Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.109.4.1
      1 /*	$NetBSD: ath.c,v 1.109.4.1 2011/03/05 15:10:18 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.109.4.1 2011/03/05 15:10:18 bouyer Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #ifdef _KERNEL_OPT
     55 #include "opt_inet.h"
     56 #endif
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/types.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/mbuf.h>
     64 #include <sys/malloc.h>
     65 #include <sys/kernel.h>
     66 #include <sys/socket.h>
     67 #include <sys/sockio.h>
     68 #include <sys/errno.h>
     69 #include <sys/callout.h>
     70 #include <sys/bus.h>
     71 #include <sys/endian.h>
     72 
     73 #include <net/if.h>
     74 #include <net/if_dl.h>
     75 #include <net/if_media.h>
     76 #include <net/if_types.h>
     77 #include <net/if_arp.h>
     78 #include <net/if_ether.h>
     79 #include <net/if_llc.h>
     80 
     81 #include <net80211/ieee80211_netbsd.h>
     82 #include <net80211/ieee80211_var.h>
     83 
     84 #include <net/bpf.h>
     85 
     86 #ifdef INET
     87 #include <netinet/in.h>
     88 #endif
     89 
     90 #include <sys/device.h>
     91 #include <dev/ic/ath_netbsd.h>
     92 
     93 #define	AR_DEBUG
     94 #include <dev/ic/athvar.h>
     95 #include "ah_desc.h"
     96 #include "ah_devid.h"	/* XXX for softled */
     97 #include "opt_ah.h"
     98 
     99 #ifdef ATH_TX99_DIAG
    100 #include <dev/ath/ath_tx99/ath_tx99.h>
    101 #endif
    102 
    103 /* unaligned little endian access */
    104 #define LE_READ_2(p)							\
    105 	((u_int16_t)							\
    106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    107 #define LE_READ_4(p)							\
    108 	((u_int32_t)							\
    109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    111 
    112 enum {
    113 	ATH_LED_TX,
    114 	ATH_LED_RX,
    115 	ATH_LED_POLL,
    116 };
    117 
    118 #ifdef	AH_NEED_DESC_SWAP
    119 #define	HTOAH32(x)	htole32(x)
    120 #else
    121 #define	HTOAH32(x)	(x)
    122 #endif
    123 
    124 static int	ath_ifinit(struct ifnet *);
    125 static int	ath_init(struct ath_softc *);
    126 static void	ath_stop_locked(struct ifnet *, int);
    127 static void	ath_stop(struct ifnet *, int);
    128 static void	ath_start(struct ifnet *);
    129 static int	ath_media_change(struct ifnet *);
    130 static void	ath_watchdog(struct ifnet *);
    131 static int	ath_ioctl(struct ifnet *, u_long, void *);
    132 static void	ath_fatal_proc(void *, int);
    133 static void	ath_rxorn_proc(void *, int);
    134 static void	ath_bmiss_proc(void *, int);
    135 static void	ath_radar_proc(void *, int);
    136 static int	ath_key_alloc(struct ieee80211com *,
    137 			const struct ieee80211_key *,
    138 			ieee80211_keyix *, ieee80211_keyix *);
    139 static int	ath_key_delete(struct ieee80211com *,
    140 			const struct ieee80211_key *);
    141 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    143 static void	ath_key_update_begin(struct ieee80211com *);
    144 static void	ath_key_update_end(struct ieee80211com *);
    145 static void	ath_mode_init(struct ath_softc *);
    146 static void	ath_setslottime(struct ath_softc *);
    147 static void	ath_updateslot(struct ifnet *);
    148 static int	ath_beaconq_setup(struct ath_hal *);
    149 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    150 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    151 static void	ath_beacon_proc(void *, int);
    152 static void	ath_bstuck_proc(void *, int);
    153 static void	ath_beacon_free(struct ath_softc *);
    154 static void	ath_beacon_config(struct ath_softc *);
    155 static void	ath_descdma_cleanup(struct ath_softc *sc,
    156 			struct ath_descdma *, ath_bufhead *);
    157 static int	ath_desc_alloc(struct ath_softc *);
    158 static void	ath_desc_free(struct ath_softc *);
    159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    160 static void	ath_node_free(struct ieee80211_node *);
    161 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    162 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    163 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    164 			struct ieee80211_node *ni,
    165 			int subtype, int rssi, u_int32_t rstamp);
    166 static void	ath_setdefantenna(struct ath_softc *, u_int);
    167 static void	ath_rx_proc(void *, int);
    168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    169 static int	ath_tx_setup(struct ath_softc *, int, int);
    170 static int	ath_wme_update(struct ieee80211com *);
    171 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    172 static void	ath_tx_cleanup(struct ath_softc *);
    173 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    174 			     struct ath_buf *, struct mbuf *);
    175 static void	ath_tx_proc_q0(void *, int);
    176 static void	ath_tx_proc_q0123(void *, int);
    177 static void	ath_tx_proc(void *, int);
    178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    179 static void	ath_draintxq(struct ath_softc *);
    180 static void	ath_stoprecv(struct ath_softc *);
    181 static int	ath_startrecv(struct ath_softc *);
    182 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    183 static void	ath_next_scan(void *);
    184 static void	ath_calibrate(void *);
    185 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    186 static void	ath_setup_stationkey(struct ieee80211_node *);
    187 static void	ath_newassoc(struct ieee80211_node *, int);
    188 static int	ath_getchannels(struct ath_softc *, u_int cc,
    189 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    190 static void	ath_led_event(struct ath_softc *, int);
    191 static void	ath_update_txpow(struct ath_softc *);
    192 static void	ath_freetx(struct mbuf *);
    193 static void	ath_restore_diversity(struct ath_softc *);
    194 
    195 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    196 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    197 
    198 static void	ath_bpfattach(struct ath_softc *);
    199 static void	ath_announce(struct ath_softc *);
    200 
    201 int ath_dwelltime = 200;		/* 5 channels/second */
    202 int ath_calinterval = 30;		/* calibrate every 30 secs */
    203 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    204 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    205 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    206 int ath_regdomain = 0;			/* regulatory domain */
    207 int ath_debug = 0;
    208 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    209 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    210 
    211 #ifdef AR_DEBUG
    212 enum {
    213 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    214 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    215 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    216 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    217 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    218 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    219 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    220 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    221 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    222 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    223 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    224 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    225 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    226 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    227 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    228 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    229 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    230 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    231 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    232 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    233 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    234 	ATH_DEBUG_ANY		= 0xffffffff
    235 };
    236 #define	IFF_DUMPPKTS(sc, m) \
    237 	((sc->sc_debug & (m)) || \
    238 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    239 #define	DPRINTF(sc, m, fmt, ...) do {				\
    240 	if (sc->sc_debug & (m))					\
    241 		printf(fmt, __VA_ARGS__);			\
    242 } while (0)
    243 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    244 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    245 		ath_keyprint(__func__, ix, hk, mac);		\
    246 } while (0)
    247 static	void ath_printrxbuf(struct ath_buf *bf, int);
    248 static	void ath_printtxbuf(struct ath_buf *bf, int);
    249 #else
    250 #define        IFF_DUMPPKTS(sc, m) \
    251 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    252 #define        DPRINTF(m, fmt, ...)
    253 #define        KEYPRINTF(sc, k, ix, mac)
    254 #endif
    255 
    256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    257 
    258 int
    259 ath_attach(u_int16_t devid, struct ath_softc *sc)
    260 {
    261 	struct ifnet *ifp = &sc->sc_if;
    262 	struct ieee80211com *ic = &sc->sc_ic;
    263 	struct ath_hal *ah = NULL;
    264 	HAL_STATUS status;
    265 	int error = 0, i;
    266 
    267 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    268 
    269 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
    270 
    271 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    272 
    273 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    274 	if (ah == NULL) {
    275 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    276 			status);
    277 		error = ENXIO;
    278 		goto bad;
    279 	}
    280 	if (ah->ah_abi != HAL_ABI_VERSION) {
    281 		if_printf(ifp, "HAL ABI mismatch detected "
    282 			"(HAL:0x%x != driver:0x%x)\n",
    283 			ah->ah_abi, HAL_ABI_VERSION);
    284 		error = ENXIO;
    285 		goto bad;
    286 	}
    287 	sc->sc_ah = ah;
    288 
    289 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
    290 	    "pmf-powerdown", false))
    291 		goto bad;
    292 
    293 	/*
    294 	 * Check if the MAC has multi-rate retry support.
    295 	 * We do this by trying to setup a fake extended
    296 	 * descriptor.  MAC's that don't have support will
    297 	 * return false w/o doing anything.  MAC's that do
    298 	 * support it will return true w/o doing anything.
    299 	 */
    300 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    301 
    302 	/*
    303 	 * Check if the device has hardware counters for PHY
    304 	 * errors.  If so we need to enable the MIB interrupt
    305 	 * so we can act on stat triggers.
    306 	 */
    307 	if (ath_hal_hwphycounters(ah))
    308 		sc->sc_needmib = 1;
    309 
    310 	/*
    311 	 * Get the hardware key cache size.
    312 	 */
    313 	sc->sc_keymax = ath_hal_keycachesize(ah);
    314 	if (sc->sc_keymax > ATH_KEYMAX) {
    315 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    316 			ATH_KEYMAX, sc->sc_keymax);
    317 		sc->sc_keymax = ATH_KEYMAX;
    318 	}
    319 	/*
    320 	 * Reset the key cache since some parts do not
    321 	 * reset the contents on initial power up.
    322 	 */
    323 	for (i = 0; i < sc->sc_keymax; i++)
    324 		ath_hal_keyreset(ah, i);
    325 	/*
    326 	 * Mark key cache slots associated with global keys
    327 	 * as in use.  If we knew TKIP was not to be used we
    328 	 * could leave the +32, +64, and +32+64 slots free.
    329 	 * XXX only for splitmic.
    330 	 */
    331 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    332 		setbit(sc->sc_keymap, i);
    333 		setbit(sc->sc_keymap, i+32);
    334 		setbit(sc->sc_keymap, i+64);
    335 		setbit(sc->sc_keymap, i+32+64);
    336 	}
    337 
    338 	/*
    339 	 * Collect the channel list using the default country
    340 	 * code and including outdoor channels.  The 802.11 layer
    341 	 * is resposible for filtering this list based on settings
    342 	 * like the phy mode.
    343 	 */
    344 	error = ath_getchannels(sc, ath_countrycode,
    345 			ath_outdoor, ath_xchanmode);
    346 	if (error != 0)
    347 		goto bad;
    348 
    349 	/*
    350 	 * Setup rate tables for all potential media types.
    351 	 */
    352 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    353 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    354 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    355 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    356 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    357 	/* NB: setup here so ath_rate_update is happy */
    358 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    359 
    360 	/*
    361 	 * Allocate tx+rx descriptors and populate the lists.
    362 	 */
    363 	error = ath_desc_alloc(sc);
    364 	if (error != 0) {
    365 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    366 		goto bad;
    367 	}
    368 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    369 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    370 #if 0
    371 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    372 #endif
    373 
    374 	ATH_TXBUF_LOCK_INIT(sc);
    375 
    376 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    377 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    378 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    379 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    380 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    381 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    382 
    383 	/*
    384 	 * Allocate hardware transmit queues: one queue for
    385 	 * beacon frames and one data queue for each QoS
    386 	 * priority.  Note that the hal handles reseting
    387 	 * these queues at the needed time.
    388 	 *
    389 	 * XXX PS-Poll
    390 	 */
    391 	sc->sc_bhalq = ath_beaconq_setup(ah);
    392 	if (sc->sc_bhalq == (u_int) -1) {
    393 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    394 		error = EIO;
    395 		goto bad2;
    396 	}
    397 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    398 	if (sc->sc_cabq == NULL) {
    399 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    400 		error = EIO;
    401 		goto bad2;
    402 	}
    403 	/* NB: insure BK queue is the lowest priority h/w queue */
    404 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    405 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    406 			ieee80211_wme_acnames[WME_AC_BK]);
    407 		error = EIO;
    408 		goto bad2;
    409 	}
    410 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    411 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    412 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    413 		/*
    414 		 * Not enough hardware tx queues to properly do WME;
    415 		 * just punt and assign them all to the same h/w queue.
    416 		 * We could do a better job of this if, for example,
    417 		 * we allocate queues when we switch from station to
    418 		 * AP mode.
    419 		 */
    420 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    421 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    422 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    423 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    424 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    425 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    426 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    427 	}
    428 
    429 	/*
    430 	 * Special case certain configurations.  Note the
    431 	 * CAB queue is handled by these specially so don't
    432 	 * include them when checking the txq setup mask.
    433 	 */
    434 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    435 	case 0x01:
    436 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    437 		break;
    438 	case 0x0f:
    439 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    440 		break;
    441 	default:
    442 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    443 		break;
    444 	}
    445 
    446 	/*
    447 	 * Setup rate control.  Some rate control modules
    448 	 * call back to change the anntena state so expose
    449 	 * the necessary entry points.
    450 	 * XXX maybe belongs in struct ath_ratectrl?
    451 	 */
    452 	sc->sc_setdefantenna = ath_setdefantenna;
    453 	sc->sc_rc = ath_rate_attach(sc);
    454 	if (sc->sc_rc == NULL) {
    455 		error = EIO;
    456 		goto bad2;
    457 	}
    458 
    459 	sc->sc_blinking = 0;
    460 	sc->sc_ledstate = 1;
    461 	sc->sc_ledon = 0;			/* low true */
    462 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    463 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    464 	/*
    465 	 * Auto-enable soft led processing for IBM cards and for
    466 	 * 5211 minipci cards.  Users can also manually enable/disable
    467 	 * support with a sysctl.
    468 	 */
    469 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    470 	if (sc->sc_softled) {
    471 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
    472 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    473 	}
    474 
    475 	ifp->if_softc = sc;
    476 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    477 	ifp->if_start = ath_start;
    478 	ifp->if_stop = ath_stop;
    479 	ifp->if_watchdog = ath_watchdog;
    480 	ifp->if_ioctl = ath_ioctl;
    481 	ifp->if_init = ath_ifinit;
    482 	IFQ_SET_READY(&ifp->if_snd);
    483 
    484 	ic->ic_ifp = ifp;
    485 	ic->ic_reset = ath_reset;
    486 	ic->ic_newassoc = ath_newassoc;
    487 	ic->ic_updateslot = ath_updateslot;
    488 	ic->ic_wme.wme_update = ath_wme_update;
    489 	/* XXX not right but it's not used anywhere important */
    490 	ic->ic_phytype = IEEE80211_T_OFDM;
    491 	ic->ic_opmode = IEEE80211_M_STA;
    492 	ic->ic_caps =
    493 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    494 		| IEEE80211_C_HOSTAP		/* hostap mode */
    495 		| IEEE80211_C_MONITOR		/* monitor mode */
    496 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    497 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    498 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    499 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    500 		;
    501 	/*
    502 	 * Query the hal to figure out h/w crypto support.
    503 	 */
    504 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    505 		ic->ic_caps |= IEEE80211_C_WEP;
    506 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    507 		ic->ic_caps |= IEEE80211_C_AES;
    508 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    509 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    511 		ic->ic_caps |= IEEE80211_C_CKIP;
    512 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    513 		ic->ic_caps |= IEEE80211_C_TKIP;
    514 		/*
    515 		 * Check if h/w does the MIC and/or whether the
    516 		 * separate key cache entries are required to
    517 		 * handle both tx+rx MIC keys.
    518 		 */
    519 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    520 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    521 
    522 		/*
    523 		 * If the h/w supports storing tx+rx MIC keys
    524 		 * in one cache slot automatically enable use.
    525 		 */
    526 		if (ath_hal_hastkipsplit(ah) ||
    527 		    !ath_hal_settkipsplit(ah, AH_FALSE))
    528 			sc->sc_splitmic = 1;
    529 
    530 		/*
    531 		 * If the h/w can do TKIP MIC together with WME then
    532 		 * we use it; otherwise we force the MIC to be done
    533 		 * in software by the net80211 layer.
    534 		 */
    535 		if (ath_hal_haswmetkipmic(ah))
    536 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
    537 	}
    538 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    539 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    540 	/*
    541 	 * Mark key cache slots associated with global keys
    542 	 * as in use.  If we knew TKIP was not to be used we
    543 	 * could leave the +32, +64, and +32+64 slots free.
    544 	 */
    545 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    546 		setbit(sc->sc_keymap, i);
    547 		setbit(sc->sc_keymap, i+64);
    548 		if (sc->sc_splitmic) {
    549 			setbit(sc->sc_keymap, i+32);
    550 			setbit(sc->sc_keymap, i+32+64);
    551 		}
    552 	}
    553 	/*
    554 	 * TPC support can be done either with a global cap or
    555 	 * per-packet support.  The latter is not available on
    556 	 * all parts.  We're a bit pedantic here as all parts
    557 	 * support a global cap.
    558 	 */
    559 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    560 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    561 
    562 	/*
    563 	 * Mark WME capability only if we have sufficient
    564 	 * hardware queues to do proper priority scheduling.
    565 	 */
    566 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    567 		ic->ic_caps |= IEEE80211_C_WME;
    568 	/*
    569 	 * Check for misc other capabilities.
    570 	 */
    571 	if (ath_hal_hasbursting(ah))
    572 		ic->ic_caps |= IEEE80211_C_BURST;
    573 
    574 	/*
    575 	 * Indicate we need the 802.11 header padded to a
    576 	 * 32-bit boundary for 4-address and QoS frames.
    577 	 */
    578 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    579 
    580 	/*
    581 	 * Query the hal about antenna support.
    582 	 */
    583 	sc->sc_defant = ath_hal_getdefantenna(ah);
    584 
    585 	/*
    586 	 * Not all chips have the VEOL support we want to
    587 	 * use with IBSS beacons; check here for it.
    588 	 */
    589 	sc->sc_hasveol = ath_hal_hasveol(ah);
    590 
    591 	/* get mac address from hardware */
    592 	ath_hal_getmac(ah, ic->ic_myaddr);
    593 
    594 	if_attach(ifp);
    595 	/* call MI attach routine. */
    596 	ieee80211_ifattach(ic);
    597 	/* override default methods */
    598 	ic->ic_node_alloc = ath_node_alloc;
    599 	sc->sc_node_free = ic->ic_node_free;
    600 	ic->ic_node_free = ath_node_free;
    601 	ic->ic_node_getrssi = ath_node_getrssi;
    602 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    603 	ic->ic_recv_mgmt = ath_recv_mgmt;
    604 	sc->sc_newstate = ic->ic_newstate;
    605 	ic->ic_newstate = ath_newstate;
    606 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    607 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    608 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    609 	ic->ic_crypto.cs_key_set = ath_key_set;
    610 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    611 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    612 	/* complete initialization */
    613 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    614 
    615 	ath_bpfattach(sc);
    616 
    617 	sc->sc_flags |= ATH_ATTACHED;
    618 
    619 	/*
    620 	 * Setup dynamic sysctl's now that country code and
    621 	 * regdomain are available from the hal.
    622 	 */
    623 	ath_sysctlattach(sc);
    624 
    625 	ieee80211_announce(ic);
    626 	ath_announce(sc);
    627 	return 0;
    628 bad2:
    629 	ath_tx_cleanup(sc);
    630 	ath_desc_free(sc);
    631 bad:
    632 	if (ah)
    633 		ath_hal_detach(ah);
    634 	/* XXX don't get under the abstraction like this */
    635 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
    636 	return error;
    637 }
    638 
    639 int
    640 ath_detach(struct ath_softc *sc)
    641 {
    642 	struct ifnet *ifp = &sc->sc_if;
    643 	int s;
    644 
    645 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    646 		return (0);
    647 
    648 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    649 		__func__, ifp->if_flags);
    650 
    651 	s = splnet();
    652 	ath_stop(ifp, 1);
    653 	bpf_detach(ifp);
    654 	/*
    655 	 * NB: the order of these is important:
    656 	 * o call the 802.11 layer before detaching the hal to
    657 	 *   insure callbacks into the driver to delete global
    658 	 *   key cache entries can be handled
    659 	 * o reclaim the tx queue data structures after calling
    660 	 *   the 802.11 layer as we'll get called back to reclaim
    661 	 *   node state and potentially want to use them
    662 	 * o to cleanup the tx queues the hal is called, so detach
    663 	 *   it last
    664 	 * Other than that, it's straightforward...
    665 	 */
    666 	ieee80211_ifdetach(&sc->sc_ic);
    667 #ifdef ATH_TX99_DIAG
    668 	if (sc->sc_tx99 != NULL)
    669 		sc->sc_tx99->detach(sc->sc_tx99);
    670 #endif
    671 	ath_rate_detach(sc->sc_rc);
    672 	ath_desc_free(sc);
    673 	ath_tx_cleanup(sc);
    674 	sysctl_teardown(&sc->sc_sysctllog);
    675 	ath_hal_detach(sc->sc_ah);
    676 	if_detach(ifp);
    677 	splx(s);
    678 
    679 	return 0;
    680 }
    681 
    682 void
    683 ath_suspend(struct ath_softc *sc)
    684 {
    685 #if notyet
    686 	/*
    687 	 * Set the chip in full sleep mode.  Note that we are
    688 	 * careful to do this only when bringing the interface
    689 	 * completely to a stop.  When the chip is in this state
    690 	 * it must be carefully woken up or references to
    691 	 * registers in the PCI clock domain may freeze the bus
    692 	 * (and system).  This varies by chip and is mostly an
    693 	 * issue with newer parts that go to sleep more quickly.
    694 	 */
    695 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
    696 #endif
    697 }
    698 
    699 bool
    700 ath_resume(struct ath_softc *sc)
    701 {
    702 	struct ath_hal *ah = sc->sc_ah;
    703 	struct ieee80211com *ic = &sc->sc_ic;
    704 	HAL_STATUS status;
    705 	int i;
    706 
    707 #if notyet
    708 	ath_hal_setpower(ah, HAL_PM_AWAKE);
    709 #else
    710 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
    711 #endif
    712 
    713 	/*
    714 	 * Reset the key cache since some parts do not
    715 	 * reset the contents on initial power up.
    716 	 */
    717 	for (i = 0; i < sc->sc_keymax; i++)
    718 		ath_hal_keyreset(ah, i);
    719 
    720 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
    721 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
    722 		if (ATH_TXQ_SETUP(sc, i))
    723 			ath_hal_resettxqueue(ah, i);
    724 
    725 	if (sc->sc_softled) {
    726 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
    727 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    728 	}
    729 	return true;
    730 }
    731 
    732 /*
    733  * Interrupt handler.  Most of the actual processing is deferred.
    734  */
    735 int
    736 ath_intr(void *arg)
    737 {
    738 	struct ath_softc *sc = arg;
    739 	struct ifnet *ifp = &sc->sc_if;
    740 	struct ath_hal *ah = sc->sc_ah;
    741 	HAL_INT status;
    742 
    743 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
    744 		/*
    745 		 * The hardware is not ready/present, don't touch anything.
    746 		 * Note this can happen early on if the IRQ is shared.
    747 		 */
    748 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    749 		return 0;
    750 	}
    751 
    752 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    753 		return 0;
    754 
    755 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    756 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    757 			__func__, ifp->if_flags);
    758 		ath_hal_getisr(ah, &status);	/* clear ISR */
    759 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    760 		return 1; /* XXX */
    761 	}
    762 	/*
    763 	 * Figure out the reason(s) for the interrupt.  Note
    764 	 * that the hal returns a pseudo-ISR that may include
    765 	 * bits we haven't explicitly enabled so we mask the
    766 	 * value to insure we only process bits we requested.
    767 	 */
    768 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    769 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    770 	status &= sc->sc_imask;			/* discard unasked for bits */
    771 	if (status & HAL_INT_FATAL) {
    772 		/*
    773 		 * Fatal errors are unrecoverable.  Typically
    774 		 * these are caused by DMA errors.  Unfortunately
    775 		 * the exact reason is not (presently) returned
    776 		 * by the hal.
    777 		 */
    778 		sc->sc_stats.ast_hardware++;
    779 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    780 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    781 	} else if (status & HAL_INT_RXORN) {
    782 		sc->sc_stats.ast_rxorn++;
    783 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    784 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    785 	} else {
    786 		if (status & HAL_INT_SWBA) {
    787 			/*
    788 			 * Software beacon alert--time to send a beacon.
    789 			 * Handle beacon transmission directly; deferring
    790 			 * this is too slow to meet timing constraints
    791 			 * under load.
    792 			 */
    793 			ath_beacon_proc(sc, 0);
    794 		}
    795 		if (status & HAL_INT_RXEOL) {
    796 			/*
    797 			 * NB: the hardware should re-read the link when
    798 			 *     RXE bit is written, but it doesn't work at
    799 			 *     least on older hardware revs.
    800 			 */
    801 			sc->sc_stats.ast_rxeol++;
    802 			sc->sc_rxlink = NULL;
    803 		}
    804 		if (status & HAL_INT_TXURN) {
    805 			sc->sc_stats.ast_txurn++;
    806 			/* bump tx trigger level */
    807 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    808 		}
    809 		if (status & HAL_INT_RX)
    810 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    811 		if (status & HAL_INT_TX)
    812 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    813 		if (status & HAL_INT_BMISS) {
    814 			sc->sc_stats.ast_bmiss++;
    815 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    816 		}
    817 		if (status & HAL_INT_MIB) {
    818 			sc->sc_stats.ast_mib++;
    819 			/*
    820 			 * Disable interrupts until we service the MIB
    821 			 * interrupt; otherwise it will continue to fire.
    822 			 */
    823 			ath_hal_intrset(ah, 0);
    824 			/*
    825 			 * Let the hal handle the event.  We assume it will
    826 			 * clear whatever condition caused the interrupt.
    827 			 */
    828 			ath_hal_mibevent(ah, &sc->sc_halstats);
    829 			ath_hal_intrset(ah, sc->sc_imask);
    830 		}
    831 	}
    832 	return 1;
    833 }
    834 
    835 /* Swap transmit descriptor.
    836  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    837  * function.
    838  */
    839 static inline void
    840 ath_desc_swap(struct ath_desc *ds)
    841 {
    842 #ifdef AH_NEED_DESC_SWAP
    843 	ds->ds_link = htole32(ds->ds_link);
    844 	ds->ds_data = htole32(ds->ds_data);
    845 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    846 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    847 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    848 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    849 #endif
    850 }
    851 
    852 static void
    853 ath_fatal_proc(void *arg, int pending)
    854 {
    855 	struct ath_softc *sc = arg;
    856 	struct ifnet *ifp = &sc->sc_if;
    857 
    858 	if_printf(ifp, "hardware error; resetting\n");
    859 	ath_reset(ifp);
    860 }
    861 
    862 static void
    863 ath_rxorn_proc(void *arg, int pending)
    864 {
    865 	struct ath_softc *sc = arg;
    866 	struct ifnet *ifp = &sc->sc_if;
    867 
    868 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    869 	ath_reset(ifp);
    870 }
    871 
    872 static void
    873 ath_bmiss_proc(void *arg, int pending)
    874 {
    875 	struct ath_softc *sc = arg;
    876 	struct ieee80211com *ic = &sc->sc_ic;
    877 
    878 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    879 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    880 		("unexpect operating mode %u", ic->ic_opmode));
    881 	if (ic->ic_state == IEEE80211_S_RUN) {
    882 		u_int64_t lastrx = sc->sc_lastrx;
    883 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    884 
    885 		DPRINTF(sc, ATH_DEBUG_BEACON,
    886 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    887 		    " (%" PRIu64 ") bmiss %u\n",
    888 		    __func__, tsf, tsf - lastrx, lastrx,
    889 		    ic->ic_bmisstimeout*1024);
    890 		/*
    891 		 * Workaround phantom bmiss interrupts by sanity-checking
    892 		 * the time of our last rx'd frame.  If it is within the
    893 		 * beacon miss interval then ignore the interrupt.  If it's
    894 		 * truly a bmiss we'll get another interrupt soon and that'll
    895 		 * be dispatched up for processing.
    896 		 */
    897 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    898 			NET_LOCK_GIANT();
    899 			ieee80211_beacon_miss(ic);
    900 			NET_UNLOCK_GIANT();
    901 		} else
    902 			sc->sc_stats.ast_bmiss_phantom++;
    903 	}
    904 }
    905 
    906 static void
    907 ath_radar_proc(void *arg, int pending)
    908 {
    909 #if 0
    910 	struct ath_softc *sc = arg;
    911 	struct ifnet *ifp = &sc->sc_if;
    912 	struct ath_hal *ah = sc->sc_ah;
    913 	HAL_CHANNEL hchan;
    914 
    915 	if (ath_hal_procdfs(ah, &hchan)) {
    916 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    917 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    918 		/*
    919 		 * Initiate channel change.
    920 		 */
    921 		/* XXX not yet */
    922 	}
    923 #endif
    924 }
    925 
    926 static u_int
    927 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    928 {
    929 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    930 	static const u_int modeflags[] = {
    931 		0,			/* IEEE80211_MODE_AUTO */
    932 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    933 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    934 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    935 		0,			/* IEEE80211_MODE_FH */
    936 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    937 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    938 	};
    939 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    940 
    941 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
    942 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
    943 	return modeflags[mode];
    944 #undef N
    945 }
    946 
    947 static int
    948 ath_ifinit(struct ifnet *ifp)
    949 {
    950 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    951 
    952 	return ath_init(sc);
    953 }
    954 
    955 static void
    956 ath_settkipmic(struct ath_softc *sc)
    957 {
    958 	struct ieee80211com *ic = &sc->sc_ic;
    959 	struct ath_hal *ah = sc->sc_ah;
    960 
    961 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
    962 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
    963 		if (ic->ic_flags & IEEE80211_F_WME) {
    964 			(void)ath_hal_settkipmic(ah, AH_FALSE);
    965 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
    966 		} else {
    967 			(void)ath_hal_settkipmic(ah, AH_TRUE);
    968 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    969 		}
    970 	}
    971 }
    972 
    973 static int
    974 ath_init(struct ath_softc *sc)
    975 {
    976 	struct ifnet *ifp = &sc->sc_if;
    977 	struct ieee80211com *ic = &sc->sc_ic;
    978 	struct ath_hal *ah = sc->sc_ah;
    979 	HAL_STATUS status;
    980 	int error = 0;
    981 
    982 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    983 		__func__, ifp->if_flags);
    984 
    985 	if (device_is_active(sc->sc_dev)) {
    986 		ATH_LOCK(sc);
    987 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
    988 	           !device_is_active(sc->sc_dev))
    989 		return 0;
    990 	else
    991 		ATH_LOCK(sc);
    992 
    993 	/*
    994 	 * Stop anything previously setup.  This is safe
    995 	 * whether this is the first time through or not.
    996 	 */
    997 	ath_stop_locked(ifp, 0);
    998 
    999 	/*
   1000 	 * The basic interface to setting the hardware in a good
   1001 	 * state is ``reset''.  On return the hardware is known to
   1002 	 * be powered up and with interrupts disabled.  This must
   1003 	 * be followed by initialization of the appropriate bits
   1004 	 * and then setup of the interrupt mask.
   1005 	 */
   1006 	ath_settkipmic(sc);
   1007 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1008 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1009 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1010 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1011 			status);
   1012 		error = EIO;
   1013 		goto done;
   1014 	}
   1015 
   1016 	/*
   1017 	 * This is needed only to setup initial state
   1018 	 * but it's best done after a reset.
   1019 	 */
   1020 	ath_update_txpow(sc);
   1021 	/*
   1022 	 * Likewise this is set during reset so update
   1023 	 * state cached in the driver.
   1024 	 */
   1025 	ath_restore_diversity(sc);
   1026 	sc->sc_calinterval = 1;
   1027 	sc->sc_caltries = 0;
   1028 
   1029 	/*
   1030 	 * Setup the hardware after reset: the key cache
   1031 	 * is filled as needed and the receive engine is
   1032 	 * set going.  Frame transmit is handled entirely
   1033 	 * in the frame output path; there's nothing to do
   1034 	 * here except setup the interrupt mask.
   1035 	 */
   1036 	if ((error = ath_startrecv(sc)) != 0) {
   1037 		if_printf(ifp, "unable to start recv logic\n");
   1038 		goto done;
   1039 	}
   1040 
   1041 	/*
   1042 	 * Enable interrupts.
   1043 	 */
   1044 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1045 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1046 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1047 	/*
   1048 	 * Enable MIB interrupts when there are hardware phy counters.
   1049 	 * Note we only do this (at the moment) for station mode.
   1050 	 */
   1051 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1052 		sc->sc_imask |= HAL_INT_MIB;
   1053 	ath_hal_intrset(ah, sc->sc_imask);
   1054 
   1055 	ifp->if_flags |= IFF_RUNNING;
   1056 	ic->ic_state = IEEE80211_S_INIT;
   1057 
   1058 	/*
   1059 	 * The hardware should be ready to go now so it's safe
   1060 	 * to kick the 802.11 state machine as it's likely to
   1061 	 * immediately call back to us to send mgmt frames.
   1062 	 */
   1063 	ath_chan_change(sc, ic->ic_curchan);
   1064 #ifdef ATH_TX99_DIAG
   1065 	if (sc->sc_tx99 != NULL)
   1066 		sc->sc_tx99->start(sc->sc_tx99);
   1067 	else
   1068 #endif
   1069 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1070 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1071 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1072 	} else
   1073 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1074 done:
   1075 	ATH_UNLOCK(sc);
   1076 	return error;
   1077 }
   1078 
   1079 static void
   1080 ath_stop_locked(struct ifnet *ifp, int disable)
   1081 {
   1082 	struct ath_softc *sc = ifp->if_softc;
   1083 	struct ieee80211com *ic = &sc->sc_ic;
   1084 	struct ath_hal *ah = sc->sc_ah;
   1085 
   1086 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
   1087 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
   1088 
   1089 	ATH_LOCK_ASSERT(sc);
   1090 	if (ifp->if_flags & IFF_RUNNING) {
   1091 		/*
   1092 		 * Shutdown the hardware and driver:
   1093 		 *    reset 802.11 state machine
   1094 		 *    turn off timers
   1095 		 *    disable interrupts
   1096 		 *    turn off the radio
   1097 		 *    clear transmit machinery
   1098 		 *    clear receive machinery
   1099 		 *    drain and release tx queues
   1100 		 *    reclaim beacon resources
   1101 		 *    power down hardware
   1102 		 *
   1103 		 * Note that some of this work is not possible if the
   1104 		 * hardware is gone (invalid).
   1105 		 */
   1106 #ifdef ATH_TX99_DIAG
   1107 		if (sc->sc_tx99 != NULL)
   1108 			sc->sc_tx99->stop(sc->sc_tx99);
   1109 #endif
   1110 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1111 		ifp->if_flags &= ~IFF_RUNNING;
   1112 		ifp->if_timer = 0;
   1113 		if (device_is_enabled(sc->sc_dev)) {
   1114 			if (sc->sc_softled) {
   1115 				callout_stop(&sc->sc_ledtimer);
   1116 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1117 					!sc->sc_ledon);
   1118 				sc->sc_blinking = 0;
   1119 			}
   1120 			ath_hal_intrset(ah, 0);
   1121 		}
   1122 		ath_draintxq(sc);
   1123 		if (device_is_enabled(sc->sc_dev)) {
   1124 			ath_stoprecv(sc);
   1125 			ath_hal_phydisable(ah);
   1126 		} else
   1127 			sc->sc_rxlink = NULL;
   1128 		IF_PURGE(&ifp->if_snd);
   1129 		ath_beacon_free(sc);
   1130 	}
   1131 	if (disable)
   1132 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
   1133 }
   1134 
   1135 static void
   1136 ath_stop(struct ifnet *ifp, int disable)
   1137 {
   1138 	struct ath_softc *sc = ifp->if_softc;
   1139 
   1140 	ATH_LOCK(sc);
   1141 	ath_stop_locked(ifp, disable);
   1142 	ATH_UNLOCK(sc);
   1143 }
   1144 
   1145 static void
   1146 ath_restore_diversity(struct ath_softc *sc)
   1147 {
   1148 	struct ifnet *ifp = &sc->sc_if;
   1149 	struct ath_hal *ah = sc->sc_ah;
   1150 
   1151 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1152 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1153 		if_printf(ifp, "could not restore diversity setting %d\n",
   1154 		    sc->sc_diversity);
   1155 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1156 	}
   1157 }
   1158 
   1159 /*
   1160  * Reset the hardware w/o losing operational state.  This is
   1161  * basically a more efficient way of doing ath_stop, ath_init,
   1162  * followed by state transitions to the current 802.11
   1163  * operational state.  Used to recover from various errors and
   1164  * to reset or reload hardware state.
   1165  */
   1166 int
   1167 ath_reset(struct ifnet *ifp)
   1168 {
   1169 	struct ath_softc *sc = ifp->if_softc;
   1170 	struct ieee80211com *ic = &sc->sc_ic;
   1171 	struct ath_hal *ah = sc->sc_ah;
   1172 	struct ieee80211_channel *c;
   1173 	HAL_STATUS status;
   1174 
   1175 	/*
   1176 	 * Convert to a HAL channel description with the flags
   1177 	 * constrained to reflect the current operating mode.
   1178 	 */
   1179 	c = ic->ic_curchan;
   1180 	sc->sc_curchan.channel = c->ic_freq;
   1181 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1182 
   1183 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1184 	ath_draintxq(sc);		/* stop xmit side */
   1185 	ath_stoprecv(sc);		/* stop recv side */
   1186 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
   1187 	/* NB: indicate channel change so we do a full reset */
   1188 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1189 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1190 			__func__, status);
   1191 	ath_update_txpow(sc);		/* update tx power state */
   1192 	ath_restore_diversity(sc);
   1193 	sc->sc_calinterval = 1;
   1194 	sc->sc_caltries = 0;
   1195 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1196 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1197 	/*
   1198 	 * We may be doing a reset in response to an ioctl
   1199 	 * that changes the channel so update any state that
   1200 	 * might change as a result.
   1201 	 */
   1202 	ath_chan_change(sc, c);
   1203 	if (ic->ic_state == IEEE80211_S_RUN)
   1204 		ath_beacon_config(sc);	/* restart beacons */
   1205 	ath_hal_intrset(ah, sc->sc_imask);
   1206 
   1207 	ath_start(ifp);			/* restart xmit */
   1208 	return 0;
   1209 }
   1210 
   1211 /*
   1212  * Cleanup driver resources when we run out of buffers
   1213  * while processing fragments; return the tx buffers
   1214  * allocated and drop node references.
   1215  */
   1216 static void
   1217 ath_txfrag_cleanup(struct ath_softc *sc,
   1218 	ath_bufhead *frags, struct ieee80211_node *ni)
   1219 {
   1220 	struct ath_buf *bf;
   1221 
   1222 	ATH_TXBUF_LOCK_ASSERT(sc);
   1223 
   1224 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1225 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1226 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1227 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1228 		ieee80211_node_decref(ni);
   1229 	}
   1230 }
   1231 
   1232 /*
   1233  * Setup xmit of a fragmented frame.  Allocate a buffer
   1234  * for each frag and bump the node reference count to
   1235  * reflect the held reference to be setup by ath_tx_start.
   1236  */
   1237 static int
   1238 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1239 	struct mbuf *m0, struct ieee80211_node *ni)
   1240 {
   1241 	struct mbuf *m;
   1242 	struct ath_buf *bf;
   1243 
   1244 	ATH_TXBUF_LOCK(sc);
   1245 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1246 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1247 		if (bf == NULL) {       /* out of buffers, cleanup */
   1248 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1249 				__func__);
   1250 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1251 			ath_txfrag_cleanup(sc, frags, ni);
   1252 			break;
   1253 		}
   1254 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1255 		ieee80211_node_incref(ni);
   1256 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1257 	}
   1258 	ATH_TXBUF_UNLOCK(sc);
   1259 
   1260 	return !STAILQ_EMPTY(frags);
   1261 }
   1262 
   1263 static void
   1264 ath_start(struct ifnet *ifp)
   1265 {
   1266 	struct ath_softc *sc = ifp->if_softc;
   1267 	struct ath_hal *ah = sc->sc_ah;
   1268 	struct ieee80211com *ic = &sc->sc_ic;
   1269 	struct ieee80211_node *ni;
   1270 	struct ath_buf *bf;
   1271 	struct mbuf *m, *next;
   1272 	struct ieee80211_frame *wh;
   1273 	struct ether_header *eh;
   1274 	ath_bufhead frags;
   1275 
   1276 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   1277 	    !device_is_active(sc->sc_dev))
   1278 		return;
   1279 	for (;;) {
   1280 		/*
   1281 		 * Grab a TX buffer and associated resources.
   1282 		 */
   1283 		ATH_TXBUF_LOCK(sc);
   1284 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1285 		if (bf != NULL)
   1286 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1287 		ATH_TXBUF_UNLOCK(sc);
   1288 		if (bf == NULL) {
   1289 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1290 				__func__);
   1291 			sc->sc_stats.ast_tx_qstop++;
   1292 			ifp->if_flags |= IFF_OACTIVE;
   1293 			break;
   1294 		}
   1295 		/*
   1296 		 * Poll the management queue for frames; they
   1297 		 * have priority over normal data frames.
   1298 		 */
   1299 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1300 		if (m == NULL) {
   1301 			/*
   1302 			 * No data frames go out unless we're associated.
   1303 			 */
   1304 			if (ic->ic_state != IEEE80211_S_RUN) {
   1305 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1306 				    "%s: discard data packet, state %s\n",
   1307 				    __func__,
   1308 				    ieee80211_state_name[ic->ic_state]);
   1309 				sc->sc_stats.ast_tx_discard++;
   1310 				ATH_TXBUF_LOCK(sc);
   1311 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1312 				ATH_TXBUF_UNLOCK(sc);
   1313 				break;
   1314 			}
   1315 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1316 			if (m == NULL) {
   1317 				ATH_TXBUF_LOCK(sc);
   1318 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1319 				ATH_TXBUF_UNLOCK(sc);
   1320 				break;
   1321 			}
   1322 			STAILQ_INIT(&frags);
   1323 			/*
   1324 			 * Find the node for the destination so we can do
   1325 			 * things like power save and fast frames aggregation.
   1326 			 */
   1327 			if (m->m_len < sizeof(struct ether_header) &&
   1328 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1329 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1330 				ni = NULL;
   1331 				goto bad;
   1332 			}
   1333 			eh = mtod(m, struct ether_header *);
   1334 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1335 			if (ni == NULL) {
   1336 				/* NB: ieee80211_find_txnode does stat+msg */
   1337 				m_freem(m);
   1338 				goto bad;
   1339 			}
   1340 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1341 			    (m->m_flags & M_PWR_SAV) == 0) {
   1342 				/*
   1343 				 * Station in power save mode; pass the frame
   1344 				 * to the 802.11 layer and continue.  We'll get
   1345 				 * the frame back when the time is right.
   1346 				 */
   1347 				ieee80211_pwrsave(ic, ni, m);
   1348 				goto reclaim;
   1349 			}
   1350 			/* calculate priority so we can find the tx queue */
   1351 			if (ieee80211_classify(ic, m, ni)) {
   1352 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1353 					"%s: discard, classification failure\n",
   1354 					__func__);
   1355 				m_freem(m);
   1356 				goto bad;
   1357 			}
   1358 			ifp->if_opackets++;
   1359 
   1360 			bpf_mtap(ifp, m);
   1361 			/*
   1362 			 * Encapsulate the packet in prep for transmission.
   1363 			 */
   1364 			m = ieee80211_encap(ic, m, ni);
   1365 			if (m == NULL) {
   1366 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1367 					"%s: encapsulation failure\n",
   1368 					__func__);
   1369 				sc->sc_stats.ast_tx_encap++;
   1370 				goto bad;
   1371 			}
   1372 			/*
   1373 			 * Check for fragmentation.  If this has frame
   1374 			 * has been broken up verify we have enough
   1375 			 * buffers to send all the fragments so all
   1376 			 * go out or none...
   1377 			 */
   1378 			if ((m->m_flags & M_FRAG) &&
   1379 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1380 				DPRINTF(sc, ATH_DEBUG_ANY,
   1381 				    "%s: out of txfrag buffers\n", __func__);
   1382 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1383 				ath_freetx(m);
   1384 				goto bad;
   1385 			}
   1386 		} else {
   1387 			/*
   1388 			 * Hack!  The referenced node pointer is in the
   1389 			 * rcvif field of the packet header.  This is
   1390 			 * placed there by ieee80211_mgmt_output because
   1391 			 * we need to hold the reference with the frame
   1392 			 * and there's no other way (other than packet
   1393 			 * tags which we consider too expensive to use)
   1394 			 * to pass it along.
   1395 			 */
   1396 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1397 			m->m_pkthdr.rcvif = NULL;
   1398 
   1399 			wh = mtod(m, struct ieee80211_frame *);
   1400 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1401 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1402 				/* fill time stamp */
   1403 				u_int64_t tsf;
   1404 				u_int32_t *tstamp;
   1405 
   1406 				tsf = ath_hal_gettsf64(ah);
   1407 				/* XXX: adjust 100us delay to xmit */
   1408 				tsf += 100;
   1409 				tstamp = (u_int32_t *)&wh[1];
   1410 				tstamp[0] = htole32(tsf & 0xffffffff);
   1411 				tstamp[1] = htole32(tsf >> 32);
   1412 			}
   1413 			sc->sc_stats.ast_tx_mgmt++;
   1414 		}
   1415 
   1416 	nextfrag:
   1417 		next = m->m_nextpkt;
   1418 		if (ath_tx_start(sc, ni, bf, m)) {
   1419 	bad:
   1420 			ifp->if_oerrors++;
   1421 	reclaim:
   1422 			ATH_TXBUF_LOCK(sc);
   1423 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1424 			ath_txfrag_cleanup(sc, &frags, ni);
   1425 			ATH_TXBUF_UNLOCK(sc);
   1426 			if (ni != NULL)
   1427 				ieee80211_free_node(ni);
   1428 			continue;
   1429 		}
   1430 		if (next != NULL) {
   1431 			m = next;
   1432 			bf = STAILQ_FIRST(&frags);
   1433 			KASSERT(bf != NULL, ("no buf for txfrag"));
   1434 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1435 			goto nextfrag;
   1436 		}
   1437 
   1438 		ifp->if_timer = 1;
   1439 	}
   1440 }
   1441 
   1442 static int
   1443 ath_media_change(struct ifnet *ifp)
   1444 {
   1445 #define	IS_UP(ifp) \
   1446 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1447 	int error;
   1448 
   1449 	error = ieee80211_media_change(ifp);
   1450 	if (error == ENETRESET) {
   1451 		if (IS_UP(ifp))
   1452 			ath_init(ifp->if_softc);	/* XXX lose error */
   1453 		error = 0;
   1454 	}
   1455 	return error;
   1456 #undef IS_UP
   1457 }
   1458 
   1459 #ifdef AR_DEBUG
   1460 static void
   1461 ath_keyprint(const char *tag, u_int ix,
   1462 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1463 {
   1464 	static const char *ciphers[] = {
   1465 		"WEP",
   1466 		"AES-OCB",
   1467 		"AES-CCM",
   1468 		"CKIP",
   1469 		"TKIP",
   1470 		"CLR",
   1471 	};
   1472 	int i, n;
   1473 
   1474 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1475 	for (i = 0, n = hk->kv_len; i < n; i++)
   1476 		printf("%02x", hk->kv_val[i]);
   1477 	printf(" mac %s", ether_sprintf(mac));
   1478 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1479 		printf(" mic ");
   1480 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1481 			printf("%02x", hk->kv_mic[i]);
   1482 	}
   1483 	printf("\n");
   1484 }
   1485 #endif
   1486 
   1487 /*
   1488  * Set a TKIP key into the hardware.  This handles the
   1489  * potential distribution of key state to multiple key
   1490  * cache slots for TKIP.
   1491  */
   1492 static int
   1493 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1494 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1495 {
   1496 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1497 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1498 	struct ath_hal *ah = sc->sc_ah;
   1499 
   1500 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1501 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
   1502 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1503 		if (sc->sc_splitmic) {
   1504 			/*
   1505 			 * TX key goes at first index, RX key at the rx index.
   1506 			 * The hal handles the MIC keys at index+64.
   1507 			 */
   1508 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1509 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1510 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
   1511 						zerobssid))
   1512 				return 0;
   1513 
   1514 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1515 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1516 			/* XXX delete tx key on failure? */
   1517 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
   1518 					hk, mac);
   1519 		} else {
   1520 			/*
   1521 			 * Room for both TX+RX MIC keys in one key cache
   1522 			 * slot, just set key at the first index; the HAL
   1523 			 * will handle the reset.
   1524 			 */
   1525 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1526 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1527 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1528 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1529 		}
   1530 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
   1531 		if (sc->sc_splitmic) {
   1532 			/*
   1533 			 * NB: must pass MIC key in expected location when
   1534 			 * the keycache only holds one MIC key per entry.
   1535 			 */
   1536 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
   1537 		} else
   1538 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1539 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1540 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1541 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
   1542 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1543 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1544 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1545 	}
   1546 	return 0;
   1547 #undef IEEE80211_KEY_XR
   1548 }
   1549 
   1550 /*
   1551  * Set a net80211 key into the hardware.  This handles the
   1552  * potential distribution of key state to multiple key
   1553  * cache slots for TKIP with hardware MIC support.
   1554  */
   1555 static int
   1556 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1557 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1558 	struct ieee80211_node *bss)
   1559 {
   1560 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1561 	static const u_int8_t ciphermap[] = {
   1562 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1563 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1564 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1565 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1566 		(u_int8_t) -1,		/* 4 is not allocated */
   1567 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1568 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1569 	};
   1570 	struct ath_hal *ah = sc->sc_ah;
   1571 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1572 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1573 	const u_int8_t *mac;
   1574 	HAL_KEYVAL hk;
   1575 
   1576 	memset(&hk, 0, sizeof(hk));
   1577 	/*
   1578 	 * Software crypto uses a "clear key" so non-crypto
   1579 	 * state kept in the key cache are maintained and
   1580 	 * so that rx frames have an entry to match.
   1581 	 */
   1582 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1583 		KASSERT(cip->ic_cipher < N(ciphermap),
   1584 			("invalid cipher type %u", cip->ic_cipher));
   1585 		hk.kv_type = ciphermap[cip->ic_cipher];
   1586 		hk.kv_len = k->wk_keylen;
   1587 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1588 	} else
   1589 		hk.kv_type = HAL_CIPHER_CLR;
   1590 
   1591 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1592 		/*
   1593 		 * Group keys on hardware that supports multicast frame
   1594 		 * key search use a mac that is the sender's address with
   1595 		 * the high bit set instead of the app-specified address.
   1596 		 */
   1597 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1598 		gmac[0] |= 0x80;
   1599 		mac = gmac;
   1600 	} else
   1601 		mac = mac0;
   1602 
   1603 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
   1604 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
   1605 		return ath_keyset_tkip(sc, k, &hk, mac);
   1606 	} else {
   1607 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1608 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
   1609 	}
   1610 #undef N
   1611 }
   1612 
   1613 /*
   1614  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1615  * each key, one for decrypt/encrypt and the other for the MIC.
   1616  */
   1617 static u_int16_t
   1618 key_alloc_2pair(struct ath_softc *sc,
   1619 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1620 {
   1621 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1622 	u_int i, keyix;
   1623 
   1624 	KASSERT(sc->sc_splitmic, ("key cache !split"));
   1625 	/* XXX could optimize */
   1626 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1627 		u_int8_t b = sc->sc_keymap[i];
   1628 		if (b != 0xff) {
   1629 			/*
   1630 			 * One or more slots in this byte are free.
   1631 			 */
   1632 			keyix = i*NBBY;
   1633 			while (b & 1) {
   1634 		again:
   1635 				keyix++;
   1636 				b >>= 1;
   1637 			}
   1638 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1639 			if (isset(sc->sc_keymap, keyix+32) ||
   1640 			    isset(sc->sc_keymap, keyix+64) ||
   1641 			    isset(sc->sc_keymap, keyix+32+64)) {
   1642 				/* full pair unavailable */
   1643 				/* XXX statistic */
   1644 				if (keyix == (i+1)*NBBY) {
   1645 					/* no slots were appropriate, advance */
   1646 					continue;
   1647 				}
   1648 				goto again;
   1649 			}
   1650 			setbit(sc->sc_keymap, keyix);
   1651 			setbit(sc->sc_keymap, keyix+64);
   1652 			setbit(sc->sc_keymap, keyix+32);
   1653 			setbit(sc->sc_keymap, keyix+32+64);
   1654 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1655 				"%s: key pair %u,%u %u,%u\n",
   1656 				__func__, keyix, keyix+64,
   1657 				keyix+32, keyix+32+64);
   1658 			*txkeyix = keyix;
   1659 			*rxkeyix = keyix+32;
   1660 			return keyix;
   1661 		}
   1662 	}
   1663 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1664 	return IEEE80211_KEYIX_NONE;
   1665 #undef N
   1666 }
   1667 
   1668 /*
   1669  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1670  * each key, one for decrypt/encrypt and the other for the MIC.
   1671  */
   1672 static int
   1673 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
   1674     ieee80211_keyix *rxkeyix)
   1675 {
   1676 #define N(a)	(sizeof(a)/sizeof(a[0]))
   1677 	u_int i, keyix;
   1678 
   1679 	KASSERT(!sc->sc_splitmic, ("key cache split"));
   1680 	/* XXX could optimize */
   1681 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1682 		uint8_t b = sc->sc_keymap[i];
   1683 		if (b != 0xff) {
   1684 			/*
   1685 			 * One or more slots in this byte are free.
   1686 			 */
   1687 			keyix = i*NBBY;
   1688 			while (b & 1) {
   1689 		again:
   1690 				keyix++;
   1691 				b >>= 1;
   1692 			}
   1693 			if (isset(sc->sc_keymap, keyix+64)) {
   1694 				/* full pair unavailable */
   1695 				/* XXX statistic */
   1696 				if (keyix == (i+1)*NBBY) {
   1697 					/* no slots were appropriate, advance */
   1698 					continue;
   1699 				}
   1700 				goto again;
   1701 			}
   1702 			setbit(sc->sc_keymap, keyix);
   1703 			setbit(sc->sc_keymap, keyix+64);
   1704 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1705 				"%s: key pair %u,%u\n",
   1706 				__func__, keyix, keyix+64);
   1707 			*txkeyix = *rxkeyix = keyix;
   1708 			return 1;
   1709 		}
   1710 	}
   1711 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1712 	return 0;
   1713 #undef N
   1714 }
   1715 
   1716 /*
   1717  * Allocate a single key cache slot.
   1718  */
   1719 static int
   1720 key_alloc_single(struct ath_softc *sc,
   1721 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1722 {
   1723 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1724 	u_int i, keyix;
   1725 
   1726 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1727 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1728 		u_int8_t b = sc->sc_keymap[i];
   1729 		if (b != 0xff) {
   1730 			/*
   1731 			 * One or more slots are free.
   1732 			 */
   1733 			keyix = i*NBBY;
   1734 			while (b & 1)
   1735 				keyix++, b >>= 1;
   1736 			setbit(sc->sc_keymap, keyix);
   1737 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1738 				__func__, keyix);
   1739 			*txkeyix = *rxkeyix = keyix;
   1740 			return 1;
   1741 		}
   1742 	}
   1743 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1744 	return 0;
   1745 #undef N
   1746 }
   1747 
   1748 /*
   1749  * Allocate one or more key cache slots for a uniacst key.  The
   1750  * key itself is needed only to identify the cipher.  For hardware
   1751  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1752  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1753  * that the MIC key for a TKIP key at slot i is assumed by the
   1754  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1755  * 64 entries.
   1756  */
   1757 static int
   1758 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1759 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1760 {
   1761 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1762 
   1763 	/*
   1764 	 * Group key allocation must be handled specially for
   1765 	 * parts that do not support multicast key cache search
   1766 	 * functionality.  For those parts the key id must match
   1767 	 * the h/w key index so lookups find the right key.  On
   1768 	 * parts w/ the key search facility we install the sender's
   1769 	 * mac address (with the high bit set) and let the hardware
   1770 	 * find the key w/o using the key id.  This is preferred as
   1771 	 * it permits us to support multiple users for adhoc and/or
   1772 	 * multi-station operation.
   1773 	 */
   1774 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1775 		if (!(&ic->ic_nw_keys[0] <= k &&
   1776 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1777 			/* should not happen */
   1778 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1779 				"%s: bogus group key\n", __func__);
   1780 			return 0;
   1781 		}
   1782 		/*
   1783 		 * XXX we pre-allocate the global keys so
   1784 		 * have no way to check if they've already been allocated.
   1785 		 */
   1786 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1787 		return 1;
   1788 	}
   1789 
   1790 	/*
   1791 	 * We allocate two pair for TKIP when using the h/w to do
   1792 	 * the MIC.  For everything else, including software crypto,
   1793 	 * we allocate a single entry.  Note that s/w crypto requires
   1794 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1795 	 * not support pass-through cache entries and we map all
   1796 	 * those requests to slot 0.
   1797 	 */
   1798 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1799 		return key_alloc_single(sc, keyix, rxkeyix);
   1800 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1801 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1802 		if (sc->sc_splitmic)
   1803 			return key_alloc_2pair(sc, keyix, rxkeyix);
   1804 		else
   1805 			return key_alloc_pair(sc, keyix, rxkeyix);
   1806 	} else {
   1807 		return key_alloc_single(sc, keyix, rxkeyix);
   1808 	}
   1809 }
   1810 
   1811 /*
   1812  * Delete an entry in the key cache allocated by ath_key_alloc.
   1813  */
   1814 static int
   1815 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1816 {
   1817 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1818 	struct ath_hal *ah = sc->sc_ah;
   1819 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1820 	u_int keyix = k->wk_keyix;
   1821 
   1822 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1823 
   1824 	if (!device_has_power(sc->sc_dev)) {
   1825 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
   1826 		    k->wk_keyix);
   1827 	}
   1828 
   1829 	ath_hal_keyreset(ah, keyix);
   1830 	/*
   1831 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1832 	 */
   1833 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1834 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1835 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1836 	if (keyix >= IEEE80211_WEP_NKID) {
   1837 		/*
   1838 		 * Don't touch keymap entries for global keys so
   1839 		 * they are never considered for dynamic allocation.
   1840 		 */
   1841 		clrbit(sc->sc_keymap, keyix);
   1842 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1843 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1844 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1845 			if (sc->sc_splitmic) {
   1846 				/* +32 for RX key, +32+64 for RX key MIC */
   1847 				clrbit(sc->sc_keymap, keyix+32);
   1848 				clrbit(sc->sc_keymap, keyix+32+64);
   1849 			}
   1850 		}
   1851 	}
   1852 	return 1;
   1853 }
   1854 
   1855 /*
   1856  * Set the key cache contents for the specified key.  Key cache
   1857  * slot(s) must already have been allocated by ath_key_alloc.
   1858  */
   1859 static int
   1860 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1861 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1862 {
   1863 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1864 
   1865 	if (!device_has_power(sc->sc_dev)) {
   1866 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
   1867 		    k->wk_keyix);
   1868 	}
   1869 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1870 }
   1871 
   1872 /*
   1873  * Block/unblock tx+rx processing while a key change is done.
   1874  * We assume the caller serializes key management operations
   1875  * so we only need to worry about synchronization with other
   1876  * uses that originate in the driver.
   1877  */
   1878 static void
   1879 ath_key_update_begin(struct ieee80211com *ic)
   1880 {
   1881 	struct ifnet *ifp = ic->ic_ifp;
   1882 	struct ath_softc *sc = ifp->if_softc;
   1883 
   1884 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1885 #if 0
   1886 	tasklet_disable(&sc->sc_rxtq);
   1887 #endif
   1888 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
   1889 }
   1890 
   1891 static void
   1892 ath_key_update_end(struct ieee80211com *ic)
   1893 {
   1894 	struct ifnet *ifp = ic->ic_ifp;
   1895 	struct ath_softc *sc = ifp->if_softc;
   1896 
   1897 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1898 	IF_UNLOCK(&ifp->if_snd);
   1899 #if 0
   1900 	tasklet_enable(&sc->sc_rxtq);
   1901 #endif
   1902 }
   1903 
   1904 /*
   1905  * Calculate the receive filter according to the
   1906  * operating mode and state:
   1907  *
   1908  * o always accept unicast, broadcast, and multicast traffic
   1909  * o maintain current state of phy error reception (the hal
   1910  *   may enable phy error frames for noise immunity work)
   1911  * o probe request frames are accepted only when operating in
   1912  *   hostap, adhoc, or monitor modes
   1913  * o enable promiscuous mode according to the interface state
   1914  * o accept beacons:
   1915  *   - when operating in adhoc mode so the 802.11 layer creates
   1916  *     node table entries for peers,
   1917  *   - when operating in station mode for collecting rssi data when
   1918  *     the station is otherwise quiet, or
   1919  *   - when scanning
   1920  */
   1921 static u_int32_t
   1922 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1923 {
   1924 	struct ieee80211com *ic = &sc->sc_ic;
   1925 	struct ath_hal *ah = sc->sc_ah;
   1926 	struct ifnet *ifp = &sc->sc_if;
   1927 	u_int32_t rfilt;
   1928 
   1929 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1930 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1931 	if (ic->ic_opmode != IEEE80211_M_STA)
   1932 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1933 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1934 	    (ifp->if_flags & IFF_PROMISC))
   1935 		rfilt |= HAL_RX_FILTER_PROM;
   1936 	if (ifp->if_flags & IFF_PROMISC)
   1937 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
   1938 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1939 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1940 	    state == IEEE80211_S_SCAN)
   1941 		rfilt |= HAL_RX_FILTER_BEACON;
   1942 	return rfilt;
   1943 }
   1944 
   1945 static void
   1946 ath_mode_init(struct ath_softc *sc)
   1947 {
   1948 	struct ifnet *ifp = &sc->sc_if;
   1949 	struct ieee80211com *ic = &sc->sc_ic;
   1950 	struct ath_hal *ah = sc->sc_ah;
   1951 	struct ether_multi *enm;
   1952 	struct ether_multistep estep;
   1953 	u_int32_t rfilt, mfilt[2], val;
   1954 	int i;
   1955 	uint8_t pos;
   1956 
   1957 	/* configure rx filter */
   1958 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1959 	ath_hal_setrxfilter(ah, rfilt);
   1960 
   1961 	/* configure operational mode */
   1962 	ath_hal_setopmode(ah);
   1963 
   1964 	/* Write keys to hardware; it may have been powered down. */
   1965 	ath_key_update_begin(ic);
   1966 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1967 		ath_key_set(ic,
   1968 			    &ic->ic_crypto.cs_nw_keys[i],
   1969 			    ic->ic_myaddr);
   1970 	}
   1971 	ath_key_update_end(ic);
   1972 
   1973 	/*
   1974 	 * Handle any link-level address change.  Note that we only
   1975 	 * need to force ic_myaddr; any other addresses are handled
   1976 	 * as a byproduct of the ifnet code marking the interface
   1977 	 * down then up.
   1978 	 *
   1979 	 * XXX should get from lladdr instead of arpcom but that's more work
   1980 	 */
   1981 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1982 	ath_hal_setmac(ah, ic->ic_myaddr);
   1983 
   1984 	/* calculate and install multicast filter */
   1985 	ifp->if_flags &= ~IFF_ALLMULTI;
   1986 	mfilt[0] = mfilt[1] = 0;
   1987 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1988 	while (enm != NULL) {
   1989 		void *dl;
   1990 		/* XXX Punt on ranges. */
   1991 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1992 			mfilt[0] = mfilt[1] = 0xffffffff;
   1993 			ifp->if_flags |= IFF_ALLMULTI;
   1994 			break;
   1995 		}
   1996 		dl = enm->enm_addrlo;
   1997 		val = LE_READ_4((char *)dl + 0);
   1998 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1999 		val = LE_READ_4((char *)dl + 3);
   2000 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   2001 		pos &= 0x3f;
   2002 		mfilt[pos / 32] |= (1 << (pos % 32));
   2003 
   2004 		ETHER_NEXT_MULTI(estep, enm);
   2005 	}
   2006 
   2007 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   2008 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   2009 		__func__, rfilt, mfilt[0], mfilt[1]);
   2010 }
   2011 
   2012 /*
   2013  * Set the slot time based on the current setting.
   2014  */
   2015 static void
   2016 ath_setslottime(struct ath_softc *sc)
   2017 {
   2018 	struct ieee80211com *ic = &sc->sc_ic;
   2019 	struct ath_hal *ah = sc->sc_ah;
   2020 
   2021 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2022 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2023 	else
   2024 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2025 	sc->sc_updateslot = OK;
   2026 }
   2027 
   2028 /*
   2029  * Callback from the 802.11 layer to update the
   2030  * slot time based on the current setting.
   2031  */
   2032 static void
   2033 ath_updateslot(struct ifnet *ifp)
   2034 {
   2035 	struct ath_softc *sc = ifp->if_softc;
   2036 	struct ieee80211com *ic = &sc->sc_ic;
   2037 
   2038 	/*
   2039 	 * When not coordinating the BSS, change the hardware
   2040 	 * immediately.  For other operation we defer the change
   2041 	 * until beacon updates have propagated to the stations.
   2042 	 */
   2043 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2044 		sc->sc_updateslot = UPDATE;
   2045 	else
   2046 		ath_setslottime(sc);
   2047 }
   2048 
   2049 /*
   2050  * Setup a h/w transmit queue for beacons.
   2051  */
   2052 static int
   2053 ath_beaconq_setup(struct ath_hal *ah)
   2054 {
   2055 	HAL_TXQ_INFO qi;
   2056 
   2057 	memset(&qi, 0, sizeof(qi));
   2058 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2059 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2060 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2061 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2062 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2063 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2064 }
   2065 
   2066 /*
   2067  * Setup the transmit queue parameters for the beacon queue.
   2068  */
   2069 static int
   2070 ath_beaconq_config(struct ath_softc *sc)
   2071 {
   2072 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2073 	struct ieee80211com *ic = &sc->sc_ic;
   2074 	struct ath_hal *ah = sc->sc_ah;
   2075 	HAL_TXQ_INFO qi;
   2076 
   2077 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2078 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2079 		/*
   2080 		 * Always burst out beacon and CAB traffic.
   2081 		 */
   2082 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2083 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2084 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2085 	} else {
   2086 		struct wmeParams *wmep =
   2087 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2088 		/*
   2089 		 * Adhoc mode; important thing is to use 2x cwmin.
   2090 		 */
   2091 		qi.tqi_aifs = wmep->wmep_aifsn;
   2092 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2093 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2094 	}
   2095 
   2096 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2097 		device_printf(sc->sc_dev, "unable to update parameters for "
   2098 			"beacon hardware queue!\n");
   2099 		return 0;
   2100 	} else {
   2101 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2102 		return 1;
   2103 	}
   2104 #undef ATH_EXPONENT_TO_VALUE
   2105 }
   2106 
   2107 /*
   2108  * Allocate and setup an initial beacon frame.
   2109  */
   2110 static int
   2111 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2112 {
   2113 	struct ieee80211com *ic = ni->ni_ic;
   2114 	struct ath_buf *bf;
   2115 	struct mbuf *m;
   2116 	int error;
   2117 
   2118 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2119 	if (bf == NULL) {
   2120 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2121 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2122 		return ENOMEM;			/* XXX */
   2123 	}
   2124 	/*
   2125 	 * NB: the beacon data buffer must be 32-bit aligned;
   2126 	 * we assume the mbuf routines will return us something
   2127 	 * with this alignment (perhaps should assert).
   2128 	 */
   2129 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2130 	if (m == NULL) {
   2131 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2132 			__func__);
   2133 		sc->sc_stats.ast_be_nombuf++;
   2134 		return ENOMEM;
   2135 	}
   2136 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2137 				     BUS_DMA_NOWAIT);
   2138 	if (error == 0) {
   2139 		bf->bf_m = m;
   2140 		bf->bf_node = ieee80211_ref_node(ni);
   2141 	} else {
   2142 		m_freem(m);
   2143 	}
   2144 	return error;
   2145 }
   2146 
   2147 /*
   2148  * Setup the beacon frame for transmit.
   2149  */
   2150 static void
   2151 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2152 {
   2153 #define	USE_SHPREAMBLE(_ic) \
   2154 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2155 		== IEEE80211_F_SHPREAMBLE)
   2156 	struct ieee80211_node *ni = bf->bf_node;
   2157 	struct ieee80211com *ic = ni->ni_ic;
   2158 	struct mbuf *m = bf->bf_m;
   2159 	struct ath_hal *ah = sc->sc_ah;
   2160 	struct ath_desc *ds;
   2161 	int flags, antenna;
   2162 	const HAL_RATE_TABLE *rt;
   2163 	u_int8_t rix, rate;
   2164 
   2165 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2166 		__func__, m, m->m_len);
   2167 
   2168 	/* setup descriptors */
   2169 	ds = bf->bf_desc;
   2170 
   2171 	flags = HAL_TXDESC_NOACK;
   2172 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2173 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2174 		flags |= HAL_TXDESC_VEOL;
   2175 		/*
   2176 		 * Let hardware handle antenna switching unless
   2177 		 * the user has selected a transmit antenna
   2178 		 * (sc_txantenna is not 0).
   2179 		 */
   2180 		antenna = sc->sc_txantenna;
   2181 	} else {
   2182 		ds->ds_link = 0;
   2183 		/*
   2184 		 * Switch antenna every 4 beacons, unless the user
   2185 		 * has selected a transmit antenna (sc_txantenna
   2186 		 * is not 0).
   2187 		 *
   2188 		 * XXX assumes two antenna
   2189 		 */
   2190 		if (sc->sc_txantenna == 0)
   2191 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2192 		else
   2193 			antenna = sc->sc_txantenna;
   2194 	}
   2195 
   2196 	KASSERT(bf->bf_nseg == 1,
   2197 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
   2198 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2199 	/*
   2200 	 * Calculate rate code.
   2201 	 * XXX everything at min xmit rate
   2202 	 */
   2203 	rix = sc->sc_minrateix;
   2204 	rt = sc->sc_currates;
   2205 	rate = rt->info[rix].rateCode;
   2206 	if (USE_SHPREAMBLE(ic))
   2207 		rate |= rt->info[rix].shortPreamble;
   2208 	ath_hal_setuptxdesc(ah, ds
   2209 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2210 		, sizeof(struct ieee80211_frame)/* header length */
   2211 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2212 		, ni->ni_txpower		/* txpower XXX */
   2213 		, rate, 1			/* series 0 rate/tries */
   2214 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2215 		, antenna			/* antenna mode */
   2216 		, flags				/* no ack, veol for beacons */
   2217 		, 0				/* rts/cts rate */
   2218 		, 0				/* rts/cts duration */
   2219 	);
   2220 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2221 	ath_hal_filltxdesc(ah, ds
   2222 		, roundup(m->m_len, 4)		/* buffer length */
   2223 		, AH_TRUE			/* first segment */
   2224 		, AH_TRUE			/* last segment */
   2225 		, ds				/* first descriptor */
   2226 	);
   2227 
   2228 	/* NB: The desc swap function becomes void, if descriptor swapping
   2229 	 * is not enabled
   2230 	 */
   2231 	ath_desc_swap(ds);
   2232 
   2233 #undef USE_SHPREAMBLE
   2234 }
   2235 
   2236 /*
   2237  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2238  * frame contents are done as needed and the slot time is
   2239  * also adjusted based on current state.
   2240  */
   2241 static void
   2242 ath_beacon_proc(void *arg, int pending)
   2243 {
   2244 	struct ath_softc *sc = arg;
   2245 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2246 	struct ieee80211_node *ni = bf->bf_node;
   2247 	struct ieee80211com *ic = ni->ni_ic;
   2248 	struct ath_hal *ah = sc->sc_ah;
   2249 	struct mbuf *m;
   2250 	int ncabq, error, otherant;
   2251 
   2252 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2253 		__func__, pending);
   2254 
   2255 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2256 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2257 	    bf == NULL || bf->bf_m == NULL) {
   2258 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2259 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2260 		return;
   2261 	}
   2262 	/*
   2263 	 * Check if the previous beacon has gone out.  If
   2264 	 * not don't try to post another, skip this period
   2265 	 * and wait for the next.  Missed beacons indicate
   2266 	 * a problem and should not occur.  If we miss too
   2267 	 * many consecutive beacons reset the device.
   2268 	 */
   2269 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2270 		sc->sc_bmisscount++;
   2271 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2272 			"%s: missed %u consecutive beacons\n",
   2273 			__func__, sc->sc_bmisscount);
   2274 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2275 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2276 		return;
   2277 	}
   2278 	if (sc->sc_bmisscount != 0) {
   2279 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2280 			"%s: resume beacon xmit after %u misses\n",
   2281 			__func__, sc->sc_bmisscount);
   2282 		sc->sc_bmisscount = 0;
   2283 	}
   2284 
   2285 	/*
   2286 	 * Update dynamic beacon contents.  If this returns
   2287 	 * non-zero then we need to remap the memory because
   2288 	 * the beacon frame changed size (probably because
   2289 	 * of the TIM bitmap).
   2290 	 */
   2291 	m = bf->bf_m;
   2292 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2293 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2294 		/* XXX too conservative? */
   2295 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2296 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2297 					     BUS_DMA_NOWAIT);
   2298 		if (error != 0) {
   2299 			if_printf(&sc->sc_if,
   2300 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2301 			    __func__, error);
   2302 			return;
   2303 		}
   2304 	}
   2305 
   2306 	/*
   2307 	 * Handle slot time change when a non-ERP station joins/leaves
   2308 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2309 	 * we mark updateslot, then wait one beacon before effecting
   2310 	 * the change.  This gives associated stations at least one
   2311 	 * beacon interval to note the state change.
   2312 	 */
   2313 	/* XXX locking */
   2314 	if (sc->sc_updateslot == UPDATE)
   2315 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2316 	else if (sc->sc_updateslot == COMMIT)
   2317 		ath_setslottime(sc);		/* commit change to h/w */
   2318 
   2319 	/*
   2320 	 * Check recent per-antenna transmit statistics and flip
   2321 	 * the default antenna if noticeably more frames went out
   2322 	 * on the non-default antenna.
   2323 	 * XXX assumes 2 anntenae
   2324 	 */
   2325 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2326 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2327 		ath_setdefantenna(sc, otherant);
   2328 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2329 
   2330 	/*
   2331 	 * Construct tx descriptor.
   2332 	 */
   2333 	ath_beacon_setup(sc, bf);
   2334 
   2335 	/*
   2336 	 * Stop any current dma and put the new frame on the queue.
   2337 	 * This should never fail since we check above that no frames
   2338 	 * are still pending on the queue.
   2339 	 */
   2340 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2341 		DPRINTF(sc, ATH_DEBUG_ANY,
   2342 			"%s: beacon queue %u did not stop?\n",
   2343 			__func__, sc->sc_bhalq);
   2344 	}
   2345 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2346 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2347 
   2348 	/*
   2349 	 * Enable the CAB queue before the beacon queue to
   2350 	 * insure cab frames are triggered by this beacon.
   2351 	 */
   2352 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2353 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2354 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2355 	ath_hal_txstart(ah, sc->sc_bhalq);
   2356 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2357 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2358 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2359 
   2360 	sc->sc_stats.ast_be_xmit++;
   2361 }
   2362 
   2363 /*
   2364  * Reset the hardware after detecting beacons have stopped.
   2365  */
   2366 static void
   2367 ath_bstuck_proc(void *arg, int pending)
   2368 {
   2369 	struct ath_softc *sc = arg;
   2370 	struct ifnet *ifp = &sc->sc_if;
   2371 
   2372 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2373 		sc->sc_bmisscount);
   2374 	ath_reset(ifp);
   2375 }
   2376 
   2377 /*
   2378  * Reclaim beacon resources.
   2379  */
   2380 static void
   2381 ath_beacon_free(struct ath_softc *sc)
   2382 {
   2383 	struct ath_buf *bf;
   2384 
   2385 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2386 		if (bf->bf_m != NULL) {
   2387 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2388 			m_freem(bf->bf_m);
   2389 			bf->bf_m = NULL;
   2390 		}
   2391 		if (bf->bf_node != NULL) {
   2392 			ieee80211_free_node(bf->bf_node);
   2393 			bf->bf_node = NULL;
   2394 		}
   2395 	}
   2396 }
   2397 
   2398 /*
   2399  * Configure the beacon and sleep timers.
   2400  *
   2401  * When operating as an AP this resets the TSF and sets
   2402  * up the hardware to notify us when we need to issue beacons.
   2403  *
   2404  * When operating in station mode this sets up the beacon
   2405  * timers according to the timestamp of the last received
   2406  * beacon and the current TSF, configures PCF and DTIM
   2407  * handling, programs the sleep registers so the hardware
   2408  * will wakeup in time to receive beacons, and configures
   2409  * the beacon miss handling so we'll receive a BMISS
   2410  * interrupt when we stop seeing beacons from the AP
   2411  * we've associated with.
   2412  */
   2413 static void
   2414 ath_beacon_config(struct ath_softc *sc)
   2415 {
   2416 #define	TSF_TO_TU(_h,_l) \
   2417 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2418 #define	FUDGE	2
   2419 	struct ath_hal *ah = sc->sc_ah;
   2420 	struct ieee80211com *ic = &sc->sc_ic;
   2421 	struct ieee80211_node *ni = ic->ic_bss;
   2422 	u_int32_t nexttbtt, intval, tsftu;
   2423 	u_int64_t tsf;
   2424 
   2425 	/* extract tstamp from last beacon and convert to TU */
   2426 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2427 			     LE_READ_4(ni->ni_tstamp.data));
   2428 	/* NB: the beacon interval is kept internally in TU's */
   2429 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2430 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2431 		nexttbtt = intval;
   2432 	else if (intval)		/* NB: can be 0 for monitor mode */
   2433 		nexttbtt = roundup(nexttbtt, intval);
   2434 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2435 		__func__, nexttbtt, intval, ni->ni_intval);
   2436 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2437 		HAL_BEACON_STATE bs;
   2438 		int dtimperiod, dtimcount;
   2439 		int cfpperiod, cfpcount;
   2440 
   2441 		/*
   2442 		 * Setup dtim and cfp parameters according to
   2443 		 * last beacon we received (which may be none).
   2444 		 */
   2445 		dtimperiod = ni->ni_dtim_period;
   2446 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2447 			dtimperiod = 1;
   2448 		dtimcount = ni->ni_dtim_count;
   2449 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2450 			dtimcount = 0;		/* XXX? */
   2451 		cfpperiod = 1;			/* NB: no PCF support yet */
   2452 		cfpcount = 0;
   2453 		/*
   2454 		 * Pull nexttbtt forward to reflect the current
   2455 		 * TSF and calculate dtim+cfp state for the result.
   2456 		 */
   2457 		tsf = ath_hal_gettsf64(ah);
   2458 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2459 		do {
   2460 			nexttbtt += intval;
   2461 			if (--dtimcount < 0) {
   2462 				dtimcount = dtimperiod - 1;
   2463 				if (--cfpcount < 0)
   2464 					cfpcount = cfpperiod - 1;
   2465 			}
   2466 		} while (nexttbtt < tsftu);
   2467 		memset(&bs, 0, sizeof(bs));
   2468 		bs.bs_intval = intval;
   2469 		bs.bs_nexttbtt = nexttbtt;
   2470 		bs.bs_dtimperiod = dtimperiod*intval;
   2471 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2472 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2473 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2474 		bs.bs_cfpmaxduration = 0;
   2475 #if 0
   2476 		/*
   2477 		 * The 802.11 layer records the offset to the DTIM
   2478 		 * bitmap while receiving beacons; use it here to
   2479 		 * enable h/w detection of our AID being marked in
   2480 		 * the bitmap vector (to indicate frames for us are
   2481 		 * pending at the AP).
   2482 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2483 		 * XXX enable based on h/w rev for newer chips
   2484 		 */
   2485 		bs.bs_timoffset = ni->ni_timoff;
   2486 #endif
   2487 		/*
   2488 		 * Calculate the number of consecutive beacons to miss
   2489 		 * before taking a BMISS interrupt.  The configuration
   2490 		 * is specified in ms, so we need to convert that to
   2491 		 * TU's and then calculate based on the beacon interval.
   2492 		 * Note that we clamp the result to at most 10 beacons.
   2493 		 */
   2494 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2495 		if (bs.bs_bmissthreshold > 10)
   2496 			bs.bs_bmissthreshold = 10;
   2497 		else if (bs.bs_bmissthreshold <= 0)
   2498 			bs.bs_bmissthreshold = 1;
   2499 
   2500 		/*
   2501 		 * Calculate sleep duration.  The configuration is
   2502 		 * given in ms.  We insure a multiple of the beacon
   2503 		 * period is used.  Also, if the sleep duration is
   2504 		 * greater than the DTIM period then it makes senses
   2505 		 * to make it a multiple of that.
   2506 		 *
   2507 		 * XXX fixed at 100ms
   2508 		 */
   2509 		bs.bs_sleepduration =
   2510 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2511 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2512 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2513 
   2514 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2515 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2516 			, __func__
   2517 			, tsf, tsftu
   2518 			, bs.bs_intval
   2519 			, bs.bs_nexttbtt
   2520 			, bs.bs_dtimperiod
   2521 			, bs.bs_nextdtim
   2522 			, bs.bs_bmissthreshold
   2523 			, bs.bs_sleepduration
   2524 			, bs.bs_cfpperiod
   2525 			, bs.bs_cfpmaxduration
   2526 			, bs.bs_cfpnext
   2527 			, bs.bs_timoffset
   2528 		);
   2529 		ath_hal_intrset(ah, 0);
   2530 		ath_hal_beacontimers(ah, &bs);
   2531 		sc->sc_imask |= HAL_INT_BMISS;
   2532 		ath_hal_intrset(ah, sc->sc_imask);
   2533 	} else {
   2534 		ath_hal_intrset(ah, 0);
   2535 		if (nexttbtt == intval)
   2536 			intval |= HAL_BEACON_RESET_TSF;
   2537 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2538 			/*
   2539 			 * In IBSS mode enable the beacon timers but only
   2540 			 * enable SWBA interrupts if we need to manually
   2541 			 * prepare beacon frames.  Otherwise we use a
   2542 			 * self-linked tx descriptor and let the hardware
   2543 			 * deal with things.
   2544 			 */
   2545 			intval |= HAL_BEACON_ENA;
   2546 			if (!sc->sc_hasveol)
   2547 				sc->sc_imask |= HAL_INT_SWBA;
   2548 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2549 				/*
   2550 				 * Pull nexttbtt forward to reflect
   2551 				 * the current TSF.
   2552 				 */
   2553 				tsf = ath_hal_gettsf64(ah);
   2554 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2555 				do {
   2556 					nexttbtt += intval;
   2557 				} while (nexttbtt < tsftu);
   2558 			}
   2559 			ath_beaconq_config(sc);
   2560 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2561 			/*
   2562 			 * In AP mode we enable the beacon timers and
   2563 			 * SWBA interrupts to prepare beacon frames.
   2564 			 */
   2565 			intval |= HAL_BEACON_ENA;
   2566 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2567 			ath_beaconq_config(sc);
   2568 		}
   2569 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2570 		sc->sc_bmisscount = 0;
   2571 		ath_hal_intrset(ah, sc->sc_imask);
   2572 		/*
   2573 		 * When using a self-linked beacon descriptor in
   2574 		 * ibss mode load it once here.
   2575 		 */
   2576 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2577 			ath_beacon_proc(sc, 0);
   2578 	}
   2579 	sc->sc_syncbeacon = 0;
   2580 #undef UNDEF
   2581 #undef TSF_TO_TU
   2582 }
   2583 
   2584 static int
   2585 ath_descdma_setup(struct ath_softc *sc,
   2586 	struct ath_descdma *dd, ath_bufhead *head,
   2587 	const char *name, int nbuf, int ndesc)
   2588 {
   2589 #define	DS2PHYS(_dd, _ds) \
   2590 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2591 	struct ifnet *ifp = &sc->sc_if;
   2592 	struct ath_desc *ds;
   2593 	struct ath_buf *bf;
   2594 	int i, bsize, error;
   2595 
   2596 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2597 	    __func__, name, nbuf, ndesc);
   2598 
   2599 	dd->dd_name = name;
   2600 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2601 
   2602 	/*
   2603 	 * Setup DMA descriptor area.
   2604 	 */
   2605 	dd->dd_dmat = sc->sc_dmat;
   2606 
   2607 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2608 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2609 
   2610 	if (error != 0) {
   2611 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2612 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2613 		goto fail0;
   2614 	}
   2615 
   2616 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2617 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2618 	if (error != 0) {
   2619 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2620 		    nbuf * ndesc, dd->dd_name, error);
   2621 		goto fail1;
   2622 	}
   2623 
   2624 	/* allocate descriptors */
   2625 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2626 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2627 	if (error != 0) {
   2628 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2629 			"error %u\n", dd->dd_name, error);
   2630 		goto fail2;
   2631 	}
   2632 
   2633 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2634 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2635 	if (error != 0) {
   2636 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2637 			dd->dd_name, error);
   2638 		goto fail3;
   2639 	}
   2640 
   2641 	ds = dd->dd_desc;
   2642 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2643 	DPRINTF(sc, ATH_DEBUG_RESET,
   2644 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2645 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2646 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2647 
   2648 	/* allocate rx buffers */
   2649 	bsize = sizeof(struct ath_buf) * nbuf;
   2650 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2651 	if (bf == NULL) {
   2652 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2653 			dd->dd_name, bsize);
   2654 		goto fail4;
   2655 	}
   2656 	dd->dd_bufptr = bf;
   2657 
   2658 	STAILQ_INIT(head);
   2659 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2660 		bf->bf_desc = ds;
   2661 		bf->bf_daddr = DS2PHYS(dd, ds);
   2662 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2663 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2664 		if (error != 0) {
   2665 			if_printf(ifp, "unable to create dmamap for %s "
   2666 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2667 			ath_descdma_cleanup(sc, dd, head);
   2668 			return error;
   2669 		}
   2670 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2671 	}
   2672 	return 0;
   2673 fail4:
   2674 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2675 fail3:
   2676 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2677 fail2:
   2678 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2679 fail1:
   2680 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2681 fail0:
   2682 	memset(dd, 0, sizeof(*dd));
   2683 	return error;
   2684 #undef DS2PHYS
   2685 }
   2686 
   2687 static void
   2688 ath_descdma_cleanup(struct ath_softc *sc,
   2689 	struct ath_descdma *dd, ath_bufhead *head)
   2690 {
   2691 	struct ath_buf *bf;
   2692 	struct ieee80211_node *ni;
   2693 
   2694 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2695 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2696 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2697 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2698 
   2699 	STAILQ_FOREACH(bf, head, bf_list) {
   2700 		if (bf->bf_m) {
   2701 			m_freem(bf->bf_m);
   2702 			bf->bf_m = NULL;
   2703 		}
   2704 		if (bf->bf_dmamap != NULL) {
   2705 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2706 			bf->bf_dmamap = NULL;
   2707 		}
   2708 		ni = bf->bf_node;
   2709 		bf->bf_node = NULL;
   2710 		if (ni != NULL) {
   2711 			/*
   2712 			 * Reclaim node reference.
   2713 			 */
   2714 			ieee80211_free_node(ni);
   2715 		}
   2716 	}
   2717 
   2718 	STAILQ_INIT(head);
   2719 	free(dd->dd_bufptr, M_ATHDEV);
   2720 	memset(dd, 0, sizeof(*dd));
   2721 }
   2722 
   2723 static int
   2724 ath_desc_alloc(struct ath_softc *sc)
   2725 {
   2726 	int error;
   2727 
   2728 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2729 			"rx", ath_rxbuf, 1);
   2730 	if (error != 0)
   2731 		return error;
   2732 
   2733 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2734 			"tx", ath_txbuf, ATH_TXDESC);
   2735 	if (error != 0) {
   2736 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2737 		return error;
   2738 	}
   2739 
   2740 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2741 			"beacon", 1, 1);
   2742 	if (error != 0) {
   2743 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2744 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2745 		return error;
   2746 	}
   2747 	return 0;
   2748 }
   2749 
   2750 static void
   2751 ath_desc_free(struct ath_softc *sc)
   2752 {
   2753 
   2754 	if (sc->sc_bdma.dd_desc_len != 0)
   2755 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2756 	if (sc->sc_txdma.dd_desc_len != 0)
   2757 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2758 	if (sc->sc_rxdma.dd_desc_len != 0)
   2759 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2760 }
   2761 
   2762 static struct ieee80211_node *
   2763 ath_node_alloc(struct ieee80211_node_table *nt)
   2764 {
   2765 	struct ieee80211com *ic = nt->nt_ic;
   2766 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2767 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2768 	struct ath_node *an;
   2769 
   2770 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2771 	if (an == NULL) {
   2772 		/* XXX stat+msg */
   2773 		return NULL;
   2774 	}
   2775 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2776 	ath_rate_node_init(sc, an);
   2777 
   2778 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2779 	return &an->an_node;
   2780 }
   2781 
   2782 static void
   2783 ath_node_free(struct ieee80211_node *ni)
   2784 {
   2785 	struct ieee80211com *ic = ni->ni_ic;
   2786         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2787 
   2788 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2789 
   2790 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2791 	sc->sc_node_free(ni);
   2792 }
   2793 
   2794 static u_int8_t
   2795 ath_node_getrssi(const struct ieee80211_node *ni)
   2796 {
   2797 #define	HAL_EP_RND(x, mul) \
   2798 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2799 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2800 	int32_t rssi;
   2801 
   2802 	/*
   2803 	 * When only one frame is received there will be no state in
   2804 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2805 	 */
   2806 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2807 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2808 	else
   2809 		rssi = ni->ni_rssi;
   2810 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2811 #undef HAL_EP_RND
   2812 }
   2813 
   2814 static int
   2815 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2816 {
   2817 	struct ath_hal *ah = sc->sc_ah;
   2818 	int error;
   2819 	struct mbuf *m;
   2820 	struct ath_desc *ds;
   2821 
   2822 	m = bf->bf_m;
   2823 	if (m == NULL) {
   2824 		/*
   2825 		 * NB: by assigning a page to the rx dma buffer we
   2826 		 * implicitly satisfy the Atheros requirement that
   2827 		 * this buffer be cache-line-aligned and sized to be
   2828 		 * multiple of the cache line size.  Not doing this
   2829 		 * causes weird stuff to happen (for the 5210 at least).
   2830 		 */
   2831 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2832 		if (m == NULL) {
   2833 			DPRINTF(sc, ATH_DEBUG_ANY,
   2834 				"%s: no mbuf/cluster\n", __func__);
   2835 			sc->sc_stats.ast_rx_nombuf++;
   2836 			return ENOMEM;
   2837 		}
   2838 		bf->bf_m = m;
   2839 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2840 
   2841 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2842 					     bf->bf_dmamap, m,
   2843 					     BUS_DMA_NOWAIT);
   2844 		if (error != 0) {
   2845 			DPRINTF(sc, ATH_DEBUG_ANY,
   2846 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2847 			    __func__, error);
   2848 			sc->sc_stats.ast_rx_busdma++;
   2849 			return error;
   2850 		}
   2851 		KASSERT(bf->bf_nseg == 1,
   2852 			("multi-segment packet; nseg %u", bf->bf_nseg));
   2853 	}
   2854 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2855 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2856 
   2857 	/*
   2858 	 * Setup descriptors.  For receive we always terminate
   2859 	 * the descriptor list with a self-linked entry so we'll
   2860 	 * not get overrun under high load (as can happen with a
   2861 	 * 5212 when ANI processing enables PHY error frames).
   2862 	 *
   2863 	 * To insure the last descriptor is self-linked we create
   2864 	 * each descriptor as self-linked and add it to the end.  As
   2865 	 * each additional descriptor is added the previous self-linked
   2866 	 * entry is ``fixed'' naturally.  This should be safe even
   2867 	 * if DMA is happening.  When processing RX interrupts we
   2868 	 * never remove/process the last, self-linked, entry on the
   2869 	 * descriptor list.  This insures the hardware always has
   2870 	 * someplace to write a new frame.
   2871 	 */
   2872 	ds = bf->bf_desc;
   2873 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2874 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2875 	/* ds->ds_vdata = mtod(m, void *);	for radar */
   2876 	ath_hal_setuprxdesc(ah, ds
   2877 		, m->m_len		/* buffer size */
   2878 		, 0
   2879 	);
   2880 
   2881 	if (sc->sc_rxlink != NULL)
   2882 		*sc->sc_rxlink = bf->bf_daddr;
   2883 	sc->sc_rxlink = &ds->ds_link;
   2884 	return 0;
   2885 }
   2886 
   2887 /*
   2888  * Extend 15-bit time stamp from rx descriptor to
   2889  * a full 64-bit TSF using the specified TSF.
   2890  */
   2891 static inline u_int64_t
   2892 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2893 {
   2894 	if ((tsf & 0x7fff) < rstamp)
   2895 		tsf -= 0x8000;
   2896 	return ((tsf &~ 0x7fff) | rstamp);
   2897 }
   2898 
   2899 /*
   2900  * Intercept management frames to collect beacon rssi data
   2901  * and to do ibss merges.
   2902  */
   2903 static void
   2904 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2905 	struct ieee80211_node *ni,
   2906 	int subtype, int rssi, u_int32_t rstamp)
   2907 {
   2908 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2909 
   2910 	/*
   2911 	 * Call up first so subsequent work can use information
   2912 	 * potentially stored in the node (e.g. for ibss merge).
   2913 	 */
   2914 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2915 	switch (subtype) {
   2916 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2917 		/* update rssi statistics for use by the hal */
   2918 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2919 		if (sc->sc_syncbeacon &&
   2920 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2921 			/*
   2922 			 * Resync beacon timers using the tsf of the beacon
   2923 			 * frame we just received.
   2924 			 */
   2925 			ath_beacon_config(sc);
   2926 		}
   2927 		/* fall thru... */
   2928 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2929 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2930 		    ic->ic_state == IEEE80211_S_RUN) {
   2931 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2932 				ath_hal_gettsf64(sc->sc_ah));
   2933 
   2934 			/*
   2935 			 * Handle ibss merge as needed; check the tsf on the
   2936 			 * frame before attempting the merge.  The 802.11 spec
   2937 			 * says the station should change it's bssid to match
   2938 			 * the oldest station with the same ssid, where oldest
   2939 			 * is determined by the tsf.  Note that hardware
   2940 			 * reconfiguration happens through callback to
   2941 			 * ath_newstate as the state machine will go from
   2942 			 * RUN -> RUN when this happens.
   2943 			 */
   2944 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2945 				DPRINTF(sc, ATH_DEBUG_STATE,
   2946 				    "ibss merge, rstamp %u tsf %ju "
   2947 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2948 				    (uintmax_t)ni->ni_tstamp.tsf);
   2949 				(void) ieee80211_ibss_merge(ni);
   2950 			}
   2951 		}
   2952 		break;
   2953 	}
   2954 }
   2955 
   2956 /*
   2957  * Set the default antenna.
   2958  */
   2959 static void
   2960 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2961 {
   2962 	struct ath_hal *ah = sc->sc_ah;
   2963 
   2964 	/* XXX block beacon interrupts */
   2965 	ath_hal_setdefantenna(ah, antenna);
   2966 	if (sc->sc_defant != antenna)
   2967 		sc->sc_stats.ast_ant_defswitch++;
   2968 	sc->sc_defant = antenna;
   2969 	sc->sc_rxotherant = 0;
   2970 }
   2971 
   2972 static void
   2973 ath_handle_micerror(struct ieee80211com *ic,
   2974 	struct ieee80211_frame *wh, int keyix)
   2975 {
   2976 	struct ieee80211_node *ni;
   2977 
   2978 	/* XXX recheck MIC to deal w/ chips that lie */
   2979 	/* XXX discard MIC errors on !data frames */
   2980 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
   2981 	if (ni != NULL) {
   2982 		ieee80211_notify_michael_failure(ic, wh, keyix);
   2983 		ieee80211_free_node(ni);
   2984 	}
   2985 }
   2986 
   2987 static void
   2988 ath_rx_proc(void *arg, int npending)
   2989 {
   2990 #define	PA2DESC(_sc, _pa) \
   2991 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2992 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2993 	struct ath_softc *sc = arg;
   2994 	struct ath_buf *bf;
   2995 	struct ieee80211com *ic = &sc->sc_ic;
   2996 	struct ifnet *ifp = &sc->sc_if;
   2997 	struct ath_hal *ah = sc->sc_ah;
   2998 	struct ath_desc *ds;
   2999 	struct mbuf *m;
   3000 	struct ieee80211_node *ni;
   3001 	struct ath_node *an;
   3002 	int len, ngood, type;
   3003 	u_int phyerr;
   3004 	HAL_STATUS status;
   3005 	int16_t nf;
   3006 	u_int64_t tsf;
   3007 	uint8_t rxerr_tap, rxerr_mon;
   3008 
   3009 	NET_LOCK_GIANT();		/* XXX */
   3010 
   3011 	rxerr_tap =
   3012 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
   3013 
   3014 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
   3015 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3016 	else if (ifp->if_flags & IFF_PROMISC)
   3017 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3018 
   3019 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   3020 	ngood = 0;
   3021 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   3022 	tsf = ath_hal_gettsf64(ah);
   3023 	do {
   3024 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3025 		if (bf == NULL) {		/* NB: shouldn't happen */
   3026 			if_printf(ifp, "%s: no buffer!\n", __func__);
   3027 			break;
   3028 		}
   3029 		ds = bf->bf_desc;
   3030 		if (ds->ds_link == bf->bf_daddr) {
   3031 			/* NB: never process the self-linked entry at the end */
   3032 			break;
   3033 		}
   3034 		m = bf->bf_m;
   3035 		if (m == NULL) {		/* NB: shouldn't happen */
   3036 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   3037 			break;
   3038 		}
   3039 		/* XXX sync descriptor memory */
   3040 		/*
   3041 		 * Must provide the virtual address of the current
   3042 		 * descriptor, the physical address, and the virtual
   3043 		 * address of the next descriptor in the h/w chain.
   3044 		 * This allows the HAL to look ahead to see if the
   3045 		 * hardware is done with a descriptor by checking the
   3046 		 * done bit in the following descriptor and the address
   3047 		 * of the current descriptor the DMA engine is working
   3048 		 * on.  All this is necessary because of our use of
   3049 		 * a self-linked list to avoid rx overruns.
   3050 		 */
   3051 		status = ath_hal_rxprocdesc(ah, ds,
   3052 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   3053 				&ds->ds_rxstat);
   3054 #ifdef AR_DEBUG
   3055 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3056 			ath_printrxbuf(bf, status == HAL_OK);
   3057 #endif
   3058 		if (status == HAL_EINPROGRESS)
   3059 			break;
   3060 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3061 		if (ds->ds_rxstat.rs_more) {
   3062 			/*
   3063 			 * Frame spans multiple descriptors; this
   3064 			 * cannot happen yet as we don't support
   3065 			 * jumbograms.  If not in monitor mode,
   3066 			 * discard the frame.
   3067 			 */
   3068 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3069 				sc->sc_stats.ast_rx_toobig++;
   3070 				goto rx_next;
   3071 			}
   3072 			/* fall thru for monitor mode handling... */
   3073 		} else if (ds->ds_rxstat.rs_status != 0) {
   3074 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3075 				sc->sc_stats.ast_rx_crcerr++;
   3076 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3077 				sc->sc_stats.ast_rx_fifoerr++;
   3078 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3079 				sc->sc_stats.ast_rx_phyerr++;
   3080 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3081 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3082 				goto rx_next;
   3083 			}
   3084 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3085 				/*
   3086 				 * Decrypt error.  If the error occurred
   3087 				 * because there was no hardware key, then
   3088 				 * let the frame through so the upper layers
   3089 				 * can process it.  This is necessary for 5210
   3090 				 * parts which have no way to setup a ``clear''
   3091 				 * key cache entry.
   3092 				 *
   3093 				 * XXX do key cache faulting
   3094 				 */
   3095 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3096 					goto rx_accept;
   3097 				sc->sc_stats.ast_rx_badcrypt++;
   3098 			}
   3099 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3100 				sc->sc_stats.ast_rx_badmic++;
   3101 				/*
   3102 				 * Do minimal work required to hand off
   3103 				 * the 802.11 header for notifcation.
   3104 				 */
   3105 				/* XXX frag's and qos frames */
   3106 				len = ds->ds_rxstat.rs_datalen;
   3107 				if (len >= sizeof (struct ieee80211_frame)) {
   3108 					bus_dmamap_sync(sc->sc_dmat,
   3109 					    bf->bf_dmamap,
   3110 					    0, bf->bf_dmamap->dm_mapsize,
   3111 					    BUS_DMASYNC_POSTREAD);
   3112 					ath_handle_micerror(ic,
   3113 					    mtod(m, struct ieee80211_frame *),
   3114 					    sc->sc_splitmic ?
   3115 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
   3116 				}
   3117 			}
   3118 			ifp->if_ierrors++;
   3119 			/*
   3120 			 * Reject error frames, we normally don't want
   3121 			 * to see them in monitor mode (in monitor mode
   3122 			 * allow through packets that have crypto problems).
   3123 			 */
   3124 
   3125 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
   3126 				goto rx_next;
   3127 		}
   3128 rx_accept:
   3129 		/*
   3130 		 * Sync and unmap the frame.  At this point we're
   3131 		 * committed to passing the mbuf somewhere so clear
   3132 		 * bf_m; this means a new sk_buff must be allocated
   3133 		 * when the rx descriptor is setup again to receive
   3134 		 * another frame.
   3135 		 */
   3136 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3137 		    0, bf->bf_dmamap->dm_mapsize,
   3138 		    BUS_DMASYNC_POSTREAD);
   3139 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3140 		bf->bf_m = NULL;
   3141 
   3142 		m->m_pkthdr.rcvif = ifp;
   3143 		len = ds->ds_rxstat.rs_datalen;
   3144 		m->m_pkthdr.len = m->m_len = len;
   3145 
   3146 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3147 
   3148 		if (sc->sc_drvbpf) {
   3149 			u_int8_t rix;
   3150 
   3151 			/*
   3152 			 * Discard anything shorter than an ack or cts.
   3153 			 */
   3154 			if (len < IEEE80211_ACK_LEN) {
   3155 				DPRINTF(sc, ATH_DEBUG_RECV,
   3156 					"%s: runt packet %d\n",
   3157 					__func__, len);
   3158 				sc->sc_stats.ast_rx_tooshort++;
   3159 				m_freem(m);
   3160 				goto rx_next;
   3161 			}
   3162 			rix = ds->ds_rxstat.rs_rate;
   3163 			sc->sc_rx_th.wr_tsf = htole64(
   3164 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3165 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3166 			if (ds->ds_rxstat.rs_status &
   3167 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
   3168 				sc->sc_rx_th.wr_flags |=
   3169 				    IEEE80211_RADIOTAP_F_BADFCS;
   3170 			}
   3171 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3172 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3173 			sc->sc_rx_th.wr_antnoise = nf;
   3174 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3175 
   3176 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
   3177 			    sc->sc_rx_th_len, m);
   3178 		}
   3179 
   3180 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
   3181 			m_freem(m);
   3182 			goto rx_next;
   3183 		}
   3184 		/*
   3185 		 * From this point on we assume the frame is at least
   3186 		 * as large as ieee80211_frame_min; verify that.
   3187 		 */
   3188 		if (len < IEEE80211_MIN_LEN) {
   3189 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3190 				__func__, len);
   3191 			sc->sc_stats.ast_rx_tooshort++;
   3192 			m_freem(m);
   3193 			goto rx_next;
   3194 		}
   3195 
   3196 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3197 			ieee80211_dump_pkt(mtod(m, void *), len,
   3198 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3199 				   ds->ds_rxstat.rs_rssi);
   3200 		}
   3201 
   3202 		m_adj(m, -IEEE80211_CRC_LEN);
   3203 
   3204 		/*
   3205 		 * Locate the node for sender, track state, and then
   3206 		 * pass the (referenced) node up to the 802.11 layer
   3207 		 * for its use.
   3208 		 */
   3209 		ni = ieee80211_find_rxnode_withkey(ic,
   3210 			mtod(m, const struct ieee80211_frame_min *),
   3211 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3212 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3213 		/*
   3214 		 * Track rx rssi and do any rx antenna management.
   3215 		 */
   3216 		an = ATH_NODE(ni);
   3217 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3218 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3219 		/*
   3220 		 * Send frame up for processing.
   3221 		 */
   3222 		type = ieee80211_input(ic, m, ni,
   3223 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3224 		ieee80211_free_node(ni);
   3225 		if (sc->sc_diversity) {
   3226 			/*
   3227 			 * When using fast diversity, change the default rx
   3228 			 * antenna if diversity chooses the other antenna 3
   3229 			 * times in a row.
   3230 			 */
   3231 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3232 				if (++sc->sc_rxotherant >= 3)
   3233 					ath_setdefantenna(sc,
   3234 						ds->ds_rxstat.rs_antenna);
   3235 			} else
   3236 				sc->sc_rxotherant = 0;
   3237 		}
   3238 		if (sc->sc_softled) {
   3239 			/*
   3240 			 * Blink for any data frame.  Otherwise do a
   3241 			 * heartbeat-style blink when idle.  The latter
   3242 			 * is mainly for station mode where we depend on
   3243 			 * periodic beacon frames to trigger the poll event.
   3244 			 */
   3245 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3246 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3247 				ath_led_event(sc, ATH_LED_RX);
   3248 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3249 				ath_led_event(sc, ATH_LED_POLL);
   3250 		}
   3251 		/*
   3252 		 * Arrange to update the last rx timestamp only for
   3253 		 * frames from our ap when operating in station mode.
   3254 		 * This assumes the rx key is always setup when associated.
   3255 		 */
   3256 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3257 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3258 			ngood++;
   3259 rx_next:
   3260 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3261 	} while (ath_rxbuf_init(sc, bf) == 0);
   3262 
   3263 	/* rx signal state monitoring */
   3264 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3265 #if 0
   3266 	if (ath_hal_radar_event(ah))
   3267 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3268 #endif
   3269 	if (ngood)
   3270 		sc->sc_lastrx = tsf;
   3271 
   3272 #ifdef __NetBSD__
   3273 	/* XXX Why isn't this necessary in FreeBSD? */
   3274 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3275 		ath_start(ifp);
   3276 #endif /* __NetBSD__ */
   3277 
   3278 	NET_UNLOCK_GIANT();		/* XXX */
   3279 #undef PA2DESC
   3280 }
   3281 
   3282 /*
   3283  * Setup a h/w transmit queue.
   3284  */
   3285 static struct ath_txq *
   3286 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3287 {
   3288 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3289 	struct ath_hal *ah = sc->sc_ah;
   3290 	HAL_TXQ_INFO qi;
   3291 	int qnum;
   3292 
   3293 	memset(&qi, 0, sizeof(qi));
   3294 	qi.tqi_subtype = subtype;
   3295 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3296 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3297 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3298 	/*
   3299 	 * Enable interrupts only for EOL and DESC conditions.
   3300 	 * We mark tx descriptors to receive a DESC interrupt
   3301 	 * when a tx queue gets deep; otherwise waiting for the
   3302 	 * EOL to reap descriptors.  Note that this is done to
   3303 	 * reduce interrupt load and this only defers reaping
   3304 	 * descriptors, never transmitting frames.  Aside from
   3305 	 * reducing interrupts this also permits more concurrency.
   3306 	 * The only potential downside is if the tx queue backs
   3307 	 * up in which case the top half of the kernel may backup
   3308 	 * due to a lack of tx descriptors.
   3309 	 */
   3310 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3311 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3312 	if (qnum == -1) {
   3313 		/*
   3314 		 * NB: don't print a message, this happens
   3315 		 * normally on parts with too few tx queues
   3316 		 */
   3317 		return NULL;
   3318 	}
   3319 	if (qnum >= N(sc->sc_txq)) {
   3320 		device_printf(sc->sc_dev,
   3321 			"hal qnum %u out of range, max %zu!\n",
   3322 			qnum, N(sc->sc_txq));
   3323 		ath_hal_releasetxqueue(ah, qnum);
   3324 		return NULL;
   3325 	}
   3326 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3327 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3328 
   3329 		txq->axq_qnum = qnum;
   3330 		txq->axq_depth = 0;
   3331 		txq->axq_intrcnt = 0;
   3332 		txq->axq_link = NULL;
   3333 		STAILQ_INIT(&txq->axq_q);
   3334 		ATH_TXQ_LOCK_INIT(sc, txq);
   3335 		sc->sc_txqsetup |= 1<<qnum;
   3336 	}
   3337 	return &sc->sc_txq[qnum];
   3338 #undef N
   3339 }
   3340 
   3341 /*
   3342  * Setup a hardware data transmit queue for the specified
   3343  * access control.  The hal may not support all requested
   3344  * queues in which case it will return a reference to a
   3345  * previously setup queue.  We record the mapping from ac's
   3346  * to h/w queues for use by ath_tx_start and also track
   3347  * the set of h/w queues being used to optimize work in the
   3348  * transmit interrupt handler and related routines.
   3349  */
   3350 static int
   3351 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3352 {
   3353 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3354 	struct ath_txq *txq;
   3355 
   3356 	if (ac >= N(sc->sc_ac2q)) {
   3357 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3358 			ac, N(sc->sc_ac2q));
   3359 		return 0;
   3360 	}
   3361 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3362 	if (txq != NULL) {
   3363 		sc->sc_ac2q[ac] = txq;
   3364 		return 1;
   3365 	} else
   3366 		return 0;
   3367 #undef N
   3368 }
   3369 
   3370 /*
   3371  * Update WME parameters for a transmit queue.
   3372  */
   3373 static int
   3374 ath_txq_update(struct ath_softc *sc, int ac)
   3375 {
   3376 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3377 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3378 	struct ieee80211com *ic = &sc->sc_ic;
   3379 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3380 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3381 	struct ath_hal *ah = sc->sc_ah;
   3382 	HAL_TXQ_INFO qi;
   3383 
   3384 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3385 	qi.tqi_aifs = wmep->wmep_aifsn;
   3386 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3387 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3388 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3389 
   3390 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3391 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3392 			"parameters for %s traffic!\n",
   3393 			ieee80211_wme_acnames[ac]);
   3394 		return 0;
   3395 	} else {
   3396 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3397 		return 1;
   3398 	}
   3399 #undef ATH_TXOP_TO_US
   3400 #undef ATH_EXPONENT_TO_VALUE
   3401 }
   3402 
   3403 /*
   3404  * Callback from the 802.11 layer to update WME parameters.
   3405  */
   3406 static int
   3407 ath_wme_update(struct ieee80211com *ic)
   3408 {
   3409 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3410 
   3411 	return !ath_txq_update(sc, WME_AC_BE) ||
   3412 	    !ath_txq_update(sc, WME_AC_BK) ||
   3413 	    !ath_txq_update(sc, WME_AC_VI) ||
   3414 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3415 }
   3416 
   3417 /*
   3418  * Reclaim resources for a setup queue.
   3419  */
   3420 static void
   3421 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3422 {
   3423 
   3424 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3425 	ATH_TXQ_LOCK_DESTROY(txq);
   3426 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3427 }
   3428 
   3429 /*
   3430  * Reclaim all tx queue resources.
   3431  */
   3432 static void
   3433 ath_tx_cleanup(struct ath_softc *sc)
   3434 {
   3435 	int i;
   3436 
   3437 	ATH_TXBUF_LOCK_DESTROY(sc);
   3438 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3439 		if (ATH_TXQ_SETUP(sc, i))
   3440 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3441 }
   3442 
   3443 /*
   3444  * Defragment an mbuf chain, returning at most maxfrags separate
   3445  * mbufs+clusters.  If this is not possible NULL is returned and
   3446  * the original mbuf chain is left in it's present (potentially
   3447  * modified) state.  We use two techniques: collapsing consecutive
   3448  * mbufs and replacing consecutive mbufs by a cluster.
   3449  */
   3450 static struct mbuf *
   3451 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3452 {
   3453 	struct mbuf *m, *n, *n2, **prev;
   3454 	u_int curfrags;
   3455 
   3456 	/*
   3457 	 * Calculate the current number of frags.
   3458 	 */
   3459 	curfrags = 0;
   3460 	for (m = m0; m != NULL; m = m->m_next)
   3461 		curfrags++;
   3462 	/*
   3463 	 * First, try to collapse mbufs.  Note that we always collapse
   3464 	 * towards the front so we don't need to deal with moving the
   3465 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3466 	 * less data than the following.
   3467 	 */
   3468 	m = m0;
   3469 again:
   3470 	for (;;) {
   3471 		n = m->m_next;
   3472 		if (n == NULL)
   3473 			break;
   3474 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3475 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3476 				n->m_len);
   3477 			m->m_len += n->m_len;
   3478 			m->m_next = n->m_next;
   3479 			m_free(n);
   3480 			if (--curfrags <= maxfrags)
   3481 				return m0;
   3482 		} else
   3483 			m = n;
   3484 	}
   3485 	KASSERT(maxfrags > 1,
   3486 		("maxfrags %u, but normal collapse failed", maxfrags));
   3487 	/*
   3488 	 * Collapse consecutive mbufs to a cluster.
   3489 	 */
   3490 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3491 	while ((n = *prev) != NULL) {
   3492 		if ((n2 = n->m_next) != NULL &&
   3493 		    n->m_len + n2->m_len < MCLBYTES) {
   3494 			m = m_getcl(how, MT_DATA, 0);
   3495 			if (m == NULL)
   3496 				goto bad;
   3497 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3498 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3499 				n2->m_len);
   3500 			m->m_len = n->m_len + n2->m_len;
   3501 			m->m_next = n2->m_next;
   3502 			*prev = m;
   3503 			m_free(n);
   3504 			m_free(n2);
   3505 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3506 				return m0;
   3507 			/*
   3508 			 * Still not there, try the normal collapse
   3509 			 * again before we allocate another cluster.
   3510 			 */
   3511 			goto again;
   3512 		}
   3513 		prev = &n->m_next;
   3514 	}
   3515 	/*
   3516 	 * No place where we can collapse to a cluster; punt.
   3517 	 * This can occur if, for example, you request 2 frags
   3518 	 * but the packet requires that both be clusters (we
   3519 	 * never reallocate the first mbuf to avoid moving the
   3520 	 * packet header).
   3521 	 */
   3522 bad:
   3523 	return NULL;
   3524 }
   3525 
   3526 /*
   3527  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3528  */
   3529 static int
   3530 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3531 {
   3532 	int i;
   3533 
   3534 	for (i = 0; i < rt->rateCount; i++)
   3535 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3536 			return i;
   3537 	return 0;		/* NB: lowest rate */
   3538 }
   3539 
   3540 static void
   3541 ath_freetx(struct mbuf *m)
   3542 {
   3543 	struct mbuf *next;
   3544 
   3545 	do {
   3546 		next = m->m_nextpkt;
   3547 		m->m_nextpkt = NULL;
   3548 		m_freem(m);
   3549 	} while ((m = next) != NULL);
   3550 }
   3551 
   3552 static int
   3553 deduct_pad_bytes(int len, int hdrlen)
   3554 {
   3555 	/* XXX I am suspicious that this code, which I extracted
   3556 	 * XXX from ath_tx_start() for reuse, does the right thing.
   3557 	 */
   3558 	return len - (hdrlen & 3);
   3559 }
   3560 
   3561 static int
   3562 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3563     struct mbuf *m0)
   3564 {
   3565 	struct ieee80211com *ic = &sc->sc_ic;
   3566 	struct ath_hal *ah = sc->sc_ah;
   3567 	struct ifnet *ifp = &sc->sc_if;
   3568 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3569 	int i, error, iswep, ismcast, isfrag, ismrr;
   3570 	int keyix, hdrlen, pktlen, try0;
   3571 	u_int8_t rix, txrate, ctsrate;
   3572 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3573 	struct ath_desc *ds, *ds0;
   3574 	struct ath_txq *txq;
   3575 	struct ieee80211_frame *wh;
   3576 	u_int subtype, flags, ctsduration;
   3577 	HAL_PKT_TYPE atype;
   3578 	const HAL_RATE_TABLE *rt;
   3579 	HAL_BOOL shortPreamble;
   3580 	struct ath_node *an;
   3581 	struct mbuf *m;
   3582 	u_int pri;
   3583 
   3584 	wh = mtod(m0, struct ieee80211_frame *);
   3585 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3586 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3587 	isfrag = m0->m_flags & M_FRAG;
   3588 	hdrlen = ieee80211_anyhdrsize(wh);
   3589 	/*
   3590 	 * Packet length must not include any
   3591 	 * pad bytes; deduct them here.
   3592 	 */
   3593 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
   3594 
   3595 	if (iswep) {
   3596 		const struct ieee80211_cipher *cip;
   3597 		struct ieee80211_key *k;
   3598 
   3599 		/*
   3600 		 * Construct the 802.11 header+trailer for an encrypted
   3601 		 * frame. The only reason this can fail is because of an
   3602 		 * unknown or unsupported cipher/key type.
   3603 		 */
   3604 		k = ieee80211_crypto_encap(ic, ni, m0);
   3605 		if (k == NULL) {
   3606 			/*
   3607 			 * This can happen when the key is yanked after the
   3608 			 * frame was queued.  Just discard the frame; the
   3609 			 * 802.11 layer counts failures and provides
   3610 			 * debugging/diagnostics.
   3611 			 */
   3612 			ath_freetx(m0);
   3613 			return EIO;
   3614 		}
   3615 		/*
   3616 		 * Adjust the packet + header lengths for the crypto
   3617 		 * additions and calculate the h/w key index.  When
   3618 		 * a s/w mic is done the frame will have had any mic
   3619 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3620 		 * account for it. Otherwise we need to add it to the
   3621 		 * packet length.
   3622 		 */
   3623 		cip = k->wk_cipher;
   3624 		hdrlen += cip->ic_header;
   3625 		pktlen += cip->ic_header + cip->ic_trailer;
   3626 		/* NB: frags always have any TKIP MIC done in s/w */
   3627 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3628 			pktlen += cip->ic_miclen;
   3629 		keyix = k->wk_keyix;
   3630 
   3631 		/* packet header may have moved, reset our local pointer */
   3632 		wh = mtod(m0, struct ieee80211_frame *);
   3633 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3634 		/*
   3635 		 * Use station key cache slot, if assigned.
   3636 		 */
   3637 		keyix = ni->ni_ucastkey.wk_keyix;
   3638 		if (keyix == IEEE80211_KEYIX_NONE)
   3639 			keyix = HAL_TXKEYIX_INVALID;
   3640 	} else
   3641 		keyix = HAL_TXKEYIX_INVALID;
   3642 
   3643 	pktlen += IEEE80211_CRC_LEN;
   3644 
   3645 	/*
   3646 	 * Load the DMA map so any coalescing is done.  This
   3647 	 * also calculates the number of descriptors we need.
   3648 	 */
   3649 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3650 				     BUS_DMA_NOWAIT);
   3651 	if (error == EFBIG) {
   3652 		/* XXX packet requires too many descriptors */
   3653 		bf->bf_nseg = ATH_TXDESC+1;
   3654 	} else if (error != 0) {
   3655 		sc->sc_stats.ast_tx_busdma++;
   3656 		ath_freetx(m0);
   3657 		return error;
   3658 	}
   3659 	/*
   3660 	 * Discard null packets and check for packets that
   3661 	 * require too many TX descriptors.  We try to convert
   3662 	 * the latter to a cluster.
   3663 	 */
   3664 	if (error == EFBIG) {		/* too many desc's, linearize */
   3665 		sc->sc_stats.ast_tx_linear++;
   3666 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3667 		if (m == NULL) {
   3668 			ath_freetx(m0);
   3669 			sc->sc_stats.ast_tx_nombuf++;
   3670 			return ENOMEM;
   3671 		}
   3672 		m0 = m;
   3673 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3674 					     BUS_DMA_NOWAIT);
   3675 		if (error != 0) {
   3676 			sc->sc_stats.ast_tx_busdma++;
   3677 			ath_freetx(m0);
   3678 			return error;
   3679 		}
   3680 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
   3681 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
   3682 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3683 		sc->sc_stats.ast_tx_nodata++;
   3684 		ath_freetx(m0);
   3685 		return EIO;
   3686 	}
   3687 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3688 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3689             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3690 	bf->bf_m = m0;
   3691 	bf->bf_node = ni;			/* NB: held reference */
   3692 
   3693 	/* setup descriptors */
   3694 	ds = bf->bf_desc;
   3695 	rt = sc->sc_currates;
   3696 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   3697 
   3698 	/*
   3699 	 * NB: the 802.11 layer marks whether or not we should
   3700 	 * use short preamble based on the current mode and
   3701 	 * negotiated parameters.
   3702 	 */
   3703 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3704 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3705 		shortPreamble = AH_TRUE;
   3706 		sc->sc_stats.ast_tx_shortpre++;
   3707 	} else {
   3708 		shortPreamble = AH_FALSE;
   3709 	}
   3710 
   3711 	an = ATH_NODE(ni);
   3712 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3713 	ismrr = 0;				/* default no multi-rate retry*/
   3714 	/*
   3715 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3716 	 * setup for rate calculations, and select h/w transmit queue.
   3717 	 */
   3718 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3719 	case IEEE80211_FC0_TYPE_MGT:
   3720 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3721 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3722 			atype = HAL_PKT_TYPE_BEACON;
   3723 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3724 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3725 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3726 			atype = HAL_PKT_TYPE_ATIM;
   3727 		else
   3728 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3729 		rix = sc->sc_minrateix;
   3730 		txrate = rt->info[rix].rateCode;
   3731 		if (shortPreamble)
   3732 			txrate |= rt->info[rix].shortPreamble;
   3733 		try0 = ATH_TXMGTTRY;
   3734 		/* NB: force all management frames to highest queue */
   3735 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3736 			/* NB: force all management frames to highest queue */
   3737 			pri = WME_AC_VO;
   3738 		} else
   3739 			pri = WME_AC_BE;
   3740 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3741 		break;
   3742 	case IEEE80211_FC0_TYPE_CTL:
   3743 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3744 		rix = sc->sc_minrateix;
   3745 		txrate = rt->info[rix].rateCode;
   3746 		if (shortPreamble)
   3747 			txrate |= rt->info[rix].shortPreamble;
   3748 		try0 = ATH_TXMGTTRY;
   3749 		/* NB: force all ctl frames to highest queue */
   3750 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3751 			/* NB: force all ctl frames to highest queue */
   3752 			pri = WME_AC_VO;
   3753 		} else
   3754 			pri = WME_AC_BE;
   3755 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3756 		break;
   3757 	case IEEE80211_FC0_TYPE_DATA:
   3758 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3759 		/*
   3760 		 * Data frames: multicast frames go out at a fixed rate,
   3761 		 * otherwise consult the rate control module for the
   3762 		 * rate to use.
   3763 		 */
   3764 		if (ismcast) {
   3765 			/*
   3766 			 * Check mcast rate setting in case it's changed.
   3767 			 * XXX move out of fastpath
   3768 			 */
   3769 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3770 				sc->sc_mcastrix =
   3771 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3772 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3773 			}
   3774 			rix = sc->sc_mcastrix;
   3775 			txrate = rt->info[rix].rateCode;
   3776 			try0 = 1;
   3777 		} else {
   3778 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3779 				&rix, &try0, &txrate);
   3780 			sc->sc_txrate = txrate;		/* for LED blinking */
   3781 			if (try0 != ATH_TXMAXTRY)
   3782 				ismrr = 1;
   3783 		}
   3784 		pri = M_WME_GETAC(m0);
   3785 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3786 			flags |= HAL_TXDESC_NOACK;
   3787 		break;
   3788 	default:
   3789 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3790 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3791 		/* XXX statistic */
   3792 		ath_freetx(m0);
   3793 		return EIO;
   3794 	}
   3795 	txq = sc->sc_ac2q[pri];
   3796 
   3797 	/*
   3798 	 * When servicing one or more stations in power-save mode
   3799 	 * multicast frames must be buffered until after the beacon.
   3800 	 * We use the CAB queue for that.
   3801 	 */
   3802 	if (ismcast && ic->ic_ps_sta) {
   3803 		txq = sc->sc_cabq;
   3804 		/* XXX? more bit in 802.11 frame header */
   3805 	}
   3806 
   3807 	/*
   3808 	 * Calculate miscellaneous flags.
   3809 	 */
   3810 	if (ismcast) {
   3811 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3812 	} else if (pktlen > ic->ic_rtsthreshold) {
   3813 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3814 		cix = rt->info[rix].controlRate;
   3815 		sc->sc_stats.ast_tx_rts++;
   3816 	}
   3817 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3818 		sc->sc_stats.ast_tx_noack++;
   3819 
   3820 	/*
   3821 	 * If 802.11g protection is enabled, determine whether
   3822 	 * to use RTS/CTS or just CTS.  Note that this is only
   3823 	 * done for OFDM unicast frames.
   3824 	 */
   3825 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3826 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3827 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3828 		/* XXX fragments must use CCK rates w/ protection */
   3829 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3830 			flags |= HAL_TXDESC_RTSENA;
   3831 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3832 			flags |= HAL_TXDESC_CTSENA;
   3833 		if (isfrag) {
   3834 			/*
   3835 			 * For frags it would be desirable to use the
   3836 			 * highest CCK rate for RTS/CTS.  But stations
   3837 			 * farther away may detect it at a lower CCK rate
   3838 			 * so use the configured protection rate instead
   3839 			 * (for now).
   3840 			 */
   3841 			cix = rt->info[sc->sc_protrix].controlRate;
   3842 		} else
   3843 			cix = rt->info[sc->sc_protrix].controlRate;
   3844 		sc->sc_stats.ast_tx_protect++;
   3845 	}
   3846 
   3847 	/*
   3848 	 * Calculate duration.  This logically belongs in the 802.11
   3849 	 * layer but it lacks sufficient information to calculate it.
   3850 	 */
   3851 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3852 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3853 		u_int16_t dur;
   3854 		/*
   3855 		 * XXX not right with fragmentation.
   3856 		 */
   3857 		if (shortPreamble)
   3858 			dur = rt->info[rix].spAckDuration;
   3859 		else
   3860 			dur = rt->info[rix].lpAckDuration;
   3861 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3862 			dur += dur;             /* additional SIFS+ACK */
   3863 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
   3864 			/*
   3865 			 * Include the size of next fragment so NAV is
   3866 			 * updated properly.  The last fragment uses only
   3867 			 * the ACK duration
   3868 			 */
   3869 			dur += ath_hal_computetxtime(ah, rt,
   3870 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
   3871 			        hdrlen) -
   3872 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
   3873 			    rix, shortPreamble);
   3874 		}
   3875 		if (isfrag) {
   3876 			/*
   3877 			 * Force hardware to use computed duration for next
   3878 			 * fragment by disabling multi-rate retry which updates
   3879 			 * duration based on the multi-rate duration table.
   3880 			 */
   3881 			try0 = ATH_TXMAXTRY;
   3882 		}
   3883 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3884 	}
   3885 
   3886 	/*
   3887 	 * Calculate RTS/CTS rate and duration if needed.
   3888 	 */
   3889 	ctsduration = 0;
   3890 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3891 		/*
   3892 		 * CTS transmit rate is derived from the transmit rate
   3893 		 * by looking in the h/w rate table.  We must also factor
   3894 		 * in whether or not a short preamble is to be used.
   3895 		 */
   3896 		/* NB: cix is set above where RTS/CTS is enabled */
   3897 		KASSERT(cix != 0xff, ("cix not setup"));
   3898 		ctsrate = rt->info[cix].rateCode;
   3899 		/*
   3900 		 * Compute the transmit duration based on the frame
   3901 		 * size and the size of an ACK frame.  We call into the
   3902 		 * HAL to do the computation since it depends on the
   3903 		 * characteristics of the actual PHY being used.
   3904 		 *
   3905 		 * NB: CTS is assumed the same size as an ACK so we can
   3906 		 *     use the precalculated ACK durations.
   3907 		 */
   3908 		if (shortPreamble) {
   3909 			ctsrate |= rt->info[cix].shortPreamble;
   3910 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3911 				ctsduration += rt->info[cix].spAckDuration;
   3912 			ctsduration += ath_hal_computetxtime(ah,
   3913 				rt, pktlen, rix, AH_TRUE);
   3914 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3915 				ctsduration += rt->info[rix].spAckDuration;
   3916 		} else {
   3917 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3918 				ctsduration += rt->info[cix].lpAckDuration;
   3919 			ctsduration += ath_hal_computetxtime(ah,
   3920 				rt, pktlen, rix, AH_FALSE);
   3921 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3922 				ctsduration += rt->info[rix].lpAckDuration;
   3923 		}
   3924 		/*
   3925 		 * Must disable multi-rate retry when using RTS/CTS.
   3926 		 */
   3927 		ismrr = 0;
   3928 		try0 = ATH_TXMGTTRY;		/* XXX */
   3929 	} else
   3930 		ctsrate = 0;
   3931 
   3932 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3933 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3934 			sc->sc_hwmap[txrate].ieeerate, -1);
   3935 	bpf_mtap3(ic->ic_rawbpf, m0);
   3936 	if (sc->sc_drvbpf) {
   3937 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3938 
   3939 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3940 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3941 		if (iswep)
   3942 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3943 		if (isfrag)
   3944 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3945 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3946 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3947 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3948 
   3949 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3950 	}
   3951 
   3952 	/*
   3953 	 * Determine if a tx interrupt should be generated for
   3954 	 * this descriptor.  We take a tx interrupt to reap
   3955 	 * descriptors when the h/w hits an EOL condition or
   3956 	 * when the descriptor is specifically marked to generate
   3957 	 * an interrupt.  We periodically mark descriptors in this
   3958 	 * way to insure timely replenishing of the supply needed
   3959 	 * for sending frames.  Defering interrupts reduces system
   3960 	 * load and potentially allows more concurrent work to be
   3961 	 * done but if done to aggressively can cause senders to
   3962 	 * backup.
   3963 	 *
   3964 	 * NB: use >= to deal with sc_txintrperiod changing
   3965 	 *     dynamically through sysctl.
   3966 	 */
   3967 	if (flags & HAL_TXDESC_INTREQ) {
   3968 		txq->axq_intrcnt = 0;
   3969 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3970 		flags |= HAL_TXDESC_INTREQ;
   3971 		txq->axq_intrcnt = 0;
   3972 	}
   3973 
   3974 	/*
   3975 	 * Formulate first tx descriptor with tx controls.
   3976 	 */
   3977 	/* XXX check return value? */
   3978 	ath_hal_setuptxdesc(ah, ds
   3979 		, pktlen		/* packet length */
   3980 		, hdrlen		/* header length */
   3981 		, atype			/* Atheros packet type */
   3982 		, ni->ni_txpower	/* txpower */
   3983 		, txrate, try0		/* series 0 rate/tries */
   3984 		, keyix			/* key cache index */
   3985 		, sc->sc_txantenna	/* antenna mode */
   3986 		, flags			/* flags */
   3987 		, ctsrate		/* rts/cts rate */
   3988 		, ctsduration		/* rts/cts duration */
   3989 	);
   3990 	bf->bf_flags = flags;
   3991 	/*
   3992 	 * Setup the multi-rate retry state only when we're
   3993 	 * going to use it.  This assumes ath_hal_setuptxdesc
   3994 	 * initializes the descriptors (so we don't have to)
   3995 	 * when the hardware supports multi-rate retry and
   3996 	 * we don't use it.
   3997 	 */
   3998 	if (ismrr)
   3999 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   4000 
   4001 	/*
   4002 	 * Fillin the remainder of the descriptor info.
   4003 	 */
   4004 	ds0 = ds;
   4005 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   4006 		ds->ds_data = bf->bf_segs[i].ds_addr;
   4007 		if (i == bf->bf_nseg - 1)
   4008 			ds->ds_link = 0;
   4009 		else
   4010 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   4011 		ath_hal_filltxdesc(ah, ds
   4012 			, bf->bf_segs[i].ds_len	/* segment length */
   4013 			, i == 0		/* first segment */
   4014 			, i == bf->bf_nseg - 1	/* last segment */
   4015 			, ds0			/* first descriptor */
   4016 		);
   4017 
   4018 		/* NB: The desc swap function becomes void,
   4019 		 * if descriptor swapping is not enabled
   4020 		 */
   4021 		ath_desc_swap(ds);
   4022 
   4023 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4024 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   4025 			__func__, i, ds->ds_link, ds->ds_data,
   4026 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   4027 	}
   4028 	/*
   4029 	 * Insert the frame on the outbound list and
   4030 	 * pass it on to the hardware.
   4031 	 */
   4032 	ATH_TXQ_LOCK(txq);
   4033 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   4034 	if (txq->axq_link == NULL) {
   4035 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   4036 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4037 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   4038 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   4039 		    txq->axq_depth);
   4040 	} else {
   4041 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   4042 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4043 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   4044 		    __func__, txq->axq_qnum, txq->axq_link,
   4045 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   4046 	}
   4047 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   4048 	/*
   4049 	 * The CAB queue is started from the SWBA handler since
   4050 	 * frames only go out on DTIM and to avoid possible races.
   4051 	 */
   4052 	if (txq != sc->sc_cabq)
   4053 		ath_hal_txstart(ah, txq->axq_qnum);
   4054 	ATH_TXQ_UNLOCK(txq);
   4055 
   4056 	return 0;
   4057 }
   4058 
   4059 /*
   4060  * Process completed xmit descriptors from the specified queue.
   4061  */
   4062 static int
   4063 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4064 {
   4065 	struct ath_hal *ah = sc->sc_ah;
   4066 	struct ieee80211com *ic = &sc->sc_ic;
   4067 	struct ath_buf *bf;
   4068 	struct ath_desc *ds, *ds0;
   4069 	struct ieee80211_node *ni;
   4070 	struct ath_node *an;
   4071 	int sr, lr, pri, nacked;
   4072 	HAL_STATUS status;
   4073 
   4074 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4075 		__func__, txq->axq_qnum,
   4076 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4077 		txq->axq_link);
   4078 	nacked = 0;
   4079 	for (;;) {
   4080 		ATH_TXQ_LOCK(txq);
   4081 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4082 		bf = STAILQ_FIRST(&txq->axq_q);
   4083 		if (bf == NULL) {
   4084 			txq->axq_link = NULL;
   4085 			ATH_TXQ_UNLOCK(txq);
   4086 			break;
   4087 		}
   4088 		ds0 = &bf->bf_desc[0];
   4089 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4090 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
   4091 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4092 			ath_printtxbuf(bf, status == HAL_OK);
   4093 		if (status == HAL_EINPROGRESS) {
   4094 			ATH_TXQ_UNLOCK(txq);
   4095 			break;
   4096 		}
   4097 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4098 		ATH_TXQ_UNLOCK(txq);
   4099 
   4100 		ni = bf->bf_node;
   4101 		if (ni != NULL) {
   4102 			an = ATH_NODE(ni);
   4103 			if (ds->ds_txstat.ts_status == 0) {
   4104 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4105 				sc->sc_stats.ast_ant_tx[txant]++;
   4106 				sc->sc_ant_tx[txant]++;
   4107 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4108 					sc->sc_stats.ast_tx_altrate++;
   4109 				sc->sc_stats.ast_tx_rssi =
   4110 					ds->ds_txstat.ts_rssi;
   4111 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4112 					ds->ds_txstat.ts_rssi);
   4113 				pri = M_WME_GETAC(bf->bf_m);
   4114 				if (pri >= WME_AC_VO)
   4115 					ic->ic_wme.wme_hipri_traffic++;
   4116 				ni->ni_inact = ni->ni_inact_reload;
   4117 			} else {
   4118 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4119 					sc->sc_stats.ast_tx_xretries++;
   4120 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4121 					sc->sc_stats.ast_tx_fifoerr++;
   4122 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4123 					sc->sc_stats.ast_tx_filtered++;
   4124 			}
   4125 			sr = ds->ds_txstat.ts_shortretry;
   4126 			lr = ds->ds_txstat.ts_longretry;
   4127 			sc->sc_stats.ast_tx_shortretry += sr;
   4128 			sc->sc_stats.ast_tx_longretry += lr;
   4129 			/*
   4130 			 * Hand the descriptor to the rate control algorithm.
   4131 			 */
   4132 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4133 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4134 				/*
   4135 				 * If frame was ack'd update the last rx time
   4136 				 * used to workaround phantom bmiss interrupts.
   4137 				 */
   4138 				if (ds->ds_txstat.ts_status == 0)
   4139 					nacked++;
   4140 				ath_rate_tx_complete(sc, an, ds, ds0);
   4141 			}
   4142 			/*
   4143 			 * Reclaim reference to node.
   4144 			 *
   4145 			 * NB: the node may be reclaimed here if, for example
   4146 			 *     this is a DEAUTH message that was sent and the
   4147 			 *     node was timed out due to inactivity.
   4148 			 */
   4149 			ieee80211_free_node(ni);
   4150 		}
   4151 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4152 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4153 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4154 		m_freem(bf->bf_m);
   4155 		bf->bf_m = NULL;
   4156 		bf->bf_node = NULL;
   4157 
   4158 		ATH_TXBUF_LOCK(sc);
   4159 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4160 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4161 		ATH_TXBUF_UNLOCK(sc);
   4162 	}
   4163 	return nacked;
   4164 }
   4165 
   4166 static inline int
   4167 txqactive(struct ath_hal *ah, int qnum)
   4168 {
   4169 	u_int32_t txqs = 1<<qnum;
   4170 	ath_hal_gettxintrtxqs(ah, &txqs);
   4171 	return (txqs & (1<<qnum));
   4172 }
   4173 
   4174 /*
   4175  * Deferred processing of transmit interrupt; special-cased
   4176  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4177  */
   4178 static void
   4179 ath_tx_proc_q0(void *arg, int npending)
   4180 {
   4181 	struct ath_softc *sc = arg;
   4182 	struct ifnet *ifp = &sc->sc_if;
   4183 
   4184 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4185 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4186 	}
   4187 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4188 		ath_tx_processq(sc, sc->sc_cabq);
   4189 
   4190 	if (sc->sc_softled)
   4191 		ath_led_event(sc, ATH_LED_TX);
   4192 
   4193 	ath_start(ifp);
   4194 }
   4195 
   4196 /*
   4197  * Deferred processing of transmit interrupt; special-cased
   4198  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4199  */
   4200 static void
   4201 ath_tx_proc_q0123(void *arg, int npending)
   4202 {
   4203 	struct ath_softc *sc = arg;
   4204 	struct ifnet *ifp = &sc->sc_if;
   4205 	int nacked;
   4206 
   4207 	/*
   4208 	 * Process each active queue.
   4209 	 */
   4210 	nacked = 0;
   4211 	if (txqactive(sc->sc_ah, 0))
   4212 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4213 	if (txqactive(sc->sc_ah, 1))
   4214 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4215 	if (txqactive(sc->sc_ah, 2))
   4216 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4217 	if (txqactive(sc->sc_ah, 3))
   4218 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4219 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4220 		ath_tx_processq(sc, sc->sc_cabq);
   4221 	if (nacked) {
   4222 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4223 	}
   4224 
   4225 	if (sc->sc_softled)
   4226 		ath_led_event(sc, ATH_LED_TX);
   4227 
   4228 	ath_start(ifp);
   4229 }
   4230 
   4231 /*
   4232  * Deferred processing of transmit interrupt.
   4233  */
   4234 static void
   4235 ath_tx_proc(void *arg, int npending)
   4236 {
   4237 	struct ath_softc *sc = arg;
   4238 	struct ifnet *ifp = &sc->sc_if;
   4239 	int i, nacked;
   4240 
   4241 	/*
   4242 	 * Process each active queue.
   4243 	 */
   4244 	nacked = 0;
   4245 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4246 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4247 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4248 	if (nacked) {
   4249 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4250 	}
   4251 
   4252 	if (sc->sc_softled)
   4253 		ath_led_event(sc, ATH_LED_TX);
   4254 
   4255 	ath_start(ifp);
   4256 }
   4257 
   4258 static void
   4259 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4260 {
   4261 	struct ath_hal *ah = sc->sc_ah;
   4262 	struct ieee80211_node *ni;
   4263 	struct ath_buf *bf;
   4264 	struct ath_desc *ds;
   4265 
   4266 	/*
   4267 	 * NB: this assumes output has been stopped and
   4268 	 *     we do not need to block ath_tx_tasklet
   4269 	 */
   4270 	for (;;) {
   4271 		ATH_TXQ_LOCK(txq);
   4272 		bf = STAILQ_FIRST(&txq->axq_q);
   4273 		if (bf == NULL) {
   4274 			txq->axq_link = NULL;
   4275 			ATH_TXQ_UNLOCK(txq);
   4276 			break;
   4277 		}
   4278 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4279 		ATH_TXQ_UNLOCK(txq);
   4280 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4281 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4282 			ath_printtxbuf(bf,
   4283 				ath_hal_txprocdesc(ah, bf->bf_desc,
   4284 					&ds->ds_txstat) == HAL_OK);
   4285 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4286 		m_freem(bf->bf_m);
   4287 		bf->bf_m = NULL;
   4288 		ni = bf->bf_node;
   4289 		bf->bf_node = NULL;
   4290 		if (ni != NULL) {
   4291 			/*
   4292 			 * Reclaim node reference.
   4293 			 */
   4294 			ieee80211_free_node(ni);
   4295 		}
   4296 		ATH_TXBUF_LOCK(sc);
   4297 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4298 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4299 		ATH_TXBUF_UNLOCK(sc);
   4300 	}
   4301 }
   4302 
   4303 static void
   4304 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4305 {
   4306 	struct ath_hal *ah = sc->sc_ah;
   4307 
   4308 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4309 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4310 	    __func__, txq->axq_qnum,
   4311 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4312 	    txq->axq_link);
   4313 }
   4314 
   4315 /*
   4316  * Drain the transmit queues and reclaim resources.
   4317  */
   4318 static void
   4319 ath_draintxq(struct ath_softc *sc)
   4320 {
   4321 	struct ath_hal *ah = sc->sc_ah;
   4322 	int i;
   4323 
   4324 	/* XXX return value */
   4325 	if (device_is_active(sc->sc_dev)) {
   4326 		/* don't touch the hardware if marked invalid */
   4327 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4328 		DPRINTF(sc, ATH_DEBUG_RESET,
   4329 		    "%s: beacon queue %p\n", __func__,
   4330 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4331 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4332 			if (ATH_TXQ_SETUP(sc, i))
   4333 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4334 	}
   4335 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4336 		if (ATH_TXQ_SETUP(sc, i))
   4337 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4338 }
   4339 
   4340 /*
   4341  * Disable the receive h/w in preparation for a reset.
   4342  */
   4343 static void
   4344 ath_stoprecv(struct ath_softc *sc)
   4345 {
   4346 #define	PA2DESC(_sc, _pa) \
   4347 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4348 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4349 	struct ath_hal *ah = sc->sc_ah;
   4350 	u_int64_t tsf;
   4351 
   4352 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4353 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4354 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4355 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4356 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4357 		struct ath_buf *bf;
   4358 
   4359 		printf("%s: rx queue %p, link %p\n", __func__,
   4360 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4361 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4362 			struct ath_desc *ds = bf->bf_desc;
   4363 			tsf = ath_hal_gettsf64(sc->sc_ah);
   4364 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4365 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   4366 				&ds->ds_rxstat);
   4367 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4368 				ath_printrxbuf(bf, status == HAL_OK);
   4369 		}
   4370 	}
   4371 	sc->sc_rxlink = NULL;		/* just in case */
   4372 #undef PA2DESC
   4373 }
   4374 
   4375 /*
   4376  * Enable the receive h/w following a reset.
   4377  */
   4378 static int
   4379 ath_startrecv(struct ath_softc *sc)
   4380 {
   4381 	struct ath_hal *ah = sc->sc_ah;
   4382 	struct ath_buf *bf;
   4383 
   4384 	sc->sc_rxlink = NULL;
   4385 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4386 		int error = ath_rxbuf_init(sc, bf);
   4387 		if (error != 0) {
   4388 			DPRINTF(sc, ATH_DEBUG_RECV,
   4389 				"%s: ath_rxbuf_init failed %d\n",
   4390 				__func__, error);
   4391 			return error;
   4392 		}
   4393 	}
   4394 
   4395 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4396 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4397 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4398 	ath_mode_init(sc);		/* set filters, etc. */
   4399 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4400 	return 0;
   4401 }
   4402 
   4403 /*
   4404  * Update internal state after a channel change.
   4405  */
   4406 static void
   4407 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4408 {
   4409 	struct ieee80211com *ic = &sc->sc_ic;
   4410 	enum ieee80211_phymode mode;
   4411 	u_int16_t flags;
   4412 
   4413 	/*
   4414 	 * Change channels and update the h/w rate map
   4415 	 * if we're switching; e.g. 11a to 11b/g.
   4416 	 */
   4417 	mode = ieee80211_chan2mode(ic, chan);
   4418 	if (mode != sc->sc_curmode)
   4419 		ath_setcurmode(sc, mode);
   4420 	/*
   4421 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4422 	 * merged flags well so pick a unique mode for their use.
   4423 	 */
   4424 	if (IEEE80211_IS_CHAN_A(chan))
   4425 		flags = IEEE80211_CHAN_A;
   4426 	/* XXX 11g schizophrenia */
   4427 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4428 	    IEEE80211_IS_CHAN_PUREG(chan))
   4429 		flags = IEEE80211_CHAN_G;
   4430 	else
   4431 		flags = IEEE80211_CHAN_B;
   4432 	if (IEEE80211_IS_CHAN_T(chan))
   4433 		flags |= IEEE80211_CHAN_TURBO;
   4434 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4435 		htole16(chan->ic_freq);
   4436 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4437 		htole16(flags);
   4438 }
   4439 
   4440 #if 0
   4441 /*
   4442  * Poll for a channel clear indication; this is required
   4443  * for channels requiring DFS and not previously visited
   4444  * and/or with a recent radar detection.
   4445  */
   4446 static void
   4447 ath_dfswait(void *arg)
   4448 {
   4449 	struct ath_softc *sc = arg;
   4450 	struct ath_hal *ah = sc->sc_ah;
   4451 	HAL_CHANNEL hchan;
   4452 
   4453 	ath_hal_radar_wait(ah, &hchan);
   4454 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4455 		if_printf(&sc->sc_if,
   4456 		    "channel %u/0x%x/0x%x has interference\n",
   4457 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4458 		return;
   4459 	}
   4460 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4461 		/* XXX should not happen */
   4462 		return;
   4463 	}
   4464 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4465 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4466 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4467 		if_printf(&sc->sc_if,
   4468 		    "channel %u/0x%x/0x%x marked clear\n",
   4469 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4470 	} else
   4471 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4472 }
   4473 #endif
   4474 
   4475 /*
   4476  * Set/change channels.  If the channel is really being changed,
   4477  * it's done by reseting the chip.  To accomplish this we must
   4478  * first cleanup any pending DMA, then restart stuff after a la
   4479  * ath_init.
   4480  */
   4481 static int
   4482 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4483 {
   4484 	struct ath_hal *ah = sc->sc_ah;
   4485 	struct ieee80211com *ic = &sc->sc_ic;
   4486 	HAL_CHANNEL hchan;
   4487 
   4488 	/*
   4489 	 * Convert to a HAL channel description with
   4490 	 * the flags constrained to reflect the current
   4491 	 * operating mode.
   4492 	 */
   4493 	hchan.channel = chan->ic_freq;
   4494 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4495 
   4496 	DPRINTF(sc, ATH_DEBUG_RESET,
   4497 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4498 	    __func__,
   4499 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4500 		sc->sc_curchan.channelFlags),
   4501 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4502 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4503 	        hchan.channel, hchan.channelFlags);
   4504 	if (hchan.channel != sc->sc_curchan.channel ||
   4505 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4506 		HAL_STATUS status;
   4507 
   4508 		/*
   4509 		 * To switch channels clear any pending DMA operations;
   4510 		 * wait long enough for the RX fifo to drain, reset the
   4511 		 * hardware at the new frequency, and then re-enable
   4512 		 * the relevant bits of the h/w.
   4513 		 */
   4514 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4515 		ath_draintxq(sc);		/* clear pending tx frames */
   4516 		ath_stoprecv(sc);		/* turn off frame recv */
   4517 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4518 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4519 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4520 			    __func__, ieee80211_chan2ieee(ic, chan),
   4521 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4522 			return EIO;
   4523 		}
   4524 		sc->sc_curchan = hchan;
   4525 		ath_update_txpow(sc);		/* update tx power state */
   4526 		ath_restore_diversity(sc);
   4527 		sc->sc_calinterval = 1;
   4528 		sc->sc_caltries = 0;
   4529 
   4530 		/*
   4531 		 * Re-enable rx framework.
   4532 		 */
   4533 		if (ath_startrecv(sc) != 0) {
   4534 			if_printf(&sc->sc_if,
   4535 				"%s: unable to restart recv logic\n", __func__);
   4536 			return EIO;
   4537 		}
   4538 
   4539 		/*
   4540 		 * Change channels and update the h/w rate map
   4541 		 * if we're switching; e.g. 11a to 11b/g.
   4542 		 */
   4543 		ic->ic_ibss_chan = chan;
   4544 		ath_chan_change(sc, chan);
   4545 
   4546 #if 0
   4547 		/*
   4548 		 * Handle DFS required waiting period to determine
   4549 		 * if channel is clear of radar traffic.
   4550 		 */
   4551 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4552 #define	DFS_AND_NOT_CLEAR(_c) \
   4553 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4554 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4555 				if_printf(&sc->sc_if,
   4556 					"wait for DFS clear channel signal\n");
   4557 				/* XXX stop sndq */
   4558 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4559 				callout_reset(&sc->sc_dfs_ch,
   4560 					2 * hz, ath_dfswait, sc);
   4561 			} else
   4562 				callout_stop(&sc->sc_dfs_ch);
   4563 #undef DFS_NOT_CLEAR
   4564 		}
   4565 #endif
   4566 
   4567 		/*
   4568 		 * Re-enable interrupts.
   4569 		 */
   4570 		ath_hal_intrset(ah, sc->sc_imask);
   4571 	}
   4572 	return 0;
   4573 }
   4574 
   4575 static void
   4576 ath_next_scan(void *arg)
   4577 {
   4578 	struct ath_softc *sc = arg;
   4579 	struct ieee80211com *ic = &sc->sc_ic;
   4580 	int s;
   4581 
   4582 	/* don't call ath_start w/o network interrupts blocked */
   4583 	s = splnet();
   4584 
   4585 	if (ic->ic_state == IEEE80211_S_SCAN)
   4586 		ieee80211_next_scan(ic);
   4587 	splx(s);
   4588 }
   4589 
   4590 /*
   4591  * Periodically recalibrate the PHY to account
   4592  * for temperature/environment changes.
   4593  */
   4594 static void
   4595 ath_calibrate(void *arg)
   4596 {
   4597 	struct ath_softc *sc = arg;
   4598 	struct ath_hal *ah = sc->sc_ah;
   4599 	HAL_BOOL iqCalDone;
   4600 
   4601 	sc->sc_stats.ast_per_cal++;
   4602 
   4603 	ATH_LOCK(sc);
   4604 
   4605 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4606 		/*
   4607 		 * Rfgain is out of bounds, reset the chip
   4608 		 * to load new gain values.
   4609 		 */
   4610 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4611 			"%s: rfgain change\n", __func__);
   4612 		sc->sc_stats.ast_per_rfgain++;
   4613 		ath_reset(&sc->sc_if);
   4614 	}
   4615 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4616 		DPRINTF(sc, ATH_DEBUG_ANY,
   4617 			"%s: calibration of channel %u failed\n",
   4618 			__func__, sc->sc_curchan.channel);
   4619 		sc->sc_stats.ast_per_calfail++;
   4620 	}
   4621 	/*
   4622 	 * Calibrate noise floor data again in case of change.
   4623 	 */
   4624 	ath_hal_process_noisefloor(ah);
   4625 	/*
   4626 	 * Poll more frequently when the IQ calibration is in
   4627 	 * progress to speedup loading the final settings.
   4628 	 * We temper this aggressive polling with an exponential
   4629 	 * back off after 4 tries up to ath_calinterval.
   4630 	 */
   4631 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4632 		sc->sc_caltries = 0;
   4633 		sc->sc_calinterval = ath_calinterval;
   4634 	} else if (sc->sc_caltries > 4) {
   4635 		sc->sc_caltries = 0;
   4636 		sc->sc_calinterval <<= 1;
   4637 		if (sc->sc_calinterval > ath_calinterval)
   4638 			sc->sc_calinterval = ath_calinterval;
   4639 	}
   4640 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
   4641 		("bad calibration interval %u", sc->sc_calinterval));
   4642 
   4643 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4644 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4645 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4646 	sc->sc_caltries++;
   4647 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4648 		ath_calibrate, sc);
   4649 	ATH_UNLOCK(sc);
   4650 }
   4651 
   4652 static int
   4653 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4654 {
   4655 	struct ifnet *ifp = ic->ic_ifp;
   4656 	struct ath_softc *sc = ifp->if_softc;
   4657 	struct ath_hal *ah = sc->sc_ah;
   4658 	struct ieee80211_node *ni;
   4659 	int i, error;
   4660 	const u_int8_t *bssid;
   4661 	u_int32_t rfilt;
   4662 	static const HAL_LED_STATE leds[] = {
   4663 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4664 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4665 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4666 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4667 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4668 	};
   4669 
   4670 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4671 		ieee80211_state_name[ic->ic_state],
   4672 		ieee80211_state_name[nstate]);
   4673 
   4674 	callout_stop(&sc->sc_scan_ch);
   4675 	callout_stop(&sc->sc_cal_ch);
   4676 #if 0
   4677 	callout_stop(&sc->sc_dfs_ch);
   4678 #endif
   4679 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4680 
   4681 	if (nstate == IEEE80211_S_INIT) {
   4682 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4683 		/*
   4684 		 * NB: disable interrupts so we don't rx frames.
   4685 		 */
   4686 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4687 		/*
   4688 		 * Notify the rate control algorithm.
   4689 		 */
   4690 		ath_rate_newstate(sc, nstate);
   4691 		goto done;
   4692 	}
   4693 	ni = ic->ic_bss;
   4694 	error = ath_chan_set(sc, ic->ic_curchan);
   4695 	if (error != 0)
   4696 		goto bad;
   4697 	rfilt = ath_calcrxfilter(sc, nstate);
   4698 	if (nstate == IEEE80211_S_SCAN)
   4699 		bssid = ifp->if_broadcastaddr;
   4700 	else
   4701 		bssid = ni->ni_bssid;
   4702 	ath_hal_setrxfilter(ah, rfilt);
   4703 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4704 		 __func__, rfilt, ether_sprintf(bssid));
   4705 
   4706 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4707 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4708 	else
   4709 		ath_hal_setassocid(ah, bssid, 0);
   4710 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4711 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4712 			if (ath_hal_keyisvalid(ah, i))
   4713 				ath_hal_keysetmac(ah, i, bssid);
   4714 	}
   4715 
   4716 	/*
   4717 	 * Notify the rate control algorithm so rates
   4718 	 * are setup should ath_beacon_alloc be called.
   4719 	 */
   4720 	ath_rate_newstate(sc, nstate);
   4721 
   4722 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4723 		/* nothing to do */;
   4724 	} else if (nstate == IEEE80211_S_RUN) {
   4725 		DPRINTF(sc, ATH_DEBUG_STATE,
   4726 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4727 			"capinfo=0x%04x chan=%d\n"
   4728 			 , __func__
   4729 			 , ic->ic_flags
   4730 			 , ni->ni_intval
   4731 			 , ether_sprintf(ni->ni_bssid)
   4732 			 , ni->ni_capinfo
   4733 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4734 
   4735 		switch (ic->ic_opmode) {
   4736 		case IEEE80211_M_HOSTAP:
   4737 		case IEEE80211_M_IBSS:
   4738 			/*
   4739 			 * Allocate and setup the beacon frame.
   4740 			 *
   4741 			 * Stop any previous beacon DMA.  This may be
   4742 			 * necessary, for example, when an ibss merge
   4743 			 * causes reconfiguration; there will be a state
   4744 			 * transition from RUN->RUN that means we may
   4745 			 * be called with beacon transmission active.
   4746 			 */
   4747 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4748 			ath_beacon_free(sc);
   4749 			error = ath_beacon_alloc(sc, ni);
   4750 			if (error != 0)
   4751 				goto bad;
   4752 			/*
   4753 			 * If joining an adhoc network defer beacon timer
   4754 			 * configuration to the next beacon frame so we
   4755 			 * have a current TSF to use.  Otherwise we're
   4756 			 * starting an ibss/bss so there's no need to delay.
   4757 			 */
   4758 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4759 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4760 				sc->sc_syncbeacon = 1;
   4761 			else
   4762 				ath_beacon_config(sc);
   4763 			break;
   4764 		case IEEE80211_M_STA:
   4765 			/*
   4766 			 * Allocate a key cache slot to the station.
   4767 			 */
   4768 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4769 			    sc->sc_hasclrkey &&
   4770 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4771 				ath_setup_stationkey(ni);
   4772 			/*
   4773 			 * Defer beacon timer configuration to the next
   4774 			 * beacon frame so we have a current TSF to use
   4775 			 * (any TSF collected when scanning is likely old).
   4776 			 */
   4777 			sc->sc_syncbeacon = 1;
   4778 			break;
   4779 		default:
   4780 			break;
   4781 		}
   4782 		/*
   4783 		 * Let the hal process statistics collected during a
   4784 		 * scan so it can provide calibrated noise floor data.
   4785 		 */
   4786 		ath_hal_process_noisefloor(ah);
   4787 		/*
   4788 		 * Reset rssi stats; maybe not the best place...
   4789 		 */
   4790 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4791 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4792 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4793 	} else {
   4794 		ath_hal_intrset(ah,
   4795 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4796 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4797 	}
   4798 done:
   4799 	/*
   4800 	 * Invoke the parent method to complete the work.
   4801 	 */
   4802 	error = sc->sc_newstate(ic, nstate, arg);
   4803 	/*
   4804 	 * Finally, start any timers.
   4805 	 */
   4806 	if (nstate == IEEE80211_S_RUN) {
   4807 		/* start periodic recalibration timer */
   4808 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4809 			ath_calibrate, sc);
   4810 	} else if (nstate == IEEE80211_S_SCAN) {
   4811 		/* start ap/neighbor scan timer */
   4812 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4813 			ath_next_scan, sc);
   4814 	}
   4815 bad:
   4816 	return error;
   4817 }
   4818 
   4819 /*
   4820  * Allocate a key cache slot to the station so we can
   4821  * setup a mapping from key index to node. The key cache
   4822  * slot is needed for managing antenna state and for
   4823  * compression when stations do not use crypto.  We do
   4824  * it uniliaterally here; if crypto is employed this slot
   4825  * will be reassigned.
   4826  */
   4827 static void
   4828 ath_setup_stationkey(struct ieee80211_node *ni)
   4829 {
   4830 	struct ieee80211com *ic = ni->ni_ic;
   4831 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4832 	ieee80211_keyix keyix, rxkeyix;
   4833 
   4834 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4835 		/*
   4836 		 * Key cache is full; we'll fall back to doing
   4837 		 * the more expensive lookup in software.  Note
   4838 		 * this also means no h/w compression.
   4839 		 */
   4840 		/* XXX msg+statistic */
   4841 	} else {
   4842 		/* XXX locking? */
   4843 		ni->ni_ucastkey.wk_keyix = keyix;
   4844 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4845 		/* NB: this will create a pass-thru key entry */
   4846 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4847 	}
   4848 }
   4849 
   4850 /*
   4851  * Setup driver-specific state for a newly associated node.
   4852  * Note that we're called also on a re-associate, the isnew
   4853  * param tells us if this is the first time or not.
   4854  */
   4855 static void
   4856 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4857 {
   4858 	struct ieee80211com *ic = ni->ni_ic;
   4859 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4860 
   4861 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4862 	if (isnew &&
   4863 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4864 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4865 		    ("new assoc with a unicast key already setup (keyix %u)",
   4866 		    ni->ni_ucastkey.wk_keyix));
   4867 		ath_setup_stationkey(ni);
   4868 	}
   4869 }
   4870 
   4871 static int
   4872 ath_getchannels(struct ath_softc *sc, u_int cc,
   4873 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4874 {
   4875 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4876 	struct ieee80211com *ic = &sc->sc_ic;
   4877 	struct ifnet *ifp = &sc->sc_if;
   4878 	struct ath_hal *ah = sc->sc_ah;
   4879 	HAL_CHANNEL *chans;
   4880 	int i, ix, nchan;
   4881 
   4882 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4883 			M_TEMP, M_NOWAIT);
   4884 	if (chans == NULL) {
   4885 		if_printf(ifp, "unable to allocate channel table\n");
   4886 		return ENOMEM;
   4887 	}
   4888 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4889 	    NULL, 0, NULL,
   4890 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4891 		u_int32_t rd;
   4892 
   4893 		(void)ath_hal_getregdomain(ah, &rd);
   4894 		if_printf(ifp, "unable to collect channel list from hal; "
   4895 			"regdomain likely %u country code %u\n", rd, cc);
   4896 		free(chans, M_TEMP);
   4897 		return EINVAL;
   4898 	}
   4899 
   4900 	/*
   4901 	 * Convert HAL channels to ieee80211 ones and insert
   4902 	 * them in the table according to their channel number.
   4903 	 */
   4904 	for (i = 0; i < nchan; i++) {
   4905 		HAL_CHANNEL *c = &chans[i];
   4906 		u_int16_t flags;
   4907 
   4908 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4909 		if (ix > IEEE80211_CHAN_MAX) {
   4910 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4911 				ix, c->channel, c->channelFlags);
   4912 			continue;
   4913 		}
   4914 		if (ix < 0) {
   4915 			/* XXX can't handle stuff <2400 right now */
   4916 			if (bootverbose)
   4917 				if_printf(ifp, "hal channel %d (%u/%x) "
   4918 				    "cannot be handled; ignored\n",
   4919 				    ix, c->channel, c->channelFlags);
   4920 			continue;
   4921 		}
   4922 		/*
   4923 		 * Calculate net80211 flags; most are compatible
   4924 		 * but some need massaging.  Note the static turbo
   4925 		 * conversion can be removed once net80211 is updated
   4926 		 * to understand static vs. dynamic turbo.
   4927 		 */
   4928 		flags = c->channelFlags & COMPAT;
   4929 		if (c->channelFlags & CHANNEL_STURBO)
   4930 			flags |= IEEE80211_CHAN_TURBO;
   4931 		if (ic->ic_channels[ix].ic_freq == 0) {
   4932 			ic->ic_channels[ix].ic_freq = c->channel;
   4933 			ic->ic_channels[ix].ic_flags = flags;
   4934 		} else {
   4935 			/* channels overlap; e.g. 11g and 11b */
   4936 			ic->ic_channels[ix].ic_flags |= flags;
   4937 		}
   4938 	}
   4939 	free(chans, M_TEMP);
   4940 	return 0;
   4941 #undef COMPAT
   4942 }
   4943 
   4944 static void
   4945 ath_led_done(void *arg)
   4946 {
   4947 	struct ath_softc *sc = arg;
   4948 
   4949 	sc->sc_blinking = 0;
   4950 }
   4951 
   4952 /*
   4953  * Turn the LED off: flip the pin and then set a timer so no
   4954  * update will happen for the specified duration.
   4955  */
   4956 static void
   4957 ath_led_off(void *arg)
   4958 {
   4959 	struct ath_softc *sc = arg;
   4960 
   4961 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4962 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4963 }
   4964 
   4965 /*
   4966  * Blink the LED according to the specified on/off times.
   4967  */
   4968 static void
   4969 ath_led_blink(struct ath_softc *sc, int on, int off)
   4970 {
   4971 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4972 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4973 	sc->sc_blinking = 1;
   4974 	sc->sc_ledoff = off;
   4975 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4976 }
   4977 
   4978 static void
   4979 ath_led_event(struct ath_softc *sc, int event)
   4980 {
   4981 
   4982 	sc->sc_ledevent = ticks;	/* time of last event */
   4983 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4984 		return;
   4985 	switch (event) {
   4986 	case ATH_LED_POLL:
   4987 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4988 			sc->sc_hwmap[0].ledoff);
   4989 		break;
   4990 	case ATH_LED_TX:
   4991 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4992 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4993 		break;
   4994 	case ATH_LED_RX:
   4995 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   4996 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   4997 		break;
   4998 	}
   4999 }
   5000 
   5001 static void
   5002 ath_update_txpow(struct ath_softc *sc)
   5003 {
   5004 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   5005 	struct ieee80211com *ic = &sc->sc_ic;
   5006 	struct ath_hal *ah = sc->sc_ah;
   5007 	u_int32_t txpow;
   5008 
   5009 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   5010 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   5011 		/* read back in case value is clamped */
   5012 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   5013 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   5014 	}
   5015 	/*
   5016 	 * Fetch max tx power level for status requests.
   5017 	 */
   5018 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   5019 	ic->ic_bss->ni_txpower = txpow;
   5020 }
   5021 
   5022 static void
   5023 rate_setup(struct ath_softc *sc,
   5024 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   5025 {
   5026 	int i, maxrates;
   5027 
   5028 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   5029 		DPRINTF(sc, ATH_DEBUG_ANY,
   5030 			"%s: rate table too small (%u > %u)\n",
   5031 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   5032 		maxrates = IEEE80211_RATE_MAXSIZE;
   5033 	} else
   5034 		maxrates = rt->rateCount;
   5035 	for (i = 0; i < maxrates; i++)
   5036 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   5037 	rs->rs_nrates = maxrates;
   5038 }
   5039 
   5040 static int
   5041 ath_rate_setup(struct ath_softc *sc, u_int mode)
   5042 {
   5043 	struct ath_hal *ah = sc->sc_ah;
   5044 	struct ieee80211com *ic = &sc->sc_ic;
   5045 	const HAL_RATE_TABLE *rt;
   5046 
   5047 	switch (mode) {
   5048 	case IEEE80211_MODE_11A:
   5049 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   5050 		break;
   5051 	case IEEE80211_MODE_11B:
   5052 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   5053 		break;
   5054 	case IEEE80211_MODE_11G:
   5055 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   5056 		break;
   5057 	case IEEE80211_MODE_TURBO_A:
   5058 		/* XXX until static/dynamic turbo is fixed */
   5059 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5060 		break;
   5061 	case IEEE80211_MODE_TURBO_G:
   5062 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5063 		break;
   5064 	default:
   5065 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5066 			__func__, mode);
   5067 		return 0;
   5068 	}
   5069 	sc->sc_rates[mode] = rt;
   5070 	if (rt != NULL) {
   5071 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5072 		return 1;
   5073 	} else
   5074 		return 0;
   5075 }
   5076 
   5077 static void
   5078 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5079 {
   5080 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5081 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5082 	static const struct {
   5083 		u_int		rate;		/* tx/rx 802.11 rate */
   5084 		u_int16_t	timeOn;		/* LED on time (ms) */
   5085 		u_int16_t	timeOff;	/* LED off time (ms) */
   5086 	} blinkrates[] = {
   5087 		{ 108,  40,  10 },
   5088 		{  96,  44,  11 },
   5089 		{  72,  50,  13 },
   5090 		{  48,  57,  14 },
   5091 		{  36,  67,  16 },
   5092 		{  24,  80,  20 },
   5093 		{  22, 100,  25 },
   5094 		{  18, 133,  34 },
   5095 		{  12, 160,  40 },
   5096 		{  10, 200,  50 },
   5097 		{   6, 240,  58 },
   5098 		{   4, 267,  66 },
   5099 		{   2, 400, 100 },
   5100 		{   0, 500, 130 },
   5101 	};
   5102 	const HAL_RATE_TABLE *rt;
   5103 	int i, j;
   5104 
   5105 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5106 	rt = sc->sc_rates[mode];
   5107 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   5108 	for (i = 0; i < rt->rateCount; i++)
   5109 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5110 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5111 	for (i = 0; i < 32; i++) {
   5112 		u_int8_t ix = rt->rateCodeToIndex[i];
   5113 		if (ix == 0xff) {
   5114 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5115 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5116 			continue;
   5117 		}
   5118 		sc->sc_hwmap[i].ieeerate =
   5119 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5120 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5121 		if (rt->info[ix].shortPreamble ||
   5122 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5123 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5124 		/* NB: receive frames include FCS */
   5125 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5126 			IEEE80211_RADIOTAP_F_FCS;
   5127 		/* setup blink rate table to avoid per-packet lookup */
   5128 		for (j = 0; j < N(blinkrates)-1; j++)
   5129 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5130 				break;
   5131 		/* NB: this uses the last entry if the rate isn't found */
   5132 		/* XXX beware of overlow */
   5133 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5134 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5135 	}
   5136 	sc->sc_currates = rt;
   5137 	sc->sc_curmode = mode;
   5138 	/*
   5139 	 * All protection frames are transmited at 2Mb/s for
   5140 	 * 11g, otherwise at 1Mb/s.
   5141 	 */
   5142 	if (mode == IEEE80211_MODE_11G)
   5143 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5144 	else
   5145 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5146 	/* rate index used to send management frames */
   5147 	sc->sc_minrateix = 0;
   5148 	/*
   5149 	 * Setup multicast rate state.
   5150 	 */
   5151 	/* XXX layering violation */
   5152 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5153 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5154 	/* NB: caller is responsible for reseting rate control state */
   5155 #undef N
   5156 }
   5157 
   5158 #ifdef AR_DEBUG
   5159 static void
   5160 ath_printrxbuf(struct ath_buf *bf, int done)
   5161 {
   5162 	struct ath_desc *ds;
   5163 	int i;
   5164 
   5165 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5166 		printf("R%d (%p %" PRIx64
   5167 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
   5168 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5169 		    ds->ds_link, ds->ds_data,
   5170 		    ds->ds_ctl0, ds->ds_ctl1,
   5171 		    ds->ds_hw[0], ds->ds_hw[1],
   5172 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
   5173 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5174 	}
   5175 }
   5176 
   5177 static void
   5178 ath_printtxbuf(struct ath_buf *bf, int done)
   5179 {
   5180 	struct ath_desc *ds;
   5181 	int i;
   5182 
   5183 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5184 		printf("T%d (%p %" PRIx64
   5185 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5186 		    i, ds,
   5187 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5188 		    ds->ds_link, ds->ds_data,
   5189 		    ds->ds_ctl0, ds->ds_ctl1,
   5190 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5191 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5192 	}
   5193 }
   5194 #endif	/* AR_DEBUG */
   5195 
   5196 static void
   5197 ath_watchdog(struct ifnet *ifp)
   5198 {
   5199 	struct ath_softc *sc = ifp->if_softc;
   5200 	struct ieee80211com *ic = &sc->sc_ic;
   5201 	struct ath_txq *axq;
   5202 	int i;
   5203 
   5204 	ifp->if_timer = 0;
   5205 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   5206 	    !device_is_active(sc->sc_dev))
   5207 		return;
   5208 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5209 		if (!ATH_TXQ_SETUP(sc, i))
   5210 			continue;
   5211 		axq = &sc->sc_txq[i];
   5212 		ATH_TXQ_LOCK(axq);
   5213 		if (axq->axq_timer == 0)
   5214 			;
   5215 		else if (--axq->axq_timer == 0) {
   5216 			ATH_TXQ_UNLOCK(axq);
   5217 			if_printf(ifp, "device timeout (txq %d, "
   5218 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
   5219 			if (sc->sc_txintrperiod > 1)
   5220 				sc->sc_txintrperiod--;
   5221 			ath_reset(ifp);
   5222 			ifp->if_oerrors++;
   5223 			sc->sc_stats.ast_watchdog++;
   5224 			break;
   5225 		} else
   5226 			ifp->if_timer = 1;
   5227 		ATH_TXQ_UNLOCK(axq);
   5228 	}
   5229 	ieee80211_watchdog(ic);
   5230 }
   5231 
   5232 /*
   5233  * Diagnostic interface to the HAL.  This is used by various
   5234  * tools to do things like retrieve register contents for
   5235  * debugging.  The mechanism is intentionally opaque so that
   5236  * it can change frequently w/o concern for compatiblity.
   5237  */
   5238 static int
   5239 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5240 {
   5241 	struct ath_hal *ah = sc->sc_ah;
   5242 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5243 	void *indata = NULL;
   5244 	void *outdata = NULL;
   5245 	u_int32_t insize = ad->ad_in_size;
   5246 	u_int32_t outsize = ad->ad_out_size;
   5247 	int error = 0;
   5248 
   5249 	if (ad->ad_id & ATH_DIAG_IN) {
   5250 		/*
   5251 		 * Copy in data.
   5252 		 */
   5253 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5254 		if (indata == NULL) {
   5255 			error = ENOMEM;
   5256 			goto bad;
   5257 		}
   5258 		error = copyin(ad->ad_in_data, indata, insize);
   5259 		if (error)
   5260 			goto bad;
   5261 	}
   5262 	if (ad->ad_id & ATH_DIAG_DYN) {
   5263 		/*
   5264 		 * Allocate a buffer for the results (otherwise the HAL
   5265 		 * returns a pointer to a buffer where we can read the
   5266 		 * results).  Note that we depend on the HAL leaving this
   5267 		 * pointer for us to use below in reclaiming the buffer;
   5268 		 * may want to be more defensive.
   5269 		 */
   5270 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5271 		if (outdata == NULL) {
   5272 			error = ENOMEM;
   5273 			goto bad;
   5274 		}
   5275 	}
   5276 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5277 		if (outsize < ad->ad_out_size)
   5278 			ad->ad_out_size = outsize;
   5279 		if (outdata != NULL)
   5280 			error = copyout(outdata, ad->ad_out_data,
   5281 					ad->ad_out_size);
   5282 	} else {
   5283 		error = EINVAL;
   5284 	}
   5285 bad:
   5286 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5287 		free(indata, M_TEMP);
   5288 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5289 		free(outdata, M_TEMP);
   5290 	return error;
   5291 }
   5292 
   5293 static int
   5294 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5295 {
   5296 #define	IS_RUNNING(ifp) \
   5297 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5298 	struct ath_softc *sc = ifp->if_softc;
   5299 	struct ieee80211com *ic = &sc->sc_ic;
   5300 	struct ifreq *ifr = (struct ifreq *)data;
   5301 	int error = 0;
   5302 
   5303 	ATH_LOCK(sc);
   5304 	switch (cmd) {
   5305 	case SIOCSIFFLAGS:
   5306 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5307 			break;
   5308 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   5309 		case IFF_UP|IFF_RUNNING:
   5310 			/*
   5311 			 * To avoid rescanning another access point,
   5312 			 * do not call ath_init() here.  Instead,
   5313 			 * only reflect promisc mode settings.
   5314 			 */
   5315 			ath_mode_init(sc);
   5316 			break;
   5317 		case IFF_UP:
   5318 			/*
   5319 			 * Beware of being called during attach/detach
   5320 			 * to reset promiscuous mode.  In that case we
   5321 			 * will still be marked UP but not RUNNING.
   5322 			 * However trying to re-init the interface
   5323 			 * is the wrong thing to do as we've already
   5324 			 * torn down much of our state.  There's
   5325 			 * probably a better way to deal with this.
   5326 			 */
   5327 			error = ath_init(sc);
   5328 			break;
   5329 		case IFF_RUNNING:
   5330 			ath_stop_locked(ifp, 1);
   5331 			break;
   5332 		case 0:
   5333 			break;
   5334 		}
   5335 		break;
   5336 	case SIOCADDMULTI:
   5337 	case SIOCDELMULTI:
   5338 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5339 			if (ifp->if_flags & IFF_RUNNING)
   5340 				ath_mode_init(sc);
   5341 			error = 0;
   5342 		}
   5343 		break;
   5344 	case SIOCGATHSTATS:
   5345 		/* NB: embed these numbers to get a consistent view */
   5346 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5347 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5348 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5349 		ATH_UNLOCK(sc);
   5350 		/*
   5351 		 * NB: Drop the softc lock in case of a page fault;
   5352 		 * we'll accept any potential inconsisentcy in the
   5353 		 * statistics.  The alternative is to copy the data
   5354 		 * to a local structure.
   5355 		 */
   5356 		return copyout(&sc->sc_stats,
   5357 				ifr->ifr_data, sizeof (sc->sc_stats));
   5358 	case SIOCGATHDIAG:
   5359 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5360 		break;
   5361 	default:
   5362 		error = ieee80211_ioctl(ic, cmd, data);
   5363 		if (error != ENETRESET)
   5364 			;
   5365 		else if (IS_RUNNING(ifp) &&
   5366 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5367 			error = ath_init(sc);
   5368 		else
   5369 			error = 0;
   5370 		break;
   5371 	}
   5372 	ATH_UNLOCK(sc);
   5373 	return error;
   5374 #undef IS_RUNNING
   5375 }
   5376 
   5377 static void
   5378 ath_bpfattach(struct ath_softc *sc)
   5379 {
   5380 	struct ifnet *ifp = &sc->sc_if;
   5381 
   5382 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
   5383 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5384 	    &sc->sc_drvbpf);
   5385 
   5386 	/*
   5387 	 * Initialize constant fields.
   5388 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5389 	 *     headers are properly aligned; this is a kludge to keep
   5390 	 *     certain applications happy.
   5391 	 *
   5392 	 * NB: the channel is setup each time we transition to the
   5393 	 *     RUN state to avoid filling it in for each frame.
   5394 	 */
   5395 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5396 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5397 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5398 
   5399 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5400 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5401 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5402 }
   5403 
   5404 /*
   5405  * Announce various information on device/driver attach.
   5406  */
   5407 static void
   5408 ath_announce(struct ath_softc *sc)
   5409 {
   5410 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5411 	struct ifnet *ifp = &sc->sc_if;
   5412 	struct ath_hal *ah = sc->sc_ah;
   5413 	u_int modes, cc;
   5414 
   5415 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5416 		ah->ah_macVersion, ah->ah_macRev,
   5417 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5418 	/*
   5419 	 * Print radio revision(s).  We check the wireless modes
   5420 	 * to avoid falsely printing revs for inoperable parts.
   5421 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5422 	 */
   5423 	ath_hal_getcountrycode(ah, &cc);
   5424 	modes = ath_hal_getwirelessmodes(ah, cc);
   5425 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5426 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5427 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5428 				ah->ah_analog5GhzRev >> 4,
   5429 				ah->ah_analog5GhzRev & 0xf,
   5430 				ah->ah_analog2GhzRev >> 4,
   5431 				ah->ah_analog2GhzRev & 0xf);
   5432 		else
   5433 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5434 				ah->ah_analog5GhzRev & 0xf);
   5435 	} else
   5436 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5437 			ah->ah_analog5GhzRev & 0xf);
   5438 	printf("\n");
   5439 	if (bootverbose) {
   5440 		int i;
   5441 		for (i = 0; i <= WME_AC_VO; i++) {
   5442 			struct ath_txq *txq = sc->sc_ac2q[i];
   5443 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5444 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5445 		}
   5446 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5447 			sc->sc_cabq->axq_qnum);
   5448 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5449 	}
   5450 	if (ath_rxbuf != ATH_RXBUF)
   5451 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5452 	if (ath_txbuf != ATH_TXBUF)
   5453 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5454 #undef HAL_MODE_DUALBAND
   5455 }
   5456