvif = ifp;
3141 len = ds->ds_rxstat.rs_datalen;
3142 m->m_pkthdr.len = m->m_len = len;
3143
3144 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3145
3146 if (sc->sc_drvbpf) {
3147 u_int8_t rix;
3148
3149 /*
3150 * Discard anything shorter than an ack or cts.
3151 */
3152 if (len < IEEE80211_ACK_LEN) {
3153 DPRINTF(sc, ATH_DEBUG_RECV,
3154 "%s: runt packet %d\n",
3155 __func__, len);
3156 sc->sc_stats.ast_rx_tooshort++;
3157 m_freem(m);
3158 goto rx_next;
3159 }
3160 rix = ds->ds_rxstat.rs_rate;
3161 sc->sc_rx_th.wr_tsf = htole64(
3162 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3163 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3164 if (ds->ds_rxstat.rs_status &
3165 (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3166 sc->sc_rx_th.wr_flags |=
3167 IEEE80211_RADIOTAP_F_BADFCS;
3168 }
3169 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3170 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3171 sc->sc_rx_th.wr_antnoise = nf;
3172 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3173
3174 bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3175 sc->sc_rx_th_len, m);
3176 }
3177
3178 if (ds->ds_rxstat.rs_status & rxerr_tap) {
3179 m_freem(m);
3180 goto rx_next;
3181 }
3182 /*
3183 * From this point on we assume the frame is at least
3184 * as large as ieee80211_frame_min; verify that.
3185 */
3186 if (len < IEEE80211_MIN_LEN) {
3187 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3188 __func__, len);
3189 sc->sc_stats.ast_rx_tooshort++;
3190 m_freem(m);
3191 goto rx_next;
3192 }
3193
3194 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3195 ieee80211_dump_pkt(mtod(m, void *), len,
3196 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3197 ds->ds_rxstat.rs_rssi);
3198 }
3199
3200 m_adj(m, -IEEE80211_CRC_LEN);
3201
3202 /*
3203 * Locate the node for sender, track state, and then
3204 * pass the (referenced) node up to the 802.11 layer
3205 * for its use.
3206 */
3207 ni = ieee80211_find_rxnode_withkey(ic,
3208 mtod(m, const struct ieee80211_frame_min *),
3209 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3210 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3211 /*
3212 * Track rx rssi and do any rx antenna management.
3213 */
3214 an = ATH_NODE(ni);
3215 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3216 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3217 /*
3218 * Send frame up for processing.
3219 */
3220 type = ieee80211_input(ic, m, ni,
3221 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3222 ieee80211_free_node(ni);
3223 if (sc->sc_diversity) {
3224 /*
3225 * When using fast diversity, change the default rx
3226 * antenna if diversity chooses the other antenna 3
3227 * times in a row.
3228 */
3229 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3230 if (++sc->sc_rxotherant >= 3)
3231 ath_setdefantenna(sc,
3232 ds->ds_rxstat.rs_antenna);
3233 } else
3234 sc->sc_rxotherant = 0;
3235 }
3236 if (sc->sc_softled) {
3237 /*
3238 * Blink for any data frame. Otherwise do a
3239 * heartbeat-style blink when idle. The latter
3240 * is mainly for station mode where we depend on
3241 * periodic beacon frames to trigger the poll event.
3242 */
3243 if (type == IEEE80211_FC0_TYPE_DATA) {
3244 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3245 ath_led_event(sc, ATH_LED_RX);
3246 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3247 ath_led_event(sc, ATH_LED_POLL);
3248 }
3249 /*
3250 * Arrange to update the last rx timestamp only for
3251 * frames from our ap when operating in station mode.
3252 * This assumes the rx key is always setup when associated.
3253 */
3254 if (ic->ic_opmode == IEEE80211_M_STA &&
3255 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3256 ngood++;
3257 rx_next:
3258 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3259 } while (ath_rxbuf_init(sc, bf) == 0);
3260
3261 /* rx signal state monitoring */
3262 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3263 #if 0
3264 if (ath_hal_radar_event(ah))
3265 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3266 #endif
3267 if (ngood)
3268 sc->sc_lastrx = tsf;
3269
3270 #ifdef __NetBSD__
3271 /* XXX Why isn't this necessary in FreeBSD? */
3272 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3273 ath_start(ifp);
3274 #endif /* __NetBSD__ */
3275
3276 NET_UNLOCK_GIANT(); /* XXX */
3277 #undef PA2DESC
3278 }
3279
3280 /*
3281 * Setup a h/w transmit queue.
3282 */
3283 static struct ath_txq *
3284 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3285 {
3286 #define N(a) (sizeof(a)/sizeof(a[0]))
3287 struct ath_hal *ah = sc->sc_ah;
3288 HAL_TXQ_INFO qi;
3289 int qnum;
3290
3291 memset(&qi, 0, sizeof(qi));
3292 qi.tqi_subtype = subtype;
3293 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3294 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3295 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3296 /*
3297 * Enable interrupts only for EOL and DESC conditions.
3298 * We mark tx descriptors to receive a DESC interrupt
3299 * when a tx queue gets deep; otherwise waiting for the
3300 * EOL to reap descriptors. Note that this is done to
3301 * reduce interrupt load and this only defers reaping
3302 * descriptors, never transmitting frames. Aside from
3303 * reducing interrupts this also permits more concurrency.
3304 * The only potential downside is if the tx queue backs
3305 * up in which case the top half of the kernel may backup
3306 * due to a lack of tx descriptors.
3307 */
3308 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3309 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3310 if (qnum == -1) {
3311 /*
3312 * NB: don't print a message, this happens
3313 * normally on parts with too few tx queues
3314 */
3315 return NULL;
3316 }
3317 if (qnum >= N(sc->sc_txq)) {
3318 device_printf(sc->sc_dev,
3319 "hal qnum %u out of range, max %zu!\n",
3320 qnum, N(sc->sc_txq));
3321 ath_hal_releasetxqueue(ah, qnum);
3322 return NULL;
3323 }
3324 if (!ATH_TXQ_SETUP(sc, qnum)) {
3325 struct ath_txq *txq = &sc->sc_txq[qnum];
3326
3327 txq->axq_qnum = qnum;
3328 txq->axq_depth = 0;
3329 txq->axq_intrcnt = 0;
3330 txq->axq_link = NULL;
3331 STAILQ_INIT(&txq->axq_q);
3332 ATH_TXQ_LOCK_INIT(sc, txq);
3333 sc->sc_txqsetup |= 1<<qnum;
3334 }
3335 return &sc->sc_txq[qnum];
3336 #undef N
3337 }
3338
3339 /*
3340 * Setup a hardware data transmit queue for the specified
3341 * access control. The hal may not support all requested
3342 * queues in which case it will return a reference to a
3343 * previously setup queue. We record the mapping from ac's
3344 * to h/w queues for use by ath_tx_start and also track
3345 * the set of h/w queues being used to optimize work in the
3346 * transmit interrupt handler and related routines.
3347 */
3348 static int
3349 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3350 {
3351 #define N(a) (sizeof(a)/sizeof(a[0]))
3352 struct ath_txq *txq;
3353
3354 if (ac >= N(sc->sc_ac2q)) {
3355 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3356 ac, N(sc->sc_ac2q));
3357 return 0;
3358 }
3359 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3360 if (txq != NULL) {
3361 sc->sc_ac2q[ac] = txq;
3362 return 1;
3363 } else
3364 return 0;
3365 #undef N
3366 }
3367
3368 /*
3369 * Update WME parameters for a transmit queue.
3370 */
3371 static int
3372 ath_txq_update(struct ath_softc *sc, int ac)
3373 {
3374 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3375 #define ATH_TXOP_TO_US(v) (v<<5)
3376 struct ieee80211com *ic = &sc->sc_ic;
3377 struct ath_txq *txq = sc->sc_ac2q[ac];
3378 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3379 struct ath_hal *ah = sc->sc_ah;
3380 HAL_TXQ_INFO qi;
3381
3382 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3383 qi.tqi_aifs = wmep->wmep_aifsn;
3384 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3385 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3386 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3387
3388 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3389 device_printf(sc->sc_dev, "unable to update hardware queue "
3390 "parameters for %s traffic!\n",
3391 ieee80211_wme_acnames[ac]);
3392 return 0;
3393 } else {
3394 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3395 return 1;
3396 }
3397 #undef ATH_TXOP_TO_US
3398 #undef ATH_EXPONENT_TO_VALUE
3399 }
3400
3401 /*
3402 * Callback from the 802.11 layer to update WME parameters.
3403 */
3404 static int
3405 ath_wme_update(struct ieee80211com *ic)
3406 {
3407 struct ath_softc *sc = ic->ic_ifp->if_softc;
3408
3409 return !ath_txq_update(sc, WME_AC_BE) ||
3410 !ath_txq_update(sc, WME_AC_BK) ||
3411 !ath_txq_update(sc, WME_AC_VI) ||
3412 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3413 }
3414
3415 /*
3416 * Reclaim resources for a setup queue.
3417 */
3418 static void
3419 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3420 {
3421
3422 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3423 ATH_TXQ_LOCK_DESTROY(txq);
3424 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3425 }
3426
3427 /*
3428 * Reclaim all tx queue resources.
3429 */
3430 static void
3431 ath_tx_cleanup(struct ath_softc *sc)
3432 {
3433 int i;
3434
3435 ATH_TXBUF_LOCK_DESTROY(sc);
3436 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3437 if (ATH_TXQ_SETUP(sc, i))
3438 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3439 }
3440
3441 /*
3442 * Defragment an mbuf chain, returning at most maxfrags separate
3443 * mbufs+clusters. If this is not possible NULL is returned and
3444 * the original mbuf chain is left in it's present (potentially
3445 * modified) state. We use two techniques: collapsing consecutive
3446 * mbufs and replacing consecutive mbufs by a cluster.
3447 */
3448 static struct mbuf *
3449 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3450 {
3451 struct mbuf *m, *n, *n2, **prev;
3452 u_int curfrags;
3453
3454 /*
3455 * Calculate the current number of frags.
3456 */
3457 curfrags = 0;
3458 for (m = m0; m != NULL; m = m->m_next)
3459 curfrags++;
3460 /*
3461 * First, try to collapse mbufs. Note that we always collapse
3462 * towards the front so we don't need to deal with moving the
3463 * pkthdr. This may be suboptimal if the first mbuf has much
3464 * less data than the following.
3465 */
3466 m = m0;
3467 again:
3468 for (;;) {
3469 n = m->m_next;
3470 if (n == NULL)
3471 break;
3472 if (n->m_len < M_TRAILINGSPACE(m)) {
3473 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3474 n->m_len);
3475 m->m_len += n->m_len;
3476 m->m_next = n->m_next;
3477 m_free(n);
3478 if (--curfrags <= maxfrags)
3479 return m0;
3480 } else
3481 m = n;
3482 }
3483 KASSERT(maxfrags > 1,
3484 ("maxfrags %u, but normal collapse failed", maxfrags));
3485 /*
3486 * Collapse consecutive mbufs to a cluster.
3487 */
3488 prev = &m0->m_next; /* NB: not the first mbuf */
3489 while ((n = *prev) != NULL) {
3490 if ((n2 = n->m_next) != NULL &&
3491 n->m_len + n2->m_len < MCLBYTES) {
3492 m = m_getcl(how, MT_DATA, 0);
3493 if (m == NULL)
3494 goto bad;
3495 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3496 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3497 n2->m_len);
3498 m->m_len = n->m_len + n2->m_len;
3499 m->m_next = n2->m_next;
3500 *prev = m;
3501 m_free(n);
3502 m_free(n2);
3503 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3504 return m0;
3505 /*
3506 * Still not there, try the normal collapse
3507 * again before we allocate another cluster.
3508 */
3509 goto again;
3510 }
3511 prev = &n->m_next;
3512 }
3513 /*
3514 * No place where we can collapse to a cluster; punt.
3515 * This can occur if, for example, you request 2 frags
3516 * but the packet requires that both be clusters (we
3517 * never reallocate the first mbuf to avoid moving the
3518 * packet header).
3519 */
3520 bad:
3521 return NULL;
3522 }
3523
3524 /*
3525 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3526 */
3527 static int
3528 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3529 {
3530 int i;
3531
3532 for (i = 0; i < rt->rateCount; i++)
3533 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3534 return i;
3535 return 0; /* NB: lowest rate */
3536 }
3537
3538 static void
3539 ath_freetx(struct mbuf *m)
3540 {
3541 struct mbuf *next;
3542
3543 do {
3544 next = m->m_nextpkt;
3545 m->m_nextpkt = NULL;
3546 m_freem(m);
3547 } while ((m = next) != NULL);
3548 }
3549
3550 static int
3551 deduct_pad_bytes(int len, int hdrlen)
3552 {
3553 /* XXX I am suspicious that this code, which I extracted
3554 * XXX from ath_tx_start() for reuse, does the right thing.
3555 */
3556 return len - (hdrlen & 3);
3557 }
3558
3559 static int
3560 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3561 struct mbuf *m0)
3562 {
3563 struct ieee80211com *ic = &sc->sc_ic;
3564 struct ath_hal *ah = sc->sc_ah;
3565 struct ifnet *ifp = &sc->sc_if;
3566 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3567 int i, error, iswep, ismcast, isfrag, ismrr;
3568 int keyix, hdrlen, pktlen, try0;
3569 u_int8_t rix, txrate, ctsrate;
3570 u_int8_t cix = 0xff; /* NB: silence compiler */
3571 struct ath_desc *ds, *ds0;
3572 struct ath_txq *txq;
3573 struct ieee80211_frame *wh;
3574 u_int subtype, flags, ctsduration;
3575 HAL_PKT_TYPE atype;
3576 const HAL_RATE_TABLE *rt;
3577 HAL_BOOL shortPreamble;
3578 struct ath_node *an;
3579 struct mbuf *m;
3580 u_int pri;
3581
3582 wh = mtod(m0, struct ieee80211_frame *);
3583 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3584 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3585 isfrag = m0->m_flags & M_FRAG;
3586 hdrlen = ieee80211_anyhdrsize(wh);
3587 /*
3588 * Packet length must not include any
3589 * pad bytes; deduct them here.
3590 */
3591 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3592
3593 if (iswep) {
3594 const struct ieee80211_cipher *cip;
3595 struct ieee80211_key *k;
3596
3597 /*
3598 * Construct the 802.11 header+trailer for an encrypted
3599 * frame. The only reason this can fail is because of an
3600 * unknown or unsupported cipher/key type.
3601 */
3602 k = ieee80211_crypto_encap(ic, ni, m0);
3603 if (k == NULL) {
3604 /*
3605 * This can happen when the key is yanked after the
3606 * frame was queued. Just discard the frame; the
3607 * 802.11 layer counts failures and provides
3608 * debugging/diagnostics.
3609 */
3610 ath_freetx(m0);
3611 return EIO;
3612 }
3613 /*
3614 * Adjust the packet + header lengths for the crypto
3615 * additions and calculate the h/w key index. When
3616 * a s/w mic is done the frame will have had any mic
3617 * added to it prior to entry so m0->m_pkthdr.len above will
3618 * account for it. Otherwise we need to add it to the
3619 * packet length.
3620 */
3621 cip = k->wk_cipher;
3622 hdrlen += cip->ic_header;
3623 pktlen += cip->ic_header + cip->ic_trailer;
3624 /* NB: frags always have any TKIP MIC done in s/w */
3625 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3626 pktlen += cip->ic_miclen;
3627 keyix = k->wk_keyix;
3628
3629 /* packet header may have moved, reset our local pointer */
3630 wh = mtod(m0, struct ieee80211_frame *);
3631 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3632 /*
3633 * Use station key cache slot, if assigned.
3634 */
3635 keyix = ni->ni_ucastkey.wk_keyix;
3636 if (keyix == IEEE80211_KEYIX_NONE)
3637 keyix = HAL_TXKEYIX_INVALID;
3638 } else
3639 keyix = HAL_TXKEYIX_INVALID;
3640
3641 pktlen += IEEE80211_CRC_LEN;
3642
3643 /*
3644 * Load the DMA map so any coalescing is done. This
3645 * also calculates the number of descriptors we need.
3646 */
3647 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3648 BUS_DMA_NOWAIT);
3649 if (error == EFBIG) {
3650 /* XXX packet requires too many descriptors */
3651 bf->bf_nseg = ATH_TXDESC+1;
3652 } else if (error != 0) {
3653 sc->sc_stats.ast_tx_busdma++;
3654 ath_freetx(m0);
3655 return error;
3656 }
3657 /*
3658 * Discard null packets and check for packets that
3659 * require too many TX descriptors. We try to convert
3660 * the latter to a cluster.
3661 */
3662 if (error == EFBIG) { /* too many desc's, linearize */
3663 sc->sc_stats.ast_tx_linear++;
3664 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3665 if (m == NULL) {
3666 ath_freetx(m0);
3667 sc->sc_stats.ast_tx_nombuf++;
3668 return ENOMEM;
3669 }
3670 m0 = m;
3671 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3672 BUS_DMA_NOWAIT);
3673 if (error != 0) {
3674 sc->sc_stats.ast_tx_busdma++;
3675 ath_freetx(m0);
3676 return error;
3677 }
3678 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3679 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3680 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3681 sc->sc_stats.ast_tx_nodata++;
3682 ath_freetx(m0);
3683 return EIO;
3684 }
3685 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3686 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3687 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3688 bf->bf_m = m0;
3689 bf->bf_node = ni; /* NB: held reference */
3690
3691 /* setup descriptors */
3692 ds = bf->bf_desc;
3693 rt = sc->sc_currates;
3694 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3695
3696 /*
3697 * NB: the 802.11 layer marks whether or not we should
3698 * use short preamble based on the current mode and
3699 * negotiated parameters.
3700 */
3701 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3702 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3703 shortPreamble = AH_TRUE;
3704 sc->sc_stats.ast_tx_shortpre++;
3705 } else {
3706 shortPreamble = AH_FALSE;
3707 }
3708
3709 an = ATH_NODE(ni);
3710 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3711 ismrr = 0; /* default no multi-rate retry*/
3712 /*
3713 * Calculate Atheros packet type from IEEE80211 packet header,
3714 * setup for rate calculations, and select h/w transmit queue.
3715 */
3716 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3717 case IEEE80211_FC0_TYPE_MGT:
3718 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3719 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3720 atype = HAL_PKT_TYPE_BEACON;
3721 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3722 atype = HAL_PKT_TYPE_PROBE_RESP;
3723 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3724 atype = HAL_PKT_TYPE_ATIM;
3725 else
3726 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3727 rix = sc->sc_minrateix;
3728 txrate = rt->info[rix].rateCode;
3729 if (shortPreamble)
3730 txrate |= rt->info[rix].shortPreamble;
3731 try0 = ATH_TXMGTTRY;
3732 /* NB: force all management frames to highest queue */
3733 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3734 /* NB: force all management frames to highest queue */
3735 pri = WME_AC_VO;
3736 } else
3737 pri = WME_AC_BE;
3738 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3739 break;
3740 case IEEE80211_FC0_TYPE_CTL:
3741 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3742 rix = sc->sc_minrateix;
3743 txrate = rt->info[rix].rateCode;
3744 if (shortPreamble)
3745 txrate |= rt->info[rix].shortPreamble;
3746 try0 = ATH_TXMGTTRY;
3747 /* NB: force all ctl frames to highest queue */
3748 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3749 /* NB: force all ctl frames to highest queue */
3750 pri = WME_AC_VO;
3751 } else
3752 pri = WME_AC_BE;
3753 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3754 break;
3755 case IEEE80211_FC0_TYPE_DATA:
3756 atype = HAL_PKT_TYPE_NORMAL; /* default */
3757 /*
3758 * Data frames: multicast frames go out at a fixed rate,
3759 * otherwise consult the rate control module for the
3760 * rate to use.
3761 */
3762 if (ismcast) {
3763 /*
3764 * Check mcast rate setting in case it's changed.
3765 * XXX move out of fastpath
3766 */
3767 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3768 sc->sc_mcastrix =
3769 ath_tx_findrix(rt, ic->ic_mcast_rate);
3770 sc->sc_mcastrate = ic->ic_mcast_rate;
3771 }
3772 rix = sc->sc_mcastrix;
3773 txrate = rt->info[rix].rateCode;
3774 try0 = 1;
3775 } else {
3776 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3777 &rix, &try0, &txrate);
3778 sc->sc_txrate = txrate; /* for LED blinking */
3779 if (try0 != ATH_TXMAXTRY)
3780 ismrr = 1;
3781 }
3782 pri = M_WME_GETAC(m0);
3783 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3784 flags |= HAL_TXDESC_NOACK;
3785 break;
3786 default:
3787 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3788 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3789 /* XXX statistic */
3790 ath_freetx(m0);
3791 return EIO;
3792 }
3793 txq = sc->sc_ac2q[pri];
3794
3795 /*
3796 * When servicing one or more stations in power-save mode
3797 * multicast frames must be buffered until after the beacon.
3798 * We use the CAB queue for that.
3799 */
3800 if (ismcast && ic->ic_ps_sta) {
3801 txq = sc->sc_cabq;
3802 /* XXX? more bit in 802.11 frame header */
3803 }
3804
3805 /*
3806 * Calculate miscellaneous flags.
3807 */
3808 if (ismcast) {
3809 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3810 } else if (pktlen > ic->ic_rtsthreshold) {
3811 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3812 cix = rt->info[rix].controlRate;
3813 sc->sc_stats.ast_tx_rts++;
3814 }
3815 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3816 sc->sc_stats.ast_tx_noack++;
3817
3818 /*
3819 * If 802.11g protection is enabled, determine whether
3820 * to use RTS/CTS or just CTS. Note that this is only
3821 * done for OFDM unicast frames.
3822 */
3823 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3824 rt->info[rix].phy == IEEE80211_T_OFDM &&
3825 (flags & HAL_TXDESC_NOACK) == 0) {
3826 /* XXX fragments must use CCK rates w/ protection */
3827 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3828 flags |= HAL_TXDESC_RTSENA;
3829 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3830 flags |= HAL_TXDESC_CTSENA;
3831 if (isfrag) {
3832 /*
3833 * For frags it would be desirable to use the
3834 * highest CCK rate for RTS/CTS. But stations
3835 * farther away may detect it at a lower CCK rate
3836 * so use the configured protection rate instead
3837 * (for now).
3838 */
3839 cix = rt->info[sc->sc_protrix].controlRate;
3840 } else
3841 cix = rt->info[sc->sc_protrix].controlRate;
3842 sc->sc_stats.ast_tx_protect++;
3843 }
3844
3845 /*
3846 * Calculate duration. This logically belongs in the 802.11
3847 * layer but it lacks sufficient information to calculate it.
3848 */
3849 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3850 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3851 u_int16_t dur;
3852 /*
3853 * XXX not right with fragmentation.
3854 */
3855 if (shortPreamble)
3856 dur = rt->info[rix].spAckDuration;
3857 else
3858 dur = rt->info[rix].lpAckDuration;
3859 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3860 dur += dur; /* additional SIFS+ACK */
3861 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3862 /*
3863 * Include the size of next fragment so NAV is
3864 * updated properly. The last fragment uses only
3865 * the ACK duration
3866 */
3867 dur += ath_hal_computetxtime(ah, rt,
3868 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3869 hdrlen) -
3870 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3871 rix, shortPreamble);
3872 }
3873 if (isfrag) {
3874 /*
3875 * Force hardware to use computed duration for next
3876 * fragment by disabling multi-rate retry which updates
3877 * duration based on the multi-rate duration table.
3878 */
3879 try0 = ATH_TXMAXTRY;
3880 }
3881 *(u_int16_t *)wh->i_dur = htole16(dur);
3882 }
3883
3884 /*
3885 * Calculate RTS/CTS rate and duration if needed.
3886 */
3887 ctsduration = 0;
3888 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3889 /*
3890 * CTS transmit rate is derived from the transmit rate
3891 * by looking in the h/w rate table. We must also factor
3892 * in whether or not a short preamble is to be used.
3893 */
3894 /* NB: cix is set above where RTS/CTS is enabled */
3895 KASSERT(cix != 0xff, ("cix not setup"));
3896 ctsrate = rt->info[cix].rateCode;
3897 /*
3898 * Compute the transmit duration based on the frame
3899 * size and the size of an ACK frame. We call into the
3900 * HAL to do the computation since it depends on the
3901 * characteristics of the actual PHY being used.
3902 *
3903 * NB: CTS is assumed the same size as an ACK so we can
3904 * use the precalculated ACK durations.
3905 */
3906 if (shortPreamble) {
3907 ctsrate |= rt->info[cix].shortPreamble;
3908 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3909 ctsduration += rt->info[cix].spAckDuration;
3910 ctsduration += ath_hal_computetxtime(ah,
3911 rt, pktlen, rix, AH_TRUE);
3912 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3913 ctsduration += rt->info[rix].spAckDuration;
3914 } else {
3915 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3916 ctsduration += rt->info[cix].lpAckDuration;
3917 ctsduration += ath_hal_computetxtime(ah,
3918 rt, pktlen, rix, AH_FALSE);
3919 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3920 ctsduration += rt->info[rix].lpAckDuration;
3921 }
3922 /*
3923 * Must disable multi-rate retry when using RTS/CTS.
3924 */
3925 ismrr = 0;
3926 try0 = ATH_TXMGTTRY; /* XXX */
3927 } else
3928 ctsrate = 0;
3929
3930 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3931 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3932 sc->sc_hwmap[txrate].ieeerate, -1);
3933 bpf_mtap3(ic->ic_rawbpf, m0);
3934 if (sc->sc_drvbpf) {
3935 u_int64_t tsf = ath_hal_gettsf64(ah);
3936
3937 sc->sc_tx_th.wt_tsf = htole64(tsf);
3938 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3939 if (iswep)
3940 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3941 if (isfrag)
3942 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3943 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3944 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3945 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3946
3947 bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3948 }
3949
3950 /*
3951 * Determine if a tx interrupt should be generated for
3952 * this descriptor. We take a tx interrupt to reap
3953 * descriptors when the h/w hits an EOL condition or
3954 * when the descriptor is specifically marked to generate
3955 * an interrupt. We periodically mark descriptors in this
3956 * way to insure timely replenishing of the supply needed
3957 * for sending frames. Defering interrupts reduces system
3958 * load and potentially allows more concurrent work to be
3959 * done but if done to aggressively can cause senders to
3960 * backup.
3961 *
3962 * NB: use >= to deal with sc_txintrperiod changing
3963 * dynamically through sysctl.
3964 */
3965 if (flags & HAL_TXDESC_INTREQ) {
3966 txq->axq_intrcnt = 0;
3967 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3968 flags |= HAL_TXDESC_INTREQ;
3969 txq->axq_intrcnt = 0;
3970 }
3971
3972 /*
3973 * Formulate first tx descriptor with tx controls.
3974 */
3975 /* XXX check return value? */
3976 ath_hal_setuptxdesc(ah, ds
3977 , pktlen /* packet length */
3978 , hdrlen /* header length */
3979 , atype /* Atheros packet type */
3980 , ni->ni_txpower /* txpower */
3981 , txrate, try0 /* series 0 rate/tries */
3982 , keyix /* key cache index */
3983 , sc->sc_txantenna /* antenna mode */
3984 , flags /* flags */
3985 , ctsrate /* rts/cts rate */
3986 , ctsduration /* rts/cts duration */
3987 );
3988 bf->bf_flags = flags;
3989 /*
3990 * Setup the multi-rate retry state only when we're
3991 * going to use it. This assumes ath_hal_setuptxdesc
3992 * initializes the descriptors (so we don't have to)
3993 * when the hardware supports multi-rate retry and
3994 * we don't use it.
3995 */
3996 if (ismrr)
3997 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3998
3999 /*
4000 * Fillin the remainder of the descriptor info.
4001 */
4002 ds0 = ds;
4003 for (i = 0; i < bf->bf_nseg; i++, ds++) {
4004 ds->ds_data = bf->bf_segs[i].ds_addr;
4005 if (i == bf->bf_nseg - 1)
4006 ds->ds_link = 0;
4007 else
4008 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4009 ath_hal_filltxdesc(ah, ds
4010 , bf->bf_segs[i].ds_len /* segment length */
4011 , i == 0 /* first segment */
4012 , i == bf->bf_nseg - 1 /* last segment */
4013 , ds0 /* first descriptor */
4014 );
4015
4016 /* NB: The desc swap function becomes void,
4017 * if descriptor swapping is not enabled
4018 */
4019 ath_desc_swap(ds);
4020
4021 DPRINTF(sc, ATH_DEBUG_XMIT,
4022 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
4023 __func__, i, ds->ds_link, ds->ds_data,
4024 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4025 }
4026 /*
4027 * Insert the frame on the outbound list and
4028 * pass it on to the hardware.
4029 */
4030 ATH_TXQ_LOCK(txq);
4031 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4032 if (txq->axq_link == NULL) {
4033 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4034 DPRINTF(sc, ATH_DEBUG_XMIT,
4035 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4036 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4037 txq->axq_depth);
4038 } else {
4039 *txq->axq_link = HTOAH32(bf->bf_daddr);
4040 DPRINTF(sc, ATH_DEBUG_XMIT,
4041 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4042 __func__, txq->axq_qnum, txq->axq_link,
4043 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4044 }
4045 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4046 /*
4047 * The CAB queue is started from the SWBA handler since
4048 * frames only go out on DTIM and to avoid possible races.
4049 */
4050 if (txq != sc->sc_cabq)
4051 ath_hal_txstart(ah, txq->axq_qnum);
4052 ATH_TXQ_UNLOCK(txq);
4053
4054 return 0;
4055 }
4056
4057 /*
4058 * Process completed xmit descriptors from the specified queue.
4059 */
4060 static int
4061 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4062 {
4063 struct ath_hal *ah = sc->sc_ah;
4064 struct ieee80211com *ic = &sc->sc_ic;
4065 struct ath_buf *bf;
4066 struct ath_desc *ds, *ds0;
4067 struct ieee80211_node *ni;
4068 struct ath_node *an;
4069 int sr, lr, pri, nacked;
4070 HAL_STATUS status;
4071
4072 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4073 __func__, txq->axq_qnum,
4074 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4075 txq->axq_link);
4076 nacked = 0;
4077 for (;;) {
4078 ATH_TXQ_LOCK(txq);
4079 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4080 bf = STAILQ_FIRST(&txq->axq_q);
4081 if (bf == NULL) {
4082 txq->axq_link = NULL;
4083 ATH_TXQ_UNLOCK(txq);
4084 break;
4085 }
4086 ds0 = &bf->bf_desc[0];
4087 ds = &bf->bf_desc[bf->bf_nseg - 1];
4088 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4089 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4090 ath_printtxbuf(bf, status == HAL_OK);
4091 if (status == HAL_EINPROGRESS) {
4092 ATH_TXQ_UNLOCK(txq);
4093 break;
4094 }
4095 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4096 ATH_TXQ_UNLOCK(txq);
4097
4098 ni = bf->bf_node;
4099 if (ni != NULL) {
4100 an = ATH_NODE(ni);
4101 if (ds->ds_txstat.ts_status == 0) {
4102 u_int8_t txant = ds->ds_txstat.ts_antenna;
4103 sc->sc_stats.ast_ant_tx[txant]++;
4104 sc->sc_ant_tx[txant]++;
4105 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4106 sc->sc_stats.ast_tx_altrate++;
4107 sc->sc_stats.ast_tx_rssi =
4108 ds->ds_txstat.ts_rssi;
4109 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4110 ds->ds_txstat.ts_rssi);
4111 pri = M_WME_GETAC(bf->bf_m);
4112 if (pri >= WME_AC_VO)
4113 ic->ic_wme.wme_hipri_traffic++;
4114 ni->ni_inact = ni->ni_inact_reload;
4115 } else {
4116 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4117 sc->sc_stats.ast_tx_xretries++;
4118 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4119 sc->sc_stats.ast_tx_fifoerr++;
4120 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4121 sc->sc_stats.ast_tx_filtered++;
4122 }
4123 sr = ds->ds_txstat.ts_shortretry;
4124 lr = ds->ds_txstat.ts_longretry;
4125 sc->sc_stats.ast_tx_shortretry += sr;
4126 sc->sc_stats.ast_tx_longretry += lr;
4127 /*
4128 * Hand the descriptor to the rate control algorithm.
4129 */
4130 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4131 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4132 /*
4133 * If frame was ack'd update the last rx time
4134 * used to workaround phantom bmiss interrupts.
4135 */
4136 if (ds->ds_txstat.ts_status == 0)
4137 nacked++;
4138 ath_rate_tx_complete(sc, an, ds, ds0);
4139 }
4140 /*
4141 * Reclaim reference to node.
4142 *
4143 * NB: the node may be reclaimed here if, for example
4144 * this is a DEAUTH message that was sent and the
4145 * node was timed out due to inactivity.
4146 */
4147 ieee80211_free_node(ni);
4148 }
4149 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4150 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4151 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4152 m_freem(bf->bf_m);
4153 bf->bf_m = NULL;
4154 bf->bf_node = NULL;
4155
4156 ATH_TXBUF_LOCK(sc);
4157 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4158 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4159 ATH_TXBUF_UNLOCK(sc);
4160 }
4161 return nacked;
4162 }
4163
4164 static inline int
4165 txqactive(struct ath_hal *ah, int qnum)
4166 {
4167 u_int32_t txqs = 1<<qnum;
4168 ath_hal_gettxintrtxqs(ah, &txqs);
4169 return (txqs & (1<<qnum));
4170 }
4171
4172 /*
4173 * Deferred processing of transmit interrupt; special-cased
4174 * for a single hardware transmit queue (e.g. 5210 and 5211).
4175 */
4176 static void
4177 ath_tx_proc_q0(void *arg, int npending)
4178 {
4179 struct ath_softc *sc = arg;
4180 struct ifnet *ifp = &sc->sc_if;
4181
4182 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4183 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4184 }
4185 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4186 ath_tx_processq(sc, sc->sc_cabq);
4187
4188 if (sc->sc_softled)
4189 ath_led_event(sc, ATH_LED_TX);
4190
4191 ath_start(ifp);
4192 }
4193
4194 /*
4195 * Deferred processing of transmit interrupt; special-cased
4196 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4197 */
4198 static void
4199 ath_tx_proc_q0123(void *arg, int npending)
4200 {
4201 struct ath_softc *sc = arg;
4202 struct ifnet *ifp = &sc->sc_if;
4203 int nacked;
4204
4205 /*
4206 * Process each active queue.
4207 */
4208 nacked = 0;
4209 if (txqactive(sc->sc_ah, 0))
4210 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4211 if (txqactive(sc->sc_ah, 1))
4212 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4213 if (txqactive(sc->sc_ah, 2))
4214 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4215 if (txqactive(sc->sc_ah, 3))
4216 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4217 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4218 ath_tx_processq(sc, sc->sc_cabq);
4219 if (nacked) {
4220 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4221 }
4222
4223 if (sc->sc_softled)
4224 ath_led_event(sc, ATH_LED_TX);
4225
4226 ath_start(ifp);
4227 }
4228
4229 /*
4230 * Deferred processing of transmit interrupt.
4231 */
4232 static void
4233 ath_tx_proc(void *arg, int npending)
4234 {
4235 struct ath_softc *sc = arg;
4236 struct ifnet *ifp = &sc->sc_if;
4237 int i, nacked;
4238
4239 /*
4240 * Process each active queue.
4241 */
4242 nacked = 0;
4243 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4244 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4245 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4246 if (nacked) {
4247 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4248 }
4249
4250 if (sc->sc_softled)
4251 ath_led_event(sc, ATH_LED_TX);
4252
4253 ath_start(ifp);
4254 }
4255
4256 static void
4257 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4258 {
4259 struct ath_hal *ah = sc->sc_ah;
4260 struct ieee80211_node *ni;
4261 struct ath_buf *bf;
4262 struct ath_desc *ds;
4263
4264 /*
4265 * NB: this assumes output has been stopped and
4266 * we do not need to block ath_tx_tasklet
4267 */
4268 for (;;) {
4269 ATH_TXQ_LOCK(txq);
4270 bf = STAILQ_FIRST(&txq->axq_q);
4271 if (bf == NULL) {
4272 txq->axq_link = NULL;
4273 ATH_TXQ_UNLOCK(txq);
4274 break;
4275 }
4276 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4277 ATH_TXQ_UNLOCK(txq);
4278 ds = &bf->bf_desc[bf->bf_nseg - 1];
4279 if (sc->sc_debug & ATH_DEBUG_RESET)
4280 ath_printtxbuf(bf,
4281 ath_hal_txprocdesc(ah, bf->bf_desc,
4282 &ds->ds_txstat) == HAL_OK);
4283 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4284 m_freem(bf->bf_m);
4285 bf->bf_m = NULL;
4286 ni = bf->bf_node;
4287 bf->bf_node = NULL;
4288 if (ni != NULL) {
4289 /*
4290 * Reclaim node reference.
4291 */
4292 ieee80211_free_node(ni);
4293 }
4294 ATH_TXBUF_LOCK(sc);
4295 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4296 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4297 ATH_TXBUF_UNLOCK(sc);
4298 }
4299 }
4300
4301 static void
4302 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4303 {
4304 struct ath_hal *ah = sc->sc_ah;
4305
4306 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4307 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4308 __func__, txq->axq_qnum,
4309 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4310 txq->axq_link);
4311 }
4312
4313 /*
4314 * Drain the transmit queues and reclaim resources.
4315 */
4316 static void
4317 ath_draintxq(struct ath_softc *sc)
4318 {
4319 struct ath_hal *ah = sc->sc_ah;
4320 int i;
4321
4322 /* XXX return value */
4323 if (device_is_active(sc->sc_dev)) {
4324 /* don't touch the hardware if marked invalid */
4325 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4326 DPRINTF(sc, ATH_DEBUG_RESET,
4327 "%s: beacon queue %p\n", __func__,
4328 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4329 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4330 if (ATH_TXQ_SETUP(sc, i))
4331 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4332 }
4333 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4334 if (ATH_TXQ_SETUP(sc, i))
4335 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4336 }
4337
4338 /*
4339 * Disable the receive h/w in preparation for a reset.
4340 */
4341 static void
4342 ath_stoprecv(struct ath_softc *sc)
4343 {
4344 #define PA2DESC(_sc, _pa) \
4345 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4346 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4347 struct ath_hal *ah = sc->sc_ah;
4348 u_int64_t tsf;
4349
4350 ath_hal_stoppcurecv(ah); /* disable PCU */
4351 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4352 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4353 DELAY(3000); /* 3ms is long enough for 1 frame */
4354 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4355 struct ath_buf *bf;
4356
4357 printf("%s: rx queue %p, link %p\n", __func__,
4358 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4359 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4360 struct ath_desc *ds = bf->bf_desc;
4361 tsf = ath_hal_gettsf64(sc->sc_ah);
4362 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4363 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4364 &ds->ds_rxstat);
4365 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4366 ath_printrxbuf(bf, status == HAL_OK);
4367 }
4368 }
4369 sc->sc_rxlink = NULL; /* just in case */
4370 #undef PA2DESC
4371 }
4372
4373 /*
4374 * Enable the receive h/w following a reset.
4375 */
4376 static int
4377 ath_startrecv(struct ath_softc *sc)
4378 {
4379 struct ath_hal *ah = sc->sc_ah;
4380 struct ath_buf *bf;
4381
4382 sc->sc_rxlink = NULL;
4383 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4384 int error = ath_rxbuf_init(sc, bf);
4385 if (error != 0) {
4386 DPRINTF(sc, ATH_DEBUG_RECV,
4387 "%s: ath_rxbuf_init failed %d\n",
4388 __func__, error);
4389 return error;
4390 }
4391 }
4392
4393 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4394 ath_hal_putrxbuf(ah, bf->bf_daddr);
4395 ath_hal_rxena(ah); /* enable recv descriptors */
4396 ath_mode_init(sc); /* set filters, etc. */
4397 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4398 return 0;
4399 }
4400
4401 /*
4402 * Update internal state after a channel change.
4403 */
4404 static void
4405 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4406 {
4407 struct ieee80211com *ic = &sc->sc_ic;
4408 enum ieee80211_phymode mode;
4409 u_int16_t flags;
4410
4411 /*
4412 * Change channels and update the h/w rate map
4413 * if we're switching; e.g. 11a to 11b/g.
4414 */
4415 mode = ieee80211_chan2mode(ic, chan);
4416 if (mode != sc->sc_curmode)
4417 ath_setcurmode(sc, mode);
4418 /*
4419 * Update BPF state. NB: ethereal et. al. don't handle
4420 * merged flags well so pick a unique mode for their use.
4421 */
4422 if (IEEE80211_IS_CHAN_A(chan))
4423 flags = IEEE80211_CHAN_A;
4424 /* XXX 11g schizophrenia */
4425 else if (IEEE80211_IS_CHAN_G(chan) ||
4426 IEEE80211_IS_CHAN_PUREG(chan))
4427 flags = IEEE80211_CHAN_G;
4428 else
4429 flags = IEEE80211_CHAN_B;
4430 if (IEEE80211_IS_CHAN_T(chan))
4431 flags |= IEEE80211_CHAN_TURBO;
4432 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4433 htole16(chan->ic_freq);
4434 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4435 htole16(flags);
4436 }
4437
4438 #if 0
4439 /*
4440 * Poll for a channel clear indication; this is required
4441 * for channels requiring DFS and not previously visited
4442 * and/or with a recent radar detection.
4443 */
4444 static void
4445 ath_dfswait(void *arg)
4446 {
4447 struct ath_softc *sc = arg;
4448 struct ath_hal *ah = sc->sc_ah;
4449 HAL_CHANNEL hchan;
4450
4451 ath_hal_radar_wait(ah, &hchan);
4452 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4453 if_printf(&sc->sc_if,
4454 "channel %u/0x%x/0x%x has interference\n",
4455 hchan.channel, hchan.channelFlags, hchan.privFlags);
4456 return;
4457 }
4458 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4459 /* XXX should not happen */
4460 return;
4461 }
4462 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4463 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4464 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4465 if_printf(&sc->sc_if,
4466 "channel %u/0x%x/0x%x marked clear\n",
4467 hchan.channel, hchan.channelFlags, hchan.privFlags);
4468 } else
4469 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4470 }
4471 #endif
4472
4473 /*
4474 * Set/change channels. If the channel is really being changed,
4475 * it's done by reseting the chip. To accomplish this we must
4476 * first cleanup any pending DMA, then restart stuff after a la
4477 * ath_init.
4478 */
4479 static int
4480 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4481 {
4482 struct ath_hal *ah = sc->sc_ah;
4483 struct ieee80211com *ic = &sc->sc_ic;
4484 HAL_CHANNEL hchan;
4485
4486 /*
4487 * Convert to a HAL channel description with
4488 * the flags constrained to reflect the current
4489 * operating mode.
4490 */
4491 hchan.channel = chan->ic_freq;
4492 hchan.channelFlags = ath_chan2flags(ic, chan);
4493
4494 DPRINTF(sc, ATH_DEBUG_RESET,
4495 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4496 __func__,
4497 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4498 sc->sc_curchan.channelFlags),
4499 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4500 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4501 hchan.channel, hchan.channelFlags);
4502 if (hchan.channel != sc->sc_curchan.channel ||
4503 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4504 HAL_STATUS status;
4505
4506 /*
4507 * To switch channels clear any pending DMA operations;
4508 * wait long enough for the RX fifo to drain, reset the
4509 * hardware at the new frequency, and then re-enable
4510 * the relevant bits of the h/w.
4511 */
4512 ath_hal_intrset(ah, 0); /* disable interrupts */
4513 ath_draintxq(sc); /* clear pending tx frames */
4514 ath_stoprecv(sc); /* turn off frame recv */
4515 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4516 if_printf(ic->ic_ifp, "%s: unable to reset "
4517 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4518 __func__, ieee80211_chan2ieee(ic, chan),
4519 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4520 return EIO;
4521 }
4522 sc->sc_curchan = hchan;
4523 ath_update_txpow(sc); /* update tx power state */
4524 ath_restore_diversity(sc);
4525 sc->sc_calinterval = 1;
4526 sc->sc_caltries = 0;
4527
4528 /*
4529 * Re-enable rx framework.
4530 */
4531 if (ath_startrecv(sc) != 0) {
4532 if_printf(&sc->sc_if,
4533 "%s: unable to restart recv logic\n", __func__);
4534 return EIO;
4535 }
4536
4537 /*
4538 * Change channels and update the h/w rate map
4539 * if we're switching; e.g. 11a to 11b/g.
4540 */
4541 ic->ic_ibss_chan = chan;
4542 ath_chan_change(sc, chan);
4543
4544 #if 0
4545 /*
4546 * Handle DFS required waiting period to determine
4547 * if channel is clear of radar traffic.
4548 */
4549 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4550 #define DFS_AND_NOT_CLEAR(_c) \
4551 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4552 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4553 if_printf(&sc->sc_if,
4554 "wait for DFS clear channel signal\n");
4555 /* XXX stop sndq */
4556 sc->sc_if.if_flags |= IFF_OACTIVE;
4557 callout_reset(&sc->sc_dfs_ch,
4558 2 * hz, ath_dfswait, sc);
4559 } else
4560 callout_stop(&sc->sc_dfs_ch);
4561 #undef DFS_NOT_CLEAR
4562 }
4563 #endif
4564
4565 /*
4566 * Re-enable interrupts.
4567 */
4568 ath_hal_intrset(ah, sc->sc_imask);
4569 }
4570 return 0;
4571 }
4572
4573 static void
4574 ath_next_scan(void *arg)
4575 {
4576 struct ath_softc *sc = arg;
4577 struct ieee80211com *ic = &sc->sc_ic;
4578 int s;
4579
4580 /* don't call ath_start w/o network interrupts blocked */
4581 s = splnet();
4582
4583 if (ic->ic_state == IEEE80211_S_SCAN)
4584 ieee80211_next_scan(ic);
4585 splx(s);
4586 }
4587
4588 /*
4589 * Periodically recalibrate the PHY to account
4590 * for temperature/environment changes.
4591 */
4592 static void
4593 ath_calibrate(void *arg)
4594 {
4595 struct ath_softc *sc = arg;
4596 struct ath_hal *ah = sc->sc_ah;
4597 HAL_BOOL iqCalDone;
4598
4599 sc->sc_stats.ast_per_cal++;
4600
4601 ATH_LOCK(sc);
4602
4603 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4604 /*
4605 * Rfgain is out of bounds, reset the chip
4606 * to load new gain values.
4607 */
4608 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4609 "%s: rfgain change\n", __func__);
4610 sc->sc_stats.ast_per_rfgain++;
4611 ath_reset(&sc->sc_if);
4612 }
4613 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4614 DPRINTF(sc, ATH_DEBUG_ANY,
4615 "%s: calibration of channel %u failed\n",
4616 __func__, sc->sc_curchan.channel);
4617 sc->sc_stats.ast_per_calfail++;
4618 }
4619 /*
4620 * Calibrate noise floor data again in case of change.
4621 */
4622 ath_hal_process_noisefloor(ah);
4623 /*
4624 * Poll more frequently when the IQ calibration is in
4625 * progress to speedup loading the final settings.
4626 * We temper this aggressive polling with an exponential
4627 * back off after 4 tries up to ath_calinterval.
4628 */
4629 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4630 sc->sc_caltries = 0;
4631 sc->sc_calinterval = ath_calinterval;
4632 } else if (sc->sc_caltries > 4) {
4633 sc->sc_caltries = 0;
4634 sc->sc_calinterval <<= 1;
4635 if (sc->sc_calinterval > ath_calinterval)
4636 sc->sc_calinterval = ath_calinterval;
4637 }
4638 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4639 ("bad calibration interval %u", sc->sc_calinterval));
4640
4641 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4642 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4643 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4644 sc->sc_caltries++;
4645 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4646 ath_calibrate, sc);
4647 ATH_UNLOCK(sc);
4648 }
4649
4650 static int
4651 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4652 {
4653 struct ifnet *ifp = ic->ic_ifp;
4654 struct ath_softc *sc = ifp->if_softc;
4655 struct ath_hal *ah = sc->sc_ah;
4656 struct ieee80211_node *ni;
4657 int i, error;
4658 const u_int8_t *bssid;
4659 u_int32_t rfilt;
4660 static const HAL_LED_STATE leds[] = {
4661 HAL_LED_INIT, /* IEEE80211_S_INIT */
4662 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4663 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4664 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4665 HAL_LED_RUN, /* IEEE80211_S_RUN */
4666 };
4667
4668 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4669 ieee80211_state_name[ic->ic_state],
4670 ieee80211_state_name[nstate]);
4671
4672 callout_stop(&sc->sc_scan_ch);
4673 callout_stop(&sc->sc_cal_ch);
4674 #if 0
4675 callout_stop(&sc->sc_dfs_ch);
4676 #endif
4677 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4678
4679 if (nstate == IEEE80211_S_INIT) {
4680 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4681 /*
4682 * NB: disable interrupts so we don't rx frames.
4683 */
4684 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4685 /*
4686 * Notify the rate control algorithm.
4687 */
4688 ath_rate_newstate(sc, nstate);
4689 goto done;
4690 }
4691 ni = ic->ic_bss;
4692 error = ath_chan_set(sc, ic->ic_curchan);
4693 if (error != 0)
4694 goto bad;
4695 rfilt = ath_calcrxfilter(sc, nstate);
4696 if (nstate == IEEE80211_S_SCAN)
4697 bssid = ifp->if_broadcastaddr;
4698 else
4699 bssid = ni->ni_bssid;
4700 ath_hal_setrxfilter(ah, rfilt);
4701 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4702 __func__, rfilt, ether_sprintf(bssid));
4703
4704 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4705 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4706 else
4707 ath_hal_setassocid(ah, bssid, 0);
4708 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4709 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4710 if (ath_hal_keyisvalid(ah, i))
4711 ath_hal_keysetmac(ah, i, bssid);
4712 }
4713
4714 /*
4715 * Notify the rate control algorithm so rates
4716 * are setup should ath_beacon_alloc be called.
4717 */
4718 ath_rate_newstate(sc, nstate);
4719
4720 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4721 /* nothing to do */;
4722 } else if (nstate == IEEE80211_S_RUN) {
4723 DPRINTF(sc, ATH_DEBUG_STATE,
4724 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4725 "capinfo=0x%04x chan=%d\n"
4726 , __func__
4727 , ic->ic_flags
4728 , ni->ni_intval
4729 , ether_sprintf(ni->ni_bssid)
4730 , ni->ni_capinfo
4731 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4732
4733 switch (ic->ic_opmode) {
4734 case IEEE80211_M_HOSTAP:
4735 case IEEE80211_M_IBSS:
4736 /*
4737 * Allocate and setup the beacon frame.
4738 *
4739 * Stop any previous beacon DMA. This may be
4740 * necessary, for example, when an ibss merge
4741 * causes reconfiguration; there will be a state
4742 * transition from RUN->RUN that means we may
4743 * be called with beacon transmission active.
4744 */
4745 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4746 ath_beacon_free(sc);
4747 error = ath_beacon_alloc(sc, ni);
4748 if (error != 0)
4749 goto bad;
4750 /*
4751 * If joining an adhoc network defer beacon timer
4752 * configuration to the next beacon frame so we
4753 * have a current TSF to use. Otherwise we're
4754 * starting an ibss/bss so there's no need to delay.
4755 */
4756 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4757 ic->ic_bss->ni_tstamp.tsf != 0)
4758 sc->sc_syncbeacon = 1;
4759 else
4760 ath_beacon_config(sc);
4761 break;
4762 case IEEE80211_M_STA:
4763 /*
4764 * Allocate a key cache slot to the station.
4765 */
4766 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4767 sc->sc_hasclrkey &&
4768 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4769 ath_setup_stationkey(ni);
4770 /*
4771 * Defer beacon timer configuration to the next
4772 * beacon frame so we have a current TSF to use
4773 * (any TSF collected when scanning is likely old).
4774 */
4775 sc->sc_syncbeacon = 1;
4776 break;
4777 default:
4778 break;
4779 }
4780 /*
4781 * Let the hal process statistics collected during a
4782 * scan so it can provide calibrated noise floor data.
4783 */
4784 ath_hal_process_noisefloor(ah);
4785 /*
4786 * Reset rssi stats; maybe not the best place...
4787 */
4788 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4789 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4790 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4791 } else {
4792 ath_hal_intrset(ah,
4793 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4794 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4795 }
4796 done:
4797 /*
4798 * Invoke the parent method to complete the work.
4799 */
4800 error = sc->sc_newstate(ic, nstate, arg);
4801 /*
4802 * Finally, start any timers.
4803 */
4804 if (nstate == IEEE80211_S_RUN) {
4805 /* start periodic recalibration timer */
4806 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4807 ath_calibrate, sc);
4808 } else if (nstate == IEEE80211_S_SCAN) {
4809 /* start ap/neighbor scan timer */
4810 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4811 ath_next_scan, sc);
4812 }
4813 bad:
4814 return error;
4815 }
4816
4817 /*
4818 * Allocate a key cache slot to the station so we can
4819 * setup a mapping from key index to node. The key cache
4820 * slot is needed for managing antenna state and for
4821 * compression when stations do not use crypto. We do
4822 * it uniliaterally here; if crypto is employed this slot
4823 * will be reassigned.
4824 */
4825 static void
4826 ath_setup_stationkey(struct ieee80211_node *ni)
4827 {
4828 struct ieee80211com *ic = ni->ni_ic;
4829 struct ath_softc *sc = ic->ic_ifp->if_softc;
4830 ieee80211_keyix keyix, rxkeyix;
4831
4832 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4833 /*
4834 * Key cache is full; we'll fall back to doing
4835 * the more expensive lookup in software. Note
4836 * this also means no h/w compression.
4837 */
4838 /* XXX msg+statistic */
4839 } else {
4840 /* XXX locking? */
4841 ni->ni_ucastkey.wk_keyix = keyix;
4842 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4843 /* NB: this will create a pass-thru key entry */
4844 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4845 }
4846 }
4847
4848 /*
4849 * Setup driver-specific state for a newly associated node.
4850 * Note that we're called also on a re-associate, the isnew
4851 * param tells us if this is the first time or not.
4852 */
4853 static void
4854 ath_newassoc(struct ieee80211_node *ni, int isnew)
4855 {
4856 struct ieee80211com *ic = ni->ni_ic;
4857 struct ath_softc *sc = ic->ic_ifp->if_softc;
4858
4859 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4860 if (isnew &&
4861 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4862 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4863 ("new assoc with a unicast key already setup (keyix %u)",
4864 ni->ni_ucastkey.wk_keyix));
4865 ath_setup_stationkey(ni);
4866 }
4867 }
4868
4869 static int
4870 ath_getchannels(struct ath_softc *sc, u_int cc,
4871 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4872 {
4873 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4874 struct ieee80211com *ic = &sc->sc_ic;
4875 struct ifnet *ifp = &sc->sc_if;
4876 struct ath_hal *ah = sc->sc_ah;
4877 HAL_CHANNEL *chans;
4878 int i, ix, nchan;
4879
4880 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4881 M_TEMP, M_NOWAIT);
4882 if (chans == NULL) {
4883 if_printf(ifp, "unable to allocate channel table\n");
4884 return ENOMEM;
4885 }
4886 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4887 NULL, 0, NULL,
4888 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4889 u_int32_t rd;
4890
4891 (void)ath_hal_getregdomain(ah, &rd);
4892 if_printf(ifp, "unable to collect channel list from hal; "
4893 "regdomain likely %u country code %u\n", rd, cc);
4894 free(chans, M_TEMP);
4895 return EINVAL;
4896 }
4897
4898 /*
4899 * Convert HAL channels to ieee80211 ones and insert
4900 * them in the table according to their channel number.
4901 */
4902 for (i = 0; i < nchan; i++) {
4903 HAL_CHANNEL *c = &chans[i];
4904 u_int16_t flags;
4905
4906 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4907 if (ix > IEEE80211_CHAN_MAX) {
4908 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4909 ix, c->channel, c->channelFlags);
4910 continue;
4911 }
4912 if (ix < 0) {
4913 /* XXX can't handle stuff <2400 right now */
4914 if (bootverbose)
4915 if_printf(ifp, "hal channel %d (%u/%x) "
4916 "cannot be handled; ignored\n",
4917 ix, c->channel, c->channelFlags);
4918 continue;
4919 }
4920 /*
4921 * Calculate net80211 flags; most are compatible
4922 * but some need massaging. Note the static turbo
4923 * conversion can be removed once net80211 is updated
4924 * to understand static vs. dynamic turbo.
4925 */
4926 flags = c->channelFlags & COMPAT;
4927 if (c->channelFlags & CHANNEL_STURBO)
4928 flags |= IEEE80211_CHAN_TURBO;
4929 if (ic->ic_channels[ix].ic_freq == 0) {
4930 ic->ic_channels[ix].ic_freq = c->channel;
4931 ic->ic_channels[ix].ic_flags = flags;
4932 } else {
4933 /* channels overlap; e.g. 11g and 11b */
4934 ic->ic_channels[ix].ic_flags |= flags;
4935 }
4936 }
4937 free(chans, M_TEMP);
4938 return 0;
4939 #undef COMPAT
4940 }
4941
4942 static void
4943 ath_led_done(void *arg)
4944 {
4945 struct ath_softc *sc = arg;
4946
4947 sc->sc_blinking = 0;
4948 }
4949
4950 /*
4951 * Turn the LED off: flip the pin and then set a timer so no
4952 * update will happen for the specified duration.
4953 */
4954 static void
4955 ath_led_off(void *arg)
4956 {
4957 struct ath_softc *sc = arg;
4958
4959 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4960 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4961 }
4962
4963 /*
4964 * Blink the LED according to the specified on/off times.
4965 */
4966 static void
4967 ath_led_blink(struct ath_softc *sc, int on, int off)
4968 {
4969 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4970 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4971 sc->sc_blinking = 1;
4972 sc->sc_ledoff = off;
4973 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4974 }
4975
4976 static void
4977 ath_led_event(struct ath_softc *sc, int event)
4978 {
4979
4980 sc->sc_ledevent = ticks; /* time of last event */
4981 if (sc->sc_blinking) /* don't interrupt active blink */
4982 return;
4983 switch (event) {
4984 case ATH_LED_POLL:
4985 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4986 sc->sc_hwmap[0].ledoff);
4987 break;
4988 case ATH_LED_TX:
4989 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4990 sc->sc_hwmap[sc->sc_txrate].ledoff);
4991 break;
4992 case ATH_LED_RX:
4993 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4994 sc->sc_hwmap[sc->sc_rxrate].ledoff);
4995 break;
4996 }
4997 }
4998
4999 static void
5000 ath_update_txpow(struct ath_softc *sc)
5001 {
5002 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5003 struct ieee80211com *ic = &sc->sc_ic;
5004 struct ath_hal *ah = sc->sc_ah;
5005 u_int32_t txpow;
5006
5007 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5008 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5009 /* read back in case value is clamped */
5010 (void)ath_hal_gettxpowlimit(ah, &txpow);
5011 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5012 }
5013 /*
5014 * Fetch max tx power level for status requests.
5015 */
5016 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5017 ic->ic_bss->ni_txpower = txpow;
5018 }
5019
5020 static void
5021 rate_setup(struct ath_softc *sc,
5022 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5023 {
5024 int i, maxrates;
5025
5026 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5027 DPRINTF(sc, ATH_DEBUG_ANY,
5028 "%s: rate table too small (%u > %u)\n",
5029 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5030 maxrates = IEEE80211_RATE_MAXSIZE;
5031 } else
5032 maxrates = rt->rateCount;
5033 for (i = 0; i < maxrates; i++)
5034 rs->rs_rates[i] = rt->info[i].dot11Rate;
5035 rs->rs_nrates = maxrates;
5036 }
5037
5038 static int
5039 ath_rate_setup(struct ath_softc *sc, u_int mode)
5040 {
5041 struct ath_hal *ah = sc->sc_ah;
5042 struct ieee80211com *ic = &sc->sc_ic;
5043 const HAL_RATE_TABLE *rt;
5044
5045 switch (mode) {
5046 case IEEE80211_MODE_11A:
5047 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5048 break;
5049 case IEEE80211_MODE_11B:
5050 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5051 break;
5052 case IEEE80211_MODE_11G:
5053 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5054 break;
5055 case IEEE80211_MODE_TURBO_A:
5056 /* XXX until static/dynamic turbo is fixed */
5057 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5058 break;
5059 case IEEE80211_MODE_TURBO_G:
5060 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5061 break;
5062 default:
5063 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5064 __func__, mode);
5065 return 0;
5066 }
5067 sc->sc_rates[mode] = rt;
5068 if (rt != NULL) {
5069 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5070 return 1;
5071 } else
5072 return 0;
5073 }
5074
5075 static void
5076 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5077 {
5078 #define N(a) (sizeof(a)/sizeof(a[0]))
5079 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5080 static const struct {
5081 u_int rate; /* tx/rx 802.11 rate */
5082 u_int16_t timeOn; /* LED on time (ms) */
5083 u_int16_t timeOff; /* LED off time (ms) */
5084 } blinkrates[] = {
5085 { 108, 40, 10 },
5086 { 96, 44, 11 },
5087 { 72, 50, 13 },
5088 { 48, 57, 14 },
5089 { 36, 67, 16 },
5090 { 24, 80, 20 },
5091 { 22, 100, 25 },
5092 { 18, 133, 34 },
5093 { 12, 160, 40 },
5094 { 10, 200, 50 },
5095 { 6, 240, 58 },
5096 { 4, 267, 66 },
5097 { 2, 400, 100 },
5098 { 0, 500, 130 },
5099 };
5100 const HAL_RATE_TABLE *rt;
5101 int i, j;
5102
5103 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5104 rt = sc->sc_rates[mode];
5105 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5106 for (i = 0; i < rt->rateCount; i++)
5107 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5108 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5109 for (i = 0; i < 32; i++) {
5110 u_int8_t ix = rt->rateCodeToIndex[i];
5111 if (ix == 0xff) {
5112 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5113 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5114 continue;
5115 }
5116 sc->sc_hwmap[i].ieeerate =
5117 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5118 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5119 if (rt->info[ix].shortPreamble ||
5120 rt->info[ix].phy == IEEE80211_T_OFDM)
5121 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5122 /* NB: receive frames include FCS */
5123 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5124 IEEE80211_RADIOTAP_F_FCS;
5125 /* setup blink rate table to avoid per-packet lookup */
5126 for (j = 0; j < N(blinkrates)-1; j++)
5127 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5128 break;
5129 /* NB: this uses the last entry if the rate isn't found */
5130 /* XXX beware of overlow */
5131 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5132 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5133 }
5134 sc->sc_currates = rt;
5135 sc->sc_curmode = mode;
5136 /*
5137 * All protection frames are transmited at 2Mb/s for
5138 * 11g, otherwise at 1Mb/s.
5139 */
5140 if (mode == IEEE80211_MODE_11G)
5141 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5142 else
5143 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5144 /* rate index used to send management frames */
5145 sc->sc_minrateix = 0;
5146 /*
5147 * Setup multicast rate state.
5148 */
5149 /* XXX layering violation */
5150 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5151 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5152 /* NB: caller is responsible for reseting rate control state */
5153 #undef N
5154 }
5155
5156 #ifdef AR_DEBUG
5157 static void
5158 ath_printrxbuf(struct ath_buf *bf, int done)
5159 {
5160 struct ath_desc *ds;
5161 int i;
5162
5163 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5164 printf("R%d (%p %" PRIx64
5165 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5166 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5167 ds->ds_link, ds->ds_data,
5168 ds->ds_ctl0, ds->ds_ctl1,
5169 ds->ds_hw[0], ds->ds_hw[1],
5170 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5171 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5172 }
5173 }
5174
5175 static void
5176 ath_printtxbuf(struct ath_buf *bf, int done)
5177 {
5178 struct ath_desc *ds;
5179 int i;
5180
5181 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5182 printf("T%d (%p %" PRIx64
5183 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5184 i, ds,
5185 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5186 ds->ds_link, ds->ds_data,
5187 ds->ds_ctl0, ds->ds_ctl1,
5188 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5189 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5190 }
5191 }
5192 #endif /* AR_DEBUG */
5193
5194 static void
5195 ath_watchdog(struct ifnet *ifp)
5196 {
5197 struct ath_softc *sc = ifp->if_softc;
5198 struct ieee80211com *ic = &sc->sc_ic;
5199 struct ath_txq *axq;
5200 int i;
5201
5202 ifp->if_timer = 0;
5203 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5204 !device_is_active(sc->sc_dev))
5205 return;
5206 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5207 if (!ATH_TXQ_SETUP(sc, i))
5208 continue;
5209 axq = &sc->sc_txq[i];
5210 ATH_TXQ_LOCK(axq);
5211 if (axq->axq_timer == 0)
5212 ;
5213 else if (--axq->axq_timer == 0) {
5214 ATH_TXQ_UNLOCK(axq);
5215 if_printf(ifp, "device timeout (txq %d, "
5216 "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5217 if (sc->sc_txintrperiod > 1)
5218 sc->sc_txintrperiod--;
5219 ath_reset(ifp);
5220 ifp->if_oerrors++;
5221 sc->sc_stats.ast_watchdog++;
5222 break;
5223 } else
5224 ifp->if_timer = 1;
5225 ATH_TXQ_UNLOCK(axq);
5226 }
5227 ieee80211_watchdog(ic);
5228 }
5229
5230 /*
5231 * Diagnostic interface to the HAL. This is used by various
5232 * tools to do things like retrieve register contents for
5233 * debugging. The mechanism is intentionally opaque so that
5234 * it can change frequently w/o concern for compatiblity.
5235 */
5236 static int
5237 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5238 {
5239 struct ath_hal *ah = sc->sc_ah;
5240 u_int id = ad->ad_id & ATH_DIAG_ID;
5241 void *indata = NULL;
5242 void *outdata = NULL;
5243 u_int32_t insize = ad->ad_in_size;
5244 u_int32_t outsize = ad->ad_out_size;
5245 int error = 0;
5246
5247 if (ad->ad_id & ATH_DIAG_IN) {
5248 /*
5249 * Copy in data.
5250 */
5251 indata = malloc(insize, M_TEMP, M_NOWAIT);
5252 if (indata == NULL) {
5253 error = ENOMEM;
5254 goto bad;
5255 }
5256 error = copyin(ad->ad_in_data, indata, insize);
5257 if (error)
5258 goto bad;
5259 }
5260 if (ad->ad_id & ATH_DIAG_DYN) {
5261 /*
5262 * Allocate a buffer for the results (otherwise the HAL
5263 * returns a pointer to a buffer where we can read the
5264 * results). Note that we depend on the HAL leaving this
5265 * pointer for us to use below in reclaiming the buffer;
5266 * may want to be more defensive.
5267 */
5268 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5269 if (outdata == NULL) {
5270 error = ENOMEM;
5271 goto bad;
5272 }
5273 }
5274 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5275 if (outsize < ad->ad_out_size)
5276 ad->ad_out_size = outsize;
5277 if (outdata != NULL)
5278 error = copyout(outdata, ad->ad_out_data,
5279 ad->ad_out_size);
5280 } else {
5281 error = EINVAL;
5282 }
5283 bad:
5284 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5285 free(indata, M_TEMP);
5286 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5287 free(outdata, M_TEMP);
5288 return error;
5289 }
5290
5291 static int
5292 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5293 {
5294 #define IS_RUNNING(ifp) \
5295 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5296 struct ath_softc *sc = ifp->if_softc;
5297 struct ieee80211com *ic = &sc->sc_ic;
5298 struct ifreq *ifr = (struct ifreq *)data;
5299 int error = 0;
5300
5301 ATH_LOCK(sc);
5302 switch (cmd) {
5303 case SIOCSIFFLAGS:
5304 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5305 break;
5306 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5307 case IFF_UP|IFF_RUNNING:
5308 /*
5309 * To avoid rescanning another access point,
5310 * do not call ath_init() here. Instead,
5311 * only reflect promisc mode settings.
5312 */
5313 ath_mode_init(sc);
5314 break;
5315 case IFF_UP:
5316 /*
5317 * Beware of being called during attach/detach
5318 * to reset promiscuous mode. In that case we
5319 * will still be marked UP but not RUNNING.
5320 * However trying to re-init the interface
5321 * is the wrong thing to do as we've already
5322 * torn down much of our state. There's
5323 * probably a better way to deal with this.
5324 */
5325 error = ath_init(sc);
5326 break;
5327 case IFF_RUNNING:
5328 ath_stop_locked(ifp, 1);
5329 break;
5330 case 0:
5331 break;
5332 }
5333 break;
5334 case SIOCADDMULTI:
5335 case SIOCDELMULTI:
5336 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5337 if (ifp->if_flags & IFF_RUNNING)
5338 ath_mode_init(sc);
5339 error = 0;
5340 }
5341 break;
5342 case SIOCGATHSTATS:
5343 /* NB: embed these numbers to get a consistent view */
5344 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5345 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5346 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5347 ATH_UNLOCK(sc);
5348 /*
5349 * NB: Drop the softc lock in case of a page fault;
5350 * we'll accept any potential inconsisentcy in the
5351 * statistics. The alternative is to copy the data
5352 * to a local structure.
5353 */
5354 return copyout(&sc->sc_stats,
5355 ifr->ifr_data, sizeof (sc->sc_stats));
5356 case SIOCGATHDIAG:
5357 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5358 break;
5359 default:
5360 error = ieee80211_ioctl(ic, cmd, data);
5361 if (error != ENETRESET)
5362 ;
5363 else if (IS_RUNNING(ifp) &&
5364 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5365 error = ath_init(sc);
5366 else
5367 error = 0;
5368 break;
5369 }
5370 ATH_UNLOCK(sc);
5371 return error;
5372 #undef IS_RUNNING
5373 }
5374
5375 static void
5376 ath_bpfattach(struct ath_softc *sc)
5377 {
5378 struct ifnet *ifp = &sc->sc_if;
5379
5380 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5381 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5382 &sc->sc_drvbpf);
5383
5384 /*
5385 * Initialize constant fields.
5386 * XXX make header lengths a multiple of 32-bits so subsequent
5387 * headers are properly aligned; this is a kludge to keep
5388 * certain applications happy.
5389 *
5390 * NB: the channel is setup each time we transition to the
5391 * RUN state to avoid filling it in for each frame.
5392 */
5393 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5394 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5395 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5396
5397 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5398 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5399 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5400 }
5401
5402 /*
5403 * Announce various information on device/driver attach.
5404 */
5405 static void
5406 ath_announce(struct ath_softc *sc)
5407 {
5408 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5409 struct ifnet *ifp = &sc->sc_if;
5410 struct ath_hal *ah = sc->sc_ah;
5411 u_int modes, cc;
5412
5413 if_printf(ifp, "mac %d.%d phy %d.%d",
5414 ah->ah_macVersion, ah->ah_macRev,
5415 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5416 /*
5417 * Print radio revision(s). We check the wireless modes
5418 * to avoid falsely printing revs for inoperable parts.
5419 * Dual-band radio revs are returned in the 5 GHz rev number.
5420 */
5421 ath_hal_getcountrycode(ah, &cc);
5422 modes = ath_hal_getwirelessmodes(ah, cc);
5423 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5424 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5425 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5426 ah->ah_analog5GhzRev >> 4,
5427 ah->ah_analog5GhzRev & 0xf,
5428 ah->ah_analog2GhzRev >> 4,
5429 ah->ah_analog2GhzRev & 0xf);
5430 else
5431 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5432 ah->ah_analog5GhzRev & 0xf);
5433 } else
5434 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5435 ah->ah_analog5GhzRev & 0xf);
5436 printf("\n");
5437 if (bootverbose) {
5438 int i;
5439 for (i = 0; i <= WME_AC_VO; i++) {
5440 struct ath_txq *txq = sc->sc_ac2q[i];
5441 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5442 txq->axq_qnum, ieee80211_wme_acnames[i]);
5443 }
5444 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5445 sc->sc_cabq->axq_qnum);
5446 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5447 }
5448 if (ath_rxbuf != ATH_RXBUF)
5449 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5450 if (ath_txbuf != ATH_TXBUF)
5451 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5452 #undef HAL_MODE_DUALBAND
5453 }
5454