ath.c revision 1.124.2.3 1 /* $NetBSD: ath.c,v 1.124.2.3 2020/04/13 08:04:21 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.124.2.3 2020/04/13 08:04:21 martin Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #ifdef _KERNEL_OPT
55 #include "opt_inet.h"
56 #endif
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/errno.h>
69 #include <sys/callout.h>
70 #include <sys/bus.h>
71 #include <sys/endian.h>
72 #include <sys/kauth.h>
73
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_types.h>
78 #include <net/if_arp.h>
79 #include <net/if_ether.h>
80 #include <net/if_llc.h>
81
82 #include <net80211/ieee80211_netbsd.h>
83 #include <net80211/ieee80211_var.h>
84
85 #include <net/bpf.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #endif
90
91 #include <sys/device.h>
92 #include <dev/ic/ath_netbsd.h>
93
94 #define AR_DEBUG
95 #include <dev/ic/athvar.h>
96 #include "ah_desc.h"
97 #include "ah_devid.h" /* XXX for softled */
98 #include "opt_ah.h"
99
100 #ifdef ATH_TX99_DIAG
101 #include <dev/ath/ath_tx99/ath_tx99.h>
102 #endif
103
104 /* unaligned little endian access */
105 #define LE_READ_2(p) \
106 ((u_int16_t) \
107 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
108 #define LE_READ_4(p) \
109 ((u_int32_t) \
110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
111 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
112
113 enum {
114 ATH_LED_TX,
115 ATH_LED_RX,
116 ATH_LED_POLL,
117 };
118
119 #ifdef AH_NEED_DESC_SWAP
120 #define HTOAH32(x) htole32(x)
121 #else
122 #define HTOAH32(x) (x)
123 #endif
124
125 static int ath_ifinit(struct ifnet *);
126 static int ath_init(struct ath_softc *);
127 static void ath_stop_locked(struct ifnet *, int);
128 static void ath_stop(struct ifnet *, int);
129 static void ath_start(struct ifnet *);
130 static int ath_media_change(struct ifnet *);
131 static void ath_watchdog(struct ifnet *);
132 static int ath_ioctl(struct ifnet *, u_long, void *);
133 static void ath_fatal_proc(void *, int);
134 static void ath_rxorn_proc(void *, int);
135 static void ath_bmiss_proc(void *, int);
136 static void ath_radar_proc(void *, int);
137 static int ath_key_alloc(struct ieee80211com *,
138 const struct ieee80211_key *,
139 ieee80211_keyix *, ieee80211_keyix *);
140 static int ath_key_delete(struct ieee80211com *,
141 const struct ieee80211_key *);
142 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
143 const u_int8_t mac[IEEE80211_ADDR_LEN]);
144 static void ath_key_update_begin(struct ieee80211com *);
145 static void ath_key_update_end(struct ieee80211com *);
146 static void ath_mode_init(struct ath_softc *);
147 static void ath_setslottime(struct ath_softc *);
148 static void ath_updateslot(struct ifnet *);
149 static int ath_beaconq_setup(struct ath_hal *);
150 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
151 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
152 static void ath_beacon_proc(void *, int);
153 static void ath_bstuck_proc(void *, int);
154 static void ath_beacon_free(struct ath_softc *);
155 static void ath_beacon_config(struct ath_softc *);
156 static void ath_descdma_cleanup(struct ath_softc *sc,
157 struct ath_descdma *, ath_bufhead *);
158 static int ath_desc_alloc(struct ath_softc *);
159 static void ath_desc_free(struct ath_softc *);
160 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
161 static void ath_node_free(struct ieee80211_node *);
162 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
163 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
164 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
165 struct ieee80211_node *ni,
166 int subtype, int rssi, u_int32_t rstamp);
167 static void ath_setdefantenna(struct ath_softc *, u_int);
168 static void ath_rx_proc(void *, int);
169 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
170 static int ath_tx_setup(struct ath_softc *, int, int);
171 static int ath_wme_update(struct ieee80211com *);
172 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
173 static void ath_tx_cleanup(struct ath_softc *);
174 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
175 struct ath_buf *, struct mbuf *);
176 static void ath_tx_proc_q0(void *, int);
177 static void ath_tx_proc_q0123(void *, int);
178 static void ath_tx_proc(void *, int);
179 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
180 static void ath_draintxq(struct ath_softc *);
181 static void ath_stoprecv(struct ath_softc *);
182 static int ath_startrecv(struct ath_softc *);
183 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
184 static void ath_next_scan(void *);
185 static void ath_calibrate(void *);
186 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
187 static void ath_setup_stationkey(struct ieee80211_node *);
188 static void ath_newassoc(struct ieee80211_node *, int);
189 static int ath_getchannels(struct ath_softc *, u_int cc,
190 HAL_BOOL outdoor, HAL_BOOL xchanmode);
191 static void ath_led_event(struct ath_softc *, int);
192 static void ath_update_txpow(struct ath_softc *);
193 static void ath_freetx(struct mbuf *);
194 static void ath_restore_diversity(struct ath_softc *);
195
196 static int ath_rate_setup(struct ath_softc *, u_int mode);
197 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
198
199 static void ath_bpfattach(struct ath_softc *);
200 static void ath_announce(struct ath_softc *);
201
202 #ifdef __NetBSD__
203 #define ATH_TASK_FUNC(__func) \
204 static void __CONCAT(__func, _si)(void *arg) \
205 { \
206 __func(arg, 1); \
207 }
208 ATH_TASK_FUNC(ath_rx_proc);
209 ATH_TASK_FUNC(ath_rxorn_proc);
210 ATH_TASK_FUNC(ath_fatal_proc);
211 ATH_TASK_FUNC(ath_bmiss_proc);
212 ATH_TASK_FUNC(ath_bstuck_proc);
213 ATH_TASK_FUNC(ath_radar_proc);
214 ATH_TASK_FUNC(ath_tx_proc_q0);
215 ATH_TASK_FUNC(ath_tx_proc_q0123);
216 ATH_TASK_FUNC(ath_tx_proc);
217 #endif
218
219 int ath_dwelltime = 200; /* 5 channels/second */
220 int ath_calinterval = 30; /* calibrate every 30 secs */
221 int ath_outdoor = AH_TRUE; /* outdoor operation */
222 int ath_xchanmode = AH_TRUE; /* enable extended channels */
223 int ath_countrycode = CTRY_DEFAULT; /* country code */
224 int ath_regdomain = 0; /* regulatory domain */
225 int ath_debug = 0;
226 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
227 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
228
229 #ifdef AR_DEBUG
230 enum {
231 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
232 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
233 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
234 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
235 ATH_DEBUG_RATE = 0x00000010, /* rate control */
236 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
237 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
238 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
239 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
240 ATH_DEBUG_INTR = 0x00001000, /* ISR */
241 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
242 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
243 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
244 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
245 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
246 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
247 ATH_DEBUG_NODE = 0x00080000, /* node management */
248 ATH_DEBUG_LED = 0x00100000, /* led management */
249 ATH_DEBUG_FF = 0x00200000, /* fast frames */
250 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
251 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
252 ATH_DEBUG_ANY = 0xffffffff
253 };
254 #define IFF_DUMPPKTS(sc, m) \
255 ((sc->sc_debug & (m)) || \
256 (sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2)) \
257 == (IFF_DEBUG | IFF_LINK2))
258 #define DPRINTF(sc, m, fmt, ...) do { \
259 if (sc->sc_debug & (m)) \
260 printf(fmt, __VA_ARGS__); \
261 } while (0)
262 #define KEYPRINTF(sc, ix, hk, mac) do { \
263 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
264 ath_keyprint(__func__, ix, hk, mac); \
265 } while (0)
266 static void ath_printrxbuf(struct ath_buf *bf, int);
267 static void ath_printtxbuf(struct ath_buf *bf, int);
268 #else
269 #define IFF_DUMPPKTS(sc, m) \
270 ((sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2)) \
271 == (IFF_DEBUG | IFF_LINK2))
272 #define DPRINTF(m, fmt, ...)
273 #define KEYPRINTF(sc, k, ix, mac)
274 #endif
275
276 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
277
278 int
279 ath_attach(u_int16_t devid, struct ath_softc *sc)
280 {
281 struct ifnet *ifp = &sc->sc_if;
282 struct ieee80211com *ic = &sc->sc_ic;
283 struct ath_hal *ah = NULL;
284 HAL_STATUS status;
285 int error = 0, i;
286
287 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
288
289 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
290
291 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
292
293 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
294 if (ah == NULL) {
295 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
296 status);
297 error = ENXIO;
298 goto bad;
299 }
300 if (ah->ah_abi != HAL_ABI_VERSION) {
301 if_printf(ifp, "HAL ABI mismatch detected "
302 "(HAL:0x%x != driver:0x%x)\n",
303 ah->ah_abi, HAL_ABI_VERSION);
304 error = ENXIO;
305 goto bad;
306 }
307 sc->sc_ah = ah;
308
309 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
310 "pmf-powerdown", false))
311 goto bad;
312
313 /*
314 * Check if the MAC has multi-rate retry support.
315 * We do this by trying to setup a fake extended
316 * descriptor. MAC's that don't have support will
317 * return false w/o doing anything. MAC's that do
318 * support it will return true w/o doing anything.
319 */
320 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
321
322 /*
323 * Check if the device has hardware counters for PHY
324 * errors. If so we need to enable the MIB interrupt
325 * so we can act on stat triggers.
326 */
327 if (ath_hal_hwphycounters(ah))
328 sc->sc_needmib = 1;
329
330 /*
331 * Get the hardware key cache size.
332 */
333 sc->sc_keymax = ath_hal_keycachesize(ah);
334 if (sc->sc_keymax > ATH_KEYMAX) {
335 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
336 ATH_KEYMAX, sc->sc_keymax);
337 sc->sc_keymax = ATH_KEYMAX;
338 }
339 /*
340 * Reset the key cache since some parts do not
341 * reset the contents on initial power up.
342 */
343 for (i = 0; i < sc->sc_keymax; i++)
344 ath_hal_keyreset(ah, i);
345 /*
346 * Mark key cache slots associated with global keys
347 * as in use. If we knew TKIP was not to be used we
348 * could leave the +32, +64, and +32+64 slots free.
349 * XXX only for splitmic.
350 */
351 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
352 setbit(sc->sc_keymap, i);
353 setbit(sc->sc_keymap, i+32);
354 setbit(sc->sc_keymap, i+64);
355 setbit(sc->sc_keymap, i+32+64);
356 }
357
358 /*
359 * Collect the channel list using the default country
360 * code and including outdoor channels. The 802.11 layer
361 * is resposible for filtering this list based on settings
362 * like the phy mode.
363 */
364 error = ath_getchannels(sc, ath_countrycode,
365 ath_outdoor, ath_xchanmode);
366 if (error != 0)
367 goto bad;
368
369 /*
370 * Setup rate tables for all potential media types.
371 */
372 ath_rate_setup(sc, IEEE80211_MODE_11A);
373 ath_rate_setup(sc, IEEE80211_MODE_11B);
374 ath_rate_setup(sc, IEEE80211_MODE_11G);
375 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
376 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
377 /* NB: setup here so ath_rate_update is happy */
378 ath_setcurmode(sc, IEEE80211_MODE_11A);
379
380 /*
381 * Allocate tx+rx descriptors and populate the lists.
382 */
383 error = ath_desc_alloc(sc);
384 if (error != 0) {
385 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
386 goto bad;
387 }
388 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
389 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
390 #if 0
391 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
392 #endif
393
394 ATH_TXBUF_LOCK_INIT(sc);
395
396 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
397 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
398 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
399 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
400 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
401 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
402
403 /*
404 * Allocate hardware transmit queues: one queue for
405 * beacon frames and one data queue for each QoS
406 * priority. Note that the hal handles reseting
407 * these queues at the needed time.
408 *
409 * XXX PS-Poll
410 */
411 sc->sc_bhalq = ath_beaconq_setup(ah);
412 if (sc->sc_bhalq == (u_int) -1) {
413 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
414 error = EIO;
415 goto bad2;
416 }
417 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
418 if (sc->sc_cabq == NULL) {
419 if_printf(ifp, "unable to setup CAB xmit queue!\n");
420 error = EIO;
421 goto bad2;
422 }
423 /* NB: insure BK queue is the lowest priority h/w queue */
424 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
425 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
426 ieee80211_wme_acnames[WME_AC_BK]);
427 error = EIO;
428 goto bad2;
429 }
430 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
431 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
432 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
433 /*
434 * Not enough hardware tx queues to properly do WME;
435 * just punt and assign them all to the same h/w queue.
436 * We could do a better job of this if, for example,
437 * we allocate queues when we switch from station to
438 * AP mode.
439 */
440 if (sc->sc_ac2q[WME_AC_VI] != NULL)
441 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
442 if (sc->sc_ac2q[WME_AC_BE] != NULL)
443 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
444 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
445 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
446 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
447 }
448
449 /*
450 * Special case certain configurations. Note the
451 * CAB queue is handled by these specially so don't
452 * include them when checking the txq setup mask.
453 */
454 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
455 case 0x01:
456 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
457 break;
458 case 0x0f:
459 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
460 break;
461 default:
462 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
463 break;
464 }
465
466 /*
467 * Setup rate control. Some rate control modules
468 * call back to change the anntena state so expose
469 * the necessary entry points.
470 * XXX maybe belongs in struct ath_ratectrl?
471 */
472 sc->sc_setdefantenna = ath_setdefantenna;
473 sc->sc_rc = ath_rate_attach(sc);
474 if (sc->sc_rc == NULL) {
475 error = EIO;
476 goto bad2;
477 }
478
479 sc->sc_blinking = 0;
480 sc->sc_ledstate = 1;
481 sc->sc_ledon = 0; /* low true */
482 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
483 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
484 /*
485 * Auto-enable soft led processing for IBM cards and for
486 * 5211 minipci cards. Users can also manually enable/disable
487 * support with a sysctl.
488 */
489 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
490 if (sc->sc_softled) {
491 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
492 HAL_GPIO_MUX_MAC_NETWORK_LED);
493 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
494 }
495
496 ifp->if_softc = sc;
497 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
498 ifp->if_start = ath_start;
499 ifp->if_stop = ath_stop;
500 ifp->if_watchdog = ath_watchdog;
501 ifp->if_ioctl = ath_ioctl;
502 ifp->if_init = ath_ifinit;
503 IFQ_SET_READY(&ifp->if_snd);
504
505 ic->ic_ifp = ifp;
506 ic->ic_reset = ath_reset;
507 ic->ic_newassoc = ath_newassoc;
508 ic->ic_updateslot = ath_updateslot;
509 ic->ic_wme.wme_update = ath_wme_update;
510 /* XXX not right but it's not used anywhere important */
511 ic->ic_phytype = IEEE80211_T_OFDM;
512 ic->ic_opmode = IEEE80211_M_STA;
513 ic->ic_caps =
514 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
515 | IEEE80211_C_HOSTAP /* hostap mode */
516 | IEEE80211_C_MONITOR /* monitor mode */
517 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
518 | IEEE80211_C_SHSLOT /* short slot time supported */
519 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
520 | IEEE80211_C_TXFRAG /* handle tx frags */
521 ;
522 /*
523 * Query the hal to figure out h/w crypto support.
524 */
525 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
526 ic->ic_caps |= IEEE80211_C_WEP;
527 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
528 ic->ic_caps |= IEEE80211_C_AES;
529 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
530 ic->ic_caps |= IEEE80211_C_AES_CCM;
531 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
532 ic->ic_caps |= IEEE80211_C_CKIP;
533 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
534 ic->ic_caps |= IEEE80211_C_TKIP;
535 /*
536 * Check if h/w does the MIC and/or whether the
537 * separate key cache entries are required to
538 * handle both tx+rx MIC keys.
539 */
540 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
541 ic->ic_caps |= IEEE80211_C_TKIPMIC;
542
543 /*
544 * If the h/w supports storing tx+rx MIC keys
545 * in one cache slot automatically enable use.
546 */
547 if (ath_hal_hastkipsplit(ah) ||
548 !ath_hal_settkipsplit(ah, AH_FALSE))
549 sc->sc_splitmic = 1;
550
551 /*
552 * If the h/w can do TKIP MIC together with WME then
553 * we use it; otherwise we force the MIC to be done
554 * in software by the net80211 layer.
555 */
556 if (ath_hal_haswmetkipmic(ah))
557 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
558 }
559 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
560 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
561 /*
562 * Mark key cache slots associated with global keys
563 * as in use. If we knew TKIP was not to be used we
564 * could leave the +32, +64, and +32+64 slots free.
565 */
566 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
567 setbit(sc->sc_keymap, i);
568 setbit(sc->sc_keymap, i+64);
569 if (sc->sc_splitmic) {
570 setbit(sc->sc_keymap, i+32);
571 setbit(sc->sc_keymap, i+32+64);
572 }
573 }
574 /*
575 * TPC support can be done either with a global cap or
576 * per-packet support. The latter is not available on
577 * all parts. We're a bit pedantic here as all parts
578 * support a global cap.
579 */
580 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
581 ic->ic_caps |= IEEE80211_C_TXPMGT;
582
583 /*
584 * Mark WME capability only if we have sufficient
585 * hardware queues to do proper priority scheduling.
586 */
587 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
588 ic->ic_caps |= IEEE80211_C_WME;
589 /*
590 * Check for misc other capabilities.
591 */
592 if (ath_hal_hasbursting(ah))
593 ic->ic_caps |= IEEE80211_C_BURST;
594
595 /*
596 * Indicate we need the 802.11 header padded to a
597 * 32-bit boundary for 4-address and QoS frames.
598 */
599 ic->ic_flags |= IEEE80211_F_DATAPAD;
600
601 /*
602 * Query the hal about antenna support.
603 */
604 sc->sc_defant = ath_hal_getdefantenna(ah);
605
606 /*
607 * Not all chips have the VEOL support we want to
608 * use with IBSS beacons; check here for it.
609 */
610 sc->sc_hasveol = ath_hal_hasveol(ah);
611
612 /* get mac address from hardware */
613 ath_hal_getmac(ah, ic->ic_myaddr);
614
615 if_attach(ifp);
616 /* call MI attach routine. */
617 ieee80211_ifattach(ic);
618 /* override default methods */
619 ic->ic_node_alloc = ath_node_alloc;
620 sc->sc_node_free = ic->ic_node_free;
621 ic->ic_node_free = ath_node_free;
622 ic->ic_node_getrssi = ath_node_getrssi;
623 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
624 ic->ic_recv_mgmt = ath_recv_mgmt;
625 sc->sc_newstate = ic->ic_newstate;
626 ic->ic_newstate = ath_newstate;
627 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
628 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
629 ic->ic_crypto.cs_key_delete = ath_key_delete;
630 ic->ic_crypto.cs_key_set = ath_key_set;
631 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
632 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
633 /* complete initialization */
634 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
635
636 ath_bpfattach(sc);
637
638 sc->sc_flags |= ATH_ATTACHED;
639
640 /*
641 * Setup dynamic sysctl's now that country code and
642 * regdomain are available from the hal.
643 */
644 ath_sysctlattach(sc);
645
646 ieee80211_announce(ic);
647 ath_announce(sc);
648 return 0;
649 bad2:
650 ath_tx_cleanup(sc);
651 ath_desc_free(sc);
652 bad:
653 if (ah)
654 ath_hal_detach(ah);
655 /* XXX don't get under the abstraction like this */
656 sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
657 return error;
658 }
659
660 int
661 ath_detach(struct ath_softc *sc)
662 {
663 struct ifnet *ifp = &sc->sc_if;
664 int s;
665
666 if ((sc->sc_flags & ATH_ATTACHED) == 0)
667 return (0);
668
669 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
670 __func__, ifp->if_flags);
671
672 s = splnet();
673 ath_stop(ifp, 1);
674 bpf_detach(ifp);
675 /*
676 * NB: the order of these is important:
677 * o call the 802.11 layer before detaching the hal to
678 * insure callbacks into the driver to delete global
679 * key cache entries can be handled
680 * o reclaim the tx queue data structures after calling
681 * the 802.11 layer as we'll get called back to reclaim
682 * node state and potentially want to use them
683 * o to cleanup the tx queues the hal is called, so detach
684 * it last
685 * Other than that, it's straightforward...
686 */
687 ieee80211_ifdetach(&sc->sc_ic);
688 #ifdef ATH_TX99_DIAG
689 if (sc->sc_tx99 != NULL)
690 sc->sc_tx99->detach(sc->sc_tx99);
691 #endif
692 ath_rate_detach(sc->sc_rc);
693 ath_desc_free(sc);
694 ath_tx_cleanup(sc);
695 sysctl_teardown(&sc->sc_sysctllog);
696 ath_hal_detach(sc->sc_ah);
697 if_detach(ifp);
698 splx(s);
699
700 return 0;
701 }
702
703 void
704 ath_suspend(struct ath_softc *sc)
705 {
706 #if notyet
707 /*
708 * Set the chip in full sleep mode. Note that we are
709 * careful to do this only when bringing the interface
710 * completely to a stop. When the chip is in this state
711 * it must be carefully woken up or references to
712 * registers in the PCI clock domain may freeze the bus
713 * (and system). This varies by chip and is mostly an
714 * issue with newer parts that go to sleep more quickly.
715 */
716 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
717 #endif
718 }
719
720 bool
721 ath_resume(struct ath_softc *sc)
722 {
723 struct ath_hal *ah = sc->sc_ah;
724 struct ieee80211com *ic = &sc->sc_ic;
725 HAL_STATUS status;
726 int i;
727
728 #if notyet
729 ath_hal_setpower(ah, HAL_PM_AWAKE);
730 #else
731 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
732 #endif
733
734 /*
735 * Reset the key cache since some parts do not
736 * reset the contents on initial power up.
737 */
738 for (i = 0; i < sc->sc_keymax; i++)
739 ath_hal_keyreset(ah, i);
740
741 ath_hal_resettxqueue(ah, sc->sc_bhalq);
742 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
743 if (ATH_TXQ_SETUP(sc, i))
744 ath_hal_resettxqueue(ah, i);
745
746 if (sc->sc_softled) {
747 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
748 HAL_GPIO_MUX_MAC_NETWORK_LED);
749 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
750 }
751 return true;
752 }
753
754 /*
755 * Interrupt handler. Most of the actual processing is deferred.
756 */
757 int
758 ath_intr(void *arg)
759 {
760 struct ath_softc *sc = arg;
761 struct ifnet *ifp = &sc->sc_if;
762 struct ath_hal *ah = sc->sc_ah;
763 HAL_INT status = 0;
764
765 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
766 /*
767 * The hardware is not ready/present, don't touch anything.
768 * Note this can happen early on if the IRQ is shared.
769 */
770 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
771 return 0;
772 }
773
774 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
775 return 0;
776
777 if ((ifp->if_flags & (IFF_RUNNING |IFF_UP)) != (IFF_RUNNING |IFF_UP)) {
778 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
779 __func__, ifp->if_flags);
780 ath_hal_getisr(ah, &status); /* clear ISR */
781 ath_hal_intrset(ah, 0); /* disable further intr's */
782 return 1; /* XXX */
783 }
784 /*
785 * Figure out the reason(s) for the interrupt. Note
786 * that the hal returns a pseudo-ISR that may include
787 * bits we haven't explicitly enabled so we mask the
788 * value to insure we only process bits we requested.
789 */
790 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
791 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
792 status &= sc->sc_imask; /* discard unasked for bits */
793 if (status & HAL_INT_FATAL) {
794 /*
795 * Fatal errors are unrecoverable. Typically
796 * these are caused by DMA errors. Unfortunately
797 * the exact reason is not (presently) returned
798 * by the hal.
799 */
800 sc->sc_stats.ast_hardware++;
801 ath_hal_intrset(ah, 0); /* disable intr's until reset */
802 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
803 } else if (status & HAL_INT_RXORN) {
804 sc->sc_stats.ast_rxorn++;
805 ath_hal_intrset(ah, 0); /* disable intr's until reset */
806 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
807 } else {
808 if (status & HAL_INT_SWBA) {
809 /*
810 * Software beacon alert--time to send a beacon.
811 * Handle beacon transmission directly; deferring
812 * this is too slow to meet timing constraints
813 * under load.
814 */
815 ath_beacon_proc(sc, 0);
816 }
817 if (status & HAL_INT_RXEOL) {
818 /*
819 * NB: the hardware should re-read the link when
820 * RXE bit is written, but it doesn't work at
821 * least on older hardware revs.
822 */
823 sc->sc_stats.ast_rxeol++;
824 sc->sc_rxlink = NULL;
825 }
826 if (status & HAL_INT_TXURN) {
827 sc->sc_stats.ast_txurn++;
828 /* bump tx trigger level */
829 ath_hal_updatetxtriglevel(ah, AH_TRUE);
830 }
831 if (status & HAL_INT_RX)
832 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
833 if (status & HAL_INT_TX)
834 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
835 if (status & HAL_INT_BMISS) {
836 sc->sc_stats.ast_bmiss++;
837 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
838 }
839 if (status & HAL_INT_MIB) {
840 sc->sc_stats.ast_mib++;
841 /*
842 * Disable interrupts until we service the MIB
843 * interrupt; otherwise it will continue to fire.
844 */
845 ath_hal_intrset(ah, 0);
846 /*
847 * Let the hal handle the event. We assume it will
848 * clear whatever condition caused the interrupt.
849 */
850 ath_hal_mibevent(ah, &sc->sc_halstats);
851 ath_hal_intrset(ah, sc->sc_imask);
852 }
853 }
854 return 1;
855 }
856
857 /* Swap transmit descriptor.
858 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
859 * function.
860 */
861 static inline void
862 ath_desc_swap(struct ath_desc *ds)
863 {
864 #ifdef AH_NEED_DESC_SWAP
865 ds->ds_link = htole32(ds->ds_link);
866 ds->ds_data = htole32(ds->ds_data);
867 ds->ds_ctl0 = htole32(ds->ds_ctl0);
868 ds->ds_ctl1 = htole32(ds->ds_ctl1);
869 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
870 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
871 #endif
872 }
873
874 static void
875 ath_fatal_proc(void *arg, int pending)
876 {
877 struct ath_softc *sc = arg;
878 struct ifnet *ifp = &sc->sc_if;
879 #ifdef __NetBSD__
880 int s;
881 #endif
882
883 if_printf(ifp, "hardware error; resetting\n");
884 #ifdef __NetBSD__
885 s = splnet();
886 #endif
887 ath_reset(ifp);
888 #ifdef __NetBSD__
889 splx(s);
890 #endif
891 }
892
893 static void
894 ath_rxorn_proc(void *arg, int pending)
895 {
896 struct ath_softc *sc = arg;
897 struct ifnet *ifp = &sc->sc_if;
898 #ifdef __NetBSD__
899 int s;
900 #endif
901
902 if_printf(ifp, "rx FIFO overrun; resetting\n");
903 #ifdef __NetBSD__
904 s = splnet();
905 #endif
906 ath_reset(ifp);
907 #ifdef __NetBSD__
908 splx(s);
909 #endif
910 }
911
912 static void
913 ath_bmiss_proc(void *arg, int pending)
914 {
915 struct ath_softc *sc = arg;
916 struct ieee80211com *ic = &sc->sc_ic;
917 NET_LOCK_GIANT_FUNC_INIT();
918
919 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
920 KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
921 "unexpect operating mode %u", ic->ic_opmode);
922 if (ic->ic_state == IEEE80211_S_RUN) {
923 u_int64_t lastrx = sc->sc_lastrx;
924 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
925
926 DPRINTF(sc, ATH_DEBUG_BEACON,
927 "%s: tsf %" PRIu64 " lastrx %" PRId64
928 " (%" PRIu64 ") bmiss %u\n",
929 __func__, tsf, tsf - lastrx, lastrx,
930 ic->ic_bmisstimeout*1024);
931 /*
932 * Workaround phantom bmiss interrupts by sanity-checking
933 * the time of our last rx'd frame. If it is within the
934 * beacon miss interval then ignore the interrupt. If it's
935 * truly a bmiss we'll get another interrupt soon and that'll
936 * be dispatched up for processing.
937 */
938 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
939 NET_LOCK_GIANT();
940 ieee80211_beacon_miss(ic);
941 NET_UNLOCK_GIANT();
942 } else
943 sc->sc_stats.ast_bmiss_phantom++;
944 }
945 }
946
947 static void
948 ath_radar_proc(void *arg, int pending)
949 {
950 #if 0
951 struct ath_softc *sc = arg;
952 struct ifnet *ifp = &sc->sc_if;
953 struct ath_hal *ah = sc->sc_ah;
954 HAL_CHANNEL hchan;
955
956 if (ath_hal_procdfs(ah, &hchan)) {
957 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
958 hchan.channel, hchan.channelFlags, hchan.privFlags);
959 /*
960 * Initiate channel change.
961 */
962 /* XXX not yet */
963 }
964 #endif
965 }
966
967 static u_int
968 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
969 {
970 #define N(a) (sizeof(a) / sizeof(a[0]))
971 static const u_int modeflags[] = {
972 0, /* IEEE80211_MODE_AUTO */
973 CHANNEL_A, /* IEEE80211_MODE_11A */
974 CHANNEL_B, /* IEEE80211_MODE_11B */
975 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
976 0, /* IEEE80211_MODE_FH */
977 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
978 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
979 };
980 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
981
982 KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
983 KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
984 return modeflags[mode];
985 #undef N
986 }
987
988 static int
989 ath_ifinit(struct ifnet *ifp)
990 {
991 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
992
993 return ath_init(sc);
994 }
995
996 static void
997 ath_settkipmic(struct ath_softc *sc)
998 {
999 struct ieee80211com *ic = &sc->sc_ic;
1000 struct ath_hal *ah = sc->sc_ah;
1001
1002 if ((ic->ic_caps & IEEE80211_C_TKIP) &&
1003 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
1004 if (ic->ic_flags & IEEE80211_F_WME) {
1005 (void)ath_hal_settkipmic(ah, AH_FALSE);
1006 ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
1007 } else {
1008 (void)ath_hal_settkipmic(ah, AH_TRUE);
1009 ic->ic_caps |= IEEE80211_C_TKIPMIC;
1010 }
1011 }
1012 }
1013
1014 static int
1015 ath_init(struct ath_softc *sc)
1016 {
1017 struct ifnet *ifp = &sc->sc_if;
1018 struct ieee80211com *ic = &sc->sc_ic;
1019 struct ath_hal *ah = sc->sc_ah;
1020 HAL_STATUS status;
1021 int error = 0, s;
1022
1023 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1024 __func__, ifp->if_flags);
1025
1026 if (device_is_active(sc->sc_dev)) {
1027 s = splnet();
1028 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1029 !device_is_active(sc->sc_dev))
1030 return 0;
1031 else
1032 s = splnet();
1033
1034 /*
1035 * Stop anything previously setup. This is safe
1036 * whether this is the first time through or not.
1037 */
1038 ath_stop_locked(ifp, 0);
1039
1040 /*
1041 * The basic interface to setting the hardware in a good
1042 * state is ``reset''. On return the hardware is known to
1043 * be powered up and with interrupts disabled. This must
1044 * be followed by initialization of the appropriate bits
1045 * and then setup of the interrupt mask.
1046 */
1047 ath_settkipmic(sc);
1048 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1049 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1050 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1051 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1052 status);
1053 error = EIO;
1054 goto done;
1055 }
1056
1057 /*
1058 * This is needed only to setup initial state
1059 * but it's best done after a reset.
1060 */
1061 ath_update_txpow(sc);
1062 /*
1063 * Likewise this is set during reset so update
1064 * state cached in the driver.
1065 */
1066 ath_restore_diversity(sc);
1067 sc->sc_calinterval = 1;
1068 sc->sc_caltries = 0;
1069
1070 /*
1071 * Setup the hardware after reset: the key cache
1072 * is filled as needed and the receive engine is
1073 * set going. Frame transmit is handled entirely
1074 * in the frame output path; there's nothing to do
1075 * here except setup the interrupt mask.
1076 */
1077 if ((error = ath_startrecv(sc)) != 0) {
1078 if_printf(ifp, "unable to start recv logic\n");
1079 goto done;
1080 }
1081
1082 /*
1083 * Enable interrupts.
1084 */
1085 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1086 | HAL_INT_RXEOL | HAL_INT_RXORN
1087 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1088 /*
1089 * Enable MIB interrupts when there are hardware phy counters.
1090 * Note we only do this (at the moment) for station mode.
1091 */
1092 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1093 sc->sc_imask |= HAL_INT_MIB;
1094 ath_hal_intrset(ah, sc->sc_imask);
1095
1096 ifp->if_flags |= IFF_RUNNING;
1097 ic->ic_state = IEEE80211_S_INIT;
1098
1099 /*
1100 * The hardware should be ready to go now so it's safe
1101 * to kick the 802.11 state machine as it's likely to
1102 * immediately call back to us to send mgmt frames.
1103 */
1104 ath_chan_change(sc, ic->ic_curchan);
1105 #ifdef ATH_TX99_DIAG
1106 if (sc->sc_tx99 != NULL)
1107 sc->sc_tx99->start(sc->sc_tx99);
1108 else
1109 #endif
1110 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1111 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1112 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1113 } else
1114 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1115 done:
1116 splx(s);
1117 return error;
1118 }
1119
1120 static void
1121 ath_stop_locked(struct ifnet *ifp, int disable)
1122 {
1123 struct ath_softc *sc = ifp->if_softc;
1124 struct ieee80211com *ic = &sc->sc_ic;
1125 struct ath_hal *ah = sc->sc_ah;
1126
1127 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1128 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1129
1130 /* KASSERT() IPL_NET */
1131 if (ifp->if_flags & IFF_RUNNING) {
1132 /*
1133 * Shutdown the hardware and driver:
1134 * reset 802.11 state machine
1135 * turn off timers
1136 * disable interrupts
1137 * turn off the radio
1138 * clear transmit machinery
1139 * clear receive machinery
1140 * drain and release tx queues
1141 * reclaim beacon resources
1142 * power down hardware
1143 *
1144 * Note that some of this work is not possible if the
1145 * hardware is gone (invalid).
1146 */
1147 #ifdef ATH_TX99_DIAG
1148 if (sc->sc_tx99 != NULL)
1149 sc->sc_tx99->stop(sc->sc_tx99);
1150 #endif
1151 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1152 ifp->if_flags &= ~IFF_RUNNING;
1153 ifp->if_timer = 0;
1154 if (device_is_enabled(sc->sc_dev)) {
1155 if (sc->sc_softled) {
1156 callout_stop(&sc->sc_ledtimer);
1157 ath_hal_gpioset(ah, sc->sc_ledpin,
1158 !sc->sc_ledon);
1159 sc->sc_blinking = 0;
1160 }
1161 ath_hal_intrset(ah, 0);
1162 }
1163 ath_draintxq(sc);
1164 if (device_is_enabled(sc->sc_dev)) {
1165 ath_stoprecv(sc);
1166 ath_hal_phydisable(ah);
1167 } else
1168 sc->sc_rxlink = NULL;
1169 IF_PURGE(&ifp->if_snd);
1170 ath_beacon_free(sc);
1171 }
1172 if (disable)
1173 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1174 }
1175
1176 static void
1177 ath_stop(struct ifnet *ifp, int disable)
1178 {
1179 int s;
1180
1181 s = splnet();
1182 ath_stop_locked(ifp, disable);
1183 splx(s);
1184 }
1185
1186 static void
1187 ath_restore_diversity(struct ath_softc *sc)
1188 {
1189 struct ifnet *ifp = &sc->sc_if;
1190 struct ath_hal *ah = sc->sc_ah;
1191
1192 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1193 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1194 if_printf(ifp, "could not restore diversity setting %d\n",
1195 sc->sc_diversity);
1196 sc->sc_diversity = ath_hal_getdiversity(ah);
1197 }
1198 }
1199
1200 /*
1201 * Reset the hardware w/o losing operational state. This is
1202 * basically a more efficient way of doing ath_stop, ath_init,
1203 * followed by state transitions to the current 802.11
1204 * operational state. Used to recover from various errors and
1205 * to reset or reload hardware state.
1206 */
1207 int
1208 ath_reset(struct ifnet *ifp)
1209 {
1210 struct ath_softc *sc = ifp->if_softc;
1211 struct ieee80211com *ic = &sc->sc_ic;
1212 struct ath_hal *ah = sc->sc_ah;
1213 struct ieee80211_channel *c;
1214 HAL_STATUS status;
1215
1216 /*
1217 * Convert to a HAL channel description with the flags
1218 * constrained to reflect the current operating mode.
1219 */
1220 c = ic->ic_curchan;
1221 sc->sc_curchan.channel = c->ic_freq;
1222 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1223
1224 ath_hal_intrset(ah, 0); /* disable interrupts */
1225 ath_draintxq(sc); /* stop xmit side */
1226 ath_stoprecv(sc); /* stop recv side */
1227 ath_settkipmic(sc); /* configure TKIP MIC handling */
1228 /* NB: indicate channel change so we do a full reset */
1229 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1230 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1231 __func__, status);
1232 ath_update_txpow(sc); /* update tx power state */
1233 ath_restore_diversity(sc);
1234 sc->sc_calinterval = 1;
1235 sc->sc_caltries = 0;
1236 if (ath_startrecv(sc) != 0) /* restart recv */
1237 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1238 /*
1239 * We may be doing a reset in response to an ioctl
1240 * that changes the channel so update any state that
1241 * might change as a result.
1242 */
1243 ath_chan_change(sc, c);
1244 if (ic->ic_state == IEEE80211_S_RUN)
1245 ath_beacon_config(sc); /* restart beacons */
1246 ath_hal_intrset(ah, sc->sc_imask);
1247
1248 ath_start(ifp); /* restart xmit */
1249 return 0;
1250 }
1251
1252 /*
1253 * Cleanup driver resources when we run out of buffers
1254 * while processing fragments; return the tx buffers
1255 * allocated and drop node references.
1256 */
1257 static void
1258 ath_txfrag_cleanup(struct ath_softc *sc,
1259 ath_bufhead *frags, struct ieee80211_node *ni)
1260 {
1261 struct ath_buf *bf;
1262
1263 ATH_TXBUF_LOCK_ASSERT(sc);
1264
1265 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1266 STAILQ_REMOVE_HEAD(frags, bf_list);
1267 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1268 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1269 ieee80211_node_decref(ni);
1270 }
1271 }
1272
1273 /*
1274 * Setup xmit of a fragmented frame. Allocate a buffer
1275 * for each frag and bump the node reference count to
1276 * reflect the held reference to be setup by ath_tx_start.
1277 */
1278 static int
1279 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1280 struct mbuf *m0, struct ieee80211_node *ni)
1281 {
1282 struct mbuf *m;
1283 struct ath_buf *bf;
1284
1285 ATH_TXBUF_LOCK(sc);
1286 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1287 bf = STAILQ_FIRST(&sc->sc_txbuf);
1288 if (bf == NULL) { /* out of buffers, cleanup */
1289 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1290 __func__);
1291 sc->sc_if.if_flags |= IFF_OACTIVE;
1292 ath_txfrag_cleanup(sc, frags, ni);
1293 break;
1294 }
1295 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1296 ieee80211_node_incref(ni);
1297 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1298 }
1299 ATH_TXBUF_UNLOCK(sc);
1300
1301 return !STAILQ_EMPTY(frags);
1302 }
1303
1304 static void
1305 ath_start(struct ifnet *ifp)
1306 {
1307 struct ath_softc *sc = ifp->if_softc;
1308 struct ath_hal *ah = sc->sc_ah;
1309 struct ieee80211com *ic = &sc->sc_ic;
1310 struct ieee80211_node *ni;
1311 struct ath_buf *bf;
1312 struct mbuf *m, *next;
1313 struct ieee80211_frame *wh;
1314 struct ether_header *eh;
1315 ath_bufhead frags;
1316
1317 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1318 !device_is_active(sc->sc_dev))
1319 return;
1320
1321 if (sc->sc_flags & ATH_KEY_UPDATING)
1322 return;
1323
1324 for (;;) {
1325 /*
1326 * Grab a TX buffer and associated resources.
1327 */
1328 ATH_TXBUF_LOCK(sc);
1329 bf = STAILQ_FIRST(&sc->sc_txbuf);
1330 if (bf != NULL)
1331 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1332 ATH_TXBUF_UNLOCK(sc);
1333 if (bf == NULL) {
1334 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1335 __func__);
1336 sc->sc_stats.ast_tx_qstop++;
1337 ifp->if_flags |= IFF_OACTIVE;
1338 break;
1339 }
1340 /*
1341 * Poll the management queue for frames; they
1342 * have priority over normal data frames.
1343 */
1344 IF_DEQUEUE(&ic->ic_mgtq, m);
1345 if (m == NULL) {
1346 /*
1347 * No data frames go out unless we're associated.
1348 */
1349 if (ic->ic_state != IEEE80211_S_RUN) {
1350 DPRINTF(sc, ATH_DEBUG_XMIT,
1351 "%s: discard data packet, state %s\n",
1352 __func__,
1353 ieee80211_state_name[ic->ic_state]);
1354 sc->sc_stats.ast_tx_discard++;
1355 ATH_TXBUF_LOCK(sc);
1356 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1357 ATH_TXBUF_UNLOCK(sc);
1358 break;
1359 }
1360 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1361 if (m == NULL) {
1362 ATH_TXBUF_LOCK(sc);
1363 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1364 ATH_TXBUF_UNLOCK(sc);
1365 break;
1366 }
1367 STAILQ_INIT(&frags);
1368 /*
1369 * Find the node for the destination so we can do
1370 * things like power save and fast frames aggregation.
1371 */
1372 if (m->m_len < sizeof(struct ether_header) &&
1373 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1374 ic->ic_stats.is_tx_nobuf++; /* XXX */
1375 ni = NULL;
1376 goto bad;
1377 }
1378 eh = mtod(m, struct ether_header *);
1379 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1380 if (ni == NULL) {
1381 /* NB: ieee80211_find_txnode does stat+msg */
1382 m_freem(m);
1383 goto bad;
1384 }
1385 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1386 (m->m_flags & M_PWR_SAV) == 0) {
1387 /*
1388 * Station in power save mode; pass the frame
1389 * to the 802.11 layer and continue. We'll get
1390 * the frame back when the time is right.
1391 */
1392 ieee80211_pwrsave(ic, ni, m);
1393 goto reclaim;
1394 }
1395 /* calculate priority so we can find the tx queue */
1396 if (ieee80211_classify(ic, m, ni)) {
1397 DPRINTF(sc, ATH_DEBUG_XMIT,
1398 "%s: discard, classification failure\n",
1399 __func__);
1400 m_freem(m);
1401 goto bad;
1402 }
1403 if_statinc(ifp, if_opackets);
1404
1405 bpf_mtap(ifp, m, BPF_D_OUT);
1406 /*
1407 * Encapsulate the packet in prep for transmission.
1408 */
1409 m = ieee80211_encap(ic, m, ni);
1410 if (m == NULL) {
1411 DPRINTF(sc, ATH_DEBUG_XMIT,
1412 "%s: encapsulation failure\n",
1413 __func__);
1414 sc->sc_stats.ast_tx_encap++;
1415 goto bad;
1416 }
1417 /*
1418 * Check for fragmentation. If this has frame
1419 * has been broken up verify we have enough
1420 * buffers to send all the fragments so all
1421 * go out or none...
1422 */
1423 if ((m->m_flags & M_FRAG) &&
1424 !ath_txfrag_setup(sc, &frags, m, ni)) {
1425 DPRINTF(sc, ATH_DEBUG_ANY,
1426 "%s: out of txfrag buffers\n", __func__);
1427 ic->ic_stats.is_tx_nobuf++; /* XXX */
1428 ath_freetx(m);
1429 goto bad;
1430 }
1431 } else {
1432 /*
1433 * Hack! The referenced node pointer is in the
1434 * rcvif field of the packet header. This is
1435 * placed there by ieee80211_mgmt_output because
1436 * we need to hold the reference with the frame
1437 * and there's no other way (other than packet
1438 * tags which we consider too expensive to use)
1439 * to pass it along.
1440 */
1441 ni = M_GETCTX(m, struct ieee80211_node *);
1442 M_CLEARCTX(m);
1443
1444 wh = mtod(m, struct ieee80211_frame *);
1445 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1446 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1447 /* fill time stamp */
1448 u_int64_t tsf;
1449 u_int32_t *tstamp;
1450
1451 tsf = ath_hal_gettsf64(ah);
1452 /* XXX: adjust 100us delay to xmit */
1453 tsf += 100;
1454 tstamp = (u_int32_t *)&wh[1];
1455 tstamp[0] = htole32(tsf & 0xffffffff);
1456 tstamp[1] = htole32(tsf >> 32);
1457 }
1458 sc->sc_stats.ast_tx_mgmt++;
1459 }
1460
1461 nextfrag:
1462 next = m->m_nextpkt;
1463 if (ath_tx_start(sc, ni, bf, m)) {
1464 bad:
1465 if_statinc(ifp, if_oerrors);
1466 reclaim:
1467 ATH_TXBUF_LOCK(sc);
1468 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1469 ath_txfrag_cleanup(sc, &frags, ni);
1470 ATH_TXBUF_UNLOCK(sc);
1471 if (ni != NULL)
1472 ieee80211_free_node(ni);
1473 continue;
1474 }
1475 if (next != NULL) {
1476 m = next;
1477 bf = STAILQ_FIRST(&frags);
1478 KASSERTMSG(bf != NULL, "no buf for txfrag");
1479 STAILQ_REMOVE_HEAD(&frags, bf_list);
1480 goto nextfrag;
1481 }
1482
1483 ifp->if_timer = 1;
1484 }
1485 }
1486
1487 static int
1488 ath_media_change(struct ifnet *ifp)
1489 {
1490 #define IS_UP(ifp) \
1491 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1492 int error;
1493
1494 error = ieee80211_media_change(ifp);
1495 if (error == ENETRESET) {
1496 if (IS_UP(ifp))
1497 ath_init(ifp->if_softc); /* XXX lose error */
1498 error = 0;
1499 }
1500 return error;
1501 #undef IS_UP
1502 }
1503
1504 #ifdef AR_DEBUG
1505 static void
1506 ath_keyprint(const char *tag, u_int ix,
1507 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1508 {
1509 static const char *ciphers[] = {
1510 "WEP",
1511 "AES-OCB",
1512 "AES-CCM",
1513 "CKIP",
1514 "TKIP",
1515 "CLR",
1516 };
1517 int i, n;
1518
1519 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1520 for (i = 0, n = hk->kv_len; i < n; i++)
1521 printf("%02x", hk->kv_val[i]);
1522 printf(" mac %s", ether_sprintf(mac));
1523 if (hk->kv_type == HAL_CIPHER_TKIP) {
1524 printf(" mic ");
1525 for (i = 0; i < sizeof(hk->kv_mic); i++)
1526 printf("%02x", hk->kv_mic[i]);
1527 }
1528 printf("\n");
1529 }
1530 #endif
1531
1532 /*
1533 * Set a TKIP key into the hardware. This handles the
1534 * potential distribution of key state to multiple key
1535 * cache slots for TKIP.
1536 */
1537 static int
1538 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1539 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1540 {
1541 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1542 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1543 struct ath_hal *ah = sc->sc_ah;
1544
1545 KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1546 "got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
1547 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1548 if (sc->sc_splitmic) {
1549 /*
1550 * TX key goes at first index, RX key at the rx index.
1551 * The hal handles the MIC keys at index+64.
1552 */
1553 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1554 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1555 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1556 zerobssid))
1557 return 0;
1558
1559 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1560 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1561 /* XXX delete tx key on failure? */
1562 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1563 hk, mac);
1564 } else {
1565 /*
1566 * Room for both TX+RX MIC keys in one key cache
1567 * slot, just set key at the first index; the HAL
1568 * will handle the reset.
1569 */
1570 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1571 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1572 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1573 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1574 }
1575 } else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1576 if (sc->sc_splitmic) {
1577 /*
1578 * NB: must pass MIC key in expected location when
1579 * the keycache only holds one MIC key per entry.
1580 */
1581 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1582 } else
1583 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1584 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1585 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1586 } else if (k->wk_flags & IEEE80211_KEY_RECV) {
1587 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1588 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1589 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1590 }
1591 return 0;
1592 #undef IEEE80211_KEY_XR
1593 }
1594
1595 /*
1596 * Set a net80211 key into the hardware. This handles the
1597 * potential distribution of key state to multiple key
1598 * cache slots for TKIP with hardware MIC support.
1599 */
1600 static int
1601 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1602 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1603 struct ieee80211_node *bss)
1604 {
1605 #define N(a) (sizeof(a)/sizeof(a[0]))
1606 static const u_int8_t ciphermap[] = {
1607 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1608 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1609 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1610 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1611 (u_int8_t) -1, /* 4 is not allocated */
1612 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1613 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1614 };
1615 struct ath_hal *ah = sc->sc_ah;
1616 const struct ieee80211_cipher *cip = k->wk_cipher;
1617 u_int8_t gmac[IEEE80211_ADDR_LEN];
1618 const u_int8_t *mac;
1619 HAL_KEYVAL hk;
1620
1621 memset(&hk, 0, sizeof(hk));
1622 /*
1623 * Software crypto uses a "clear key" so non-crypto
1624 * state kept in the key cache are maintained and
1625 * so that rx frames have an entry to match.
1626 */
1627 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1628 KASSERTMSG(cip->ic_cipher < N(ciphermap),
1629 "invalid cipher type %u", cip->ic_cipher);
1630 hk.kv_type = ciphermap[cip->ic_cipher];
1631 hk.kv_len = k->wk_keylen;
1632 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1633 } else
1634 hk.kv_type = HAL_CIPHER_CLR;
1635
1636 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1637 /*
1638 * Group keys on hardware that supports multicast frame
1639 * key search use a mac that is the sender's address with
1640 * the high bit set instead of the app-specified address.
1641 */
1642 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1643 gmac[0] |= 0x80;
1644 mac = gmac;
1645 } else
1646 mac = mac0;
1647
1648 if ((hk.kv_type == HAL_CIPHER_TKIP &&
1649 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1650 return ath_keyset_tkip(sc, k, &hk, mac);
1651 } else {
1652 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1653 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1654 }
1655 #undef N
1656 }
1657
1658 /*
1659 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1660 * each key, one for decrypt/encrypt and the other for the MIC.
1661 */
1662 static u_int16_t
1663 key_alloc_2pair(struct ath_softc *sc,
1664 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1665 {
1666 #define N(a) (sizeof(a)/sizeof(a[0]))
1667 u_int i, keyix;
1668
1669 KASSERTMSG(sc->sc_splitmic, "key cache !split");
1670 /* XXX could optimize */
1671 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1672 u_int8_t b = sc->sc_keymap[i];
1673 if (b != 0xff) {
1674 /*
1675 * One or more slots in this byte are free.
1676 */
1677 keyix = i*NBBY;
1678 while (b & 1) {
1679 again:
1680 keyix++;
1681 b >>= 1;
1682 }
1683 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1684 if (isset(sc->sc_keymap, keyix+32) ||
1685 isset(sc->sc_keymap, keyix+64) ||
1686 isset(sc->sc_keymap, keyix+32+64)) {
1687 /* full pair unavailable */
1688 /* XXX statistic */
1689 if (keyix == (i+1)*NBBY) {
1690 /* no slots were appropriate, advance */
1691 continue;
1692 }
1693 goto again;
1694 }
1695 setbit(sc->sc_keymap, keyix);
1696 setbit(sc->sc_keymap, keyix+64);
1697 setbit(sc->sc_keymap, keyix+32);
1698 setbit(sc->sc_keymap, keyix+32+64);
1699 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1700 "%s: key pair %u,%u %u,%u\n",
1701 __func__, keyix, keyix+64,
1702 keyix+32, keyix+32+64);
1703 *txkeyix = keyix;
1704 *rxkeyix = keyix+32;
1705 return keyix;
1706 }
1707 }
1708 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1709 return IEEE80211_KEYIX_NONE;
1710 #undef N
1711 }
1712
1713 /*
1714 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1715 * each key, one for decrypt/encrypt and the other for the MIC.
1716 */
1717 static int
1718 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1719 ieee80211_keyix *rxkeyix)
1720 {
1721 #define N(a) (sizeof(a)/sizeof(a[0]))
1722 u_int i, keyix;
1723
1724 KASSERTMSG(!sc->sc_splitmic, "key cache split");
1725 /* XXX could optimize */
1726 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1727 uint8_t b = sc->sc_keymap[i];
1728 if (b != 0xff) {
1729 /*
1730 * One or more slots in this byte are free.
1731 */
1732 keyix = i*NBBY;
1733 while (b & 1) {
1734 again:
1735 keyix++;
1736 b >>= 1;
1737 }
1738 if (isset(sc->sc_keymap, keyix+64)) {
1739 /* full pair unavailable */
1740 /* XXX statistic */
1741 if (keyix == (i+1)*NBBY) {
1742 /* no slots were appropriate, advance */
1743 continue;
1744 }
1745 goto again;
1746 }
1747 setbit(sc->sc_keymap, keyix);
1748 setbit(sc->sc_keymap, keyix+64);
1749 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1750 "%s: key pair %u,%u\n",
1751 __func__, keyix, keyix+64);
1752 *txkeyix = *rxkeyix = keyix;
1753 return 1;
1754 }
1755 }
1756 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1757 return 0;
1758 #undef N
1759 }
1760
1761 /*
1762 * Allocate a single key cache slot.
1763 */
1764 static int
1765 key_alloc_single(struct ath_softc *sc,
1766 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1767 {
1768 #define N(a) (sizeof(a)/sizeof(a[0]))
1769 u_int i, keyix;
1770
1771 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1772 for (i = 0; i < N(sc->sc_keymap); i++) {
1773 u_int8_t b = sc->sc_keymap[i];
1774 if (b != 0xff) {
1775 /*
1776 * One or more slots are free.
1777 */
1778 keyix = i*NBBY;
1779 while (b & 1)
1780 keyix++, b >>= 1;
1781 setbit(sc->sc_keymap, keyix);
1782 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1783 __func__, keyix);
1784 *txkeyix = *rxkeyix = keyix;
1785 return 1;
1786 }
1787 }
1788 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1789 return 0;
1790 #undef N
1791 }
1792
1793 /*
1794 * Allocate one or more key cache slots for a uniacst key. The
1795 * key itself is needed only to identify the cipher. For hardware
1796 * TKIP with split cipher+MIC keys we allocate two key cache slot
1797 * pairs so that we can setup separate TX and RX MIC keys. Note
1798 * that the MIC key for a TKIP key at slot i is assumed by the
1799 * hardware to be at slot i+64. This limits TKIP keys to the first
1800 * 64 entries.
1801 */
1802 static int
1803 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1804 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1805 {
1806 struct ath_softc *sc = ic->ic_ifp->if_softc;
1807
1808 /*
1809 * Group key allocation must be handled specially for
1810 * parts that do not support multicast key cache search
1811 * functionality. For those parts the key id must match
1812 * the h/w key index so lookups find the right key. On
1813 * parts w/ the key search facility we install the sender's
1814 * mac address (with the high bit set) and let the hardware
1815 * find the key w/o using the key id. This is preferred as
1816 * it permits us to support multiple users for adhoc and/or
1817 * multi-station operation.
1818 */
1819 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1820 if (!(&ic->ic_nw_keys[0] <= k &&
1821 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1822 /* should not happen */
1823 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1824 "%s: bogus group key\n", __func__);
1825 return 0;
1826 }
1827 /*
1828 * XXX we pre-allocate the global keys so
1829 * have no way to check if they've already been allocated.
1830 */
1831 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1832 return 1;
1833 }
1834
1835 /*
1836 * We allocate two pair for TKIP when using the h/w to do
1837 * the MIC. For everything else, including software crypto,
1838 * we allocate a single entry. Note that s/w crypto requires
1839 * a pass-through slot on the 5211 and 5212. The 5210 does
1840 * not support pass-through cache entries and we map all
1841 * those requests to slot 0.
1842 */
1843 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1844 return key_alloc_single(sc, keyix, rxkeyix);
1845 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1846 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1847 if (sc->sc_splitmic)
1848 return key_alloc_2pair(sc, keyix, rxkeyix);
1849 else
1850 return key_alloc_pair(sc, keyix, rxkeyix);
1851 } else {
1852 return key_alloc_single(sc, keyix, rxkeyix);
1853 }
1854 }
1855
1856 /*
1857 * Delete an entry in the key cache allocated by ath_key_alloc.
1858 */
1859 static int
1860 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1861 {
1862 struct ath_softc *sc = ic->ic_ifp->if_softc;
1863 struct ath_hal *ah = sc->sc_ah;
1864 const struct ieee80211_cipher *cip = k->wk_cipher;
1865 u_int keyix = k->wk_keyix;
1866
1867 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1868
1869 if (!device_has_power(sc->sc_dev)) {
1870 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1871 k->wk_keyix);
1872 }
1873
1874 ath_hal_keyreset(ah, keyix);
1875 /*
1876 * Handle split tx/rx keying required for TKIP with h/w MIC.
1877 */
1878 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1879 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1880 ath_hal_keyreset(ah, keyix+32); /* RX key */
1881 if (keyix >= IEEE80211_WEP_NKID) {
1882 /*
1883 * Don't touch keymap entries for global keys so
1884 * they are never considered for dynamic allocation.
1885 */
1886 clrbit(sc->sc_keymap, keyix);
1887 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1888 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1889 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1890 if (sc->sc_splitmic) {
1891 /* +32 for RX key, +32+64 for RX key MIC */
1892 clrbit(sc->sc_keymap, keyix+32);
1893 clrbit(sc->sc_keymap, keyix+32+64);
1894 }
1895 }
1896 }
1897 return 1;
1898 }
1899
1900 /*
1901 * Set the key cache contents for the specified key. Key cache
1902 * slot(s) must already have been allocated by ath_key_alloc.
1903 */
1904 static int
1905 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1906 const u_int8_t mac[IEEE80211_ADDR_LEN])
1907 {
1908 struct ath_softc *sc = ic->ic_ifp->if_softc;
1909
1910 if (!device_has_power(sc->sc_dev)) {
1911 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1912 k->wk_keyix);
1913 }
1914 return ath_keyset(sc, k, mac, ic->ic_bss);
1915 }
1916
1917 /*
1918 * Block/unblock tx+rx processing while a key change is done.
1919 * We assume the caller serializes key management operations
1920 * so we only need to worry about synchronization with other
1921 * uses that originate in the driver.
1922 */
1923 static void
1924 ath_key_update_begin(struct ieee80211com *ic)
1925 {
1926 struct ifnet *ifp = ic->ic_ifp;
1927 struct ath_softc *sc = ifp->if_softc;
1928
1929 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1930 #if 0
1931 tasklet_disable(&sc->sc_rxtq);
1932 #endif
1933 sc->sc_flags |= ATH_KEY_UPDATING;
1934 }
1935
1936 static void
1937 ath_key_update_end(struct ieee80211com *ic)
1938 {
1939 struct ifnet *ifp = ic->ic_ifp;
1940 struct ath_softc *sc = ifp->if_softc;
1941
1942 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1943 sc->sc_flags &= ~ATH_KEY_UPDATING;
1944 #if 0
1945 tasklet_enable(&sc->sc_rxtq);
1946 #endif
1947 }
1948
1949 /*
1950 * Calculate the receive filter according to the
1951 * operating mode and state:
1952 *
1953 * o always accept unicast, broadcast, and multicast traffic
1954 * o maintain current state of phy error reception (the hal
1955 * may enable phy error frames for noise immunity work)
1956 * o probe request frames are accepted only when operating in
1957 * hostap, adhoc, or monitor modes
1958 * o enable promiscuous mode according to the interface state
1959 * o accept beacons:
1960 * - when operating in adhoc mode so the 802.11 layer creates
1961 * node table entries for peers,
1962 * - when operating in station mode for collecting rssi data when
1963 * the station is otherwise quiet, or
1964 * - when scanning
1965 */
1966 static u_int32_t
1967 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1968 {
1969 struct ieee80211com *ic = &sc->sc_ic;
1970 struct ath_hal *ah = sc->sc_ah;
1971 struct ifnet *ifp = &sc->sc_if;
1972 u_int32_t rfilt;
1973
1974 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1975 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1976 if (ic->ic_opmode != IEEE80211_M_STA)
1977 rfilt |= HAL_RX_FILTER_PROBEREQ;
1978 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1979 (ifp->if_flags & IFF_PROMISC))
1980 rfilt |= HAL_RX_FILTER_PROM;
1981 if (ifp->if_flags & IFF_PROMISC)
1982 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1983 if (ic->ic_opmode == IEEE80211_M_STA ||
1984 ic->ic_opmode == IEEE80211_M_IBSS ||
1985 state == IEEE80211_S_SCAN)
1986 rfilt |= HAL_RX_FILTER_BEACON;
1987 return rfilt;
1988 }
1989
1990 static void
1991 ath_mode_init(struct ath_softc *sc)
1992 {
1993 struct ethercom *ec = &sc->sc_ec;
1994 struct ifnet *ifp = &sc->sc_if;
1995 struct ieee80211com *ic = &sc->sc_ic;
1996 struct ath_hal *ah = sc->sc_ah;
1997 struct ether_multi *enm;
1998 struct ether_multistep estep;
1999 u_int32_t rfilt, mfilt[2], val;
2000 int i;
2001 uint8_t pos;
2002
2003 /* configure rx filter */
2004 rfilt = ath_calcrxfilter(sc, ic->ic_state);
2005 ath_hal_setrxfilter(ah, rfilt);
2006
2007 /* configure operational mode */
2008 ath_hal_setopmode(ah);
2009
2010 /* Write keys to hardware; it may have been powered down. */
2011 ath_key_update_begin(ic);
2012 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2013 ath_key_set(ic,
2014 &ic->ic_crypto.cs_nw_keys[i],
2015 ic->ic_myaddr);
2016 }
2017 ath_key_update_end(ic);
2018
2019 /*
2020 * Handle any link-level address change. Note that we only
2021 * need to force ic_myaddr; any other addresses are handled
2022 * as a byproduct of the ifnet code marking the interface
2023 * down then up.
2024 *
2025 * XXX should get from lladdr instead of arpcom but that's more work
2026 */
2027 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
2028 ath_hal_setmac(ah, ic->ic_myaddr);
2029
2030 /* calculate and install multicast filter */
2031 ifp->if_flags &= ~IFF_ALLMULTI;
2032 mfilt[0] = mfilt[1] = 0;
2033 ETHER_LOCK(ec);
2034 ETHER_FIRST_MULTI(estep, ec, enm);
2035 while (enm != NULL) {
2036 void *dl;
2037 /* XXX Punt on ranges. */
2038 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
2039 mfilt[0] = mfilt[1] = 0xffffffff;
2040 ifp->if_flags |= IFF_ALLMULTI;
2041 break;
2042 }
2043 dl = enm->enm_addrlo;
2044 val = LE_READ_4((char *)dl + 0);
2045 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2046 val = LE_READ_4((char *)dl + 3);
2047 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2048 pos &= 0x3f;
2049 mfilt[pos / 32] |= (1 << (pos % 32));
2050
2051 ETHER_NEXT_MULTI(estep, enm);
2052 }
2053 ETHER_UNLOCK(ec);
2054
2055 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2056 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2057 __func__, rfilt, mfilt[0], mfilt[1]);
2058 }
2059
2060 /*
2061 * Set the slot time based on the current setting.
2062 */
2063 static void
2064 ath_setslottime(struct ath_softc *sc)
2065 {
2066 struct ieee80211com *ic = &sc->sc_ic;
2067 struct ath_hal *ah = sc->sc_ah;
2068
2069 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2070 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2071 else
2072 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2073 sc->sc_updateslot = OK;
2074 }
2075
2076 /*
2077 * Callback from the 802.11 layer to update the
2078 * slot time based on the current setting.
2079 */
2080 static void
2081 ath_updateslot(struct ifnet *ifp)
2082 {
2083 struct ath_softc *sc = ifp->if_softc;
2084 struct ieee80211com *ic = &sc->sc_ic;
2085
2086 /*
2087 * When not coordinating the BSS, change the hardware
2088 * immediately. For other operation we defer the change
2089 * until beacon updates have propagated to the stations.
2090 */
2091 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2092 sc->sc_updateslot = UPDATE;
2093 else
2094 ath_setslottime(sc);
2095 }
2096
2097 /*
2098 * Setup a h/w transmit queue for beacons.
2099 */
2100 static int
2101 ath_beaconq_setup(struct ath_hal *ah)
2102 {
2103 HAL_TXQ_INFO qi;
2104
2105 memset(&qi, 0, sizeof(qi));
2106 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2107 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2108 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2109 /* NB: for dynamic turbo, don't enable any other interrupts */
2110 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2111 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2112 }
2113
2114 /*
2115 * Setup the transmit queue parameters for the beacon queue.
2116 */
2117 static int
2118 ath_beaconq_config(struct ath_softc *sc)
2119 {
2120 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2121 struct ieee80211com *ic = &sc->sc_ic;
2122 struct ath_hal *ah = sc->sc_ah;
2123 HAL_TXQ_INFO qi;
2124
2125 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2126 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2127 /*
2128 * Always burst out beacon and CAB traffic.
2129 */
2130 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2131 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2132 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2133 } else {
2134 struct wmeParams *wmep =
2135 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2136 /*
2137 * Adhoc mode; important thing is to use 2x cwmin.
2138 */
2139 qi.tqi_aifs = wmep->wmep_aifsn;
2140 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2141 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2142 }
2143
2144 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2145 device_printf(sc->sc_dev, "unable to update parameters for "
2146 "beacon hardware queue!\n");
2147 return 0;
2148 } else {
2149 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2150 return 1;
2151 }
2152 #undef ATH_EXPONENT_TO_VALUE
2153 }
2154
2155 /*
2156 * Allocate and setup an initial beacon frame.
2157 */
2158 static int
2159 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2160 {
2161 struct ieee80211com *ic = ni->ni_ic;
2162 struct ath_buf *bf;
2163 struct mbuf *m;
2164 int error;
2165
2166 bf = STAILQ_FIRST(&sc->sc_bbuf);
2167 if (bf == NULL) {
2168 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2169 sc->sc_stats.ast_be_nombuf++; /* XXX */
2170 return ENOMEM; /* XXX */
2171 }
2172 /*
2173 * NB: the beacon data buffer must be 32-bit aligned;
2174 * we assume the mbuf routines will return us something
2175 * with this alignment (perhaps should assert).
2176 */
2177 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2178 if (m == NULL) {
2179 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2180 __func__);
2181 sc->sc_stats.ast_be_nombuf++;
2182 return ENOMEM;
2183 }
2184 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2185 BUS_DMA_NOWAIT);
2186 if (error == 0) {
2187 bf->bf_m = m;
2188 bf->bf_node = ieee80211_ref_node(ni);
2189 } else {
2190 m_freem(m);
2191 }
2192 return error;
2193 }
2194
2195 /*
2196 * Setup the beacon frame for transmit.
2197 */
2198 static void
2199 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2200 {
2201 #define USE_SHPREAMBLE(_ic) \
2202 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2203 == IEEE80211_F_SHPREAMBLE)
2204 struct ieee80211_node *ni = bf->bf_node;
2205 struct ieee80211com *ic = ni->ni_ic;
2206 struct mbuf *m = bf->bf_m;
2207 struct ath_hal *ah = sc->sc_ah;
2208 struct ath_desc *ds;
2209 int flags, antenna;
2210 const HAL_RATE_TABLE *rt;
2211 u_int8_t rix, rate;
2212
2213 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2214 __func__, m, m->m_len);
2215
2216 /* setup descriptors */
2217 ds = bf->bf_desc;
2218
2219 flags = HAL_TXDESC_NOACK;
2220 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2221 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2222 flags |= HAL_TXDESC_VEOL;
2223 /*
2224 * Let hardware handle antenna switching unless
2225 * the user has selected a transmit antenna
2226 * (sc_txantenna is not 0).
2227 */
2228 antenna = sc->sc_txantenna;
2229 } else {
2230 ds->ds_link = 0;
2231 /*
2232 * Switch antenna every 4 beacons, unless the user
2233 * has selected a transmit antenna (sc_txantenna
2234 * is not 0).
2235 *
2236 * XXX assumes two antenna
2237 */
2238 if (sc->sc_txantenna == 0)
2239 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2240 else
2241 antenna = sc->sc_txantenna;
2242 }
2243
2244 KASSERTMSG(bf->bf_nseg == 1,
2245 "multi-segment beacon frame; nseg %u", bf->bf_nseg);
2246 ds->ds_data = bf->bf_segs[0].ds_addr;
2247 /*
2248 * Calculate rate code.
2249 * XXX everything at min xmit rate
2250 */
2251 rix = sc->sc_minrateix;
2252 rt = sc->sc_currates;
2253 rate = rt->info[rix].rateCode;
2254 if (USE_SHPREAMBLE(ic))
2255 rate |= rt->info[rix].shortPreamble;
2256 ath_hal_setuptxdesc(ah, ds
2257 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2258 , sizeof(struct ieee80211_frame)/* header length */
2259 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2260 , ni->ni_txpower /* txpower XXX */
2261 , rate, 1 /* series 0 rate/tries */
2262 , HAL_TXKEYIX_INVALID /* no encryption */
2263 , antenna /* antenna mode */
2264 , flags /* no ack, veol for beacons */
2265 , 0 /* rts/cts rate */
2266 , 0 /* rts/cts duration */
2267 );
2268 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2269 ath_hal_filltxdesc(ah, ds
2270 , roundup(m->m_len, 4) /* buffer length */
2271 , AH_TRUE /* first segment */
2272 , AH_TRUE /* last segment */
2273 , ds /* first descriptor */
2274 );
2275
2276 /* NB: The desc swap function becomes void, if descriptor swapping
2277 * is not enabled
2278 */
2279 ath_desc_swap(ds);
2280
2281 #undef USE_SHPREAMBLE
2282 }
2283
2284 /*
2285 * Transmit a beacon frame at SWBA. Dynamic updates to the
2286 * frame contents are done as needed and the slot time is
2287 * also adjusted based on current state.
2288 */
2289 static void
2290 ath_beacon_proc(void *arg, int pending)
2291 {
2292 struct ath_softc *sc = arg;
2293 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2294 struct ieee80211_node *ni = bf->bf_node;
2295 struct ieee80211com *ic = ni->ni_ic;
2296 struct ath_hal *ah = sc->sc_ah;
2297 struct mbuf *m;
2298 int ncabq, error, otherant;
2299
2300 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2301 __func__, pending);
2302
2303 if (ic->ic_opmode == IEEE80211_M_STA ||
2304 ic->ic_opmode == IEEE80211_M_MONITOR ||
2305 bf == NULL || bf->bf_m == NULL) {
2306 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2307 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2308 return;
2309 }
2310 /*
2311 * Check if the previous beacon has gone out. If
2312 * not don't try to post another, skip this period
2313 * and wait for the next. Missed beacons indicate
2314 * a problem and should not occur. If we miss too
2315 * many consecutive beacons reset the device.
2316 */
2317 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2318 sc->sc_bmisscount++;
2319 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2320 "%s: missed %u consecutive beacons\n",
2321 __func__, sc->sc_bmisscount);
2322 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2323 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2324 return;
2325 }
2326 if (sc->sc_bmisscount != 0) {
2327 DPRINTF(sc, ATH_DEBUG_BEACON,
2328 "%s: resume beacon xmit after %u misses\n",
2329 __func__, sc->sc_bmisscount);
2330 sc->sc_bmisscount = 0;
2331 }
2332
2333 /*
2334 * Update dynamic beacon contents. If this returns
2335 * non-zero then we need to remap the memory because
2336 * the beacon frame changed size (probably because
2337 * of the TIM bitmap).
2338 */
2339 m = bf->bf_m;
2340 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2341 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2342 /* XXX too conservative? */
2343 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2344 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2345 BUS_DMA_NOWAIT);
2346 if (error != 0) {
2347 if_printf(&sc->sc_if,
2348 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2349 __func__, error);
2350 return;
2351 }
2352 }
2353
2354 /*
2355 * Handle slot time change when a non-ERP station joins/leaves
2356 * an 11g network. The 802.11 layer notifies us via callback,
2357 * we mark updateslot, then wait one beacon before effecting
2358 * the change. This gives associated stations at least one
2359 * beacon interval to note the state change.
2360 */
2361 /* XXX locking */
2362 if (sc->sc_updateslot == UPDATE)
2363 sc->sc_updateslot = COMMIT; /* commit next beacon */
2364 else if (sc->sc_updateslot == COMMIT)
2365 ath_setslottime(sc); /* commit change to h/w */
2366
2367 /*
2368 * Check recent per-antenna transmit statistics and flip
2369 * the default antenna if noticeably more frames went out
2370 * on the non-default antenna.
2371 * XXX assumes 2 anntenae
2372 */
2373 otherant = sc->sc_defant & 1 ? 2 : 1;
2374 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2375 ath_setdefantenna(sc, otherant);
2376 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2377
2378 /*
2379 * Construct tx descriptor.
2380 */
2381 ath_beacon_setup(sc, bf);
2382
2383 /*
2384 * Stop any current dma and put the new frame on the queue.
2385 * This should never fail since we check above that no frames
2386 * are still pending on the queue.
2387 */
2388 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2389 DPRINTF(sc, ATH_DEBUG_ANY,
2390 "%s: beacon queue %u did not stop?\n",
2391 __func__, sc->sc_bhalq);
2392 }
2393 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2394 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2395
2396 /*
2397 * Enable the CAB queue before the beacon queue to
2398 * insure cab frames are triggered by this beacon.
2399 */
2400 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2401 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2402 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2403 ath_hal_txstart(ah, sc->sc_bhalq);
2404 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2405 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2406 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2407
2408 sc->sc_stats.ast_be_xmit++;
2409 }
2410
2411 /*
2412 * Reset the hardware after detecting beacons have stopped.
2413 */
2414 static void
2415 ath_bstuck_proc(void *arg, int pending)
2416 {
2417 struct ath_softc *sc = arg;
2418 struct ifnet *ifp = &sc->sc_if;
2419 #ifdef __NetBSD__
2420 int s;
2421 #endif
2422
2423 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2424 sc->sc_bmisscount);
2425 #ifdef __NetBSD__
2426 s = splnet();
2427 #endif
2428 ath_reset(ifp);
2429 #ifdef __NetBSD__
2430 splx(s);
2431 #endif
2432 }
2433
2434 /*
2435 * Reclaim beacon resources.
2436 */
2437 static void
2438 ath_beacon_free(struct ath_softc *sc)
2439 {
2440 struct ath_buf *bf;
2441
2442 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2443 if (bf->bf_m != NULL) {
2444 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2445 m_freem(bf->bf_m);
2446 bf->bf_m = NULL;
2447 }
2448 if (bf->bf_node != NULL) {
2449 ieee80211_free_node(bf->bf_node);
2450 bf->bf_node = NULL;
2451 }
2452 }
2453 }
2454
2455 /*
2456 * Configure the beacon and sleep timers.
2457 *
2458 * When operating as an AP this resets the TSF and sets
2459 * up the hardware to notify us when we need to issue beacons.
2460 *
2461 * When operating in station mode this sets up the beacon
2462 * timers according to the timestamp of the last received
2463 * beacon and the current TSF, configures PCF and DTIM
2464 * handling, programs the sleep registers so the hardware
2465 * will wakeup in time to receive beacons, and configures
2466 * the beacon miss handling so we'll receive a BMISS
2467 * interrupt when we stop seeing beacons from the AP
2468 * we've associated with.
2469 */
2470 static void
2471 ath_beacon_config(struct ath_softc *sc)
2472 {
2473 #define TSF_TO_TU(_h,_l) \
2474 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2475 #define FUDGE 2
2476 struct ath_hal *ah = sc->sc_ah;
2477 struct ieee80211com *ic = &sc->sc_ic;
2478 struct ieee80211_node *ni = ic->ic_bss;
2479 u_int32_t nexttbtt, intval, tsftu;
2480 u_int64_t tsf;
2481
2482 /* extract tstamp from last beacon and convert to TU */
2483 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2484 LE_READ_4(ni->ni_tstamp.data));
2485 /* NB: the beacon interval is kept internally in TU's */
2486 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2487 if (nexttbtt == 0) /* e.g. for ap mode */
2488 nexttbtt = intval;
2489 else if (intval) /* NB: can be 0 for monitor mode */
2490 nexttbtt = roundup(nexttbtt, intval);
2491 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2492 __func__, nexttbtt, intval, ni->ni_intval);
2493 if (ic->ic_opmode == IEEE80211_M_STA) {
2494 HAL_BEACON_STATE bs;
2495 int dtimperiod, dtimcount;
2496 int cfpperiod, cfpcount;
2497
2498 /*
2499 * Setup dtim and cfp parameters according to
2500 * last beacon we received (which may be none).
2501 */
2502 dtimperiod = ni->ni_dtim_period;
2503 if (dtimperiod <= 0) /* NB: 0 if not known */
2504 dtimperiod = 1;
2505 dtimcount = ni->ni_dtim_count;
2506 if (dtimcount >= dtimperiod) /* NB: sanity check */
2507 dtimcount = 0; /* XXX? */
2508 cfpperiod = 1; /* NB: no PCF support yet */
2509 cfpcount = 0;
2510 /*
2511 * Pull nexttbtt forward to reflect the current
2512 * TSF and calculate dtim+cfp state for the result.
2513 */
2514 tsf = ath_hal_gettsf64(ah);
2515 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2516 do {
2517 nexttbtt += intval;
2518 if (--dtimcount < 0) {
2519 dtimcount = dtimperiod - 1;
2520 if (--cfpcount < 0)
2521 cfpcount = cfpperiod - 1;
2522 }
2523 } while (nexttbtt < tsftu);
2524 memset(&bs, 0, sizeof(bs));
2525 bs.bs_intval = intval;
2526 bs.bs_nexttbtt = nexttbtt;
2527 bs.bs_dtimperiod = dtimperiod*intval;
2528 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2529 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2530 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2531 bs.bs_cfpmaxduration = 0;
2532 #if 0
2533 /*
2534 * The 802.11 layer records the offset to the DTIM
2535 * bitmap while receiving beacons; use it here to
2536 * enable h/w detection of our AID being marked in
2537 * the bitmap vector (to indicate frames for us are
2538 * pending at the AP).
2539 * XXX do DTIM handling in s/w to WAR old h/w bugs
2540 * XXX enable based on h/w rev for newer chips
2541 */
2542 bs.bs_timoffset = ni->ni_timoff;
2543 #endif
2544 /*
2545 * Calculate the number of consecutive beacons to miss
2546 * before taking a BMISS interrupt. The configuration
2547 * is specified in ms, so we need to convert that to
2548 * TU's and then calculate based on the beacon interval.
2549 * Note that we clamp the result to at most 10 beacons.
2550 */
2551 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2552 if (bs.bs_bmissthreshold > 10)
2553 bs.bs_bmissthreshold = 10;
2554 else if (bs.bs_bmissthreshold <= 0)
2555 bs.bs_bmissthreshold = 1;
2556
2557 /*
2558 * Calculate sleep duration. The configuration is
2559 * given in ms. We insure a multiple of the beacon
2560 * period is used. Also, if the sleep duration is
2561 * greater than the DTIM period then it makes senses
2562 * to make it a multiple of that.
2563 *
2564 * XXX fixed at 100ms
2565 */
2566 bs.bs_sleepduration =
2567 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2568 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2569 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2570
2571 DPRINTF(sc, ATH_DEBUG_BEACON,
2572 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2573 , __func__
2574 , tsf, tsftu
2575 , bs.bs_intval
2576 , bs.bs_nexttbtt
2577 , bs.bs_dtimperiod
2578 , bs.bs_nextdtim
2579 , bs.bs_bmissthreshold
2580 , bs.bs_sleepduration
2581 , bs.bs_cfpperiod
2582 , bs.bs_cfpmaxduration
2583 , bs.bs_cfpnext
2584 , bs.bs_timoffset
2585 );
2586 ath_hal_intrset(ah, 0);
2587 ath_hal_beacontimers(ah, &bs);
2588 sc->sc_imask |= HAL_INT_BMISS;
2589 ath_hal_intrset(ah, sc->sc_imask);
2590 } else {
2591 ath_hal_intrset(ah, 0);
2592 if (nexttbtt == intval)
2593 intval |= HAL_BEACON_RESET_TSF;
2594 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2595 /*
2596 * In IBSS mode enable the beacon timers but only
2597 * enable SWBA interrupts if we need to manually
2598 * prepare beacon frames. Otherwise we use a
2599 * self-linked tx descriptor and let the hardware
2600 * deal with things.
2601 */
2602 intval |= HAL_BEACON_ENA;
2603 if (!sc->sc_hasveol)
2604 sc->sc_imask |= HAL_INT_SWBA;
2605 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2606 /*
2607 * Pull nexttbtt forward to reflect
2608 * the current TSF.
2609 */
2610 tsf = ath_hal_gettsf64(ah);
2611 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2612 do {
2613 nexttbtt += intval;
2614 } while (nexttbtt < tsftu);
2615 }
2616 ath_beaconq_config(sc);
2617 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2618 /*
2619 * In AP mode we enable the beacon timers and
2620 * SWBA interrupts to prepare beacon frames.
2621 */
2622 intval |= HAL_BEACON_ENA;
2623 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2624 ath_beaconq_config(sc);
2625 }
2626 ath_hal_beaconinit(ah, nexttbtt, intval);
2627 sc->sc_bmisscount = 0;
2628 ath_hal_intrset(ah, sc->sc_imask);
2629 /*
2630 * When using a self-linked beacon descriptor in
2631 * ibss mode load it once here.
2632 */
2633 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2634 ath_beacon_proc(sc, 0);
2635 }
2636 sc->sc_syncbeacon = 0;
2637 #undef UNDEF
2638 #undef TSF_TO_TU
2639 }
2640
2641 static int
2642 ath_descdma_setup(struct ath_softc *sc,
2643 struct ath_descdma *dd, ath_bufhead *head,
2644 const char *name, int nbuf, int ndesc)
2645 {
2646 #define DS2PHYS(_dd, _ds) \
2647 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2648 struct ifnet *ifp = &sc->sc_if;
2649 struct ath_desc *ds;
2650 struct ath_buf *bf;
2651 int i, bsize, error;
2652
2653 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2654 __func__, name, nbuf, ndesc);
2655
2656 dd->dd_name = name;
2657 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2658
2659 /*
2660 * Setup DMA descriptor area.
2661 */
2662 dd->dd_dmat = sc->sc_dmat;
2663
2664 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2665 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2666
2667 if (error != 0) {
2668 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2669 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2670 goto fail0;
2671 }
2672
2673 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2674 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2675 if (error != 0) {
2676 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2677 nbuf * ndesc, dd->dd_name, error);
2678 goto fail1;
2679 }
2680
2681 /* allocate descriptors */
2682 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2683 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2684 if (error != 0) {
2685 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2686 "error %u\n", dd->dd_name, error);
2687 goto fail2;
2688 }
2689
2690 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2691 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2692 if (error != 0) {
2693 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2694 dd->dd_name, error);
2695 goto fail3;
2696 }
2697
2698 ds = dd->dd_desc;
2699 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2700 DPRINTF(sc, ATH_DEBUG_RESET,
2701 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2702 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2703 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2704
2705 /* allocate rx buffers */
2706 bsize = sizeof(struct ath_buf) * nbuf;
2707 bf = malloc(bsize, M_ATHDEV, M_WAITOK | M_ZERO);
2708 dd->dd_bufptr = bf;
2709
2710 STAILQ_INIT(head);
2711 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2712 bf->bf_desc = ds;
2713 bf->bf_daddr = DS2PHYS(dd, ds);
2714 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2715 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2716 if (error != 0) {
2717 if_printf(ifp, "unable to create dmamap for %s "
2718 "buffer %u, error %u\n", dd->dd_name, i, error);
2719 ath_descdma_cleanup(sc, dd, head);
2720 return error;
2721 }
2722 STAILQ_INSERT_TAIL(head, bf, bf_list);
2723 }
2724 return 0;
2725 fail3:
2726 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2727 fail2:
2728 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2729 fail1:
2730 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2731 fail0:
2732 memset(dd, 0, sizeof(*dd));
2733 return error;
2734 #undef DS2PHYS
2735 }
2736
2737 static void
2738 ath_descdma_cleanup(struct ath_softc *sc,
2739 struct ath_descdma *dd, ath_bufhead *head)
2740 {
2741 struct ath_buf *bf;
2742 struct ieee80211_node *ni;
2743
2744 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2745 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2746 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2747 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2748
2749 STAILQ_FOREACH(bf, head, bf_list) {
2750 if (bf->bf_m) {
2751 m_freem(bf->bf_m);
2752 bf->bf_m = NULL;
2753 }
2754 if (bf->bf_dmamap != NULL) {
2755 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2756 bf->bf_dmamap = NULL;
2757 }
2758 ni = bf->bf_node;
2759 bf->bf_node = NULL;
2760 if (ni != NULL) {
2761 /*
2762 * Reclaim node reference.
2763 */
2764 ieee80211_free_node(ni);
2765 }
2766 }
2767
2768 STAILQ_INIT(head);
2769 free(dd->dd_bufptr, M_ATHDEV);
2770 memset(dd, 0, sizeof(*dd));
2771 }
2772
2773 static int
2774 ath_desc_alloc(struct ath_softc *sc)
2775 {
2776 int error;
2777
2778 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2779 "rx", ath_rxbuf, 1);
2780 if (error != 0)
2781 return error;
2782
2783 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2784 "tx", ath_txbuf, ATH_TXDESC);
2785 if (error != 0) {
2786 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2787 return error;
2788 }
2789
2790 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2791 "beacon", 1, 1);
2792 if (error != 0) {
2793 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2794 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2795 return error;
2796 }
2797 return 0;
2798 }
2799
2800 static void
2801 ath_desc_free(struct ath_softc *sc)
2802 {
2803
2804 if (sc->sc_bdma.dd_desc_len != 0)
2805 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2806 if (sc->sc_txdma.dd_desc_len != 0)
2807 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2808 if (sc->sc_rxdma.dd_desc_len != 0)
2809 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2810 }
2811
2812 static struct ieee80211_node *
2813 ath_node_alloc(struct ieee80211_node_table *nt)
2814 {
2815 struct ieee80211com *ic = nt->nt_ic;
2816 struct ath_softc *sc = ic->ic_ifp->if_softc;
2817 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2818 struct ath_node *an;
2819
2820 an = malloc(space, M_80211_NODE, M_NOWAIT | M_ZERO);
2821 if (an == NULL) {
2822 /* XXX stat+msg */
2823 return NULL;
2824 }
2825 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2826 ath_rate_node_init(sc, an);
2827
2828 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2829 return &an->an_node;
2830 }
2831
2832 static void
2833 ath_node_free(struct ieee80211_node *ni)
2834 {
2835 struct ieee80211com *ic = ni->ni_ic;
2836 struct ath_softc *sc = ic->ic_ifp->if_softc;
2837
2838 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2839
2840 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2841 sc->sc_node_free(ni);
2842 }
2843
2844 static u_int8_t
2845 ath_node_getrssi(const struct ieee80211_node *ni)
2846 {
2847 #define HAL_EP_RND(x, mul) \
2848 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2849 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2850 int32_t rssi;
2851
2852 /*
2853 * When only one frame is received there will be no state in
2854 * avgrssi so fallback on the value recorded by the 802.11 layer.
2855 */
2856 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2857 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2858 else
2859 rssi = ni->ni_rssi;
2860 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2861 #undef HAL_EP_RND
2862 }
2863
2864 static int
2865 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2866 {
2867 struct ath_hal *ah = sc->sc_ah;
2868 int error;
2869 struct mbuf *m;
2870 struct ath_desc *ds;
2871
2872 m = bf->bf_m;
2873 if (m == NULL) {
2874 /*
2875 * NB: by assigning a page to the rx dma buffer we
2876 * implicitly satisfy the Atheros requirement that
2877 * this buffer be cache-line-aligned and sized to be
2878 * multiple of the cache line size. Not doing this
2879 * causes weird stuff to happen (for the 5210 at least).
2880 */
2881 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2882 if (m == NULL) {
2883 DPRINTF(sc, ATH_DEBUG_ANY,
2884 "%s: no mbuf/cluster\n", __func__);
2885 sc->sc_stats.ast_rx_nombuf++;
2886 return ENOMEM;
2887 }
2888 bf->bf_m = m;
2889 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2890
2891 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2892 bf->bf_dmamap, m,
2893 BUS_DMA_NOWAIT);
2894 if (error != 0) {
2895 DPRINTF(sc, ATH_DEBUG_ANY,
2896 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2897 __func__, error);
2898 sc->sc_stats.ast_rx_busdma++;
2899 return error;
2900 }
2901 KASSERTMSG(bf->bf_nseg == 1,
2902 "multi-segment packet; nseg %u", bf->bf_nseg);
2903 }
2904 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2905 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2906
2907 /*
2908 * Setup descriptors. For receive we always terminate
2909 * the descriptor list with a self-linked entry so we'll
2910 * not get overrun under high load (as can happen with a
2911 * 5212 when ANI processing enables PHY error frames).
2912 *
2913 * To insure the last descriptor is self-linked we create
2914 * each descriptor as self-linked and add it to the end. As
2915 * each additional descriptor is added the previous self-linked
2916 * entry is ``fixed'' naturally. This should be safe even
2917 * if DMA is happening. When processing RX interrupts we
2918 * never remove/process the last, self-linked, entry on the
2919 * descriptor list. This insures the hardware always has
2920 * someplace to write a new frame.
2921 */
2922 ds = bf->bf_desc;
2923 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2924 ds->ds_data = bf->bf_segs[0].ds_addr;
2925 /* ds->ds_vdata = mtod(m, void *); for radar */
2926 ath_hal_setuprxdesc(ah, ds
2927 , m->m_len /* buffer size */
2928 , 0
2929 );
2930
2931 if (sc->sc_rxlink != NULL)
2932 *sc->sc_rxlink = bf->bf_daddr;
2933 sc->sc_rxlink = &ds->ds_link;
2934 return 0;
2935 }
2936
2937 /*
2938 * Extend 15-bit time stamp from rx descriptor to
2939 * a full 64-bit TSF using the specified TSF.
2940 */
2941 static inline u_int64_t
2942 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2943 {
2944 if ((tsf & 0x7fff) < rstamp)
2945 tsf -= 0x8000;
2946 return ((tsf &~ 0x7fff) | rstamp);
2947 }
2948
2949 /*
2950 * Intercept management frames to collect beacon rssi data
2951 * and to do ibss merges.
2952 */
2953 static void
2954 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2955 struct ieee80211_node *ni,
2956 int subtype, int rssi, u_int32_t rstamp)
2957 {
2958 struct ath_softc *sc = ic->ic_ifp->if_softc;
2959
2960 /*
2961 * Call up first so subsequent work can use information
2962 * potentially stored in the node (e.g. for ibss merge).
2963 */
2964 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2965 switch (subtype) {
2966 case IEEE80211_FC0_SUBTYPE_BEACON:
2967 /* update rssi statistics for use by the hal */
2968 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2969 if (sc->sc_syncbeacon &&
2970 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2971 /*
2972 * Resync beacon timers using the tsf of the beacon
2973 * frame we just received.
2974 */
2975 ath_beacon_config(sc);
2976 }
2977 /* fall thru... */
2978 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2979 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2980 ic->ic_state == IEEE80211_S_RUN) {
2981 u_int64_t tsf = ath_extend_tsf(rstamp,
2982 ath_hal_gettsf64(sc->sc_ah));
2983
2984 /*
2985 * Handle ibss merge as needed; check the tsf on the
2986 * frame before attempting the merge. The 802.11 spec
2987 * says the station should change its bssid to match
2988 * the oldest station with the same ssid, where oldest
2989 * is determined by the tsf. Note that hardware
2990 * reconfiguration happens through callback to
2991 * ath_newstate as the state machine will go from
2992 * RUN -> RUN when this happens.
2993 */
2994 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2995 DPRINTF(sc, ATH_DEBUG_STATE,
2996 "ibss merge, rstamp %u tsf %ju "
2997 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2998 (uintmax_t)ni->ni_tstamp.tsf);
2999 (void) ieee80211_ibss_merge(ni);
3000 }
3001 }
3002 break;
3003 }
3004 }
3005
3006 /*
3007 * Set the default antenna.
3008 */
3009 static void
3010 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3011 {
3012 struct ath_hal *ah = sc->sc_ah;
3013
3014 /* XXX block beacon interrupts */
3015 ath_hal_setdefantenna(ah, antenna);
3016 if (sc->sc_defant != antenna)
3017 sc->sc_stats.ast_ant_defswitch++;
3018 sc->sc_defant = antenna;
3019 sc->sc_rxotherant = 0;
3020 }
3021
3022 static void
3023 ath_handle_micerror(struct ieee80211com *ic,
3024 struct ieee80211_frame *wh, int keyix)
3025 {
3026 struct ieee80211_node *ni;
3027
3028 /* XXX recheck MIC to deal w/ chips that lie */
3029 /* XXX discard MIC errors on !data frames */
3030 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
3031 if (ni != NULL) {
3032 ieee80211_notify_michael_failure(ic, wh, keyix);
3033 ieee80211_free_node(ni);
3034 }
3035 }
3036
3037 static void
3038 ath_rx_proc(void *arg, int npending)
3039 {
3040 #define PA2DESC(_sc, _pa) \
3041 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
3042 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3043 struct ath_softc *sc = arg;
3044 struct ath_buf *bf;
3045 struct ieee80211com *ic = &sc->sc_ic;
3046 struct ifnet *ifp = &sc->sc_if;
3047 struct ath_hal *ah = sc->sc_ah;
3048 struct ath_desc *ds;
3049 struct mbuf *m;
3050 struct ieee80211_node *ni;
3051 struct ath_node *an;
3052 int len, ngood, type;
3053 u_int phyerr;
3054 HAL_STATUS status;
3055 int16_t nf;
3056 u_int64_t tsf;
3057 uint8_t rxerr_tap, rxerr_mon;
3058 NET_LOCK_GIANT_FUNC_INIT();
3059
3060 NET_LOCK_GIANT(); /* XXX */
3061
3062 rxerr_tap =
3063 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3064
3065 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3066 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3067 else if (ifp->if_flags & IFF_PROMISC)
3068 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3069
3070 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3071 ngood = 0;
3072 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3073 tsf = ath_hal_gettsf64(ah);
3074 do {
3075 bf = STAILQ_FIRST(&sc->sc_rxbuf);
3076 if (bf == NULL) { /* NB: shouldn't happen */
3077 if_printf(ifp, "%s: no buffer!\n", __func__);
3078 break;
3079 }
3080 ds = bf->bf_desc;
3081 if (ds->ds_link == bf->bf_daddr) {
3082 /* NB: never process the self-linked entry at the end */
3083 break;
3084 }
3085 m = bf->bf_m;
3086 if (m == NULL) { /* NB: shouldn't happen */
3087 if_printf(ifp, "%s: no mbuf!\n", __func__);
3088 break;
3089 }
3090 /* XXX sync descriptor memory */
3091 /*
3092 * Must provide the virtual address of the current
3093 * descriptor, the physical address, and the virtual
3094 * address of the next descriptor in the h/w chain.
3095 * This allows the HAL to look ahead to see if the
3096 * hardware is done with a descriptor by checking the
3097 * done bit in the following descriptor and the address
3098 * of the current descriptor the DMA engine is working
3099 * on. All this is necessary because of our use of
3100 * a self-linked list to avoid rx overruns.
3101 */
3102 status = ath_hal_rxprocdesc(ah, ds,
3103 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3104 &ds->ds_rxstat);
3105 #ifdef AR_DEBUG
3106 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3107 ath_printrxbuf(bf, status == HAL_OK);
3108 #endif
3109 if (status == HAL_EINPROGRESS)
3110 break;
3111 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3112 if (ds->ds_rxstat.rs_more) {
3113 /*
3114 * Frame spans multiple descriptors; this
3115 * cannot happen yet as we don't support
3116 * jumbograms. If not in monitor mode,
3117 * discard the frame.
3118 */
3119 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3120 sc->sc_stats.ast_rx_toobig++;
3121 goto rx_next;
3122 }
3123 /* fall thru for monitor mode handling... */
3124 } else if (ds->ds_rxstat.rs_status != 0) {
3125 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3126 sc->sc_stats.ast_rx_crcerr++;
3127 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3128 sc->sc_stats.ast_rx_fifoerr++;
3129 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3130 sc->sc_stats.ast_rx_phyerr++;
3131 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3132 sc->sc_stats.ast_rx_phy[phyerr]++;
3133 goto rx_next;
3134 }
3135 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3136 /*
3137 * Decrypt error. If the error occurred
3138 * because there was no hardware key, then
3139 * let the frame through so the upper layers
3140 * can process it. This is necessary for 5210
3141 * parts which have no way to setup a ``clear''
3142 * key cache entry.
3143 *
3144 * XXX do key cache faulting
3145 */
3146 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3147 goto rx_accept;
3148 sc->sc_stats.ast_rx_badcrypt++;
3149 }
3150 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3151 sc->sc_stats.ast_rx_badmic++;
3152 /*
3153 * Do minimal work required to hand off
3154 * the 802.11 header for notifcation.
3155 */
3156 /* XXX frag's and qos frames */
3157 len = ds->ds_rxstat.rs_datalen;
3158 if (len >= sizeof (struct ieee80211_frame)) {
3159 bus_dmamap_sync(sc->sc_dmat,
3160 bf->bf_dmamap,
3161 0, bf->bf_dmamap->dm_mapsize,
3162 BUS_DMASYNC_POSTREAD);
3163 ath_handle_micerror(ic,
3164 mtod(m, struct ieee80211_frame *),
3165 sc->sc_splitmic ?
3166 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3167 }
3168 }
3169 if_statinc(ifp, if_ierrors);
3170 /*
3171 * Reject error frames, we normally don't want
3172 * to see them in monitor mode (in monitor mode
3173 * allow through packets that have crypto problems).
3174 */
3175
3176 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3177 goto rx_next;
3178 }
3179 rx_accept:
3180 /*
3181 * Sync and unmap the frame. At this point we're
3182 * committed to passing the mbuf somewhere so clear
3183 * bf_m; this means a new sk_buff must be allocated
3184 * when the rx descriptor is setup again to receive
3185 * another frame.
3186 */
3187 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3188 0, bf->bf_dmamap->dm_mapsize,
3189 BUS_DMASYNC_POSTREAD);
3190 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3191 bf->bf_m = NULL;
3192
3193 m_set_rcvif(m, ifp);
3194 len = ds->ds_rxstat.rs_datalen;
3195 m->m_pkthdr.len = m->m_len = len;
3196
3197 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3198
3199 if (sc->sc_drvbpf) {
3200 u_int8_t rix;
3201
3202 /*
3203 * Discard anything shorter than an ack or cts.
3204 */
3205 if (len < IEEE80211_ACK_LEN) {
3206 DPRINTF(sc, ATH_DEBUG_RECV,
3207 "%s: runt packet %d\n",
3208 __func__, len);
3209 sc->sc_stats.ast_rx_tooshort++;
3210 m_freem(m);
3211 goto rx_next;
3212 }
3213 rix = ds->ds_rxstat.rs_rate;
3214 sc->sc_rx_th.wr_tsf = htole64(
3215 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3216 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3217 if (ds->ds_rxstat.rs_status &
3218 (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3219 sc->sc_rx_th.wr_flags |=
3220 IEEE80211_RADIOTAP_F_BADFCS;
3221 }
3222 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3223 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3224 sc->sc_rx_th.wr_antnoise = nf;
3225 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3226
3227 bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3228 sc->sc_rx_th_len, m, BPF_D_IN);
3229 }
3230
3231 if (ds->ds_rxstat.rs_status & rxerr_tap) {
3232 m_freem(m);
3233 goto rx_next;
3234 }
3235 /*
3236 * From this point on we assume the frame is at least
3237 * as large as ieee80211_frame_min; verify that.
3238 */
3239 if (len < IEEE80211_MIN_LEN) {
3240 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3241 __func__, len);
3242 sc->sc_stats.ast_rx_tooshort++;
3243 m_freem(m);
3244 goto rx_next;
3245 }
3246
3247 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3248 ieee80211_dump_pkt(mtod(m, void *), len,
3249 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3250 ds->ds_rxstat.rs_rssi);
3251 }
3252
3253 m_adj(m, -IEEE80211_CRC_LEN);
3254
3255 /*
3256 * Locate the node for sender, track state, and then
3257 * pass the (referenced) node up to the 802.11 layer
3258 * for its use.
3259 */
3260 ni = ieee80211_find_rxnode_withkey(ic,
3261 mtod(m, const struct ieee80211_frame_min *),
3262 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3263 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3264 /*
3265 * Track rx rssi and do any rx antenna management.
3266 */
3267 an = ATH_NODE(ni);
3268 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3269 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3270 /*
3271 * Send frame up for processing.
3272 */
3273 type = ieee80211_input(ic, m, ni,
3274 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3275 ieee80211_free_node(ni);
3276 if (sc->sc_diversity) {
3277 /*
3278 * When using fast diversity, change the default rx
3279 * antenna if diversity chooses the other antenna 3
3280 * times in a row.
3281 */
3282 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3283 if (++sc->sc_rxotherant >= 3)
3284 ath_setdefantenna(sc,
3285 ds->ds_rxstat.rs_antenna);
3286 } else
3287 sc->sc_rxotherant = 0;
3288 }
3289 if (sc->sc_softled) {
3290 /*
3291 * Blink for any data frame. Otherwise do a
3292 * heartbeat-style blink when idle. The latter
3293 * is mainly for station mode where we depend on
3294 * periodic beacon frames to trigger the poll event.
3295 */
3296 if (type == IEEE80211_FC0_TYPE_DATA) {
3297 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3298 ath_led_event(sc, ATH_LED_RX);
3299 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3300 ath_led_event(sc, ATH_LED_POLL);
3301 }
3302 /*
3303 * Arrange to update the last rx timestamp only for
3304 * frames from our ap when operating in station mode.
3305 * This assumes the rx key is always setup when associated.
3306 */
3307 if (ic->ic_opmode == IEEE80211_M_STA &&
3308 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3309 ngood++;
3310 rx_next:
3311 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3312 } while (ath_rxbuf_init(sc, bf) == 0);
3313
3314 /* rx signal state monitoring */
3315 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3316 #if 0
3317 if (ath_hal_radar_event(ah))
3318 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3319 #endif
3320 if (ngood)
3321 sc->sc_lastrx = tsf;
3322
3323 #ifdef __NetBSD__
3324 /* XXX Why isn't this necessary in FreeBSD? */
3325 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3326 ath_start(ifp);
3327 #endif /* __NetBSD__ */
3328
3329 NET_UNLOCK_GIANT(); /* XXX */
3330 #undef PA2DESC
3331 }
3332
3333 /*
3334 * Setup a h/w transmit queue.
3335 */
3336 static struct ath_txq *
3337 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3338 {
3339 #define N(a) (sizeof(a)/sizeof(a[0]))
3340 struct ath_hal *ah = sc->sc_ah;
3341 HAL_TXQ_INFO qi;
3342 int qnum;
3343
3344 memset(&qi, 0, sizeof(qi));
3345 qi.tqi_subtype = subtype;
3346 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3347 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3348 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3349 /*
3350 * Enable interrupts only for EOL and DESC conditions.
3351 * We mark tx descriptors to receive a DESC interrupt
3352 * when a tx queue gets deep; otherwise waiting for the
3353 * EOL to reap descriptors. Note that this is done to
3354 * reduce interrupt load and this only defers reaping
3355 * descriptors, never transmitting frames. Aside from
3356 * reducing interrupts this also permits more concurrency.
3357 * The only potential downside is if the tx queue backs
3358 * up in which case the top half of the kernel may backup
3359 * due to a lack of tx descriptors.
3360 */
3361 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3362 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3363 if (qnum == -1) {
3364 /*
3365 * NB: don't print a message, this happens
3366 * normally on parts with too few tx queues
3367 */
3368 return NULL;
3369 }
3370 if (qnum >= N(sc->sc_txq)) {
3371 device_printf(sc->sc_dev,
3372 "hal qnum %u out of range, max %zu!\n",
3373 qnum, N(sc->sc_txq));
3374 ath_hal_releasetxqueue(ah, qnum);
3375 return NULL;
3376 }
3377 if (!ATH_TXQ_SETUP(sc, qnum)) {
3378 struct ath_txq *txq = &sc->sc_txq[qnum];
3379
3380 txq->axq_qnum = qnum;
3381 txq->axq_depth = 0;
3382 txq->axq_intrcnt = 0;
3383 txq->axq_link = NULL;
3384 STAILQ_INIT(&txq->axq_q);
3385 ATH_TXQ_LOCK_INIT(sc, txq);
3386 sc->sc_txqsetup |= 1<<qnum;
3387 }
3388 return &sc->sc_txq[qnum];
3389 #undef N
3390 }
3391
3392 /*
3393 * Setup a hardware data transmit queue for the specified
3394 * access control. The hal may not support all requested
3395 * queues in which case it will return a reference to a
3396 * previously setup queue. We record the mapping from ac's
3397 * to h/w queues for use by ath_tx_start and also track
3398 * the set of h/w queues being used to optimize work in the
3399 * transmit interrupt handler and related routines.
3400 */
3401 static int
3402 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3403 {
3404 #define N(a) (sizeof(a)/sizeof(a[0]))
3405 struct ath_txq *txq;
3406
3407 if (ac >= N(sc->sc_ac2q)) {
3408 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3409 ac, N(sc->sc_ac2q));
3410 return 0;
3411 }
3412 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3413 if (txq != NULL) {
3414 sc->sc_ac2q[ac] = txq;
3415 return 1;
3416 } else
3417 return 0;
3418 #undef N
3419 }
3420
3421 /*
3422 * Update WME parameters for a transmit queue.
3423 */
3424 static int
3425 ath_txq_update(struct ath_softc *sc, int ac)
3426 {
3427 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3428 #define ATH_TXOP_TO_US(v) (v<<5)
3429 struct ieee80211com *ic = &sc->sc_ic;
3430 struct ath_txq *txq = sc->sc_ac2q[ac];
3431 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3432 struct ath_hal *ah = sc->sc_ah;
3433 HAL_TXQ_INFO qi;
3434
3435 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3436 qi.tqi_aifs = wmep->wmep_aifsn;
3437 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3438 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3439 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3440
3441 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3442 device_printf(sc->sc_dev, "unable to update hardware queue "
3443 "parameters for %s traffic!\n",
3444 ieee80211_wme_acnames[ac]);
3445 return 0;
3446 } else {
3447 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3448 return 1;
3449 }
3450 #undef ATH_TXOP_TO_US
3451 #undef ATH_EXPONENT_TO_VALUE
3452 }
3453
3454 /*
3455 * Callback from the 802.11 layer to update WME parameters.
3456 */
3457 static int
3458 ath_wme_update(struct ieee80211com *ic)
3459 {
3460 struct ath_softc *sc = ic->ic_ifp->if_softc;
3461
3462 return !ath_txq_update(sc, WME_AC_BE) ||
3463 !ath_txq_update(sc, WME_AC_BK) ||
3464 !ath_txq_update(sc, WME_AC_VI) ||
3465 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3466 }
3467
3468 /*
3469 * Reclaim resources for a setup queue.
3470 */
3471 static void
3472 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3473 {
3474
3475 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3476 ATH_TXQ_LOCK_DESTROY(txq);
3477 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3478 }
3479
3480 /*
3481 * Reclaim all tx queue resources.
3482 */
3483 static void
3484 ath_tx_cleanup(struct ath_softc *sc)
3485 {
3486 int i;
3487
3488 ATH_TXBUF_LOCK_DESTROY(sc);
3489 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3490 if (ATH_TXQ_SETUP(sc, i))
3491 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3492 }
3493
3494 /*
3495 * Defragment an mbuf chain, returning at most maxfrags separate
3496 * mbufs+clusters. If this is not possible NULL is returned and
3497 * the original mbuf chain is left in its present (potentially
3498 * modified) state. We use two techniques: collapsing consecutive
3499 * mbufs and replacing consecutive mbufs by a cluster.
3500 */
3501 static struct mbuf *
3502 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3503 {
3504 struct mbuf *m, *n, *n2, **prev;
3505 u_int curfrags;
3506
3507 /*
3508 * Calculate the current number of frags.
3509 */
3510 curfrags = 0;
3511 for (m = m0; m != NULL; m = m->m_next)
3512 curfrags++;
3513 /*
3514 * First, try to collapse mbufs. Note that we always collapse
3515 * towards the front so we don't need to deal with moving the
3516 * pkthdr. This may be suboptimal if the first mbuf has much
3517 * less data than the following.
3518 */
3519 m = m0;
3520 again:
3521 for (;;) {
3522 n = m->m_next;
3523 if (n == NULL)
3524 break;
3525 if (n->m_len < M_TRAILINGSPACE(m)) {
3526 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3527 n->m_len);
3528 m->m_len += n->m_len;
3529 m->m_next = n->m_next;
3530 m_free(n);
3531 if (--curfrags <= maxfrags)
3532 return m0;
3533 } else
3534 m = n;
3535 }
3536 KASSERTMSG(maxfrags > 1,
3537 "maxfrags %u, but normal collapse failed", maxfrags);
3538 /*
3539 * Collapse consecutive mbufs to a cluster.
3540 */
3541 prev = &m0->m_next; /* NB: not the first mbuf */
3542 while ((n = *prev) != NULL) {
3543 if ((n2 = n->m_next) != NULL &&
3544 n->m_len + n2->m_len < MCLBYTES) {
3545 m = m_getcl(how, MT_DATA, 0);
3546 if (m == NULL)
3547 goto bad;
3548 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3549 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3550 n2->m_len);
3551 m->m_len = n->m_len + n2->m_len;
3552 m->m_next = n2->m_next;
3553 *prev = m;
3554 m_free(n);
3555 m_free(n2);
3556 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3557 return m0;
3558 /*
3559 * Still not there, try the normal collapse
3560 * again before we allocate another cluster.
3561 */
3562 goto again;
3563 }
3564 prev = &n->m_next;
3565 }
3566 /*
3567 * No place where we can collapse to a cluster; punt.
3568 * This can occur if, for example, you request 2 frags
3569 * but the packet requires that both be clusters (we
3570 * never reallocate the first mbuf to avoid moving the
3571 * packet header).
3572 */
3573 bad:
3574 return NULL;
3575 }
3576
3577 /*
3578 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3579 */
3580 static int
3581 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3582 {
3583 int i;
3584
3585 for (i = 0; i < rt->rateCount; i++)
3586 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3587 return i;
3588 return 0; /* NB: lowest rate */
3589 }
3590
3591 static void
3592 ath_freetx(struct mbuf *m)
3593 {
3594 struct mbuf *next;
3595
3596 do {
3597 next = m->m_nextpkt;
3598 m->m_nextpkt = NULL;
3599 m_freem(m);
3600 } while ((m = next) != NULL);
3601 }
3602
3603 static int
3604 deduct_pad_bytes(int len, int hdrlen)
3605 {
3606 /* XXX I am suspicious that this code, which I extracted
3607 * XXX from ath_tx_start() for reuse, does the right thing.
3608 */
3609 return len - (hdrlen & 3);
3610 }
3611
3612 static int
3613 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3614 struct mbuf *m0)
3615 {
3616 struct ieee80211com *ic = &sc->sc_ic;
3617 struct ath_hal *ah = sc->sc_ah;
3618 struct ifnet *ifp = &sc->sc_if;
3619 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3620 int i, error, iswep, ismcast, isfrag, ismrr;
3621 int keyix, hdrlen, pktlen, try0;
3622 u_int8_t rix, txrate, ctsrate;
3623 u_int8_t cix = 0xff; /* NB: silence compiler */
3624 struct ath_desc *ds, *ds0;
3625 struct ath_txq *txq;
3626 struct ieee80211_frame *wh;
3627 u_int subtype, flags, ctsduration;
3628 HAL_PKT_TYPE atype;
3629 const HAL_RATE_TABLE *rt;
3630 HAL_BOOL shortPreamble;
3631 struct ath_node *an;
3632 struct mbuf *m;
3633 u_int pri;
3634
3635 wh = mtod(m0, struct ieee80211_frame *);
3636 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3637 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3638 isfrag = m0->m_flags & M_FRAG;
3639 hdrlen = ieee80211_anyhdrsize(wh);
3640 /*
3641 * Packet length must not include any
3642 * pad bytes; deduct them here.
3643 */
3644 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3645
3646 if (iswep) {
3647 const struct ieee80211_cipher *cip;
3648 struct ieee80211_key *k;
3649
3650 /*
3651 * Construct the 802.11 header+trailer for an encrypted
3652 * frame. The only reason this can fail is because of an
3653 * unknown or unsupported cipher/key type.
3654 */
3655 k = ieee80211_crypto_encap(ic, ni, m0);
3656 if (k == NULL) {
3657 /*
3658 * This can happen when the key is yanked after the
3659 * frame was queued. Just discard the frame; the
3660 * 802.11 layer counts failures and provides
3661 * debugging/diagnostics.
3662 */
3663 ath_freetx(m0);
3664 return EIO;
3665 }
3666 /*
3667 * Adjust the packet + header lengths for the crypto
3668 * additions and calculate the h/w key index. When
3669 * a s/w mic is done the frame will have had any mic
3670 * added to it prior to entry so m0->m_pkthdr.len above will
3671 * account for it. Otherwise we need to add it to the
3672 * packet length.
3673 */
3674 cip = k->wk_cipher;
3675 hdrlen += cip->ic_header;
3676 pktlen += cip->ic_header + cip->ic_trailer;
3677 /* NB: frags always have any TKIP MIC done in s/w */
3678 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3679 pktlen += cip->ic_miclen;
3680 keyix = k->wk_keyix;
3681
3682 /* packet header may have moved, reset our local pointer */
3683 wh = mtod(m0, struct ieee80211_frame *);
3684 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3685 /*
3686 * Use station key cache slot, if assigned.
3687 */
3688 keyix = ni->ni_ucastkey.wk_keyix;
3689 if (keyix == IEEE80211_KEYIX_NONE)
3690 keyix = HAL_TXKEYIX_INVALID;
3691 } else
3692 keyix = HAL_TXKEYIX_INVALID;
3693
3694 pktlen += IEEE80211_CRC_LEN;
3695
3696 /*
3697 * Load the DMA map so any coalescing is done. This
3698 * also calculates the number of descriptors we need.
3699 */
3700 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3701 BUS_DMA_NOWAIT);
3702 if (error == EFBIG) {
3703 /* XXX packet requires too many descriptors */
3704 bf->bf_nseg = ATH_TXDESC+1;
3705 } else if (error != 0) {
3706 sc->sc_stats.ast_tx_busdma++;
3707 ath_freetx(m0);
3708 return error;
3709 }
3710 /*
3711 * Discard null packets and check for packets that
3712 * require too many TX descriptors. We try to convert
3713 * the latter to a cluster.
3714 */
3715 if (error == EFBIG) { /* too many desc's, linearize */
3716 sc->sc_stats.ast_tx_linear++;
3717 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3718 if (m == NULL) {
3719 ath_freetx(m0);
3720 sc->sc_stats.ast_tx_nombuf++;
3721 return ENOMEM;
3722 }
3723 m0 = m;
3724 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3725 BUS_DMA_NOWAIT);
3726 if (error != 0) {
3727 sc->sc_stats.ast_tx_busdma++;
3728 ath_freetx(m0);
3729 return error;
3730 }
3731 KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
3732 "too many segments after defrag; nseg %u", bf->bf_nseg);
3733 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3734 sc->sc_stats.ast_tx_nodata++;
3735 ath_freetx(m0);
3736 return EIO;
3737 }
3738 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3739 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3740 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3741 bf->bf_m = m0;
3742 bf->bf_node = ni; /* NB: held reference */
3743
3744 /* setup descriptors */
3745 ds = bf->bf_desc;
3746 rt = sc->sc_currates;
3747 KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
3748
3749 /*
3750 * NB: the 802.11 layer marks whether or not we should
3751 * use short preamble based on the current mode and
3752 * negotiated parameters.
3753 */
3754 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3755 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3756 shortPreamble = AH_TRUE;
3757 sc->sc_stats.ast_tx_shortpre++;
3758 } else {
3759 shortPreamble = AH_FALSE;
3760 }
3761
3762 an = ATH_NODE(ni);
3763 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3764 ismrr = 0; /* default no multi-rate retry*/
3765 /*
3766 * Calculate Atheros packet type from IEEE80211 packet header,
3767 * setup for rate calculations, and select h/w transmit queue.
3768 */
3769 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3770 case IEEE80211_FC0_TYPE_MGT:
3771 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3772 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3773 atype = HAL_PKT_TYPE_BEACON;
3774 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3775 atype = HAL_PKT_TYPE_PROBE_RESP;
3776 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3777 atype = HAL_PKT_TYPE_ATIM;
3778 else
3779 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3780 rix = sc->sc_minrateix;
3781 txrate = rt->info[rix].rateCode;
3782 if (shortPreamble)
3783 txrate |= rt->info[rix].shortPreamble;
3784 try0 = ATH_TXMGTTRY;
3785 /* NB: force all management frames to highest queue */
3786 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3787 /* NB: force all management frames to highest queue */
3788 pri = WME_AC_VO;
3789 } else
3790 pri = WME_AC_BE;
3791 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3792 break;
3793 case IEEE80211_FC0_TYPE_CTL:
3794 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3795 rix = sc->sc_minrateix;
3796 txrate = rt->info[rix].rateCode;
3797 if (shortPreamble)
3798 txrate |= rt->info[rix].shortPreamble;
3799 try0 = ATH_TXMGTTRY;
3800 /* NB: force all ctl frames to highest queue */
3801 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3802 /* NB: force all ctl frames to highest queue */
3803 pri = WME_AC_VO;
3804 } else
3805 pri = WME_AC_BE;
3806 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3807 break;
3808 case IEEE80211_FC0_TYPE_DATA:
3809 atype = HAL_PKT_TYPE_NORMAL; /* default */
3810 /*
3811 * Data frames: multicast frames go out at a fixed rate,
3812 * otherwise consult the rate control module for the
3813 * rate to use.
3814 */
3815 if (ismcast) {
3816 /*
3817 * Check mcast rate setting in case it's changed.
3818 * XXX move out of fastpath
3819 */
3820 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3821 sc->sc_mcastrix =
3822 ath_tx_findrix(rt, ic->ic_mcast_rate);
3823 sc->sc_mcastrate = ic->ic_mcast_rate;
3824 }
3825 rix = sc->sc_mcastrix;
3826 txrate = rt->info[rix].rateCode;
3827 try0 = 1;
3828 } else {
3829 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3830 &rix, &try0, &txrate);
3831 sc->sc_txrate = txrate; /* for LED blinking */
3832 if (try0 != ATH_TXMAXTRY)
3833 ismrr = 1;
3834 }
3835 pri = M_WME_GETAC(m0);
3836 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3837 flags |= HAL_TXDESC_NOACK;
3838 break;
3839 default:
3840 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3841 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3842 /* XXX statistic */
3843 ath_freetx(m0);
3844 return EIO;
3845 }
3846 txq = sc->sc_ac2q[pri];
3847
3848 /*
3849 * When servicing one or more stations in power-save mode
3850 * multicast frames must be buffered until after the beacon.
3851 * We use the CAB queue for that.
3852 */
3853 if (ismcast && ic->ic_ps_sta) {
3854 txq = sc->sc_cabq;
3855 /* XXX? more bit in 802.11 frame header */
3856 }
3857
3858 /*
3859 * Calculate miscellaneous flags.
3860 */
3861 if (ismcast) {
3862 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3863 } else if (pktlen > ic->ic_rtsthreshold) {
3864 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3865 cix = rt->info[rix].controlRate;
3866 sc->sc_stats.ast_tx_rts++;
3867 }
3868 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3869 sc->sc_stats.ast_tx_noack++;
3870
3871 /*
3872 * If 802.11g protection is enabled, determine whether
3873 * to use RTS/CTS or just CTS. Note that this is only
3874 * done for OFDM unicast frames.
3875 */
3876 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3877 rt->info[rix].phy == IEEE80211_T_OFDM &&
3878 (flags & HAL_TXDESC_NOACK) == 0) {
3879 /* XXX fragments must use CCK rates w/ protection */
3880 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3881 flags |= HAL_TXDESC_RTSENA;
3882 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3883 flags |= HAL_TXDESC_CTSENA;
3884 if (isfrag) {
3885 /*
3886 * For frags it would be desirable to use the
3887 * highest CCK rate for RTS/CTS. But stations
3888 * farther away may detect it at a lower CCK rate
3889 * so use the configured protection rate instead
3890 * (for now).
3891 */
3892 cix = rt->info[sc->sc_protrix].controlRate;
3893 } else
3894 cix = rt->info[sc->sc_protrix].controlRate;
3895 sc->sc_stats.ast_tx_protect++;
3896 }
3897
3898 /*
3899 * Calculate duration. This logically belongs in the 802.11
3900 * layer but it lacks sufficient information to calculate it.
3901 */
3902 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3903 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3904 u_int16_t dur;
3905 /*
3906 * XXX not right with fragmentation.
3907 */
3908 if (shortPreamble)
3909 dur = rt->info[rix].spAckDuration;
3910 else
3911 dur = rt->info[rix].lpAckDuration;
3912 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3913 dur += dur; /* additional SIFS+ACK */
3914 KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
3915 /*
3916 * Include the size of next fragment so NAV is
3917 * updated properly. The last fragment uses only
3918 * the ACK duration
3919 */
3920 dur += ath_hal_computetxtime(ah, rt,
3921 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3922 hdrlen) -
3923 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3924 rix, shortPreamble);
3925 }
3926 if (isfrag) {
3927 /*
3928 * Force hardware to use computed duration for next
3929 * fragment by disabling multi-rate retry which updates
3930 * duration based on the multi-rate duration table.
3931 */
3932 try0 = ATH_TXMAXTRY;
3933 }
3934 *(u_int16_t *)wh->i_dur = htole16(dur);
3935 }
3936
3937 /*
3938 * Calculate RTS/CTS rate and duration if needed.
3939 */
3940 ctsduration = 0;
3941 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3942 /*
3943 * CTS transmit rate is derived from the transmit rate
3944 * by looking in the h/w rate table. We must also factor
3945 * in whether or not a short preamble is to be used.
3946 */
3947 /* NB: cix is set above where RTS/CTS is enabled */
3948 KASSERTMSG(cix != 0xff, "cix not setup");
3949 ctsrate = rt->info[cix].rateCode;
3950 /*
3951 * Compute the transmit duration based on the frame
3952 * size and the size of an ACK frame. We call into the
3953 * HAL to do the computation since it depends on the
3954 * characteristics of the actual PHY being used.
3955 *
3956 * NB: CTS is assumed the same size as an ACK so we can
3957 * use the precalculated ACK durations.
3958 */
3959 if (shortPreamble) {
3960 ctsrate |= rt->info[cix].shortPreamble;
3961 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3962 ctsduration += rt->info[cix].spAckDuration;
3963 ctsduration += ath_hal_computetxtime(ah,
3964 rt, pktlen, rix, AH_TRUE);
3965 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3966 ctsduration += rt->info[rix].spAckDuration;
3967 } else {
3968 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3969 ctsduration += rt->info[cix].lpAckDuration;
3970 ctsduration += ath_hal_computetxtime(ah,
3971 rt, pktlen, rix, AH_FALSE);
3972 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3973 ctsduration += rt->info[rix].lpAckDuration;
3974 }
3975 /*
3976 * Must disable multi-rate retry when using RTS/CTS.
3977 */
3978 ismrr = 0;
3979 try0 = ATH_TXMGTTRY; /* XXX */
3980 } else
3981 ctsrate = 0;
3982
3983 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3984 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3985 sc->sc_hwmap[txrate].ieeerate, -1);
3986 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3987 if (sc->sc_drvbpf) {
3988 u_int64_t tsf = ath_hal_gettsf64(ah);
3989
3990 sc->sc_tx_th.wt_tsf = htole64(tsf);
3991 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3992 if (iswep)
3993 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3994 if (isfrag)
3995 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3996 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3997 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3998 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3999
4000 bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0,
4001 BPF_D_OUT);
4002 }
4003
4004 /*
4005 * Determine if a tx interrupt should be generated for
4006 * this descriptor. We take a tx interrupt to reap
4007 * descriptors when the h/w hits an EOL condition or
4008 * when the descriptor is specifically marked to generate
4009 * an interrupt. We periodically mark descriptors in this
4010 * way to insure timely replenishing of the supply needed
4011 * for sending frames. Defering interrupts reduces system
4012 * load and potentially allows more concurrent work to be
4013 * done but if done to aggressively can cause senders to
4014 * backup.
4015 *
4016 * NB: use >= to deal with sc_txintrperiod changing
4017 * dynamically through sysctl.
4018 */
4019 if (flags & HAL_TXDESC_INTREQ) {
4020 txq->axq_intrcnt = 0;
4021 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4022 flags |= HAL_TXDESC_INTREQ;
4023 txq->axq_intrcnt = 0;
4024 }
4025
4026 /*
4027 * Formulate first tx descriptor with tx controls.
4028 */
4029 /* XXX check return value? */
4030 ath_hal_setuptxdesc(ah, ds
4031 , pktlen /* packet length */
4032 , hdrlen /* header length */
4033 , atype /* Atheros packet type */
4034 , ni->ni_txpower /* txpower */
4035 , txrate, try0 /* series 0 rate/tries */
4036 , keyix /* key cache index */
4037 , sc->sc_txantenna /* antenna mode */
4038 , flags /* flags */
4039 , ctsrate /* rts/cts rate */
4040 , ctsduration /* rts/cts duration */
4041 );
4042 bf->bf_flags = flags;
4043 /*
4044 * Setup the multi-rate retry state only when we're
4045 * going to use it. This assumes ath_hal_setuptxdesc
4046 * initializes the descriptors (so we don't have to)
4047 * when the hardware supports multi-rate retry and
4048 * we don't use it.
4049 */
4050 if (ismrr)
4051 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4052
4053 /*
4054 * Fillin the remainder of the descriptor info.
4055 */
4056 ds0 = ds;
4057 for (i = 0; i < bf->bf_nseg; i++, ds++) {
4058 ds->ds_data = bf->bf_segs[i].ds_addr;
4059 if (i == bf->bf_nseg - 1)
4060 ds->ds_link = 0;
4061 else
4062 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4063 ath_hal_filltxdesc(ah, ds
4064 , bf->bf_segs[i].ds_len /* segment length */
4065 , i == 0 /* first segment */
4066 , i == bf->bf_nseg - 1 /* last segment */
4067 , ds0 /* first descriptor */
4068 );
4069
4070 /* NB: The desc swap function becomes void,
4071 * if descriptor swapping is not enabled
4072 */
4073 ath_desc_swap(ds);
4074
4075 DPRINTF(sc, ATH_DEBUG_XMIT,
4076 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
4077 __func__, i, ds->ds_link, ds->ds_data,
4078 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4079 }
4080 /*
4081 * Insert the frame on the outbound list and
4082 * pass it on to the hardware.
4083 */
4084 ATH_TXQ_LOCK(txq);
4085 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4086 if (txq->axq_link == NULL) {
4087 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4088 DPRINTF(sc, ATH_DEBUG_XMIT,
4089 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4090 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4091 txq->axq_depth);
4092 } else {
4093 *txq->axq_link = HTOAH32(bf->bf_daddr);
4094 DPRINTF(sc, ATH_DEBUG_XMIT,
4095 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4096 __func__, txq->axq_qnum, txq->axq_link,
4097 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4098 }
4099 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4100 /*
4101 * The CAB queue is started from the SWBA handler since
4102 * frames only go out on DTIM and to avoid possible races.
4103 */
4104 if (txq != sc->sc_cabq)
4105 ath_hal_txstart(ah, txq->axq_qnum);
4106 ATH_TXQ_UNLOCK(txq);
4107
4108 return 0;
4109 }
4110
4111 /*
4112 * Process completed xmit descriptors from the specified queue.
4113 */
4114 static int
4115 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4116 {
4117 struct ath_hal *ah = sc->sc_ah;
4118 struct ieee80211com *ic = &sc->sc_ic;
4119 struct ath_buf *bf;
4120 struct ath_desc *ds, *ds0;
4121 struct ieee80211_node *ni;
4122 struct ath_node *an;
4123 int sr, lr, pri, nacked;
4124 HAL_STATUS status;
4125
4126 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4127 __func__, txq->axq_qnum,
4128 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4129 txq->axq_link);
4130 nacked = 0;
4131 for (;;) {
4132 ATH_TXQ_LOCK(txq);
4133 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4134 bf = STAILQ_FIRST(&txq->axq_q);
4135 if (bf == NULL) {
4136 txq->axq_link = NULL;
4137 ATH_TXQ_UNLOCK(txq);
4138 break;
4139 }
4140 ds0 = &bf->bf_desc[0];
4141 ds = &bf->bf_desc[bf->bf_nseg - 1];
4142 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4143 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4144 ath_printtxbuf(bf, status == HAL_OK);
4145 if (status == HAL_EINPROGRESS) {
4146 ATH_TXQ_UNLOCK(txq);
4147 break;
4148 }
4149 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4150 ATH_TXQ_UNLOCK(txq);
4151
4152 ni = bf->bf_node;
4153 if (ni != NULL) {
4154 an = ATH_NODE(ni);
4155 if (ds->ds_txstat.ts_status == 0) {
4156 u_int8_t txant = ds->ds_txstat.ts_antenna;
4157 sc->sc_stats.ast_ant_tx[txant]++;
4158 sc->sc_ant_tx[txant]++;
4159 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4160 sc->sc_stats.ast_tx_altrate++;
4161 sc->sc_stats.ast_tx_rssi =
4162 ds->ds_txstat.ts_rssi;
4163 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4164 ds->ds_txstat.ts_rssi);
4165 pri = M_WME_GETAC(bf->bf_m);
4166 if (pri >= WME_AC_VO)
4167 ic->ic_wme.wme_hipri_traffic++;
4168 ni->ni_inact = ni->ni_inact_reload;
4169 } else {
4170 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4171 sc->sc_stats.ast_tx_xretries++;
4172 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4173 sc->sc_stats.ast_tx_fifoerr++;
4174 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4175 sc->sc_stats.ast_tx_filtered++;
4176 }
4177 sr = ds->ds_txstat.ts_shortretry;
4178 lr = ds->ds_txstat.ts_longretry;
4179 sc->sc_stats.ast_tx_shortretry += sr;
4180 sc->sc_stats.ast_tx_longretry += lr;
4181 /*
4182 * Hand the descriptor to the rate control algorithm.
4183 */
4184 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4185 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4186 /*
4187 * If frame was ack'd update the last rx time
4188 * used to workaround phantom bmiss interrupts.
4189 */
4190 if (ds->ds_txstat.ts_status == 0)
4191 nacked++;
4192 ath_rate_tx_complete(sc, an, ds, ds0);
4193 }
4194 /*
4195 * Reclaim reference to node.
4196 *
4197 * NB: the node may be reclaimed here if, for example
4198 * this is a DEAUTH message that was sent and the
4199 * node was timed out due to inactivity.
4200 */
4201 ieee80211_free_node(ni);
4202 }
4203 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4204 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4205 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4206 m_freem(bf->bf_m);
4207 bf->bf_m = NULL;
4208 bf->bf_node = NULL;
4209
4210 ATH_TXBUF_LOCK(sc);
4211 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4212 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4213 ATH_TXBUF_UNLOCK(sc);
4214 }
4215 return nacked;
4216 }
4217
4218 static inline int
4219 txqactive(struct ath_hal *ah, int qnum)
4220 {
4221 u_int32_t txqs = 1<<qnum;
4222 ath_hal_gettxintrtxqs(ah, &txqs);
4223 return (txqs & (1<<qnum));
4224 }
4225
4226 /*
4227 * Deferred processing of transmit interrupt; special-cased
4228 * for a single hardware transmit queue (e.g. 5210 and 5211).
4229 */
4230 static void
4231 ath_tx_proc_q0(void *arg, int npending)
4232 {
4233 struct ath_softc *sc = arg;
4234 struct ifnet *ifp = &sc->sc_if;
4235 #ifdef __NetBSD__
4236 int s;
4237 #endif
4238
4239 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0)
4240 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4241
4242 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4243 ath_tx_processq(sc, sc->sc_cabq);
4244
4245 if (sc->sc_softled)
4246 ath_led_event(sc, ATH_LED_TX);
4247
4248 #ifdef __NetBSD__
4249 s = splnet();
4250 #endif
4251 ath_start(ifp);
4252 #ifdef __NetBSD__
4253 splx(s);
4254 #endif
4255 }
4256
4257 /*
4258 * Deferred processing of transmit interrupt; special-cased
4259 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4260 */
4261 static void
4262 ath_tx_proc_q0123(void *arg, int npending)
4263 {
4264 struct ath_softc *sc = arg;
4265 struct ifnet *ifp = &sc->sc_if;
4266 int nacked;
4267 #ifdef __NetBSD__
4268 int s;
4269 #endif
4270
4271 /*
4272 * Process each active queue.
4273 */
4274 nacked = 0;
4275 if (txqactive(sc->sc_ah, 0))
4276 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4277 if (txqactive(sc->sc_ah, 1))
4278 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4279 if (txqactive(sc->sc_ah, 2))
4280 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4281 if (txqactive(sc->sc_ah, 3))
4282 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4283 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4284 ath_tx_processq(sc, sc->sc_cabq);
4285 if (nacked) {
4286 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4287 }
4288
4289 if (sc->sc_softled)
4290 ath_led_event(sc, ATH_LED_TX);
4291
4292 #ifdef __NetBSD__
4293 s = splnet();
4294 #endif
4295 ath_start(ifp);
4296 #ifdef __NetBSD__
4297 splx(s);
4298 #endif
4299 }
4300
4301 /*
4302 * Deferred processing of transmit interrupt.
4303 */
4304 static void
4305 ath_tx_proc(void *arg, int npending)
4306 {
4307 struct ath_softc *sc = arg;
4308 struct ifnet *ifp = &sc->sc_if;
4309 int i, nacked;
4310 #ifdef __NetBSD__
4311 int s;
4312 #endif
4313
4314 /*
4315 * Process each active queue.
4316 */
4317 nacked = 0;
4318 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4319 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4320 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4321 if (nacked) {
4322 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4323 }
4324
4325 if (sc->sc_softled)
4326 ath_led_event(sc, ATH_LED_TX);
4327
4328 #ifdef __NetBSD__
4329 s = splnet();
4330 #endif
4331 ath_start(ifp);
4332 #ifdef __NetBSD__
4333 splx(s);
4334 #endif
4335 }
4336
4337 static void
4338 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4339 {
4340 struct ath_hal *ah = sc->sc_ah;
4341 struct ieee80211_node *ni;
4342 struct ath_buf *bf;
4343 struct ath_desc *ds;
4344
4345 /*
4346 * NB: this assumes output has been stopped and
4347 * we do not need to block ath_tx_tasklet
4348 */
4349 for (;;) {
4350 ATH_TXQ_LOCK(txq);
4351 bf = STAILQ_FIRST(&txq->axq_q);
4352 if (bf == NULL) {
4353 txq->axq_link = NULL;
4354 ATH_TXQ_UNLOCK(txq);
4355 break;
4356 }
4357 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4358 ATH_TXQ_UNLOCK(txq);
4359 ds = &bf->bf_desc[bf->bf_nseg - 1];
4360 if (sc->sc_debug & ATH_DEBUG_RESET)
4361 ath_printtxbuf(bf,
4362 ath_hal_txprocdesc(ah, bf->bf_desc,
4363 &ds->ds_txstat) == HAL_OK);
4364 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4365 m_freem(bf->bf_m);
4366 bf->bf_m = NULL;
4367 ni = bf->bf_node;
4368 bf->bf_node = NULL;
4369 if (ni != NULL) {
4370 /*
4371 * Reclaim node reference.
4372 */
4373 ieee80211_free_node(ni);
4374 }
4375 ATH_TXBUF_LOCK(sc);
4376 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4377 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4378 ATH_TXBUF_UNLOCK(sc);
4379 }
4380 }
4381
4382 static void
4383 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4384 {
4385 struct ath_hal *ah = sc->sc_ah;
4386
4387 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4388 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4389 __func__, txq->axq_qnum,
4390 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4391 txq->axq_link);
4392 }
4393
4394 /*
4395 * Drain the transmit queues and reclaim resources.
4396 */
4397 static void
4398 ath_draintxq(struct ath_softc *sc)
4399 {
4400 struct ath_hal *ah = sc->sc_ah;
4401 int i;
4402
4403 /* XXX return value */
4404 if (device_is_active(sc->sc_dev)) {
4405 /* don't touch the hardware if marked invalid */
4406 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4407 DPRINTF(sc, ATH_DEBUG_RESET,
4408 "%s: beacon queue %p\n", __func__,
4409 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4410 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4411 if (ATH_TXQ_SETUP(sc, i))
4412 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4413 }
4414 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4415 if (ATH_TXQ_SETUP(sc, i))
4416 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4417 }
4418
4419 /*
4420 * Disable the receive h/w in preparation for a reset.
4421 */
4422 static void
4423 ath_stoprecv(struct ath_softc *sc)
4424 {
4425 #define PA2DESC(_sc, _pa) \
4426 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4427 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4428 struct ath_hal *ah = sc->sc_ah;
4429
4430 ath_hal_stoppcurecv(ah); /* disable PCU */
4431 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4432 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4433 DELAY(3000); /* 3ms is long enough for 1 frame */
4434 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4435 struct ath_buf *bf;
4436
4437 printf("%s: rx queue %p, link %p\n", __func__,
4438 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4439 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4440 struct ath_desc *ds = bf->bf_desc;
4441 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4442 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4443 &ds->ds_rxstat);
4444 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4445 ath_printrxbuf(bf, status == HAL_OK);
4446 }
4447 }
4448 sc->sc_rxlink = NULL; /* just in case */
4449 #undef PA2DESC
4450 }
4451
4452 /*
4453 * Enable the receive h/w following a reset.
4454 */
4455 static int
4456 ath_startrecv(struct ath_softc *sc)
4457 {
4458 struct ath_hal *ah = sc->sc_ah;
4459 struct ath_buf *bf;
4460
4461 sc->sc_rxlink = NULL;
4462 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4463 int error = ath_rxbuf_init(sc, bf);
4464 if (error != 0) {
4465 DPRINTF(sc, ATH_DEBUG_RECV,
4466 "%s: ath_rxbuf_init failed %d\n",
4467 __func__, error);
4468 return error;
4469 }
4470 }
4471
4472 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4473 ath_hal_putrxbuf(ah, bf->bf_daddr);
4474 ath_hal_rxena(ah); /* enable recv descriptors */
4475 ath_mode_init(sc); /* set filters, etc. */
4476 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4477 return 0;
4478 }
4479
4480 /*
4481 * Update internal state after a channel change.
4482 */
4483 static void
4484 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4485 {
4486 struct ieee80211com *ic = &sc->sc_ic;
4487 enum ieee80211_phymode mode;
4488 u_int16_t flags;
4489
4490 /*
4491 * Change channels and update the h/w rate map
4492 * if we're switching; e.g. 11a to 11b/g.
4493 */
4494 mode = ieee80211_chan2mode(ic, chan);
4495 if (mode != sc->sc_curmode)
4496 ath_setcurmode(sc, mode);
4497 /*
4498 * Update BPF state. NB: ethereal et. al. don't handle
4499 * merged flags well so pick a unique mode for their use.
4500 */
4501 if (IEEE80211_IS_CHAN_A(chan))
4502 flags = IEEE80211_CHAN_A;
4503 /* XXX 11g schizophrenia */
4504 else if (IEEE80211_IS_CHAN_G(chan) ||
4505 IEEE80211_IS_CHAN_PUREG(chan))
4506 flags = IEEE80211_CHAN_G;
4507 else
4508 flags = IEEE80211_CHAN_B;
4509 if (IEEE80211_IS_CHAN_T(chan))
4510 flags |= IEEE80211_CHAN_TURBO;
4511 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4512 htole16(chan->ic_freq);
4513 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4514 htole16(flags);
4515 }
4516
4517 #if 0
4518 /*
4519 * Poll for a channel clear indication; this is required
4520 * for channels requiring DFS and not previously visited
4521 * and/or with a recent radar detection.
4522 */
4523 static void
4524 ath_dfswait(void *arg)
4525 {
4526 struct ath_softc *sc = arg;
4527 struct ath_hal *ah = sc->sc_ah;
4528 HAL_CHANNEL hchan;
4529
4530 ath_hal_radar_wait(ah, &hchan);
4531 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4532 if_printf(&sc->sc_if,
4533 "channel %u/0x%x/0x%x has interference\n",
4534 hchan.channel, hchan.channelFlags, hchan.privFlags);
4535 return;
4536 }
4537 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4538 /* XXX should not happen */
4539 return;
4540 }
4541 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4542 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4543 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4544 if_printf(&sc->sc_if,
4545 "channel %u/0x%x/0x%x marked clear\n",
4546 hchan.channel, hchan.channelFlags, hchan.privFlags);
4547 } else
4548 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4549 }
4550 #endif
4551
4552 /*
4553 * Set/change channels. If the channel is really being changed,
4554 * it's done by reseting the chip. To accomplish this we must
4555 * first cleanup any pending DMA, then restart stuff after a la
4556 * ath_init.
4557 */
4558 static int
4559 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4560 {
4561 struct ath_hal *ah = sc->sc_ah;
4562 struct ieee80211com *ic = &sc->sc_ic;
4563 HAL_CHANNEL hchan;
4564
4565 /*
4566 * Convert to a HAL channel description with
4567 * the flags constrained to reflect the current
4568 * operating mode.
4569 */
4570 hchan.channel = chan->ic_freq;
4571 hchan.channelFlags = ath_chan2flags(ic, chan);
4572
4573 DPRINTF(sc, ATH_DEBUG_RESET,
4574 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4575 __func__,
4576 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4577 sc->sc_curchan.channelFlags),
4578 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4579 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4580 hchan.channel, hchan.channelFlags);
4581 if (hchan.channel != sc->sc_curchan.channel ||
4582 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4583 HAL_STATUS status;
4584
4585 /*
4586 * To switch channels clear any pending DMA operations;
4587 * wait long enough for the RX fifo to drain, reset the
4588 * hardware at the new frequency, and then re-enable
4589 * the relevant bits of the h/w.
4590 */
4591 ath_hal_intrset(ah, 0); /* disable interrupts */
4592 ath_draintxq(sc); /* clear pending tx frames */
4593 ath_stoprecv(sc); /* turn off frame recv */
4594 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4595 if_printf(ic->ic_ifp, "%s: unable to reset "
4596 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4597 __func__, ieee80211_chan2ieee(ic, chan),
4598 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4599 return EIO;
4600 }
4601 sc->sc_curchan = hchan;
4602 ath_update_txpow(sc); /* update tx power state */
4603 ath_restore_diversity(sc);
4604 sc->sc_calinterval = 1;
4605 sc->sc_caltries = 0;
4606
4607 /*
4608 * Re-enable rx framework.
4609 */
4610 if (ath_startrecv(sc) != 0) {
4611 if_printf(&sc->sc_if,
4612 "%s: unable to restart recv logic\n", __func__);
4613 return EIO;
4614 }
4615
4616 /*
4617 * Change channels and update the h/w rate map
4618 * if we're switching; e.g. 11a to 11b/g.
4619 */
4620 ic->ic_ibss_chan = chan;
4621 ath_chan_change(sc, chan);
4622
4623 #if 0
4624 /*
4625 * Handle DFS required waiting period to determine
4626 * if channel is clear of radar traffic.
4627 */
4628 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4629 #define DFS_AND_NOT_CLEAR(_c) \
4630 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4631 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4632 if_printf(&sc->sc_if,
4633 "wait for DFS clear channel signal\n");
4634 /* XXX stop sndq */
4635 sc->sc_if.if_flags |= IFF_OACTIVE;
4636 callout_reset(&sc->sc_dfs_ch,
4637 2 * hz, ath_dfswait, sc);
4638 } else
4639 callout_stop(&sc->sc_dfs_ch);
4640 #undef DFS_NOT_CLEAR
4641 }
4642 #endif
4643
4644 /*
4645 * Re-enable interrupts.
4646 */
4647 ath_hal_intrset(ah, sc->sc_imask);
4648 }
4649 return 0;
4650 }
4651
4652 static void
4653 ath_next_scan(void *arg)
4654 {
4655 struct ath_softc *sc = arg;
4656 struct ieee80211com *ic = &sc->sc_ic;
4657 int s;
4658
4659 /* don't call ath_start w/o network interrupts blocked */
4660 s = splnet();
4661
4662 if (ic->ic_state == IEEE80211_S_SCAN)
4663 ieee80211_next_scan(ic);
4664 splx(s);
4665 }
4666
4667 /*
4668 * Periodically recalibrate the PHY to account
4669 * for temperature/environment changes.
4670 */
4671 static void
4672 ath_calibrate(void *arg)
4673 {
4674 struct ath_softc *sc = arg;
4675 struct ath_hal *ah = sc->sc_ah;
4676 HAL_BOOL iqCalDone;
4677 int s;
4678
4679 sc->sc_stats.ast_per_cal++;
4680
4681 s = splnet();
4682
4683 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4684 /*
4685 * Rfgain is out of bounds, reset the chip
4686 * to load new gain values.
4687 */
4688 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4689 "%s: rfgain change\n", __func__);
4690 sc->sc_stats.ast_per_rfgain++;
4691 ath_reset(&sc->sc_if);
4692 }
4693 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4694 DPRINTF(sc, ATH_DEBUG_ANY,
4695 "%s: calibration of channel %u failed\n",
4696 __func__, sc->sc_curchan.channel);
4697 sc->sc_stats.ast_per_calfail++;
4698 }
4699 /*
4700 * Calibrate noise floor data again in case of change.
4701 */
4702 ath_hal_process_noisefloor(ah);
4703 /*
4704 * Poll more frequently when the IQ calibration is in
4705 * progress to speedup loading the final settings.
4706 * We temper this aggressive polling with an exponential
4707 * back off after 4 tries up to ath_calinterval.
4708 */
4709 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4710 sc->sc_caltries = 0;
4711 sc->sc_calinterval = ath_calinterval;
4712 } else if (sc->sc_caltries > 4) {
4713 sc->sc_caltries = 0;
4714 sc->sc_calinterval <<= 1;
4715 if (sc->sc_calinterval > ath_calinterval)
4716 sc->sc_calinterval = ath_calinterval;
4717 }
4718 KASSERTMSG(0 < sc->sc_calinterval &&
4719 sc->sc_calinterval <= ath_calinterval,
4720 "bad calibration interval %u", sc->sc_calinterval);
4721
4722 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4723 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4724 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4725 sc->sc_caltries++;
4726 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4727 ath_calibrate, sc);
4728 splx(s);
4729 }
4730
4731 static int
4732 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4733 {
4734 struct ifnet *ifp = ic->ic_ifp;
4735 struct ath_softc *sc = ifp->if_softc;
4736 struct ath_hal *ah = sc->sc_ah;
4737 struct ieee80211_node *ni;
4738 int i, error;
4739 const u_int8_t *bssid;
4740 u_int32_t rfilt;
4741 static const HAL_LED_STATE leds[] = {
4742 HAL_LED_INIT, /* IEEE80211_S_INIT */
4743 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4744 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4745 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4746 HAL_LED_RUN, /* IEEE80211_S_RUN */
4747 };
4748
4749 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4750 ieee80211_state_name[ic->ic_state],
4751 ieee80211_state_name[nstate]);
4752
4753 callout_stop(&sc->sc_scan_ch);
4754 callout_stop(&sc->sc_cal_ch);
4755 #if 0
4756 callout_stop(&sc->sc_dfs_ch);
4757 #endif
4758 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4759
4760 if (nstate == IEEE80211_S_INIT) {
4761 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4762 /*
4763 * NB: disable interrupts so we don't rx frames.
4764 */
4765 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4766 /*
4767 * Notify the rate control algorithm.
4768 */
4769 ath_rate_newstate(sc, nstate);
4770 goto done;
4771 }
4772 ni = ic->ic_bss;
4773 error = ath_chan_set(sc, ic->ic_curchan);
4774 if (error != 0)
4775 goto bad;
4776 rfilt = ath_calcrxfilter(sc, nstate);
4777 if (nstate == IEEE80211_S_SCAN)
4778 bssid = ifp->if_broadcastaddr;
4779 else
4780 bssid = ni->ni_bssid;
4781 ath_hal_setrxfilter(ah, rfilt);
4782 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4783 __func__, rfilt, ether_sprintf(bssid));
4784
4785 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4786 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4787 else
4788 ath_hal_setassocid(ah, bssid, 0);
4789 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4790 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4791 if (ath_hal_keyisvalid(ah, i))
4792 ath_hal_keysetmac(ah, i, bssid);
4793 }
4794
4795 /*
4796 * Notify the rate control algorithm so rates
4797 * are setup should ath_beacon_alloc be called.
4798 */
4799 ath_rate_newstate(sc, nstate);
4800
4801 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4802 /* nothing to do */;
4803 } else if (nstate == IEEE80211_S_RUN) {
4804 DPRINTF(sc, ATH_DEBUG_STATE,
4805 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4806 "capinfo=0x%04x chan=%d\n"
4807 , __func__
4808 , ic->ic_flags
4809 , ni->ni_intval
4810 , ether_sprintf(ni->ni_bssid)
4811 , ni->ni_capinfo
4812 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4813
4814 switch (ic->ic_opmode) {
4815 case IEEE80211_M_HOSTAP:
4816 case IEEE80211_M_IBSS:
4817 /*
4818 * Allocate and setup the beacon frame.
4819 *
4820 * Stop any previous beacon DMA. This may be
4821 * necessary, for example, when an ibss merge
4822 * causes reconfiguration; there will be a state
4823 * transition from RUN->RUN that means we may
4824 * be called with beacon transmission active.
4825 */
4826 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4827 ath_beacon_free(sc);
4828 error = ath_beacon_alloc(sc, ni);
4829 if (error != 0)
4830 goto bad;
4831 /*
4832 * If joining an adhoc network defer beacon timer
4833 * configuration to the next beacon frame so we
4834 * have a current TSF to use. Otherwise we're
4835 * starting an ibss/bss so there's no need to delay.
4836 */
4837 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4838 ic->ic_bss->ni_tstamp.tsf != 0)
4839 sc->sc_syncbeacon = 1;
4840 else
4841 ath_beacon_config(sc);
4842 break;
4843 case IEEE80211_M_STA:
4844 /*
4845 * Allocate a key cache slot to the station.
4846 */
4847 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4848 sc->sc_hasclrkey &&
4849 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4850 ath_setup_stationkey(ni);
4851 /*
4852 * Defer beacon timer configuration to the next
4853 * beacon frame so we have a current TSF to use
4854 * (any TSF collected when scanning is likely old).
4855 */
4856 sc->sc_syncbeacon = 1;
4857 break;
4858 default:
4859 break;
4860 }
4861 /*
4862 * Let the hal process statistics collected during a
4863 * scan so it can provide calibrated noise floor data.
4864 */
4865 ath_hal_process_noisefloor(ah);
4866 /*
4867 * Reset rssi stats; maybe not the best place...
4868 */
4869 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4870 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4871 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4872 } else {
4873 ath_hal_intrset(ah,
4874 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4875 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4876 }
4877 done:
4878 /*
4879 * Invoke the parent method to complete the work.
4880 */
4881 error = sc->sc_newstate(ic, nstate, arg);
4882 /*
4883 * Finally, start any timers.
4884 */
4885 if (nstate == IEEE80211_S_RUN) {
4886 /* start periodic recalibration timer */
4887 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4888 ath_calibrate, sc);
4889 } else if (nstate == IEEE80211_S_SCAN) {
4890 /* start ap/neighbor scan timer */
4891 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4892 ath_next_scan, sc);
4893 }
4894 bad:
4895 return error;
4896 }
4897
4898 /*
4899 * Allocate a key cache slot to the station so we can
4900 * setup a mapping from key index to node. The key cache
4901 * slot is needed for managing antenna state and for
4902 * compression when stations do not use crypto. We do
4903 * it uniliaterally here; if crypto is employed this slot
4904 * will be reassigned.
4905 */
4906 static void
4907 ath_setup_stationkey(struct ieee80211_node *ni)
4908 {
4909 struct ieee80211com *ic = ni->ni_ic;
4910 struct ath_softc *sc = ic->ic_ifp->if_softc;
4911 ieee80211_keyix keyix, rxkeyix;
4912
4913 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4914 /*
4915 * Key cache is full; we'll fall back to doing
4916 * the more expensive lookup in software. Note
4917 * this also means no h/w compression.
4918 */
4919 /* XXX msg+statistic */
4920 } else {
4921 /* XXX locking? */
4922 ni->ni_ucastkey.wk_keyix = keyix;
4923 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4924 /* NB: this will create a pass-thru key entry */
4925 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4926 }
4927 }
4928
4929 /*
4930 * Setup driver-specific state for a newly associated node.
4931 * Note that we're called also on a re-associate, the isnew
4932 * param tells us if this is the first time or not.
4933 */
4934 static void
4935 ath_newassoc(struct ieee80211_node *ni, int isnew)
4936 {
4937 struct ieee80211com *ic = ni->ni_ic;
4938 struct ath_softc *sc = ic->ic_ifp->if_softc;
4939
4940 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4941 if (isnew &&
4942 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4943 KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4944 "new assoc with a unicast key already setup (keyix %u)",
4945 ni->ni_ucastkey.wk_keyix);
4946 ath_setup_stationkey(ni);
4947 }
4948 }
4949
4950 static int
4951 ath_getchannels(struct ath_softc *sc, u_int cc,
4952 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4953 {
4954 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4955 struct ieee80211com *ic = &sc->sc_ic;
4956 struct ifnet *ifp = &sc->sc_if;
4957 struct ath_hal *ah = sc->sc_ah;
4958 HAL_CHANNEL *chans;
4959 int i, ix, nchan;
4960
4961 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4962 M_TEMP, M_WAITOK);
4963 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4964 NULL, 0, NULL,
4965 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4966 u_int32_t rd;
4967
4968 (void)ath_hal_getregdomain(ah, &rd);
4969 if_printf(ifp, "unable to collect channel list from hal; "
4970 "regdomain likely %u country code %u\n", rd, cc);
4971 free(chans, M_TEMP);
4972 return EINVAL;
4973 }
4974
4975 /*
4976 * Convert HAL channels to ieee80211 ones and insert
4977 * them in the table according to their channel number.
4978 */
4979 for (i = 0; i < nchan; i++) {
4980 HAL_CHANNEL *c = &chans[i];
4981 u_int16_t flags;
4982
4983 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4984 if (ix > IEEE80211_CHAN_MAX) {
4985 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4986 ix, c->channel, c->channelFlags);
4987 continue;
4988 }
4989 if (ix < 0) {
4990 /* XXX can't handle stuff <2400 right now */
4991 if (bootverbose)
4992 if_printf(ifp, "hal channel %d (%u/%x) "
4993 "cannot be handled; ignored\n",
4994 ix, c->channel, c->channelFlags);
4995 continue;
4996 }
4997 /*
4998 * Calculate net80211 flags; most are compatible
4999 * but some need massaging. Note the static turbo
5000 * conversion can be removed once net80211 is updated
5001 * to understand static vs. dynamic turbo.
5002 */
5003 flags = c->channelFlags & COMPAT;
5004 if (c->channelFlags & CHANNEL_STURBO)
5005 flags |= IEEE80211_CHAN_TURBO;
5006 if (ic->ic_channels[ix].ic_freq == 0) {
5007 ic->ic_channels[ix].ic_freq = c->channel;
5008 ic->ic_channels[ix].ic_flags = flags;
5009 } else {
5010 /* channels overlap; e.g. 11g and 11b */
5011 ic->ic_channels[ix].ic_flags |= flags;
5012 }
5013 }
5014 free(chans, M_TEMP);
5015 return 0;
5016 #undef COMPAT
5017 }
5018
5019 static void
5020 ath_led_done(void *arg)
5021 {
5022 struct ath_softc *sc = arg;
5023
5024 sc->sc_blinking = 0;
5025 }
5026
5027 /*
5028 * Turn the LED off: flip the pin and then set a timer so no
5029 * update will happen for the specified duration.
5030 */
5031 static void
5032 ath_led_off(void *arg)
5033 {
5034 struct ath_softc *sc = arg;
5035
5036 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5037 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5038 }
5039
5040 /*
5041 * Blink the LED according to the specified on/off times.
5042 */
5043 static void
5044 ath_led_blink(struct ath_softc *sc, int on, int off)
5045 {
5046 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5047 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5048 sc->sc_blinking = 1;
5049 sc->sc_ledoff = off;
5050 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5051 }
5052
5053 static void
5054 ath_led_event(struct ath_softc *sc, int event)
5055 {
5056
5057 sc->sc_ledevent = ticks; /* time of last event */
5058 if (sc->sc_blinking) /* don't interrupt active blink */
5059 return;
5060 switch (event) {
5061 case ATH_LED_POLL:
5062 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
5063 sc->sc_hwmap[0].ledoff);
5064 break;
5065 case ATH_LED_TX:
5066 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
5067 sc->sc_hwmap[sc->sc_txrate].ledoff);
5068 break;
5069 case ATH_LED_RX:
5070 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
5071 sc->sc_hwmap[sc->sc_rxrate].ledoff);
5072 break;
5073 }
5074 }
5075
5076 static void
5077 ath_update_txpow(struct ath_softc *sc)
5078 {
5079 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5080 struct ieee80211com *ic = &sc->sc_ic;
5081 struct ath_hal *ah = sc->sc_ah;
5082 u_int32_t txpow;
5083
5084 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5085 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5086 /* read back in case value is clamped */
5087 (void)ath_hal_gettxpowlimit(ah, &txpow);
5088 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5089 }
5090 /*
5091 * Fetch max tx power level for status requests.
5092 */
5093 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5094 ic->ic_bss->ni_txpower = txpow;
5095 }
5096
5097 static void
5098 rate_setup(struct ath_softc *sc,
5099 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5100 {
5101 int i, maxrates;
5102
5103 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5104 DPRINTF(sc, ATH_DEBUG_ANY,
5105 "%s: rate table too small (%u > %u)\n",
5106 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5107 maxrates = IEEE80211_RATE_MAXSIZE;
5108 } else
5109 maxrates = rt->rateCount;
5110 for (i = 0; i < maxrates; i++)
5111 rs->rs_rates[i] = rt->info[i].dot11Rate;
5112 rs->rs_nrates = maxrates;
5113 }
5114
5115 static int
5116 ath_rate_setup(struct ath_softc *sc, u_int mode)
5117 {
5118 struct ath_hal *ah = sc->sc_ah;
5119 struct ieee80211com *ic = &sc->sc_ic;
5120 const HAL_RATE_TABLE *rt;
5121
5122 switch (mode) {
5123 case IEEE80211_MODE_11A:
5124 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5125 break;
5126 case IEEE80211_MODE_11B:
5127 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5128 break;
5129 case IEEE80211_MODE_11G:
5130 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5131 break;
5132 case IEEE80211_MODE_TURBO_A:
5133 /* XXX until static/dynamic turbo is fixed */
5134 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5135 break;
5136 case IEEE80211_MODE_TURBO_G:
5137 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5138 break;
5139 default:
5140 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5141 __func__, mode);
5142 return 0;
5143 }
5144 sc->sc_rates[mode] = rt;
5145 if (rt != NULL) {
5146 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5147 return 1;
5148 } else
5149 return 0;
5150 }
5151
5152 static void
5153 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5154 {
5155 #define N(a) (sizeof(a)/sizeof(a[0]))
5156 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5157 static const struct {
5158 u_int rate; /* tx/rx 802.11 rate */
5159 u_int16_t timeOn; /* LED on time (ms) */
5160 u_int16_t timeOff; /* LED off time (ms) */
5161 } blinkrates[] = {
5162 { 108, 40, 10 },
5163 { 96, 44, 11 },
5164 { 72, 50, 13 },
5165 { 48, 57, 14 },
5166 { 36, 67, 16 },
5167 { 24, 80, 20 },
5168 { 22, 100, 25 },
5169 { 18, 133, 34 },
5170 { 12, 160, 40 },
5171 { 10, 200, 50 },
5172 { 6, 240, 58 },
5173 { 4, 267, 66 },
5174 { 2, 400, 100 },
5175 { 0, 500, 130 },
5176 };
5177 const HAL_RATE_TABLE *rt;
5178 int i, j;
5179
5180 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5181 rt = sc->sc_rates[mode];
5182 KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
5183 for (i = 0; i < rt->rateCount; i++)
5184 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5185 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5186 for (i = 0; i < 32; i++) {
5187 u_int8_t ix = rt->rateCodeToIndex[i];
5188 if (ix == 0xff) {
5189 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5190 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5191 continue;
5192 }
5193 sc->sc_hwmap[i].ieeerate =
5194 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5195 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5196 if (rt->info[ix].shortPreamble ||
5197 rt->info[ix].phy == IEEE80211_T_OFDM)
5198 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5199 /* NB: receive frames include FCS */
5200 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5201 IEEE80211_RADIOTAP_F_FCS;
5202 /* setup blink rate table to avoid per-packet lookup */
5203 for (j = 0; j < N(blinkrates)-1; j++)
5204 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5205 break;
5206 /* NB: this uses the last entry if the rate isn't found */
5207 /* XXX beware of overlow */
5208 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5209 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5210 }
5211 sc->sc_currates = rt;
5212 sc->sc_curmode = mode;
5213 /*
5214 * All protection frames are transmited at 2Mb/s for
5215 * 11g, otherwise at 1Mb/s.
5216 */
5217 if (mode == IEEE80211_MODE_11G)
5218 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5219 else
5220 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5221 /* rate index used to send management frames */
5222 sc->sc_minrateix = 0;
5223 /*
5224 * Setup multicast rate state.
5225 */
5226 /* XXX layering violation */
5227 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5228 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5229 /* NB: caller is responsible for reseting rate control state */
5230 #undef N
5231 }
5232
5233 #ifdef AR_DEBUG
5234 static void
5235 ath_printrxbuf(struct ath_buf *bf, int done)
5236 {
5237 struct ath_desc *ds;
5238 int i;
5239
5240 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5241 printf("R%d (%p %" PRIx64
5242 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5243 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5244 ds->ds_link, ds->ds_data,
5245 ds->ds_ctl0, ds->ds_ctl1,
5246 ds->ds_hw[0], ds->ds_hw[1],
5247 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5248 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5249 }
5250 }
5251
5252 static void
5253 ath_printtxbuf(struct ath_buf *bf, int done)
5254 {
5255 struct ath_desc *ds;
5256 int i;
5257
5258 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5259 printf("T%d (%p %" PRIx64
5260 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5261 i, ds,
5262 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5263 ds->ds_link, ds->ds_data,
5264 ds->ds_ctl0, ds->ds_ctl1,
5265 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5266 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5267 }
5268 }
5269 #endif /* AR_DEBUG */
5270
5271 static void
5272 ath_watchdog(struct ifnet *ifp)
5273 {
5274 struct ath_softc *sc = ifp->if_softc;
5275 struct ieee80211com *ic = &sc->sc_ic;
5276 struct ath_txq *axq;
5277 int i;
5278
5279 ifp->if_timer = 0;
5280 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5281 !device_is_active(sc->sc_dev))
5282 return;
5283 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5284 if (!ATH_TXQ_SETUP(sc, i))
5285 continue;
5286 axq = &sc->sc_txq[i];
5287 ATH_TXQ_LOCK(axq);
5288 if (axq->axq_timer == 0)
5289 ;
5290 else if (--axq->axq_timer == 0) {
5291 ATH_TXQ_UNLOCK(axq);
5292 if_printf(ifp, "device timeout (txq %d, "
5293 "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5294 if (sc->sc_txintrperiod > 1)
5295 sc->sc_txintrperiod--;
5296 ath_reset(ifp);
5297 if_statinc(ifp, if_oerrors);
5298 sc->sc_stats.ast_watchdog++;
5299 break;
5300 } else
5301 ifp->if_timer = 1;
5302 ATH_TXQ_UNLOCK(axq);
5303 }
5304 ieee80211_watchdog(ic);
5305 }
5306
5307 /*
5308 * Diagnostic interface to the HAL. This is used by various
5309 * tools to do things like retrieve register contents for
5310 * debugging. The mechanism is intentionally opaque so that
5311 * it can change frequently w/o concern for compatiblity.
5312 */
5313 static int
5314 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5315 {
5316 struct ath_hal *ah = sc->sc_ah;
5317 u_int id = ad->ad_id & ATH_DIAG_ID;
5318 void *indata = NULL;
5319 void *outdata = NULL;
5320 u_int32_t insize = ad->ad_in_size;
5321 u_int32_t outsize = ad->ad_out_size;
5322 int error = 0;
5323
5324 if (ad->ad_id & ATH_DIAG_IN) {
5325 /*
5326 * Copy in data.
5327 */
5328 indata = malloc(insize, M_TEMP, M_WAITOK);
5329 error = copyin(ad->ad_in_data, indata, insize);
5330 if (error)
5331 goto bad;
5332 }
5333 if (ad->ad_id & ATH_DIAG_DYN) {
5334 /*
5335 * Allocate a buffer for the results (otherwise the HAL
5336 * returns a pointer to a buffer where we can read the
5337 * results). Note that we depend on the HAL leaving this
5338 * pointer for us to use below in reclaiming the buffer;
5339 * may want to be more defensive.
5340 */
5341 outdata = malloc(outsize, M_TEMP, M_WAITOK);
5342 }
5343 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5344 if (outsize < ad->ad_out_size)
5345 ad->ad_out_size = outsize;
5346 if (outdata != NULL)
5347 error = copyout(outdata, ad->ad_out_data,
5348 ad->ad_out_size);
5349 } else {
5350 error = EINVAL;
5351 }
5352 bad:
5353 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5354 free(indata, M_TEMP);
5355 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5356 free(outdata, M_TEMP);
5357 return error;
5358 }
5359
5360 static int
5361 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5362 {
5363 #define IS_RUNNING(ifp) \
5364 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5365 struct ath_softc *sc = ifp->if_softc;
5366 struct ieee80211com *ic = &sc->sc_ic;
5367 struct ifreq *ifr = (struct ifreq *)data;
5368 int error = 0, s;
5369
5370 s = splnet();
5371 switch (cmd) {
5372 case SIOCSIFFLAGS:
5373 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5374 break;
5375 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
5376 case IFF_UP | IFF_RUNNING:
5377 /*
5378 * To avoid rescanning another access point,
5379 * do not call ath_init() here. Instead,
5380 * only reflect promisc mode settings.
5381 */
5382 ath_mode_init(sc);
5383 break;
5384 case IFF_UP:
5385 /*
5386 * Beware of being called during attach/detach
5387 * to reset promiscuous mode. In that case we
5388 * will still be marked UP but not RUNNING.
5389 * However trying to re-init the interface
5390 * is the wrong thing to do as we've already
5391 * torn down much of our state. There's
5392 * probably a better way to deal with this.
5393 */
5394 error = ath_init(sc);
5395 break;
5396 case IFF_RUNNING:
5397 ath_stop_locked(ifp, 1);
5398 break;
5399 case 0:
5400 break;
5401 }
5402 break;
5403 case SIOCADDMULTI:
5404 case SIOCDELMULTI:
5405 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5406 if (ifp->if_flags & IFF_RUNNING)
5407 ath_mode_init(sc);
5408 error = 0;
5409 }
5410 break;
5411 case SIOCGATHSTATS: {
5412 struct ath_stats stats_out;
5413 struct if_data ifi;
5414
5415 /* NB: embed these numbers to get a consistent view */
5416
5417 stats_out = sc->sc_stats;
5418 stats_out.ast_rx_rssi = ieee80211_getrssi(ic);
5419 splx(s);
5420
5421 if_export_if_data(ifp, &ifi, false);
5422 stats_out.ast_tx_packets = ifi.ifi_opackets;
5423 stats_out.ast_rx_packets = ifi.ifi_ipackets;
5424
5425 return copyout(&stats_out,
5426 ifr->ifr_data, sizeof (stats_out));
5427 }
5428
5429 case SIOCGATHDIAG:
5430 error = kauth_authorize_network(curlwp->l_cred,
5431 KAUTH_NETWORK_INTERFACE,
5432 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
5433 NULL);
5434 if (error)
5435 break;
5436 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5437 break;
5438 default:
5439 error = ieee80211_ioctl(ic, cmd, data);
5440 if (error != ENETRESET)
5441 ;
5442 else if (IS_RUNNING(ifp) &&
5443 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5444 error = ath_init(sc);
5445 else
5446 error = 0;
5447 break;
5448 }
5449 splx(s);
5450 return error;
5451 #undef IS_RUNNING
5452 }
5453
5454 static void
5455 ath_bpfattach(struct ath_softc *sc)
5456 {
5457 struct ifnet *ifp = &sc->sc_if;
5458
5459 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5460 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5461 &sc->sc_drvbpf);
5462
5463 /*
5464 * Initialize constant fields.
5465 * XXX make header lengths a multiple of 32-bits so subsequent
5466 * headers are properly aligned; this is a kludge to keep
5467 * certain applications happy.
5468 *
5469 * NB: the channel is setup each time we transition to the
5470 * RUN state to avoid filling it in for each frame.
5471 */
5472 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5473 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5474 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5475
5476 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5477 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5478 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5479 }
5480
5481 /*
5482 * Announce various information on device/driver attach.
5483 */
5484 static void
5485 ath_announce(struct ath_softc *sc)
5486 {
5487 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5488 struct ifnet *ifp = &sc->sc_if;
5489 struct ath_hal *ah = sc->sc_ah;
5490 u_int modes, cc;
5491
5492 if_printf(ifp, "mac %d.%d phy %d.%d",
5493 ah->ah_macVersion, ah->ah_macRev,
5494 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5495 /*
5496 * Print radio revision(s). We check the wireless modes
5497 * to avoid falsely printing revs for inoperable parts.
5498 * Dual-band radio revs are returned in the 5 GHz rev number.
5499 */
5500 ath_hal_getcountrycode(ah, &cc);
5501 modes = ath_hal_getwirelessmodes(ah, cc);
5502 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5503 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5504 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5505 ah->ah_analog5GhzRev >> 4,
5506 ah->ah_analog5GhzRev & 0xf,
5507 ah->ah_analog2GhzRev >> 4,
5508 ah->ah_analog2GhzRev & 0xf);
5509 else
5510 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5511 ah->ah_analog5GhzRev & 0xf);
5512 } else
5513 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5514 ah->ah_analog5GhzRev & 0xf);
5515 printf("\n");
5516 if (bootverbose) {
5517 int i;
5518 for (i = 0; i <= WME_AC_VO; i++) {
5519 struct ath_txq *txq = sc->sc_ac2q[i];
5520 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5521 txq->axq_qnum, ieee80211_wme_acnames[i]);
5522 }
5523 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5524 sc->sc_cabq->axq_qnum);
5525 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5526 }
5527 if (ath_rxbuf != ATH_RXBUF)
5528 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5529 if (ath_txbuf != ATH_TXBUF)
5530 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5531 #undef HAL_MODE_DUALBAND
5532 }
5533