Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.115.2.1
      1 /*	$NetBSD: ath.c,v 1.115.2.1 2014/05/18 17:45:37 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.115.2.1 2014/05/18 17:45:37 rmind Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #ifdef _KERNEL_OPT
     55 #include "opt_inet.h"
     56 #endif
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/types.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/mbuf.h>
     64 #include <sys/malloc.h>
     65 #include <sys/kernel.h>
     66 #include <sys/socket.h>
     67 #include <sys/sockio.h>
     68 #include <sys/errno.h>
     69 #include <sys/callout.h>
     70 #include <sys/bus.h>
     71 #include <sys/endian.h>
     72 
     73 #include <net/if.h>
     74 #include <net/if_dl.h>
     75 #include <net/if_media.h>
     76 #include <net/if_types.h>
     77 #include <net/if_arp.h>
     78 #include <net/if_ether.h>
     79 #include <net/if_llc.h>
     80 
     81 #include <net80211/ieee80211_netbsd.h>
     82 #include <net80211/ieee80211_var.h>
     83 
     84 #include <net/bpf.h>
     85 
     86 #ifdef INET
     87 #include <netinet/in.h>
     88 #endif
     89 
     90 #include <sys/device.h>
     91 #include <dev/ic/ath_netbsd.h>
     92 
     93 #define	AR_DEBUG
     94 #include <dev/ic/athvar.h>
     95 #include "ah_desc.h"
     96 #include "ah_devid.h"	/* XXX for softled */
     97 #include "opt_ah.h"
     98 
     99 #ifdef ATH_TX99_DIAG
    100 #include <dev/ath/ath_tx99/ath_tx99.h>
    101 #endif
    102 
    103 /* unaligned little endian access */
    104 #define LE_READ_2(p)							\
    105 	((u_int16_t)							\
    106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    107 #define LE_READ_4(p)							\
    108 	((u_int32_t)							\
    109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    111 
    112 enum {
    113 	ATH_LED_TX,
    114 	ATH_LED_RX,
    115 	ATH_LED_POLL,
    116 };
    117 
    118 #ifdef	AH_NEED_DESC_SWAP
    119 #define	HTOAH32(x)	htole32(x)
    120 #else
    121 #define	HTOAH32(x)	(x)
    122 #endif
    123 
    124 static int	ath_ifinit(struct ifnet *);
    125 static int	ath_init(struct ath_softc *);
    126 static void	ath_stop_locked(struct ifnet *, int);
    127 static void	ath_stop(struct ifnet *, int);
    128 static void	ath_start(struct ifnet *);
    129 static int	ath_media_change(struct ifnet *);
    130 static void	ath_watchdog(struct ifnet *);
    131 static int	ath_ioctl(struct ifnet *, u_long, void *);
    132 static void	ath_fatal_proc(void *, int);
    133 static void	ath_rxorn_proc(void *, int);
    134 static void	ath_bmiss_proc(void *, int);
    135 static void	ath_radar_proc(void *, int);
    136 static int	ath_key_alloc(struct ieee80211com *,
    137 			const struct ieee80211_key *,
    138 			ieee80211_keyix *, ieee80211_keyix *);
    139 static int	ath_key_delete(struct ieee80211com *,
    140 			const struct ieee80211_key *);
    141 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    143 static void	ath_key_update_begin(struct ieee80211com *);
    144 static void	ath_key_update_end(struct ieee80211com *);
    145 static void	ath_mode_init(struct ath_softc *);
    146 static void	ath_setslottime(struct ath_softc *);
    147 static void	ath_updateslot(struct ifnet *);
    148 static int	ath_beaconq_setup(struct ath_hal *);
    149 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    150 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    151 static void	ath_beacon_proc(void *, int);
    152 static void	ath_bstuck_proc(void *, int);
    153 static void	ath_beacon_free(struct ath_softc *);
    154 static void	ath_beacon_config(struct ath_softc *);
    155 static void	ath_descdma_cleanup(struct ath_softc *sc,
    156 			struct ath_descdma *, ath_bufhead *);
    157 static int	ath_desc_alloc(struct ath_softc *);
    158 static void	ath_desc_free(struct ath_softc *);
    159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    160 static void	ath_node_free(struct ieee80211_node *);
    161 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    162 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    163 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    164 			struct ieee80211_node *ni,
    165 			int subtype, int rssi, u_int32_t rstamp);
    166 static void	ath_setdefantenna(struct ath_softc *, u_int);
    167 static void	ath_rx_proc(void *, int);
    168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    169 static int	ath_tx_setup(struct ath_softc *, int, int);
    170 static int	ath_wme_update(struct ieee80211com *);
    171 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    172 static void	ath_tx_cleanup(struct ath_softc *);
    173 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    174 			     struct ath_buf *, struct mbuf *);
    175 static void	ath_tx_proc_q0(void *, int);
    176 static void	ath_tx_proc_q0123(void *, int);
    177 static void	ath_tx_proc(void *, int);
    178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    179 static void	ath_draintxq(struct ath_softc *);
    180 static void	ath_stoprecv(struct ath_softc *);
    181 static int	ath_startrecv(struct ath_softc *);
    182 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    183 static void	ath_next_scan(void *);
    184 static void	ath_calibrate(void *);
    185 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    186 static void	ath_setup_stationkey(struct ieee80211_node *);
    187 static void	ath_newassoc(struct ieee80211_node *, int);
    188 static int	ath_getchannels(struct ath_softc *, u_int cc,
    189 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    190 static void	ath_led_event(struct ath_softc *, int);
    191 static void	ath_update_txpow(struct ath_softc *);
    192 static void	ath_freetx(struct mbuf *);
    193 static void	ath_restore_diversity(struct ath_softc *);
    194 
    195 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    196 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    197 
    198 static void	ath_bpfattach(struct ath_softc *);
    199 static void	ath_announce(struct ath_softc *);
    200 
    201 int ath_dwelltime = 200;		/* 5 channels/second */
    202 int ath_calinterval = 30;		/* calibrate every 30 secs */
    203 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    204 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    205 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    206 int ath_regdomain = 0;			/* regulatory domain */
    207 int ath_debug = 0;
    208 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    209 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    210 
    211 #ifdef AR_DEBUG
    212 enum {
    213 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    214 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    215 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    216 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    217 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    218 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    219 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    220 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    221 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    222 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    223 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    224 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    225 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    226 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    227 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    228 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    229 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    230 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    231 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    232 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    233 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    234 	ATH_DEBUG_ANY		= 0xffffffff
    235 };
    236 #define	IFF_DUMPPKTS(sc, m) \
    237 	((sc->sc_debug & (m)) || \
    238 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    239 #define	DPRINTF(sc, m, fmt, ...) do {				\
    240 	if (sc->sc_debug & (m))					\
    241 		printf(fmt, __VA_ARGS__);			\
    242 } while (0)
    243 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    244 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    245 		ath_keyprint(__func__, ix, hk, mac);		\
    246 } while (0)
    247 static	void ath_printrxbuf(struct ath_buf *bf, int);
    248 static	void ath_printtxbuf(struct ath_buf *bf, int);
    249 #else
    250 #define        IFF_DUMPPKTS(sc, m) \
    251 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    252 #define        DPRINTF(m, fmt, ...)
    253 #define        KEYPRINTF(sc, k, ix, mac)
    254 #endif
    255 
    256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    257 
    258 int
    259 ath_attach(u_int16_t devid, struct ath_softc *sc)
    260 {
    261 	struct ifnet *ifp = &sc->sc_if;
    262 	struct ieee80211com *ic = &sc->sc_ic;
    263 	struct ath_hal *ah = NULL;
    264 	HAL_STATUS status;
    265 	int error = 0, i;
    266 
    267 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    268 
    269 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
    270 
    271 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    272 
    273 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    274 	if (ah == NULL) {
    275 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    276 			status);
    277 		error = ENXIO;
    278 		goto bad;
    279 	}
    280 	if (ah->ah_abi != HAL_ABI_VERSION) {
    281 		if_printf(ifp, "HAL ABI mismatch detected "
    282 			"(HAL:0x%x != driver:0x%x)\n",
    283 			ah->ah_abi, HAL_ABI_VERSION);
    284 		error = ENXIO;
    285 		goto bad;
    286 	}
    287 	sc->sc_ah = ah;
    288 
    289 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
    290 	    "pmf-powerdown", false))
    291 		goto bad;
    292 
    293 	/*
    294 	 * Check if the MAC has multi-rate retry support.
    295 	 * We do this by trying to setup a fake extended
    296 	 * descriptor.  MAC's that don't have support will
    297 	 * return false w/o doing anything.  MAC's that do
    298 	 * support it will return true w/o doing anything.
    299 	 */
    300 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    301 
    302 	/*
    303 	 * Check if the device has hardware counters for PHY
    304 	 * errors.  If so we need to enable the MIB interrupt
    305 	 * so we can act on stat triggers.
    306 	 */
    307 	if (ath_hal_hwphycounters(ah))
    308 		sc->sc_needmib = 1;
    309 
    310 	/*
    311 	 * Get the hardware key cache size.
    312 	 */
    313 	sc->sc_keymax = ath_hal_keycachesize(ah);
    314 	if (sc->sc_keymax > ATH_KEYMAX) {
    315 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    316 			ATH_KEYMAX, sc->sc_keymax);
    317 		sc->sc_keymax = ATH_KEYMAX;
    318 	}
    319 	/*
    320 	 * Reset the key cache since some parts do not
    321 	 * reset the contents on initial power up.
    322 	 */
    323 	for (i = 0; i < sc->sc_keymax; i++)
    324 		ath_hal_keyreset(ah, i);
    325 	/*
    326 	 * Mark key cache slots associated with global keys
    327 	 * as in use.  If we knew TKIP was not to be used we
    328 	 * could leave the +32, +64, and +32+64 slots free.
    329 	 * XXX only for splitmic.
    330 	 */
    331 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    332 		setbit(sc->sc_keymap, i);
    333 		setbit(sc->sc_keymap, i+32);
    334 		setbit(sc->sc_keymap, i+64);
    335 		setbit(sc->sc_keymap, i+32+64);
    336 	}
    337 
    338 	/*
    339 	 * Collect the channel list using the default country
    340 	 * code and including outdoor channels.  The 802.11 layer
    341 	 * is resposible for filtering this list based on settings
    342 	 * like the phy mode.
    343 	 */
    344 	error = ath_getchannels(sc, ath_countrycode,
    345 			ath_outdoor, ath_xchanmode);
    346 	if (error != 0)
    347 		goto bad;
    348 
    349 	/*
    350 	 * Setup rate tables for all potential media types.
    351 	 */
    352 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    353 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    354 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    355 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    356 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    357 	/* NB: setup here so ath_rate_update is happy */
    358 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    359 
    360 	/*
    361 	 * Allocate tx+rx descriptors and populate the lists.
    362 	 */
    363 	error = ath_desc_alloc(sc);
    364 	if (error != 0) {
    365 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    366 		goto bad;
    367 	}
    368 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    369 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    370 #if 0
    371 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    372 #endif
    373 
    374 	ATH_TXBUF_LOCK_INIT(sc);
    375 
    376 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    377 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    378 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    379 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    380 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    381 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    382 
    383 	/*
    384 	 * Allocate hardware transmit queues: one queue for
    385 	 * beacon frames and one data queue for each QoS
    386 	 * priority.  Note that the hal handles reseting
    387 	 * these queues at the needed time.
    388 	 *
    389 	 * XXX PS-Poll
    390 	 */
    391 	sc->sc_bhalq = ath_beaconq_setup(ah);
    392 	if (sc->sc_bhalq == (u_int) -1) {
    393 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    394 		error = EIO;
    395 		goto bad2;
    396 	}
    397 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    398 	if (sc->sc_cabq == NULL) {
    399 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    400 		error = EIO;
    401 		goto bad2;
    402 	}
    403 	/* NB: insure BK queue is the lowest priority h/w queue */
    404 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    405 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    406 			ieee80211_wme_acnames[WME_AC_BK]);
    407 		error = EIO;
    408 		goto bad2;
    409 	}
    410 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    411 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    412 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    413 		/*
    414 		 * Not enough hardware tx queues to properly do WME;
    415 		 * just punt and assign them all to the same h/w queue.
    416 		 * We could do a better job of this if, for example,
    417 		 * we allocate queues when we switch from station to
    418 		 * AP mode.
    419 		 */
    420 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    421 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    422 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    423 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    424 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    425 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    426 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    427 	}
    428 
    429 	/*
    430 	 * Special case certain configurations.  Note the
    431 	 * CAB queue is handled by these specially so don't
    432 	 * include them when checking the txq setup mask.
    433 	 */
    434 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    435 	case 0x01:
    436 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    437 		break;
    438 	case 0x0f:
    439 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    440 		break;
    441 	default:
    442 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    443 		break;
    444 	}
    445 
    446 	/*
    447 	 * Setup rate control.  Some rate control modules
    448 	 * call back to change the anntena state so expose
    449 	 * the necessary entry points.
    450 	 * XXX maybe belongs in struct ath_ratectrl?
    451 	 */
    452 	sc->sc_setdefantenna = ath_setdefantenna;
    453 	sc->sc_rc = ath_rate_attach(sc);
    454 	if (sc->sc_rc == NULL) {
    455 		error = EIO;
    456 		goto bad2;
    457 	}
    458 
    459 	sc->sc_blinking = 0;
    460 	sc->sc_ledstate = 1;
    461 	sc->sc_ledon = 0;			/* low true */
    462 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    463 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    464 	/*
    465 	 * Auto-enable soft led processing for IBM cards and for
    466 	 * 5211 minipci cards.  Users can also manually enable/disable
    467 	 * support with a sysctl.
    468 	 */
    469 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    470 	if (sc->sc_softled) {
    471 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
    472 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
    473 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    474 	}
    475 
    476 	ifp->if_softc = sc;
    477 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    478 	ifp->if_start = ath_start;
    479 	ifp->if_stop = ath_stop;
    480 	ifp->if_watchdog = ath_watchdog;
    481 	ifp->if_ioctl = ath_ioctl;
    482 	ifp->if_init = ath_ifinit;
    483 	IFQ_SET_READY(&ifp->if_snd);
    484 
    485 	ic->ic_ifp = ifp;
    486 	ic->ic_reset = ath_reset;
    487 	ic->ic_newassoc = ath_newassoc;
    488 	ic->ic_updateslot = ath_updateslot;
    489 	ic->ic_wme.wme_update = ath_wme_update;
    490 	/* XXX not right but it's not used anywhere important */
    491 	ic->ic_phytype = IEEE80211_T_OFDM;
    492 	ic->ic_opmode = IEEE80211_M_STA;
    493 	ic->ic_caps =
    494 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    495 		| IEEE80211_C_HOSTAP		/* hostap mode */
    496 		| IEEE80211_C_MONITOR		/* monitor mode */
    497 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    498 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    499 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    500 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    501 		;
    502 	/*
    503 	 * Query the hal to figure out h/w crypto support.
    504 	 */
    505 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    506 		ic->ic_caps |= IEEE80211_C_WEP;
    507 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    508 		ic->ic_caps |= IEEE80211_C_AES;
    509 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    510 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    511 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    512 		ic->ic_caps |= IEEE80211_C_CKIP;
    513 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    514 		ic->ic_caps |= IEEE80211_C_TKIP;
    515 		/*
    516 		 * Check if h/w does the MIC and/or whether the
    517 		 * separate key cache entries are required to
    518 		 * handle both tx+rx MIC keys.
    519 		 */
    520 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    521 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    522 
    523 		/*
    524 		 * If the h/w supports storing tx+rx MIC keys
    525 		 * in one cache slot automatically enable use.
    526 		 */
    527 		if (ath_hal_hastkipsplit(ah) ||
    528 		    !ath_hal_settkipsplit(ah, AH_FALSE))
    529 			sc->sc_splitmic = 1;
    530 
    531 		/*
    532 		 * If the h/w can do TKIP MIC together with WME then
    533 		 * we use it; otherwise we force the MIC to be done
    534 		 * in software by the net80211 layer.
    535 		 */
    536 		if (ath_hal_haswmetkipmic(ah))
    537 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
    538 	}
    539 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    540 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    541 	/*
    542 	 * Mark key cache slots associated with global keys
    543 	 * as in use.  If we knew TKIP was not to be used we
    544 	 * could leave the +32, +64, and +32+64 slots free.
    545 	 */
    546 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    547 		setbit(sc->sc_keymap, i);
    548 		setbit(sc->sc_keymap, i+64);
    549 		if (sc->sc_splitmic) {
    550 			setbit(sc->sc_keymap, i+32);
    551 			setbit(sc->sc_keymap, i+32+64);
    552 		}
    553 	}
    554 	/*
    555 	 * TPC support can be done either with a global cap or
    556 	 * per-packet support.  The latter is not available on
    557 	 * all parts.  We're a bit pedantic here as all parts
    558 	 * support a global cap.
    559 	 */
    560 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    561 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    562 
    563 	/*
    564 	 * Mark WME capability only if we have sufficient
    565 	 * hardware queues to do proper priority scheduling.
    566 	 */
    567 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    568 		ic->ic_caps |= IEEE80211_C_WME;
    569 	/*
    570 	 * Check for misc other capabilities.
    571 	 */
    572 	if (ath_hal_hasbursting(ah))
    573 		ic->ic_caps |= IEEE80211_C_BURST;
    574 
    575 	/*
    576 	 * Indicate we need the 802.11 header padded to a
    577 	 * 32-bit boundary for 4-address and QoS frames.
    578 	 */
    579 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    580 
    581 	/*
    582 	 * Query the hal about antenna support.
    583 	 */
    584 	sc->sc_defant = ath_hal_getdefantenna(ah);
    585 
    586 	/*
    587 	 * Not all chips have the VEOL support we want to
    588 	 * use with IBSS beacons; check here for it.
    589 	 */
    590 	sc->sc_hasveol = ath_hal_hasveol(ah);
    591 
    592 	/* get mac address from hardware */
    593 	ath_hal_getmac(ah, ic->ic_myaddr);
    594 
    595 	if_attach(ifp);
    596 	/* call MI attach routine. */
    597 	ieee80211_ifattach(ic);
    598 	/* override default methods */
    599 	ic->ic_node_alloc = ath_node_alloc;
    600 	sc->sc_node_free = ic->ic_node_free;
    601 	ic->ic_node_free = ath_node_free;
    602 	ic->ic_node_getrssi = ath_node_getrssi;
    603 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    604 	ic->ic_recv_mgmt = ath_recv_mgmt;
    605 	sc->sc_newstate = ic->ic_newstate;
    606 	ic->ic_newstate = ath_newstate;
    607 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    608 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    609 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    610 	ic->ic_crypto.cs_key_set = ath_key_set;
    611 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    612 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    613 	/* complete initialization */
    614 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    615 
    616 	ath_bpfattach(sc);
    617 
    618 	sc->sc_flags |= ATH_ATTACHED;
    619 
    620 	/*
    621 	 * Setup dynamic sysctl's now that country code and
    622 	 * regdomain are available from the hal.
    623 	 */
    624 	ath_sysctlattach(sc);
    625 
    626 	ieee80211_announce(ic);
    627 	ath_announce(sc);
    628 	return 0;
    629 bad2:
    630 	ath_tx_cleanup(sc);
    631 	ath_desc_free(sc);
    632 bad:
    633 	if (ah)
    634 		ath_hal_detach(ah);
    635 	/* XXX don't get under the abstraction like this */
    636 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
    637 	return error;
    638 }
    639 
    640 int
    641 ath_detach(struct ath_softc *sc)
    642 {
    643 	struct ifnet *ifp = &sc->sc_if;
    644 	int s;
    645 
    646 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    647 		return (0);
    648 
    649 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    650 		__func__, ifp->if_flags);
    651 
    652 	s = splnet();
    653 	ath_stop(ifp, 1);
    654 	bpf_detach(ifp);
    655 	/*
    656 	 * NB: the order of these is important:
    657 	 * o call the 802.11 layer before detaching the hal to
    658 	 *   insure callbacks into the driver to delete global
    659 	 *   key cache entries can be handled
    660 	 * o reclaim the tx queue data structures after calling
    661 	 *   the 802.11 layer as we'll get called back to reclaim
    662 	 *   node state and potentially want to use them
    663 	 * o to cleanup the tx queues the hal is called, so detach
    664 	 *   it last
    665 	 * Other than that, it's straightforward...
    666 	 */
    667 	ieee80211_ifdetach(&sc->sc_ic);
    668 #ifdef ATH_TX99_DIAG
    669 	if (sc->sc_tx99 != NULL)
    670 		sc->sc_tx99->detach(sc->sc_tx99);
    671 #endif
    672 	ath_rate_detach(sc->sc_rc);
    673 	ath_desc_free(sc);
    674 	ath_tx_cleanup(sc);
    675 	sysctl_teardown(&sc->sc_sysctllog);
    676 	ath_hal_detach(sc->sc_ah);
    677 	if_detach(ifp);
    678 	splx(s);
    679 
    680 	return 0;
    681 }
    682 
    683 void
    684 ath_suspend(struct ath_softc *sc)
    685 {
    686 #if notyet
    687 	/*
    688 	 * Set the chip in full sleep mode.  Note that we are
    689 	 * careful to do this only when bringing the interface
    690 	 * completely to a stop.  When the chip is in this state
    691 	 * it must be carefully woken up or references to
    692 	 * registers in the PCI clock domain may freeze the bus
    693 	 * (and system).  This varies by chip and is mostly an
    694 	 * issue with newer parts that go to sleep more quickly.
    695 	 */
    696 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
    697 #endif
    698 }
    699 
    700 bool
    701 ath_resume(struct ath_softc *sc)
    702 {
    703 	struct ath_hal *ah = sc->sc_ah;
    704 	struct ieee80211com *ic = &sc->sc_ic;
    705 	HAL_STATUS status;
    706 	int i;
    707 
    708 #if notyet
    709 	ath_hal_setpower(ah, HAL_PM_AWAKE);
    710 #else
    711 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
    712 #endif
    713 
    714 	/*
    715 	 * Reset the key cache since some parts do not
    716 	 * reset the contents on initial power up.
    717 	 */
    718 	for (i = 0; i < sc->sc_keymax; i++)
    719 		ath_hal_keyreset(ah, i);
    720 
    721 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
    722 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
    723 		if (ATH_TXQ_SETUP(sc, i))
    724 			ath_hal_resettxqueue(ah, i);
    725 
    726 	if (sc->sc_softled) {
    727 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
    728 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
    729 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    730 	}
    731 	return true;
    732 }
    733 
    734 /*
    735  * Interrupt handler.  Most of the actual processing is deferred.
    736  */
    737 int
    738 ath_intr(void *arg)
    739 {
    740 	struct ath_softc *sc = arg;
    741 	struct ifnet *ifp = &sc->sc_if;
    742 	struct ath_hal *ah = sc->sc_ah;
    743 	HAL_INT status = 0;
    744 
    745 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
    746 		/*
    747 		 * The hardware is not ready/present, don't touch anything.
    748 		 * Note this can happen early on if the IRQ is shared.
    749 		 */
    750 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    751 		return 0;
    752 	}
    753 
    754 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    755 		return 0;
    756 
    757 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    758 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    759 			__func__, ifp->if_flags);
    760 		ath_hal_getisr(ah, &status);	/* clear ISR */
    761 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    762 		return 1; /* XXX */
    763 	}
    764 	/*
    765 	 * Figure out the reason(s) for the interrupt.  Note
    766 	 * that the hal returns a pseudo-ISR that may include
    767 	 * bits we haven't explicitly enabled so we mask the
    768 	 * value to insure we only process bits we requested.
    769 	 */
    770 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    771 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    772 	status &= sc->sc_imask;			/* discard unasked for bits */
    773 	if (status & HAL_INT_FATAL) {
    774 		/*
    775 		 * Fatal errors are unrecoverable.  Typically
    776 		 * these are caused by DMA errors.  Unfortunately
    777 		 * the exact reason is not (presently) returned
    778 		 * by the hal.
    779 		 */
    780 		sc->sc_stats.ast_hardware++;
    781 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    782 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    783 	} else if (status & HAL_INT_RXORN) {
    784 		sc->sc_stats.ast_rxorn++;
    785 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    786 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    787 	} else {
    788 		if (status & HAL_INT_SWBA) {
    789 			/*
    790 			 * Software beacon alert--time to send a beacon.
    791 			 * Handle beacon transmission directly; deferring
    792 			 * this is too slow to meet timing constraints
    793 			 * under load.
    794 			 */
    795 			ath_beacon_proc(sc, 0);
    796 		}
    797 		if (status & HAL_INT_RXEOL) {
    798 			/*
    799 			 * NB: the hardware should re-read the link when
    800 			 *     RXE bit is written, but it doesn't work at
    801 			 *     least on older hardware revs.
    802 			 */
    803 			sc->sc_stats.ast_rxeol++;
    804 			sc->sc_rxlink = NULL;
    805 		}
    806 		if (status & HAL_INT_TXURN) {
    807 			sc->sc_stats.ast_txurn++;
    808 			/* bump tx trigger level */
    809 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    810 		}
    811 		if (status & HAL_INT_RX)
    812 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    813 		if (status & HAL_INT_TX)
    814 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    815 		if (status & HAL_INT_BMISS) {
    816 			sc->sc_stats.ast_bmiss++;
    817 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    818 		}
    819 		if (status & HAL_INT_MIB) {
    820 			sc->sc_stats.ast_mib++;
    821 			/*
    822 			 * Disable interrupts until we service the MIB
    823 			 * interrupt; otherwise it will continue to fire.
    824 			 */
    825 			ath_hal_intrset(ah, 0);
    826 			/*
    827 			 * Let the hal handle the event.  We assume it will
    828 			 * clear whatever condition caused the interrupt.
    829 			 */
    830 			ath_hal_mibevent(ah, &sc->sc_halstats);
    831 			ath_hal_intrset(ah, sc->sc_imask);
    832 		}
    833 	}
    834 	return 1;
    835 }
    836 
    837 /* Swap transmit descriptor.
    838  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    839  * function.
    840  */
    841 static inline void
    842 ath_desc_swap(struct ath_desc *ds)
    843 {
    844 #ifdef AH_NEED_DESC_SWAP
    845 	ds->ds_link = htole32(ds->ds_link);
    846 	ds->ds_data = htole32(ds->ds_data);
    847 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    848 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    849 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    850 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    851 #endif
    852 }
    853 
    854 static void
    855 ath_fatal_proc(void *arg, int pending)
    856 {
    857 	struct ath_softc *sc = arg;
    858 	struct ifnet *ifp = &sc->sc_if;
    859 
    860 	if_printf(ifp, "hardware error; resetting\n");
    861 	ath_reset(ifp);
    862 }
    863 
    864 static void
    865 ath_rxorn_proc(void *arg, int pending)
    866 {
    867 	struct ath_softc *sc = arg;
    868 	struct ifnet *ifp = &sc->sc_if;
    869 
    870 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    871 	ath_reset(ifp);
    872 }
    873 
    874 static void
    875 ath_bmiss_proc(void *arg, int pending)
    876 {
    877 	struct ath_softc *sc = arg;
    878 	struct ieee80211com *ic = &sc->sc_ic;
    879 
    880 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    881 	KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
    882 		"unexpect operating mode %u", ic->ic_opmode);
    883 	if (ic->ic_state == IEEE80211_S_RUN) {
    884 		u_int64_t lastrx = sc->sc_lastrx;
    885 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    886 
    887 		DPRINTF(sc, ATH_DEBUG_BEACON,
    888 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    889 		    " (%" PRIu64 ") bmiss %u\n",
    890 		    __func__, tsf, tsf - lastrx, lastrx,
    891 		    ic->ic_bmisstimeout*1024);
    892 		/*
    893 		 * Workaround phantom bmiss interrupts by sanity-checking
    894 		 * the time of our last rx'd frame.  If it is within the
    895 		 * beacon miss interval then ignore the interrupt.  If it's
    896 		 * truly a bmiss we'll get another interrupt soon and that'll
    897 		 * be dispatched up for processing.
    898 		 */
    899 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    900 			NET_LOCK_GIANT();
    901 			ieee80211_beacon_miss(ic);
    902 			NET_UNLOCK_GIANT();
    903 		} else
    904 			sc->sc_stats.ast_bmiss_phantom++;
    905 	}
    906 }
    907 
    908 static void
    909 ath_radar_proc(void *arg, int pending)
    910 {
    911 #if 0
    912 	struct ath_softc *sc = arg;
    913 	struct ifnet *ifp = &sc->sc_if;
    914 	struct ath_hal *ah = sc->sc_ah;
    915 	HAL_CHANNEL hchan;
    916 
    917 	if (ath_hal_procdfs(ah, &hchan)) {
    918 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    919 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    920 		/*
    921 		 * Initiate channel change.
    922 		 */
    923 		/* XXX not yet */
    924 	}
    925 #endif
    926 }
    927 
    928 static u_int
    929 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    930 {
    931 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    932 	static const u_int modeflags[] = {
    933 		0,			/* IEEE80211_MODE_AUTO */
    934 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    935 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    936 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    937 		0,			/* IEEE80211_MODE_FH */
    938 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    939 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    940 	};
    941 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    942 
    943 	KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
    944 	KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
    945 	return modeflags[mode];
    946 #undef N
    947 }
    948 
    949 static int
    950 ath_ifinit(struct ifnet *ifp)
    951 {
    952 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    953 
    954 	return ath_init(sc);
    955 }
    956 
    957 static void
    958 ath_settkipmic(struct ath_softc *sc)
    959 {
    960 	struct ieee80211com *ic = &sc->sc_ic;
    961 	struct ath_hal *ah = sc->sc_ah;
    962 
    963 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
    964 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
    965 		if (ic->ic_flags & IEEE80211_F_WME) {
    966 			(void)ath_hal_settkipmic(ah, AH_FALSE);
    967 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
    968 		} else {
    969 			(void)ath_hal_settkipmic(ah, AH_TRUE);
    970 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    971 		}
    972 	}
    973 }
    974 
    975 static int
    976 ath_init(struct ath_softc *sc)
    977 {
    978 	struct ifnet *ifp = &sc->sc_if;
    979 	struct ieee80211com *ic = &sc->sc_ic;
    980 	struct ath_hal *ah = sc->sc_ah;
    981 	HAL_STATUS status;
    982 	int error = 0, s;
    983 
    984 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    985 		__func__, ifp->if_flags);
    986 
    987 	if (device_is_active(sc->sc_dev)) {
    988 		s = splnet();
    989 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
    990 	           !device_is_active(sc->sc_dev))
    991 		return 0;
    992 	else
    993 		s = splnet();
    994 
    995 	/*
    996 	 * Stop anything previously setup.  This is safe
    997 	 * whether this is the first time through or not.
    998 	 */
    999 	ath_stop_locked(ifp, 0);
   1000 
   1001 	/*
   1002 	 * The basic interface to setting the hardware in a good
   1003 	 * state is ``reset''.  On return the hardware is known to
   1004 	 * be powered up and with interrupts disabled.  This must
   1005 	 * be followed by initialization of the appropriate bits
   1006 	 * and then setup of the interrupt mask.
   1007 	 */
   1008 	ath_settkipmic(sc);
   1009 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1010 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1011 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1012 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1013 			status);
   1014 		error = EIO;
   1015 		goto done;
   1016 	}
   1017 
   1018 	/*
   1019 	 * This is needed only to setup initial state
   1020 	 * but it's best done after a reset.
   1021 	 */
   1022 	ath_update_txpow(sc);
   1023 	/*
   1024 	 * Likewise this is set during reset so update
   1025 	 * state cached in the driver.
   1026 	 */
   1027 	ath_restore_diversity(sc);
   1028 	sc->sc_calinterval = 1;
   1029 	sc->sc_caltries = 0;
   1030 
   1031 	/*
   1032 	 * Setup the hardware after reset: the key cache
   1033 	 * is filled as needed and the receive engine is
   1034 	 * set going.  Frame transmit is handled entirely
   1035 	 * in the frame output path; there's nothing to do
   1036 	 * here except setup the interrupt mask.
   1037 	 */
   1038 	if ((error = ath_startrecv(sc)) != 0) {
   1039 		if_printf(ifp, "unable to start recv logic\n");
   1040 		goto done;
   1041 	}
   1042 
   1043 	/*
   1044 	 * Enable interrupts.
   1045 	 */
   1046 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1047 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1048 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1049 	/*
   1050 	 * Enable MIB interrupts when there are hardware phy counters.
   1051 	 * Note we only do this (at the moment) for station mode.
   1052 	 */
   1053 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1054 		sc->sc_imask |= HAL_INT_MIB;
   1055 	ath_hal_intrset(ah, sc->sc_imask);
   1056 
   1057 	ifp->if_flags |= IFF_RUNNING;
   1058 	ic->ic_state = IEEE80211_S_INIT;
   1059 
   1060 	/*
   1061 	 * The hardware should be ready to go now so it's safe
   1062 	 * to kick the 802.11 state machine as it's likely to
   1063 	 * immediately call back to us to send mgmt frames.
   1064 	 */
   1065 	ath_chan_change(sc, ic->ic_curchan);
   1066 #ifdef ATH_TX99_DIAG
   1067 	if (sc->sc_tx99 != NULL)
   1068 		sc->sc_tx99->start(sc->sc_tx99);
   1069 	else
   1070 #endif
   1071 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1072 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1073 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1074 	} else
   1075 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1076 done:
   1077 	splx(s);
   1078 	return error;
   1079 }
   1080 
   1081 static void
   1082 ath_stop_locked(struct ifnet *ifp, int disable)
   1083 {
   1084 	struct ath_softc *sc = ifp->if_softc;
   1085 	struct ieee80211com *ic = &sc->sc_ic;
   1086 	struct ath_hal *ah = sc->sc_ah;
   1087 
   1088 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
   1089 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
   1090 
   1091 	/* KASSERT() IPL_NET */
   1092 	if (ifp->if_flags & IFF_RUNNING) {
   1093 		/*
   1094 		 * Shutdown the hardware and driver:
   1095 		 *    reset 802.11 state machine
   1096 		 *    turn off timers
   1097 		 *    disable interrupts
   1098 		 *    turn off the radio
   1099 		 *    clear transmit machinery
   1100 		 *    clear receive machinery
   1101 		 *    drain and release tx queues
   1102 		 *    reclaim beacon resources
   1103 		 *    power down hardware
   1104 		 *
   1105 		 * Note that some of this work is not possible if the
   1106 		 * hardware is gone (invalid).
   1107 		 */
   1108 #ifdef ATH_TX99_DIAG
   1109 		if (sc->sc_tx99 != NULL)
   1110 			sc->sc_tx99->stop(sc->sc_tx99);
   1111 #endif
   1112 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1113 		ifp->if_flags &= ~IFF_RUNNING;
   1114 		ifp->if_timer = 0;
   1115 		if (device_is_enabled(sc->sc_dev)) {
   1116 			if (sc->sc_softled) {
   1117 				callout_stop(&sc->sc_ledtimer);
   1118 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1119 					!sc->sc_ledon);
   1120 				sc->sc_blinking = 0;
   1121 			}
   1122 			ath_hal_intrset(ah, 0);
   1123 		}
   1124 		ath_draintxq(sc);
   1125 		if (device_is_enabled(sc->sc_dev)) {
   1126 			ath_stoprecv(sc);
   1127 			ath_hal_phydisable(ah);
   1128 		} else
   1129 			sc->sc_rxlink = NULL;
   1130 		IF_PURGE(&ifp->if_snd);
   1131 		ath_beacon_free(sc);
   1132 	}
   1133 	if (disable)
   1134 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
   1135 }
   1136 
   1137 static void
   1138 ath_stop(struct ifnet *ifp, int disable)
   1139 {
   1140 	int s;
   1141 
   1142 	s = splnet();
   1143 	ath_stop_locked(ifp, disable);
   1144 	splx(s);
   1145 }
   1146 
   1147 static void
   1148 ath_restore_diversity(struct ath_softc *sc)
   1149 {
   1150 	struct ifnet *ifp = &sc->sc_if;
   1151 	struct ath_hal *ah = sc->sc_ah;
   1152 
   1153 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1154 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1155 		if_printf(ifp, "could not restore diversity setting %d\n",
   1156 		    sc->sc_diversity);
   1157 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1158 	}
   1159 }
   1160 
   1161 /*
   1162  * Reset the hardware w/o losing operational state.  This is
   1163  * basically a more efficient way of doing ath_stop, ath_init,
   1164  * followed by state transitions to the current 802.11
   1165  * operational state.  Used to recover from various errors and
   1166  * to reset or reload hardware state.
   1167  */
   1168 int
   1169 ath_reset(struct ifnet *ifp)
   1170 {
   1171 	struct ath_softc *sc = ifp->if_softc;
   1172 	struct ieee80211com *ic = &sc->sc_ic;
   1173 	struct ath_hal *ah = sc->sc_ah;
   1174 	struct ieee80211_channel *c;
   1175 	HAL_STATUS status;
   1176 
   1177 	/*
   1178 	 * Convert to a HAL channel description with the flags
   1179 	 * constrained to reflect the current operating mode.
   1180 	 */
   1181 	c = ic->ic_curchan;
   1182 	sc->sc_curchan.channel = c->ic_freq;
   1183 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1184 
   1185 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1186 	ath_draintxq(sc);		/* stop xmit side */
   1187 	ath_stoprecv(sc);		/* stop recv side */
   1188 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
   1189 	/* NB: indicate channel change so we do a full reset */
   1190 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1191 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1192 			__func__, status);
   1193 	ath_update_txpow(sc);		/* update tx power state */
   1194 	ath_restore_diversity(sc);
   1195 	sc->sc_calinterval = 1;
   1196 	sc->sc_caltries = 0;
   1197 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1198 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1199 	/*
   1200 	 * We may be doing a reset in response to an ioctl
   1201 	 * that changes the channel so update any state that
   1202 	 * might change as a result.
   1203 	 */
   1204 	ath_chan_change(sc, c);
   1205 	if (ic->ic_state == IEEE80211_S_RUN)
   1206 		ath_beacon_config(sc);	/* restart beacons */
   1207 	ath_hal_intrset(ah, sc->sc_imask);
   1208 
   1209 	ath_start(ifp);			/* restart xmit */
   1210 	return 0;
   1211 }
   1212 
   1213 /*
   1214  * Cleanup driver resources when we run out of buffers
   1215  * while processing fragments; return the tx buffers
   1216  * allocated and drop node references.
   1217  */
   1218 static void
   1219 ath_txfrag_cleanup(struct ath_softc *sc,
   1220 	ath_bufhead *frags, struct ieee80211_node *ni)
   1221 {
   1222 	struct ath_buf *bf;
   1223 
   1224 	ATH_TXBUF_LOCK_ASSERT(sc);
   1225 
   1226 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1227 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1228 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1229 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1230 		ieee80211_node_decref(ni);
   1231 	}
   1232 }
   1233 
   1234 /*
   1235  * Setup xmit of a fragmented frame.  Allocate a buffer
   1236  * for each frag and bump the node reference count to
   1237  * reflect the held reference to be setup by ath_tx_start.
   1238  */
   1239 static int
   1240 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1241 	struct mbuf *m0, struct ieee80211_node *ni)
   1242 {
   1243 	struct mbuf *m;
   1244 	struct ath_buf *bf;
   1245 
   1246 	ATH_TXBUF_LOCK(sc);
   1247 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1248 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1249 		if (bf == NULL) {       /* out of buffers, cleanup */
   1250 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1251 				__func__);
   1252 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1253 			ath_txfrag_cleanup(sc, frags, ni);
   1254 			break;
   1255 		}
   1256 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1257 		ieee80211_node_incref(ni);
   1258 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1259 	}
   1260 	ATH_TXBUF_UNLOCK(sc);
   1261 
   1262 	return !STAILQ_EMPTY(frags);
   1263 }
   1264 
   1265 static void
   1266 ath_start(struct ifnet *ifp)
   1267 {
   1268 	struct ath_softc *sc = ifp->if_softc;
   1269 	struct ath_hal *ah = sc->sc_ah;
   1270 	struct ieee80211com *ic = &sc->sc_ic;
   1271 	struct ieee80211_node *ni;
   1272 	struct ath_buf *bf;
   1273 	struct mbuf *m, *next;
   1274 	struct ieee80211_frame *wh;
   1275 	struct ether_header *eh;
   1276 	ath_bufhead frags;
   1277 
   1278 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   1279 	    !device_is_active(sc->sc_dev))
   1280 		return;
   1281 
   1282 	if (sc->sc_flags & ATH_KEY_UPDATING)
   1283 		return;
   1284 
   1285 	for (;;) {
   1286 		/*
   1287 		 * Grab a TX buffer and associated resources.
   1288 		 */
   1289 		ATH_TXBUF_LOCK(sc);
   1290 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1291 		if (bf != NULL)
   1292 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1293 		ATH_TXBUF_UNLOCK(sc);
   1294 		if (bf == NULL) {
   1295 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1296 				__func__);
   1297 			sc->sc_stats.ast_tx_qstop++;
   1298 			ifp->if_flags |= IFF_OACTIVE;
   1299 			break;
   1300 		}
   1301 		/*
   1302 		 * Poll the management queue for frames; they
   1303 		 * have priority over normal data frames.
   1304 		 */
   1305 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1306 		if (m == NULL) {
   1307 			/*
   1308 			 * No data frames go out unless we're associated.
   1309 			 */
   1310 			if (ic->ic_state != IEEE80211_S_RUN) {
   1311 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1312 				    "%s: discard data packet, state %s\n",
   1313 				    __func__,
   1314 				    ieee80211_state_name[ic->ic_state]);
   1315 				sc->sc_stats.ast_tx_discard++;
   1316 				ATH_TXBUF_LOCK(sc);
   1317 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1318 				ATH_TXBUF_UNLOCK(sc);
   1319 				break;
   1320 			}
   1321 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1322 			if (m == NULL) {
   1323 				ATH_TXBUF_LOCK(sc);
   1324 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1325 				ATH_TXBUF_UNLOCK(sc);
   1326 				break;
   1327 			}
   1328 			STAILQ_INIT(&frags);
   1329 			/*
   1330 			 * Find the node for the destination so we can do
   1331 			 * things like power save and fast frames aggregation.
   1332 			 */
   1333 			if (m->m_len < sizeof(struct ether_header) &&
   1334 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1335 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1336 				ni = NULL;
   1337 				goto bad;
   1338 			}
   1339 			eh = mtod(m, struct ether_header *);
   1340 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1341 			if (ni == NULL) {
   1342 				/* NB: ieee80211_find_txnode does stat+msg */
   1343 				m_freem(m);
   1344 				goto bad;
   1345 			}
   1346 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1347 			    (m->m_flags & M_PWR_SAV) == 0) {
   1348 				/*
   1349 				 * Station in power save mode; pass the frame
   1350 				 * to the 802.11 layer and continue.  We'll get
   1351 				 * the frame back when the time is right.
   1352 				 */
   1353 				ieee80211_pwrsave(ic, ni, m);
   1354 				goto reclaim;
   1355 			}
   1356 			/* calculate priority so we can find the tx queue */
   1357 			if (ieee80211_classify(ic, m, ni)) {
   1358 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1359 					"%s: discard, classification failure\n",
   1360 					__func__);
   1361 				m_freem(m);
   1362 				goto bad;
   1363 			}
   1364 			ifp->if_opackets++;
   1365 
   1366 			bpf_mtap(ifp, m);
   1367 			/*
   1368 			 * Encapsulate the packet in prep for transmission.
   1369 			 */
   1370 			m = ieee80211_encap(ic, m, ni);
   1371 			if (m == NULL) {
   1372 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1373 					"%s: encapsulation failure\n",
   1374 					__func__);
   1375 				sc->sc_stats.ast_tx_encap++;
   1376 				goto bad;
   1377 			}
   1378 			/*
   1379 			 * Check for fragmentation.  If this has frame
   1380 			 * has been broken up verify we have enough
   1381 			 * buffers to send all the fragments so all
   1382 			 * go out or none...
   1383 			 */
   1384 			if ((m->m_flags & M_FRAG) &&
   1385 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1386 				DPRINTF(sc, ATH_DEBUG_ANY,
   1387 				    "%s: out of txfrag buffers\n", __func__);
   1388 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1389 				ath_freetx(m);
   1390 				goto bad;
   1391 			}
   1392 		} else {
   1393 			/*
   1394 			 * Hack!  The referenced node pointer is in the
   1395 			 * rcvif field of the packet header.  This is
   1396 			 * placed there by ieee80211_mgmt_output because
   1397 			 * we need to hold the reference with the frame
   1398 			 * and there's no other way (other than packet
   1399 			 * tags which we consider too expensive to use)
   1400 			 * to pass it along.
   1401 			 */
   1402 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1403 			m->m_pkthdr.rcvif = NULL;
   1404 
   1405 			wh = mtod(m, struct ieee80211_frame *);
   1406 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1407 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1408 				/* fill time stamp */
   1409 				u_int64_t tsf;
   1410 				u_int32_t *tstamp;
   1411 
   1412 				tsf = ath_hal_gettsf64(ah);
   1413 				/* XXX: adjust 100us delay to xmit */
   1414 				tsf += 100;
   1415 				tstamp = (u_int32_t *)&wh[1];
   1416 				tstamp[0] = htole32(tsf & 0xffffffff);
   1417 				tstamp[1] = htole32(tsf >> 32);
   1418 			}
   1419 			sc->sc_stats.ast_tx_mgmt++;
   1420 		}
   1421 
   1422 	nextfrag:
   1423 		next = m->m_nextpkt;
   1424 		if (ath_tx_start(sc, ni, bf, m)) {
   1425 	bad:
   1426 			ifp->if_oerrors++;
   1427 	reclaim:
   1428 			ATH_TXBUF_LOCK(sc);
   1429 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1430 			ath_txfrag_cleanup(sc, &frags, ni);
   1431 			ATH_TXBUF_UNLOCK(sc);
   1432 			if (ni != NULL)
   1433 				ieee80211_free_node(ni);
   1434 			continue;
   1435 		}
   1436 		if (next != NULL) {
   1437 			m = next;
   1438 			bf = STAILQ_FIRST(&frags);
   1439 			KASSERTMSG(bf != NULL, "no buf for txfrag");
   1440 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1441 			goto nextfrag;
   1442 		}
   1443 
   1444 		ifp->if_timer = 1;
   1445 	}
   1446 }
   1447 
   1448 static int
   1449 ath_media_change(struct ifnet *ifp)
   1450 {
   1451 #define	IS_UP(ifp) \
   1452 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1453 	int error;
   1454 
   1455 	error = ieee80211_media_change(ifp);
   1456 	if (error == ENETRESET) {
   1457 		if (IS_UP(ifp))
   1458 			ath_init(ifp->if_softc);	/* XXX lose error */
   1459 		error = 0;
   1460 	}
   1461 	return error;
   1462 #undef IS_UP
   1463 }
   1464 
   1465 #ifdef AR_DEBUG
   1466 static void
   1467 ath_keyprint(const char *tag, u_int ix,
   1468 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1469 {
   1470 	static const char *ciphers[] = {
   1471 		"WEP",
   1472 		"AES-OCB",
   1473 		"AES-CCM",
   1474 		"CKIP",
   1475 		"TKIP",
   1476 		"CLR",
   1477 	};
   1478 	int i, n;
   1479 
   1480 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1481 	for (i = 0, n = hk->kv_len; i < n; i++)
   1482 		printf("%02x", hk->kv_val[i]);
   1483 	printf(" mac %s", ether_sprintf(mac));
   1484 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1485 		printf(" mic ");
   1486 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1487 			printf("%02x", hk->kv_mic[i]);
   1488 	}
   1489 	printf("\n");
   1490 }
   1491 #endif
   1492 
   1493 /*
   1494  * Set a TKIP key into the hardware.  This handles the
   1495  * potential distribution of key state to multiple key
   1496  * cache slots for TKIP.
   1497  */
   1498 static int
   1499 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1500 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1501 {
   1502 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1503 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1504 	struct ath_hal *ah = sc->sc_ah;
   1505 
   1506 	KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1507 		"got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
   1508 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1509 		if (sc->sc_splitmic) {
   1510 			/*
   1511 			 * TX key goes at first index, RX key at the rx index.
   1512 			 * The hal handles the MIC keys at index+64.
   1513 			 */
   1514 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1515 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1516 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
   1517 						zerobssid))
   1518 				return 0;
   1519 
   1520 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1521 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1522 			/* XXX delete tx key on failure? */
   1523 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
   1524 					hk, mac);
   1525 		} else {
   1526 			/*
   1527 			 * Room for both TX+RX MIC keys in one key cache
   1528 			 * slot, just set key at the first index; the HAL
   1529 			 * will handle the reset.
   1530 			 */
   1531 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1532 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1533 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1534 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1535 		}
   1536 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
   1537 		if (sc->sc_splitmic) {
   1538 			/*
   1539 			 * NB: must pass MIC key in expected location when
   1540 			 * the keycache only holds one MIC key per entry.
   1541 			 */
   1542 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
   1543 		} else
   1544 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1545 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1546 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1547 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
   1548 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1549 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1550 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1551 	}
   1552 	return 0;
   1553 #undef IEEE80211_KEY_XR
   1554 }
   1555 
   1556 /*
   1557  * Set a net80211 key into the hardware.  This handles the
   1558  * potential distribution of key state to multiple key
   1559  * cache slots for TKIP with hardware MIC support.
   1560  */
   1561 static int
   1562 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1563 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1564 	struct ieee80211_node *bss)
   1565 {
   1566 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1567 	static const u_int8_t ciphermap[] = {
   1568 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1569 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1570 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1571 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1572 		(u_int8_t) -1,		/* 4 is not allocated */
   1573 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1574 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1575 	};
   1576 	struct ath_hal *ah = sc->sc_ah;
   1577 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1578 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1579 	const u_int8_t *mac;
   1580 	HAL_KEYVAL hk;
   1581 
   1582 	memset(&hk, 0, sizeof(hk));
   1583 	/*
   1584 	 * Software crypto uses a "clear key" so non-crypto
   1585 	 * state kept in the key cache are maintained and
   1586 	 * so that rx frames have an entry to match.
   1587 	 */
   1588 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1589 		KASSERTMSG(cip->ic_cipher < N(ciphermap),
   1590 			"invalid cipher type %u", cip->ic_cipher);
   1591 		hk.kv_type = ciphermap[cip->ic_cipher];
   1592 		hk.kv_len = k->wk_keylen;
   1593 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1594 	} else
   1595 		hk.kv_type = HAL_CIPHER_CLR;
   1596 
   1597 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1598 		/*
   1599 		 * Group keys on hardware that supports multicast frame
   1600 		 * key search use a mac that is the sender's address with
   1601 		 * the high bit set instead of the app-specified address.
   1602 		 */
   1603 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1604 		gmac[0] |= 0x80;
   1605 		mac = gmac;
   1606 	} else
   1607 		mac = mac0;
   1608 
   1609 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
   1610 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
   1611 		return ath_keyset_tkip(sc, k, &hk, mac);
   1612 	} else {
   1613 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1614 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
   1615 	}
   1616 #undef N
   1617 }
   1618 
   1619 /*
   1620  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1621  * each key, one for decrypt/encrypt and the other for the MIC.
   1622  */
   1623 static u_int16_t
   1624 key_alloc_2pair(struct ath_softc *sc,
   1625 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1626 {
   1627 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1628 	u_int i, keyix;
   1629 
   1630 	KASSERTMSG(sc->sc_splitmic, "key cache !split");
   1631 	/* XXX could optimize */
   1632 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1633 		u_int8_t b = sc->sc_keymap[i];
   1634 		if (b != 0xff) {
   1635 			/*
   1636 			 * One or more slots in this byte are free.
   1637 			 */
   1638 			keyix = i*NBBY;
   1639 			while (b & 1) {
   1640 		again:
   1641 				keyix++;
   1642 				b >>= 1;
   1643 			}
   1644 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1645 			if (isset(sc->sc_keymap, keyix+32) ||
   1646 			    isset(sc->sc_keymap, keyix+64) ||
   1647 			    isset(sc->sc_keymap, keyix+32+64)) {
   1648 				/* full pair unavailable */
   1649 				/* XXX statistic */
   1650 				if (keyix == (i+1)*NBBY) {
   1651 					/* no slots were appropriate, advance */
   1652 					continue;
   1653 				}
   1654 				goto again;
   1655 			}
   1656 			setbit(sc->sc_keymap, keyix);
   1657 			setbit(sc->sc_keymap, keyix+64);
   1658 			setbit(sc->sc_keymap, keyix+32);
   1659 			setbit(sc->sc_keymap, keyix+32+64);
   1660 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1661 				"%s: key pair %u,%u %u,%u\n",
   1662 				__func__, keyix, keyix+64,
   1663 				keyix+32, keyix+32+64);
   1664 			*txkeyix = keyix;
   1665 			*rxkeyix = keyix+32;
   1666 			return keyix;
   1667 		}
   1668 	}
   1669 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1670 	return IEEE80211_KEYIX_NONE;
   1671 #undef N
   1672 }
   1673 
   1674 /*
   1675  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1676  * each key, one for decrypt/encrypt and the other for the MIC.
   1677  */
   1678 static int
   1679 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
   1680     ieee80211_keyix *rxkeyix)
   1681 {
   1682 #define N(a)	(sizeof(a)/sizeof(a[0]))
   1683 	u_int i, keyix;
   1684 
   1685 	KASSERTMSG(!sc->sc_splitmic, "key cache split");
   1686 	/* XXX could optimize */
   1687 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1688 		uint8_t b = sc->sc_keymap[i];
   1689 		if (b != 0xff) {
   1690 			/*
   1691 			 * One or more slots in this byte are free.
   1692 			 */
   1693 			keyix = i*NBBY;
   1694 			while (b & 1) {
   1695 		again:
   1696 				keyix++;
   1697 				b >>= 1;
   1698 			}
   1699 			if (isset(sc->sc_keymap, keyix+64)) {
   1700 				/* full pair unavailable */
   1701 				/* XXX statistic */
   1702 				if (keyix == (i+1)*NBBY) {
   1703 					/* no slots were appropriate, advance */
   1704 					continue;
   1705 				}
   1706 				goto again;
   1707 			}
   1708 			setbit(sc->sc_keymap, keyix);
   1709 			setbit(sc->sc_keymap, keyix+64);
   1710 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1711 				"%s: key pair %u,%u\n",
   1712 				__func__, keyix, keyix+64);
   1713 			*txkeyix = *rxkeyix = keyix;
   1714 			return 1;
   1715 		}
   1716 	}
   1717 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1718 	return 0;
   1719 #undef N
   1720 }
   1721 
   1722 /*
   1723  * Allocate a single key cache slot.
   1724  */
   1725 static int
   1726 key_alloc_single(struct ath_softc *sc,
   1727 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1728 {
   1729 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1730 	u_int i, keyix;
   1731 
   1732 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1733 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1734 		u_int8_t b = sc->sc_keymap[i];
   1735 		if (b != 0xff) {
   1736 			/*
   1737 			 * One or more slots are free.
   1738 			 */
   1739 			keyix = i*NBBY;
   1740 			while (b & 1)
   1741 				keyix++, b >>= 1;
   1742 			setbit(sc->sc_keymap, keyix);
   1743 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1744 				__func__, keyix);
   1745 			*txkeyix = *rxkeyix = keyix;
   1746 			return 1;
   1747 		}
   1748 	}
   1749 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1750 	return 0;
   1751 #undef N
   1752 }
   1753 
   1754 /*
   1755  * Allocate one or more key cache slots for a uniacst key.  The
   1756  * key itself is needed only to identify the cipher.  For hardware
   1757  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1758  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1759  * that the MIC key for a TKIP key at slot i is assumed by the
   1760  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1761  * 64 entries.
   1762  */
   1763 static int
   1764 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1765 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1766 {
   1767 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1768 
   1769 	/*
   1770 	 * Group key allocation must be handled specially for
   1771 	 * parts that do not support multicast key cache search
   1772 	 * functionality.  For those parts the key id must match
   1773 	 * the h/w key index so lookups find the right key.  On
   1774 	 * parts w/ the key search facility we install the sender's
   1775 	 * mac address (with the high bit set) and let the hardware
   1776 	 * find the key w/o using the key id.  This is preferred as
   1777 	 * it permits us to support multiple users for adhoc and/or
   1778 	 * multi-station operation.
   1779 	 */
   1780 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1781 		if (!(&ic->ic_nw_keys[0] <= k &&
   1782 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1783 			/* should not happen */
   1784 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1785 				"%s: bogus group key\n", __func__);
   1786 			return 0;
   1787 		}
   1788 		/*
   1789 		 * XXX we pre-allocate the global keys so
   1790 		 * have no way to check if they've already been allocated.
   1791 		 */
   1792 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1793 		return 1;
   1794 	}
   1795 
   1796 	/*
   1797 	 * We allocate two pair for TKIP when using the h/w to do
   1798 	 * the MIC.  For everything else, including software crypto,
   1799 	 * we allocate a single entry.  Note that s/w crypto requires
   1800 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1801 	 * not support pass-through cache entries and we map all
   1802 	 * those requests to slot 0.
   1803 	 */
   1804 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1805 		return key_alloc_single(sc, keyix, rxkeyix);
   1806 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1807 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1808 		if (sc->sc_splitmic)
   1809 			return key_alloc_2pair(sc, keyix, rxkeyix);
   1810 		else
   1811 			return key_alloc_pair(sc, keyix, rxkeyix);
   1812 	} else {
   1813 		return key_alloc_single(sc, keyix, rxkeyix);
   1814 	}
   1815 }
   1816 
   1817 /*
   1818  * Delete an entry in the key cache allocated by ath_key_alloc.
   1819  */
   1820 static int
   1821 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1822 {
   1823 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1824 	struct ath_hal *ah = sc->sc_ah;
   1825 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1826 	u_int keyix = k->wk_keyix;
   1827 
   1828 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1829 
   1830 	if (!device_has_power(sc->sc_dev)) {
   1831 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
   1832 		    k->wk_keyix);
   1833 	}
   1834 
   1835 	ath_hal_keyreset(ah, keyix);
   1836 	/*
   1837 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1838 	 */
   1839 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1840 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1841 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1842 	if (keyix >= IEEE80211_WEP_NKID) {
   1843 		/*
   1844 		 * Don't touch keymap entries for global keys so
   1845 		 * they are never considered for dynamic allocation.
   1846 		 */
   1847 		clrbit(sc->sc_keymap, keyix);
   1848 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1849 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1850 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1851 			if (sc->sc_splitmic) {
   1852 				/* +32 for RX key, +32+64 for RX key MIC */
   1853 				clrbit(sc->sc_keymap, keyix+32);
   1854 				clrbit(sc->sc_keymap, keyix+32+64);
   1855 			}
   1856 		}
   1857 	}
   1858 	return 1;
   1859 }
   1860 
   1861 /*
   1862  * Set the key cache contents for the specified key.  Key cache
   1863  * slot(s) must already have been allocated by ath_key_alloc.
   1864  */
   1865 static int
   1866 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1867 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1868 {
   1869 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1870 
   1871 	if (!device_has_power(sc->sc_dev)) {
   1872 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
   1873 		    k->wk_keyix);
   1874 	}
   1875 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1876 }
   1877 
   1878 /*
   1879  * Block/unblock tx+rx processing while a key change is done.
   1880  * We assume the caller serializes key management operations
   1881  * so we only need to worry about synchronization with other
   1882  * uses that originate in the driver.
   1883  */
   1884 static void
   1885 ath_key_update_begin(struct ieee80211com *ic)
   1886 {
   1887 	struct ifnet *ifp = ic->ic_ifp;
   1888 	struct ath_softc *sc = ifp->if_softc;
   1889 
   1890 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1891 #if 0
   1892 	tasklet_disable(&sc->sc_rxtq);
   1893 #endif
   1894 	sc->sc_flags |= ATH_KEY_UPDATING;
   1895 }
   1896 
   1897 static void
   1898 ath_key_update_end(struct ieee80211com *ic)
   1899 {
   1900 	struct ifnet *ifp = ic->ic_ifp;
   1901 	struct ath_softc *sc = ifp->if_softc;
   1902 
   1903 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1904 	sc->sc_flags &= ~ATH_KEY_UPDATING;
   1905 #if 0
   1906 	tasklet_enable(&sc->sc_rxtq);
   1907 #endif
   1908 }
   1909 
   1910 /*
   1911  * Calculate the receive filter according to the
   1912  * operating mode and state:
   1913  *
   1914  * o always accept unicast, broadcast, and multicast traffic
   1915  * o maintain current state of phy error reception (the hal
   1916  *   may enable phy error frames for noise immunity work)
   1917  * o probe request frames are accepted only when operating in
   1918  *   hostap, adhoc, or monitor modes
   1919  * o enable promiscuous mode according to the interface state
   1920  * o accept beacons:
   1921  *   - when operating in adhoc mode so the 802.11 layer creates
   1922  *     node table entries for peers,
   1923  *   - when operating in station mode for collecting rssi data when
   1924  *     the station is otherwise quiet, or
   1925  *   - when scanning
   1926  */
   1927 static u_int32_t
   1928 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1929 {
   1930 	struct ieee80211com *ic = &sc->sc_ic;
   1931 	struct ath_hal *ah = sc->sc_ah;
   1932 	struct ifnet *ifp = &sc->sc_if;
   1933 	u_int32_t rfilt;
   1934 
   1935 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1936 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1937 	if (ic->ic_opmode != IEEE80211_M_STA)
   1938 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1939 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1940 	    (ifp->if_flags & IFF_PROMISC))
   1941 		rfilt |= HAL_RX_FILTER_PROM;
   1942 	if (ifp->if_flags & IFF_PROMISC)
   1943 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
   1944 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1945 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1946 	    state == IEEE80211_S_SCAN)
   1947 		rfilt |= HAL_RX_FILTER_BEACON;
   1948 	return rfilt;
   1949 }
   1950 
   1951 static void
   1952 ath_mode_init(struct ath_softc *sc)
   1953 {
   1954 	struct ifnet *ifp = &sc->sc_if;
   1955 	struct ieee80211com *ic = &sc->sc_ic;
   1956 	struct ath_hal *ah = sc->sc_ah;
   1957 	struct ether_multi *enm;
   1958 	struct ether_multistep estep;
   1959 	u_int32_t rfilt, mfilt[2], val;
   1960 	int i;
   1961 	uint8_t pos;
   1962 
   1963 	/* configure rx filter */
   1964 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   1965 	ath_hal_setrxfilter(ah, rfilt);
   1966 
   1967 	/* configure operational mode */
   1968 	ath_hal_setopmode(ah);
   1969 
   1970 	/* Write keys to hardware; it may have been powered down. */
   1971 	ath_key_update_begin(ic);
   1972 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1973 		ath_key_set(ic,
   1974 			    &ic->ic_crypto.cs_nw_keys[i],
   1975 			    ic->ic_myaddr);
   1976 	}
   1977 	ath_key_update_end(ic);
   1978 
   1979 	/*
   1980 	 * Handle any link-level address change.  Note that we only
   1981 	 * need to force ic_myaddr; any other addresses are handled
   1982 	 * as a byproduct of the ifnet code marking the interface
   1983 	 * down then up.
   1984 	 *
   1985 	 * XXX should get from lladdr instead of arpcom but that's more work
   1986 	 */
   1987 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   1988 	ath_hal_setmac(ah, ic->ic_myaddr);
   1989 
   1990 	/* calculate and install multicast filter */
   1991 	ifp->if_flags &= ~IFF_ALLMULTI;
   1992 	mfilt[0] = mfilt[1] = 0;
   1993 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   1994 	while (enm != NULL) {
   1995 		void *dl;
   1996 		/* XXX Punt on ranges. */
   1997 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1998 			mfilt[0] = mfilt[1] = 0xffffffff;
   1999 			ifp->if_flags |= IFF_ALLMULTI;
   2000 			break;
   2001 		}
   2002 		dl = enm->enm_addrlo;
   2003 		val = LE_READ_4((char *)dl + 0);
   2004 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   2005 		val = LE_READ_4((char *)dl + 3);
   2006 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   2007 		pos &= 0x3f;
   2008 		mfilt[pos / 32] |= (1 << (pos % 32));
   2009 
   2010 		ETHER_NEXT_MULTI(estep, enm);
   2011 	}
   2012 
   2013 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   2014 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   2015 		__func__, rfilt, mfilt[0], mfilt[1]);
   2016 }
   2017 
   2018 /*
   2019  * Set the slot time based on the current setting.
   2020  */
   2021 static void
   2022 ath_setslottime(struct ath_softc *sc)
   2023 {
   2024 	struct ieee80211com *ic = &sc->sc_ic;
   2025 	struct ath_hal *ah = sc->sc_ah;
   2026 
   2027 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2028 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2029 	else
   2030 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2031 	sc->sc_updateslot = OK;
   2032 }
   2033 
   2034 /*
   2035  * Callback from the 802.11 layer to update the
   2036  * slot time based on the current setting.
   2037  */
   2038 static void
   2039 ath_updateslot(struct ifnet *ifp)
   2040 {
   2041 	struct ath_softc *sc = ifp->if_softc;
   2042 	struct ieee80211com *ic = &sc->sc_ic;
   2043 
   2044 	/*
   2045 	 * When not coordinating the BSS, change the hardware
   2046 	 * immediately.  For other operation we defer the change
   2047 	 * until beacon updates have propagated to the stations.
   2048 	 */
   2049 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2050 		sc->sc_updateslot = UPDATE;
   2051 	else
   2052 		ath_setslottime(sc);
   2053 }
   2054 
   2055 /*
   2056  * Setup a h/w transmit queue for beacons.
   2057  */
   2058 static int
   2059 ath_beaconq_setup(struct ath_hal *ah)
   2060 {
   2061 	HAL_TXQ_INFO qi;
   2062 
   2063 	memset(&qi, 0, sizeof(qi));
   2064 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2065 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2066 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2067 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2068 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2069 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2070 }
   2071 
   2072 /*
   2073  * Setup the transmit queue parameters for the beacon queue.
   2074  */
   2075 static int
   2076 ath_beaconq_config(struct ath_softc *sc)
   2077 {
   2078 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2079 	struct ieee80211com *ic = &sc->sc_ic;
   2080 	struct ath_hal *ah = sc->sc_ah;
   2081 	HAL_TXQ_INFO qi;
   2082 
   2083 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2084 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2085 		/*
   2086 		 * Always burst out beacon and CAB traffic.
   2087 		 */
   2088 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2089 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2090 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2091 	} else {
   2092 		struct wmeParams *wmep =
   2093 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2094 		/*
   2095 		 * Adhoc mode; important thing is to use 2x cwmin.
   2096 		 */
   2097 		qi.tqi_aifs = wmep->wmep_aifsn;
   2098 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2099 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2100 	}
   2101 
   2102 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2103 		device_printf(sc->sc_dev, "unable to update parameters for "
   2104 			"beacon hardware queue!\n");
   2105 		return 0;
   2106 	} else {
   2107 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2108 		return 1;
   2109 	}
   2110 #undef ATH_EXPONENT_TO_VALUE
   2111 }
   2112 
   2113 /*
   2114  * Allocate and setup an initial beacon frame.
   2115  */
   2116 static int
   2117 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2118 {
   2119 	struct ieee80211com *ic = ni->ni_ic;
   2120 	struct ath_buf *bf;
   2121 	struct mbuf *m;
   2122 	int error;
   2123 
   2124 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2125 	if (bf == NULL) {
   2126 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2127 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2128 		return ENOMEM;			/* XXX */
   2129 	}
   2130 	/*
   2131 	 * NB: the beacon data buffer must be 32-bit aligned;
   2132 	 * we assume the mbuf routines will return us something
   2133 	 * with this alignment (perhaps should assert).
   2134 	 */
   2135 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2136 	if (m == NULL) {
   2137 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2138 			__func__);
   2139 		sc->sc_stats.ast_be_nombuf++;
   2140 		return ENOMEM;
   2141 	}
   2142 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2143 				     BUS_DMA_NOWAIT);
   2144 	if (error == 0) {
   2145 		bf->bf_m = m;
   2146 		bf->bf_node = ieee80211_ref_node(ni);
   2147 	} else {
   2148 		m_freem(m);
   2149 	}
   2150 	return error;
   2151 }
   2152 
   2153 /*
   2154  * Setup the beacon frame for transmit.
   2155  */
   2156 static void
   2157 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2158 {
   2159 #define	USE_SHPREAMBLE(_ic) \
   2160 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2161 		== IEEE80211_F_SHPREAMBLE)
   2162 	struct ieee80211_node *ni = bf->bf_node;
   2163 	struct ieee80211com *ic = ni->ni_ic;
   2164 	struct mbuf *m = bf->bf_m;
   2165 	struct ath_hal *ah = sc->sc_ah;
   2166 	struct ath_desc *ds;
   2167 	int flags, antenna;
   2168 	const HAL_RATE_TABLE *rt;
   2169 	u_int8_t rix, rate;
   2170 
   2171 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2172 		__func__, m, m->m_len);
   2173 
   2174 	/* setup descriptors */
   2175 	ds = bf->bf_desc;
   2176 
   2177 	flags = HAL_TXDESC_NOACK;
   2178 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2179 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2180 		flags |= HAL_TXDESC_VEOL;
   2181 		/*
   2182 		 * Let hardware handle antenna switching unless
   2183 		 * the user has selected a transmit antenna
   2184 		 * (sc_txantenna is not 0).
   2185 		 */
   2186 		antenna = sc->sc_txantenna;
   2187 	} else {
   2188 		ds->ds_link = 0;
   2189 		/*
   2190 		 * Switch antenna every 4 beacons, unless the user
   2191 		 * has selected a transmit antenna (sc_txantenna
   2192 		 * is not 0).
   2193 		 *
   2194 		 * XXX assumes two antenna
   2195 		 */
   2196 		if (sc->sc_txantenna == 0)
   2197 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2198 		else
   2199 			antenna = sc->sc_txantenna;
   2200 	}
   2201 
   2202 	KASSERTMSG(bf->bf_nseg == 1,
   2203 		"multi-segment beacon frame; nseg %u", bf->bf_nseg);
   2204 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2205 	/*
   2206 	 * Calculate rate code.
   2207 	 * XXX everything at min xmit rate
   2208 	 */
   2209 	rix = sc->sc_minrateix;
   2210 	rt = sc->sc_currates;
   2211 	rate = rt->info[rix].rateCode;
   2212 	if (USE_SHPREAMBLE(ic))
   2213 		rate |= rt->info[rix].shortPreamble;
   2214 	ath_hal_setuptxdesc(ah, ds
   2215 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2216 		, sizeof(struct ieee80211_frame)/* header length */
   2217 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2218 		, ni->ni_txpower		/* txpower XXX */
   2219 		, rate, 1			/* series 0 rate/tries */
   2220 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2221 		, antenna			/* antenna mode */
   2222 		, flags				/* no ack, veol for beacons */
   2223 		, 0				/* rts/cts rate */
   2224 		, 0				/* rts/cts duration */
   2225 	);
   2226 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2227 	ath_hal_filltxdesc(ah, ds
   2228 		, roundup(m->m_len, 4)		/* buffer length */
   2229 		, AH_TRUE			/* first segment */
   2230 		, AH_TRUE			/* last segment */
   2231 		, ds				/* first descriptor */
   2232 	);
   2233 
   2234 	/* NB: The desc swap function becomes void, if descriptor swapping
   2235 	 * is not enabled
   2236 	 */
   2237 	ath_desc_swap(ds);
   2238 
   2239 #undef USE_SHPREAMBLE
   2240 }
   2241 
   2242 /*
   2243  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2244  * frame contents are done as needed and the slot time is
   2245  * also adjusted based on current state.
   2246  */
   2247 static void
   2248 ath_beacon_proc(void *arg, int pending)
   2249 {
   2250 	struct ath_softc *sc = arg;
   2251 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2252 	struct ieee80211_node *ni = bf->bf_node;
   2253 	struct ieee80211com *ic = ni->ni_ic;
   2254 	struct ath_hal *ah = sc->sc_ah;
   2255 	struct mbuf *m;
   2256 	int ncabq, error, otherant;
   2257 
   2258 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2259 		__func__, pending);
   2260 
   2261 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2262 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2263 	    bf == NULL || bf->bf_m == NULL) {
   2264 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2265 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2266 		return;
   2267 	}
   2268 	/*
   2269 	 * Check if the previous beacon has gone out.  If
   2270 	 * not don't try to post another, skip this period
   2271 	 * and wait for the next.  Missed beacons indicate
   2272 	 * a problem and should not occur.  If we miss too
   2273 	 * many consecutive beacons reset the device.
   2274 	 */
   2275 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2276 		sc->sc_bmisscount++;
   2277 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2278 			"%s: missed %u consecutive beacons\n",
   2279 			__func__, sc->sc_bmisscount);
   2280 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2281 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2282 		return;
   2283 	}
   2284 	if (sc->sc_bmisscount != 0) {
   2285 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2286 			"%s: resume beacon xmit after %u misses\n",
   2287 			__func__, sc->sc_bmisscount);
   2288 		sc->sc_bmisscount = 0;
   2289 	}
   2290 
   2291 	/*
   2292 	 * Update dynamic beacon contents.  If this returns
   2293 	 * non-zero then we need to remap the memory because
   2294 	 * the beacon frame changed size (probably because
   2295 	 * of the TIM bitmap).
   2296 	 */
   2297 	m = bf->bf_m;
   2298 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2299 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2300 		/* XXX too conservative? */
   2301 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2302 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2303 					     BUS_DMA_NOWAIT);
   2304 		if (error != 0) {
   2305 			if_printf(&sc->sc_if,
   2306 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2307 			    __func__, error);
   2308 			return;
   2309 		}
   2310 	}
   2311 
   2312 	/*
   2313 	 * Handle slot time change when a non-ERP station joins/leaves
   2314 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2315 	 * we mark updateslot, then wait one beacon before effecting
   2316 	 * the change.  This gives associated stations at least one
   2317 	 * beacon interval to note the state change.
   2318 	 */
   2319 	/* XXX locking */
   2320 	if (sc->sc_updateslot == UPDATE)
   2321 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2322 	else if (sc->sc_updateslot == COMMIT)
   2323 		ath_setslottime(sc);		/* commit change to h/w */
   2324 
   2325 	/*
   2326 	 * Check recent per-antenna transmit statistics and flip
   2327 	 * the default antenna if noticeably more frames went out
   2328 	 * on the non-default antenna.
   2329 	 * XXX assumes 2 anntenae
   2330 	 */
   2331 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2332 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2333 		ath_setdefantenna(sc, otherant);
   2334 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2335 
   2336 	/*
   2337 	 * Construct tx descriptor.
   2338 	 */
   2339 	ath_beacon_setup(sc, bf);
   2340 
   2341 	/*
   2342 	 * Stop any current dma and put the new frame on the queue.
   2343 	 * This should never fail since we check above that no frames
   2344 	 * are still pending on the queue.
   2345 	 */
   2346 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2347 		DPRINTF(sc, ATH_DEBUG_ANY,
   2348 			"%s: beacon queue %u did not stop?\n",
   2349 			__func__, sc->sc_bhalq);
   2350 	}
   2351 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2352 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2353 
   2354 	/*
   2355 	 * Enable the CAB queue before the beacon queue to
   2356 	 * insure cab frames are triggered by this beacon.
   2357 	 */
   2358 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2359 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2360 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2361 	ath_hal_txstart(ah, sc->sc_bhalq);
   2362 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2363 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2364 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2365 
   2366 	sc->sc_stats.ast_be_xmit++;
   2367 }
   2368 
   2369 /*
   2370  * Reset the hardware after detecting beacons have stopped.
   2371  */
   2372 static void
   2373 ath_bstuck_proc(void *arg, int pending)
   2374 {
   2375 	struct ath_softc *sc = arg;
   2376 	struct ifnet *ifp = &sc->sc_if;
   2377 
   2378 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2379 		sc->sc_bmisscount);
   2380 	ath_reset(ifp);
   2381 }
   2382 
   2383 /*
   2384  * Reclaim beacon resources.
   2385  */
   2386 static void
   2387 ath_beacon_free(struct ath_softc *sc)
   2388 {
   2389 	struct ath_buf *bf;
   2390 
   2391 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2392 		if (bf->bf_m != NULL) {
   2393 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2394 			m_freem(bf->bf_m);
   2395 			bf->bf_m = NULL;
   2396 		}
   2397 		if (bf->bf_node != NULL) {
   2398 			ieee80211_free_node(bf->bf_node);
   2399 			bf->bf_node = NULL;
   2400 		}
   2401 	}
   2402 }
   2403 
   2404 /*
   2405  * Configure the beacon and sleep timers.
   2406  *
   2407  * When operating as an AP this resets the TSF and sets
   2408  * up the hardware to notify us when we need to issue beacons.
   2409  *
   2410  * When operating in station mode this sets up the beacon
   2411  * timers according to the timestamp of the last received
   2412  * beacon and the current TSF, configures PCF and DTIM
   2413  * handling, programs the sleep registers so the hardware
   2414  * will wakeup in time to receive beacons, and configures
   2415  * the beacon miss handling so we'll receive a BMISS
   2416  * interrupt when we stop seeing beacons from the AP
   2417  * we've associated with.
   2418  */
   2419 static void
   2420 ath_beacon_config(struct ath_softc *sc)
   2421 {
   2422 #define	TSF_TO_TU(_h,_l) \
   2423 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2424 #define	FUDGE	2
   2425 	struct ath_hal *ah = sc->sc_ah;
   2426 	struct ieee80211com *ic = &sc->sc_ic;
   2427 	struct ieee80211_node *ni = ic->ic_bss;
   2428 	u_int32_t nexttbtt, intval, tsftu;
   2429 	u_int64_t tsf;
   2430 
   2431 	/* extract tstamp from last beacon and convert to TU */
   2432 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2433 			     LE_READ_4(ni->ni_tstamp.data));
   2434 	/* NB: the beacon interval is kept internally in TU's */
   2435 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2436 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2437 		nexttbtt = intval;
   2438 	else if (intval)		/* NB: can be 0 for monitor mode */
   2439 		nexttbtt = roundup(nexttbtt, intval);
   2440 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2441 		__func__, nexttbtt, intval, ni->ni_intval);
   2442 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2443 		HAL_BEACON_STATE bs;
   2444 		int dtimperiod, dtimcount;
   2445 		int cfpperiod, cfpcount;
   2446 
   2447 		/*
   2448 		 * Setup dtim and cfp parameters according to
   2449 		 * last beacon we received (which may be none).
   2450 		 */
   2451 		dtimperiod = ni->ni_dtim_period;
   2452 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2453 			dtimperiod = 1;
   2454 		dtimcount = ni->ni_dtim_count;
   2455 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2456 			dtimcount = 0;		/* XXX? */
   2457 		cfpperiod = 1;			/* NB: no PCF support yet */
   2458 		cfpcount = 0;
   2459 		/*
   2460 		 * Pull nexttbtt forward to reflect the current
   2461 		 * TSF and calculate dtim+cfp state for the result.
   2462 		 */
   2463 		tsf = ath_hal_gettsf64(ah);
   2464 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2465 		do {
   2466 			nexttbtt += intval;
   2467 			if (--dtimcount < 0) {
   2468 				dtimcount = dtimperiod - 1;
   2469 				if (--cfpcount < 0)
   2470 					cfpcount = cfpperiod - 1;
   2471 			}
   2472 		} while (nexttbtt < tsftu);
   2473 		memset(&bs, 0, sizeof(bs));
   2474 		bs.bs_intval = intval;
   2475 		bs.bs_nexttbtt = nexttbtt;
   2476 		bs.bs_dtimperiod = dtimperiod*intval;
   2477 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2478 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2479 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2480 		bs.bs_cfpmaxduration = 0;
   2481 #if 0
   2482 		/*
   2483 		 * The 802.11 layer records the offset to the DTIM
   2484 		 * bitmap while receiving beacons; use it here to
   2485 		 * enable h/w detection of our AID being marked in
   2486 		 * the bitmap vector (to indicate frames for us are
   2487 		 * pending at the AP).
   2488 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2489 		 * XXX enable based on h/w rev for newer chips
   2490 		 */
   2491 		bs.bs_timoffset = ni->ni_timoff;
   2492 #endif
   2493 		/*
   2494 		 * Calculate the number of consecutive beacons to miss
   2495 		 * before taking a BMISS interrupt.  The configuration
   2496 		 * is specified in ms, so we need to convert that to
   2497 		 * TU's and then calculate based on the beacon interval.
   2498 		 * Note that we clamp the result to at most 10 beacons.
   2499 		 */
   2500 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2501 		if (bs.bs_bmissthreshold > 10)
   2502 			bs.bs_bmissthreshold = 10;
   2503 		else if (bs.bs_bmissthreshold <= 0)
   2504 			bs.bs_bmissthreshold = 1;
   2505 
   2506 		/*
   2507 		 * Calculate sleep duration.  The configuration is
   2508 		 * given in ms.  We insure a multiple of the beacon
   2509 		 * period is used.  Also, if the sleep duration is
   2510 		 * greater than the DTIM period then it makes senses
   2511 		 * to make it a multiple of that.
   2512 		 *
   2513 		 * XXX fixed at 100ms
   2514 		 */
   2515 		bs.bs_sleepduration =
   2516 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2517 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2518 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2519 
   2520 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2521 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2522 			, __func__
   2523 			, tsf, tsftu
   2524 			, bs.bs_intval
   2525 			, bs.bs_nexttbtt
   2526 			, bs.bs_dtimperiod
   2527 			, bs.bs_nextdtim
   2528 			, bs.bs_bmissthreshold
   2529 			, bs.bs_sleepduration
   2530 			, bs.bs_cfpperiod
   2531 			, bs.bs_cfpmaxduration
   2532 			, bs.bs_cfpnext
   2533 			, bs.bs_timoffset
   2534 		);
   2535 		ath_hal_intrset(ah, 0);
   2536 		ath_hal_beacontimers(ah, &bs);
   2537 		sc->sc_imask |= HAL_INT_BMISS;
   2538 		ath_hal_intrset(ah, sc->sc_imask);
   2539 	} else {
   2540 		ath_hal_intrset(ah, 0);
   2541 		if (nexttbtt == intval)
   2542 			intval |= HAL_BEACON_RESET_TSF;
   2543 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2544 			/*
   2545 			 * In IBSS mode enable the beacon timers but only
   2546 			 * enable SWBA interrupts if we need to manually
   2547 			 * prepare beacon frames.  Otherwise we use a
   2548 			 * self-linked tx descriptor and let the hardware
   2549 			 * deal with things.
   2550 			 */
   2551 			intval |= HAL_BEACON_ENA;
   2552 			if (!sc->sc_hasveol)
   2553 				sc->sc_imask |= HAL_INT_SWBA;
   2554 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2555 				/*
   2556 				 * Pull nexttbtt forward to reflect
   2557 				 * the current TSF.
   2558 				 */
   2559 				tsf = ath_hal_gettsf64(ah);
   2560 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2561 				do {
   2562 					nexttbtt += intval;
   2563 				} while (nexttbtt < tsftu);
   2564 			}
   2565 			ath_beaconq_config(sc);
   2566 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2567 			/*
   2568 			 * In AP mode we enable the beacon timers and
   2569 			 * SWBA interrupts to prepare beacon frames.
   2570 			 */
   2571 			intval |= HAL_BEACON_ENA;
   2572 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2573 			ath_beaconq_config(sc);
   2574 		}
   2575 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2576 		sc->sc_bmisscount = 0;
   2577 		ath_hal_intrset(ah, sc->sc_imask);
   2578 		/*
   2579 		 * When using a self-linked beacon descriptor in
   2580 		 * ibss mode load it once here.
   2581 		 */
   2582 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2583 			ath_beacon_proc(sc, 0);
   2584 	}
   2585 	sc->sc_syncbeacon = 0;
   2586 #undef UNDEF
   2587 #undef TSF_TO_TU
   2588 }
   2589 
   2590 static int
   2591 ath_descdma_setup(struct ath_softc *sc,
   2592 	struct ath_descdma *dd, ath_bufhead *head,
   2593 	const char *name, int nbuf, int ndesc)
   2594 {
   2595 #define	DS2PHYS(_dd, _ds) \
   2596 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2597 	struct ifnet *ifp = &sc->sc_if;
   2598 	struct ath_desc *ds;
   2599 	struct ath_buf *bf;
   2600 	int i, bsize, error;
   2601 
   2602 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2603 	    __func__, name, nbuf, ndesc);
   2604 
   2605 	dd->dd_name = name;
   2606 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2607 
   2608 	/*
   2609 	 * Setup DMA descriptor area.
   2610 	 */
   2611 	dd->dd_dmat = sc->sc_dmat;
   2612 
   2613 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2614 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2615 
   2616 	if (error != 0) {
   2617 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2618 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2619 		goto fail0;
   2620 	}
   2621 
   2622 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2623 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2624 	if (error != 0) {
   2625 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2626 		    nbuf * ndesc, dd->dd_name, error);
   2627 		goto fail1;
   2628 	}
   2629 
   2630 	/* allocate descriptors */
   2631 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2632 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2633 	if (error != 0) {
   2634 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2635 			"error %u\n", dd->dd_name, error);
   2636 		goto fail2;
   2637 	}
   2638 
   2639 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2640 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2641 	if (error != 0) {
   2642 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2643 			dd->dd_name, error);
   2644 		goto fail3;
   2645 	}
   2646 
   2647 	ds = dd->dd_desc;
   2648 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2649 	DPRINTF(sc, ATH_DEBUG_RESET,
   2650 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2651 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2652 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2653 
   2654 	/* allocate rx buffers */
   2655 	bsize = sizeof(struct ath_buf) * nbuf;
   2656 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2657 	if (bf == NULL) {
   2658 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2659 			dd->dd_name, bsize);
   2660 		goto fail4;
   2661 	}
   2662 	dd->dd_bufptr = bf;
   2663 
   2664 	STAILQ_INIT(head);
   2665 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2666 		bf->bf_desc = ds;
   2667 		bf->bf_daddr = DS2PHYS(dd, ds);
   2668 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2669 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2670 		if (error != 0) {
   2671 			if_printf(ifp, "unable to create dmamap for %s "
   2672 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2673 			ath_descdma_cleanup(sc, dd, head);
   2674 			return error;
   2675 		}
   2676 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2677 	}
   2678 	return 0;
   2679 fail4:
   2680 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2681 fail3:
   2682 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2683 fail2:
   2684 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2685 fail1:
   2686 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2687 fail0:
   2688 	memset(dd, 0, sizeof(*dd));
   2689 	return error;
   2690 #undef DS2PHYS
   2691 }
   2692 
   2693 static void
   2694 ath_descdma_cleanup(struct ath_softc *sc,
   2695 	struct ath_descdma *dd, ath_bufhead *head)
   2696 {
   2697 	struct ath_buf *bf;
   2698 	struct ieee80211_node *ni;
   2699 
   2700 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2701 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2702 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2703 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2704 
   2705 	STAILQ_FOREACH(bf, head, bf_list) {
   2706 		if (bf->bf_m) {
   2707 			m_freem(bf->bf_m);
   2708 			bf->bf_m = NULL;
   2709 		}
   2710 		if (bf->bf_dmamap != NULL) {
   2711 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2712 			bf->bf_dmamap = NULL;
   2713 		}
   2714 		ni = bf->bf_node;
   2715 		bf->bf_node = NULL;
   2716 		if (ni != NULL) {
   2717 			/*
   2718 			 * Reclaim node reference.
   2719 			 */
   2720 			ieee80211_free_node(ni);
   2721 		}
   2722 	}
   2723 
   2724 	STAILQ_INIT(head);
   2725 	free(dd->dd_bufptr, M_ATHDEV);
   2726 	memset(dd, 0, sizeof(*dd));
   2727 }
   2728 
   2729 static int
   2730 ath_desc_alloc(struct ath_softc *sc)
   2731 {
   2732 	int error;
   2733 
   2734 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2735 			"rx", ath_rxbuf, 1);
   2736 	if (error != 0)
   2737 		return error;
   2738 
   2739 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2740 			"tx", ath_txbuf, ATH_TXDESC);
   2741 	if (error != 0) {
   2742 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2743 		return error;
   2744 	}
   2745 
   2746 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2747 			"beacon", 1, 1);
   2748 	if (error != 0) {
   2749 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2750 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2751 		return error;
   2752 	}
   2753 	return 0;
   2754 }
   2755 
   2756 static void
   2757 ath_desc_free(struct ath_softc *sc)
   2758 {
   2759 
   2760 	if (sc->sc_bdma.dd_desc_len != 0)
   2761 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2762 	if (sc->sc_txdma.dd_desc_len != 0)
   2763 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2764 	if (sc->sc_rxdma.dd_desc_len != 0)
   2765 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2766 }
   2767 
   2768 static struct ieee80211_node *
   2769 ath_node_alloc(struct ieee80211_node_table *nt)
   2770 {
   2771 	struct ieee80211com *ic = nt->nt_ic;
   2772 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2773 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2774 	struct ath_node *an;
   2775 
   2776 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2777 	if (an == NULL) {
   2778 		/* XXX stat+msg */
   2779 		return NULL;
   2780 	}
   2781 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2782 	ath_rate_node_init(sc, an);
   2783 
   2784 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2785 	return &an->an_node;
   2786 }
   2787 
   2788 static void
   2789 ath_node_free(struct ieee80211_node *ni)
   2790 {
   2791 	struct ieee80211com *ic = ni->ni_ic;
   2792         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2793 
   2794 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2795 
   2796 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2797 	sc->sc_node_free(ni);
   2798 }
   2799 
   2800 static u_int8_t
   2801 ath_node_getrssi(const struct ieee80211_node *ni)
   2802 {
   2803 #define	HAL_EP_RND(x, mul) \
   2804 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2805 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2806 	int32_t rssi;
   2807 
   2808 	/*
   2809 	 * When only one frame is received there will be no state in
   2810 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2811 	 */
   2812 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2813 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2814 	else
   2815 		rssi = ni->ni_rssi;
   2816 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2817 #undef HAL_EP_RND
   2818 }
   2819 
   2820 static int
   2821 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2822 {
   2823 	struct ath_hal *ah = sc->sc_ah;
   2824 	int error;
   2825 	struct mbuf *m;
   2826 	struct ath_desc *ds;
   2827 
   2828 	m = bf->bf_m;
   2829 	if (m == NULL) {
   2830 		/*
   2831 		 * NB: by assigning a page to the rx dma buffer we
   2832 		 * implicitly satisfy the Atheros requirement that
   2833 		 * this buffer be cache-line-aligned and sized to be
   2834 		 * multiple of the cache line size.  Not doing this
   2835 		 * causes weird stuff to happen (for the 5210 at least).
   2836 		 */
   2837 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2838 		if (m == NULL) {
   2839 			DPRINTF(sc, ATH_DEBUG_ANY,
   2840 				"%s: no mbuf/cluster\n", __func__);
   2841 			sc->sc_stats.ast_rx_nombuf++;
   2842 			return ENOMEM;
   2843 		}
   2844 		bf->bf_m = m;
   2845 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2846 
   2847 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2848 					     bf->bf_dmamap, m,
   2849 					     BUS_DMA_NOWAIT);
   2850 		if (error != 0) {
   2851 			DPRINTF(sc, ATH_DEBUG_ANY,
   2852 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2853 			    __func__, error);
   2854 			sc->sc_stats.ast_rx_busdma++;
   2855 			return error;
   2856 		}
   2857 		KASSERTMSG(bf->bf_nseg == 1,
   2858 			"multi-segment packet; nseg %u", bf->bf_nseg);
   2859 	}
   2860 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2861 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2862 
   2863 	/*
   2864 	 * Setup descriptors.  For receive we always terminate
   2865 	 * the descriptor list with a self-linked entry so we'll
   2866 	 * not get overrun under high load (as can happen with a
   2867 	 * 5212 when ANI processing enables PHY error frames).
   2868 	 *
   2869 	 * To insure the last descriptor is self-linked we create
   2870 	 * each descriptor as self-linked and add it to the end.  As
   2871 	 * each additional descriptor is added the previous self-linked
   2872 	 * entry is ``fixed'' naturally.  This should be safe even
   2873 	 * if DMA is happening.  When processing RX interrupts we
   2874 	 * never remove/process the last, self-linked, entry on the
   2875 	 * descriptor list.  This insures the hardware always has
   2876 	 * someplace to write a new frame.
   2877 	 */
   2878 	ds = bf->bf_desc;
   2879 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2880 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2881 	/* ds->ds_vdata = mtod(m, void *);	for radar */
   2882 	ath_hal_setuprxdesc(ah, ds
   2883 		, m->m_len		/* buffer size */
   2884 		, 0
   2885 	);
   2886 
   2887 	if (sc->sc_rxlink != NULL)
   2888 		*sc->sc_rxlink = bf->bf_daddr;
   2889 	sc->sc_rxlink = &ds->ds_link;
   2890 	return 0;
   2891 }
   2892 
   2893 /*
   2894  * Extend 15-bit time stamp from rx descriptor to
   2895  * a full 64-bit TSF using the specified TSF.
   2896  */
   2897 static inline u_int64_t
   2898 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2899 {
   2900 	if ((tsf & 0x7fff) < rstamp)
   2901 		tsf -= 0x8000;
   2902 	return ((tsf &~ 0x7fff) | rstamp);
   2903 }
   2904 
   2905 /*
   2906  * Intercept management frames to collect beacon rssi data
   2907  * and to do ibss merges.
   2908  */
   2909 static void
   2910 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2911 	struct ieee80211_node *ni,
   2912 	int subtype, int rssi, u_int32_t rstamp)
   2913 {
   2914 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2915 
   2916 	/*
   2917 	 * Call up first so subsequent work can use information
   2918 	 * potentially stored in the node (e.g. for ibss merge).
   2919 	 */
   2920 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2921 	switch (subtype) {
   2922 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2923 		/* update rssi statistics for use by the hal */
   2924 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2925 		if (sc->sc_syncbeacon &&
   2926 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2927 			/*
   2928 			 * Resync beacon timers using the tsf of the beacon
   2929 			 * frame we just received.
   2930 			 */
   2931 			ath_beacon_config(sc);
   2932 		}
   2933 		/* fall thru... */
   2934 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2935 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2936 		    ic->ic_state == IEEE80211_S_RUN) {
   2937 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2938 				ath_hal_gettsf64(sc->sc_ah));
   2939 
   2940 			/*
   2941 			 * Handle ibss merge as needed; check the tsf on the
   2942 			 * frame before attempting the merge.  The 802.11 spec
   2943 			 * says the station should change it's bssid to match
   2944 			 * the oldest station with the same ssid, where oldest
   2945 			 * is determined by the tsf.  Note that hardware
   2946 			 * reconfiguration happens through callback to
   2947 			 * ath_newstate as the state machine will go from
   2948 			 * RUN -> RUN when this happens.
   2949 			 */
   2950 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2951 				DPRINTF(sc, ATH_DEBUG_STATE,
   2952 				    "ibss merge, rstamp %u tsf %ju "
   2953 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2954 				    (uintmax_t)ni->ni_tstamp.tsf);
   2955 				(void) ieee80211_ibss_merge(ni);
   2956 			}
   2957 		}
   2958 		break;
   2959 	}
   2960 }
   2961 
   2962 /*
   2963  * Set the default antenna.
   2964  */
   2965 static void
   2966 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   2967 {
   2968 	struct ath_hal *ah = sc->sc_ah;
   2969 
   2970 	/* XXX block beacon interrupts */
   2971 	ath_hal_setdefantenna(ah, antenna);
   2972 	if (sc->sc_defant != antenna)
   2973 		sc->sc_stats.ast_ant_defswitch++;
   2974 	sc->sc_defant = antenna;
   2975 	sc->sc_rxotherant = 0;
   2976 }
   2977 
   2978 static void
   2979 ath_handle_micerror(struct ieee80211com *ic,
   2980 	struct ieee80211_frame *wh, int keyix)
   2981 {
   2982 	struct ieee80211_node *ni;
   2983 
   2984 	/* XXX recheck MIC to deal w/ chips that lie */
   2985 	/* XXX discard MIC errors on !data frames */
   2986 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
   2987 	if (ni != NULL) {
   2988 		ieee80211_notify_michael_failure(ic, wh, keyix);
   2989 		ieee80211_free_node(ni);
   2990 	}
   2991 }
   2992 
   2993 static void
   2994 ath_rx_proc(void *arg, int npending)
   2995 {
   2996 #define	PA2DESC(_sc, _pa) \
   2997 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   2998 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   2999 	struct ath_softc *sc = arg;
   3000 	struct ath_buf *bf;
   3001 	struct ieee80211com *ic = &sc->sc_ic;
   3002 	struct ifnet *ifp = &sc->sc_if;
   3003 	struct ath_hal *ah = sc->sc_ah;
   3004 	struct ath_desc *ds;
   3005 	struct mbuf *m;
   3006 	struct ieee80211_node *ni;
   3007 	struct ath_node *an;
   3008 	int len, ngood, type;
   3009 	u_int phyerr;
   3010 	HAL_STATUS status;
   3011 	int16_t nf;
   3012 	u_int64_t tsf;
   3013 	uint8_t rxerr_tap, rxerr_mon;
   3014 
   3015 	NET_LOCK_GIANT();		/* XXX */
   3016 
   3017 	rxerr_tap =
   3018 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
   3019 
   3020 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
   3021 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3022 	else if (ifp->if_flags & IFF_PROMISC)
   3023 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3024 
   3025 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   3026 	ngood = 0;
   3027 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   3028 	tsf = ath_hal_gettsf64(ah);
   3029 	do {
   3030 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3031 		if (bf == NULL) {		/* NB: shouldn't happen */
   3032 			if_printf(ifp, "%s: no buffer!\n", __func__);
   3033 			break;
   3034 		}
   3035 		ds = bf->bf_desc;
   3036 		if (ds->ds_link == bf->bf_daddr) {
   3037 			/* NB: never process the self-linked entry at the end */
   3038 			break;
   3039 		}
   3040 		m = bf->bf_m;
   3041 		if (m == NULL) {		/* NB: shouldn't happen */
   3042 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   3043 			break;
   3044 		}
   3045 		/* XXX sync descriptor memory */
   3046 		/*
   3047 		 * Must provide the virtual address of the current
   3048 		 * descriptor, the physical address, and the virtual
   3049 		 * address of the next descriptor in the h/w chain.
   3050 		 * This allows the HAL to look ahead to see if the
   3051 		 * hardware is done with a descriptor by checking the
   3052 		 * done bit in the following descriptor and the address
   3053 		 * of the current descriptor the DMA engine is working
   3054 		 * on.  All this is necessary because of our use of
   3055 		 * a self-linked list to avoid rx overruns.
   3056 		 */
   3057 		status = ath_hal_rxprocdesc(ah, ds,
   3058 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   3059 				&ds->ds_rxstat);
   3060 #ifdef AR_DEBUG
   3061 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3062 			ath_printrxbuf(bf, status == HAL_OK);
   3063 #endif
   3064 		if (status == HAL_EINPROGRESS)
   3065 			break;
   3066 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3067 		if (ds->ds_rxstat.rs_more) {
   3068 			/*
   3069 			 * Frame spans multiple descriptors; this
   3070 			 * cannot happen yet as we don't support
   3071 			 * jumbograms.  If not in monitor mode,
   3072 			 * discard the frame.
   3073 			 */
   3074 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3075 				sc->sc_stats.ast_rx_toobig++;
   3076 				goto rx_next;
   3077 			}
   3078 			/* fall thru for monitor mode handling... */
   3079 		} else if (ds->ds_rxstat.rs_status != 0) {
   3080 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3081 				sc->sc_stats.ast_rx_crcerr++;
   3082 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3083 				sc->sc_stats.ast_rx_fifoerr++;
   3084 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3085 				sc->sc_stats.ast_rx_phyerr++;
   3086 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3087 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3088 				goto rx_next;
   3089 			}
   3090 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3091 				/*
   3092 				 * Decrypt error.  If the error occurred
   3093 				 * because there was no hardware key, then
   3094 				 * let the frame through so the upper layers
   3095 				 * can process it.  This is necessary for 5210
   3096 				 * parts which have no way to setup a ``clear''
   3097 				 * key cache entry.
   3098 				 *
   3099 				 * XXX do key cache faulting
   3100 				 */
   3101 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3102 					goto rx_accept;
   3103 				sc->sc_stats.ast_rx_badcrypt++;
   3104 			}
   3105 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3106 				sc->sc_stats.ast_rx_badmic++;
   3107 				/*
   3108 				 * Do minimal work required to hand off
   3109 				 * the 802.11 header for notifcation.
   3110 				 */
   3111 				/* XXX frag's and qos frames */
   3112 				len = ds->ds_rxstat.rs_datalen;
   3113 				if (len >= sizeof (struct ieee80211_frame)) {
   3114 					bus_dmamap_sync(sc->sc_dmat,
   3115 					    bf->bf_dmamap,
   3116 					    0, bf->bf_dmamap->dm_mapsize,
   3117 					    BUS_DMASYNC_POSTREAD);
   3118 					ath_handle_micerror(ic,
   3119 					    mtod(m, struct ieee80211_frame *),
   3120 					    sc->sc_splitmic ?
   3121 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
   3122 				}
   3123 			}
   3124 			ifp->if_ierrors++;
   3125 			/*
   3126 			 * Reject error frames, we normally don't want
   3127 			 * to see them in monitor mode (in monitor mode
   3128 			 * allow through packets that have crypto problems).
   3129 			 */
   3130 
   3131 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
   3132 				goto rx_next;
   3133 		}
   3134 rx_accept:
   3135 		/*
   3136 		 * Sync and unmap the frame.  At this point we're
   3137 		 * committed to passing the mbuf somewhere so clear
   3138 		 * bf_m; this means a new sk_buff must be allocated
   3139 		 * when the rx descriptor is setup again to receive
   3140 		 * another frame.
   3141 		 */
   3142 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3143 		    0, bf->bf_dmamap->dm_mapsize,
   3144 		    BUS_DMASYNC_POSTREAD);
   3145 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3146 		bf->bf_m = NULL;
   3147 
   3148 		m->m_pkthdr.rcvif = ifp;
   3149 		len = ds->ds_rxstat.rs_datalen;
   3150 		m->m_pkthdr.len = m->m_len = len;
   3151 
   3152 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3153 
   3154 		if (sc->sc_drvbpf) {
   3155 			u_int8_t rix;
   3156 
   3157 			/*
   3158 			 * Discard anything shorter than an ack or cts.
   3159 			 */
   3160 			if (len < IEEE80211_ACK_LEN) {
   3161 				DPRINTF(sc, ATH_DEBUG_RECV,
   3162 					"%s: runt packet %d\n",
   3163 					__func__, len);
   3164 				sc->sc_stats.ast_rx_tooshort++;
   3165 				m_freem(m);
   3166 				goto rx_next;
   3167 			}
   3168 			rix = ds->ds_rxstat.rs_rate;
   3169 			sc->sc_rx_th.wr_tsf = htole64(
   3170 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3171 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3172 			if (ds->ds_rxstat.rs_status &
   3173 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
   3174 				sc->sc_rx_th.wr_flags |=
   3175 				    IEEE80211_RADIOTAP_F_BADFCS;
   3176 			}
   3177 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3178 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3179 			sc->sc_rx_th.wr_antnoise = nf;
   3180 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3181 
   3182 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
   3183 			    sc->sc_rx_th_len, m);
   3184 		}
   3185 
   3186 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
   3187 			m_freem(m);
   3188 			goto rx_next;
   3189 		}
   3190 		/*
   3191 		 * From this point on we assume the frame is at least
   3192 		 * as large as ieee80211_frame_min; verify that.
   3193 		 */
   3194 		if (len < IEEE80211_MIN_LEN) {
   3195 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3196 				__func__, len);
   3197 			sc->sc_stats.ast_rx_tooshort++;
   3198 			m_freem(m);
   3199 			goto rx_next;
   3200 		}
   3201 
   3202 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3203 			ieee80211_dump_pkt(mtod(m, void *), len,
   3204 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3205 				   ds->ds_rxstat.rs_rssi);
   3206 		}
   3207 
   3208 		m_adj(m, -IEEE80211_CRC_LEN);
   3209 
   3210 		/*
   3211 		 * Locate the node for sender, track state, and then
   3212 		 * pass the (referenced) node up to the 802.11 layer
   3213 		 * for its use.
   3214 		 */
   3215 		ni = ieee80211_find_rxnode_withkey(ic,
   3216 			mtod(m, const struct ieee80211_frame_min *),
   3217 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3218 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3219 		/*
   3220 		 * Track rx rssi and do any rx antenna management.
   3221 		 */
   3222 		an = ATH_NODE(ni);
   3223 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3224 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3225 		/*
   3226 		 * Send frame up for processing.
   3227 		 */
   3228 		type = ieee80211_input(ic, m, ni,
   3229 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3230 		ieee80211_free_node(ni);
   3231 		if (sc->sc_diversity) {
   3232 			/*
   3233 			 * When using fast diversity, change the default rx
   3234 			 * antenna if diversity chooses the other antenna 3
   3235 			 * times in a row.
   3236 			 */
   3237 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3238 				if (++sc->sc_rxotherant >= 3)
   3239 					ath_setdefantenna(sc,
   3240 						ds->ds_rxstat.rs_antenna);
   3241 			} else
   3242 				sc->sc_rxotherant = 0;
   3243 		}
   3244 		if (sc->sc_softled) {
   3245 			/*
   3246 			 * Blink for any data frame.  Otherwise do a
   3247 			 * heartbeat-style blink when idle.  The latter
   3248 			 * is mainly for station mode where we depend on
   3249 			 * periodic beacon frames to trigger the poll event.
   3250 			 */
   3251 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3252 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3253 				ath_led_event(sc, ATH_LED_RX);
   3254 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3255 				ath_led_event(sc, ATH_LED_POLL);
   3256 		}
   3257 		/*
   3258 		 * Arrange to update the last rx timestamp only for
   3259 		 * frames from our ap when operating in station mode.
   3260 		 * This assumes the rx key is always setup when associated.
   3261 		 */
   3262 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3263 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3264 			ngood++;
   3265 rx_next:
   3266 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3267 	} while (ath_rxbuf_init(sc, bf) == 0);
   3268 
   3269 	/* rx signal state monitoring */
   3270 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3271 #if 0
   3272 	if (ath_hal_radar_event(ah))
   3273 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3274 #endif
   3275 	if (ngood)
   3276 		sc->sc_lastrx = tsf;
   3277 
   3278 #ifdef __NetBSD__
   3279 	/* XXX Why isn't this necessary in FreeBSD? */
   3280 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3281 		ath_start(ifp);
   3282 #endif /* __NetBSD__ */
   3283 
   3284 	NET_UNLOCK_GIANT();		/* XXX */
   3285 #undef PA2DESC
   3286 }
   3287 
   3288 /*
   3289  * Setup a h/w transmit queue.
   3290  */
   3291 static struct ath_txq *
   3292 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3293 {
   3294 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3295 	struct ath_hal *ah = sc->sc_ah;
   3296 	HAL_TXQ_INFO qi;
   3297 	int qnum;
   3298 
   3299 	memset(&qi, 0, sizeof(qi));
   3300 	qi.tqi_subtype = subtype;
   3301 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3302 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3303 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3304 	/*
   3305 	 * Enable interrupts only for EOL and DESC conditions.
   3306 	 * We mark tx descriptors to receive a DESC interrupt
   3307 	 * when a tx queue gets deep; otherwise waiting for the
   3308 	 * EOL to reap descriptors.  Note that this is done to
   3309 	 * reduce interrupt load and this only defers reaping
   3310 	 * descriptors, never transmitting frames.  Aside from
   3311 	 * reducing interrupts this also permits more concurrency.
   3312 	 * The only potential downside is if the tx queue backs
   3313 	 * up in which case the top half of the kernel may backup
   3314 	 * due to a lack of tx descriptors.
   3315 	 */
   3316 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3317 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3318 	if (qnum == -1) {
   3319 		/*
   3320 		 * NB: don't print a message, this happens
   3321 		 * normally on parts with too few tx queues
   3322 		 */
   3323 		return NULL;
   3324 	}
   3325 	if (qnum >= N(sc->sc_txq)) {
   3326 		device_printf(sc->sc_dev,
   3327 			"hal qnum %u out of range, max %zu!\n",
   3328 			qnum, N(sc->sc_txq));
   3329 		ath_hal_releasetxqueue(ah, qnum);
   3330 		return NULL;
   3331 	}
   3332 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3333 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3334 
   3335 		txq->axq_qnum = qnum;
   3336 		txq->axq_depth = 0;
   3337 		txq->axq_intrcnt = 0;
   3338 		txq->axq_link = NULL;
   3339 		STAILQ_INIT(&txq->axq_q);
   3340 		ATH_TXQ_LOCK_INIT(sc, txq);
   3341 		sc->sc_txqsetup |= 1<<qnum;
   3342 	}
   3343 	return &sc->sc_txq[qnum];
   3344 #undef N
   3345 }
   3346 
   3347 /*
   3348  * Setup a hardware data transmit queue for the specified
   3349  * access control.  The hal may not support all requested
   3350  * queues in which case it will return a reference to a
   3351  * previously setup queue.  We record the mapping from ac's
   3352  * to h/w queues for use by ath_tx_start and also track
   3353  * the set of h/w queues being used to optimize work in the
   3354  * transmit interrupt handler and related routines.
   3355  */
   3356 static int
   3357 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3358 {
   3359 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3360 	struct ath_txq *txq;
   3361 
   3362 	if (ac >= N(sc->sc_ac2q)) {
   3363 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3364 			ac, N(sc->sc_ac2q));
   3365 		return 0;
   3366 	}
   3367 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3368 	if (txq != NULL) {
   3369 		sc->sc_ac2q[ac] = txq;
   3370 		return 1;
   3371 	} else
   3372 		return 0;
   3373 #undef N
   3374 }
   3375 
   3376 /*
   3377  * Update WME parameters for a transmit queue.
   3378  */
   3379 static int
   3380 ath_txq_update(struct ath_softc *sc, int ac)
   3381 {
   3382 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3383 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3384 	struct ieee80211com *ic = &sc->sc_ic;
   3385 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3386 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3387 	struct ath_hal *ah = sc->sc_ah;
   3388 	HAL_TXQ_INFO qi;
   3389 
   3390 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3391 	qi.tqi_aifs = wmep->wmep_aifsn;
   3392 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3393 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3394 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3395 
   3396 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3397 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3398 			"parameters for %s traffic!\n",
   3399 			ieee80211_wme_acnames[ac]);
   3400 		return 0;
   3401 	} else {
   3402 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3403 		return 1;
   3404 	}
   3405 #undef ATH_TXOP_TO_US
   3406 #undef ATH_EXPONENT_TO_VALUE
   3407 }
   3408 
   3409 /*
   3410  * Callback from the 802.11 layer to update WME parameters.
   3411  */
   3412 static int
   3413 ath_wme_update(struct ieee80211com *ic)
   3414 {
   3415 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3416 
   3417 	return !ath_txq_update(sc, WME_AC_BE) ||
   3418 	    !ath_txq_update(sc, WME_AC_BK) ||
   3419 	    !ath_txq_update(sc, WME_AC_VI) ||
   3420 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3421 }
   3422 
   3423 /*
   3424  * Reclaim resources for a setup queue.
   3425  */
   3426 static void
   3427 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3428 {
   3429 
   3430 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3431 	ATH_TXQ_LOCK_DESTROY(txq);
   3432 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3433 }
   3434 
   3435 /*
   3436  * Reclaim all tx queue resources.
   3437  */
   3438 static void
   3439 ath_tx_cleanup(struct ath_softc *sc)
   3440 {
   3441 	int i;
   3442 
   3443 	ATH_TXBUF_LOCK_DESTROY(sc);
   3444 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3445 		if (ATH_TXQ_SETUP(sc, i))
   3446 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3447 }
   3448 
   3449 /*
   3450  * Defragment an mbuf chain, returning at most maxfrags separate
   3451  * mbufs+clusters.  If this is not possible NULL is returned and
   3452  * the original mbuf chain is left in it's present (potentially
   3453  * modified) state.  We use two techniques: collapsing consecutive
   3454  * mbufs and replacing consecutive mbufs by a cluster.
   3455  */
   3456 static struct mbuf *
   3457 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3458 {
   3459 	struct mbuf *m, *n, *n2, **prev;
   3460 	u_int curfrags;
   3461 
   3462 	/*
   3463 	 * Calculate the current number of frags.
   3464 	 */
   3465 	curfrags = 0;
   3466 	for (m = m0; m != NULL; m = m->m_next)
   3467 		curfrags++;
   3468 	/*
   3469 	 * First, try to collapse mbufs.  Note that we always collapse
   3470 	 * towards the front so we don't need to deal with moving the
   3471 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3472 	 * less data than the following.
   3473 	 */
   3474 	m = m0;
   3475 again:
   3476 	for (;;) {
   3477 		n = m->m_next;
   3478 		if (n == NULL)
   3479 			break;
   3480 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3481 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3482 				n->m_len);
   3483 			m->m_len += n->m_len;
   3484 			m->m_next = n->m_next;
   3485 			m_free(n);
   3486 			if (--curfrags <= maxfrags)
   3487 				return m0;
   3488 		} else
   3489 			m = n;
   3490 	}
   3491 	KASSERTMSG(maxfrags > 1,
   3492 		"maxfrags %u, but normal collapse failed", maxfrags);
   3493 	/*
   3494 	 * Collapse consecutive mbufs to a cluster.
   3495 	 */
   3496 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3497 	while ((n = *prev) != NULL) {
   3498 		if ((n2 = n->m_next) != NULL &&
   3499 		    n->m_len + n2->m_len < MCLBYTES) {
   3500 			m = m_getcl(how, MT_DATA, 0);
   3501 			if (m == NULL)
   3502 				goto bad;
   3503 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3504 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3505 				n2->m_len);
   3506 			m->m_len = n->m_len + n2->m_len;
   3507 			m->m_next = n2->m_next;
   3508 			*prev = m;
   3509 			m_free(n);
   3510 			m_free(n2);
   3511 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3512 				return m0;
   3513 			/*
   3514 			 * Still not there, try the normal collapse
   3515 			 * again before we allocate another cluster.
   3516 			 */
   3517 			goto again;
   3518 		}
   3519 		prev = &n->m_next;
   3520 	}
   3521 	/*
   3522 	 * No place where we can collapse to a cluster; punt.
   3523 	 * This can occur if, for example, you request 2 frags
   3524 	 * but the packet requires that both be clusters (we
   3525 	 * never reallocate the first mbuf to avoid moving the
   3526 	 * packet header).
   3527 	 */
   3528 bad:
   3529 	return NULL;
   3530 }
   3531 
   3532 /*
   3533  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3534  */
   3535 static int
   3536 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3537 {
   3538 	int i;
   3539 
   3540 	for (i = 0; i < rt->rateCount; i++)
   3541 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3542 			return i;
   3543 	return 0;		/* NB: lowest rate */
   3544 }
   3545 
   3546 static void
   3547 ath_freetx(struct mbuf *m)
   3548 {
   3549 	struct mbuf *next;
   3550 
   3551 	do {
   3552 		next = m->m_nextpkt;
   3553 		m->m_nextpkt = NULL;
   3554 		m_freem(m);
   3555 	} while ((m = next) != NULL);
   3556 }
   3557 
   3558 static int
   3559 deduct_pad_bytes(int len, int hdrlen)
   3560 {
   3561 	/* XXX I am suspicious that this code, which I extracted
   3562 	 * XXX from ath_tx_start() for reuse, does the right thing.
   3563 	 */
   3564 	return len - (hdrlen & 3);
   3565 }
   3566 
   3567 static int
   3568 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3569     struct mbuf *m0)
   3570 {
   3571 	struct ieee80211com *ic = &sc->sc_ic;
   3572 	struct ath_hal *ah = sc->sc_ah;
   3573 	struct ifnet *ifp = &sc->sc_if;
   3574 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3575 	int i, error, iswep, ismcast, isfrag, ismrr;
   3576 	int keyix, hdrlen, pktlen, try0;
   3577 	u_int8_t rix, txrate, ctsrate;
   3578 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3579 	struct ath_desc *ds, *ds0;
   3580 	struct ath_txq *txq;
   3581 	struct ieee80211_frame *wh;
   3582 	u_int subtype, flags, ctsduration;
   3583 	HAL_PKT_TYPE atype;
   3584 	const HAL_RATE_TABLE *rt;
   3585 	HAL_BOOL shortPreamble;
   3586 	struct ath_node *an;
   3587 	struct mbuf *m;
   3588 	u_int pri;
   3589 
   3590 	wh = mtod(m0, struct ieee80211_frame *);
   3591 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3592 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3593 	isfrag = m0->m_flags & M_FRAG;
   3594 	hdrlen = ieee80211_anyhdrsize(wh);
   3595 	/*
   3596 	 * Packet length must not include any
   3597 	 * pad bytes; deduct them here.
   3598 	 */
   3599 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
   3600 
   3601 	if (iswep) {
   3602 		const struct ieee80211_cipher *cip;
   3603 		struct ieee80211_key *k;
   3604 
   3605 		/*
   3606 		 * Construct the 802.11 header+trailer for an encrypted
   3607 		 * frame. The only reason this can fail is because of an
   3608 		 * unknown or unsupported cipher/key type.
   3609 		 */
   3610 		k = ieee80211_crypto_encap(ic, ni, m0);
   3611 		if (k == NULL) {
   3612 			/*
   3613 			 * This can happen when the key is yanked after the
   3614 			 * frame was queued.  Just discard the frame; the
   3615 			 * 802.11 layer counts failures and provides
   3616 			 * debugging/diagnostics.
   3617 			 */
   3618 			ath_freetx(m0);
   3619 			return EIO;
   3620 		}
   3621 		/*
   3622 		 * Adjust the packet + header lengths for the crypto
   3623 		 * additions and calculate the h/w key index.  When
   3624 		 * a s/w mic is done the frame will have had any mic
   3625 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3626 		 * account for it. Otherwise we need to add it to the
   3627 		 * packet length.
   3628 		 */
   3629 		cip = k->wk_cipher;
   3630 		hdrlen += cip->ic_header;
   3631 		pktlen += cip->ic_header + cip->ic_trailer;
   3632 		/* NB: frags always have any TKIP MIC done in s/w */
   3633 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3634 			pktlen += cip->ic_miclen;
   3635 		keyix = k->wk_keyix;
   3636 
   3637 		/* packet header may have moved, reset our local pointer */
   3638 		wh = mtod(m0, struct ieee80211_frame *);
   3639 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3640 		/*
   3641 		 * Use station key cache slot, if assigned.
   3642 		 */
   3643 		keyix = ni->ni_ucastkey.wk_keyix;
   3644 		if (keyix == IEEE80211_KEYIX_NONE)
   3645 			keyix = HAL_TXKEYIX_INVALID;
   3646 	} else
   3647 		keyix = HAL_TXKEYIX_INVALID;
   3648 
   3649 	pktlen += IEEE80211_CRC_LEN;
   3650 
   3651 	/*
   3652 	 * Load the DMA map so any coalescing is done.  This
   3653 	 * also calculates the number of descriptors we need.
   3654 	 */
   3655 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3656 				     BUS_DMA_NOWAIT);
   3657 	if (error == EFBIG) {
   3658 		/* XXX packet requires too many descriptors */
   3659 		bf->bf_nseg = ATH_TXDESC+1;
   3660 	} else if (error != 0) {
   3661 		sc->sc_stats.ast_tx_busdma++;
   3662 		ath_freetx(m0);
   3663 		return error;
   3664 	}
   3665 	/*
   3666 	 * Discard null packets and check for packets that
   3667 	 * require too many TX descriptors.  We try to convert
   3668 	 * the latter to a cluster.
   3669 	 */
   3670 	if (error == EFBIG) {		/* too many desc's, linearize */
   3671 		sc->sc_stats.ast_tx_linear++;
   3672 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3673 		if (m == NULL) {
   3674 			ath_freetx(m0);
   3675 			sc->sc_stats.ast_tx_nombuf++;
   3676 			return ENOMEM;
   3677 		}
   3678 		m0 = m;
   3679 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3680 					     BUS_DMA_NOWAIT);
   3681 		if (error != 0) {
   3682 			sc->sc_stats.ast_tx_busdma++;
   3683 			ath_freetx(m0);
   3684 			return error;
   3685 		}
   3686 		KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
   3687 		    "too many segments after defrag; nseg %u", bf->bf_nseg);
   3688 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3689 		sc->sc_stats.ast_tx_nodata++;
   3690 		ath_freetx(m0);
   3691 		return EIO;
   3692 	}
   3693 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3694 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3695             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3696 	bf->bf_m = m0;
   3697 	bf->bf_node = ni;			/* NB: held reference */
   3698 
   3699 	/* setup descriptors */
   3700 	ds = bf->bf_desc;
   3701 	rt = sc->sc_currates;
   3702 	KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
   3703 
   3704 	/*
   3705 	 * NB: the 802.11 layer marks whether or not we should
   3706 	 * use short preamble based on the current mode and
   3707 	 * negotiated parameters.
   3708 	 */
   3709 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3710 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3711 		shortPreamble = AH_TRUE;
   3712 		sc->sc_stats.ast_tx_shortpre++;
   3713 	} else {
   3714 		shortPreamble = AH_FALSE;
   3715 	}
   3716 
   3717 	an = ATH_NODE(ni);
   3718 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3719 	ismrr = 0;				/* default no multi-rate retry*/
   3720 	/*
   3721 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3722 	 * setup for rate calculations, and select h/w transmit queue.
   3723 	 */
   3724 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3725 	case IEEE80211_FC0_TYPE_MGT:
   3726 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3727 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3728 			atype = HAL_PKT_TYPE_BEACON;
   3729 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3730 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3731 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3732 			atype = HAL_PKT_TYPE_ATIM;
   3733 		else
   3734 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3735 		rix = sc->sc_minrateix;
   3736 		txrate = rt->info[rix].rateCode;
   3737 		if (shortPreamble)
   3738 			txrate |= rt->info[rix].shortPreamble;
   3739 		try0 = ATH_TXMGTTRY;
   3740 		/* NB: force all management frames to highest queue */
   3741 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3742 			/* NB: force all management frames to highest queue */
   3743 			pri = WME_AC_VO;
   3744 		} else
   3745 			pri = WME_AC_BE;
   3746 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3747 		break;
   3748 	case IEEE80211_FC0_TYPE_CTL:
   3749 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3750 		rix = sc->sc_minrateix;
   3751 		txrate = rt->info[rix].rateCode;
   3752 		if (shortPreamble)
   3753 			txrate |= rt->info[rix].shortPreamble;
   3754 		try0 = ATH_TXMGTTRY;
   3755 		/* NB: force all ctl frames to highest queue */
   3756 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3757 			/* NB: force all ctl frames to highest queue */
   3758 			pri = WME_AC_VO;
   3759 		} else
   3760 			pri = WME_AC_BE;
   3761 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3762 		break;
   3763 	case IEEE80211_FC0_TYPE_DATA:
   3764 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3765 		/*
   3766 		 * Data frames: multicast frames go out at a fixed rate,
   3767 		 * otherwise consult the rate control module for the
   3768 		 * rate to use.
   3769 		 */
   3770 		if (ismcast) {
   3771 			/*
   3772 			 * Check mcast rate setting in case it's changed.
   3773 			 * XXX move out of fastpath
   3774 			 */
   3775 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3776 				sc->sc_mcastrix =
   3777 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3778 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3779 			}
   3780 			rix = sc->sc_mcastrix;
   3781 			txrate = rt->info[rix].rateCode;
   3782 			try0 = 1;
   3783 		} else {
   3784 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3785 				&rix, &try0, &txrate);
   3786 			sc->sc_txrate = txrate;		/* for LED blinking */
   3787 			if (try0 != ATH_TXMAXTRY)
   3788 				ismrr = 1;
   3789 		}
   3790 		pri = M_WME_GETAC(m0);
   3791 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3792 			flags |= HAL_TXDESC_NOACK;
   3793 		break;
   3794 	default:
   3795 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3796 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3797 		/* XXX statistic */
   3798 		ath_freetx(m0);
   3799 		return EIO;
   3800 	}
   3801 	txq = sc->sc_ac2q[pri];
   3802 
   3803 	/*
   3804 	 * When servicing one or more stations in power-save mode
   3805 	 * multicast frames must be buffered until after the beacon.
   3806 	 * We use the CAB queue for that.
   3807 	 */
   3808 	if (ismcast && ic->ic_ps_sta) {
   3809 		txq = sc->sc_cabq;
   3810 		/* XXX? more bit in 802.11 frame header */
   3811 	}
   3812 
   3813 	/*
   3814 	 * Calculate miscellaneous flags.
   3815 	 */
   3816 	if (ismcast) {
   3817 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3818 	} else if (pktlen > ic->ic_rtsthreshold) {
   3819 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3820 		cix = rt->info[rix].controlRate;
   3821 		sc->sc_stats.ast_tx_rts++;
   3822 	}
   3823 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3824 		sc->sc_stats.ast_tx_noack++;
   3825 
   3826 	/*
   3827 	 * If 802.11g protection is enabled, determine whether
   3828 	 * to use RTS/CTS or just CTS.  Note that this is only
   3829 	 * done for OFDM unicast frames.
   3830 	 */
   3831 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3832 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3833 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3834 		/* XXX fragments must use CCK rates w/ protection */
   3835 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3836 			flags |= HAL_TXDESC_RTSENA;
   3837 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3838 			flags |= HAL_TXDESC_CTSENA;
   3839 		if (isfrag) {
   3840 			/*
   3841 			 * For frags it would be desirable to use the
   3842 			 * highest CCK rate for RTS/CTS.  But stations
   3843 			 * farther away may detect it at a lower CCK rate
   3844 			 * so use the configured protection rate instead
   3845 			 * (for now).
   3846 			 */
   3847 			cix = rt->info[sc->sc_protrix].controlRate;
   3848 		} else
   3849 			cix = rt->info[sc->sc_protrix].controlRate;
   3850 		sc->sc_stats.ast_tx_protect++;
   3851 	}
   3852 
   3853 	/*
   3854 	 * Calculate duration.  This logically belongs in the 802.11
   3855 	 * layer but it lacks sufficient information to calculate it.
   3856 	 */
   3857 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3858 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3859 		u_int16_t dur;
   3860 		/*
   3861 		 * XXX not right with fragmentation.
   3862 		 */
   3863 		if (shortPreamble)
   3864 			dur = rt->info[rix].spAckDuration;
   3865 		else
   3866 			dur = rt->info[rix].lpAckDuration;
   3867 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3868 			dur += dur;             /* additional SIFS+ACK */
   3869 			KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
   3870 			/*
   3871 			 * Include the size of next fragment so NAV is
   3872 			 * updated properly.  The last fragment uses only
   3873 			 * the ACK duration
   3874 			 */
   3875 			dur += ath_hal_computetxtime(ah, rt,
   3876 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
   3877 			        hdrlen) -
   3878 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
   3879 			    rix, shortPreamble);
   3880 		}
   3881 		if (isfrag) {
   3882 			/*
   3883 			 * Force hardware to use computed duration for next
   3884 			 * fragment by disabling multi-rate retry which updates
   3885 			 * duration based on the multi-rate duration table.
   3886 			 */
   3887 			try0 = ATH_TXMAXTRY;
   3888 		}
   3889 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3890 	}
   3891 
   3892 	/*
   3893 	 * Calculate RTS/CTS rate and duration if needed.
   3894 	 */
   3895 	ctsduration = 0;
   3896 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3897 		/*
   3898 		 * CTS transmit rate is derived from the transmit rate
   3899 		 * by looking in the h/w rate table.  We must also factor
   3900 		 * in whether or not a short preamble is to be used.
   3901 		 */
   3902 		/* NB: cix is set above where RTS/CTS is enabled */
   3903 		KASSERTMSG(cix != 0xff, "cix not setup");
   3904 		ctsrate = rt->info[cix].rateCode;
   3905 		/*
   3906 		 * Compute the transmit duration based on the frame
   3907 		 * size and the size of an ACK frame.  We call into the
   3908 		 * HAL to do the computation since it depends on the
   3909 		 * characteristics of the actual PHY being used.
   3910 		 *
   3911 		 * NB: CTS is assumed the same size as an ACK so we can
   3912 		 *     use the precalculated ACK durations.
   3913 		 */
   3914 		if (shortPreamble) {
   3915 			ctsrate |= rt->info[cix].shortPreamble;
   3916 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3917 				ctsduration += rt->info[cix].spAckDuration;
   3918 			ctsduration += ath_hal_computetxtime(ah,
   3919 				rt, pktlen, rix, AH_TRUE);
   3920 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3921 				ctsduration += rt->info[rix].spAckDuration;
   3922 		} else {
   3923 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3924 				ctsduration += rt->info[cix].lpAckDuration;
   3925 			ctsduration += ath_hal_computetxtime(ah,
   3926 				rt, pktlen, rix, AH_FALSE);
   3927 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3928 				ctsduration += rt->info[rix].lpAckDuration;
   3929 		}
   3930 		/*
   3931 		 * Must disable multi-rate retry when using RTS/CTS.
   3932 		 */
   3933 		ismrr = 0;
   3934 		try0 = ATH_TXMGTTRY;		/* XXX */
   3935 	} else
   3936 		ctsrate = 0;
   3937 
   3938 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3939 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3940 			sc->sc_hwmap[txrate].ieeerate, -1);
   3941 	bpf_mtap3(ic->ic_rawbpf, m0);
   3942 	if (sc->sc_drvbpf) {
   3943 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3944 
   3945 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3946 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3947 		if (iswep)
   3948 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3949 		if (isfrag)
   3950 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3951 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3952 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3953 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   3954 
   3955 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
   3956 	}
   3957 
   3958 	/*
   3959 	 * Determine if a tx interrupt should be generated for
   3960 	 * this descriptor.  We take a tx interrupt to reap
   3961 	 * descriptors when the h/w hits an EOL condition or
   3962 	 * when the descriptor is specifically marked to generate
   3963 	 * an interrupt.  We periodically mark descriptors in this
   3964 	 * way to insure timely replenishing of the supply needed
   3965 	 * for sending frames.  Defering interrupts reduces system
   3966 	 * load and potentially allows more concurrent work to be
   3967 	 * done but if done to aggressively can cause senders to
   3968 	 * backup.
   3969 	 *
   3970 	 * NB: use >= to deal with sc_txintrperiod changing
   3971 	 *     dynamically through sysctl.
   3972 	 */
   3973 	if (flags & HAL_TXDESC_INTREQ) {
   3974 		txq->axq_intrcnt = 0;
   3975 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   3976 		flags |= HAL_TXDESC_INTREQ;
   3977 		txq->axq_intrcnt = 0;
   3978 	}
   3979 
   3980 	/*
   3981 	 * Formulate first tx descriptor with tx controls.
   3982 	 */
   3983 	/* XXX check return value? */
   3984 	ath_hal_setuptxdesc(ah, ds
   3985 		, pktlen		/* packet length */
   3986 		, hdrlen		/* header length */
   3987 		, atype			/* Atheros packet type */
   3988 		, ni->ni_txpower	/* txpower */
   3989 		, txrate, try0		/* series 0 rate/tries */
   3990 		, keyix			/* key cache index */
   3991 		, sc->sc_txantenna	/* antenna mode */
   3992 		, flags			/* flags */
   3993 		, ctsrate		/* rts/cts rate */
   3994 		, ctsduration		/* rts/cts duration */
   3995 	);
   3996 	bf->bf_flags = flags;
   3997 	/*
   3998 	 * Setup the multi-rate retry state only when we're
   3999 	 * going to use it.  This assumes ath_hal_setuptxdesc
   4000 	 * initializes the descriptors (so we don't have to)
   4001 	 * when the hardware supports multi-rate retry and
   4002 	 * we don't use it.
   4003 	 */
   4004 	if (ismrr)
   4005 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   4006 
   4007 	/*
   4008 	 * Fillin the remainder of the descriptor info.
   4009 	 */
   4010 	ds0 = ds;
   4011 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   4012 		ds->ds_data = bf->bf_segs[i].ds_addr;
   4013 		if (i == bf->bf_nseg - 1)
   4014 			ds->ds_link = 0;
   4015 		else
   4016 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   4017 		ath_hal_filltxdesc(ah, ds
   4018 			, bf->bf_segs[i].ds_len	/* segment length */
   4019 			, i == 0		/* first segment */
   4020 			, i == bf->bf_nseg - 1	/* last segment */
   4021 			, ds0			/* first descriptor */
   4022 		);
   4023 
   4024 		/* NB: The desc swap function becomes void,
   4025 		 * if descriptor swapping is not enabled
   4026 		 */
   4027 		ath_desc_swap(ds);
   4028 
   4029 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4030 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   4031 			__func__, i, ds->ds_link, ds->ds_data,
   4032 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   4033 	}
   4034 	/*
   4035 	 * Insert the frame on the outbound list and
   4036 	 * pass it on to the hardware.
   4037 	 */
   4038 	ATH_TXQ_LOCK(txq);
   4039 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   4040 	if (txq->axq_link == NULL) {
   4041 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   4042 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4043 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   4044 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   4045 		    txq->axq_depth);
   4046 	} else {
   4047 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   4048 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4049 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   4050 		    __func__, txq->axq_qnum, txq->axq_link,
   4051 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   4052 	}
   4053 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   4054 	/*
   4055 	 * The CAB queue is started from the SWBA handler since
   4056 	 * frames only go out on DTIM and to avoid possible races.
   4057 	 */
   4058 	if (txq != sc->sc_cabq)
   4059 		ath_hal_txstart(ah, txq->axq_qnum);
   4060 	ATH_TXQ_UNLOCK(txq);
   4061 
   4062 	return 0;
   4063 }
   4064 
   4065 /*
   4066  * Process completed xmit descriptors from the specified queue.
   4067  */
   4068 static int
   4069 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4070 {
   4071 	struct ath_hal *ah = sc->sc_ah;
   4072 	struct ieee80211com *ic = &sc->sc_ic;
   4073 	struct ath_buf *bf;
   4074 	struct ath_desc *ds, *ds0;
   4075 	struct ieee80211_node *ni;
   4076 	struct ath_node *an;
   4077 	int sr, lr, pri, nacked;
   4078 	HAL_STATUS status;
   4079 
   4080 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4081 		__func__, txq->axq_qnum,
   4082 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4083 		txq->axq_link);
   4084 	nacked = 0;
   4085 	for (;;) {
   4086 		ATH_TXQ_LOCK(txq);
   4087 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4088 		bf = STAILQ_FIRST(&txq->axq_q);
   4089 		if (bf == NULL) {
   4090 			txq->axq_link = NULL;
   4091 			ATH_TXQ_UNLOCK(txq);
   4092 			break;
   4093 		}
   4094 		ds0 = &bf->bf_desc[0];
   4095 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4096 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
   4097 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4098 			ath_printtxbuf(bf, status == HAL_OK);
   4099 		if (status == HAL_EINPROGRESS) {
   4100 			ATH_TXQ_UNLOCK(txq);
   4101 			break;
   4102 		}
   4103 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4104 		ATH_TXQ_UNLOCK(txq);
   4105 
   4106 		ni = bf->bf_node;
   4107 		if (ni != NULL) {
   4108 			an = ATH_NODE(ni);
   4109 			if (ds->ds_txstat.ts_status == 0) {
   4110 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4111 				sc->sc_stats.ast_ant_tx[txant]++;
   4112 				sc->sc_ant_tx[txant]++;
   4113 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4114 					sc->sc_stats.ast_tx_altrate++;
   4115 				sc->sc_stats.ast_tx_rssi =
   4116 					ds->ds_txstat.ts_rssi;
   4117 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4118 					ds->ds_txstat.ts_rssi);
   4119 				pri = M_WME_GETAC(bf->bf_m);
   4120 				if (pri >= WME_AC_VO)
   4121 					ic->ic_wme.wme_hipri_traffic++;
   4122 				ni->ni_inact = ni->ni_inact_reload;
   4123 			} else {
   4124 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4125 					sc->sc_stats.ast_tx_xretries++;
   4126 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4127 					sc->sc_stats.ast_tx_fifoerr++;
   4128 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4129 					sc->sc_stats.ast_tx_filtered++;
   4130 			}
   4131 			sr = ds->ds_txstat.ts_shortretry;
   4132 			lr = ds->ds_txstat.ts_longretry;
   4133 			sc->sc_stats.ast_tx_shortretry += sr;
   4134 			sc->sc_stats.ast_tx_longretry += lr;
   4135 			/*
   4136 			 * Hand the descriptor to the rate control algorithm.
   4137 			 */
   4138 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4139 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4140 				/*
   4141 				 * If frame was ack'd update the last rx time
   4142 				 * used to workaround phantom bmiss interrupts.
   4143 				 */
   4144 				if (ds->ds_txstat.ts_status == 0)
   4145 					nacked++;
   4146 				ath_rate_tx_complete(sc, an, ds, ds0);
   4147 			}
   4148 			/*
   4149 			 * Reclaim reference to node.
   4150 			 *
   4151 			 * NB: the node may be reclaimed here if, for example
   4152 			 *     this is a DEAUTH message that was sent and the
   4153 			 *     node was timed out due to inactivity.
   4154 			 */
   4155 			ieee80211_free_node(ni);
   4156 		}
   4157 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4158 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4159 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4160 		m_freem(bf->bf_m);
   4161 		bf->bf_m = NULL;
   4162 		bf->bf_node = NULL;
   4163 
   4164 		ATH_TXBUF_LOCK(sc);
   4165 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4166 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4167 		ATH_TXBUF_UNLOCK(sc);
   4168 	}
   4169 	return nacked;
   4170 }
   4171 
   4172 static inline int
   4173 txqactive(struct ath_hal *ah, int qnum)
   4174 {
   4175 	u_int32_t txqs = 1<<qnum;
   4176 	ath_hal_gettxintrtxqs(ah, &txqs);
   4177 	return (txqs & (1<<qnum));
   4178 }
   4179 
   4180 /*
   4181  * Deferred processing of transmit interrupt; special-cased
   4182  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4183  */
   4184 static void
   4185 ath_tx_proc_q0(void *arg, int npending)
   4186 {
   4187 	struct ath_softc *sc = arg;
   4188 	struct ifnet *ifp = &sc->sc_if;
   4189 
   4190 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4191 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4192 	}
   4193 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4194 		ath_tx_processq(sc, sc->sc_cabq);
   4195 
   4196 	if (sc->sc_softled)
   4197 		ath_led_event(sc, ATH_LED_TX);
   4198 
   4199 	ath_start(ifp);
   4200 }
   4201 
   4202 /*
   4203  * Deferred processing of transmit interrupt; special-cased
   4204  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4205  */
   4206 static void
   4207 ath_tx_proc_q0123(void *arg, int npending)
   4208 {
   4209 	struct ath_softc *sc = arg;
   4210 	struct ifnet *ifp = &sc->sc_if;
   4211 	int nacked;
   4212 
   4213 	/*
   4214 	 * Process each active queue.
   4215 	 */
   4216 	nacked = 0;
   4217 	if (txqactive(sc->sc_ah, 0))
   4218 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4219 	if (txqactive(sc->sc_ah, 1))
   4220 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4221 	if (txqactive(sc->sc_ah, 2))
   4222 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4223 	if (txqactive(sc->sc_ah, 3))
   4224 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4225 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4226 		ath_tx_processq(sc, sc->sc_cabq);
   4227 	if (nacked) {
   4228 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4229 	}
   4230 
   4231 	if (sc->sc_softled)
   4232 		ath_led_event(sc, ATH_LED_TX);
   4233 
   4234 	ath_start(ifp);
   4235 }
   4236 
   4237 /*
   4238  * Deferred processing of transmit interrupt.
   4239  */
   4240 static void
   4241 ath_tx_proc(void *arg, int npending)
   4242 {
   4243 	struct ath_softc *sc = arg;
   4244 	struct ifnet *ifp = &sc->sc_if;
   4245 	int i, nacked;
   4246 
   4247 	/*
   4248 	 * Process each active queue.
   4249 	 */
   4250 	nacked = 0;
   4251 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4252 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4253 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4254 	if (nacked) {
   4255 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4256 	}
   4257 
   4258 	if (sc->sc_softled)
   4259 		ath_led_event(sc, ATH_LED_TX);
   4260 
   4261 	ath_start(ifp);
   4262 }
   4263 
   4264 static void
   4265 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4266 {
   4267 	struct ath_hal *ah = sc->sc_ah;
   4268 	struct ieee80211_node *ni;
   4269 	struct ath_buf *bf;
   4270 	struct ath_desc *ds;
   4271 
   4272 	/*
   4273 	 * NB: this assumes output has been stopped and
   4274 	 *     we do not need to block ath_tx_tasklet
   4275 	 */
   4276 	for (;;) {
   4277 		ATH_TXQ_LOCK(txq);
   4278 		bf = STAILQ_FIRST(&txq->axq_q);
   4279 		if (bf == NULL) {
   4280 			txq->axq_link = NULL;
   4281 			ATH_TXQ_UNLOCK(txq);
   4282 			break;
   4283 		}
   4284 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4285 		ATH_TXQ_UNLOCK(txq);
   4286 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4287 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4288 			ath_printtxbuf(bf,
   4289 				ath_hal_txprocdesc(ah, bf->bf_desc,
   4290 					&ds->ds_txstat) == HAL_OK);
   4291 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4292 		m_freem(bf->bf_m);
   4293 		bf->bf_m = NULL;
   4294 		ni = bf->bf_node;
   4295 		bf->bf_node = NULL;
   4296 		if (ni != NULL) {
   4297 			/*
   4298 			 * Reclaim node reference.
   4299 			 */
   4300 			ieee80211_free_node(ni);
   4301 		}
   4302 		ATH_TXBUF_LOCK(sc);
   4303 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4304 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4305 		ATH_TXBUF_UNLOCK(sc);
   4306 	}
   4307 }
   4308 
   4309 static void
   4310 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4311 {
   4312 	struct ath_hal *ah = sc->sc_ah;
   4313 
   4314 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4315 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4316 	    __func__, txq->axq_qnum,
   4317 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4318 	    txq->axq_link);
   4319 }
   4320 
   4321 /*
   4322  * Drain the transmit queues and reclaim resources.
   4323  */
   4324 static void
   4325 ath_draintxq(struct ath_softc *sc)
   4326 {
   4327 	struct ath_hal *ah = sc->sc_ah;
   4328 	int i;
   4329 
   4330 	/* XXX return value */
   4331 	if (device_is_active(sc->sc_dev)) {
   4332 		/* don't touch the hardware if marked invalid */
   4333 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4334 		DPRINTF(sc, ATH_DEBUG_RESET,
   4335 		    "%s: beacon queue %p\n", __func__,
   4336 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4337 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4338 			if (ATH_TXQ_SETUP(sc, i))
   4339 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4340 	}
   4341 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4342 		if (ATH_TXQ_SETUP(sc, i))
   4343 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4344 }
   4345 
   4346 /*
   4347  * Disable the receive h/w in preparation for a reset.
   4348  */
   4349 static void
   4350 ath_stoprecv(struct ath_softc *sc)
   4351 {
   4352 #define	PA2DESC(_sc, _pa) \
   4353 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4354 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4355 	struct ath_hal *ah = sc->sc_ah;
   4356 
   4357 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4358 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4359 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4360 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4361 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4362 		struct ath_buf *bf;
   4363 
   4364 		printf("%s: rx queue %p, link %p\n", __func__,
   4365 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4366 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4367 			struct ath_desc *ds = bf->bf_desc;
   4368 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4369 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   4370 				&ds->ds_rxstat);
   4371 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4372 				ath_printrxbuf(bf, status == HAL_OK);
   4373 		}
   4374 	}
   4375 	sc->sc_rxlink = NULL;		/* just in case */
   4376 #undef PA2DESC
   4377 }
   4378 
   4379 /*
   4380  * Enable the receive h/w following a reset.
   4381  */
   4382 static int
   4383 ath_startrecv(struct ath_softc *sc)
   4384 {
   4385 	struct ath_hal *ah = sc->sc_ah;
   4386 	struct ath_buf *bf;
   4387 
   4388 	sc->sc_rxlink = NULL;
   4389 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4390 		int error = ath_rxbuf_init(sc, bf);
   4391 		if (error != 0) {
   4392 			DPRINTF(sc, ATH_DEBUG_RECV,
   4393 				"%s: ath_rxbuf_init failed %d\n",
   4394 				__func__, error);
   4395 			return error;
   4396 		}
   4397 	}
   4398 
   4399 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4400 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4401 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4402 	ath_mode_init(sc);		/* set filters, etc. */
   4403 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4404 	return 0;
   4405 }
   4406 
   4407 /*
   4408  * Update internal state after a channel change.
   4409  */
   4410 static void
   4411 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4412 {
   4413 	struct ieee80211com *ic = &sc->sc_ic;
   4414 	enum ieee80211_phymode mode;
   4415 	u_int16_t flags;
   4416 
   4417 	/*
   4418 	 * Change channels and update the h/w rate map
   4419 	 * if we're switching; e.g. 11a to 11b/g.
   4420 	 */
   4421 	mode = ieee80211_chan2mode(ic, chan);
   4422 	if (mode != sc->sc_curmode)
   4423 		ath_setcurmode(sc, mode);
   4424 	/*
   4425 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4426 	 * merged flags well so pick a unique mode for their use.
   4427 	 */
   4428 	if (IEEE80211_IS_CHAN_A(chan))
   4429 		flags = IEEE80211_CHAN_A;
   4430 	/* XXX 11g schizophrenia */
   4431 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4432 	    IEEE80211_IS_CHAN_PUREG(chan))
   4433 		flags = IEEE80211_CHAN_G;
   4434 	else
   4435 		flags = IEEE80211_CHAN_B;
   4436 	if (IEEE80211_IS_CHAN_T(chan))
   4437 		flags |= IEEE80211_CHAN_TURBO;
   4438 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4439 		htole16(chan->ic_freq);
   4440 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4441 		htole16(flags);
   4442 }
   4443 
   4444 #if 0
   4445 /*
   4446  * Poll for a channel clear indication; this is required
   4447  * for channels requiring DFS and not previously visited
   4448  * and/or with a recent radar detection.
   4449  */
   4450 static void
   4451 ath_dfswait(void *arg)
   4452 {
   4453 	struct ath_softc *sc = arg;
   4454 	struct ath_hal *ah = sc->sc_ah;
   4455 	HAL_CHANNEL hchan;
   4456 
   4457 	ath_hal_radar_wait(ah, &hchan);
   4458 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4459 		if_printf(&sc->sc_if,
   4460 		    "channel %u/0x%x/0x%x has interference\n",
   4461 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4462 		return;
   4463 	}
   4464 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4465 		/* XXX should not happen */
   4466 		return;
   4467 	}
   4468 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4469 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4470 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4471 		if_printf(&sc->sc_if,
   4472 		    "channel %u/0x%x/0x%x marked clear\n",
   4473 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4474 	} else
   4475 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4476 }
   4477 #endif
   4478 
   4479 /*
   4480  * Set/change channels.  If the channel is really being changed,
   4481  * it's done by reseting the chip.  To accomplish this we must
   4482  * first cleanup any pending DMA, then restart stuff after a la
   4483  * ath_init.
   4484  */
   4485 static int
   4486 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4487 {
   4488 	struct ath_hal *ah = sc->sc_ah;
   4489 	struct ieee80211com *ic = &sc->sc_ic;
   4490 	HAL_CHANNEL hchan;
   4491 
   4492 	/*
   4493 	 * Convert to a HAL channel description with
   4494 	 * the flags constrained to reflect the current
   4495 	 * operating mode.
   4496 	 */
   4497 	hchan.channel = chan->ic_freq;
   4498 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4499 
   4500 	DPRINTF(sc, ATH_DEBUG_RESET,
   4501 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4502 	    __func__,
   4503 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4504 		sc->sc_curchan.channelFlags),
   4505 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4506 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4507 	        hchan.channel, hchan.channelFlags);
   4508 	if (hchan.channel != sc->sc_curchan.channel ||
   4509 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4510 		HAL_STATUS status;
   4511 
   4512 		/*
   4513 		 * To switch channels clear any pending DMA operations;
   4514 		 * wait long enough for the RX fifo to drain, reset the
   4515 		 * hardware at the new frequency, and then re-enable
   4516 		 * the relevant bits of the h/w.
   4517 		 */
   4518 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4519 		ath_draintxq(sc);		/* clear pending tx frames */
   4520 		ath_stoprecv(sc);		/* turn off frame recv */
   4521 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4522 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4523 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4524 			    __func__, ieee80211_chan2ieee(ic, chan),
   4525 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4526 			return EIO;
   4527 		}
   4528 		sc->sc_curchan = hchan;
   4529 		ath_update_txpow(sc);		/* update tx power state */
   4530 		ath_restore_diversity(sc);
   4531 		sc->sc_calinterval = 1;
   4532 		sc->sc_caltries = 0;
   4533 
   4534 		/*
   4535 		 * Re-enable rx framework.
   4536 		 */
   4537 		if (ath_startrecv(sc) != 0) {
   4538 			if_printf(&sc->sc_if,
   4539 				"%s: unable to restart recv logic\n", __func__);
   4540 			return EIO;
   4541 		}
   4542 
   4543 		/*
   4544 		 * Change channels and update the h/w rate map
   4545 		 * if we're switching; e.g. 11a to 11b/g.
   4546 		 */
   4547 		ic->ic_ibss_chan = chan;
   4548 		ath_chan_change(sc, chan);
   4549 
   4550 #if 0
   4551 		/*
   4552 		 * Handle DFS required waiting period to determine
   4553 		 * if channel is clear of radar traffic.
   4554 		 */
   4555 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4556 #define	DFS_AND_NOT_CLEAR(_c) \
   4557 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4558 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4559 				if_printf(&sc->sc_if,
   4560 					"wait for DFS clear channel signal\n");
   4561 				/* XXX stop sndq */
   4562 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4563 				callout_reset(&sc->sc_dfs_ch,
   4564 					2 * hz, ath_dfswait, sc);
   4565 			} else
   4566 				callout_stop(&sc->sc_dfs_ch);
   4567 #undef DFS_NOT_CLEAR
   4568 		}
   4569 #endif
   4570 
   4571 		/*
   4572 		 * Re-enable interrupts.
   4573 		 */
   4574 		ath_hal_intrset(ah, sc->sc_imask);
   4575 	}
   4576 	return 0;
   4577 }
   4578 
   4579 static void
   4580 ath_next_scan(void *arg)
   4581 {
   4582 	struct ath_softc *sc = arg;
   4583 	struct ieee80211com *ic = &sc->sc_ic;
   4584 	int s;
   4585 
   4586 	/* don't call ath_start w/o network interrupts blocked */
   4587 	s = splnet();
   4588 
   4589 	if (ic->ic_state == IEEE80211_S_SCAN)
   4590 		ieee80211_next_scan(ic);
   4591 	splx(s);
   4592 }
   4593 
   4594 /*
   4595  * Periodically recalibrate the PHY to account
   4596  * for temperature/environment changes.
   4597  */
   4598 static void
   4599 ath_calibrate(void *arg)
   4600 {
   4601 	struct ath_softc *sc = arg;
   4602 	struct ath_hal *ah = sc->sc_ah;
   4603 	HAL_BOOL iqCalDone;
   4604 	int s;
   4605 
   4606 	sc->sc_stats.ast_per_cal++;
   4607 
   4608 	 s = splnet();
   4609 
   4610 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4611 		/*
   4612 		 * Rfgain is out of bounds, reset the chip
   4613 		 * to load new gain values.
   4614 		 */
   4615 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4616 			"%s: rfgain change\n", __func__);
   4617 		sc->sc_stats.ast_per_rfgain++;
   4618 		ath_reset(&sc->sc_if);
   4619 	}
   4620 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4621 		DPRINTF(sc, ATH_DEBUG_ANY,
   4622 			"%s: calibration of channel %u failed\n",
   4623 			__func__, sc->sc_curchan.channel);
   4624 		sc->sc_stats.ast_per_calfail++;
   4625 	}
   4626 	/*
   4627 	 * Calibrate noise floor data again in case of change.
   4628 	 */
   4629 	ath_hal_process_noisefloor(ah);
   4630 	/*
   4631 	 * Poll more frequently when the IQ calibration is in
   4632 	 * progress to speedup loading the final settings.
   4633 	 * We temper this aggressive polling with an exponential
   4634 	 * back off after 4 tries up to ath_calinterval.
   4635 	 */
   4636 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4637 		sc->sc_caltries = 0;
   4638 		sc->sc_calinterval = ath_calinterval;
   4639 	} else if (sc->sc_caltries > 4) {
   4640 		sc->sc_caltries = 0;
   4641 		sc->sc_calinterval <<= 1;
   4642 		if (sc->sc_calinterval > ath_calinterval)
   4643 			sc->sc_calinterval = ath_calinterval;
   4644 	}
   4645 	KASSERTMSG(0 < sc->sc_calinterval &&
   4646 	           sc->sc_calinterval <= ath_calinterval,
   4647 		   "bad calibration interval %u", sc->sc_calinterval);
   4648 
   4649 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4650 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4651 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4652 	sc->sc_caltries++;
   4653 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4654 		ath_calibrate, sc);
   4655 	splx(s);
   4656 }
   4657 
   4658 static int
   4659 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4660 {
   4661 	struct ifnet *ifp = ic->ic_ifp;
   4662 	struct ath_softc *sc = ifp->if_softc;
   4663 	struct ath_hal *ah = sc->sc_ah;
   4664 	struct ieee80211_node *ni;
   4665 	int i, error;
   4666 	const u_int8_t *bssid;
   4667 	u_int32_t rfilt;
   4668 	static const HAL_LED_STATE leds[] = {
   4669 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4670 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4671 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4672 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4673 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4674 	};
   4675 
   4676 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4677 		ieee80211_state_name[ic->ic_state],
   4678 		ieee80211_state_name[nstate]);
   4679 
   4680 	callout_stop(&sc->sc_scan_ch);
   4681 	callout_stop(&sc->sc_cal_ch);
   4682 #if 0
   4683 	callout_stop(&sc->sc_dfs_ch);
   4684 #endif
   4685 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4686 
   4687 	if (nstate == IEEE80211_S_INIT) {
   4688 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4689 		/*
   4690 		 * NB: disable interrupts so we don't rx frames.
   4691 		 */
   4692 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4693 		/*
   4694 		 * Notify the rate control algorithm.
   4695 		 */
   4696 		ath_rate_newstate(sc, nstate);
   4697 		goto done;
   4698 	}
   4699 	ni = ic->ic_bss;
   4700 	error = ath_chan_set(sc, ic->ic_curchan);
   4701 	if (error != 0)
   4702 		goto bad;
   4703 	rfilt = ath_calcrxfilter(sc, nstate);
   4704 	if (nstate == IEEE80211_S_SCAN)
   4705 		bssid = ifp->if_broadcastaddr;
   4706 	else
   4707 		bssid = ni->ni_bssid;
   4708 	ath_hal_setrxfilter(ah, rfilt);
   4709 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4710 		 __func__, rfilt, ether_sprintf(bssid));
   4711 
   4712 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4713 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4714 	else
   4715 		ath_hal_setassocid(ah, bssid, 0);
   4716 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4717 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4718 			if (ath_hal_keyisvalid(ah, i))
   4719 				ath_hal_keysetmac(ah, i, bssid);
   4720 	}
   4721 
   4722 	/*
   4723 	 * Notify the rate control algorithm so rates
   4724 	 * are setup should ath_beacon_alloc be called.
   4725 	 */
   4726 	ath_rate_newstate(sc, nstate);
   4727 
   4728 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4729 		/* nothing to do */;
   4730 	} else if (nstate == IEEE80211_S_RUN) {
   4731 		DPRINTF(sc, ATH_DEBUG_STATE,
   4732 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4733 			"capinfo=0x%04x chan=%d\n"
   4734 			 , __func__
   4735 			 , ic->ic_flags
   4736 			 , ni->ni_intval
   4737 			 , ether_sprintf(ni->ni_bssid)
   4738 			 , ni->ni_capinfo
   4739 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4740 
   4741 		switch (ic->ic_opmode) {
   4742 		case IEEE80211_M_HOSTAP:
   4743 		case IEEE80211_M_IBSS:
   4744 			/*
   4745 			 * Allocate and setup the beacon frame.
   4746 			 *
   4747 			 * Stop any previous beacon DMA.  This may be
   4748 			 * necessary, for example, when an ibss merge
   4749 			 * causes reconfiguration; there will be a state
   4750 			 * transition from RUN->RUN that means we may
   4751 			 * be called with beacon transmission active.
   4752 			 */
   4753 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4754 			ath_beacon_free(sc);
   4755 			error = ath_beacon_alloc(sc, ni);
   4756 			if (error != 0)
   4757 				goto bad;
   4758 			/*
   4759 			 * If joining an adhoc network defer beacon timer
   4760 			 * configuration to the next beacon frame so we
   4761 			 * have a current TSF to use.  Otherwise we're
   4762 			 * starting an ibss/bss so there's no need to delay.
   4763 			 */
   4764 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4765 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4766 				sc->sc_syncbeacon = 1;
   4767 			else
   4768 				ath_beacon_config(sc);
   4769 			break;
   4770 		case IEEE80211_M_STA:
   4771 			/*
   4772 			 * Allocate a key cache slot to the station.
   4773 			 */
   4774 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4775 			    sc->sc_hasclrkey &&
   4776 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4777 				ath_setup_stationkey(ni);
   4778 			/*
   4779 			 * Defer beacon timer configuration to the next
   4780 			 * beacon frame so we have a current TSF to use
   4781 			 * (any TSF collected when scanning is likely old).
   4782 			 */
   4783 			sc->sc_syncbeacon = 1;
   4784 			break;
   4785 		default:
   4786 			break;
   4787 		}
   4788 		/*
   4789 		 * Let the hal process statistics collected during a
   4790 		 * scan so it can provide calibrated noise floor data.
   4791 		 */
   4792 		ath_hal_process_noisefloor(ah);
   4793 		/*
   4794 		 * Reset rssi stats; maybe not the best place...
   4795 		 */
   4796 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4797 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4798 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4799 	} else {
   4800 		ath_hal_intrset(ah,
   4801 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4802 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4803 	}
   4804 done:
   4805 	/*
   4806 	 * Invoke the parent method to complete the work.
   4807 	 */
   4808 	error = sc->sc_newstate(ic, nstate, arg);
   4809 	/*
   4810 	 * Finally, start any timers.
   4811 	 */
   4812 	if (nstate == IEEE80211_S_RUN) {
   4813 		/* start periodic recalibration timer */
   4814 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4815 			ath_calibrate, sc);
   4816 	} else if (nstate == IEEE80211_S_SCAN) {
   4817 		/* start ap/neighbor scan timer */
   4818 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4819 			ath_next_scan, sc);
   4820 	}
   4821 bad:
   4822 	return error;
   4823 }
   4824 
   4825 /*
   4826  * Allocate a key cache slot to the station so we can
   4827  * setup a mapping from key index to node. The key cache
   4828  * slot is needed for managing antenna state and for
   4829  * compression when stations do not use crypto.  We do
   4830  * it uniliaterally here; if crypto is employed this slot
   4831  * will be reassigned.
   4832  */
   4833 static void
   4834 ath_setup_stationkey(struct ieee80211_node *ni)
   4835 {
   4836 	struct ieee80211com *ic = ni->ni_ic;
   4837 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4838 	ieee80211_keyix keyix, rxkeyix;
   4839 
   4840 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4841 		/*
   4842 		 * Key cache is full; we'll fall back to doing
   4843 		 * the more expensive lookup in software.  Note
   4844 		 * this also means no h/w compression.
   4845 		 */
   4846 		/* XXX msg+statistic */
   4847 	} else {
   4848 		/* XXX locking? */
   4849 		ni->ni_ucastkey.wk_keyix = keyix;
   4850 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4851 		/* NB: this will create a pass-thru key entry */
   4852 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4853 	}
   4854 }
   4855 
   4856 /*
   4857  * Setup driver-specific state for a newly associated node.
   4858  * Note that we're called also on a re-associate, the isnew
   4859  * param tells us if this is the first time or not.
   4860  */
   4861 static void
   4862 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4863 {
   4864 	struct ieee80211com *ic = ni->ni_ic;
   4865 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4866 
   4867 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4868 	if (isnew &&
   4869 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4870 		KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4871 		    "new assoc with a unicast key already setup (keyix %u)",
   4872 		    ni->ni_ucastkey.wk_keyix);
   4873 		ath_setup_stationkey(ni);
   4874 	}
   4875 }
   4876 
   4877 static int
   4878 ath_getchannels(struct ath_softc *sc, u_int cc,
   4879 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4880 {
   4881 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4882 	struct ieee80211com *ic = &sc->sc_ic;
   4883 	struct ifnet *ifp = &sc->sc_if;
   4884 	struct ath_hal *ah = sc->sc_ah;
   4885 	HAL_CHANNEL *chans;
   4886 	int i, ix, nchan;
   4887 
   4888 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4889 			M_TEMP, M_NOWAIT);
   4890 	if (chans == NULL) {
   4891 		if_printf(ifp, "unable to allocate channel table\n");
   4892 		return ENOMEM;
   4893 	}
   4894 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4895 	    NULL, 0, NULL,
   4896 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4897 		u_int32_t rd;
   4898 
   4899 		(void)ath_hal_getregdomain(ah, &rd);
   4900 		if_printf(ifp, "unable to collect channel list from hal; "
   4901 			"regdomain likely %u country code %u\n", rd, cc);
   4902 		free(chans, M_TEMP);
   4903 		return EINVAL;
   4904 	}
   4905 
   4906 	/*
   4907 	 * Convert HAL channels to ieee80211 ones and insert
   4908 	 * them in the table according to their channel number.
   4909 	 */
   4910 	for (i = 0; i < nchan; i++) {
   4911 		HAL_CHANNEL *c = &chans[i];
   4912 		u_int16_t flags;
   4913 
   4914 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4915 		if (ix > IEEE80211_CHAN_MAX) {
   4916 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4917 				ix, c->channel, c->channelFlags);
   4918 			continue;
   4919 		}
   4920 		if (ix < 0) {
   4921 			/* XXX can't handle stuff <2400 right now */
   4922 			if (bootverbose)
   4923 				if_printf(ifp, "hal channel %d (%u/%x) "
   4924 				    "cannot be handled; ignored\n",
   4925 				    ix, c->channel, c->channelFlags);
   4926 			continue;
   4927 		}
   4928 		/*
   4929 		 * Calculate net80211 flags; most are compatible
   4930 		 * but some need massaging.  Note the static turbo
   4931 		 * conversion can be removed once net80211 is updated
   4932 		 * to understand static vs. dynamic turbo.
   4933 		 */
   4934 		flags = c->channelFlags & COMPAT;
   4935 		if (c->channelFlags & CHANNEL_STURBO)
   4936 			flags |= IEEE80211_CHAN_TURBO;
   4937 		if (ic->ic_channels[ix].ic_freq == 0) {
   4938 			ic->ic_channels[ix].ic_freq = c->channel;
   4939 			ic->ic_channels[ix].ic_flags = flags;
   4940 		} else {
   4941 			/* channels overlap; e.g. 11g and 11b */
   4942 			ic->ic_channels[ix].ic_flags |= flags;
   4943 		}
   4944 	}
   4945 	free(chans, M_TEMP);
   4946 	return 0;
   4947 #undef COMPAT
   4948 }
   4949 
   4950 static void
   4951 ath_led_done(void *arg)
   4952 {
   4953 	struct ath_softc *sc = arg;
   4954 
   4955 	sc->sc_blinking = 0;
   4956 }
   4957 
   4958 /*
   4959  * Turn the LED off: flip the pin and then set a timer so no
   4960  * update will happen for the specified duration.
   4961  */
   4962 static void
   4963 ath_led_off(void *arg)
   4964 {
   4965 	struct ath_softc *sc = arg;
   4966 
   4967 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   4968 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   4969 }
   4970 
   4971 /*
   4972  * Blink the LED according to the specified on/off times.
   4973  */
   4974 static void
   4975 ath_led_blink(struct ath_softc *sc, int on, int off)
   4976 {
   4977 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   4978 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   4979 	sc->sc_blinking = 1;
   4980 	sc->sc_ledoff = off;
   4981 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   4982 }
   4983 
   4984 static void
   4985 ath_led_event(struct ath_softc *sc, int event)
   4986 {
   4987 
   4988 	sc->sc_ledevent = ticks;	/* time of last event */
   4989 	if (sc->sc_blinking)		/* don't interrupt active blink */
   4990 		return;
   4991 	switch (event) {
   4992 	case ATH_LED_POLL:
   4993 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   4994 			sc->sc_hwmap[0].ledoff);
   4995 		break;
   4996 	case ATH_LED_TX:
   4997 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   4998 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   4999 		break;
   5000 	case ATH_LED_RX:
   5001 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   5002 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   5003 		break;
   5004 	}
   5005 }
   5006 
   5007 static void
   5008 ath_update_txpow(struct ath_softc *sc)
   5009 {
   5010 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   5011 	struct ieee80211com *ic = &sc->sc_ic;
   5012 	struct ath_hal *ah = sc->sc_ah;
   5013 	u_int32_t txpow;
   5014 
   5015 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   5016 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   5017 		/* read back in case value is clamped */
   5018 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   5019 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   5020 	}
   5021 	/*
   5022 	 * Fetch max tx power level for status requests.
   5023 	 */
   5024 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   5025 	ic->ic_bss->ni_txpower = txpow;
   5026 }
   5027 
   5028 static void
   5029 rate_setup(struct ath_softc *sc,
   5030 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   5031 {
   5032 	int i, maxrates;
   5033 
   5034 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   5035 		DPRINTF(sc, ATH_DEBUG_ANY,
   5036 			"%s: rate table too small (%u > %u)\n",
   5037 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   5038 		maxrates = IEEE80211_RATE_MAXSIZE;
   5039 	} else
   5040 		maxrates = rt->rateCount;
   5041 	for (i = 0; i < maxrates; i++)
   5042 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   5043 	rs->rs_nrates = maxrates;
   5044 }
   5045 
   5046 static int
   5047 ath_rate_setup(struct ath_softc *sc, u_int mode)
   5048 {
   5049 	struct ath_hal *ah = sc->sc_ah;
   5050 	struct ieee80211com *ic = &sc->sc_ic;
   5051 	const HAL_RATE_TABLE *rt;
   5052 
   5053 	switch (mode) {
   5054 	case IEEE80211_MODE_11A:
   5055 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   5056 		break;
   5057 	case IEEE80211_MODE_11B:
   5058 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   5059 		break;
   5060 	case IEEE80211_MODE_11G:
   5061 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   5062 		break;
   5063 	case IEEE80211_MODE_TURBO_A:
   5064 		/* XXX until static/dynamic turbo is fixed */
   5065 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5066 		break;
   5067 	case IEEE80211_MODE_TURBO_G:
   5068 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5069 		break;
   5070 	default:
   5071 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5072 			__func__, mode);
   5073 		return 0;
   5074 	}
   5075 	sc->sc_rates[mode] = rt;
   5076 	if (rt != NULL) {
   5077 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5078 		return 1;
   5079 	} else
   5080 		return 0;
   5081 }
   5082 
   5083 static void
   5084 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5085 {
   5086 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5087 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5088 	static const struct {
   5089 		u_int		rate;		/* tx/rx 802.11 rate */
   5090 		u_int16_t	timeOn;		/* LED on time (ms) */
   5091 		u_int16_t	timeOff;	/* LED off time (ms) */
   5092 	} blinkrates[] = {
   5093 		{ 108,  40,  10 },
   5094 		{  96,  44,  11 },
   5095 		{  72,  50,  13 },
   5096 		{  48,  57,  14 },
   5097 		{  36,  67,  16 },
   5098 		{  24,  80,  20 },
   5099 		{  22, 100,  25 },
   5100 		{  18, 133,  34 },
   5101 		{  12, 160,  40 },
   5102 		{  10, 200,  50 },
   5103 		{   6, 240,  58 },
   5104 		{   4, 267,  66 },
   5105 		{   2, 400, 100 },
   5106 		{   0, 500, 130 },
   5107 	};
   5108 	const HAL_RATE_TABLE *rt;
   5109 	int i, j;
   5110 
   5111 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5112 	rt = sc->sc_rates[mode];
   5113 	KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
   5114 	for (i = 0; i < rt->rateCount; i++)
   5115 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5116 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5117 	for (i = 0; i < 32; i++) {
   5118 		u_int8_t ix = rt->rateCodeToIndex[i];
   5119 		if (ix == 0xff) {
   5120 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5121 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5122 			continue;
   5123 		}
   5124 		sc->sc_hwmap[i].ieeerate =
   5125 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5126 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5127 		if (rt->info[ix].shortPreamble ||
   5128 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5129 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5130 		/* NB: receive frames include FCS */
   5131 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5132 			IEEE80211_RADIOTAP_F_FCS;
   5133 		/* setup blink rate table to avoid per-packet lookup */
   5134 		for (j = 0; j < N(blinkrates)-1; j++)
   5135 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5136 				break;
   5137 		/* NB: this uses the last entry if the rate isn't found */
   5138 		/* XXX beware of overlow */
   5139 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5140 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5141 	}
   5142 	sc->sc_currates = rt;
   5143 	sc->sc_curmode = mode;
   5144 	/*
   5145 	 * All protection frames are transmited at 2Mb/s for
   5146 	 * 11g, otherwise at 1Mb/s.
   5147 	 */
   5148 	if (mode == IEEE80211_MODE_11G)
   5149 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5150 	else
   5151 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5152 	/* rate index used to send management frames */
   5153 	sc->sc_minrateix = 0;
   5154 	/*
   5155 	 * Setup multicast rate state.
   5156 	 */
   5157 	/* XXX layering violation */
   5158 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5159 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5160 	/* NB: caller is responsible for reseting rate control state */
   5161 #undef N
   5162 }
   5163 
   5164 #ifdef AR_DEBUG
   5165 static void
   5166 ath_printrxbuf(struct ath_buf *bf, int done)
   5167 {
   5168 	struct ath_desc *ds;
   5169 	int i;
   5170 
   5171 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5172 		printf("R%d (%p %" PRIx64
   5173 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
   5174 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5175 		    ds->ds_link, ds->ds_data,
   5176 		    ds->ds_ctl0, ds->ds_ctl1,
   5177 		    ds->ds_hw[0], ds->ds_hw[1],
   5178 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
   5179 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5180 	}
   5181 }
   5182 
   5183 static void
   5184 ath_printtxbuf(struct ath_buf *bf, int done)
   5185 {
   5186 	struct ath_desc *ds;
   5187 	int i;
   5188 
   5189 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5190 		printf("T%d (%p %" PRIx64
   5191 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5192 		    i, ds,
   5193 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5194 		    ds->ds_link, ds->ds_data,
   5195 		    ds->ds_ctl0, ds->ds_ctl1,
   5196 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5197 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5198 	}
   5199 }
   5200 #endif	/* AR_DEBUG */
   5201 
   5202 static void
   5203 ath_watchdog(struct ifnet *ifp)
   5204 {
   5205 	struct ath_softc *sc = ifp->if_softc;
   5206 	struct ieee80211com *ic = &sc->sc_ic;
   5207 	struct ath_txq *axq;
   5208 	int i;
   5209 
   5210 	ifp->if_timer = 0;
   5211 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   5212 	    !device_is_active(sc->sc_dev))
   5213 		return;
   5214 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5215 		if (!ATH_TXQ_SETUP(sc, i))
   5216 			continue;
   5217 		axq = &sc->sc_txq[i];
   5218 		ATH_TXQ_LOCK(axq);
   5219 		if (axq->axq_timer == 0)
   5220 			;
   5221 		else if (--axq->axq_timer == 0) {
   5222 			ATH_TXQ_UNLOCK(axq);
   5223 			if_printf(ifp, "device timeout (txq %d, "
   5224 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
   5225 			if (sc->sc_txintrperiod > 1)
   5226 				sc->sc_txintrperiod--;
   5227 			ath_reset(ifp);
   5228 			ifp->if_oerrors++;
   5229 			sc->sc_stats.ast_watchdog++;
   5230 			break;
   5231 		} else
   5232 			ifp->if_timer = 1;
   5233 		ATH_TXQ_UNLOCK(axq);
   5234 	}
   5235 	ieee80211_watchdog(ic);
   5236 }
   5237 
   5238 /*
   5239  * Diagnostic interface to the HAL.  This is used by various
   5240  * tools to do things like retrieve register contents for
   5241  * debugging.  The mechanism is intentionally opaque so that
   5242  * it can change frequently w/o concern for compatiblity.
   5243  */
   5244 static int
   5245 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5246 {
   5247 	struct ath_hal *ah = sc->sc_ah;
   5248 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5249 	void *indata = NULL;
   5250 	void *outdata = NULL;
   5251 	u_int32_t insize = ad->ad_in_size;
   5252 	u_int32_t outsize = ad->ad_out_size;
   5253 	int error = 0;
   5254 
   5255 	if (ad->ad_id & ATH_DIAG_IN) {
   5256 		/*
   5257 		 * Copy in data.
   5258 		 */
   5259 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5260 		if (indata == NULL) {
   5261 			error = ENOMEM;
   5262 			goto bad;
   5263 		}
   5264 		error = copyin(ad->ad_in_data, indata, insize);
   5265 		if (error)
   5266 			goto bad;
   5267 	}
   5268 	if (ad->ad_id & ATH_DIAG_DYN) {
   5269 		/*
   5270 		 * Allocate a buffer for the results (otherwise the HAL
   5271 		 * returns a pointer to a buffer where we can read the
   5272 		 * results).  Note that we depend on the HAL leaving this
   5273 		 * pointer for us to use below in reclaiming the buffer;
   5274 		 * may want to be more defensive.
   5275 		 */
   5276 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5277 		if (outdata == NULL) {
   5278 			error = ENOMEM;
   5279 			goto bad;
   5280 		}
   5281 	}
   5282 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5283 		if (outsize < ad->ad_out_size)
   5284 			ad->ad_out_size = outsize;
   5285 		if (outdata != NULL)
   5286 			error = copyout(outdata, ad->ad_out_data,
   5287 					ad->ad_out_size);
   5288 	} else {
   5289 		error = EINVAL;
   5290 	}
   5291 bad:
   5292 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5293 		free(indata, M_TEMP);
   5294 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5295 		free(outdata, M_TEMP);
   5296 	return error;
   5297 }
   5298 
   5299 static int
   5300 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5301 {
   5302 #define	IS_RUNNING(ifp) \
   5303 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5304 	struct ath_softc *sc = ifp->if_softc;
   5305 	struct ieee80211com *ic = &sc->sc_ic;
   5306 	struct ifreq *ifr = (struct ifreq *)data;
   5307 	int error = 0, s;
   5308 
   5309 	s = splnet();
   5310 	switch (cmd) {
   5311 	case SIOCSIFFLAGS:
   5312 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5313 			break;
   5314 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   5315 		case IFF_UP|IFF_RUNNING:
   5316 			/*
   5317 			 * To avoid rescanning another access point,
   5318 			 * do not call ath_init() here.  Instead,
   5319 			 * only reflect promisc mode settings.
   5320 			 */
   5321 			ath_mode_init(sc);
   5322 			break;
   5323 		case IFF_UP:
   5324 			/*
   5325 			 * Beware of being called during attach/detach
   5326 			 * to reset promiscuous mode.  In that case we
   5327 			 * will still be marked UP but not RUNNING.
   5328 			 * However trying to re-init the interface
   5329 			 * is the wrong thing to do as we've already
   5330 			 * torn down much of our state.  There's
   5331 			 * probably a better way to deal with this.
   5332 			 */
   5333 			error = ath_init(sc);
   5334 			break;
   5335 		case IFF_RUNNING:
   5336 			ath_stop_locked(ifp, 1);
   5337 			break;
   5338 		case 0:
   5339 			break;
   5340 		}
   5341 		break;
   5342 	case SIOCADDMULTI:
   5343 	case SIOCDELMULTI:
   5344 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5345 			if (ifp->if_flags & IFF_RUNNING)
   5346 				ath_mode_init(sc);
   5347 			error = 0;
   5348 		}
   5349 		break;
   5350 	case SIOCGATHSTATS:
   5351 		/* NB: embed these numbers to get a consistent view */
   5352 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5353 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5354 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5355 		splx(s);
   5356 		/*
   5357 		 * NB: Drop the softc lock in case of a page fault;
   5358 		 * we'll accept any potential inconsisentcy in the
   5359 		 * statistics.  The alternative is to copy the data
   5360 		 * to a local structure.
   5361 		 */
   5362 		return copyout(&sc->sc_stats,
   5363 				ifr->ifr_data, sizeof (sc->sc_stats));
   5364 	case SIOCGATHDIAG:
   5365 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5366 		break;
   5367 	default:
   5368 		error = ieee80211_ioctl(ic, cmd, data);
   5369 		if (error != ENETRESET)
   5370 			;
   5371 		else if (IS_RUNNING(ifp) &&
   5372 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5373 			error = ath_init(sc);
   5374 		else
   5375 			error = 0;
   5376 		break;
   5377 	}
   5378 	splx(s);
   5379 	return error;
   5380 #undef IS_RUNNING
   5381 }
   5382 
   5383 static void
   5384 ath_bpfattach(struct ath_softc *sc)
   5385 {
   5386 	struct ifnet *ifp = &sc->sc_if;
   5387 
   5388 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
   5389 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5390 	    &sc->sc_drvbpf);
   5391 
   5392 	/*
   5393 	 * Initialize constant fields.
   5394 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5395 	 *     headers are properly aligned; this is a kludge to keep
   5396 	 *     certain applications happy.
   5397 	 *
   5398 	 * NB: the channel is setup each time we transition to the
   5399 	 *     RUN state to avoid filling it in for each frame.
   5400 	 */
   5401 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5402 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5403 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5404 
   5405 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5406 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5407 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5408 }
   5409 
   5410 /*
   5411  * Announce various information on device/driver attach.
   5412  */
   5413 static void
   5414 ath_announce(struct ath_softc *sc)
   5415 {
   5416 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5417 	struct ifnet *ifp = &sc->sc_if;
   5418 	struct ath_hal *ah = sc->sc_ah;
   5419 	u_int modes, cc;
   5420 
   5421 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5422 		ah->ah_macVersion, ah->ah_macRev,
   5423 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5424 	/*
   5425 	 * Print radio revision(s).  We check the wireless modes
   5426 	 * to avoid falsely printing revs for inoperable parts.
   5427 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5428 	 */
   5429 	ath_hal_getcountrycode(ah, &cc);
   5430 	modes = ath_hal_getwirelessmodes(ah, cc);
   5431 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5432 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5433 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5434 				ah->ah_analog5GhzRev >> 4,
   5435 				ah->ah_analog5GhzRev & 0xf,
   5436 				ah->ah_analog2GhzRev >> 4,
   5437 				ah->ah_analog2GhzRev & 0xf);
   5438 		else
   5439 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5440 				ah->ah_analog5GhzRev & 0xf);
   5441 	} else
   5442 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5443 			ah->ah_analog5GhzRev & 0xf);
   5444 	printf("\n");
   5445 	if (bootverbose) {
   5446 		int i;
   5447 		for (i = 0; i <= WME_AC_VO; i++) {
   5448 			struct ath_txq *txq = sc->sc_ac2q[i];
   5449 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5450 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5451 		}
   5452 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5453 			sc->sc_cabq->axq_qnum);
   5454 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5455 	}
   5456 	if (ath_rxbuf != ATH_RXBUF)
   5457 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5458 	if (ath_txbuf != ATH_TXBUF)
   5459 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5460 #undef HAL_MODE_DUALBAND
   5461 }
   5462