Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.117.2.4
      1 /*	$NetBSD: ath.c,v 1.117.2.4 2017/02/05 13:40:27 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.117.2.4 2017/02/05 13:40:27 skrll Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #ifdef _KERNEL_OPT
     55 #include "opt_inet.h"
     56 #endif
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/types.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/mbuf.h>
     64 #include <sys/malloc.h>
     65 #include <sys/kernel.h>
     66 #include <sys/socket.h>
     67 #include <sys/sockio.h>
     68 #include <sys/errno.h>
     69 #include <sys/callout.h>
     70 #include <sys/bus.h>
     71 #include <sys/endian.h>
     72 
     73 #include <net/if.h>
     74 #include <net/if_dl.h>
     75 #include <net/if_media.h>
     76 #include <net/if_types.h>
     77 #include <net/if_arp.h>
     78 #include <net/if_ether.h>
     79 #include <net/if_llc.h>
     80 
     81 #include <net80211/ieee80211_netbsd.h>
     82 #include <net80211/ieee80211_var.h>
     83 
     84 #include <net/bpf.h>
     85 
     86 #ifdef INET
     87 #include <netinet/in.h>
     88 #endif
     89 
     90 #include <sys/device.h>
     91 #include <dev/ic/ath_netbsd.h>
     92 
     93 #define	AR_DEBUG
     94 #include <dev/ic/athvar.h>
     95 #include "ah_desc.h"
     96 #include "ah_devid.h"	/* XXX for softled */
     97 #include "opt_ah.h"
     98 
     99 #ifdef ATH_TX99_DIAG
    100 #include <dev/ath/ath_tx99/ath_tx99.h>
    101 #endif
    102 
    103 /* unaligned little endian access */
    104 #define LE_READ_2(p)							\
    105 	((u_int16_t)							\
    106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    107 #define LE_READ_4(p)							\
    108 	((u_int32_t)							\
    109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    111 
    112 enum {
    113 	ATH_LED_TX,
    114 	ATH_LED_RX,
    115 	ATH_LED_POLL,
    116 };
    117 
    118 #ifdef	AH_NEED_DESC_SWAP
    119 #define	HTOAH32(x)	htole32(x)
    120 #else
    121 #define	HTOAH32(x)	(x)
    122 #endif
    123 
    124 static int	ath_ifinit(struct ifnet *);
    125 static int	ath_init(struct ath_softc *);
    126 static void	ath_stop_locked(struct ifnet *, int);
    127 static void	ath_stop(struct ifnet *, int);
    128 static void	ath_start(struct ifnet *);
    129 static int	ath_media_change(struct ifnet *);
    130 static void	ath_watchdog(struct ifnet *);
    131 static int	ath_ioctl(struct ifnet *, u_long, void *);
    132 static void	ath_fatal_proc(void *, int);
    133 static void	ath_rxorn_proc(void *, int);
    134 static void	ath_bmiss_proc(void *, int);
    135 static void	ath_radar_proc(void *, int);
    136 static int	ath_key_alloc(struct ieee80211com *,
    137 			const struct ieee80211_key *,
    138 			ieee80211_keyix *, ieee80211_keyix *);
    139 static int	ath_key_delete(struct ieee80211com *,
    140 			const struct ieee80211_key *);
    141 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    143 static void	ath_key_update_begin(struct ieee80211com *);
    144 static void	ath_key_update_end(struct ieee80211com *);
    145 static void	ath_mode_init(struct ath_softc *);
    146 static void	ath_setslottime(struct ath_softc *);
    147 static void	ath_updateslot(struct ifnet *);
    148 static int	ath_beaconq_setup(struct ath_hal *);
    149 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    150 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    151 static void	ath_beacon_proc(void *, int);
    152 static void	ath_bstuck_proc(void *, int);
    153 static void	ath_beacon_free(struct ath_softc *);
    154 static void	ath_beacon_config(struct ath_softc *);
    155 static void	ath_descdma_cleanup(struct ath_softc *sc,
    156 			struct ath_descdma *, ath_bufhead *);
    157 static int	ath_desc_alloc(struct ath_softc *);
    158 static void	ath_desc_free(struct ath_softc *);
    159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    160 static void	ath_node_free(struct ieee80211_node *);
    161 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    162 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    163 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    164 			struct ieee80211_node *ni,
    165 			int subtype, int rssi, u_int32_t rstamp);
    166 static void	ath_setdefantenna(struct ath_softc *, u_int);
    167 static void	ath_rx_proc(void *, int);
    168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    169 static int	ath_tx_setup(struct ath_softc *, int, int);
    170 static int	ath_wme_update(struct ieee80211com *);
    171 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    172 static void	ath_tx_cleanup(struct ath_softc *);
    173 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    174 			     struct ath_buf *, struct mbuf *);
    175 static void	ath_tx_proc_q0(void *, int);
    176 static void	ath_tx_proc_q0123(void *, int);
    177 static void	ath_tx_proc(void *, int);
    178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    179 static void	ath_draintxq(struct ath_softc *);
    180 static void	ath_stoprecv(struct ath_softc *);
    181 static int	ath_startrecv(struct ath_softc *);
    182 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    183 static void	ath_next_scan(void *);
    184 static void	ath_calibrate(void *);
    185 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    186 static void	ath_setup_stationkey(struct ieee80211_node *);
    187 static void	ath_newassoc(struct ieee80211_node *, int);
    188 static int	ath_getchannels(struct ath_softc *, u_int cc,
    189 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    190 static void	ath_led_event(struct ath_softc *, int);
    191 static void	ath_update_txpow(struct ath_softc *);
    192 static void	ath_freetx(struct mbuf *);
    193 static void	ath_restore_diversity(struct ath_softc *);
    194 
    195 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    196 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    197 
    198 static void	ath_bpfattach(struct ath_softc *);
    199 static void	ath_announce(struct ath_softc *);
    200 
    201 #ifdef __NetBSD__
    202 #define	ATH_TASK_FUNC(__func)						\
    203 static void __CONCAT(__func, _si)(void *arg)				\
    204 {									\
    205 	__func(arg, 1);							\
    206 }
    207 ATH_TASK_FUNC(ath_rx_proc);
    208 ATH_TASK_FUNC(ath_rxorn_proc);
    209 ATH_TASK_FUNC(ath_fatal_proc);
    210 ATH_TASK_FUNC(ath_bmiss_proc);
    211 ATH_TASK_FUNC(ath_bstuck_proc);
    212 ATH_TASK_FUNC(ath_radar_proc);
    213 ATH_TASK_FUNC(ath_tx_proc_q0);
    214 ATH_TASK_FUNC(ath_tx_proc_q0123);
    215 ATH_TASK_FUNC(ath_tx_proc);
    216 #endif
    217 
    218 int ath_dwelltime = 200;		/* 5 channels/second */
    219 int ath_calinterval = 30;		/* calibrate every 30 secs */
    220 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    221 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    222 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    223 int ath_regdomain = 0;			/* regulatory domain */
    224 int ath_debug = 0;
    225 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    226 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    227 
    228 #ifdef AR_DEBUG
    229 enum {
    230 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    231 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    232 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    233 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    234 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    235 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    236 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    237 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    238 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    239 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    240 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    241 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    242 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    243 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    244 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    245 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    246 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    247 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    248 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    249 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    250 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    251 	ATH_DEBUG_ANY		= 0xffffffff
    252 };
    253 #define	IFF_DUMPPKTS(sc, m) \
    254 	((sc->sc_debug & (m)) || \
    255 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    256 #define	DPRINTF(sc, m, fmt, ...) do {				\
    257 	if (sc->sc_debug & (m))					\
    258 		printf(fmt, __VA_ARGS__);			\
    259 } while (0)
    260 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    261 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    262 		ath_keyprint(__func__, ix, hk, mac);		\
    263 } while (0)
    264 static	void ath_printrxbuf(struct ath_buf *bf, int);
    265 static	void ath_printtxbuf(struct ath_buf *bf, int);
    266 #else
    267 #define        IFF_DUMPPKTS(sc, m) \
    268 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    269 #define        DPRINTF(m, fmt, ...)
    270 #define        KEYPRINTF(sc, k, ix, mac)
    271 #endif
    272 
    273 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    274 
    275 int
    276 ath_attach(u_int16_t devid, struct ath_softc *sc)
    277 {
    278 	struct ifnet *ifp = &sc->sc_if;
    279 	struct ieee80211com *ic = &sc->sc_ic;
    280 	struct ath_hal *ah = NULL;
    281 	HAL_STATUS status;
    282 	int error = 0, i;
    283 
    284 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    285 
    286 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
    287 
    288 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    289 
    290 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    291 	if (ah == NULL) {
    292 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    293 			status);
    294 		error = ENXIO;
    295 		goto bad;
    296 	}
    297 	if (ah->ah_abi != HAL_ABI_VERSION) {
    298 		if_printf(ifp, "HAL ABI mismatch detected "
    299 			"(HAL:0x%x != driver:0x%x)\n",
    300 			ah->ah_abi, HAL_ABI_VERSION);
    301 		error = ENXIO;
    302 		goto bad;
    303 	}
    304 	sc->sc_ah = ah;
    305 
    306 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
    307 	    "pmf-powerdown", false))
    308 		goto bad;
    309 
    310 	/*
    311 	 * Check if the MAC has multi-rate retry support.
    312 	 * We do this by trying to setup a fake extended
    313 	 * descriptor.  MAC's that don't have support will
    314 	 * return false w/o doing anything.  MAC's that do
    315 	 * support it will return true w/o doing anything.
    316 	 */
    317 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    318 
    319 	/*
    320 	 * Check if the device has hardware counters for PHY
    321 	 * errors.  If so we need to enable the MIB interrupt
    322 	 * so we can act on stat triggers.
    323 	 */
    324 	if (ath_hal_hwphycounters(ah))
    325 		sc->sc_needmib = 1;
    326 
    327 	/*
    328 	 * Get the hardware key cache size.
    329 	 */
    330 	sc->sc_keymax = ath_hal_keycachesize(ah);
    331 	if (sc->sc_keymax > ATH_KEYMAX) {
    332 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    333 			ATH_KEYMAX, sc->sc_keymax);
    334 		sc->sc_keymax = ATH_KEYMAX;
    335 	}
    336 	/*
    337 	 * Reset the key cache since some parts do not
    338 	 * reset the contents on initial power up.
    339 	 */
    340 	for (i = 0; i < sc->sc_keymax; i++)
    341 		ath_hal_keyreset(ah, i);
    342 	/*
    343 	 * Mark key cache slots associated with global keys
    344 	 * as in use.  If we knew TKIP was not to be used we
    345 	 * could leave the +32, +64, and +32+64 slots free.
    346 	 * XXX only for splitmic.
    347 	 */
    348 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    349 		setbit(sc->sc_keymap, i);
    350 		setbit(sc->sc_keymap, i+32);
    351 		setbit(sc->sc_keymap, i+64);
    352 		setbit(sc->sc_keymap, i+32+64);
    353 	}
    354 
    355 	/*
    356 	 * Collect the channel list using the default country
    357 	 * code and including outdoor channels.  The 802.11 layer
    358 	 * is resposible for filtering this list based on settings
    359 	 * like the phy mode.
    360 	 */
    361 	error = ath_getchannels(sc, ath_countrycode,
    362 			ath_outdoor, ath_xchanmode);
    363 	if (error != 0)
    364 		goto bad;
    365 
    366 	/*
    367 	 * Setup rate tables for all potential media types.
    368 	 */
    369 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    370 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    371 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    372 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    373 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    374 	/* NB: setup here so ath_rate_update is happy */
    375 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    376 
    377 	/*
    378 	 * Allocate tx+rx descriptors and populate the lists.
    379 	 */
    380 	error = ath_desc_alloc(sc);
    381 	if (error != 0) {
    382 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    383 		goto bad;
    384 	}
    385 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    386 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    387 #if 0
    388 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    389 #endif
    390 
    391 	ATH_TXBUF_LOCK_INIT(sc);
    392 
    393 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    394 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    395 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    396 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    397 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    398 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    399 
    400 	/*
    401 	 * Allocate hardware transmit queues: one queue for
    402 	 * beacon frames and one data queue for each QoS
    403 	 * priority.  Note that the hal handles reseting
    404 	 * these queues at the needed time.
    405 	 *
    406 	 * XXX PS-Poll
    407 	 */
    408 	sc->sc_bhalq = ath_beaconq_setup(ah);
    409 	if (sc->sc_bhalq == (u_int) -1) {
    410 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    411 		error = EIO;
    412 		goto bad2;
    413 	}
    414 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    415 	if (sc->sc_cabq == NULL) {
    416 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    417 		error = EIO;
    418 		goto bad2;
    419 	}
    420 	/* NB: insure BK queue is the lowest priority h/w queue */
    421 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    422 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    423 			ieee80211_wme_acnames[WME_AC_BK]);
    424 		error = EIO;
    425 		goto bad2;
    426 	}
    427 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    428 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    429 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    430 		/*
    431 		 * Not enough hardware tx queues to properly do WME;
    432 		 * just punt and assign them all to the same h/w queue.
    433 		 * We could do a better job of this if, for example,
    434 		 * we allocate queues when we switch from station to
    435 		 * AP mode.
    436 		 */
    437 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    438 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    439 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    440 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    441 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    442 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    443 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    444 	}
    445 
    446 	/*
    447 	 * Special case certain configurations.  Note the
    448 	 * CAB queue is handled by these specially so don't
    449 	 * include them when checking the txq setup mask.
    450 	 */
    451 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    452 	case 0x01:
    453 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    454 		break;
    455 	case 0x0f:
    456 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    457 		break;
    458 	default:
    459 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    460 		break;
    461 	}
    462 
    463 	/*
    464 	 * Setup rate control.  Some rate control modules
    465 	 * call back to change the anntena state so expose
    466 	 * the necessary entry points.
    467 	 * XXX maybe belongs in struct ath_ratectrl?
    468 	 */
    469 	sc->sc_setdefantenna = ath_setdefantenna;
    470 	sc->sc_rc = ath_rate_attach(sc);
    471 	if (sc->sc_rc == NULL) {
    472 		error = EIO;
    473 		goto bad2;
    474 	}
    475 
    476 	sc->sc_blinking = 0;
    477 	sc->sc_ledstate = 1;
    478 	sc->sc_ledon = 0;			/* low true */
    479 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    480 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    481 	/*
    482 	 * Auto-enable soft led processing for IBM cards and for
    483 	 * 5211 minipci cards.  Users can also manually enable/disable
    484 	 * support with a sysctl.
    485 	 */
    486 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    487 	if (sc->sc_softled) {
    488 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
    489 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
    490 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    491 	}
    492 
    493 	ifp->if_softc = sc;
    494 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    495 	ifp->if_start = ath_start;
    496 	ifp->if_stop = ath_stop;
    497 	ifp->if_watchdog = ath_watchdog;
    498 	ifp->if_ioctl = ath_ioctl;
    499 	ifp->if_init = ath_ifinit;
    500 	IFQ_SET_READY(&ifp->if_snd);
    501 
    502 	ic->ic_ifp = ifp;
    503 	ic->ic_reset = ath_reset;
    504 	ic->ic_newassoc = ath_newassoc;
    505 	ic->ic_updateslot = ath_updateslot;
    506 	ic->ic_wme.wme_update = ath_wme_update;
    507 	/* XXX not right but it's not used anywhere important */
    508 	ic->ic_phytype = IEEE80211_T_OFDM;
    509 	ic->ic_opmode = IEEE80211_M_STA;
    510 	ic->ic_caps =
    511 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    512 		| IEEE80211_C_HOSTAP		/* hostap mode */
    513 		| IEEE80211_C_MONITOR		/* monitor mode */
    514 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    515 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    516 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    517 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    518 		;
    519 	/*
    520 	 * Query the hal to figure out h/w crypto support.
    521 	 */
    522 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    523 		ic->ic_caps |= IEEE80211_C_WEP;
    524 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    525 		ic->ic_caps |= IEEE80211_C_AES;
    526 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    527 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    528 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    529 		ic->ic_caps |= IEEE80211_C_CKIP;
    530 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    531 		ic->ic_caps |= IEEE80211_C_TKIP;
    532 		/*
    533 		 * Check if h/w does the MIC and/or whether the
    534 		 * separate key cache entries are required to
    535 		 * handle both tx+rx MIC keys.
    536 		 */
    537 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    538 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    539 
    540 		/*
    541 		 * If the h/w supports storing tx+rx MIC keys
    542 		 * in one cache slot automatically enable use.
    543 		 */
    544 		if (ath_hal_hastkipsplit(ah) ||
    545 		    !ath_hal_settkipsplit(ah, AH_FALSE))
    546 			sc->sc_splitmic = 1;
    547 
    548 		/*
    549 		 * If the h/w can do TKIP MIC together with WME then
    550 		 * we use it; otherwise we force the MIC to be done
    551 		 * in software by the net80211 layer.
    552 		 */
    553 		if (ath_hal_haswmetkipmic(ah))
    554 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
    555 	}
    556 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    557 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    558 	/*
    559 	 * Mark key cache slots associated with global keys
    560 	 * as in use.  If we knew TKIP was not to be used we
    561 	 * could leave the +32, +64, and +32+64 slots free.
    562 	 */
    563 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    564 		setbit(sc->sc_keymap, i);
    565 		setbit(sc->sc_keymap, i+64);
    566 		if (sc->sc_splitmic) {
    567 			setbit(sc->sc_keymap, i+32);
    568 			setbit(sc->sc_keymap, i+32+64);
    569 		}
    570 	}
    571 	/*
    572 	 * TPC support can be done either with a global cap or
    573 	 * per-packet support.  The latter is not available on
    574 	 * all parts.  We're a bit pedantic here as all parts
    575 	 * support a global cap.
    576 	 */
    577 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    578 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    579 
    580 	/*
    581 	 * Mark WME capability only if we have sufficient
    582 	 * hardware queues to do proper priority scheduling.
    583 	 */
    584 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    585 		ic->ic_caps |= IEEE80211_C_WME;
    586 	/*
    587 	 * Check for misc other capabilities.
    588 	 */
    589 	if (ath_hal_hasbursting(ah))
    590 		ic->ic_caps |= IEEE80211_C_BURST;
    591 
    592 	/*
    593 	 * Indicate we need the 802.11 header padded to a
    594 	 * 32-bit boundary for 4-address and QoS frames.
    595 	 */
    596 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    597 
    598 	/*
    599 	 * Query the hal about antenna support.
    600 	 */
    601 	sc->sc_defant = ath_hal_getdefantenna(ah);
    602 
    603 	/*
    604 	 * Not all chips have the VEOL support we want to
    605 	 * use with IBSS beacons; check here for it.
    606 	 */
    607 	sc->sc_hasveol = ath_hal_hasveol(ah);
    608 
    609 	/* get mac address from hardware */
    610 	ath_hal_getmac(ah, ic->ic_myaddr);
    611 
    612 	if_attach(ifp);
    613 	/* call MI attach routine. */
    614 	ieee80211_ifattach(ic);
    615 	/* override default methods */
    616 	ic->ic_node_alloc = ath_node_alloc;
    617 	sc->sc_node_free = ic->ic_node_free;
    618 	ic->ic_node_free = ath_node_free;
    619 	ic->ic_node_getrssi = ath_node_getrssi;
    620 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    621 	ic->ic_recv_mgmt = ath_recv_mgmt;
    622 	sc->sc_newstate = ic->ic_newstate;
    623 	ic->ic_newstate = ath_newstate;
    624 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    625 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    626 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    627 	ic->ic_crypto.cs_key_set = ath_key_set;
    628 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    629 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    630 	/* complete initialization */
    631 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    632 
    633 	ath_bpfattach(sc);
    634 
    635 	sc->sc_flags |= ATH_ATTACHED;
    636 
    637 	/*
    638 	 * Setup dynamic sysctl's now that country code and
    639 	 * regdomain are available from the hal.
    640 	 */
    641 	ath_sysctlattach(sc);
    642 
    643 	ieee80211_announce(ic);
    644 	ath_announce(sc);
    645 	return 0;
    646 bad2:
    647 	ath_tx_cleanup(sc);
    648 	ath_desc_free(sc);
    649 bad:
    650 	if (ah)
    651 		ath_hal_detach(ah);
    652 	/* XXX don't get under the abstraction like this */
    653 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
    654 	return error;
    655 }
    656 
    657 int
    658 ath_detach(struct ath_softc *sc)
    659 {
    660 	struct ifnet *ifp = &sc->sc_if;
    661 	int s;
    662 
    663 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    664 		return (0);
    665 
    666 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    667 		__func__, ifp->if_flags);
    668 
    669 	s = splnet();
    670 	ath_stop(ifp, 1);
    671 	bpf_detach(ifp);
    672 	/*
    673 	 * NB: the order of these is important:
    674 	 * o call the 802.11 layer before detaching the hal to
    675 	 *   insure callbacks into the driver to delete global
    676 	 *   key cache entries can be handled
    677 	 * o reclaim the tx queue data structures after calling
    678 	 *   the 802.11 layer as we'll get called back to reclaim
    679 	 *   node state and potentially want to use them
    680 	 * o to cleanup the tx queues the hal is called, so detach
    681 	 *   it last
    682 	 * Other than that, it's straightforward...
    683 	 */
    684 	ieee80211_ifdetach(&sc->sc_ic);
    685 #ifdef ATH_TX99_DIAG
    686 	if (sc->sc_tx99 != NULL)
    687 		sc->sc_tx99->detach(sc->sc_tx99);
    688 #endif
    689 	ath_rate_detach(sc->sc_rc);
    690 	ath_desc_free(sc);
    691 	ath_tx_cleanup(sc);
    692 	sysctl_teardown(&sc->sc_sysctllog);
    693 	ath_hal_detach(sc->sc_ah);
    694 	if_detach(ifp);
    695 	splx(s);
    696 
    697 	return 0;
    698 }
    699 
    700 void
    701 ath_suspend(struct ath_softc *sc)
    702 {
    703 #if notyet
    704 	/*
    705 	 * Set the chip in full sleep mode.  Note that we are
    706 	 * careful to do this only when bringing the interface
    707 	 * completely to a stop.  When the chip is in this state
    708 	 * it must be carefully woken up or references to
    709 	 * registers in the PCI clock domain may freeze the bus
    710 	 * (and system).  This varies by chip and is mostly an
    711 	 * issue with newer parts that go to sleep more quickly.
    712 	 */
    713 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
    714 #endif
    715 }
    716 
    717 bool
    718 ath_resume(struct ath_softc *sc)
    719 {
    720 	struct ath_hal *ah = sc->sc_ah;
    721 	struct ieee80211com *ic = &sc->sc_ic;
    722 	HAL_STATUS status;
    723 	int i;
    724 
    725 #if notyet
    726 	ath_hal_setpower(ah, HAL_PM_AWAKE);
    727 #else
    728 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
    729 #endif
    730 
    731 	/*
    732 	 * Reset the key cache since some parts do not
    733 	 * reset the contents on initial power up.
    734 	 */
    735 	for (i = 0; i < sc->sc_keymax; i++)
    736 		ath_hal_keyreset(ah, i);
    737 
    738 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
    739 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
    740 		if (ATH_TXQ_SETUP(sc, i))
    741 			ath_hal_resettxqueue(ah, i);
    742 
    743 	if (sc->sc_softled) {
    744 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
    745 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
    746 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    747 	}
    748 	return true;
    749 }
    750 
    751 /*
    752  * Interrupt handler.  Most of the actual processing is deferred.
    753  */
    754 int
    755 ath_intr(void *arg)
    756 {
    757 	struct ath_softc *sc = arg;
    758 	struct ifnet *ifp = &sc->sc_if;
    759 	struct ath_hal *ah = sc->sc_ah;
    760 	HAL_INT status = 0;
    761 
    762 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
    763 		/*
    764 		 * The hardware is not ready/present, don't touch anything.
    765 		 * Note this can happen early on if the IRQ is shared.
    766 		 */
    767 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    768 		return 0;
    769 	}
    770 
    771 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    772 		return 0;
    773 
    774 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    775 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    776 			__func__, ifp->if_flags);
    777 		ath_hal_getisr(ah, &status);	/* clear ISR */
    778 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    779 		return 1; /* XXX */
    780 	}
    781 	/*
    782 	 * Figure out the reason(s) for the interrupt.  Note
    783 	 * that the hal returns a pseudo-ISR that may include
    784 	 * bits we haven't explicitly enabled so we mask the
    785 	 * value to insure we only process bits we requested.
    786 	 */
    787 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    788 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    789 	status &= sc->sc_imask;			/* discard unasked for bits */
    790 	if (status & HAL_INT_FATAL) {
    791 		/*
    792 		 * Fatal errors are unrecoverable.  Typically
    793 		 * these are caused by DMA errors.  Unfortunately
    794 		 * the exact reason is not (presently) returned
    795 		 * by the hal.
    796 		 */
    797 		sc->sc_stats.ast_hardware++;
    798 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    799 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    800 	} else if (status & HAL_INT_RXORN) {
    801 		sc->sc_stats.ast_rxorn++;
    802 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    803 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    804 	} else {
    805 		if (status & HAL_INT_SWBA) {
    806 			/*
    807 			 * Software beacon alert--time to send a beacon.
    808 			 * Handle beacon transmission directly; deferring
    809 			 * this is too slow to meet timing constraints
    810 			 * under load.
    811 			 */
    812 			ath_beacon_proc(sc, 0);
    813 		}
    814 		if (status & HAL_INT_RXEOL) {
    815 			/*
    816 			 * NB: the hardware should re-read the link when
    817 			 *     RXE bit is written, but it doesn't work at
    818 			 *     least on older hardware revs.
    819 			 */
    820 			sc->sc_stats.ast_rxeol++;
    821 			sc->sc_rxlink = NULL;
    822 		}
    823 		if (status & HAL_INT_TXURN) {
    824 			sc->sc_stats.ast_txurn++;
    825 			/* bump tx trigger level */
    826 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    827 		}
    828 		if (status & HAL_INT_RX)
    829 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    830 		if (status & HAL_INT_TX)
    831 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    832 		if (status & HAL_INT_BMISS) {
    833 			sc->sc_stats.ast_bmiss++;
    834 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    835 		}
    836 		if (status & HAL_INT_MIB) {
    837 			sc->sc_stats.ast_mib++;
    838 			/*
    839 			 * Disable interrupts until we service the MIB
    840 			 * interrupt; otherwise it will continue to fire.
    841 			 */
    842 			ath_hal_intrset(ah, 0);
    843 			/*
    844 			 * Let the hal handle the event.  We assume it will
    845 			 * clear whatever condition caused the interrupt.
    846 			 */
    847 			ath_hal_mibevent(ah, &sc->sc_halstats);
    848 			ath_hal_intrset(ah, sc->sc_imask);
    849 		}
    850 	}
    851 	return 1;
    852 }
    853 
    854 /* Swap transmit descriptor.
    855  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    856  * function.
    857  */
    858 static inline void
    859 ath_desc_swap(struct ath_desc *ds)
    860 {
    861 #ifdef AH_NEED_DESC_SWAP
    862 	ds->ds_link = htole32(ds->ds_link);
    863 	ds->ds_data = htole32(ds->ds_data);
    864 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    865 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    866 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    867 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    868 #endif
    869 }
    870 
    871 static void
    872 ath_fatal_proc(void *arg, int pending)
    873 {
    874 	struct ath_softc *sc = arg;
    875 	struct ifnet *ifp = &sc->sc_if;
    876 #ifdef __NetBSD__
    877 	int s;
    878 #endif
    879 
    880 	if_printf(ifp, "hardware error; resetting\n");
    881 #ifdef __NetBSD__
    882 	s = splnet();
    883 #endif
    884 	ath_reset(ifp);
    885 #ifdef __NetBSD__
    886 	splx(s);
    887 #endif
    888 }
    889 
    890 static void
    891 ath_rxorn_proc(void *arg, int pending)
    892 {
    893 	struct ath_softc *sc = arg;
    894 	struct ifnet *ifp = &sc->sc_if;
    895 #ifdef __NetBSD__
    896 	int s;
    897 #endif
    898 
    899 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    900 #ifdef __NetBSD__
    901 	s = splnet();
    902 #endif
    903 	ath_reset(ifp);
    904 #ifdef __NetBSD__
    905 	splx(s);
    906 #endif
    907 }
    908 
    909 static void
    910 ath_bmiss_proc(void *arg, int pending)
    911 {
    912 	struct ath_softc *sc = arg;
    913 	struct ieee80211com *ic = &sc->sc_ic;
    914 	NET_LOCK_GIANT_FUNC_INIT();
    915 
    916 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    917 	KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
    918 		"unexpect operating mode %u", ic->ic_opmode);
    919 	if (ic->ic_state == IEEE80211_S_RUN) {
    920 		u_int64_t lastrx = sc->sc_lastrx;
    921 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    922 
    923 		DPRINTF(sc, ATH_DEBUG_BEACON,
    924 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    925 		    " (%" PRIu64 ") bmiss %u\n",
    926 		    __func__, tsf, tsf - lastrx, lastrx,
    927 		    ic->ic_bmisstimeout*1024);
    928 		/*
    929 		 * Workaround phantom bmiss interrupts by sanity-checking
    930 		 * the time of our last rx'd frame.  If it is within the
    931 		 * beacon miss interval then ignore the interrupt.  If it's
    932 		 * truly a bmiss we'll get another interrupt soon and that'll
    933 		 * be dispatched up for processing.
    934 		 */
    935 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    936 			NET_LOCK_GIANT();
    937 			ieee80211_beacon_miss(ic);
    938 			NET_UNLOCK_GIANT();
    939 		} else
    940 			sc->sc_stats.ast_bmiss_phantom++;
    941 	}
    942 }
    943 
    944 static void
    945 ath_radar_proc(void *arg, int pending)
    946 {
    947 #if 0
    948 	struct ath_softc *sc = arg;
    949 	struct ifnet *ifp = &sc->sc_if;
    950 	struct ath_hal *ah = sc->sc_ah;
    951 	HAL_CHANNEL hchan;
    952 
    953 	if (ath_hal_procdfs(ah, &hchan)) {
    954 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    955 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    956 		/*
    957 		 * Initiate channel change.
    958 		 */
    959 		/* XXX not yet */
    960 	}
    961 #endif
    962 }
    963 
    964 static u_int
    965 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    966 {
    967 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    968 	static const u_int modeflags[] = {
    969 		0,			/* IEEE80211_MODE_AUTO */
    970 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    971 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    972 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    973 		0,			/* IEEE80211_MODE_FH */
    974 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    975 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    976 	};
    977 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    978 
    979 	KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
    980 	KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
    981 	return modeflags[mode];
    982 #undef N
    983 }
    984 
    985 static int
    986 ath_ifinit(struct ifnet *ifp)
    987 {
    988 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    989 
    990 	return ath_init(sc);
    991 }
    992 
    993 static void
    994 ath_settkipmic(struct ath_softc *sc)
    995 {
    996 	struct ieee80211com *ic = &sc->sc_ic;
    997 	struct ath_hal *ah = sc->sc_ah;
    998 
    999 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
   1000 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
   1001 		if (ic->ic_flags & IEEE80211_F_WME) {
   1002 			(void)ath_hal_settkipmic(ah, AH_FALSE);
   1003 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
   1004 		} else {
   1005 			(void)ath_hal_settkipmic(ah, AH_TRUE);
   1006 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
   1007 		}
   1008 	}
   1009 }
   1010 
   1011 static int
   1012 ath_init(struct ath_softc *sc)
   1013 {
   1014 	struct ifnet *ifp = &sc->sc_if;
   1015 	struct ieee80211com *ic = &sc->sc_ic;
   1016 	struct ath_hal *ah = sc->sc_ah;
   1017 	HAL_STATUS status;
   1018 	int error = 0, s;
   1019 
   1020 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
   1021 		__func__, ifp->if_flags);
   1022 
   1023 	if (device_is_active(sc->sc_dev)) {
   1024 		s = splnet();
   1025 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
   1026 	           !device_is_active(sc->sc_dev))
   1027 		return 0;
   1028 	else
   1029 		s = splnet();
   1030 
   1031 	/*
   1032 	 * Stop anything previously setup.  This is safe
   1033 	 * whether this is the first time through or not.
   1034 	 */
   1035 	ath_stop_locked(ifp, 0);
   1036 
   1037 	/*
   1038 	 * The basic interface to setting the hardware in a good
   1039 	 * state is ``reset''.  On return the hardware is known to
   1040 	 * be powered up and with interrupts disabled.  This must
   1041 	 * be followed by initialization of the appropriate bits
   1042 	 * and then setup of the interrupt mask.
   1043 	 */
   1044 	ath_settkipmic(sc);
   1045 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1046 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1047 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1048 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1049 			status);
   1050 		error = EIO;
   1051 		goto done;
   1052 	}
   1053 
   1054 	/*
   1055 	 * This is needed only to setup initial state
   1056 	 * but it's best done after a reset.
   1057 	 */
   1058 	ath_update_txpow(sc);
   1059 	/*
   1060 	 * Likewise this is set during reset so update
   1061 	 * state cached in the driver.
   1062 	 */
   1063 	ath_restore_diversity(sc);
   1064 	sc->sc_calinterval = 1;
   1065 	sc->sc_caltries = 0;
   1066 
   1067 	/*
   1068 	 * Setup the hardware after reset: the key cache
   1069 	 * is filled as needed and the receive engine is
   1070 	 * set going.  Frame transmit is handled entirely
   1071 	 * in the frame output path; there's nothing to do
   1072 	 * here except setup the interrupt mask.
   1073 	 */
   1074 	if ((error = ath_startrecv(sc)) != 0) {
   1075 		if_printf(ifp, "unable to start recv logic\n");
   1076 		goto done;
   1077 	}
   1078 
   1079 	/*
   1080 	 * Enable interrupts.
   1081 	 */
   1082 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1083 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1084 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1085 	/*
   1086 	 * Enable MIB interrupts when there are hardware phy counters.
   1087 	 * Note we only do this (at the moment) for station mode.
   1088 	 */
   1089 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1090 		sc->sc_imask |= HAL_INT_MIB;
   1091 	ath_hal_intrset(ah, sc->sc_imask);
   1092 
   1093 	ifp->if_flags |= IFF_RUNNING;
   1094 	ic->ic_state = IEEE80211_S_INIT;
   1095 
   1096 	/*
   1097 	 * The hardware should be ready to go now so it's safe
   1098 	 * to kick the 802.11 state machine as it's likely to
   1099 	 * immediately call back to us to send mgmt frames.
   1100 	 */
   1101 	ath_chan_change(sc, ic->ic_curchan);
   1102 #ifdef ATH_TX99_DIAG
   1103 	if (sc->sc_tx99 != NULL)
   1104 		sc->sc_tx99->start(sc->sc_tx99);
   1105 	else
   1106 #endif
   1107 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1108 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1109 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1110 	} else
   1111 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1112 done:
   1113 	splx(s);
   1114 	return error;
   1115 }
   1116 
   1117 static void
   1118 ath_stop_locked(struct ifnet *ifp, int disable)
   1119 {
   1120 	struct ath_softc *sc = ifp->if_softc;
   1121 	struct ieee80211com *ic = &sc->sc_ic;
   1122 	struct ath_hal *ah = sc->sc_ah;
   1123 
   1124 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
   1125 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
   1126 
   1127 	/* KASSERT() IPL_NET */
   1128 	if (ifp->if_flags & IFF_RUNNING) {
   1129 		/*
   1130 		 * Shutdown the hardware and driver:
   1131 		 *    reset 802.11 state machine
   1132 		 *    turn off timers
   1133 		 *    disable interrupts
   1134 		 *    turn off the radio
   1135 		 *    clear transmit machinery
   1136 		 *    clear receive machinery
   1137 		 *    drain and release tx queues
   1138 		 *    reclaim beacon resources
   1139 		 *    power down hardware
   1140 		 *
   1141 		 * Note that some of this work is not possible if the
   1142 		 * hardware is gone (invalid).
   1143 		 */
   1144 #ifdef ATH_TX99_DIAG
   1145 		if (sc->sc_tx99 != NULL)
   1146 			sc->sc_tx99->stop(sc->sc_tx99);
   1147 #endif
   1148 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1149 		ifp->if_flags &= ~IFF_RUNNING;
   1150 		ifp->if_timer = 0;
   1151 		if (device_is_enabled(sc->sc_dev)) {
   1152 			if (sc->sc_softled) {
   1153 				callout_stop(&sc->sc_ledtimer);
   1154 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1155 					!sc->sc_ledon);
   1156 				sc->sc_blinking = 0;
   1157 			}
   1158 			ath_hal_intrset(ah, 0);
   1159 		}
   1160 		ath_draintxq(sc);
   1161 		if (device_is_enabled(sc->sc_dev)) {
   1162 			ath_stoprecv(sc);
   1163 			ath_hal_phydisable(ah);
   1164 		} else
   1165 			sc->sc_rxlink = NULL;
   1166 		IF_PURGE(&ifp->if_snd);
   1167 		ath_beacon_free(sc);
   1168 	}
   1169 	if (disable)
   1170 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
   1171 }
   1172 
   1173 static void
   1174 ath_stop(struct ifnet *ifp, int disable)
   1175 {
   1176 	int s;
   1177 
   1178 	s = splnet();
   1179 	ath_stop_locked(ifp, disable);
   1180 	splx(s);
   1181 }
   1182 
   1183 static void
   1184 ath_restore_diversity(struct ath_softc *sc)
   1185 {
   1186 	struct ifnet *ifp = &sc->sc_if;
   1187 	struct ath_hal *ah = sc->sc_ah;
   1188 
   1189 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1190 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1191 		if_printf(ifp, "could not restore diversity setting %d\n",
   1192 		    sc->sc_diversity);
   1193 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1194 	}
   1195 }
   1196 
   1197 /*
   1198  * Reset the hardware w/o losing operational state.  This is
   1199  * basically a more efficient way of doing ath_stop, ath_init,
   1200  * followed by state transitions to the current 802.11
   1201  * operational state.  Used to recover from various errors and
   1202  * to reset or reload hardware state.
   1203  */
   1204 int
   1205 ath_reset(struct ifnet *ifp)
   1206 {
   1207 	struct ath_softc *sc = ifp->if_softc;
   1208 	struct ieee80211com *ic = &sc->sc_ic;
   1209 	struct ath_hal *ah = sc->sc_ah;
   1210 	struct ieee80211_channel *c;
   1211 	HAL_STATUS status;
   1212 
   1213 	/*
   1214 	 * Convert to a HAL channel description with the flags
   1215 	 * constrained to reflect the current operating mode.
   1216 	 */
   1217 	c = ic->ic_curchan;
   1218 	sc->sc_curchan.channel = c->ic_freq;
   1219 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1220 
   1221 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1222 	ath_draintxq(sc);		/* stop xmit side */
   1223 	ath_stoprecv(sc);		/* stop recv side */
   1224 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
   1225 	/* NB: indicate channel change so we do a full reset */
   1226 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1227 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1228 			__func__, status);
   1229 	ath_update_txpow(sc);		/* update tx power state */
   1230 	ath_restore_diversity(sc);
   1231 	sc->sc_calinterval = 1;
   1232 	sc->sc_caltries = 0;
   1233 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1234 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1235 	/*
   1236 	 * We may be doing a reset in response to an ioctl
   1237 	 * that changes the channel so update any state that
   1238 	 * might change as a result.
   1239 	 */
   1240 	ath_chan_change(sc, c);
   1241 	if (ic->ic_state == IEEE80211_S_RUN)
   1242 		ath_beacon_config(sc);	/* restart beacons */
   1243 	ath_hal_intrset(ah, sc->sc_imask);
   1244 
   1245 	ath_start(ifp);			/* restart xmit */
   1246 	return 0;
   1247 }
   1248 
   1249 /*
   1250  * Cleanup driver resources when we run out of buffers
   1251  * while processing fragments; return the tx buffers
   1252  * allocated and drop node references.
   1253  */
   1254 static void
   1255 ath_txfrag_cleanup(struct ath_softc *sc,
   1256 	ath_bufhead *frags, struct ieee80211_node *ni)
   1257 {
   1258 	struct ath_buf *bf;
   1259 
   1260 	ATH_TXBUF_LOCK_ASSERT(sc);
   1261 
   1262 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1263 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1264 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1265 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1266 		ieee80211_node_decref(ni);
   1267 	}
   1268 }
   1269 
   1270 /*
   1271  * Setup xmit of a fragmented frame.  Allocate a buffer
   1272  * for each frag and bump the node reference count to
   1273  * reflect the held reference to be setup by ath_tx_start.
   1274  */
   1275 static int
   1276 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1277 	struct mbuf *m0, struct ieee80211_node *ni)
   1278 {
   1279 	struct mbuf *m;
   1280 	struct ath_buf *bf;
   1281 
   1282 	ATH_TXBUF_LOCK(sc);
   1283 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1284 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1285 		if (bf == NULL) {       /* out of buffers, cleanup */
   1286 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1287 				__func__);
   1288 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1289 			ath_txfrag_cleanup(sc, frags, ni);
   1290 			break;
   1291 		}
   1292 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1293 		ieee80211_node_incref(ni);
   1294 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1295 	}
   1296 	ATH_TXBUF_UNLOCK(sc);
   1297 
   1298 	return !STAILQ_EMPTY(frags);
   1299 }
   1300 
   1301 static void
   1302 ath_start(struct ifnet *ifp)
   1303 {
   1304 	struct ath_softc *sc = ifp->if_softc;
   1305 	struct ath_hal *ah = sc->sc_ah;
   1306 	struct ieee80211com *ic = &sc->sc_ic;
   1307 	struct ieee80211_node *ni;
   1308 	struct ath_buf *bf;
   1309 	struct mbuf *m, *next;
   1310 	struct ieee80211_frame *wh;
   1311 	struct ether_header *eh;
   1312 	ath_bufhead frags;
   1313 
   1314 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   1315 	    !device_is_active(sc->sc_dev))
   1316 		return;
   1317 
   1318 	if (sc->sc_flags & ATH_KEY_UPDATING)
   1319 		return;
   1320 
   1321 	for (;;) {
   1322 		/*
   1323 		 * Grab a TX buffer and associated resources.
   1324 		 */
   1325 		ATH_TXBUF_LOCK(sc);
   1326 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1327 		if (bf != NULL)
   1328 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1329 		ATH_TXBUF_UNLOCK(sc);
   1330 		if (bf == NULL) {
   1331 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1332 				__func__);
   1333 			sc->sc_stats.ast_tx_qstop++;
   1334 			ifp->if_flags |= IFF_OACTIVE;
   1335 			break;
   1336 		}
   1337 		/*
   1338 		 * Poll the management queue for frames; they
   1339 		 * have priority over normal data frames.
   1340 		 */
   1341 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1342 		if (m == NULL) {
   1343 			/*
   1344 			 * No data frames go out unless we're associated.
   1345 			 */
   1346 			if (ic->ic_state != IEEE80211_S_RUN) {
   1347 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1348 				    "%s: discard data packet, state %s\n",
   1349 				    __func__,
   1350 				    ieee80211_state_name[ic->ic_state]);
   1351 				sc->sc_stats.ast_tx_discard++;
   1352 				ATH_TXBUF_LOCK(sc);
   1353 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1354 				ATH_TXBUF_UNLOCK(sc);
   1355 				break;
   1356 			}
   1357 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1358 			if (m == NULL) {
   1359 				ATH_TXBUF_LOCK(sc);
   1360 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1361 				ATH_TXBUF_UNLOCK(sc);
   1362 				break;
   1363 			}
   1364 			STAILQ_INIT(&frags);
   1365 			/*
   1366 			 * Find the node for the destination so we can do
   1367 			 * things like power save and fast frames aggregation.
   1368 			 */
   1369 			if (m->m_len < sizeof(struct ether_header) &&
   1370 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1371 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1372 				ni = NULL;
   1373 				goto bad;
   1374 			}
   1375 			eh = mtod(m, struct ether_header *);
   1376 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1377 			if (ni == NULL) {
   1378 				/* NB: ieee80211_find_txnode does stat+msg */
   1379 				m_freem(m);
   1380 				goto bad;
   1381 			}
   1382 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1383 			    (m->m_flags & M_PWR_SAV) == 0) {
   1384 				/*
   1385 				 * Station in power save mode; pass the frame
   1386 				 * to the 802.11 layer and continue.  We'll get
   1387 				 * the frame back when the time is right.
   1388 				 */
   1389 				ieee80211_pwrsave(ic, ni, m);
   1390 				goto reclaim;
   1391 			}
   1392 			/* calculate priority so we can find the tx queue */
   1393 			if (ieee80211_classify(ic, m, ni)) {
   1394 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1395 					"%s: discard, classification failure\n",
   1396 					__func__);
   1397 				m_freem(m);
   1398 				goto bad;
   1399 			}
   1400 			ifp->if_opackets++;
   1401 
   1402 			bpf_mtap(ifp, m);
   1403 			/*
   1404 			 * Encapsulate the packet in prep for transmission.
   1405 			 */
   1406 			m = ieee80211_encap(ic, m, ni);
   1407 			if (m == NULL) {
   1408 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1409 					"%s: encapsulation failure\n",
   1410 					__func__);
   1411 				sc->sc_stats.ast_tx_encap++;
   1412 				goto bad;
   1413 			}
   1414 			/*
   1415 			 * Check for fragmentation.  If this has frame
   1416 			 * has been broken up verify we have enough
   1417 			 * buffers to send all the fragments so all
   1418 			 * go out or none...
   1419 			 */
   1420 			if ((m->m_flags & M_FRAG) &&
   1421 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1422 				DPRINTF(sc, ATH_DEBUG_ANY,
   1423 				    "%s: out of txfrag buffers\n", __func__);
   1424 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1425 				ath_freetx(m);
   1426 				goto bad;
   1427 			}
   1428 		} else {
   1429 			/*
   1430 			 * Hack!  The referenced node pointer is in the
   1431 			 * rcvif field of the packet header.  This is
   1432 			 * placed there by ieee80211_mgmt_output because
   1433 			 * we need to hold the reference with the frame
   1434 			 * and there's no other way (other than packet
   1435 			 * tags which we consider too expensive to use)
   1436 			 * to pass it along.
   1437 			 */
   1438 			ni = M_GETCTX(m, struct ieee80211_node *);
   1439 			M_CLEARCTX(m);
   1440 
   1441 			wh = mtod(m, struct ieee80211_frame *);
   1442 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1443 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1444 				/* fill time stamp */
   1445 				u_int64_t tsf;
   1446 				u_int32_t *tstamp;
   1447 
   1448 				tsf = ath_hal_gettsf64(ah);
   1449 				/* XXX: adjust 100us delay to xmit */
   1450 				tsf += 100;
   1451 				tstamp = (u_int32_t *)&wh[1];
   1452 				tstamp[0] = htole32(tsf & 0xffffffff);
   1453 				tstamp[1] = htole32(tsf >> 32);
   1454 			}
   1455 			sc->sc_stats.ast_tx_mgmt++;
   1456 		}
   1457 
   1458 	nextfrag:
   1459 		next = m->m_nextpkt;
   1460 		if (ath_tx_start(sc, ni, bf, m)) {
   1461 	bad:
   1462 			ifp->if_oerrors++;
   1463 	reclaim:
   1464 			ATH_TXBUF_LOCK(sc);
   1465 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1466 			ath_txfrag_cleanup(sc, &frags, ni);
   1467 			ATH_TXBUF_UNLOCK(sc);
   1468 			if (ni != NULL)
   1469 				ieee80211_free_node(ni);
   1470 			continue;
   1471 		}
   1472 		if (next != NULL) {
   1473 			m = next;
   1474 			bf = STAILQ_FIRST(&frags);
   1475 			KASSERTMSG(bf != NULL, "no buf for txfrag");
   1476 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1477 			goto nextfrag;
   1478 		}
   1479 
   1480 		ifp->if_timer = 1;
   1481 	}
   1482 }
   1483 
   1484 static int
   1485 ath_media_change(struct ifnet *ifp)
   1486 {
   1487 #define	IS_UP(ifp) \
   1488 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1489 	int error;
   1490 
   1491 	error = ieee80211_media_change(ifp);
   1492 	if (error == ENETRESET) {
   1493 		if (IS_UP(ifp))
   1494 			ath_init(ifp->if_softc);	/* XXX lose error */
   1495 		error = 0;
   1496 	}
   1497 	return error;
   1498 #undef IS_UP
   1499 }
   1500 
   1501 #ifdef AR_DEBUG
   1502 static void
   1503 ath_keyprint(const char *tag, u_int ix,
   1504 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1505 {
   1506 	static const char *ciphers[] = {
   1507 		"WEP",
   1508 		"AES-OCB",
   1509 		"AES-CCM",
   1510 		"CKIP",
   1511 		"TKIP",
   1512 		"CLR",
   1513 	};
   1514 	int i, n;
   1515 
   1516 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1517 	for (i = 0, n = hk->kv_len; i < n; i++)
   1518 		printf("%02x", hk->kv_val[i]);
   1519 	printf(" mac %s", ether_sprintf(mac));
   1520 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1521 		printf(" mic ");
   1522 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1523 			printf("%02x", hk->kv_mic[i]);
   1524 	}
   1525 	printf("\n");
   1526 }
   1527 #endif
   1528 
   1529 /*
   1530  * Set a TKIP key into the hardware.  This handles the
   1531  * potential distribution of key state to multiple key
   1532  * cache slots for TKIP.
   1533  */
   1534 static int
   1535 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1536 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1537 {
   1538 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1539 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1540 	struct ath_hal *ah = sc->sc_ah;
   1541 
   1542 	KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1543 		"got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
   1544 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1545 		if (sc->sc_splitmic) {
   1546 			/*
   1547 			 * TX key goes at first index, RX key at the rx index.
   1548 			 * The hal handles the MIC keys at index+64.
   1549 			 */
   1550 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1551 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1552 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
   1553 						zerobssid))
   1554 				return 0;
   1555 
   1556 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1557 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1558 			/* XXX delete tx key on failure? */
   1559 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
   1560 					hk, mac);
   1561 		} else {
   1562 			/*
   1563 			 * Room for both TX+RX MIC keys in one key cache
   1564 			 * slot, just set key at the first index; the HAL
   1565 			 * will handle the reset.
   1566 			 */
   1567 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1568 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1569 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1570 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1571 		}
   1572 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
   1573 		if (sc->sc_splitmic) {
   1574 			/*
   1575 			 * NB: must pass MIC key in expected location when
   1576 			 * the keycache only holds one MIC key per entry.
   1577 			 */
   1578 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
   1579 		} else
   1580 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1581 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1582 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1583 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
   1584 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1585 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1586 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1587 	}
   1588 	return 0;
   1589 #undef IEEE80211_KEY_XR
   1590 }
   1591 
   1592 /*
   1593  * Set a net80211 key into the hardware.  This handles the
   1594  * potential distribution of key state to multiple key
   1595  * cache slots for TKIP with hardware MIC support.
   1596  */
   1597 static int
   1598 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1599 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1600 	struct ieee80211_node *bss)
   1601 {
   1602 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1603 	static const u_int8_t ciphermap[] = {
   1604 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1605 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1606 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1607 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1608 		(u_int8_t) -1,		/* 4 is not allocated */
   1609 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1610 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1611 	};
   1612 	struct ath_hal *ah = sc->sc_ah;
   1613 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1614 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1615 	const u_int8_t *mac;
   1616 	HAL_KEYVAL hk;
   1617 
   1618 	memset(&hk, 0, sizeof(hk));
   1619 	/*
   1620 	 * Software crypto uses a "clear key" so non-crypto
   1621 	 * state kept in the key cache are maintained and
   1622 	 * so that rx frames have an entry to match.
   1623 	 */
   1624 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1625 		KASSERTMSG(cip->ic_cipher < N(ciphermap),
   1626 			"invalid cipher type %u", cip->ic_cipher);
   1627 		hk.kv_type = ciphermap[cip->ic_cipher];
   1628 		hk.kv_len = k->wk_keylen;
   1629 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1630 	} else
   1631 		hk.kv_type = HAL_CIPHER_CLR;
   1632 
   1633 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1634 		/*
   1635 		 * Group keys on hardware that supports multicast frame
   1636 		 * key search use a mac that is the sender's address with
   1637 		 * the high bit set instead of the app-specified address.
   1638 		 */
   1639 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1640 		gmac[0] |= 0x80;
   1641 		mac = gmac;
   1642 	} else
   1643 		mac = mac0;
   1644 
   1645 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
   1646 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
   1647 		return ath_keyset_tkip(sc, k, &hk, mac);
   1648 	} else {
   1649 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1650 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
   1651 	}
   1652 #undef N
   1653 }
   1654 
   1655 /*
   1656  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1657  * each key, one for decrypt/encrypt and the other for the MIC.
   1658  */
   1659 static u_int16_t
   1660 key_alloc_2pair(struct ath_softc *sc,
   1661 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1662 {
   1663 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1664 	u_int i, keyix;
   1665 
   1666 	KASSERTMSG(sc->sc_splitmic, "key cache !split");
   1667 	/* XXX could optimize */
   1668 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1669 		u_int8_t b = sc->sc_keymap[i];
   1670 		if (b != 0xff) {
   1671 			/*
   1672 			 * One or more slots in this byte are free.
   1673 			 */
   1674 			keyix = i*NBBY;
   1675 			while (b & 1) {
   1676 		again:
   1677 				keyix++;
   1678 				b >>= 1;
   1679 			}
   1680 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1681 			if (isset(sc->sc_keymap, keyix+32) ||
   1682 			    isset(sc->sc_keymap, keyix+64) ||
   1683 			    isset(sc->sc_keymap, keyix+32+64)) {
   1684 				/* full pair unavailable */
   1685 				/* XXX statistic */
   1686 				if (keyix == (i+1)*NBBY) {
   1687 					/* no slots were appropriate, advance */
   1688 					continue;
   1689 				}
   1690 				goto again;
   1691 			}
   1692 			setbit(sc->sc_keymap, keyix);
   1693 			setbit(sc->sc_keymap, keyix+64);
   1694 			setbit(sc->sc_keymap, keyix+32);
   1695 			setbit(sc->sc_keymap, keyix+32+64);
   1696 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1697 				"%s: key pair %u,%u %u,%u\n",
   1698 				__func__, keyix, keyix+64,
   1699 				keyix+32, keyix+32+64);
   1700 			*txkeyix = keyix;
   1701 			*rxkeyix = keyix+32;
   1702 			return keyix;
   1703 		}
   1704 	}
   1705 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1706 	return IEEE80211_KEYIX_NONE;
   1707 #undef N
   1708 }
   1709 
   1710 /*
   1711  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1712  * each key, one for decrypt/encrypt and the other for the MIC.
   1713  */
   1714 static int
   1715 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
   1716     ieee80211_keyix *rxkeyix)
   1717 {
   1718 #define N(a)	(sizeof(a)/sizeof(a[0]))
   1719 	u_int i, keyix;
   1720 
   1721 	KASSERTMSG(!sc->sc_splitmic, "key cache split");
   1722 	/* XXX could optimize */
   1723 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1724 		uint8_t b = sc->sc_keymap[i];
   1725 		if (b != 0xff) {
   1726 			/*
   1727 			 * One or more slots in this byte are free.
   1728 			 */
   1729 			keyix = i*NBBY;
   1730 			while (b & 1) {
   1731 		again:
   1732 				keyix++;
   1733 				b >>= 1;
   1734 			}
   1735 			if (isset(sc->sc_keymap, keyix+64)) {
   1736 				/* full pair unavailable */
   1737 				/* XXX statistic */
   1738 				if (keyix == (i+1)*NBBY) {
   1739 					/* no slots were appropriate, advance */
   1740 					continue;
   1741 				}
   1742 				goto again;
   1743 			}
   1744 			setbit(sc->sc_keymap, keyix);
   1745 			setbit(sc->sc_keymap, keyix+64);
   1746 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1747 				"%s: key pair %u,%u\n",
   1748 				__func__, keyix, keyix+64);
   1749 			*txkeyix = *rxkeyix = keyix;
   1750 			return 1;
   1751 		}
   1752 	}
   1753 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1754 	return 0;
   1755 #undef N
   1756 }
   1757 
   1758 /*
   1759  * Allocate a single key cache slot.
   1760  */
   1761 static int
   1762 key_alloc_single(struct ath_softc *sc,
   1763 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1764 {
   1765 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1766 	u_int i, keyix;
   1767 
   1768 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1769 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1770 		u_int8_t b = sc->sc_keymap[i];
   1771 		if (b != 0xff) {
   1772 			/*
   1773 			 * One or more slots are free.
   1774 			 */
   1775 			keyix = i*NBBY;
   1776 			while (b & 1)
   1777 				keyix++, b >>= 1;
   1778 			setbit(sc->sc_keymap, keyix);
   1779 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1780 				__func__, keyix);
   1781 			*txkeyix = *rxkeyix = keyix;
   1782 			return 1;
   1783 		}
   1784 	}
   1785 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1786 	return 0;
   1787 #undef N
   1788 }
   1789 
   1790 /*
   1791  * Allocate one or more key cache slots for a uniacst key.  The
   1792  * key itself is needed only to identify the cipher.  For hardware
   1793  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1794  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1795  * that the MIC key for a TKIP key at slot i is assumed by the
   1796  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1797  * 64 entries.
   1798  */
   1799 static int
   1800 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1801 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1802 {
   1803 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1804 
   1805 	/*
   1806 	 * Group key allocation must be handled specially for
   1807 	 * parts that do not support multicast key cache search
   1808 	 * functionality.  For those parts the key id must match
   1809 	 * the h/w key index so lookups find the right key.  On
   1810 	 * parts w/ the key search facility we install the sender's
   1811 	 * mac address (with the high bit set) and let the hardware
   1812 	 * find the key w/o using the key id.  This is preferred as
   1813 	 * it permits us to support multiple users for adhoc and/or
   1814 	 * multi-station operation.
   1815 	 */
   1816 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1817 		if (!(&ic->ic_nw_keys[0] <= k &&
   1818 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1819 			/* should not happen */
   1820 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1821 				"%s: bogus group key\n", __func__);
   1822 			return 0;
   1823 		}
   1824 		/*
   1825 		 * XXX we pre-allocate the global keys so
   1826 		 * have no way to check if they've already been allocated.
   1827 		 */
   1828 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1829 		return 1;
   1830 	}
   1831 
   1832 	/*
   1833 	 * We allocate two pair for TKIP when using the h/w to do
   1834 	 * the MIC.  For everything else, including software crypto,
   1835 	 * we allocate a single entry.  Note that s/w crypto requires
   1836 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1837 	 * not support pass-through cache entries and we map all
   1838 	 * those requests to slot 0.
   1839 	 */
   1840 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1841 		return key_alloc_single(sc, keyix, rxkeyix);
   1842 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1843 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1844 		if (sc->sc_splitmic)
   1845 			return key_alloc_2pair(sc, keyix, rxkeyix);
   1846 		else
   1847 			return key_alloc_pair(sc, keyix, rxkeyix);
   1848 	} else {
   1849 		return key_alloc_single(sc, keyix, rxkeyix);
   1850 	}
   1851 }
   1852 
   1853 /*
   1854  * Delete an entry in the key cache allocated by ath_key_alloc.
   1855  */
   1856 static int
   1857 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1858 {
   1859 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1860 	struct ath_hal *ah = sc->sc_ah;
   1861 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1862 	u_int keyix = k->wk_keyix;
   1863 
   1864 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1865 
   1866 	if (!device_has_power(sc->sc_dev)) {
   1867 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
   1868 		    k->wk_keyix);
   1869 	}
   1870 
   1871 	ath_hal_keyreset(ah, keyix);
   1872 	/*
   1873 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1874 	 */
   1875 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1876 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1877 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1878 	if (keyix >= IEEE80211_WEP_NKID) {
   1879 		/*
   1880 		 * Don't touch keymap entries for global keys so
   1881 		 * they are never considered for dynamic allocation.
   1882 		 */
   1883 		clrbit(sc->sc_keymap, keyix);
   1884 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1885 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1886 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1887 			if (sc->sc_splitmic) {
   1888 				/* +32 for RX key, +32+64 for RX key MIC */
   1889 				clrbit(sc->sc_keymap, keyix+32);
   1890 				clrbit(sc->sc_keymap, keyix+32+64);
   1891 			}
   1892 		}
   1893 	}
   1894 	return 1;
   1895 }
   1896 
   1897 /*
   1898  * Set the key cache contents for the specified key.  Key cache
   1899  * slot(s) must already have been allocated by ath_key_alloc.
   1900  */
   1901 static int
   1902 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1903 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1904 {
   1905 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1906 
   1907 	if (!device_has_power(sc->sc_dev)) {
   1908 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
   1909 		    k->wk_keyix);
   1910 	}
   1911 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1912 }
   1913 
   1914 /*
   1915  * Block/unblock tx+rx processing while a key change is done.
   1916  * We assume the caller serializes key management operations
   1917  * so we only need to worry about synchronization with other
   1918  * uses that originate in the driver.
   1919  */
   1920 static void
   1921 ath_key_update_begin(struct ieee80211com *ic)
   1922 {
   1923 	struct ifnet *ifp = ic->ic_ifp;
   1924 	struct ath_softc *sc = ifp->if_softc;
   1925 
   1926 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1927 #if 0
   1928 	tasklet_disable(&sc->sc_rxtq);
   1929 #endif
   1930 	sc->sc_flags |= ATH_KEY_UPDATING;
   1931 }
   1932 
   1933 static void
   1934 ath_key_update_end(struct ieee80211com *ic)
   1935 {
   1936 	struct ifnet *ifp = ic->ic_ifp;
   1937 	struct ath_softc *sc = ifp->if_softc;
   1938 
   1939 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1940 	sc->sc_flags &= ~ATH_KEY_UPDATING;
   1941 #if 0
   1942 	tasklet_enable(&sc->sc_rxtq);
   1943 #endif
   1944 }
   1945 
   1946 /*
   1947  * Calculate the receive filter according to the
   1948  * operating mode and state:
   1949  *
   1950  * o always accept unicast, broadcast, and multicast traffic
   1951  * o maintain current state of phy error reception (the hal
   1952  *   may enable phy error frames for noise immunity work)
   1953  * o probe request frames are accepted only when operating in
   1954  *   hostap, adhoc, or monitor modes
   1955  * o enable promiscuous mode according to the interface state
   1956  * o accept beacons:
   1957  *   - when operating in adhoc mode so the 802.11 layer creates
   1958  *     node table entries for peers,
   1959  *   - when operating in station mode for collecting rssi data when
   1960  *     the station is otherwise quiet, or
   1961  *   - when scanning
   1962  */
   1963 static u_int32_t
   1964 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1965 {
   1966 	struct ieee80211com *ic = &sc->sc_ic;
   1967 	struct ath_hal *ah = sc->sc_ah;
   1968 	struct ifnet *ifp = &sc->sc_if;
   1969 	u_int32_t rfilt;
   1970 
   1971 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1972 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1973 	if (ic->ic_opmode != IEEE80211_M_STA)
   1974 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1975 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1976 	    (ifp->if_flags & IFF_PROMISC))
   1977 		rfilt |= HAL_RX_FILTER_PROM;
   1978 	if (ifp->if_flags & IFF_PROMISC)
   1979 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
   1980 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1981 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1982 	    state == IEEE80211_S_SCAN)
   1983 		rfilt |= HAL_RX_FILTER_BEACON;
   1984 	return rfilt;
   1985 }
   1986 
   1987 static void
   1988 ath_mode_init(struct ath_softc *sc)
   1989 {
   1990 	struct ifnet *ifp = &sc->sc_if;
   1991 	struct ieee80211com *ic = &sc->sc_ic;
   1992 	struct ath_hal *ah = sc->sc_ah;
   1993 	struct ether_multi *enm;
   1994 	struct ether_multistep estep;
   1995 	u_int32_t rfilt, mfilt[2], val;
   1996 	int i;
   1997 	uint8_t pos;
   1998 
   1999 	/* configure rx filter */
   2000 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   2001 	ath_hal_setrxfilter(ah, rfilt);
   2002 
   2003 	/* configure operational mode */
   2004 	ath_hal_setopmode(ah);
   2005 
   2006 	/* Write keys to hardware; it may have been powered down. */
   2007 	ath_key_update_begin(ic);
   2008 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2009 		ath_key_set(ic,
   2010 			    &ic->ic_crypto.cs_nw_keys[i],
   2011 			    ic->ic_myaddr);
   2012 	}
   2013 	ath_key_update_end(ic);
   2014 
   2015 	/*
   2016 	 * Handle any link-level address change.  Note that we only
   2017 	 * need to force ic_myaddr; any other addresses are handled
   2018 	 * as a byproduct of the ifnet code marking the interface
   2019 	 * down then up.
   2020 	 *
   2021 	 * XXX should get from lladdr instead of arpcom but that's more work
   2022 	 */
   2023 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   2024 	ath_hal_setmac(ah, ic->ic_myaddr);
   2025 
   2026 	/* calculate and install multicast filter */
   2027 	ifp->if_flags &= ~IFF_ALLMULTI;
   2028 	mfilt[0] = mfilt[1] = 0;
   2029 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   2030 	while (enm != NULL) {
   2031 		void *dl;
   2032 		/* XXX Punt on ranges. */
   2033 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   2034 			mfilt[0] = mfilt[1] = 0xffffffff;
   2035 			ifp->if_flags |= IFF_ALLMULTI;
   2036 			break;
   2037 		}
   2038 		dl = enm->enm_addrlo;
   2039 		val = LE_READ_4((char *)dl + 0);
   2040 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   2041 		val = LE_READ_4((char *)dl + 3);
   2042 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   2043 		pos &= 0x3f;
   2044 		mfilt[pos / 32] |= (1 << (pos % 32));
   2045 
   2046 		ETHER_NEXT_MULTI(estep, enm);
   2047 	}
   2048 
   2049 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   2050 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   2051 		__func__, rfilt, mfilt[0], mfilt[1]);
   2052 }
   2053 
   2054 /*
   2055  * Set the slot time based on the current setting.
   2056  */
   2057 static void
   2058 ath_setslottime(struct ath_softc *sc)
   2059 {
   2060 	struct ieee80211com *ic = &sc->sc_ic;
   2061 	struct ath_hal *ah = sc->sc_ah;
   2062 
   2063 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2064 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2065 	else
   2066 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2067 	sc->sc_updateslot = OK;
   2068 }
   2069 
   2070 /*
   2071  * Callback from the 802.11 layer to update the
   2072  * slot time based on the current setting.
   2073  */
   2074 static void
   2075 ath_updateslot(struct ifnet *ifp)
   2076 {
   2077 	struct ath_softc *sc = ifp->if_softc;
   2078 	struct ieee80211com *ic = &sc->sc_ic;
   2079 
   2080 	/*
   2081 	 * When not coordinating the BSS, change the hardware
   2082 	 * immediately.  For other operation we defer the change
   2083 	 * until beacon updates have propagated to the stations.
   2084 	 */
   2085 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2086 		sc->sc_updateslot = UPDATE;
   2087 	else
   2088 		ath_setslottime(sc);
   2089 }
   2090 
   2091 /*
   2092  * Setup a h/w transmit queue for beacons.
   2093  */
   2094 static int
   2095 ath_beaconq_setup(struct ath_hal *ah)
   2096 {
   2097 	HAL_TXQ_INFO qi;
   2098 
   2099 	memset(&qi, 0, sizeof(qi));
   2100 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2101 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2102 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2103 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2104 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2105 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2106 }
   2107 
   2108 /*
   2109  * Setup the transmit queue parameters for the beacon queue.
   2110  */
   2111 static int
   2112 ath_beaconq_config(struct ath_softc *sc)
   2113 {
   2114 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2115 	struct ieee80211com *ic = &sc->sc_ic;
   2116 	struct ath_hal *ah = sc->sc_ah;
   2117 	HAL_TXQ_INFO qi;
   2118 
   2119 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2120 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2121 		/*
   2122 		 * Always burst out beacon and CAB traffic.
   2123 		 */
   2124 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2125 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2126 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2127 	} else {
   2128 		struct wmeParams *wmep =
   2129 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2130 		/*
   2131 		 * Adhoc mode; important thing is to use 2x cwmin.
   2132 		 */
   2133 		qi.tqi_aifs = wmep->wmep_aifsn;
   2134 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2135 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2136 	}
   2137 
   2138 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2139 		device_printf(sc->sc_dev, "unable to update parameters for "
   2140 			"beacon hardware queue!\n");
   2141 		return 0;
   2142 	} else {
   2143 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2144 		return 1;
   2145 	}
   2146 #undef ATH_EXPONENT_TO_VALUE
   2147 }
   2148 
   2149 /*
   2150  * Allocate and setup an initial beacon frame.
   2151  */
   2152 static int
   2153 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2154 {
   2155 	struct ieee80211com *ic = ni->ni_ic;
   2156 	struct ath_buf *bf;
   2157 	struct mbuf *m;
   2158 	int error;
   2159 
   2160 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2161 	if (bf == NULL) {
   2162 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2163 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2164 		return ENOMEM;			/* XXX */
   2165 	}
   2166 	/*
   2167 	 * NB: the beacon data buffer must be 32-bit aligned;
   2168 	 * we assume the mbuf routines will return us something
   2169 	 * with this alignment (perhaps should assert).
   2170 	 */
   2171 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2172 	if (m == NULL) {
   2173 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2174 			__func__);
   2175 		sc->sc_stats.ast_be_nombuf++;
   2176 		return ENOMEM;
   2177 	}
   2178 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2179 				     BUS_DMA_NOWAIT);
   2180 	if (error == 0) {
   2181 		bf->bf_m = m;
   2182 		bf->bf_node = ieee80211_ref_node(ni);
   2183 	} else {
   2184 		m_freem(m);
   2185 	}
   2186 	return error;
   2187 }
   2188 
   2189 /*
   2190  * Setup the beacon frame for transmit.
   2191  */
   2192 static void
   2193 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2194 {
   2195 #define	USE_SHPREAMBLE(_ic) \
   2196 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2197 		== IEEE80211_F_SHPREAMBLE)
   2198 	struct ieee80211_node *ni = bf->bf_node;
   2199 	struct ieee80211com *ic = ni->ni_ic;
   2200 	struct mbuf *m = bf->bf_m;
   2201 	struct ath_hal *ah = sc->sc_ah;
   2202 	struct ath_desc *ds;
   2203 	int flags, antenna;
   2204 	const HAL_RATE_TABLE *rt;
   2205 	u_int8_t rix, rate;
   2206 
   2207 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2208 		__func__, m, m->m_len);
   2209 
   2210 	/* setup descriptors */
   2211 	ds = bf->bf_desc;
   2212 
   2213 	flags = HAL_TXDESC_NOACK;
   2214 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2215 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2216 		flags |= HAL_TXDESC_VEOL;
   2217 		/*
   2218 		 * Let hardware handle antenna switching unless
   2219 		 * the user has selected a transmit antenna
   2220 		 * (sc_txantenna is not 0).
   2221 		 */
   2222 		antenna = sc->sc_txantenna;
   2223 	} else {
   2224 		ds->ds_link = 0;
   2225 		/*
   2226 		 * Switch antenna every 4 beacons, unless the user
   2227 		 * has selected a transmit antenna (sc_txantenna
   2228 		 * is not 0).
   2229 		 *
   2230 		 * XXX assumes two antenna
   2231 		 */
   2232 		if (sc->sc_txantenna == 0)
   2233 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2234 		else
   2235 			antenna = sc->sc_txantenna;
   2236 	}
   2237 
   2238 	KASSERTMSG(bf->bf_nseg == 1,
   2239 		"multi-segment beacon frame; nseg %u", bf->bf_nseg);
   2240 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2241 	/*
   2242 	 * Calculate rate code.
   2243 	 * XXX everything at min xmit rate
   2244 	 */
   2245 	rix = sc->sc_minrateix;
   2246 	rt = sc->sc_currates;
   2247 	rate = rt->info[rix].rateCode;
   2248 	if (USE_SHPREAMBLE(ic))
   2249 		rate |= rt->info[rix].shortPreamble;
   2250 	ath_hal_setuptxdesc(ah, ds
   2251 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2252 		, sizeof(struct ieee80211_frame)/* header length */
   2253 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2254 		, ni->ni_txpower		/* txpower XXX */
   2255 		, rate, 1			/* series 0 rate/tries */
   2256 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2257 		, antenna			/* antenna mode */
   2258 		, flags				/* no ack, veol for beacons */
   2259 		, 0				/* rts/cts rate */
   2260 		, 0				/* rts/cts duration */
   2261 	);
   2262 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2263 	ath_hal_filltxdesc(ah, ds
   2264 		, roundup(m->m_len, 4)		/* buffer length */
   2265 		, AH_TRUE			/* first segment */
   2266 		, AH_TRUE			/* last segment */
   2267 		, ds				/* first descriptor */
   2268 	);
   2269 
   2270 	/* NB: The desc swap function becomes void, if descriptor swapping
   2271 	 * is not enabled
   2272 	 */
   2273 	ath_desc_swap(ds);
   2274 
   2275 #undef USE_SHPREAMBLE
   2276 }
   2277 
   2278 /*
   2279  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2280  * frame contents are done as needed and the slot time is
   2281  * also adjusted based on current state.
   2282  */
   2283 static void
   2284 ath_beacon_proc(void *arg, int pending)
   2285 {
   2286 	struct ath_softc *sc = arg;
   2287 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2288 	struct ieee80211_node *ni = bf->bf_node;
   2289 	struct ieee80211com *ic = ni->ni_ic;
   2290 	struct ath_hal *ah = sc->sc_ah;
   2291 	struct mbuf *m;
   2292 	int ncabq, error, otherant;
   2293 
   2294 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2295 		__func__, pending);
   2296 
   2297 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2298 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2299 	    bf == NULL || bf->bf_m == NULL) {
   2300 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2301 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2302 		return;
   2303 	}
   2304 	/*
   2305 	 * Check if the previous beacon has gone out.  If
   2306 	 * not don't try to post another, skip this period
   2307 	 * and wait for the next.  Missed beacons indicate
   2308 	 * a problem and should not occur.  If we miss too
   2309 	 * many consecutive beacons reset the device.
   2310 	 */
   2311 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2312 		sc->sc_bmisscount++;
   2313 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2314 			"%s: missed %u consecutive beacons\n",
   2315 			__func__, sc->sc_bmisscount);
   2316 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2317 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2318 		return;
   2319 	}
   2320 	if (sc->sc_bmisscount != 0) {
   2321 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2322 			"%s: resume beacon xmit after %u misses\n",
   2323 			__func__, sc->sc_bmisscount);
   2324 		sc->sc_bmisscount = 0;
   2325 	}
   2326 
   2327 	/*
   2328 	 * Update dynamic beacon contents.  If this returns
   2329 	 * non-zero then we need to remap the memory because
   2330 	 * the beacon frame changed size (probably because
   2331 	 * of the TIM bitmap).
   2332 	 */
   2333 	m = bf->bf_m;
   2334 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2335 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2336 		/* XXX too conservative? */
   2337 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2338 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2339 					     BUS_DMA_NOWAIT);
   2340 		if (error != 0) {
   2341 			if_printf(&sc->sc_if,
   2342 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2343 			    __func__, error);
   2344 			return;
   2345 		}
   2346 	}
   2347 
   2348 	/*
   2349 	 * Handle slot time change when a non-ERP station joins/leaves
   2350 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2351 	 * we mark updateslot, then wait one beacon before effecting
   2352 	 * the change.  This gives associated stations at least one
   2353 	 * beacon interval to note the state change.
   2354 	 */
   2355 	/* XXX locking */
   2356 	if (sc->sc_updateslot == UPDATE)
   2357 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2358 	else if (sc->sc_updateslot == COMMIT)
   2359 		ath_setslottime(sc);		/* commit change to h/w */
   2360 
   2361 	/*
   2362 	 * Check recent per-antenna transmit statistics and flip
   2363 	 * the default antenna if noticeably more frames went out
   2364 	 * on the non-default antenna.
   2365 	 * XXX assumes 2 anntenae
   2366 	 */
   2367 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2368 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2369 		ath_setdefantenna(sc, otherant);
   2370 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2371 
   2372 	/*
   2373 	 * Construct tx descriptor.
   2374 	 */
   2375 	ath_beacon_setup(sc, bf);
   2376 
   2377 	/*
   2378 	 * Stop any current dma and put the new frame on the queue.
   2379 	 * This should never fail since we check above that no frames
   2380 	 * are still pending on the queue.
   2381 	 */
   2382 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2383 		DPRINTF(sc, ATH_DEBUG_ANY,
   2384 			"%s: beacon queue %u did not stop?\n",
   2385 			__func__, sc->sc_bhalq);
   2386 	}
   2387 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2388 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2389 
   2390 	/*
   2391 	 * Enable the CAB queue before the beacon queue to
   2392 	 * insure cab frames are triggered by this beacon.
   2393 	 */
   2394 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2395 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2396 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2397 	ath_hal_txstart(ah, sc->sc_bhalq);
   2398 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2399 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2400 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2401 
   2402 	sc->sc_stats.ast_be_xmit++;
   2403 }
   2404 
   2405 /*
   2406  * Reset the hardware after detecting beacons have stopped.
   2407  */
   2408 static void
   2409 ath_bstuck_proc(void *arg, int pending)
   2410 {
   2411 	struct ath_softc *sc = arg;
   2412 	struct ifnet *ifp = &sc->sc_if;
   2413 #ifdef __NetBSD__
   2414 	int s;
   2415 #endif
   2416 
   2417 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2418 		sc->sc_bmisscount);
   2419 #ifdef __NetBSD__
   2420 	s = splnet();
   2421 #endif
   2422 	ath_reset(ifp);
   2423 #ifdef __NetBSD__
   2424 	splx(s);
   2425 #endif
   2426 }
   2427 
   2428 /*
   2429  * Reclaim beacon resources.
   2430  */
   2431 static void
   2432 ath_beacon_free(struct ath_softc *sc)
   2433 {
   2434 	struct ath_buf *bf;
   2435 
   2436 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2437 		if (bf->bf_m != NULL) {
   2438 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2439 			m_freem(bf->bf_m);
   2440 			bf->bf_m = NULL;
   2441 		}
   2442 		if (bf->bf_node != NULL) {
   2443 			ieee80211_free_node(bf->bf_node);
   2444 			bf->bf_node = NULL;
   2445 		}
   2446 	}
   2447 }
   2448 
   2449 /*
   2450  * Configure the beacon and sleep timers.
   2451  *
   2452  * When operating as an AP this resets the TSF and sets
   2453  * up the hardware to notify us when we need to issue beacons.
   2454  *
   2455  * When operating in station mode this sets up the beacon
   2456  * timers according to the timestamp of the last received
   2457  * beacon and the current TSF, configures PCF and DTIM
   2458  * handling, programs the sleep registers so the hardware
   2459  * will wakeup in time to receive beacons, and configures
   2460  * the beacon miss handling so we'll receive a BMISS
   2461  * interrupt when we stop seeing beacons from the AP
   2462  * we've associated with.
   2463  */
   2464 static void
   2465 ath_beacon_config(struct ath_softc *sc)
   2466 {
   2467 #define	TSF_TO_TU(_h,_l) \
   2468 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2469 #define	FUDGE	2
   2470 	struct ath_hal *ah = sc->sc_ah;
   2471 	struct ieee80211com *ic = &sc->sc_ic;
   2472 	struct ieee80211_node *ni = ic->ic_bss;
   2473 	u_int32_t nexttbtt, intval, tsftu;
   2474 	u_int64_t tsf;
   2475 
   2476 	/* extract tstamp from last beacon and convert to TU */
   2477 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2478 			     LE_READ_4(ni->ni_tstamp.data));
   2479 	/* NB: the beacon interval is kept internally in TU's */
   2480 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2481 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2482 		nexttbtt = intval;
   2483 	else if (intval)		/* NB: can be 0 for monitor mode */
   2484 		nexttbtt = roundup(nexttbtt, intval);
   2485 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2486 		__func__, nexttbtt, intval, ni->ni_intval);
   2487 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2488 		HAL_BEACON_STATE bs;
   2489 		int dtimperiod, dtimcount;
   2490 		int cfpperiod, cfpcount;
   2491 
   2492 		/*
   2493 		 * Setup dtim and cfp parameters according to
   2494 		 * last beacon we received (which may be none).
   2495 		 */
   2496 		dtimperiod = ni->ni_dtim_period;
   2497 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2498 			dtimperiod = 1;
   2499 		dtimcount = ni->ni_dtim_count;
   2500 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2501 			dtimcount = 0;		/* XXX? */
   2502 		cfpperiod = 1;			/* NB: no PCF support yet */
   2503 		cfpcount = 0;
   2504 		/*
   2505 		 * Pull nexttbtt forward to reflect the current
   2506 		 * TSF and calculate dtim+cfp state for the result.
   2507 		 */
   2508 		tsf = ath_hal_gettsf64(ah);
   2509 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2510 		do {
   2511 			nexttbtt += intval;
   2512 			if (--dtimcount < 0) {
   2513 				dtimcount = dtimperiod - 1;
   2514 				if (--cfpcount < 0)
   2515 					cfpcount = cfpperiod - 1;
   2516 			}
   2517 		} while (nexttbtt < tsftu);
   2518 		memset(&bs, 0, sizeof(bs));
   2519 		bs.bs_intval = intval;
   2520 		bs.bs_nexttbtt = nexttbtt;
   2521 		bs.bs_dtimperiod = dtimperiod*intval;
   2522 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2523 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2524 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2525 		bs.bs_cfpmaxduration = 0;
   2526 #if 0
   2527 		/*
   2528 		 * The 802.11 layer records the offset to the DTIM
   2529 		 * bitmap while receiving beacons; use it here to
   2530 		 * enable h/w detection of our AID being marked in
   2531 		 * the bitmap vector (to indicate frames for us are
   2532 		 * pending at the AP).
   2533 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2534 		 * XXX enable based on h/w rev for newer chips
   2535 		 */
   2536 		bs.bs_timoffset = ni->ni_timoff;
   2537 #endif
   2538 		/*
   2539 		 * Calculate the number of consecutive beacons to miss
   2540 		 * before taking a BMISS interrupt.  The configuration
   2541 		 * is specified in ms, so we need to convert that to
   2542 		 * TU's and then calculate based on the beacon interval.
   2543 		 * Note that we clamp the result to at most 10 beacons.
   2544 		 */
   2545 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2546 		if (bs.bs_bmissthreshold > 10)
   2547 			bs.bs_bmissthreshold = 10;
   2548 		else if (bs.bs_bmissthreshold <= 0)
   2549 			bs.bs_bmissthreshold = 1;
   2550 
   2551 		/*
   2552 		 * Calculate sleep duration.  The configuration is
   2553 		 * given in ms.  We insure a multiple of the beacon
   2554 		 * period is used.  Also, if the sleep duration is
   2555 		 * greater than the DTIM period then it makes senses
   2556 		 * to make it a multiple of that.
   2557 		 *
   2558 		 * XXX fixed at 100ms
   2559 		 */
   2560 		bs.bs_sleepduration =
   2561 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2562 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2563 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2564 
   2565 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2566 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2567 			, __func__
   2568 			, tsf, tsftu
   2569 			, bs.bs_intval
   2570 			, bs.bs_nexttbtt
   2571 			, bs.bs_dtimperiod
   2572 			, bs.bs_nextdtim
   2573 			, bs.bs_bmissthreshold
   2574 			, bs.bs_sleepduration
   2575 			, bs.bs_cfpperiod
   2576 			, bs.bs_cfpmaxduration
   2577 			, bs.bs_cfpnext
   2578 			, bs.bs_timoffset
   2579 		);
   2580 		ath_hal_intrset(ah, 0);
   2581 		ath_hal_beacontimers(ah, &bs);
   2582 		sc->sc_imask |= HAL_INT_BMISS;
   2583 		ath_hal_intrset(ah, sc->sc_imask);
   2584 	} else {
   2585 		ath_hal_intrset(ah, 0);
   2586 		if (nexttbtt == intval)
   2587 			intval |= HAL_BEACON_RESET_TSF;
   2588 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2589 			/*
   2590 			 * In IBSS mode enable the beacon timers but only
   2591 			 * enable SWBA interrupts if we need to manually
   2592 			 * prepare beacon frames.  Otherwise we use a
   2593 			 * self-linked tx descriptor and let the hardware
   2594 			 * deal with things.
   2595 			 */
   2596 			intval |= HAL_BEACON_ENA;
   2597 			if (!sc->sc_hasveol)
   2598 				sc->sc_imask |= HAL_INT_SWBA;
   2599 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2600 				/*
   2601 				 * Pull nexttbtt forward to reflect
   2602 				 * the current TSF.
   2603 				 */
   2604 				tsf = ath_hal_gettsf64(ah);
   2605 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2606 				do {
   2607 					nexttbtt += intval;
   2608 				} while (nexttbtt < tsftu);
   2609 			}
   2610 			ath_beaconq_config(sc);
   2611 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2612 			/*
   2613 			 * In AP mode we enable the beacon timers and
   2614 			 * SWBA interrupts to prepare beacon frames.
   2615 			 */
   2616 			intval |= HAL_BEACON_ENA;
   2617 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2618 			ath_beaconq_config(sc);
   2619 		}
   2620 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2621 		sc->sc_bmisscount = 0;
   2622 		ath_hal_intrset(ah, sc->sc_imask);
   2623 		/*
   2624 		 * When using a self-linked beacon descriptor in
   2625 		 * ibss mode load it once here.
   2626 		 */
   2627 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2628 			ath_beacon_proc(sc, 0);
   2629 	}
   2630 	sc->sc_syncbeacon = 0;
   2631 #undef UNDEF
   2632 #undef TSF_TO_TU
   2633 }
   2634 
   2635 static int
   2636 ath_descdma_setup(struct ath_softc *sc,
   2637 	struct ath_descdma *dd, ath_bufhead *head,
   2638 	const char *name, int nbuf, int ndesc)
   2639 {
   2640 #define	DS2PHYS(_dd, _ds) \
   2641 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2642 	struct ifnet *ifp = &sc->sc_if;
   2643 	struct ath_desc *ds;
   2644 	struct ath_buf *bf;
   2645 	int i, bsize, error;
   2646 
   2647 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2648 	    __func__, name, nbuf, ndesc);
   2649 
   2650 	dd->dd_name = name;
   2651 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2652 
   2653 	/*
   2654 	 * Setup DMA descriptor area.
   2655 	 */
   2656 	dd->dd_dmat = sc->sc_dmat;
   2657 
   2658 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2659 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2660 
   2661 	if (error != 0) {
   2662 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2663 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2664 		goto fail0;
   2665 	}
   2666 
   2667 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2668 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2669 	if (error != 0) {
   2670 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2671 		    nbuf * ndesc, dd->dd_name, error);
   2672 		goto fail1;
   2673 	}
   2674 
   2675 	/* allocate descriptors */
   2676 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2677 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2678 	if (error != 0) {
   2679 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2680 			"error %u\n", dd->dd_name, error);
   2681 		goto fail2;
   2682 	}
   2683 
   2684 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2685 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2686 	if (error != 0) {
   2687 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2688 			dd->dd_name, error);
   2689 		goto fail3;
   2690 	}
   2691 
   2692 	ds = dd->dd_desc;
   2693 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2694 	DPRINTF(sc, ATH_DEBUG_RESET,
   2695 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2696 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2697 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2698 
   2699 	/* allocate rx buffers */
   2700 	bsize = sizeof(struct ath_buf) * nbuf;
   2701 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2702 	if (bf == NULL) {
   2703 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2704 			dd->dd_name, bsize);
   2705 		goto fail4;
   2706 	}
   2707 	dd->dd_bufptr = bf;
   2708 
   2709 	STAILQ_INIT(head);
   2710 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2711 		bf->bf_desc = ds;
   2712 		bf->bf_daddr = DS2PHYS(dd, ds);
   2713 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2714 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2715 		if (error != 0) {
   2716 			if_printf(ifp, "unable to create dmamap for %s "
   2717 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2718 			ath_descdma_cleanup(sc, dd, head);
   2719 			return error;
   2720 		}
   2721 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2722 	}
   2723 	return 0;
   2724 fail4:
   2725 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2726 fail3:
   2727 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2728 fail2:
   2729 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2730 fail1:
   2731 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2732 fail0:
   2733 	memset(dd, 0, sizeof(*dd));
   2734 	return error;
   2735 #undef DS2PHYS
   2736 }
   2737 
   2738 static void
   2739 ath_descdma_cleanup(struct ath_softc *sc,
   2740 	struct ath_descdma *dd, ath_bufhead *head)
   2741 {
   2742 	struct ath_buf *bf;
   2743 	struct ieee80211_node *ni;
   2744 
   2745 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2746 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2747 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2748 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2749 
   2750 	STAILQ_FOREACH(bf, head, bf_list) {
   2751 		if (bf->bf_m) {
   2752 			m_freem(bf->bf_m);
   2753 			bf->bf_m = NULL;
   2754 		}
   2755 		if (bf->bf_dmamap != NULL) {
   2756 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2757 			bf->bf_dmamap = NULL;
   2758 		}
   2759 		ni = bf->bf_node;
   2760 		bf->bf_node = NULL;
   2761 		if (ni != NULL) {
   2762 			/*
   2763 			 * Reclaim node reference.
   2764 			 */
   2765 			ieee80211_free_node(ni);
   2766 		}
   2767 	}
   2768 
   2769 	STAILQ_INIT(head);
   2770 	free(dd->dd_bufptr, M_ATHDEV);
   2771 	memset(dd, 0, sizeof(*dd));
   2772 }
   2773 
   2774 static int
   2775 ath_desc_alloc(struct ath_softc *sc)
   2776 {
   2777 	int error;
   2778 
   2779 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2780 			"rx", ath_rxbuf, 1);
   2781 	if (error != 0)
   2782 		return error;
   2783 
   2784 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2785 			"tx", ath_txbuf, ATH_TXDESC);
   2786 	if (error != 0) {
   2787 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2788 		return error;
   2789 	}
   2790 
   2791 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2792 			"beacon", 1, 1);
   2793 	if (error != 0) {
   2794 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2795 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2796 		return error;
   2797 	}
   2798 	return 0;
   2799 }
   2800 
   2801 static void
   2802 ath_desc_free(struct ath_softc *sc)
   2803 {
   2804 
   2805 	if (sc->sc_bdma.dd_desc_len != 0)
   2806 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2807 	if (sc->sc_txdma.dd_desc_len != 0)
   2808 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2809 	if (sc->sc_rxdma.dd_desc_len != 0)
   2810 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2811 }
   2812 
   2813 static struct ieee80211_node *
   2814 ath_node_alloc(struct ieee80211_node_table *nt)
   2815 {
   2816 	struct ieee80211com *ic = nt->nt_ic;
   2817 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2818 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2819 	struct ath_node *an;
   2820 
   2821 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
   2822 	if (an == NULL) {
   2823 		/* XXX stat+msg */
   2824 		return NULL;
   2825 	}
   2826 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2827 	ath_rate_node_init(sc, an);
   2828 
   2829 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2830 	return &an->an_node;
   2831 }
   2832 
   2833 static void
   2834 ath_node_free(struct ieee80211_node *ni)
   2835 {
   2836 	struct ieee80211com *ic = ni->ni_ic;
   2837         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2838 
   2839 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2840 
   2841 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2842 	sc->sc_node_free(ni);
   2843 }
   2844 
   2845 static u_int8_t
   2846 ath_node_getrssi(const struct ieee80211_node *ni)
   2847 {
   2848 #define	HAL_EP_RND(x, mul) \
   2849 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2850 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2851 	int32_t rssi;
   2852 
   2853 	/*
   2854 	 * When only one frame is received there will be no state in
   2855 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2856 	 */
   2857 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2858 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2859 	else
   2860 		rssi = ni->ni_rssi;
   2861 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2862 #undef HAL_EP_RND
   2863 }
   2864 
   2865 static int
   2866 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2867 {
   2868 	struct ath_hal *ah = sc->sc_ah;
   2869 	int error;
   2870 	struct mbuf *m;
   2871 	struct ath_desc *ds;
   2872 
   2873 	m = bf->bf_m;
   2874 	if (m == NULL) {
   2875 		/*
   2876 		 * NB: by assigning a page to the rx dma buffer we
   2877 		 * implicitly satisfy the Atheros requirement that
   2878 		 * this buffer be cache-line-aligned and sized to be
   2879 		 * multiple of the cache line size.  Not doing this
   2880 		 * causes weird stuff to happen (for the 5210 at least).
   2881 		 */
   2882 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2883 		if (m == NULL) {
   2884 			DPRINTF(sc, ATH_DEBUG_ANY,
   2885 				"%s: no mbuf/cluster\n", __func__);
   2886 			sc->sc_stats.ast_rx_nombuf++;
   2887 			return ENOMEM;
   2888 		}
   2889 		bf->bf_m = m;
   2890 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2891 
   2892 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2893 					     bf->bf_dmamap, m,
   2894 					     BUS_DMA_NOWAIT);
   2895 		if (error != 0) {
   2896 			DPRINTF(sc, ATH_DEBUG_ANY,
   2897 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2898 			    __func__, error);
   2899 			sc->sc_stats.ast_rx_busdma++;
   2900 			return error;
   2901 		}
   2902 		KASSERTMSG(bf->bf_nseg == 1,
   2903 			"multi-segment packet; nseg %u", bf->bf_nseg);
   2904 	}
   2905 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2906 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2907 
   2908 	/*
   2909 	 * Setup descriptors.  For receive we always terminate
   2910 	 * the descriptor list with a self-linked entry so we'll
   2911 	 * not get overrun under high load (as can happen with a
   2912 	 * 5212 when ANI processing enables PHY error frames).
   2913 	 *
   2914 	 * To insure the last descriptor is self-linked we create
   2915 	 * each descriptor as self-linked and add it to the end.  As
   2916 	 * each additional descriptor is added the previous self-linked
   2917 	 * entry is ``fixed'' naturally.  This should be safe even
   2918 	 * if DMA is happening.  When processing RX interrupts we
   2919 	 * never remove/process the last, self-linked, entry on the
   2920 	 * descriptor list.  This insures the hardware always has
   2921 	 * someplace to write a new frame.
   2922 	 */
   2923 	ds = bf->bf_desc;
   2924 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2925 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2926 	/* ds->ds_vdata = mtod(m, void *);	for radar */
   2927 	ath_hal_setuprxdesc(ah, ds
   2928 		, m->m_len		/* buffer size */
   2929 		, 0
   2930 	);
   2931 
   2932 	if (sc->sc_rxlink != NULL)
   2933 		*sc->sc_rxlink = bf->bf_daddr;
   2934 	sc->sc_rxlink = &ds->ds_link;
   2935 	return 0;
   2936 }
   2937 
   2938 /*
   2939  * Extend 15-bit time stamp from rx descriptor to
   2940  * a full 64-bit TSF using the specified TSF.
   2941  */
   2942 static inline u_int64_t
   2943 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2944 {
   2945 	if ((tsf & 0x7fff) < rstamp)
   2946 		tsf -= 0x8000;
   2947 	return ((tsf &~ 0x7fff) | rstamp);
   2948 }
   2949 
   2950 /*
   2951  * Intercept management frames to collect beacon rssi data
   2952  * and to do ibss merges.
   2953  */
   2954 static void
   2955 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2956 	struct ieee80211_node *ni,
   2957 	int subtype, int rssi, u_int32_t rstamp)
   2958 {
   2959 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2960 
   2961 	/*
   2962 	 * Call up first so subsequent work can use information
   2963 	 * potentially stored in the node (e.g. for ibss merge).
   2964 	 */
   2965 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2966 	switch (subtype) {
   2967 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2968 		/* update rssi statistics for use by the hal */
   2969 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2970 		if (sc->sc_syncbeacon &&
   2971 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2972 			/*
   2973 			 * Resync beacon timers using the tsf of the beacon
   2974 			 * frame we just received.
   2975 			 */
   2976 			ath_beacon_config(sc);
   2977 		}
   2978 		/* fall thru... */
   2979 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2980 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2981 		    ic->ic_state == IEEE80211_S_RUN) {
   2982 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2983 				ath_hal_gettsf64(sc->sc_ah));
   2984 
   2985 			/*
   2986 			 * Handle ibss merge as needed; check the tsf on the
   2987 			 * frame before attempting the merge.  The 802.11 spec
   2988 			 * says the station should change its bssid to match
   2989 			 * the oldest station with the same ssid, where oldest
   2990 			 * is determined by the tsf.  Note that hardware
   2991 			 * reconfiguration happens through callback to
   2992 			 * ath_newstate as the state machine will go from
   2993 			 * RUN -> RUN when this happens.
   2994 			 */
   2995 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2996 				DPRINTF(sc, ATH_DEBUG_STATE,
   2997 				    "ibss merge, rstamp %u tsf %ju "
   2998 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   2999 				    (uintmax_t)ni->ni_tstamp.tsf);
   3000 				(void) ieee80211_ibss_merge(ni);
   3001 			}
   3002 		}
   3003 		break;
   3004 	}
   3005 }
   3006 
   3007 /*
   3008  * Set the default antenna.
   3009  */
   3010 static void
   3011 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   3012 {
   3013 	struct ath_hal *ah = sc->sc_ah;
   3014 
   3015 	/* XXX block beacon interrupts */
   3016 	ath_hal_setdefantenna(ah, antenna);
   3017 	if (sc->sc_defant != antenna)
   3018 		sc->sc_stats.ast_ant_defswitch++;
   3019 	sc->sc_defant = antenna;
   3020 	sc->sc_rxotherant = 0;
   3021 }
   3022 
   3023 static void
   3024 ath_handle_micerror(struct ieee80211com *ic,
   3025 	struct ieee80211_frame *wh, int keyix)
   3026 {
   3027 	struct ieee80211_node *ni;
   3028 
   3029 	/* XXX recheck MIC to deal w/ chips that lie */
   3030 	/* XXX discard MIC errors on !data frames */
   3031 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
   3032 	if (ni != NULL) {
   3033 		ieee80211_notify_michael_failure(ic, wh, keyix);
   3034 		ieee80211_free_node(ni);
   3035 	}
   3036 }
   3037 
   3038 static void
   3039 ath_rx_proc(void *arg, int npending)
   3040 {
   3041 #define	PA2DESC(_sc, _pa) \
   3042 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   3043 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   3044 	struct ath_softc *sc = arg;
   3045 	struct ath_buf *bf;
   3046 	struct ieee80211com *ic = &sc->sc_ic;
   3047 	struct ifnet *ifp = &sc->sc_if;
   3048 	struct ath_hal *ah = sc->sc_ah;
   3049 	struct ath_desc *ds;
   3050 	struct mbuf *m;
   3051 	struct ieee80211_node *ni;
   3052 	struct ath_node *an;
   3053 	int len, ngood, type;
   3054 	u_int phyerr;
   3055 	HAL_STATUS status;
   3056 	int16_t nf;
   3057 	u_int64_t tsf;
   3058 	uint8_t rxerr_tap, rxerr_mon;
   3059 	NET_LOCK_GIANT_FUNC_INIT();
   3060 
   3061 	NET_LOCK_GIANT();		/* XXX */
   3062 
   3063 	rxerr_tap =
   3064 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
   3065 
   3066 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
   3067 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3068 	else if (ifp->if_flags & IFF_PROMISC)
   3069 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3070 
   3071 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   3072 	ngood = 0;
   3073 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   3074 	tsf = ath_hal_gettsf64(ah);
   3075 	do {
   3076 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3077 		if (bf == NULL) {		/* NB: shouldn't happen */
   3078 			if_printf(ifp, "%s: no buffer!\n", __func__);
   3079 			break;
   3080 		}
   3081 		ds = bf->bf_desc;
   3082 		if (ds->ds_link == bf->bf_daddr) {
   3083 			/* NB: never process the self-linked entry at the end */
   3084 			break;
   3085 		}
   3086 		m = bf->bf_m;
   3087 		if (m == NULL) {		/* NB: shouldn't happen */
   3088 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   3089 			break;
   3090 		}
   3091 		/* XXX sync descriptor memory */
   3092 		/*
   3093 		 * Must provide the virtual address of the current
   3094 		 * descriptor, the physical address, and the virtual
   3095 		 * address of the next descriptor in the h/w chain.
   3096 		 * This allows the HAL to look ahead to see if the
   3097 		 * hardware is done with a descriptor by checking the
   3098 		 * done bit in the following descriptor and the address
   3099 		 * of the current descriptor the DMA engine is working
   3100 		 * on.  All this is necessary because of our use of
   3101 		 * a self-linked list to avoid rx overruns.
   3102 		 */
   3103 		status = ath_hal_rxprocdesc(ah, ds,
   3104 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   3105 				&ds->ds_rxstat);
   3106 #ifdef AR_DEBUG
   3107 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3108 			ath_printrxbuf(bf, status == HAL_OK);
   3109 #endif
   3110 		if (status == HAL_EINPROGRESS)
   3111 			break;
   3112 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3113 		if (ds->ds_rxstat.rs_more) {
   3114 			/*
   3115 			 * Frame spans multiple descriptors; this
   3116 			 * cannot happen yet as we don't support
   3117 			 * jumbograms.  If not in monitor mode,
   3118 			 * discard the frame.
   3119 			 */
   3120 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3121 				sc->sc_stats.ast_rx_toobig++;
   3122 				goto rx_next;
   3123 			}
   3124 			/* fall thru for monitor mode handling... */
   3125 		} else if (ds->ds_rxstat.rs_status != 0) {
   3126 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3127 				sc->sc_stats.ast_rx_crcerr++;
   3128 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3129 				sc->sc_stats.ast_rx_fifoerr++;
   3130 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3131 				sc->sc_stats.ast_rx_phyerr++;
   3132 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3133 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3134 				goto rx_next;
   3135 			}
   3136 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3137 				/*
   3138 				 * Decrypt error.  If the error occurred
   3139 				 * because there was no hardware key, then
   3140 				 * let the frame through so the upper layers
   3141 				 * can process it.  This is necessary for 5210
   3142 				 * parts which have no way to setup a ``clear''
   3143 				 * key cache entry.
   3144 				 *
   3145 				 * XXX do key cache faulting
   3146 				 */
   3147 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3148 					goto rx_accept;
   3149 				sc->sc_stats.ast_rx_badcrypt++;
   3150 			}
   3151 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3152 				sc->sc_stats.ast_rx_badmic++;
   3153 				/*
   3154 				 * Do minimal work required to hand off
   3155 				 * the 802.11 header for notifcation.
   3156 				 */
   3157 				/* XXX frag's and qos frames */
   3158 				len = ds->ds_rxstat.rs_datalen;
   3159 				if (len >= sizeof (struct ieee80211_frame)) {
   3160 					bus_dmamap_sync(sc->sc_dmat,
   3161 					    bf->bf_dmamap,
   3162 					    0, bf->bf_dmamap->dm_mapsize,
   3163 					    BUS_DMASYNC_POSTREAD);
   3164 					ath_handle_micerror(ic,
   3165 					    mtod(m, struct ieee80211_frame *),
   3166 					    sc->sc_splitmic ?
   3167 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
   3168 				}
   3169 			}
   3170 			ifp->if_ierrors++;
   3171 			/*
   3172 			 * Reject error frames, we normally don't want
   3173 			 * to see them in monitor mode (in monitor mode
   3174 			 * allow through packets that have crypto problems).
   3175 			 */
   3176 
   3177 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
   3178 				goto rx_next;
   3179 		}
   3180 rx_accept:
   3181 		/*
   3182 		 * Sync and unmap the frame.  At this point we're
   3183 		 * committed to passing the mbuf somewhere so clear
   3184 		 * bf_m; this means a new sk_buff must be allocated
   3185 		 * when the rx descriptor is setup again to receive
   3186 		 * another frame.
   3187 		 */
   3188 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3189 		    0, bf->bf_dmamap->dm_mapsize,
   3190 		    BUS_DMASYNC_POSTREAD);
   3191 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3192 		bf->bf_m = NULL;
   3193 
   3194 		m_set_rcvif(m, ifp);
   3195 		len = ds->ds_rxstat.rs_datalen;
   3196 		m->m_pkthdr.len = m->m_len = len;
   3197 
   3198 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3199 
   3200 		if (sc->sc_drvbpf) {
   3201 			u_int8_t rix;
   3202 
   3203 			/*
   3204 			 * Discard anything shorter than an ack or cts.
   3205 			 */
   3206 			if (len < IEEE80211_ACK_LEN) {
   3207 				DPRINTF(sc, ATH_DEBUG_RECV,
   3208 					"%s: runt packet %d\n",
   3209 					__func__, len);
   3210 				sc->sc_stats.ast_rx_tooshort++;
   3211 				m_freem(m);
   3212 				goto rx_next;
   3213 			}
   3214 			rix = ds->ds_rxstat.rs_rate;
   3215 			sc->sc_rx_th.wr_tsf = htole64(
   3216 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3217 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3218 			if (ds->ds_rxstat.rs_status &
   3219 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
   3220 				sc->sc_rx_th.wr_flags |=
   3221 				    IEEE80211_RADIOTAP_F_BADFCS;
   3222 			}
   3223 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3224 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3225 			sc->sc_rx_th.wr_antnoise = nf;
   3226 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3227 
   3228 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
   3229 			    sc->sc_rx_th_len, m);
   3230 		}
   3231 
   3232 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
   3233 			m_freem(m);
   3234 			goto rx_next;
   3235 		}
   3236 		/*
   3237 		 * From this point on we assume the frame is at least
   3238 		 * as large as ieee80211_frame_min; verify that.
   3239 		 */
   3240 		if (len < IEEE80211_MIN_LEN) {
   3241 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3242 				__func__, len);
   3243 			sc->sc_stats.ast_rx_tooshort++;
   3244 			m_freem(m);
   3245 			goto rx_next;
   3246 		}
   3247 
   3248 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3249 			ieee80211_dump_pkt(mtod(m, void *), len,
   3250 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3251 				   ds->ds_rxstat.rs_rssi);
   3252 		}
   3253 
   3254 		m_adj(m, -IEEE80211_CRC_LEN);
   3255 
   3256 		/*
   3257 		 * Locate the node for sender, track state, and then
   3258 		 * pass the (referenced) node up to the 802.11 layer
   3259 		 * for its use.
   3260 		 */
   3261 		ni = ieee80211_find_rxnode_withkey(ic,
   3262 			mtod(m, const struct ieee80211_frame_min *),
   3263 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3264 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3265 		/*
   3266 		 * Track rx rssi and do any rx antenna management.
   3267 		 */
   3268 		an = ATH_NODE(ni);
   3269 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3270 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3271 		/*
   3272 		 * Send frame up for processing.
   3273 		 */
   3274 		type = ieee80211_input(ic, m, ni,
   3275 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3276 		ieee80211_free_node(ni);
   3277 		if (sc->sc_diversity) {
   3278 			/*
   3279 			 * When using fast diversity, change the default rx
   3280 			 * antenna if diversity chooses the other antenna 3
   3281 			 * times in a row.
   3282 			 */
   3283 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3284 				if (++sc->sc_rxotherant >= 3)
   3285 					ath_setdefantenna(sc,
   3286 						ds->ds_rxstat.rs_antenna);
   3287 			} else
   3288 				sc->sc_rxotherant = 0;
   3289 		}
   3290 		if (sc->sc_softled) {
   3291 			/*
   3292 			 * Blink for any data frame.  Otherwise do a
   3293 			 * heartbeat-style blink when idle.  The latter
   3294 			 * is mainly for station mode where we depend on
   3295 			 * periodic beacon frames to trigger the poll event.
   3296 			 */
   3297 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3298 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3299 				ath_led_event(sc, ATH_LED_RX);
   3300 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3301 				ath_led_event(sc, ATH_LED_POLL);
   3302 		}
   3303 		/*
   3304 		 * Arrange to update the last rx timestamp only for
   3305 		 * frames from our ap when operating in station mode.
   3306 		 * This assumes the rx key is always setup when associated.
   3307 		 */
   3308 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3309 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3310 			ngood++;
   3311 rx_next:
   3312 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3313 	} while (ath_rxbuf_init(sc, bf) == 0);
   3314 
   3315 	/* rx signal state monitoring */
   3316 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3317 #if 0
   3318 	if (ath_hal_radar_event(ah))
   3319 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3320 #endif
   3321 	if (ngood)
   3322 		sc->sc_lastrx = tsf;
   3323 
   3324 #ifdef __NetBSD__
   3325 	/* XXX Why isn't this necessary in FreeBSD? */
   3326 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3327 		ath_start(ifp);
   3328 #endif /* __NetBSD__ */
   3329 
   3330 	NET_UNLOCK_GIANT();		/* XXX */
   3331 #undef PA2DESC
   3332 }
   3333 
   3334 /*
   3335  * Setup a h/w transmit queue.
   3336  */
   3337 static struct ath_txq *
   3338 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3339 {
   3340 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3341 	struct ath_hal *ah = sc->sc_ah;
   3342 	HAL_TXQ_INFO qi;
   3343 	int qnum;
   3344 
   3345 	memset(&qi, 0, sizeof(qi));
   3346 	qi.tqi_subtype = subtype;
   3347 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3348 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3349 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3350 	/*
   3351 	 * Enable interrupts only for EOL and DESC conditions.
   3352 	 * We mark tx descriptors to receive a DESC interrupt
   3353 	 * when a tx queue gets deep; otherwise waiting for the
   3354 	 * EOL to reap descriptors.  Note that this is done to
   3355 	 * reduce interrupt load and this only defers reaping
   3356 	 * descriptors, never transmitting frames.  Aside from
   3357 	 * reducing interrupts this also permits more concurrency.
   3358 	 * The only potential downside is if the tx queue backs
   3359 	 * up in which case the top half of the kernel may backup
   3360 	 * due to a lack of tx descriptors.
   3361 	 */
   3362 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3363 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3364 	if (qnum == -1) {
   3365 		/*
   3366 		 * NB: don't print a message, this happens
   3367 		 * normally on parts with too few tx queues
   3368 		 */
   3369 		return NULL;
   3370 	}
   3371 	if (qnum >= N(sc->sc_txq)) {
   3372 		device_printf(sc->sc_dev,
   3373 			"hal qnum %u out of range, max %zu!\n",
   3374 			qnum, N(sc->sc_txq));
   3375 		ath_hal_releasetxqueue(ah, qnum);
   3376 		return NULL;
   3377 	}
   3378 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3379 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3380 
   3381 		txq->axq_qnum = qnum;
   3382 		txq->axq_depth = 0;
   3383 		txq->axq_intrcnt = 0;
   3384 		txq->axq_link = NULL;
   3385 		STAILQ_INIT(&txq->axq_q);
   3386 		ATH_TXQ_LOCK_INIT(sc, txq);
   3387 		sc->sc_txqsetup |= 1<<qnum;
   3388 	}
   3389 	return &sc->sc_txq[qnum];
   3390 #undef N
   3391 }
   3392 
   3393 /*
   3394  * Setup a hardware data transmit queue for the specified
   3395  * access control.  The hal may not support all requested
   3396  * queues in which case it will return a reference to a
   3397  * previously setup queue.  We record the mapping from ac's
   3398  * to h/w queues for use by ath_tx_start and also track
   3399  * the set of h/w queues being used to optimize work in the
   3400  * transmit interrupt handler and related routines.
   3401  */
   3402 static int
   3403 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3404 {
   3405 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3406 	struct ath_txq *txq;
   3407 
   3408 	if (ac >= N(sc->sc_ac2q)) {
   3409 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3410 			ac, N(sc->sc_ac2q));
   3411 		return 0;
   3412 	}
   3413 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3414 	if (txq != NULL) {
   3415 		sc->sc_ac2q[ac] = txq;
   3416 		return 1;
   3417 	} else
   3418 		return 0;
   3419 #undef N
   3420 }
   3421 
   3422 /*
   3423  * Update WME parameters for a transmit queue.
   3424  */
   3425 static int
   3426 ath_txq_update(struct ath_softc *sc, int ac)
   3427 {
   3428 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3429 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3430 	struct ieee80211com *ic = &sc->sc_ic;
   3431 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3432 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3433 	struct ath_hal *ah = sc->sc_ah;
   3434 	HAL_TXQ_INFO qi;
   3435 
   3436 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3437 	qi.tqi_aifs = wmep->wmep_aifsn;
   3438 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3439 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3440 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3441 
   3442 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3443 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3444 			"parameters for %s traffic!\n",
   3445 			ieee80211_wme_acnames[ac]);
   3446 		return 0;
   3447 	} else {
   3448 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3449 		return 1;
   3450 	}
   3451 #undef ATH_TXOP_TO_US
   3452 #undef ATH_EXPONENT_TO_VALUE
   3453 }
   3454 
   3455 /*
   3456  * Callback from the 802.11 layer to update WME parameters.
   3457  */
   3458 static int
   3459 ath_wme_update(struct ieee80211com *ic)
   3460 {
   3461 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3462 
   3463 	return !ath_txq_update(sc, WME_AC_BE) ||
   3464 	    !ath_txq_update(sc, WME_AC_BK) ||
   3465 	    !ath_txq_update(sc, WME_AC_VI) ||
   3466 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3467 }
   3468 
   3469 /*
   3470  * Reclaim resources for a setup queue.
   3471  */
   3472 static void
   3473 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3474 {
   3475 
   3476 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3477 	ATH_TXQ_LOCK_DESTROY(txq);
   3478 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3479 }
   3480 
   3481 /*
   3482  * Reclaim all tx queue resources.
   3483  */
   3484 static void
   3485 ath_tx_cleanup(struct ath_softc *sc)
   3486 {
   3487 	int i;
   3488 
   3489 	ATH_TXBUF_LOCK_DESTROY(sc);
   3490 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3491 		if (ATH_TXQ_SETUP(sc, i))
   3492 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3493 }
   3494 
   3495 /*
   3496  * Defragment an mbuf chain, returning at most maxfrags separate
   3497  * mbufs+clusters.  If this is not possible NULL is returned and
   3498  * the original mbuf chain is left in its present (potentially
   3499  * modified) state.  We use two techniques: collapsing consecutive
   3500  * mbufs and replacing consecutive mbufs by a cluster.
   3501  */
   3502 static struct mbuf *
   3503 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3504 {
   3505 	struct mbuf *m, *n, *n2, **prev;
   3506 	u_int curfrags;
   3507 
   3508 	/*
   3509 	 * Calculate the current number of frags.
   3510 	 */
   3511 	curfrags = 0;
   3512 	for (m = m0; m != NULL; m = m->m_next)
   3513 		curfrags++;
   3514 	/*
   3515 	 * First, try to collapse mbufs.  Note that we always collapse
   3516 	 * towards the front so we don't need to deal with moving the
   3517 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3518 	 * less data than the following.
   3519 	 */
   3520 	m = m0;
   3521 again:
   3522 	for (;;) {
   3523 		n = m->m_next;
   3524 		if (n == NULL)
   3525 			break;
   3526 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3527 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3528 				n->m_len);
   3529 			m->m_len += n->m_len;
   3530 			m->m_next = n->m_next;
   3531 			m_free(n);
   3532 			if (--curfrags <= maxfrags)
   3533 				return m0;
   3534 		} else
   3535 			m = n;
   3536 	}
   3537 	KASSERTMSG(maxfrags > 1,
   3538 		"maxfrags %u, but normal collapse failed", maxfrags);
   3539 	/*
   3540 	 * Collapse consecutive mbufs to a cluster.
   3541 	 */
   3542 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3543 	while ((n = *prev) != NULL) {
   3544 		if ((n2 = n->m_next) != NULL &&
   3545 		    n->m_len + n2->m_len < MCLBYTES) {
   3546 			m = m_getcl(how, MT_DATA, 0);
   3547 			if (m == NULL)
   3548 				goto bad;
   3549 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3550 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3551 				n2->m_len);
   3552 			m->m_len = n->m_len + n2->m_len;
   3553 			m->m_next = n2->m_next;
   3554 			*prev = m;
   3555 			m_free(n);
   3556 			m_free(n2);
   3557 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3558 				return m0;
   3559 			/*
   3560 			 * Still not there, try the normal collapse
   3561 			 * again before we allocate another cluster.
   3562 			 */
   3563 			goto again;
   3564 		}
   3565 		prev = &n->m_next;
   3566 	}
   3567 	/*
   3568 	 * No place where we can collapse to a cluster; punt.
   3569 	 * This can occur if, for example, you request 2 frags
   3570 	 * but the packet requires that both be clusters (we
   3571 	 * never reallocate the first mbuf to avoid moving the
   3572 	 * packet header).
   3573 	 */
   3574 bad:
   3575 	return NULL;
   3576 }
   3577 
   3578 /*
   3579  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3580  */
   3581 static int
   3582 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3583 {
   3584 	int i;
   3585 
   3586 	for (i = 0; i < rt->rateCount; i++)
   3587 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3588 			return i;
   3589 	return 0;		/* NB: lowest rate */
   3590 }
   3591 
   3592 static void
   3593 ath_freetx(struct mbuf *m)
   3594 {
   3595 	struct mbuf *next;
   3596 
   3597 	do {
   3598 		next = m->m_nextpkt;
   3599 		m->m_nextpkt = NULL;
   3600 		m_freem(m);
   3601 	} while ((m = next) != NULL);
   3602 }
   3603 
   3604 static int
   3605 deduct_pad_bytes(int len, int hdrlen)
   3606 {
   3607 	/* XXX I am suspicious that this code, which I extracted
   3608 	 * XXX from ath_tx_start() for reuse, does the right thing.
   3609 	 */
   3610 	return len - (hdrlen & 3);
   3611 }
   3612 
   3613 static int
   3614 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3615     struct mbuf *m0)
   3616 {
   3617 	struct ieee80211com *ic = &sc->sc_ic;
   3618 	struct ath_hal *ah = sc->sc_ah;
   3619 	struct ifnet *ifp = &sc->sc_if;
   3620 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3621 	int i, error, iswep, ismcast, isfrag, ismrr;
   3622 	int keyix, hdrlen, pktlen, try0;
   3623 	u_int8_t rix, txrate, ctsrate;
   3624 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3625 	struct ath_desc *ds, *ds0;
   3626 	struct ath_txq *txq;
   3627 	struct ieee80211_frame *wh;
   3628 	u_int subtype, flags, ctsduration;
   3629 	HAL_PKT_TYPE atype;
   3630 	const HAL_RATE_TABLE *rt;
   3631 	HAL_BOOL shortPreamble;
   3632 	struct ath_node *an;
   3633 	struct mbuf *m;
   3634 	u_int pri;
   3635 
   3636 	wh = mtod(m0, struct ieee80211_frame *);
   3637 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3638 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3639 	isfrag = m0->m_flags & M_FRAG;
   3640 	hdrlen = ieee80211_anyhdrsize(wh);
   3641 	/*
   3642 	 * Packet length must not include any
   3643 	 * pad bytes; deduct them here.
   3644 	 */
   3645 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
   3646 
   3647 	if (iswep) {
   3648 		const struct ieee80211_cipher *cip;
   3649 		struct ieee80211_key *k;
   3650 
   3651 		/*
   3652 		 * Construct the 802.11 header+trailer for an encrypted
   3653 		 * frame. The only reason this can fail is because of an
   3654 		 * unknown or unsupported cipher/key type.
   3655 		 */
   3656 		k = ieee80211_crypto_encap(ic, ni, m0);
   3657 		if (k == NULL) {
   3658 			/*
   3659 			 * This can happen when the key is yanked after the
   3660 			 * frame was queued.  Just discard the frame; the
   3661 			 * 802.11 layer counts failures and provides
   3662 			 * debugging/diagnostics.
   3663 			 */
   3664 			ath_freetx(m0);
   3665 			return EIO;
   3666 		}
   3667 		/*
   3668 		 * Adjust the packet + header lengths for the crypto
   3669 		 * additions and calculate the h/w key index.  When
   3670 		 * a s/w mic is done the frame will have had any mic
   3671 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3672 		 * account for it. Otherwise we need to add it to the
   3673 		 * packet length.
   3674 		 */
   3675 		cip = k->wk_cipher;
   3676 		hdrlen += cip->ic_header;
   3677 		pktlen += cip->ic_header + cip->ic_trailer;
   3678 		/* NB: frags always have any TKIP MIC done in s/w */
   3679 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3680 			pktlen += cip->ic_miclen;
   3681 		keyix = k->wk_keyix;
   3682 
   3683 		/* packet header may have moved, reset our local pointer */
   3684 		wh = mtod(m0, struct ieee80211_frame *);
   3685 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3686 		/*
   3687 		 * Use station key cache slot, if assigned.
   3688 		 */
   3689 		keyix = ni->ni_ucastkey.wk_keyix;
   3690 		if (keyix == IEEE80211_KEYIX_NONE)
   3691 			keyix = HAL_TXKEYIX_INVALID;
   3692 	} else
   3693 		keyix = HAL_TXKEYIX_INVALID;
   3694 
   3695 	pktlen += IEEE80211_CRC_LEN;
   3696 
   3697 	/*
   3698 	 * Load the DMA map so any coalescing is done.  This
   3699 	 * also calculates the number of descriptors we need.
   3700 	 */
   3701 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3702 				     BUS_DMA_NOWAIT);
   3703 	if (error == EFBIG) {
   3704 		/* XXX packet requires too many descriptors */
   3705 		bf->bf_nseg = ATH_TXDESC+1;
   3706 	} else if (error != 0) {
   3707 		sc->sc_stats.ast_tx_busdma++;
   3708 		ath_freetx(m0);
   3709 		return error;
   3710 	}
   3711 	/*
   3712 	 * Discard null packets and check for packets that
   3713 	 * require too many TX descriptors.  We try to convert
   3714 	 * the latter to a cluster.
   3715 	 */
   3716 	if (error == EFBIG) {		/* too many desc's, linearize */
   3717 		sc->sc_stats.ast_tx_linear++;
   3718 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3719 		if (m == NULL) {
   3720 			ath_freetx(m0);
   3721 			sc->sc_stats.ast_tx_nombuf++;
   3722 			return ENOMEM;
   3723 		}
   3724 		m0 = m;
   3725 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3726 					     BUS_DMA_NOWAIT);
   3727 		if (error != 0) {
   3728 			sc->sc_stats.ast_tx_busdma++;
   3729 			ath_freetx(m0);
   3730 			return error;
   3731 		}
   3732 		KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
   3733 		    "too many segments after defrag; nseg %u", bf->bf_nseg);
   3734 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3735 		sc->sc_stats.ast_tx_nodata++;
   3736 		ath_freetx(m0);
   3737 		return EIO;
   3738 	}
   3739 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3740 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3741             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3742 	bf->bf_m = m0;
   3743 	bf->bf_node = ni;			/* NB: held reference */
   3744 
   3745 	/* setup descriptors */
   3746 	ds = bf->bf_desc;
   3747 	rt = sc->sc_currates;
   3748 	KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
   3749 
   3750 	/*
   3751 	 * NB: the 802.11 layer marks whether or not we should
   3752 	 * use short preamble based on the current mode and
   3753 	 * negotiated parameters.
   3754 	 */
   3755 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3756 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3757 		shortPreamble = AH_TRUE;
   3758 		sc->sc_stats.ast_tx_shortpre++;
   3759 	} else {
   3760 		shortPreamble = AH_FALSE;
   3761 	}
   3762 
   3763 	an = ATH_NODE(ni);
   3764 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3765 	ismrr = 0;				/* default no multi-rate retry*/
   3766 	/*
   3767 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3768 	 * setup for rate calculations, and select h/w transmit queue.
   3769 	 */
   3770 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3771 	case IEEE80211_FC0_TYPE_MGT:
   3772 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3773 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3774 			atype = HAL_PKT_TYPE_BEACON;
   3775 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3776 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3777 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3778 			atype = HAL_PKT_TYPE_ATIM;
   3779 		else
   3780 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3781 		rix = sc->sc_minrateix;
   3782 		txrate = rt->info[rix].rateCode;
   3783 		if (shortPreamble)
   3784 			txrate |= rt->info[rix].shortPreamble;
   3785 		try0 = ATH_TXMGTTRY;
   3786 		/* NB: force all management frames to highest queue */
   3787 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3788 			/* NB: force all management frames to highest queue */
   3789 			pri = WME_AC_VO;
   3790 		} else
   3791 			pri = WME_AC_BE;
   3792 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3793 		break;
   3794 	case IEEE80211_FC0_TYPE_CTL:
   3795 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3796 		rix = sc->sc_minrateix;
   3797 		txrate = rt->info[rix].rateCode;
   3798 		if (shortPreamble)
   3799 			txrate |= rt->info[rix].shortPreamble;
   3800 		try0 = ATH_TXMGTTRY;
   3801 		/* NB: force all ctl frames to highest queue */
   3802 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3803 			/* NB: force all ctl frames to highest queue */
   3804 			pri = WME_AC_VO;
   3805 		} else
   3806 			pri = WME_AC_BE;
   3807 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3808 		break;
   3809 	case IEEE80211_FC0_TYPE_DATA:
   3810 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3811 		/*
   3812 		 * Data frames: multicast frames go out at a fixed rate,
   3813 		 * otherwise consult the rate control module for the
   3814 		 * rate to use.
   3815 		 */
   3816 		if (ismcast) {
   3817 			/*
   3818 			 * Check mcast rate setting in case it's changed.
   3819 			 * XXX move out of fastpath
   3820 			 */
   3821 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3822 				sc->sc_mcastrix =
   3823 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3824 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3825 			}
   3826 			rix = sc->sc_mcastrix;
   3827 			txrate = rt->info[rix].rateCode;
   3828 			try0 = 1;
   3829 		} else {
   3830 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3831 				&rix, &try0, &txrate);
   3832 			sc->sc_txrate = txrate;		/* for LED blinking */
   3833 			if (try0 != ATH_TXMAXTRY)
   3834 				ismrr = 1;
   3835 		}
   3836 		pri = M_WME_GETAC(m0);
   3837 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3838 			flags |= HAL_TXDESC_NOACK;
   3839 		break;
   3840 	default:
   3841 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3842 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3843 		/* XXX statistic */
   3844 		ath_freetx(m0);
   3845 		return EIO;
   3846 	}
   3847 	txq = sc->sc_ac2q[pri];
   3848 
   3849 	/*
   3850 	 * When servicing one or more stations in power-save mode
   3851 	 * multicast frames must be buffered until after the beacon.
   3852 	 * We use the CAB queue for that.
   3853 	 */
   3854 	if (ismcast && ic->ic_ps_sta) {
   3855 		txq = sc->sc_cabq;
   3856 		/* XXX? more bit in 802.11 frame header */
   3857 	}
   3858 
   3859 	/*
   3860 	 * Calculate miscellaneous flags.
   3861 	 */
   3862 	if (ismcast) {
   3863 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3864 	} else if (pktlen > ic->ic_rtsthreshold) {
   3865 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3866 		cix = rt->info[rix].controlRate;
   3867 		sc->sc_stats.ast_tx_rts++;
   3868 	}
   3869 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3870 		sc->sc_stats.ast_tx_noack++;
   3871 
   3872 	/*
   3873 	 * If 802.11g protection is enabled, determine whether
   3874 	 * to use RTS/CTS or just CTS.  Note that this is only
   3875 	 * done for OFDM unicast frames.
   3876 	 */
   3877 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3878 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3879 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3880 		/* XXX fragments must use CCK rates w/ protection */
   3881 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3882 			flags |= HAL_TXDESC_RTSENA;
   3883 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3884 			flags |= HAL_TXDESC_CTSENA;
   3885 		if (isfrag) {
   3886 			/*
   3887 			 * For frags it would be desirable to use the
   3888 			 * highest CCK rate for RTS/CTS.  But stations
   3889 			 * farther away may detect it at a lower CCK rate
   3890 			 * so use the configured protection rate instead
   3891 			 * (for now).
   3892 			 */
   3893 			cix = rt->info[sc->sc_protrix].controlRate;
   3894 		} else
   3895 			cix = rt->info[sc->sc_protrix].controlRate;
   3896 		sc->sc_stats.ast_tx_protect++;
   3897 	}
   3898 
   3899 	/*
   3900 	 * Calculate duration.  This logically belongs in the 802.11
   3901 	 * layer but it lacks sufficient information to calculate it.
   3902 	 */
   3903 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3904 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3905 		u_int16_t dur;
   3906 		/*
   3907 		 * XXX not right with fragmentation.
   3908 		 */
   3909 		if (shortPreamble)
   3910 			dur = rt->info[rix].spAckDuration;
   3911 		else
   3912 			dur = rt->info[rix].lpAckDuration;
   3913 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3914 			dur += dur;             /* additional SIFS+ACK */
   3915 			KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
   3916 			/*
   3917 			 * Include the size of next fragment so NAV is
   3918 			 * updated properly.  The last fragment uses only
   3919 			 * the ACK duration
   3920 			 */
   3921 			dur += ath_hal_computetxtime(ah, rt,
   3922 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
   3923 			        hdrlen) -
   3924 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
   3925 			    rix, shortPreamble);
   3926 		}
   3927 		if (isfrag) {
   3928 			/*
   3929 			 * Force hardware to use computed duration for next
   3930 			 * fragment by disabling multi-rate retry which updates
   3931 			 * duration based on the multi-rate duration table.
   3932 			 */
   3933 			try0 = ATH_TXMAXTRY;
   3934 		}
   3935 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3936 	}
   3937 
   3938 	/*
   3939 	 * Calculate RTS/CTS rate and duration if needed.
   3940 	 */
   3941 	ctsduration = 0;
   3942 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3943 		/*
   3944 		 * CTS transmit rate is derived from the transmit rate
   3945 		 * by looking in the h/w rate table.  We must also factor
   3946 		 * in whether or not a short preamble is to be used.
   3947 		 */
   3948 		/* NB: cix is set above where RTS/CTS is enabled */
   3949 		KASSERTMSG(cix != 0xff, "cix not setup");
   3950 		ctsrate = rt->info[cix].rateCode;
   3951 		/*
   3952 		 * Compute the transmit duration based on the frame
   3953 		 * size and the size of an ACK frame.  We call into the
   3954 		 * HAL to do the computation since it depends on the
   3955 		 * characteristics of the actual PHY being used.
   3956 		 *
   3957 		 * NB: CTS is assumed the same size as an ACK so we can
   3958 		 *     use the precalculated ACK durations.
   3959 		 */
   3960 		if (shortPreamble) {
   3961 			ctsrate |= rt->info[cix].shortPreamble;
   3962 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3963 				ctsduration += rt->info[cix].spAckDuration;
   3964 			ctsduration += ath_hal_computetxtime(ah,
   3965 				rt, pktlen, rix, AH_TRUE);
   3966 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3967 				ctsduration += rt->info[rix].spAckDuration;
   3968 		} else {
   3969 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3970 				ctsduration += rt->info[cix].lpAckDuration;
   3971 			ctsduration += ath_hal_computetxtime(ah,
   3972 				rt, pktlen, rix, AH_FALSE);
   3973 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3974 				ctsduration += rt->info[rix].lpAckDuration;
   3975 		}
   3976 		/*
   3977 		 * Must disable multi-rate retry when using RTS/CTS.
   3978 		 */
   3979 		ismrr = 0;
   3980 		try0 = ATH_TXMGTTRY;		/* XXX */
   3981 	} else
   3982 		ctsrate = 0;
   3983 
   3984 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3985 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3986 			sc->sc_hwmap[txrate].ieeerate, -1);
   3987 	bpf_mtap3(ic->ic_rawbpf, m0);
   3988 	if (sc->sc_drvbpf) {
   3989 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3990 
   3991 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3992 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3993 		if (iswep)
   3994 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3995 		if (isfrag)
   3996 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3997 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   3998 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   3999 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   4000 
   4001 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
   4002 	}
   4003 
   4004 	/*
   4005 	 * Determine if a tx interrupt should be generated for
   4006 	 * this descriptor.  We take a tx interrupt to reap
   4007 	 * descriptors when the h/w hits an EOL condition or
   4008 	 * when the descriptor is specifically marked to generate
   4009 	 * an interrupt.  We periodically mark descriptors in this
   4010 	 * way to insure timely replenishing of the supply needed
   4011 	 * for sending frames.  Defering interrupts reduces system
   4012 	 * load and potentially allows more concurrent work to be
   4013 	 * done but if done to aggressively can cause senders to
   4014 	 * backup.
   4015 	 *
   4016 	 * NB: use >= to deal with sc_txintrperiod changing
   4017 	 *     dynamically through sysctl.
   4018 	 */
   4019 	if (flags & HAL_TXDESC_INTREQ) {
   4020 		txq->axq_intrcnt = 0;
   4021 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   4022 		flags |= HAL_TXDESC_INTREQ;
   4023 		txq->axq_intrcnt = 0;
   4024 	}
   4025 
   4026 	/*
   4027 	 * Formulate first tx descriptor with tx controls.
   4028 	 */
   4029 	/* XXX check return value? */
   4030 	ath_hal_setuptxdesc(ah, ds
   4031 		, pktlen		/* packet length */
   4032 		, hdrlen		/* header length */
   4033 		, atype			/* Atheros packet type */
   4034 		, ni->ni_txpower	/* txpower */
   4035 		, txrate, try0		/* series 0 rate/tries */
   4036 		, keyix			/* key cache index */
   4037 		, sc->sc_txantenna	/* antenna mode */
   4038 		, flags			/* flags */
   4039 		, ctsrate		/* rts/cts rate */
   4040 		, ctsduration		/* rts/cts duration */
   4041 	);
   4042 	bf->bf_flags = flags;
   4043 	/*
   4044 	 * Setup the multi-rate retry state only when we're
   4045 	 * going to use it.  This assumes ath_hal_setuptxdesc
   4046 	 * initializes the descriptors (so we don't have to)
   4047 	 * when the hardware supports multi-rate retry and
   4048 	 * we don't use it.
   4049 	 */
   4050 	if (ismrr)
   4051 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   4052 
   4053 	/*
   4054 	 * Fillin the remainder of the descriptor info.
   4055 	 */
   4056 	ds0 = ds;
   4057 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   4058 		ds->ds_data = bf->bf_segs[i].ds_addr;
   4059 		if (i == bf->bf_nseg - 1)
   4060 			ds->ds_link = 0;
   4061 		else
   4062 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   4063 		ath_hal_filltxdesc(ah, ds
   4064 			, bf->bf_segs[i].ds_len	/* segment length */
   4065 			, i == 0		/* first segment */
   4066 			, i == bf->bf_nseg - 1	/* last segment */
   4067 			, ds0			/* first descriptor */
   4068 		);
   4069 
   4070 		/* NB: The desc swap function becomes void,
   4071 		 * if descriptor swapping is not enabled
   4072 		 */
   4073 		ath_desc_swap(ds);
   4074 
   4075 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4076 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   4077 			__func__, i, ds->ds_link, ds->ds_data,
   4078 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   4079 	}
   4080 	/*
   4081 	 * Insert the frame on the outbound list and
   4082 	 * pass it on to the hardware.
   4083 	 */
   4084 	ATH_TXQ_LOCK(txq);
   4085 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   4086 	if (txq->axq_link == NULL) {
   4087 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   4088 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4089 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   4090 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   4091 		    txq->axq_depth);
   4092 	} else {
   4093 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   4094 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4095 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   4096 		    __func__, txq->axq_qnum, txq->axq_link,
   4097 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   4098 	}
   4099 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   4100 	/*
   4101 	 * The CAB queue is started from the SWBA handler since
   4102 	 * frames only go out on DTIM and to avoid possible races.
   4103 	 */
   4104 	if (txq != sc->sc_cabq)
   4105 		ath_hal_txstart(ah, txq->axq_qnum);
   4106 	ATH_TXQ_UNLOCK(txq);
   4107 
   4108 	return 0;
   4109 }
   4110 
   4111 /*
   4112  * Process completed xmit descriptors from the specified queue.
   4113  */
   4114 static int
   4115 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4116 {
   4117 	struct ath_hal *ah = sc->sc_ah;
   4118 	struct ieee80211com *ic = &sc->sc_ic;
   4119 	struct ath_buf *bf;
   4120 	struct ath_desc *ds, *ds0;
   4121 	struct ieee80211_node *ni;
   4122 	struct ath_node *an;
   4123 	int sr, lr, pri, nacked;
   4124 	HAL_STATUS status;
   4125 
   4126 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4127 		__func__, txq->axq_qnum,
   4128 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4129 		txq->axq_link);
   4130 	nacked = 0;
   4131 	for (;;) {
   4132 		ATH_TXQ_LOCK(txq);
   4133 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4134 		bf = STAILQ_FIRST(&txq->axq_q);
   4135 		if (bf == NULL) {
   4136 			txq->axq_link = NULL;
   4137 			ATH_TXQ_UNLOCK(txq);
   4138 			break;
   4139 		}
   4140 		ds0 = &bf->bf_desc[0];
   4141 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4142 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
   4143 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4144 			ath_printtxbuf(bf, status == HAL_OK);
   4145 		if (status == HAL_EINPROGRESS) {
   4146 			ATH_TXQ_UNLOCK(txq);
   4147 			break;
   4148 		}
   4149 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4150 		ATH_TXQ_UNLOCK(txq);
   4151 
   4152 		ni = bf->bf_node;
   4153 		if (ni != NULL) {
   4154 			an = ATH_NODE(ni);
   4155 			if (ds->ds_txstat.ts_status == 0) {
   4156 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4157 				sc->sc_stats.ast_ant_tx[txant]++;
   4158 				sc->sc_ant_tx[txant]++;
   4159 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4160 					sc->sc_stats.ast_tx_altrate++;
   4161 				sc->sc_stats.ast_tx_rssi =
   4162 					ds->ds_txstat.ts_rssi;
   4163 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4164 					ds->ds_txstat.ts_rssi);
   4165 				pri = M_WME_GETAC(bf->bf_m);
   4166 				if (pri >= WME_AC_VO)
   4167 					ic->ic_wme.wme_hipri_traffic++;
   4168 				ni->ni_inact = ni->ni_inact_reload;
   4169 			} else {
   4170 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4171 					sc->sc_stats.ast_tx_xretries++;
   4172 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4173 					sc->sc_stats.ast_tx_fifoerr++;
   4174 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4175 					sc->sc_stats.ast_tx_filtered++;
   4176 			}
   4177 			sr = ds->ds_txstat.ts_shortretry;
   4178 			lr = ds->ds_txstat.ts_longretry;
   4179 			sc->sc_stats.ast_tx_shortretry += sr;
   4180 			sc->sc_stats.ast_tx_longretry += lr;
   4181 			/*
   4182 			 * Hand the descriptor to the rate control algorithm.
   4183 			 */
   4184 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4185 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4186 				/*
   4187 				 * If frame was ack'd update the last rx time
   4188 				 * used to workaround phantom bmiss interrupts.
   4189 				 */
   4190 				if (ds->ds_txstat.ts_status == 0)
   4191 					nacked++;
   4192 				ath_rate_tx_complete(sc, an, ds, ds0);
   4193 			}
   4194 			/*
   4195 			 * Reclaim reference to node.
   4196 			 *
   4197 			 * NB: the node may be reclaimed here if, for example
   4198 			 *     this is a DEAUTH message that was sent and the
   4199 			 *     node was timed out due to inactivity.
   4200 			 */
   4201 			ieee80211_free_node(ni);
   4202 		}
   4203 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4204 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4205 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4206 		m_freem(bf->bf_m);
   4207 		bf->bf_m = NULL;
   4208 		bf->bf_node = NULL;
   4209 
   4210 		ATH_TXBUF_LOCK(sc);
   4211 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4212 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4213 		ATH_TXBUF_UNLOCK(sc);
   4214 	}
   4215 	return nacked;
   4216 }
   4217 
   4218 static inline int
   4219 txqactive(struct ath_hal *ah, int qnum)
   4220 {
   4221 	u_int32_t txqs = 1<<qnum;
   4222 	ath_hal_gettxintrtxqs(ah, &txqs);
   4223 	return (txqs & (1<<qnum));
   4224 }
   4225 
   4226 /*
   4227  * Deferred processing of transmit interrupt; special-cased
   4228  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4229  */
   4230 static void
   4231 ath_tx_proc_q0(void *arg, int npending)
   4232 {
   4233 	struct ath_softc *sc = arg;
   4234 	struct ifnet *ifp = &sc->sc_if;
   4235 #ifdef __NetBSD__
   4236 	int s;
   4237 #endif
   4238 
   4239 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
   4240 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4241 	}
   4242 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4243 		ath_tx_processq(sc, sc->sc_cabq);
   4244 
   4245 	if (sc->sc_softled)
   4246 		ath_led_event(sc, ATH_LED_TX);
   4247 
   4248 #ifdef __NetBSD__
   4249 	s = splnet();
   4250 #endif
   4251 	ath_start(ifp);
   4252 #ifdef __NetBSD__
   4253 	splx(s);
   4254 #endif
   4255 }
   4256 
   4257 /*
   4258  * Deferred processing of transmit interrupt; special-cased
   4259  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4260  */
   4261 static void
   4262 ath_tx_proc_q0123(void *arg, int npending)
   4263 {
   4264 	struct ath_softc *sc = arg;
   4265 	struct ifnet *ifp = &sc->sc_if;
   4266 	int nacked;
   4267 #ifdef __NetBSD__
   4268 	int s;
   4269 #endif
   4270 
   4271 	/*
   4272 	 * Process each active queue.
   4273 	 */
   4274 	nacked = 0;
   4275 	if (txqactive(sc->sc_ah, 0))
   4276 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4277 	if (txqactive(sc->sc_ah, 1))
   4278 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4279 	if (txqactive(sc->sc_ah, 2))
   4280 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4281 	if (txqactive(sc->sc_ah, 3))
   4282 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4283 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4284 		ath_tx_processq(sc, sc->sc_cabq);
   4285 	if (nacked) {
   4286 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4287 	}
   4288 
   4289 	if (sc->sc_softled)
   4290 		ath_led_event(sc, ATH_LED_TX);
   4291 
   4292 #ifdef __NetBSD__
   4293 	s = splnet();
   4294 #endif
   4295 	ath_start(ifp);
   4296 #ifdef __NetBSD__
   4297 	splx(s);
   4298 #endif
   4299 }
   4300 
   4301 /*
   4302  * Deferred processing of transmit interrupt.
   4303  */
   4304 static void
   4305 ath_tx_proc(void *arg, int npending)
   4306 {
   4307 	struct ath_softc *sc = arg;
   4308 	struct ifnet *ifp = &sc->sc_if;
   4309 	int i, nacked;
   4310 #ifdef __NetBSD__
   4311 	int s;
   4312 #endif
   4313 
   4314 	/*
   4315 	 * Process each active queue.
   4316 	 */
   4317 	nacked = 0;
   4318 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4319 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4320 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4321 	if (nacked) {
   4322 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4323 	}
   4324 
   4325 	if (sc->sc_softled)
   4326 		ath_led_event(sc, ATH_LED_TX);
   4327 
   4328 #ifdef __NetBSD__
   4329 	s = splnet();
   4330 #endif
   4331 	ath_start(ifp);
   4332 #ifdef __NetBSD__
   4333 	splx(s);
   4334 #endif
   4335 }
   4336 
   4337 static void
   4338 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4339 {
   4340 	struct ath_hal *ah = sc->sc_ah;
   4341 	struct ieee80211_node *ni;
   4342 	struct ath_buf *bf;
   4343 	struct ath_desc *ds;
   4344 
   4345 	/*
   4346 	 * NB: this assumes output has been stopped and
   4347 	 *     we do not need to block ath_tx_tasklet
   4348 	 */
   4349 	for (;;) {
   4350 		ATH_TXQ_LOCK(txq);
   4351 		bf = STAILQ_FIRST(&txq->axq_q);
   4352 		if (bf == NULL) {
   4353 			txq->axq_link = NULL;
   4354 			ATH_TXQ_UNLOCK(txq);
   4355 			break;
   4356 		}
   4357 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4358 		ATH_TXQ_UNLOCK(txq);
   4359 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4360 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4361 			ath_printtxbuf(bf,
   4362 				ath_hal_txprocdesc(ah, bf->bf_desc,
   4363 					&ds->ds_txstat) == HAL_OK);
   4364 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4365 		m_freem(bf->bf_m);
   4366 		bf->bf_m = NULL;
   4367 		ni = bf->bf_node;
   4368 		bf->bf_node = NULL;
   4369 		if (ni != NULL) {
   4370 			/*
   4371 			 * Reclaim node reference.
   4372 			 */
   4373 			ieee80211_free_node(ni);
   4374 		}
   4375 		ATH_TXBUF_LOCK(sc);
   4376 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4377 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4378 		ATH_TXBUF_UNLOCK(sc);
   4379 	}
   4380 }
   4381 
   4382 static void
   4383 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4384 {
   4385 	struct ath_hal *ah = sc->sc_ah;
   4386 
   4387 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4388 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4389 	    __func__, txq->axq_qnum,
   4390 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4391 	    txq->axq_link);
   4392 }
   4393 
   4394 /*
   4395  * Drain the transmit queues and reclaim resources.
   4396  */
   4397 static void
   4398 ath_draintxq(struct ath_softc *sc)
   4399 {
   4400 	struct ath_hal *ah = sc->sc_ah;
   4401 	int i;
   4402 
   4403 	/* XXX return value */
   4404 	if (device_is_active(sc->sc_dev)) {
   4405 		/* don't touch the hardware if marked invalid */
   4406 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4407 		DPRINTF(sc, ATH_DEBUG_RESET,
   4408 		    "%s: beacon queue %p\n", __func__,
   4409 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4410 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4411 			if (ATH_TXQ_SETUP(sc, i))
   4412 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4413 	}
   4414 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4415 		if (ATH_TXQ_SETUP(sc, i))
   4416 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4417 }
   4418 
   4419 /*
   4420  * Disable the receive h/w in preparation for a reset.
   4421  */
   4422 static void
   4423 ath_stoprecv(struct ath_softc *sc)
   4424 {
   4425 #define	PA2DESC(_sc, _pa) \
   4426 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4427 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4428 	struct ath_hal *ah = sc->sc_ah;
   4429 
   4430 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4431 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4432 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4433 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4434 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4435 		struct ath_buf *bf;
   4436 
   4437 		printf("%s: rx queue %p, link %p\n", __func__,
   4438 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4439 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4440 			struct ath_desc *ds = bf->bf_desc;
   4441 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4442 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   4443 				&ds->ds_rxstat);
   4444 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4445 				ath_printrxbuf(bf, status == HAL_OK);
   4446 		}
   4447 	}
   4448 	sc->sc_rxlink = NULL;		/* just in case */
   4449 #undef PA2DESC
   4450 }
   4451 
   4452 /*
   4453  * Enable the receive h/w following a reset.
   4454  */
   4455 static int
   4456 ath_startrecv(struct ath_softc *sc)
   4457 {
   4458 	struct ath_hal *ah = sc->sc_ah;
   4459 	struct ath_buf *bf;
   4460 
   4461 	sc->sc_rxlink = NULL;
   4462 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4463 		int error = ath_rxbuf_init(sc, bf);
   4464 		if (error != 0) {
   4465 			DPRINTF(sc, ATH_DEBUG_RECV,
   4466 				"%s: ath_rxbuf_init failed %d\n",
   4467 				__func__, error);
   4468 			return error;
   4469 		}
   4470 	}
   4471 
   4472 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4473 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4474 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4475 	ath_mode_init(sc);		/* set filters, etc. */
   4476 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4477 	return 0;
   4478 }
   4479 
   4480 /*
   4481  * Update internal state after a channel change.
   4482  */
   4483 static void
   4484 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4485 {
   4486 	struct ieee80211com *ic = &sc->sc_ic;
   4487 	enum ieee80211_phymode mode;
   4488 	u_int16_t flags;
   4489 
   4490 	/*
   4491 	 * Change channels and update the h/w rate map
   4492 	 * if we're switching; e.g. 11a to 11b/g.
   4493 	 */
   4494 	mode = ieee80211_chan2mode(ic, chan);
   4495 	if (mode != sc->sc_curmode)
   4496 		ath_setcurmode(sc, mode);
   4497 	/*
   4498 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4499 	 * merged flags well so pick a unique mode for their use.
   4500 	 */
   4501 	if (IEEE80211_IS_CHAN_A(chan))
   4502 		flags = IEEE80211_CHAN_A;
   4503 	/* XXX 11g schizophrenia */
   4504 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4505 	    IEEE80211_IS_CHAN_PUREG(chan))
   4506 		flags = IEEE80211_CHAN_G;
   4507 	else
   4508 		flags = IEEE80211_CHAN_B;
   4509 	if (IEEE80211_IS_CHAN_T(chan))
   4510 		flags |= IEEE80211_CHAN_TURBO;
   4511 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4512 		htole16(chan->ic_freq);
   4513 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4514 		htole16(flags);
   4515 }
   4516 
   4517 #if 0
   4518 /*
   4519  * Poll for a channel clear indication; this is required
   4520  * for channels requiring DFS and not previously visited
   4521  * and/or with a recent radar detection.
   4522  */
   4523 static void
   4524 ath_dfswait(void *arg)
   4525 {
   4526 	struct ath_softc *sc = arg;
   4527 	struct ath_hal *ah = sc->sc_ah;
   4528 	HAL_CHANNEL hchan;
   4529 
   4530 	ath_hal_radar_wait(ah, &hchan);
   4531 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4532 		if_printf(&sc->sc_if,
   4533 		    "channel %u/0x%x/0x%x has interference\n",
   4534 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4535 		return;
   4536 	}
   4537 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4538 		/* XXX should not happen */
   4539 		return;
   4540 	}
   4541 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4542 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4543 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4544 		if_printf(&sc->sc_if,
   4545 		    "channel %u/0x%x/0x%x marked clear\n",
   4546 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4547 	} else
   4548 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4549 }
   4550 #endif
   4551 
   4552 /*
   4553  * Set/change channels.  If the channel is really being changed,
   4554  * it's done by reseting the chip.  To accomplish this we must
   4555  * first cleanup any pending DMA, then restart stuff after a la
   4556  * ath_init.
   4557  */
   4558 static int
   4559 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4560 {
   4561 	struct ath_hal *ah = sc->sc_ah;
   4562 	struct ieee80211com *ic = &sc->sc_ic;
   4563 	HAL_CHANNEL hchan;
   4564 
   4565 	/*
   4566 	 * Convert to a HAL channel description with
   4567 	 * the flags constrained to reflect the current
   4568 	 * operating mode.
   4569 	 */
   4570 	hchan.channel = chan->ic_freq;
   4571 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4572 
   4573 	DPRINTF(sc, ATH_DEBUG_RESET,
   4574 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4575 	    __func__,
   4576 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4577 		sc->sc_curchan.channelFlags),
   4578 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4579 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4580 	        hchan.channel, hchan.channelFlags);
   4581 	if (hchan.channel != sc->sc_curchan.channel ||
   4582 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4583 		HAL_STATUS status;
   4584 
   4585 		/*
   4586 		 * To switch channels clear any pending DMA operations;
   4587 		 * wait long enough for the RX fifo to drain, reset the
   4588 		 * hardware at the new frequency, and then re-enable
   4589 		 * the relevant bits of the h/w.
   4590 		 */
   4591 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4592 		ath_draintxq(sc);		/* clear pending tx frames */
   4593 		ath_stoprecv(sc);		/* turn off frame recv */
   4594 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4595 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4596 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4597 			    __func__, ieee80211_chan2ieee(ic, chan),
   4598 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4599 			return EIO;
   4600 		}
   4601 		sc->sc_curchan = hchan;
   4602 		ath_update_txpow(sc);		/* update tx power state */
   4603 		ath_restore_diversity(sc);
   4604 		sc->sc_calinterval = 1;
   4605 		sc->sc_caltries = 0;
   4606 
   4607 		/*
   4608 		 * Re-enable rx framework.
   4609 		 */
   4610 		if (ath_startrecv(sc) != 0) {
   4611 			if_printf(&sc->sc_if,
   4612 				"%s: unable to restart recv logic\n", __func__);
   4613 			return EIO;
   4614 		}
   4615 
   4616 		/*
   4617 		 * Change channels and update the h/w rate map
   4618 		 * if we're switching; e.g. 11a to 11b/g.
   4619 		 */
   4620 		ic->ic_ibss_chan = chan;
   4621 		ath_chan_change(sc, chan);
   4622 
   4623 #if 0
   4624 		/*
   4625 		 * Handle DFS required waiting period to determine
   4626 		 * if channel is clear of radar traffic.
   4627 		 */
   4628 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4629 #define	DFS_AND_NOT_CLEAR(_c) \
   4630 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4631 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4632 				if_printf(&sc->sc_if,
   4633 					"wait for DFS clear channel signal\n");
   4634 				/* XXX stop sndq */
   4635 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4636 				callout_reset(&sc->sc_dfs_ch,
   4637 					2 * hz, ath_dfswait, sc);
   4638 			} else
   4639 				callout_stop(&sc->sc_dfs_ch);
   4640 #undef DFS_NOT_CLEAR
   4641 		}
   4642 #endif
   4643 
   4644 		/*
   4645 		 * Re-enable interrupts.
   4646 		 */
   4647 		ath_hal_intrset(ah, sc->sc_imask);
   4648 	}
   4649 	return 0;
   4650 }
   4651 
   4652 static void
   4653 ath_next_scan(void *arg)
   4654 {
   4655 	struct ath_softc *sc = arg;
   4656 	struct ieee80211com *ic = &sc->sc_ic;
   4657 	int s;
   4658 
   4659 	/* don't call ath_start w/o network interrupts blocked */
   4660 	s = splnet();
   4661 
   4662 	if (ic->ic_state == IEEE80211_S_SCAN)
   4663 		ieee80211_next_scan(ic);
   4664 	splx(s);
   4665 }
   4666 
   4667 /*
   4668  * Periodically recalibrate the PHY to account
   4669  * for temperature/environment changes.
   4670  */
   4671 static void
   4672 ath_calibrate(void *arg)
   4673 {
   4674 	struct ath_softc *sc = arg;
   4675 	struct ath_hal *ah = sc->sc_ah;
   4676 	HAL_BOOL iqCalDone;
   4677 	int s;
   4678 
   4679 	sc->sc_stats.ast_per_cal++;
   4680 
   4681 	 s = splnet();
   4682 
   4683 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4684 		/*
   4685 		 * Rfgain is out of bounds, reset the chip
   4686 		 * to load new gain values.
   4687 		 */
   4688 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4689 			"%s: rfgain change\n", __func__);
   4690 		sc->sc_stats.ast_per_rfgain++;
   4691 		ath_reset(&sc->sc_if);
   4692 	}
   4693 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4694 		DPRINTF(sc, ATH_DEBUG_ANY,
   4695 			"%s: calibration of channel %u failed\n",
   4696 			__func__, sc->sc_curchan.channel);
   4697 		sc->sc_stats.ast_per_calfail++;
   4698 	}
   4699 	/*
   4700 	 * Calibrate noise floor data again in case of change.
   4701 	 */
   4702 	ath_hal_process_noisefloor(ah);
   4703 	/*
   4704 	 * Poll more frequently when the IQ calibration is in
   4705 	 * progress to speedup loading the final settings.
   4706 	 * We temper this aggressive polling with an exponential
   4707 	 * back off after 4 tries up to ath_calinterval.
   4708 	 */
   4709 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4710 		sc->sc_caltries = 0;
   4711 		sc->sc_calinterval = ath_calinterval;
   4712 	} else if (sc->sc_caltries > 4) {
   4713 		sc->sc_caltries = 0;
   4714 		sc->sc_calinterval <<= 1;
   4715 		if (sc->sc_calinterval > ath_calinterval)
   4716 			sc->sc_calinterval = ath_calinterval;
   4717 	}
   4718 	KASSERTMSG(0 < sc->sc_calinterval &&
   4719 	           sc->sc_calinterval <= ath_calinterval,
   4720 		   "bad calibration interval %u", sc->sc_calinterval);
   4721 
   4722 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4723 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4724 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4725 	sc->sc_caltries++;
   4726 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4727 		ath_calibrate, sc);
   4728 	splx(s);
   4729 }
   4730 
   4731 static int
   4732 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4733 {
   4734 	struct ifnet *ifp = ic->ic_ifp;
   4735 	struct ath_softc *sc = ifp->if_softc;
   4736 	struct ath_hal *ah = sc->sc_ah;
   4737 	struct ieee80211_node *ni;
   4738 	int i, error;
   4739 	const u_int8_t *bssid;
   4740 	u_int32_t rfilt;
   4741 	static const HAL_LED_STATE leds[] = {
   4742 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4743 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4744 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4745 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4746 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4747 	};
   4748 
   4749 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4750 		ieee80211_state_name[ic->ic_state],
   4751 		ieee80211_state_name[nstate]);
   4752 
   4753 	callout_stop(&sc->sc_scan_ch);
   4754 	callout_stop(&sc->sc_cal_ch);
   4755 #if 0
   4756 	callout_stop(&sc->sc_dfs_ch);
   4757 #endif
   4758 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4759 
   4760 	if (nstate == IEEE80211_S_INIT) {
   4761 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4762 		/*
   4763 		 * NB: disable interrupts so we don't rx frames.
   4764 		 */
   4765 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4766 		/*
   4767 		 * Notify the rate control algorithm.
   4768 		 */
   4769 		ath_rate_newstate(sc, nstate);
   4770 		goto done;
   4771 	}
   4772 	ni = ic->ic_bss;
   4773 	error = ath_chan_set(sc, ic->ic_curchan);
   4774 	if (error != 0)
   4775 		goto bad;
   4776 	rfilt = ath_calcrxfilter(sc, nstate);
   4777 	if (nstate == IEEE80211_S_SCAN)
   4778 		bssid = ifp->if_broadcastaddr;
   4779 	else
   4780 		bssid = ni->ni_bssid;
   4781 	ath_hal_setrxfilter(ah, rfilt);
   4782 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4783 		 __func__, rfilt, ether_sprintf(bssid));
   4784 
   4785 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4786 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4787 	else
   4788 		ath_hal_setassocid(ah, bssid, 0);
   4789 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4790 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4791 			if (ath_hal_keyisvalid(ah, i))
   4792 				ath_hal_keysetmac(ah, i, bssid);
   4793 	}
   4794 
   4795 	/*
   4796 	 * Notify the rate control algorithm so rates
   4797 	 * are setup should ath_beacon_alloc be called.
   4798 	 */
   4799 	ath_rate_newstate(sc, nstate);
   4800 
   4801 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4802 		/* nothing to do */;
   4803 	} else if (nstate == IEEE80211_S_RUN) {
   4804 		DPRINTF(sc, ATH_DEBUG_STATE,
   4805 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4806 			"capinfo=0x%04x chan=%d\n"
   4807 			 , __func__
   4808 			 , ic->ic_flags
   4809 			 , ni->ni_intval
   4810 			 , ether_sprintf(ni->ni_bssid)
   4811 			 , ni->ni_capinfo
   4812 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4813 
   4814 		switch (ic->ic_opmode) {
   4815 		case IEEE80211_M_HOSTAP:
   4816 		case IEEE80211_M_IBSS:
   4817 			/*
   4818 			 * Allocate and setup the beacon frame.
   4819 			 *
   4820 			 * Stop any previous beacon DMA.  This may be
   4821 			 * necessary, for example, when an ibss merge
   4822 			 * causes reconfiguration; there will be a state
   4823 			 * transition from RUN->RUN that means we may
   4824 			 * be called with beacon transmission active.
   4825 			 */
   4826 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4827 			ath_beacon_free(sc);
   4828 			error = ath_beacon_alloc(sc, ni);
   4829 			if (error != 0)
   4830 				goto bad;
   4831 			/*
   4832 			 * If joining an adhoc network defer beacon timer
   4833 			 * configuration to the next beacon frame so we
   4834 			 * have a current TSF to use.  Otherwise we're
   4835 			 * starting an ibss/bss so there's no need to delay.
   4836 			 */
   4837 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4838 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4839 				sc->sc_syncbeacon = 1;
   4840 			else
   4841 				ath_beacon_config(sc);
   4842 			break;
   4843 		case IEEE80211_M_STA:
   4844 			/*
   4845 			 * Allocate a key cache slot to the station.
   4846 			 */
   4847 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4848 			    sc->sc_hasclrkey &&
   4849 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4850 				ath_setup_stationkey(ni);
   4851 			/*
   4852 			 * Defer beacon timer configuration to the next
   4853 			 * beacon frame so we have a current TSF to use
   4854 			 * (any TSF collected when scanning is likely old).
   4855 			 */
   4856 			sc->sc_syncbeacon = 1;
   4857 			break;
   4858 		default:
   4859 			break;
   4860 		}
   4861 		/*
   4862 		 * Let the hal process statistics collected during a
   4863 		 * scan so it can provide calibrated noise floor data.
   4864 		 */
   4865 		ath_hal_process_noisefloor(ah);
   4866 		/*
   4867 		 * Reset rssi stats; maybe not the best place...
   4868 		 */
   4869 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4870 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4871 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4872 	} else {
   4873 		ath_hal_intrset(ah,
   4874 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4875 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4876 	}
   4877 done:
   4878 	/*
   4879 	 * Invoke the parent method to complete the work.
   4880 	 */
   4881 	error = sc->sc_newstate(ic, nstate, arg);
   4882 	/*
   4883 	 * Finally, start any timers.
   4884 	 */
   4885 	if (nstate == IEEE80211_S_RUN) {
   4886 		/* start periodic recalibration timer */
   4887 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4888 			ath_calibrate, sc);
   4889 	} else if (nstate == IEEE80211_S_SCAN) {
   4890 		/* start ap/neighbor scan timer */
   4891 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4892 			ath_next_scan, sc);
   4893 	}
   4894 bad:
   4895 	return error;
   4896 }
   4897 
   4898 /*
   4899  * Allocate a key cache slot to the station so we can
   4900  * setup a mapping from key index to node. The key cache
   4901  * slot is needed for managing antenna state and for
   4902  * compression when stations do not use crypto.  We do
   4903  * it uniliaterally here; if crypto is employed this slot
   4904  * will be reassigned.
   4905  */
   4906 static void
   4907 ath_setup_stationkey(struct ieee80211_node *ni)
   4908 {
   4909 	struct ieee80211com *ic = ni->ni_ic;
   4910 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4911 	ieee80211_keyix keyix, rxkeyix;
   4912 
   4913 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4914 		/*
   4915 		 * Key cache is full; we'll fall back to doing
   4916 		 * the more expensive lookup in software.  Note
   4917 		 * this also means no h/w compression.
   4918 		 */
   4919 		/* XXX msg+statistic */
   4920 	} else {
   4921 		/* XXX locking? */
   4922 		ni->ni_ucastkey.wk_keyix = keyix;
   4923 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4924 		/* NB: this will create a pass-thru key entry */
   4925 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4926 	}
   4927 }
   4928 
   4929 /*
   4930  * Setup driver-specific state for a newly associated node.
   4931  * Note that we're called also on a re-associate, the isnew
   4932  * param tells us if this is the first time or not.
   4933  */
   4934 static void
   4935 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4936 {
   4937 	struct ieee80211com *ic = ni->ni_ic;
   4938 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4939 
   4940 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4941 	if (isnew &&
   4942 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4943 		KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4944 		    "new assoc with a unicast key already setup (keyix %u)",
   4945 		    ni->ni_ucastkey.wk_keyix);
   4946 		ath_setup_stationkey(ni);
   4947 	}
   4948 }
   4949 
   4950 static int
   4951 ath_getchannels(struct ath_softc *sc, u_int cc,
   4952 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4953 {
   4954 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4955 	struct ieee80211com *ic = &sc->sc_ic;
   4956 	struct ifnet *ifp = &sc->sc_if;
   4957 	struct ath_hal *ah = sc->sc_ah;
   4958 	HAL_CHANNEL *chans;
   4959 	int i, ix, nchan;
   4960 
   4961 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4962 			M_TEMP, M_NOWAIT);
   4963 	if (chans == NULL) {
   4964 		if_printf(ifp, "unable to allocate channel table\n");
   4965 		return ENOMEM;
   4966 	}
   4967 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4968 	    NULL, 0, NULL,
   4969 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4970 		u_int32_t rd;
   4971 
   4972 		(void)ath_hal_getregdomain(ah, &rd);
   4973 		if_printf(ifp, "unable to collect channel list from hal; "
   4974 			"regdomain likely %u country code %u\n", rd, cc);
   4975 		free(chans, M_TEMP);
   4976 		return EINVAL;
   4977 	}
   4978 
   4979 	/*
   4980 	 * Convert HAL channels to ieee80211 ones and insert
   4981 	 * them in the table according to their channel number.
   4982 	 */
   4983 	for (i = 0; i < nchan; i++) {
   4984 		HAL_CHANNEL *c = &chans[i];
   4985 		u_int16_t flags;
   4986 
   4987 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4988 		if (ix > IEEE80211_CHAN_MAX) {
   4989 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4990 				ix, c->channel, c->channelFlags);
   4991 			continue;
   4992 		}
   4993 		if (ix < 0) {
   4994 			/* XXX can't handle stuff <2400 right now */
   4995 			if (bootverbose)
   4996 				if_printf(ifp, "hal channel %d (%u/%x) "
   4997 				    "cannot be handled; ignored\n",
   4998 				    ix, c->channel, c->channelFlags);
   4999 			continue;
   5000 		}
   5001 		/*
   5002 		 * Calculate net80211 flags; most are compatible
   5003 		 * but some need massaging.  Note the static turbo
   5004 		 * conversion can be removed once net80211 is updated
   5005 		 * to understand static vs. dynamic turbo.
   5006 		 */
   5007 		flags = c->channelFlags & COMPAT;
   5008 		if (c->channelFlags & CHANNEL_STURBO)
   5009 			flags |= IEEE80211_CHAN_TURBO;
   5010 		if (ic->ic_channels[ix].ic_freq == 0) {
   5011 			ic->ic_channels[ix].ic_freq = c->channel;
   5012 			ic->ic_channels[ix].ic_flags = flags;
   5013 		} else {
   5014 			/* channels overlap; e.g. 11g and 11b */
   5015 			ic->ic_channels[ix].ic_flags |= flags;
   5016 		}
   5017 	}
   5018 	free(chans, M_TEMP);
   5019 	return 0;
   5020 #undef COMPAT
   5021 }
   5022 
   5023 static void
   5024 ath_led_done(void *arg)
   5025 {
   5026 	struct ath_softc *sc = arg;
   5027 
   5028 	sc->sc_blinking = 0;
   5029 }
   5030 
   5031 /*
   5032  * Turn the LED off: flip the pin and then set a timer so no
   5033  * update will happen for the specified duration.
   5034  */
   5035 static void
   5036 ath_led_off(void *arg)
   5037 {
   5038 	struct ath_softc *sc = arg;
   5039 
   5040 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   5041 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   5042 }
   5043 
   5044 /*
   5045  * Blink the LED according to the specified on/off times.
   5046  */
   5047 static void
   5048 ath_led_blink(struct ath_softc *sc, int on, int off)
   5049 {
   5050 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   5051 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   5052 	sc->sc_blinking = 1;
   5053 	sc->sc_ledoff = off;
   5054 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   5055 }
   5056 
   5057 static void
   5058 ath_led_event(struct ath_softc *sc, int event)
   5059 {
   5060 
   5061 	sc->sc_ledevent = ticks;	/* time of last event */
   5062 	if (sc->sc_blinking)		/* don't interrupt active blink */
   5063 		return;
   5064 	switch (event) {
   5065 	case ATH_LED_POLL:
   5066 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   5067 			sc->sc_hwmap[0].ledoff);
   5068 		break;
   5069 	case ATH_LED_TX:
   5070 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   5071 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   5072 		break;
   5073 	case ATH_LED_RX:
   5074 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   5075 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   5076 		break;
   5077 	}
   5078 }
   5079 
   5080 static void
   5081 ath_update_txpow(struct ath_softc *sc)
   5082 {
   5083 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   5084 	struct ieee80211com *ic = &sc->sc_ic;
   5085 	struct ath_hal *ah = sc->sc_ah;
   5086 	u_int32_t txpow;
   5087 
   5088 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   5089 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   5090 		/* read back in case value is clamped */
   5091 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   5092 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   5093 	}
   5094 	/*
   5095 	 * Fetch max tx power level for status requests.
   5096 	 */
   5097 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   5098 	ic->ic_bss->ni_txpower = txpow;
   5099 }
   5100 
   5101 static void
   5102 rate_setup(struct ath_softc *sc,
   5103 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   5104 {
   5105 	int i, maxrates;
   5106 
   5107 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   5108 		DPRINTF(sc, ATH_DEBUG_ANY,
   5109 			"%s: rate table too small (%u > %u)\n",
   5110 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   5111 		maxrates = IEEE80211_RATE_MAXSIZE;
   5112 	} else
   5113 		maxrates = rt->rateCount;
   5114 	for (i = 0; i < maxrates; i++)
   5115 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   5116 	rs->rs_nrates = maxrates;
   5117 }
   5118 
   5119 static int
   5120 ath_rate_setup(struct ath_softc *sc, u_int mode)
   5121 {
   5122 	struct ath_hal *ah = sc->sc_ah;
   5123 	struct ieee80211com *ic = &sc->sc_ic;
   5124 	const HAL_RATE_TABLE *rt;
   5125 
   5126 	switch (mode) {
   5127 	case IEEE80211_MODE_11A:
   5128 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   5129 		break;
   5130 	case IEEE80211_MODE_11B:
   5131 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   5132 		break;
   5133 	case IEEE80211_MODE_11G:
   5134 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   5135 		break;
   5136 	case IEEE80211_MODE_TURBO_A:
   5137 		/* XXX until static/dynamic turbo is fixed */
   5138 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5139 		break;
   5140 	case IEEE80211_MODE_TURBO_G:
   5141 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5142 		break;
   5143 	default:
   5144 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5145 			__func__, mode);
   5146 		return 0;
   5147 	}
   5148 	sc->sc_rates[mode] = rt;
   5149 	if (rt != NULL) {
   5150 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5151 		return 1;
   5152 	} else
   5153 		return 0;
   5154 }
   5155 
   5156 static void
   5157 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5158 {
   5159 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5160 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5161 	static const struct {
   5162 		u_int		rate;		/* tx/rx 802.11 rate */
   5163 		u_int16_t	timeOn;		/* LED on time (ms) */
   5164 		u_int16_t	timeOff;	/* LED off time (ms) */
   5165 	} blinkrates[] = {
   5166 		{ 108,  40,  10 },
   5167 		{  96,  44,  11 },
   5168 		{  72,  50,  13 },
   5169 		{  48,  57,  14 },
   5170 		{  36,  67,  16 },
   5171 		{  24,  80,  20 },
   5172 		{  22, 100,  25 },
   5173 		{  18, 133,  34 },
   5174 		{  12, 160,  40 },
   5175 		{  10, 200,  50 },
   5176 		{   6, 240,  58 },
   5177 		{   4, 267,  66 },
   5178 		{   2, 400, 100 },
   5179 		{   0, 500, 130 },
   5180 	};
   5181 	const HAL_RATE_TABLE *rt;
   5182 	int i, j;
   5183 
   5184 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5185 	rt = sc->sc_rates[mode];
   5186 	KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
   5187 	for (i = 0; i < rt->rateCount; i++)
   5188 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5189 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5190 	for (i = 0; i < 32; i++) {
   5191 		u_int8_t ix = rt->rateCodeToIndex[i];
   5192 		if (ix == 0xff) {
   5193 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5194 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5195 			continue;
   5196 		}
   5197 		sc->sc_hwmap[i].ieeerate =
   5198 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5199 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5200 		if (rt->info[ix].shortPreamble ||
   5201 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5202 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5203 		/* NB: receive frames include FCS */
   5204 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5205 			IEEE80211_RADIOTAP_F_FCS;
   5206 		/* setup blink rate table to avoid per-packet lookup */
   5207 		for (j = 0; j < N(blinkrates)-1; j++)
   5208 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5209 				break;
   5210 		/* NB: this uses the last entry if the rate isn't found */
   5211 		/* XXX beware of overlow */
   5212 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5213 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5214 	}
   5215 	sc->sc_currates = rt;
   5216 	sc->sc_curmode = mode;
   5217 	/*
   5218 	 * All protection frames are transmited at 2Mb/s for
   5219 	 * 11g, otherwise at 1Mb/s.
   5220 	 */
   5221 	if (mode == IEEE80211_MODE_11G)
   5222 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5223 	else
   5224 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5225 	/* rate index used to send management frames */
   5226 	sc->sc_minrateix = 0;
   5227 	/*
   5228 	 * Setup multicast rate state.
   5229 	 */
   5230 	/* XXX layering violation */
   5231 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5232 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5233 	/* NB: caller is responsible for reseting rate control state */
   5234 #undef N
   5235 }
   5236 
   5237 #ifdef AR_DEBUG
   5238 static void
   5239 ath_printrxbuf(struct ath_buf *bf, int done)
   5240 {
   5241 	struct ath_desc *ds;
   5242 	int i;
   5243 
   5244 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5245 		printf("R%d (%p %" PRIx64
   5246 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
   5247 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5248 		    ds->ds_link, ds->ds_data,
   5249 		    ds->ds_ctl0, ds->ds_ctl1,
   5250 		    ds->ds_hw[0], ds->ds_hw[1],
   5251 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
   5252 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5253 	}
   5254 }
   5255 
   5256 static void
   5257 ath_printtxbuf(struct ath_buf *bf, int done)
   5258 {
   5259 	struct ath_desc *ds;
   5260 	int i;
   5261 
   5262 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5263 		printf("T%d (%p %" PRIx64
   5264 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5265 		    i, ds,
   5266 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5267 		    ds->ds_link, ds->ds_data,
   5268 		    ds->ds_ctl0, ds->ds_ctl1,
   5269 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5270 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5271 	}
   5272 }
   5273 #endif	/* AR_DEBUG */
   5274 
   5275 static void
   5276 ath_watchdog(struct ifnet *ifp)
   5277 {
   5278 	struct ath_softc *sc = ifp->if_softc;
   5279 	struct ieee80211com *ic = &sc->sc_ic;
   5280 	struct ath_txq *axq;
   5281 	int i;
   5282 
   5283 	ifp->if_timer = 0;
   5284 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   5285 	    !device_is_active(sc->sc_dev))
   5286 		return;
   5287 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5288 		if (!ATH_TXQ_SETUP(sc, i))
   5289 			continue;
   5290 		axq = &sc->sc_txq[i];
   5291 		ATH_TXQ_LOCK(axq);
   5292 		if (axq->axq_timer == 0)
   5293 			;
   5294 		else if (--axq->axq_timer == 0) {
   5295 			ATH_TXQ_UNLOCK(axq);
   5296 			if_printf(ifp, "device timeout (txq %d, "
   5297 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
   5298 			if (sc->sc_txintrperiod > 1)
   5299 				sc->sc_txintrperiod--;
   5300 			ath_reset(ifp);
   5301 			ifp->if_oerrors++;
   5302 			sc->sc_stats.ast_watchdog++;
   5303 			break;
   5304 		} else
   5305 			ifp->if_timer = 1;
   5306 		ATH_TXQ_UNLOCK(axq);
   5307 	}
   5308 	ieee80211_watchdog(ic);
   5309 }
   5310 
   5311 /*
   5312  * Diagnostic interface to the HAL.  This is used by various
   5313  * tools to do things like retrieve register contents for
   5314  * debugging.  The mechanism is intentionally opaque so that
   5315  * it can change frequently w/o concern for compatiblity.
   5316  */
   5317 static int
   5318 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5319 {
   5320 	struct ath_hal *ah = sc->sc_ah;
   5321 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5322 	void *indata = NULL;
   5323 	void *outdata = NULL;
   5324 	u_int32_t insize = ad->ad_in_size;
   5325 	u_int32_t outsize = ad->ad_out_size;
   5326 	int error = 0;
   5327 
   5328 	if (ad->ad_id & ATH_DIAG_IN) {
   5329 		/*
   5330 		 * Copy in data.
   5331 		 */
   5332 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5333 		if (indata == NULL) {
   5334 			error = ENOMEM;
   5335 			goto bad;
   5336 		}
   5337 		error = copyin(ad->ad_in_data, indata, insize);
   5338 		if (error)
   5339 			goto bad;
   5340 	}
   5341 	if (ad->ad_id & ATH_DIAG_DYN) {
   5342 		/*
   5343 		 * Allocate a buffer for the results (otherwise the HAL
   5344 		 * returns a pointer to a buffer where we can read the
   5345 		 * results).  Note that we depend on the HAL leaving this
   5346 		 * pointer for us to use below in reclaiming the buffer;
   5347 		 * may want to be more defensive.
   5348 		 */
   5349 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5350 		if (outdata == NULL) {
   5351 			error = ENOMEM;
   5352 			goto bad;
   5353 		}
   5354 	}
   5355 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5356 		if (outsize < ad->ad_out_size)
   5357 			ad->ad_out_size = outsize;
   5358 		if (outdata != NULL)
   5359 			error = copyout(outdata, ad->ad_out_data,
   5360 					ad->ad_out_size);
   5361 	} else {
   5362 		error = EINVAL;
   5363 	}
   5364 bad:
   5365 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5366 		free(indata, M_TEMP);
   5367 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5368 		free(outdata, M_TEMP);
   5369 	return error;
   5370 }
   5371 
   5372 static int
   5373 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5374 {
   5375 #define	IS_RUNNING(ifp) \
   5376 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5377 	struct ath_softc *sc = ifp->if_softc;
   5378 	struct ieee80211com *ic = &sc->sc_ic;
   5379 	struct ifreq *ifr = (struct ifreq *)data;
   5380 	int error = 0, s;
   5381 
   5382 	s = splnet();
   5383 	switch (cmd) {
   5384 	case SIOCSIFFLAGS:
   5385 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5386 			break;
   5387 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   5388 		case IFF_UP|IFF_RUNNING:
   5389 			/*
   5390 			 * To avoid rescanning another access point,
   5391 			 * do not call ath_init() here.  Instead,
   5392 			 * only reflect promisc mode settings.
   5393 			 */
   5394 			ath_mode_init(sc);
   5395 			break;
   5396 		case IFF_UP:
   5397 			/*
   5398 			 * Beware of being called during attach/detach
   5399 			 * to reset promiscuous mode.  In that case we
   5400 			 * will still be marked UP but not RUNNING.
   5401 			 * However trying to re-init the interface
   5402 			 * is the wrong thing to do as we've already
   5403 			 * torn down much of our state.  There's
   5404 			 * probably a better way to deal with this.
   5405 			 */
   5406 			error = ath_init(sc);
   5407 			break;
   5408 		case IFF_RUNNING:
   5409 			ath_stop_locked(ifp, 1);
   5410 			break;
   5411 		case 0:
   5412 			break;
   5413 		}
   5414 		break;
   5415 	case SIOCADDMULTI:
   5416 	case SIOCDELMULTI:
   5417 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5418 			if (ifp->if_flags & IFF_RUNNING)
   5419 				ath_mode_init(sc);
   5420 			error = 0;
   5421 		}
   5422 		break;
   5423 	case SIOCGATHSTATS:
   5424 		/* NB: embed these numbers to get a consistent view */
   5425 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5426 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5427 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5428 		splx(s);
   5429 		/*
   5430 		 * NB: Drop the softc lock in case of a page fault;
   5431 		 * we'll accept any potential inconsisentcy in the
   5432 		 * statistics.  The alternative is to copy the data
   5433 		 * to a local structure.
   5434 		 */
   5435 		return copyout(&sc->sc_stats,
   5436 				ifr->ifr_data, sizeof (sc->sc_stats));
   5437 	case SIOCGATHDIAG:
   5438 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5439 		break;
   5440 	default:
   5441 		error = ieee80211_ioctl(ic, cmd, data);
   5442 		if (error != ENETRESET)
   5443 			;
   5444 		else if (IS_RUNNING(ifp) &&
   5445 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5446 			error = ath_init(sc);
   5447 		else
   5448 			error = 0;
   5449 		break;
   5450 	}
   5451 	splx(s);
   5452 	return error;
   5453 #undef IS_RUNNING
   5454 }
   5455 
   5456 static void
   5457 ath_bpfattach(struct ath_softc *sc)
   5458 {
   5459 	struct ifnet *ifp = &sc->sc_if;
   5460 
   5461 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
   5462 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5463 	    &sc->sc_drvbpf);
   5464 
   5465 	/*
   5466 	 * Initialize constant fields.
   5467 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5468 	 *     headers are properly aligned; this is a kludge to keep
   5469 	 *     certain applications happy.
   5470 	 *
   5471 	 * NB: the channel is setup each time we transition to the
   5472 	 *     RUN state to avoid filling it in for each frame.
   5473 	 */
   5474 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5475 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5476 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5477 
   5478 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5479 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5480 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5481 }
   5482 
   5483 /*
   5484  * Announce various information on device/driver attach.
   5485  */
   5486 static void
   5487 ath_announce(struct ath_softc *sc)
   5488 {
   5489 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5490 	struct ifnet *ifp = &sc->sc_if;
   5491 	struct ath_hal *ah = sc->sc_ah;
   5492 	u_int modes, cc;
   5493 
   5494 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5495 		ah->ah_macVersion, ah->ah_macRev,
   5496 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5497 	/*
   5498 	 * Print radio revision(s).  We check the wireless modes
   5499 	 * to avoid falsely printing revs for inoperable parts.
   5500 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5501 	 */
   5502 	ath_hal_getcountrycode(ah, &cc);
   5503 	modes = ath_hal_getwirelessmodes(ah, cc);
   5504 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5505 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5506 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5507 				ah->ah_analog5GhzRev >> 4,
   5508 				ah->ah_analog5GhzRev & 0xf,
   5509 				ah->ah_analog2GhzRev >> 4,
   5510 				ah->ah_analog2GhzRev & 0xf);
   5511 		else
   5512 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5513 				ah->ah_analog5GhzRev & 0xf);
   5514 	} else
   5515 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5516 			ah->ah_analog5GhzRev & 0xf);
   5517 	printf("\n");
   5518 	if (bootverbose) {
   5519 		int i;
   5520 		for (i = 0; i <= WME_AC_VO; i++) {
   5521 			struct ath_txq *txq = sc->sc_ac2q[i];
   5522 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5523 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5524 		}
   5525 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5526 			sc->sc_cabq->axq_qnum);
   5527 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5528 	}
   5529 	if (ath_rxbuf != ATH_RXBUF)
   5530 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5531 	if (ath_txbuf != ATH_TXBUF)
   5532 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5533 #undef HAL_MODE_DUALBAND
   5534 }
   5535