Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.125
      1 /*	$NetBSD: ath.c,v 1.125 2019/05/23 10:57:28 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.125 2019/05/23 10:57:28 msaitoh Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #ifdef _KERNEL_OPT
     55 #include "opt_inet.h"
     56 #endif
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/types.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/mbuf.h>
     64 #include <sys/malloc.h>
     65 #include <sys/kernel.h>
     66 #include <sys/socket.h>
     67 #include <sys/sockio.h>
     68 #include <sys/errno.h>
     69 #include <sys/callout.h>
     70 #include <sys/bus.h>
     71 #include <sys/endian.h>
     72 
     73 #include <net/if.h>
     74 #include <net/if_dl.h>
     75 #include <net/if_media.h>
     76 #include <net/if_types.h>
     77 #include <net/if_arp.h>
     78 #include <net/if_ether.h>
     79 #include <net/if_llc.h>
     80 
     81 #include <net80211/ieee80211_netbsd.h>
     82 #include <net80211/ieee80211_var.h>
     83 
     84 #include <net/bpf.h>
     85 
     86 #ifdef INET
     87 #include <netinet/in.h>
     88 #endif
     89 
     90 #include <sys/device.h>
     91 #include <dev/ic/ath_netbsd.h>
     92 
     93 #define	AR_DEBUG
     94 #include <dev/ic/athvar.h>
     95 #include "ah_desc.h"
     96 #include "ah_devid.h"	/* XXX for softled */
     97 #include "opt_ah.h"
     98 
     99 #ifdef ATH_TX99_DIAG
    100 #include <dev/ath/ath_tx99/ath_tx99.h>
    101 #endif
    102 
    103 /* unaligned little endian access */
    104 #define LE_READ_2(p)							\
    105 	((u_int16_t)							\
    106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    107 #define LE_READ_4(p)							\
    108 	((u_int32_t)							\
    109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    111 
    112 enum {
    113 	ATH_LED_TX,
    114 	ATH_LED_RX,
    115 	ATH_LED_POLL,
    116 };
    117 
    118 #ifdef	AH_NEED_DESC_SWAP
    119 #define	HTOAH32(x)	htole32(x)
    120 #else
    121 #define	HTOAH32(x)	(x)
    122 #endif
    123 
    124 static int	ath_ifinit(struct ifnet *);
    125 static int	ath_init(struct ath_softc *);
    126 static void	ath_stop_locked(struct ifnet *, int);
    127 static void	ath_stop(struct ifnet *, int);
    128 static void	ath_start(struct ifnet *);
    129 static int	ath_media_change(struct ifnet *);
    130 static void	ath_watchdog(struct ifnet *);
    131 static int	ath_ioctl(struct ifnet *, u_long, void *);
    132 static void	ath_fatal_proc(void *, int);
    133 static void	ath_rxorn_proc(void *, int);
    134 static void	ath_bmiss_proc(void *, int);
    135 static void	ath_radar_proc(void *, int);
    136 static int	ath_key_alloc(struct ieee80211com *,
    137 			const struct ieee80211_key *,
    138 			ieee80211_keyix *, ieee80211_keyix *);
    139 static int	ath_key_delete(struct ieee80211com *,
    140 			const struct ieee80211_key *);
    141 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
    142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
    143 static void	ath_key_update_begin(struct ieee80211com *);
    144 static void	ath_key_update_end(struct ieee80211com *);
    145 static void	ath_mode_init(struct ath_softc *);
    146 static void	ath_setslottime(struct ath_softc *);
    147 static void	ath_updateslot(struct ifnet *);
    148 static int	ath_beaconq_setup(struct ath_hal *);
    149 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    150 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
    151 static void	ath_beacon_proc(void *, int);
    152 static void	ath_bstuck_proc(void *, int);
    153 static void	ath_beacon_free(struct ath_softc *);
    154 static void	ath_beacon_config(struct ath_softc *);
    155 static void	ath_descdma_cleanup(struct ath_softc *sc,
    156 			struct ath_descdma *, ath_bufhead *);
    157 static int	ath_desc_alloc(struct ath_softc *);
    158 static void	ath_desc_free(struct ath_softc *);
    159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
    160 static void	ath_node_free(struct ieee80211_node *);
    161 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
    162 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    163 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
    164 			struct ieee80211_node *ni,
    165 			int subtype, int rssi, u_int32_t rstamp);
    166 static void	ath_setdefantenna(struct ath_softc *, u_int);
    167 static void	ath_rx_proc(void *, int);
    168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
    169 static int	ath_tx_setup(struct ath_softc *, int, int);
    170 static int	ath_wme_update(struct ieee80211com *);
    171 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
    172 static void	ath_tx_cleanup(struct ath_softc *);
    173 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    174 			     struct ath_buf *, struct mbuf *);
    175 static void	ath_tx_proc_q0(void *, int);
    176 static void	ath_tx_proc_q0123(void *, int);
    177 static void	ath_tx_proc(void *, int);
    178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    179 static void	ath_draintxq(struct ath_softc *);
    180 static void	ath_stoprecv(struct ath_softc *);
    181 static int	ath_startrecv(struct ath_softc *);
    182 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
    183 static void	ath_next_scan(void *);
    184 static void	ath_calibrate(void *);
    185 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    186 static void	ath_setup_stationkey(struct ieee80211_node *);
    187 static void	ath_newassoc(struct ieee80211_node *, int);
    188 static int	ath_getchannels(struct ath_softc *, u_int cc,
    189 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
    190 static void	ath_led_event(struct ath_softc *, int);
    191 static void	ath_update_txpow(struct ath_softc *);
    192 static void	ath_freetx(struct mbuf *);
    193 static void	ath_restore_diversity(struct ath_softc *);
    194 
    195 static int	ath_rate_setup(struct ath_softc *, u_int mode);
    196 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    197 
    198 static void	ath_bpfattach(struct ath_softc *);
    199 static void	ath_announce(struct ath_softc *);
    200 
    201 #ifdef __NetBSD__
    202 #define	ATH_TASK_FUNC(__func)						\
    203 static void __CONCAT(__func, _si)(void *arg)				\
    204 {									\
    205 	__func(arg, 1);							\
    206 }
    207 ATH_TASK_FUNC(ath_rx_proc);
    208 ATH_TASK_FUNC(ath_rxorn_proc);
    209 ATH_TASK_FUNC(ath_fatal_proc);
    210 ATH_TASK_FUNC(ath_bmiss_proc);
    211 ATH_TASK_FUNC(ath_bstuck_proc);
    212 ATH_TASK_FUNC(ath_radar_proc);
    213 ATH_TASK_FUNC(ath_tx_proc_q0);
    214 ATH_TASK_FUNC(ath_tx_proc_q0123);
    215 ATH_TASK_FUNC(ath_tx_proc);
    216 #endif
    217 
    218 int ath_dwelltime = 200;		/* 5 channels/second */
    219 int ath_calinterval = 30;		/* calibrate every 30 secs */
    220 int ath_outdoor = AH_TRUE;		/* outdoor operation */
    221 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    222 int ath_countrycode = CTRY_DEFAULT;	/* country code */
    223 int ath_regdomain = 0;			/* regulatory domain */
    224 int ath_debug = 0;
    225 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
    226 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
    227 
    228 #ifdef AR_DEBUG
    229 enum {
    230 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    231 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    232 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    233 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    234 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    235 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    236 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    237 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    238 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    239 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    240 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    241 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    242 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    243 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    244 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
    245 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
    246 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
    247 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
    248 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
    249 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
    250 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
    251 	ATH_DEBUG_ANY		= 0xffffffff
    252 };
    253 #define	IFF_DUMPPKTS(sc, m)					\
    254 	((sc->sc_debug & (m)) ||				\
    255 	    (sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2))      \
    256 	    == (IFF_DEBUG | IFF_LINK2))
    257 #define	DPRINTF(sc, m, fmt, ...) do {				\
    258 	if (sc->sc_debug & (m))					\
    259 		printf(fmt, __VA_ARGS__);			\
    260 } while (0)
    261 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
    262 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
    263 		ath_keyprint(__func__, ix, hk, mac);		\
    264 } while (0)
    265 static	void ath_printrxbuf(struct ath_buf *bf, int);
    266 static	void ath_printtxbuf(struct ath_buf *bf, int);
    267 #else
    268 #define        IFF_DUMPPKTS(sc, m)				\
    269 	((sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2))		\
    270 	    == (IFF_DEBUG | IFF_LINK2))
    271 #define        DPRINTF(m, fmt, ...)
    272 #define        KEYPRINTF(sc, k, ix, mac)
    273 #endif
    274 
    275 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
    276 
    277 int
    278 ath_attach(u_int16_t devid, struct ath_softc *sc)
    279 {
    280 	struct ifnet *ifp = &sc->sc_if;
    281 	struct ieee80211com *ic = &sc->sc_ic;
    282 	struct ath_hal *ah = NULL;
    283 	HAL_STATUS status;
    284 	int error = 0, i;
    285 
    286 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
    287 
    288 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
    289 
    290 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    291 
    292 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    293 	if (ah == NULL) {
    294 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    295 			status);
    296 		error = ENXIO;
    297 		goto bad;
    298 	}
    299 	if (ah->ah_abi != HAL_ABI_VERSION) {
    300 		if_printf(ifp, "HAL ABI mismatch detected "
    301 			"(HAL:0x%x != driver:0x%x)\n",
    302 			ah->ah_abi, HAL_ABI_VERSION);
    303 		error = ENXIO;
    304 		goto bad;
    305 	}
    306 	sc->sc_ah = ah;
    307 
    308 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
    309 	    "pmf-powerdown", false))
    310 		goto bad;
    311 
    312 	/*
    313 	 * Check if the MAC has multi-rate retry support.
    314 	 * We do this by trying to setup a fake extended
    315 	 * descriptor.  MAC's that don't have support will
    316 	 * return false w/o doing anything.  MAC's that do
    317 	 * support it will return true w/o doing anything.
    318 	 */
    319 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
    320 
    321 	/*
    322 	 * Check if the device has hardware counters for PHY
    323 	 * errors.  If so we need to enable the MIB interrupt
    324 	 * so we can act on stat triggers.
    325 	 */
    326 	if (ath_hal_hwphycounters(ah))
    327 		sc->sc_needmib = 1;
    328 
    329 	/*
    330 	 * Get the hardware key cache size.
    331 	 */
    332 	sc->sc_keymax = ath_hal_keycachesize(ah);
    333 	if (sc->sc_keymax > ATH_KEYMAX) {
    334 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
    335 			ATH_KEYMAX, sc->sc_keymax);
    336 		sc->sc_keymax = ATH_KEYMAX;
    337 	}
    338 	/*
    339 	 * Reset the key cache since some parts do not
    340 	 * reset the contents on initial power up.
    341 	 */
    342 	for (i = 0; i < sc->sc_keymax; i++)
    343 		ath_hal_keyreset(ah, i);
    344 	/*
    345 	 * Mark key cache slots associated with global keys
    346 	 * as in use.  If we knew TKIP was not to be used we
    347 	 * could leave the +32, +64, and +32+64 slots free.
    348 	 * XXX only for splitmic.
    349 	 */
    350 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    351 		setbit(sc->sc_keymap, i);
    352 		setbit(sc->sc_keymap, i+32);
    353 		setbit(sc->sc_keymap, i+64);
    354 		setbit(sc->sc_keymap, i+32+64);
    355 	}
    356 
    357 	/*
    358 	 * Collect the channel list using the default country
    359 	 * code and including outdoor channels.  The 802.11 layer
    360 	 * is resposible for filtering this list based on settings
    361 	 * like the phy mode.
    362 	 */
    363 	error = ath_getchannels(sc, ath_countrycode,
    364 			ath_outdoor, ath_xchanmode);
    365 	if (error != 0)
    366 		goto bad;
    367 
    368 	/*
    369 	 * Setup rate tables for all potential media types.
    370 	 */
    371 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    372 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    373 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    374 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
    375 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
    376 	/* NB: setup here so ath_rate_update is happy */
    377 	ath_setcurmode(sc, IEEE80211_MODE_11A);
    378 
    379 	/*
    380 	 * Allocate tx+rx descriptors and populate the lists.
    381 	 */
    382 	error = ath_desc_alloc(sc);
    383 	if (error != 0) {
    384 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    385 		goto bad;
    386 	}
    387 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
    388 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
    389 #if 0
    390 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
    391 #endif
    392 
    393 	ATH_TXBUF_LOCK_INIT(sc);
    394 
    395 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
    396 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
    397 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
    398 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
    399 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
    400 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
    401 
    402 	/*
    403 	 * Allocate hardware transmit queues: one queue for
    404 	 * beacon frames and one data queue for each QoS
    405 	 * priority.  Note that the hal handles reseting
    406 	 * these queues at the needed time.
    407 	 *
    408 	 * XXX PS-Poll
    409 	 */
    410 	sc->sc_bhalq = ath_beaconq_setup(ah);
    411 	if (sc->sc_bhalq == (u_int) -1) {
    412 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    413 		error = EIO;
    414 		goto bad2;
    415 	}
    416 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
    417 	if (sc->sc_cabq == NULL) {
    418 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
    419 		error = EIO;
    420 		goto bad2;
    421 	}
    422 	/* NB: insure BK queue is the lowest priority h/w queue */
    423 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
    424 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
    425 			ieee80211_wme_acnames[WME_AC_BK]);
    426 		error = EIO;
    427 		goto bad2;
    428 	}
    429 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
    430 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
    431 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
    432 		/*
    433 		 * Not enough hardware tx queues to properly do WME;
    434 		 * just punt and assign them all to the same h/w queue.
    435 		 * We could do a better job of this if, for example,
    436 		 * we allocate queues when we switch from station to
    437 		 * AP mode.
    438 		 */
    439 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
    440 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
    441 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
    442 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
    443 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
    444 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
    445 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
    446 	}
    447 
    448 	/*
    449 	 * Special case certain configurations.  Note the
    450 	 * CAB queue is handled by these specially so don't
    451 	 * include them when checking the txq setup mask.
    452 	 */
    453 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
    454 	case 0x01:
    455 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
    456 		break;
    457 	case 0x0f:
    458 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
    459 		break;
    460 	default:
    461 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
    462 		break;
    463 	}
    464 
    465 	/*
    466 	 * Setup rate control.  Some rate control modules
    467 	 * call back to change the anntena state so expose
    468 	 * the necessary entry points.
    469 	 * XXX maybe belongs in struct ath_ratectrl?
    470 	 */
    471 	sc->sc_setdefantenna = ath_setdefantenna;
    472 	sc->sc_rc = ath_rate_attach(sc);
    473 	if (sc->sc_rc == NULL) {
    474 		error = EIO;
    475 		goto bad2;
    476 	}
    477 
    478 	sc->sc_blinking = 0;
    479 	sc->sc_ledstate = 1;
    480 	sc->sc_ledon = 0;			/* low true */
    481 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
    482 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
    483 	/*
    484 	 * Auto-enable soft led processing for IBM cards and for
    485 	 * 5211 minipci cards.  Users can also manually enable/disable
    486 	 * support with a sysctl.
    487 	 */
    488 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
    489 	if (sc->sc_softled) {
    490 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
    491 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
    492 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
    493 	}
    494 
    495 	ifp->if_softc = sc;
    496 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    497 	ifp->if_start = ath_start;
    498 	ifp->if_stop = ath_stop;
    499 	ifp->if_watchdog = ath_watchdog;
    500 	ifp->if_ioctl = ath_ioctl;
    501 	ifp->if_init = ath_ifinit;
    502 	IFQ_SET_READY(&ifp->if_snd);
    503 
    504 	ic->ic_ifp = ifp;
    505 	ic->ic_reset = ath_reset;
    506 	ic->ic_newassoc = ath_newassoc;
    507 	ic->ic_updateslot = ath_updateslot;
    508 	ic->ic_wme.wme_update = ath_wme_update;
    509 	/* XXX not right but it's not used anywhere important */
    510 	ic->ic_phytype = IEEE80211_T_OFDM;
    511 	ic->ic_opmode = IEEE80211_M_STA;
    512 	ic->ic_caps =
    513 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    514 		| IEEE80211_C_HOSTAP		/* hostap mode */
    515 		| IEEE80211_C_MONITOR		/* monitor mode */
    516 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    517 		| IEEE80211_C_SHSLOT		/* short slot time supported */
    518 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
    519 		| IEEE80211_C_TXFRAG		/* handle tx frags */
    520 		;
    521 	/*
    522 	 * Query the hal to figure out h/w crypto support.
    523 	 */
    524 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
    525 		ic->ic_caps |= IEEE80211_C_WEP;
    526 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
    527 		ic->ic_caps |= IEEE80211_C_AES;
    528 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
    529 		ic->ic_caps |= IEEE80211_C_AES_CCM;
    530 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
    531 		ic->ic_caps |= IEEE80211_C_CKIP;
    532 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
    533 		ic->ic_caps |= IEEE80211_C_TKIP;
    534 		/*
    535 		 * Check if h/w does the MIC and/or whether the
    536 		 * separate key cache entries are required to
    537 		 * handle both tx+rx MIC keys.
    538 		 */
    539 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
    540 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
    541 
    542 		/*
    543 		 * If the h/w supports storing tx+rx MIC keys
    544 		 * in one cache slot automatically enable use.
    545 		 */
    546 		if (ath_hal_hastkipsplit(ah) ||
    547 		    !ath_hal_settkipsplit(ah, AH_FALSE))
    548 			sc->sc_splitmic = 1;
    549 
    550 		/*
    551 		 * If the h/w can do TKIP MIC together with WME then
    552 		 * we use it; otherwise we force the MIC to be done
    553 		 * in software by the net80211 layer.
    554 		 */
    555 		if (ath_hal_haswmetkipmic(ah))
    556 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
    557 	}
    558 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
    559 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
    560 	/*
    561 	 * Mark key cache slots associated with global keys
    562 	 * as in use.  If we knew TKIP was not to be used we
    563 	 * could leave the +32, +64, and +32+64 slots free.
    564 	 */
    565 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
    566 		setbit(sc->sc_keymap, i);
    567 		setbit(sc->sc_keymap, i+64);
    568 		if (sc->sc_splitmic) {
    569 			setbit(sc->sc_keymap, i+32);
    570 			setbit(sc->sc_keymap, i+32+64);
    571 		}
    572 	}
    573 	/*
    574 	 * TPC support can be done either with a global cap or
    575 	 * per-packet support.  The latter is not available on
    576 	 * all parts.  We're a bit pedantic here as all parts
    577 	 * support a global cap.
    578 	 */
    579 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
    580 		ic->ic_caps |= IEEE80211_C_TXPMGT;
    581 
    582 	/*
    583 	 * Mark WME capability only if we have sufficient
    584 	 * hardware queues to do proper priority scheduling.
    585 	 */
    586 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
    587 		ic->ic_caps |= IEEE80211_C_WME;
    588 	/*
    589 	 * Check for misc other capabilities.
    590 	 */
    591 	if (ath_hal_hasbursting(ah))
    592 		ic->ic_caps |= IEEE80211_C_BURST;
    593 
    594 	/*
    595 	 * Indicate we need the 802.11 header padded to a
    596 	 * 32-bit boundary for 4-address and QoS frames.
    597 	 */
    598 	ic->ic_flags |= IEEE80211_F_DATAPAD;
    599 
    600 	/*
    601 	 * Query the hal about antenna support.
    602 	 */
    603 	sc->sc_defant = ath_hal_getdefantenna(ah);
    604 
    605 	/*
    606 	 * Not all chips have the VEOL support we want to
    607 	 * use with IBSS beacons; check here for it.
    608 	 */
    609 	sc->sc_hasveol = ath_hal_hasveol(ah);
    610 
    611 	/* get mac address from hardware */
    612 	ath_hal_getmac(ah, ic->ic_myaddr);
    613 
    614 	if_attach(ifp);
    615 	/* call MI attach routine. */
    616 	ieee80211_ifattach(ic);
    617 	/* override default methods */
    618 	ic->ic_node_alloc = ath_node_alloc;
    619 	sc->sc_node_free = ic->ic_node_free;
    620 	ic->ic_node_free = ath_node_free;
    621 	ic->ic_node_getrssi = ath_node_getrssi;
    622 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
    623 	ic->ic_recv_mgmt = ath_recv_mgmt;
    624 	sc->sc_newstate = ic->ic_newstate;
    625 	ic->ic_newstate = ath_newstate;
    626 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
    627 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
    628 	ic->ic_crypto.cs_key_delete = ath_key_delete;
    629 	ic->ic_crypto.cs_key_set = ath_key_set;
    630 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
    631 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
    632 	/* complete initialization */
    633 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
    634 
    635 	ath_bpfattach(sc);
    636 
    637 	sc->sc_flags |= ATH_ATTACHED;
    638 
    639 	/*
    640 	 * Setup dynamic sysctl's now that country code and
    641 	 * regdomain are available from the hal.
    642 	 */
    643 	ath_sysctlattach(sc);
    644 
    645 	ieee80211_announce(ic);
    646 	ath_announce(sc);
    647 	return 0;
    648 bad2:
    649 	ath_tx_cleanup(sc);
    650 	ath_desc_free(sc);
    651 bad:
    652 	if (ah)
    653 		ath_hal_detach(ah);
    654 	/* XXX don't get under the abstraction like this */
    655 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
    656 	return error;
    657 }
    658 
    659 int
    660 ath_detach(struct ath_softc *sc)
    661 {
    662 	struct ifnet *ifp = &sc->sc_if;
    663 	int s;
    664 
    665 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    666 		return (0);
    667 
    668 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
    669 		__func__, ifp->if_flags);
    670 
    671 	s = splnet();
    672 	ath_stop(ifp, 1);
    673 	bpf_detach(ifp);
    674 	/*
    675 	 * NB: the order of these is important:
    676 	 * o call the 802.11 layer before detaching the hal to
    677 	 *   insure callbacks into the driver to delete global
    678 	 *   key cache entries can be handled
    679 	 * o reclaim the tx queue data structures after calling
    680 	 *   the 802.11 layer as we'll get called back to reclaim
    681 	 *   node state and potentially want to use them
    682 	 * o to cleanup the tx queues the hal is called, so detach
    683 	 *   it last
    684 	 * Other than that, it's straightforward...
    685 	 */
    686 	ieee80211_ifdetach(&sc->sc_ic);
    687 #ifdef ATH_TX99_DIAG
    688 	if (sc->sc_tx99 != NULL)
    689 		sc->sc_tx99->detach(sc->sc_tx99);
    690 #endif
    691 	ath_rate_detach(sc->sc_rc);
    692 	ath_desc_free(sc);
    693 	ath_tx_cleanup(sc);
    694 	sysctl_teardown(&sc->sc_sysctllog);
    695 	ath_hal_detach(sc->sc_ah);
    696 	if_detach(ifp);
    697 	splx(s);
    698 
    699 	return 0;
    700 }
    701 
    702 void
    703 ath_suspend(struct ath_softc *sc)
    704 {
    705 #if notyet
    706 	/*
    707 	 * Set the chip in full sleep mode.  Note that we are
    708 	 * careful to do this only when bringing the interface
    709 	 * completely to a stop.  When the chip is in this state
    710 	 * it must be carefully woken up or references to
    711 	 * registers in the PCI clock domain may freeze the bus
    712 	 * (and system).  This varies by chip and is mostly an
    713 	 * issue with newer parts that go to sleep more quickly.
    714 	 */
    715 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
    716 #endif
    717 }
    718 
    719 bool
    720 ath_resume(struct ath_softc *sc)
    721 {
    722 	struct ath_hal *ah = sc->sc_ah;
    723 	struct ieee80211com *ic = &sc->sc_ic;
    724 	HAL_STATUS status;
    725 	int i;
    726 
    727 #if notyet
    728 	ath_hal_setpower(ah, HAL_PM_AWAKE);
    729 #else
    730 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
    731 #endif
    732 
    733 	/*
    734 	 * Reset the key cache since some parts do not
    735 	 * reset the contents on initial power up.
    736 	 */
    737 	for (i = 0; i < sc->sc_keymax; i++)
    738 		ath_hal_keyreset(ah, i);
    739 
    740 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
    741 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
    742 		if (ATH_TXQ_SETUP(sc, i))
    743 			ath_hal_resettxqueue(ah, i);
    744 
    745 	if (sc->sc_softled) {
    746 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
    747 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
    748 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
    749 	}
    750 	return true;
    751 }
    752 
    753 /*
    754  * Interrupt handler.  Most of the actual processing is deferred.
    755  */
    756 int
    757 ath_intr(void *arg)
    758 {
    759 	struct ath_softc *sc = arg;
    760 	struct ifnet *ifp = &sc->sc_if;
    761 	struct ath_hal *ah = sc->sc_ah;
    762 	HAL_INT status = 0;
    763 
    764 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
    765 		/*
    766 		 * The hardware is not ready/present, don't touch anything.
    767 		 * Note this can happen early on if the IRQ is shared.
    768 		 */
    769 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
    770 		return 0;
    771 	}
    772 
    773 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    774 		return 0;
    775 
    776 	if ((ifp->if_flags & (IFF_RUNNING |IFF_UP)) != (IFF_RUNNING |IFF_UP)) {
    777 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
    778 			__func__, ifp->if_flags);
    779 		ath_hal_getisr(ah, &status);	/* clear ISR */
    780 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    781 		return 1; /* XXX */
    782 	}
    783 	/*
    784 	 * Figure out the reason(s) for the interrupt.  Note
    785 	 * that the hal returns a pseudo-ISR that may include
    786 	 * bits we haven't explicitly enabled so we mask the
    787 	 * value to insure we only process bits we requested.
    788 	 */
    789 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    790 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
    791 	status &= sc->sc_imask;			/* discard unasked for bits */
    792 	if (status & HAL_INT_FATAL) {
    793 		/*
    794 		 * Fatal errors are unrecoverable.  Typically
    795 		 * these are caused by DMA errors.  Unfortunately
    796 		 * the exact reason is not (presently) returned
    797 		 * by the hal.
    798 		 */
    799 		sc->sc_stats.ast_hardware++;
    800 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    801 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    802 	} else if (status & HAL_INT_RXORN) {
    803 		sc->sc_stats.ast_rxorn++;
    804 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    805 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    806 	} else {
    807 		if (status & HAL_INT_SWBA) {
    808 			/*
    809 			 * Software beacon alert--time to send a beacon.
    810 			 * Handle beacon transmission directly; deferring
    811 			 * this is too slow to meet timing constraints
    812 			 * under load.
    813 			 */
    814 			ath_beacon_proc(sc, 0);
    815 		}
    816 		if (status & HAL_INT_RXEOL) {
    817 			/*
    818 			 * NB: the hardware should re-read the link when
    819 			 *     RXE bit is written, but it doesn't work at
    820 			 *     least on older hardware revs.
    821 			 */
    822 			sc->sc_stats.ast_rxeol++;
    823 			sc->sc_rxlink = NULL;
    824 		}
    825 		if (status & HAL_INT_TXURN) {
    826 			sc->sc_stats.ast_txurn++;
    827 			/* bump tx trigger level */
    828 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    829 		}
    830 		if (status & HAL_INT_RX)
    831 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    832 		if (status & HAL_INT_TX)
    833 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    834 		if (status & HAL_INT_BMISS) {
    835 			sc->sc_stats.ast_bmiss++;
    836 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    837 		}
    838 		if (status & HAL_INT_MIB) {
    839 			sc->sc_stats.ast_mib++;
    840 			/*
    841 			 * Disable interrupts until we service the MIB
    842 			 * interrupt; otherwise it will continue to fire.
    843 			 */
    844 			ath_hal_intrset(ah, 0);
    845 			/*
    846 			 * Let the hal handle the event.  We assume it will
    847 			 * clear whatever condition caused the interrupt.
    848 			 */
    849 			ath_hal_mibevent(ah, &sc->sc_halstats);
    850 			ath_hal_intrset(ah, sc->sc_imask);
    851 		}
    852 	}
    853 	return 1;
    854 }
    855 
    856 /* Swap transmit descriptor.
    857  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
    858  * function.
    859  */
    860 static inline void
    861 ath_desc_swap(struct ath_desc *ds)
    862 {
    863 #ifdef AH_NEED_DESC_SWAP
    864 	ds->ds_link = htole32(ds->ds_link);
    865 	ds->ds_data = htole32(ds->ds_data);
    866 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
    867 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
    868 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
    869 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
    870 #endif
    871 }
    872 
    873 static void
    874 ath_fatal_proc(void *arg, int pending)
    875 {
    876 	struct ath_softc *sc = arg;
    877 	struct ifnet *ifp = &sc->sc_if;
    878 #ifdef __NetBSD__
    879 	int s;
    880 #endif
    881 
    882 	if_printf(ifp, "hardware error; resetting\n");
    883 #ifdef __NetBSD__
    884 	s = splnet();
    885 #endif
    886 	ath_reset(ifp);
    887 #ifdef __NetBSD__
    888 	splx(s);
    889 #endif
    890 }
    891 
    892 static void
    893 ath_rxorn_proc(void *arg, int pending)
    894 {
    895 	struct ath_softc *sc = arg;
    896 	struct ifnet *ifp = &sc->sc_if;
    897 #ifdef __NetBSD__
    898 	int s;
    899 #endif
    900 
    901 	if_printf(ifp, "rx FIFO overrun; resetting\n");
    902 #ifdef __NetBSD__
    903 	s = splnet();
    904 #endif
    905 	ath_reset(ifp);
    906 #ifdef __NetBSD__
    907 	splx(s);
    908 #endif
    909 }
    910 
    911 static void
    912 ath_bmiss_proc(void *arg, int pending)
    913 {
    914 	struct ath_softc *sc = arg;
    915 	struct ieee80211com *ic = &sc->sc_ic;
    916 	NET_LOCK_GIANT_FUNC_INIT();
    917 
    918 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
    919 	KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
    920 		"unexpect operating mode %u", ic->ic_opmode);
    921 	if (ic->ic_state == IEEE80211_S_RUN) {
    922 		u_int64_t lastrx = sc->sc_lastrx;
    923 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
    924 
    925 		DPRINTF(sc, ATH_DEBUG_BEACON,
    926 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
    927 		    " (%" PRIu64 ") bmiss %u\n",
    928 		    __func__, tsf, tsf - lastrx, lastrx,
    929 		    ic->ic_bmisstimeout*1024);
    930 		/*
    931 		 * Workaround phantom bmiss interrupts by sanity-checking
    932 		 * the time of our last rx'd frame.  If it is within the
    933 		 * beacon miss interval then ignore the interrupt.  If it's
    934 		 * truly a bmiss we'll get another interrupt soon and that'll
    935 		 * be dispatched up for processing.
    936 		 */
    937 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
    938 			NET_LOCK_GIANT();
    939 			ieee80211_beacon_miss(ic);
    940 			NET_UNLOCK_GIANT();
    941 		} else
    942 			sc->sc_stats.ast_bmiss_phantom++;
    943 	}
    944 }
    945 
    946 static void
    947 ath_radar_proc(void *arg, int pending)
    948 {
    949 #if 0
    950 	struct ath_softc *sc = arg;
    951 	struct ifnet *ifp = &sc->sc_if;
    952 	struct ath_hal *ah = sc->sc_ah;
    953 	HAL_CHANNEL hchan;
    954 
    955 	if (ath_hal_procdfs(ah, &hchan)) {
    956 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
    957 			hchan.channel, hchan.channelFlags, hchan.privFlags);
    958 		/*
    959 		 * Initiate channel change.
    960 		 */
    961 		/* XXX not yet */
    962 	}
    963 #endif
    964 }
    965 
    966 static u_int
    967 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    968 {
    969 #define	N(a)	(sizeof(a) / sizeof(a[0]))
    970 	static const u_int modeflags[] = {
    971 		0,			/* IEEE80211_MODE_AUTO */
    972 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    973 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    974 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    975 		0,			/* IEEE80211_MODE_FH */
    976 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
    977 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
    978 	};
    979 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    980 
    981 	KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
    982 	KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
    983 	return modeflags[mode];
    984 #undef N
    985 }
    986 
    987 static int
    988 ath_ifinit(struct ifnet *ifp)
    989 {
    990 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
    991 
    992 	return ath_init(sc);
    993 }
    994 
    995 static void
    996 ath_settkipmic(struct ath_softc *sc)
    997 {
    998 	struct ieee80211com *ic = &sc->sc_ic;
    999 	struct ath_hal *ah = sc->sc_ah;
   1000 
   1001 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
   1002 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
   1003 		if (ic->ic_flags & IEEE80211_F_WME) {
   1004 			(void)ath_hal_settkipmic(ah, AH_FALSE);
   1005 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
   1006 		} else {
   1007 			(void)ath_hal_settkipmic(ah, AH_TRUE);
   1008 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
   1009 		}
   1010 	}
   1011 }
   1012 
   1013 static int
   1014 ath_init(struct ath_softc *sc)
   1015 {
   1016 	struct ifnet *ifp = &sc->sc_if;
   1017 	struct ieee80211com *ic = &sc->sc_ic;
   1018 	struct ath_hal *ah = sc->sc_ah;
   1019 	HAL_STATUS status;
   1020 	int error = 0, s;
   1021 
   1022 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
   1023 		__func__, ifp->if_flags);
   1024 
   1025 	if (device_is_active(sc->sc_dev)) {
   1026 		s = splnet();
   1027 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
   1028 	           !device_is_active(sc->sc_dev))
   1029 		return 0;
   1030 	else
   1031 		s = splnet();
   1032 
   1033 	/*
   1034 	 * Stop anything previously setup.  This is safe
   1035 	 * whether this is the first time through or not.
   1036 	 */
   1037 	ath_stop_locked(ifp, 0);
   1038 
   1039 	/*
   1040 	 * The basic interface to setting the hardware in a good
   1041 	 * state is ``reset''.  On return the hardware is known to
   1042 	 * be powered up and with interrupts disabled.  This must
   1043 	 * be followed by initialization of the appropriate bits
   1044 	 * and then setup of the interrupt mask.
   1045 	 */
   1046 	ath_settkipmic(sc);
   1047 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
   1048 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
   1049 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
   1050 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
   1051 			status);
   1052 		error = EIO;
   1053 		goto done;
   1054 	}
   1055 
   1056 	/*
   1057 	 * This is needed only to setup initial state
   1058 	 * but it's best done after a reset.
   1059 	 */
   1060 	ath_update_txpow(sc);
   1061 	/*
   1062 	 * Likewise this is set during reset so update
   1063 	 * state cached in the driver.
   1064 	 */
   1065 	ath_restore_diversity(sc);
   1066 	sc->sc_calinterval = 1;
   1067 	sc->sc_caltries = 0;
   1068 
   1069 	/*
   1070 	 * Setup the hardware after reset: the key cache
   1071 	 * is filled as needed and the receive engine is
   1072 	 * set going.  Frame transmit is handled entirely
   1073 	 * in the frame output path; there's nothing to do
   1074 	 * here except setup the interrupt mask.
   1075 	 */
   1076 	if ((error = ath_startrecv(sc)) != 0) {
   1077 		if_printf(ifp, "unable to start recv logic\n");
   1078 		goto done;
   1079 	}
   1080 
   1081 	/*
   1082 	 * Enable interrupts.
   1083 	 */
   1084 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
   1085 		  | HAL_INT_RXEOL | HAL_INT_RXORN
   1086 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
   1087 	/*
   1088 	 * Enable MIB interrupts when there are hardware phy counters.
   1089 	 * Note we only do this (at the moment) for station mode.
   1090 	 */
   1091 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
   1092 		sc->sc_imask |= HAL_INT_MIB;
   1093 	ath_hal_intrset(ah, sc->sc_imask);
   1094 
   1095 	ifp->if_flags |= IFF_RUNNING;
   1096 	ic->ic_state = IEEE80211_S_INIT;
   1097 
   1098 	/*
   1099 	 * The hardware should be ready to go now so it's safe
   1100 	 * to kick the 802.11 state machine as it's likely to
   1101 	 * immediately call back to us to send mgmt frames.
   1102 	 */
   1103 	ath_chan_change(sc, ic->ic_curchan);
   1104 #ifdef ATH_TX99_DIAG
   1105 	if (sc->sc_tx99 != NULL)
   1106 		sc->sc_tx99->start(sc->sc_tx99);
   1107 	else
   1108 #endif
   1109 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   1110 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   1111 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   1112 	} else
   1113 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   1114 done:
   1115 	splx(s);
   1116 	return error;
   1117 }
   1118 
   1119 static void
   1120 ath_stop_locked(struct ifnet *ifp, int disable)
   1121 {
   1122 	struct ath_softc *sc = ifp->if_softc;
   1123 	struct ieee80211com *ic = &sc->sc_ic;
   1124 	struct ath_hal *ah = sc->sc_ah;
   1125 
   1126 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
   1127 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
   1128 
   1129 	/* KASSERT() IPL_NET */
   1130 	if (ifp->if_flags & IFF_RUNNING) {
   1131 		/*
   1132 		 * Shutdown the hardware and driver:
   1133 		 *    reset 802.11 state machine
   1134 		 *    turn off timers
   1135 		 *    disable interrupts
   1136 		 *    turn off the radio
   1137 		 *    clear transmit machinery
   1138 		 *    clear receive machinery
   1139 		 *    drain and release tx queues
   1140 		 *    reclaim beacon resources
   1141 		 *    power down hardware
   1142 		 *
   1143 		 * Note that some of this work is not possible if the
   1144 		 * hardware is gone (invalid).
   1145 		 */
   1146 #ifdef ATH_TX99_DIAG
   1147 		if (sc->sc_tx99 != NULL)
   1148 			sc->sc_tx99->stop(sc->sc_tx99);
   1149 #endif
   1150 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1151 		ifp->if_flags &= ~IFF_RUNNING;
   1152 		ifp->if_timer = 0;
   1153 		if (device_is_enabled(sc->sc_dev)) {
   1154 			if (sc->sc_softled) {
   1155 				callout_stop(&sc->sc_ledtimer);
   1156 				ath_hal_gpioset(ah, sc->sc_ledpin,
   1157 					!sc->sc_ledon);
   1158 				sc->sc_blinking = 0;
   1159 			}
   1160 			ath_hal_intrset(ah, 0);
   1161 		}
   1162 		ath_draintxq(sc);
   1163 		if (device_is_enabled(sc->sc_dev)) {
   1164 			ath_stoprecv(sc);
   1165 			ath_hal_phydisable(ah);
   1166 		} else
   1167 			sc->sc_rxlink = NULL;
   1168 		IF_PURGE(&ifp->if_snd);
   1169 		ath_beacon_free(sc);
   1170 	}
   1171 	if (disable)
   1172 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
   1173 }
   1174 
   1175 static void
   1176 ath_stop(struct ifnet *ifp, int disable)
   1177 {
   1178 	int s;
   1179 
   1180 	s = splnet();
   1181 	ath_stop_locked(ifp, disable);
   1182 	splx(s);
   1183 }
   1184 
   1185 static void
   1186 ath_restore_diversity(struct ath_softc *sc)
   1187 {
   1188 	struct ifnet *ifp = &sc->sc_if;
   1189 	struct ath_hal *ah = sc->sc_ah;
   1190 
   1191 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
   1192 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
   1193 		if_printf(ifp, "could not restore diversity setting %d\n",
   1194 		    sc->sc_diversity);
   1195 		sc->sc_diversity = ath_hal_getdiversity(ah);
   1196 	}
   1197 }
   1198 
   1199 /*
   1200  * Reset the hardware w/o losing operational state.  This is
   1201  * basically a more efficient way of doing ath_stop, ath_init,
   1202  * followed by state transitions to the current 802.11
   1203  * operational state.  Used to recover from various errors and
   1204  * to reset or reload hardware state.
   1205  */
   1206 int
   1207 ath_reset(struct ifnet *ifp)
   1208 {
   1209 	struct ath_softc *sc = ifp->if_softc;
   1210 	struct ieee80211com *ic = &sc->sc_ic;
   1211 	struct ath_hal *ah = sc->sc_ah;
   1212 	struct ieee80211_channel *c;
   1213 	HAL_STATUS status;
   1214 
   1215 	/*
   1216 	 * Convert to a HAL channel description with the flags
   1217 	 * constrained to reflect the current operating mode.
   1218 	 */
   1219 	c = ic->ic_curchan;
   1220 	sc->sc_curchan.channel = c->ic_freq;
   1221 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
   1222 
   1223 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1224 	ath_draintxq(sc);		/* stop xmit side */
   1225 	ath_stoprecv(sc);		/* stop recv side */
   1226 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
   1227 	/* NB: indicate channel change so we do a full reset */
   1228 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
   1229 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1230 			__func__, status);
   1231 	ath_update_txpow(sc);		/* update tx power state */
   1232 	ath_restore_diversity(sc);
   1233 	sc->sc_calinterval = 1;
   1234 	sc->sc_caltries = 0;
   1235 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1236 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1237 	/*
   1238 	 * We may be doing a reset in response to an ioctl
   1239 	 * that changes the channel so update any state that
   1240 	 * might change as a result.
   1241 	 */
   1242 	ath_chan_change(sc, c);
   1243 	if (ic->ic_state == IEEE80211_S_RUN)
   1244 		ath_beacon_config(sc);	/* restart beacons */
   1245 	ath_hal_intrset(ah, sc->sc_imask);
   1246 
   1247 	ath_start(ifp);			/* restart xmit */
   1248 	return 0;
   1249 }
   1250 
   1251 /*
   1252  * Cleanup driver resources when we run out of buffers
   1253  * while processing fragments; return the tx buffers
   1254  * allocated and drop node references.
   1255  */
   1256 static void
   1257 ath_txfrag_cleanup(struct ath_softc *sc,
   1258 	ath_bufhead *frags, struct ieee80211_node *ni)
   1259 {
   1260 	struct ath_buf *bf;
   1261 
   1262 	ATH_TXBUF_LOCK_ASSERT(sc);
   1263 
   1264 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
   1265 		STAILQ_REMOVE_HEAD(frags, bf_list);
   1266 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1267 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1268 		ieee80211_node_decref(ni);
   1269 	}
   1270 }
   1271 
   1272 /*
   1273  * Setup xmit of a fragmented frame.  Allocate a buffer
   1274  * for each frag and bump the node reference count to
   1275  * reflect the held reference to be setup by ath_tx_start.
   1276  */
   1277 static int
   1278 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
   1279 	struct mbuf *m0, struct ieee80211_node *ni)
   1280 {
   1281 	struct mbuf *m;
   1282 	struct ath_buf *bf;
   1283 
   1284 	ATH_TXBUF_LOCK(sc);
   1285 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
   1286 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1287 		if (bf == NULL) {       /* out of buffers, cleanup */
   1288 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1289 				__func__);
   1290 			sc->sc_if.if_flags |= IFF_OACTIVE;
   1291 			ath_txfrag_cleanup(sc, frags, ni);
   1292 			break;
   1293 		}
   1294 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1295 		ieee80211_node_incref(ni);
   1296 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
   1297 	}
   1298 	ATH_TXBUF_UNLOCK(sc);
   1299 
   1300 	return !STAILQ_EMPTY(frags);
   1301 }
   1302 
   1303 static void
   1304 ath_start(struct ifnet *ifp)
   1305 {
   1306 	struct ath_softc *sc = ifp->if_softc;
   1307 	struct ath_hal *ah = sc->sc_ah;
   1308 	struct ieee80211com *ic = &sc->sc_ic;
   1309 	struct ieee80211_node *ni;
   1310 	struct ath_buf *bf;
   1311 	struct mbuf *m, *next;
   1312 	struct ieee80211_frame *wh;
   1313 	struct ether_header *eh;
   1314 	ath_bufhead frags;
   1315 
   1316 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   1317 	    !device_is_active(sc->sc_dev))
   1318 		return;
   1319 
   1320 	if (sc->sc_flags & ATH_KEY_UPDATING)
   1321 		return;
   1322 
   1323 	for (;;) {
   1324 		/*
   1325 		 * Grab a TX buffer and associated resources.
   1326 		 */
   1327 		ATH_TXBUF_LOCK(sc);
   1328 		bf = STAILQ_FIRST(&sc->sc_txbuf);
   1329 		if (bf != NULL)
   1330 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
   1331 		ATH_TXBUF_UNLOCK(sc);
   1332 		if (bf == NULL) {
   1333 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
   1334 				__func__);
   1335 			sc->sc_stats.ast_tx_qstop++;
   1336 			ifp->if_flags |= IFF_OACTIVE;
   1337 			break;
   1338 		}
   1339 		/*
   1340 		 * Poll the management queue for frames; they
   1341 		 * have priority over normal data frames.
   1342 		 */
   1343 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1344 		if (m == NULL) {
   1345 			/*
   1346 			 * No data frames go out unless we're associated.
   1347 			 */
   1348 			if (ic->ic_state != IEEE80211_S_RUN) {
   1349 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1350 				    "%s: discard data packet, state %s\n",
   1351 				    __func__,
   1352 				    ieee80211_state_name[ic->ic_state]);
   1353 				sc->sc_stats.ast_tx_discard++;
   1354 				ATH_TXBUF_LOCK(sc);
   1355 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1356 				ATH_TXBUF_UNLOCK(sc);
   1357 				break;
   1358 			}
   1359 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
   1360 			if (m == NULL) {
   1361 				ATH_TXBUF_LOCK(sc);
   1362 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1363 				ATH_TXBUF_UNLOCK(sc);
   1364 				break;
   1365 			}
   1366 			STAILQ_INIT(&frags);
   1367 			/*
   1368 			 * Find the node for the destination so we can do
   1369 			 * things like power save and fast frames aggregation.
   1370 			 */
   1371 			if (m->m_len < sizeof(struct ether_header) &&
   1372 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
   1373 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
   1374 				ni = NULL;
   1375 				goto bad;
   1376 			}
   1377 			eh = mtod(m, struct ether_header *);
   1378 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1379 			if (ni == NULL) {
   1380 				/* NB: ieee80211_find_txnode does stat+msg */
   1381 				m_freem(m);
   1382 				goto bad;
   1383 			}
   1384 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
   1385 			    (m->m_flags & M_PWR_SAV) == 0) {
   1386 				/*
   1387 				 * Station in power save mode; pass the frame
   1388 				 * to the 802.11 layer and continue.  We'll get
   1389 				 * the frame back when the time is right.
   1390 				 */
   1391 				ieee80211_pwrsave(ic, ni, m);
   1392 				goto reclaim;
   1393 			}
   1394 			/* calculate priority so we can find the tx queue */
   1395 			if (ieee80211_classify(ic, m, ni)) {
   1396 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1397 					"%s: discard, classification failure\n",
   1398 					__func__);
   1399 				m_freem(m);
   1400 				goto bad;
   1401 			}
   1402 			ifp->if_opackets++;
   1403 
   1404 			bpf_mtap(ifp, m, BPF_D_OUT);
   1405 			/*
   1406 			 * Encapsulate the packet in prep for transmission.
   1407 			 */
   1408 			m = ieee80211_encap(ic, m, ni);
   1409 			if (m == NULL) {
   1410 				DPRINTF(sc, ATH_DEBUG_XMIT,
   1411 					"%s: encapsulation failure\n",
   1412 					__func__);
   1413 				sc->sc_stats.ast_tx_encap++;
   1414 				goto bad;
   1415 			}
   1416 			/*
   1417 			 * Check for fragmentation.  If this has frame
   1418 			 * has been broken up verify we have enough
   1419 			 * buffers to send all the fragments so all
   1420 			 * go out or none...
   1421 			 */
   1422 			if ((m->m_flags & M_FRAG) &&
   1423 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
   1424 				DPRINTF(sc, ATH_DEBUG_ANY,
   1425 				    "%s: out of txfrag buffers\n", __func__);
   1426 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
   1427 				ath_freetx(m);
   1428 				goto bad;
   1429 			}
   1430 		} else {
   1431 			/*
   1432 			 * Hack!  The referenced node pointer is in the
   1433 			 * rcvif field of the packet header.  This is
   1434 			 * placed there by ieee80211_mgmt_output because
   1435 			 * we need to hold the reference with the frame
   1436 			 * and there's no other way (other than packet
   1437 			 * tags which we consider too expensive to use)
   1438 			 * to pass it along.
   1439 			 */
   1440 			ni = M_GETCTX(m, struct ieee80211_node *);
   1441 			M_CLEARCTX(m);
   1442 
   1443 			wh = mtod(m, struct ieee80211_frame *);
   1444 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1445 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1446 				/* fill time stamp */
   1447 				u_int64_t tsf;
   1448 				u_int32_t *tstamp;
   1449 
   1450 				tsf = ath_hal_gettsf64(ah);
   1451 				/* XXX: adjust 100us delay to xmit */
   1452 				tsf += 100;
   1453 				tstamp = (u_int32_t *)&wh[1];
   1454 				tstamp[0] = htole32(tsf & 0xffffffff);
   1455 				tstamp[1] = htole32(tsf >> 32);
   1456 			}
   1457 			sc->sc_stats.ast_tx_mgmt++;
   1458 		}
   1459 
   1460 	nextfrag:
   1461 		next = m->m_nextpkt;
   1462 		if (ath_tx_start(sc, ni, bf, m)) {
   1463 	bad:
   1464 			ifp->if_oerrors++;
   1465 	reclaim:
   1466 			ATH_TXBUF_LOCK(sc);
   1467 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1468 			ath_txfrag_cleanup(sc, &frags, ni);
   1469 			ATH_TXBUF_UNLOCK(sc);
   1470 			if (ni != NULL)
   1471 				ieee80211_free_node(ni);
   1472 			continue;
   1473 		}
   1474 		if (next != NULL) {
   1475 			m = next;
   1476 			bf = STAILQ_FIRST(&frags);
   1477 			KASSERTMSG(bf != NULL, "no buf for txfrag");
   1478 			STAILQ_REMOVE_HEAD(&frags, bf_list);
   1479 			goto nextfrag;
   1480 		}
   1481 
   1482 		ifp->if_timer = 1;
   1483 	}
   1484 }
   1485 
   1486 static int
   1487 ath_media_change(struct ifnet *ifp)
   1488 {
   1489 #define	IS_UP(ifp) \
   1490 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   1491 	int error;
   1492 
   1493 	error = ieee80211_media_change(ifp);
   1494 	if (error == ENETRESET) {
   1495 		if (IS_UP(ifp))
   1496 			ath_init(ifp->if_softc);	/* XXX lose error */
   1497 		error = 0;
   1498 	}
   1499 	return error;
   1500 #undef IS_UP
   1501 }
   1502 
   1503 #ifdef AR_DEBUG
   1504 static void
   1505 ath_keyprint(const char *tag, u_int ix,
   1506 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1507 {
   1508 	static const char *ciphers[] = {
   1509 		"WEP",
   1510 		"AES-OCB",
   1511 		"AES-CCM",
   1512 		"CKIP",
   1513 		"TKIP",
   1514 		"CLR",
   1515 	};
   1516 	int i, n;
   1517 
   1518 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
   1519 	for (i = 0, n = hk->kv_len; i < n; i++)
   1520 		printf("%02x", hk->kv_val[i]);
   1521 	printf(" mac %s", ether_sprintf(mac));
   1522 	if (hk->kv_type == HAL_CIPHER_TKIP) {
   1523 		printf(" mic ");
   1524 		for (i = 0; i < sizeof(hk->kv_mic); i++)
   1525 			printf("%02x", hk->kv_mic[i]);
   1526 	}
   1527 	printf("\n");
   1528 }
   1529 #endif
   1530 
   1531 /*
   1532  * Set a TKIP key into the hardware.  This handles the
   1533  * potential distribution of key state to multiple key
   1534  * cache slots for TKIP.
   1535  */
   1536 static int
   1537 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
   1538 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
   1539 {
   1540 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
   1541 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
   1542 	struct ath_hal *ah = sc->sc_ah;
   1543 
   1544 	KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
   1545 		"got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
   1546 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
   1547 		if (sc->sc_splitmic) {
   1548 			/*
   1549 			 * TX key goes at first index, RX key at the rx index.
   1550 			 * The hal handles the MIC keys at index+64.
   1551 			 */
   1552 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
   1553 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
   1554 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
   1555 						zerobssid))
   1556 				return 0;
   1557 
   1558 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1559 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
   1560 			/* XXX delete tx key on failure? */
   1561 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
   1562 					hk, mac);
   1563 		} else {
   1564 			/*
   1565 			 * Room for both TX+RX MIC keys in one key cache
   1566 			 * slot, just set key at the first index; the HAL
   1567 			 * will handle the reset.
   1568 			 */
   1569 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1570 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1571 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1572 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1573 		}
   1574 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
   1575 		if (sc->sc_splitmic) {
   1576 			/*
   1577 			 * NB: must pass MIC key in expected location when
   1578 			 * the keycache only holds one MIC key per entry.
   1579 			 */
   1580 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
   1581 		} else
   1582 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
   1583 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1584 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
   1585 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
   1586 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
   1587 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
   1588 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
   1589 	}
   1590 	return 0;
   1591 #undef IEEE80211_KEY_XR
   1592 }
   1593 
   1594 /*
   1595  * Set a net80211 key into the hardware.  This handles the
   1596  * potential distribution of key state to multiple key
   1597  * cache slots for TKIP with hardware MIC support.
   1598  */
   1599 static int
   1600 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
   1601 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
   1602 	struct ieee80211_node *bss)
   1603 {
   1604 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1605 	static const u_int8_t ciphermap[] = {
   1606 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
   1607 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
   1608 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
   1609 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
   1610 		(u_int8_t) -1,		/* 4 is not allocated */
   1611 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
   1612 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
   1613 	};
   1614 	struct ath_hal *ah = sc->sc_ah;
   1615 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1616 	u_int8_t gmac[IEEE80211_ADDR_LEN];
   1617 	const u_int8_t *mac;
   1618 	HAL_KEYVAL hk;
   1619 
   1620 	memset(&hk, 0, sizeof(hk));
   1621 	/*
   1622 	 * Software crypto uses a "clear key" so non-crypto
   1623 	 * state kept in the key cache are maintained and
   1624 	 * so that rx frames have an entry to match.
   1625 	 */
   1626 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
   1627 		KASSERTMSG(cip->ic_cipher < N(ciphermap),
   1628 			"invalid cipher type %u", cip->ic_cipher);
   1629 		hk.kv_type = ciphermap[cip->ic_cipher];
   1630 		hk.kv_len = k->wk_keylen;
   1631 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
   1632 	} else
   1633 		hk.kv_type = HAL_CIPHER_CLR;
   1634 
   1635 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
   1636 		/*
   1637 		 * Group keys on hardware that supports multicast frame
   1638 		 * key search use a mac that is the sender's address with
   1639 		 * the high bit set instead of the app-specified address.
   1640 		 */
   1641 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
   1642 		gmac[0] |= 0x80;
   1643 		mac = gmac;
   1644 	} else
   1645 		mac = mac0;
   1646 
   1647 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
   1648 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
   1649 		return ath_keyset_tkip(sc, k, &hk, mac);
   1650 	} else {
   1651 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
   1652 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
   1653 	}
   1654 #undef N
   1655 }
   1656 
   1657 /*
   1658  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1659  * each key, one for decrypt/encrypt and the other for the MIC.
   1660  */
   1661 static u_int16_t
   1662 key_alloc_2pair(struct ath_softc *sc,
   1663 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1664 {
   1665 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1666 	u_int i, keyix;
   1667 
   1668 	KASSERTMSG(sc->sc_splitmic, "key cache !split");
   1669 	/* XXX could optimize */
   1670 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1671 		u_int8_t b = sc->sc_keymap[i];
   1672 		if (b != 0xff) {
   1673 			/*
   1674 			 * One or more slots in this byte are free.
   1675 			 */
   1676 			keyix = i*NBBY;
   1677 			while (b & 1) {
   1678 		again:
   1679 				keyix++;
   1680 				b >>= 1;
   1681 			}
   1682 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
   1683 			if (isset(sc->sc_keymap, keyix+32) ||
   1684 			    isset(sc->sc_keymap, keyix+64) ||
   1685 			    isset(sc->sc_keymap, keyix+32+64)) {
   1686 				/* full pair unavailable */
   1687 				/* XXX statistic */
   1688 				if (keyix == (i+1)*NBBY) {
   1689 					/* no slots were appropriate, advance */
   1690 					continue;
   1691 				}
   1692 				goto again;
   1693 			}
   1694 			setbit(sc->sc_keymap, keyix);
   1695 			setbit(sc->sc_keymap, keyix+64);
   1696 			setbit(sc->sc_keymap, keyix+32);
   1697 			setbit(sc->sc_keymap, keyix+32+64);
   1698 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1699 				"%s: key pair %u,%u %u,%u\n",
   1700 				__func__, keyix, keyix+64,
   1701 				keyix+32, keyix+32+64);
   1702 			*txkeyix = keyix;
   1703 			*rxkeyix = keyix+32;
   1704 			return keyix;
   1705 		}
   1706 	}
   1707 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1708 	return IEEE80211_KEYIX_NONE;
   1709 #undef N
   1710 }
   1711 
   1712 /*
   1713  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
   1714  * each key, one for decrypt/encrypt and the other for the MIC.
   1715  */
   1716 static int
   1717 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
   1718     ieee80211_keyix *rxkeyix)
   1719 {
   1720 #define N(a)	(sizeof(a)/sizeof(a[0]))
   1721 	u_int i, keyix;
   1722 
   1723 	KASSERTMSG(!sc->sc_splitmic, "key cache split");
   1724 	/* XXX could optimize */
   1725 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
   1726 		uint8_t b = sc->sc_keymap[i];
   1727 		if (b != 0xff) {
   1728 			/*
   1729 			 * One or more slots in this byte are free.
   1730 			 */
   1731 			keyix = i*NBBY;
   1732 			while (b & 1) {
   1733 		again:
   1734 				keyix++;
   1735 				b >>= 1;
   1736 			}
   1737 			if (isset(sc->sc_keymap, keyix+64)) {
   1738 				/* full pair unavailable */
   1739 				/* XXX statistic */
   1740 				if (keyix == (i+1)*NBBY) {
   1741 					/* no slots were appropriate, advance */
   1742 					continue;
   1743 				}
   1744 				goto again;
   1745 			}
   1746 			setbit(sc->sc_keymap, keyix);
   1747 			setbit(sc->sc_keymap, keyix+64);
   1748 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1749 				"%s: key pair %u,%u\n",
   1750 				__func__, keyix, keyix+64);
   1751 			*txkeyix = *rxkeyix = keyix;
   1752 			return 1;
   1753 		}
   1754 	}
   1755 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
   1756 	return 0;
   1757 #undef N
   1758 }
   1759 
   1760 /*
   1761  * Allocate a single key cache slot.
   1762  */
   1763 static int
   1764 key_alloc_single(struct ath_softc *sc,
   1765 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
   1766 {
   1767 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   1768 	u_int i, keyix;
   1769 
   1770 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
   1771 	for (i = 0; i < N(sc->sc_keymap); i++) {
   1772 		u_int8_t b = sc->sc_keymap[i];
   1773 		if (b != 0xff) {
   1774 			/*
   1775 			 * One or more slots are free.
   1776 			 */
   1777 			keyix = i*NBBY;
   1778 			while (b & 1)
   1779 				keyix++, b >>= 1;
   1780 			setbit(sc->sc_keymap, keyix);
   1781 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
   1782 				__func__, keyix);
   1783 			*txkeyix = *rxkeyix = keyix;
   1784 			return 1;
   1785 		}
   1786 	}
   1787 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
   1788 	return 0;
   1789 #undef N
   1790 }
   1791 
   1792 /*
   1793  * Allocate one or more key cache slots for a uniacst key.  The
   1794  * key itself is needed only to identify the cipher.  For hardware
   1795  * TKIP with split cipher+MIC keys we allocate two key cache slot
   1796  * pairs so that we can setup separate TX and RX MIC keys.  Note
   1797  * that the MIC key for a TKIP key at slot i is assumed by the
   1798  * hardware to be at slot i+64.  This limits TKIP keys to the first
   1799  * 64 entries.
   1800  */
   1801 static int
   1802 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
   1803 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
   1804 {
   1805 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1806 
   1807 	/*
   1808 	 * Group key allocation must be handled specially for
   1809 	 * parts that do not support multicast key cache search
   1810 	 * functionality.  For those parts the key id must match
   1811 	 * the h/w key index so lookups find the right key.  On
   1812 	 * parts w/ the key search facility we install the sender's
   1813 	 * mac address (with the high bit set) and let the hardware
   1814 	 * find the key w/o using the key id.  This is preferred as
   1815 	 * it permits us to support multiple users for adhoc and/or
   1816 	 * multi-station operation.
   1817 	 */
   1818 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
   1819 		if (!(&ic->ic_nw_keys[0] <= k &&
   1820 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
   1821 			/* should not happen */
   1822 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
   1823 				"%s: bogus group key\n", __func__);
   1824 			return 0;
   1825 		}
   1826 		/*
   1827 		 * XXX we pre-allocate the global keys so
   1828 		 * have no way to check if they've already been allocated.
   1829 		 */
   1830 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
   1831 		return 1;
   1832 	}
   1833 
   1834 	/*
   1835 	 * We allocate two pair for TKIP when using the h/w to do
   1836 	 * the MIC.  For everything else, including software crypto,
   1837 	 * we allocate a single entry.  Note that s/w crypto requires
   1838 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
   1839 	 * not support pass-through cache entries and we map all
   1840 	 * those requests to slot 0.
   1841 	 */
   1842 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
   1843 		return key_alloc_single(sc, keyix, rxkeyix);
   1844 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1845 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1846 		if (sc->sc_splitmic)
   1847 			return key_alloc_2pair(sc, keyix, rxkeyix);
   1848 		else
   1849 			return key_alloc_pair(sc, keyix, rxkeyix);
   1850 	} else {
   1851 		return key_alloc_single(sc, keyix, rxkeyix);
   1852 	}
   1853 }
   1854 
   1855 /*
   1856  * Delete an entry in the key cache allocated by ath_key_alloc.
   1857  */
   1858 static int
   1859 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
   1860 {
   1861 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1862 	struct ath_hal *ah = sc->sc_ah;
   1863 	const struct ieee80211_cipher *cip = k->wk_cipher;
   1864 	u_int keyix = k->wk_keyix;
   1865 
   1866 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
   1867 
   1868 	if (!device_has_power(sc->sc_dev)) {
   1869 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
   1870 		    k->wk_keyix);
   1871 	}
   1872 
   1873 	ath_hal_keyreset(ah, keyix);
   1874 	/*
   1875 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
   1876 	 */
   1877 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1878 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
   1879 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
   1880 	if (keyix >= IEEE80211_WEP_NKID) {
   1881 		/*
   1882 		 * Don't touch keymap entries for global keys so
   1883 		 * they are never considered for dynamic allocation.
   1884 		 */
   1885 		clrbit(sc->sc_keymap, keyix);
   1886 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
   1887 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
   1888 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
   1889 			if (sc->sc_splitmic) {
   1890 				/* +32 for RX key, +32+64 for RX key MIC */
   1891 				clrbit(sc->sc_keymap, keyix+32);
   1892 				clrbit(sc->sc_keymap, keyix+32+64);
   1893 			}
   1894 		}
   1895 	}
   1896 	return 1;
   1897 }
   1898 
   1899 /*
   1900  * Set the key cache contents for the specified key.  Key cache
   1901  * slot(s) must already have been allocated by ath_key_alloc.
   1902  */
   1903 static int
   1904 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
   1905 	const u_int8_t mac[IEEE80211_ADDR_LEN])
   1906 {
   1907 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   1908 
   1909 	if (!device_has_power(sc->sc_dev)) {
   1910 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
   1911 		    k->wk_keyix);
   1912 	}
   1913 	return ath_keyset(sc, k, mac, ic->ic_bss);
   1914 }
   1915 
   1916 /*
   1917  * Block/unblock tx+rx processing while a key change is done.
   1918  * We assume the caller serializes key management operations
   1919  * so we only need to worry about synchronization with other
   1920  * uses that originate in the driver.
   1921  */
   1922 static void
   1923 ath_key_update_begin(struct ieee80211com *ic)
   1924 {
   1925 	struct ifnet *ifp = ic->ic_ifp;
   1926 	struct ath_softc *sc = ifp->if_softc;
   1927 
   1928 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1929 #if 0
   1930 	tasklet_disable(&sc->sc_rxtq);
   1931 #endif
   1932 	sc->sc_flags |= ATH_KEY_UPDATING;
   1933 }
   1934 
   1935 static void
   1936 ath_key_update_end(struct ieee80211com *ic)
   1937 {
   1938 	struct ifnet *ifp = ic->ic_ifp;
   1939 	struct ath_softc *sc = ifp->if_softc;
   1940 
   1941 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
   1942 	sc->sc_flags &= ~ATH_KEY_UPDATING;
   1943 #if 0
   1944 	tasklet_enable(&sc->sc_rxtq);
   1945 #endif
   1946 }
   1947 
   1948 /*
   1949  * Calculate the receive filter according to the
   1950  * operating mode and state:
   1951  *
   1952  * o always accept unicast, broadcast, and multicast traffic
   1953  * o maintain current state of phy error reception (the hal
   1954  *   may enable phy error frames for noise immunity work)
   1955  * o probe request frames are accepted only when operating in
   1956  *   hostap, adhoc, or monitor modes
   1957  * o enable promiscuous mode according to the interface state
   1958  * o accept beacons:
   1959  *   - when operating in adhoc mode so the 802.11 layer creates
   1960  *     node table entries for peers,
   1961  *   - when operating in station mode for collecting rssi data when
   1962  *     the station is otherwise quiet, or
   1963  *   - when scanning
   1964  */
   1965 static u_int32_t
   1966 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
   1967 {
   1968 	struct ieee80211com *ic = &sc->sc_ic;
   1969 	struct ath_hal *ah = sc->sc_ah;
   1970 	struct ifnet *ifp = &sc->sc_if;
   1971 	u_int32_t rfilt;
   1972 
   1973 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1974 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1975 	if (ic->ic_opmode != IEEE80211_M_STA)
   1976 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1977 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1978 	    (ifp->if_flags & IFF_PROMISC))
   1979 		rfilt |= HAL_RX_FILTER_PROM;
   1980 	if (ifp->if_flags & IFF_PROMISC)
   1981 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
   1982 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1983 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1984 	    state == IEEE80211_S_SCAN)
   1985 		rfilt |= HAL_RX_FILTER_BEACON;
   1986 	return rfilt;
   1987 }
   1988 
   1989 static void
   1990 ath_mode_init(struct ath_softc *sc)
   1991 {
   1992 	struct ifnet *ifp = &sc->sc_if;
   1993 	struct ieee80211com *ic = &sc->sc_ic;
   1994 	struct ath_hal *ah = sc->sc_ah;
   1995 	struct ether_multi *enm;
   1996 	struct ether_multistep estep;
   1997 	u_int32_t rfilt, mfilt[2], val;
   1998 	int i;
   1999 	uint8_t pos;
   2000 
   2001 	/* configure rx filter */
   2002 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
   2003 	ath_hal_setrxfilter(ah, rfilt);
   2004 
   2005 	/* configure operational mode */
   2006 	ath_hal_setopmode(ah);
   2007 
   2008 	/* Write keys to hardware; it may have been powered down. */
   2009 	ath_key_update_begin(ic);
   2010 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   2011 		ath_key_set(ic,
   2012 			    &ic->ic_crypto.cs_nw_keys[i],
   2013 			    ic->ic_myaddr);
   2014 	}
   2015 	ath_key_update_end(ic);
   2016 
   2017 	/*
   2018 	 * Handle any link-level address change.  Note that we only
   2019 	 * need to force ic_myaddr; any other addresses are handled
   2020 	 * as a byproduct of the ifnet code marking the interface
   2021 	 * down then up.
   2022 	 *
   2023 	 * XXX should get from lladdr instead of arpcom but that's more work
   2024 	 */
   2025 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
   2026 	ath_hal_setmac(ah, ic->ic_myaddr);
   2027 
   2028 	/* calculate and install multicast filter */
   2029 	ifp->if_flags &= ~IFF_ALLMULTI;
   2030 	mfilt[0] = mfilt[1] = 0;
   2031 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
   2032 	while (enm != NULL) {
   2033 		void *dl;
   2034 		/* XXX Punt on ranges. */
   2035 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   2036 			mfilt[0] = mfilt[1] = 0xffffffff;
   2037 			ifp->if_flags |= IFF_ALLMULTI;
   2038 			break;
   2039 		}
   2040 		dl = enm->enm_addrlo;
   2041 		val = LE_READ_4((char *)dl + 0);
   2042 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   2043 		val = LE_READ_4((char *)dl + 3);
   2044 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   2045 		pos &= 0x3f;
   2046 		mfilt[pos / 32] |= (1 << (pos % 32));
   2047 
   2048 		ETHER_NEXT_MULTI(estep, enm);
   2049 	}
   2050 
   2051 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   2052 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
   2053 		__func__, rfilt, mfilt[0], mfilt[1]);
   2054 }
   2055 
   2056 /*
   2057  * Set the slot time based on the current setting.
   2058  */
   2059 static void
   2060 ath_setslottime(struct ath_softc *sc)
   2061 {
   2062 	struct ieee80211com *ic = &sc->sc_ic;
   2063 	struct ath_hal *ah = sc->sc_ah;
   2064 
   2065 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   2066 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
   2067 	else
   2068 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
   2069 	sc->sc_updateslot = OK;
   2070 }
   2071 
   2072 /*
   2073  * Callback from the 802.11 layer to update the
   2074  * slot time based on the current setting.
   2075  */
   2076 static void
   2077 ath_updateslot(struct ifnet *ifp)
   2078 {
   2079 	struct ath_softc *sc = ifp->if_softc;
   2080 	struct ieee80211com *ic = &sc->sc_ic;
   2081 
   2082 	/*
   2083 	 * When not coordinating the BSS, change the hardware
   2084 	 * immediately.  For other operation we defer the change
   2085 	 * until beacon updates have propagated to the stations.
   2086 	 */
   2087 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
   2088 		sc->sc_updateslot = UPDATE;
   2089 	else
   2090 		ath_setslottime(sc);
   2091 }
   2092 
   2093 /*
   2094  * Setup a h/w transmit queue for beacons.
   2095  */
   2096 static int
   2097 ath_beaconq_setup(struct ath_hal *ah)
   2098 {
   2099 	HAL_TXQ_INFO qi;
   2100 
   2101 	memset(&qi, 0, sizeof(qi));
   2102 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   2103 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   2104 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   2105 	/* NB: for dynamic turbo, don't enable any other interrupts */
   2106 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
   2107 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
   2108 }
   2109 
   2110 /*
   2111  * Setup the transmit queue parameters for the beacon queue.
   2112  */
   2113 static int
   2114 ath_beaconq_config(struct ath_softc *sc)
   2115 {
   2116 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
   2117 	struct ieee80211com *ic = &sc->sc_ic;
   2118 	struct ath_hal *ah = sc->sc_ah;
   2119 	HAL_TXQ_INFO qi;
   2120 
   2121 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
   2122 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2123 		/*
   2124 		 * Always burst out beacon and CAB traffic.
   2125 		 */
   2126 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
   2127 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
   2128 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
   2129 	} else {
   2130 		struct wmeParams *wmep =
   2131 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
   2132 		/*
   2133 		 * Adhoc mode; important thing is to use 2x cwmin.
   2134 		 */
   2135 		qi.tqi_aifs = wmep->wmep_aifsn;
   2136 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   2137 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   2138 	}
   2139 
   2140 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
   2141 		device_printf(sc->sc_dev, "unable to update parameters for "
   2142 			"beacon hardware queue!\n");
   2143 		return 0;
   2144 	} else {
   2145 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
   2146 		return 1;
   2147 	}
   2148 #undef ATH_EXPONENT_TO_VALUE
   2149 }
   2150 
   2151 /*
   2152  * Allocate and setup an initial beacon frame.
   2153  */
   2154 static int
   2155 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   2156 {
   2157 	struct ieee80211com *ic = ni->ni_ic;
   2158 	struct ath_buf *bf;
   2159 	struct mbuf *m;
   2160 	int error;
   2161 
   2162 	bf = STAILQ_FIRST(&sc->sc_bbuf);
   2163 	if (bf == NULL) {
   2164 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
   2165 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
   2166 		return ENOMEM;			/* XXX */
   2167 	}
   2168 	/*
   2169 	 * NB: the beacon data buffer must be 32-bit aligned;
   2170 	 * we assume the mbuf routines will return us something
   2171 	 * with this alignment (perhaps should assert).
   2172 	 */
   2173 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
   2174 	if (m == NULL) {
   2175 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
   2176 			__func__);
   2177 		sc->sc_stats.ast_be_nombuf++;
   2178 		return ENOMEM;
   2179 	}
   2180 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2181 				     BUS_DMA_NOWAIT);
   2182 	if (error == 0) {
   2183 		bf->bf_m = m;
   2184 		bf->bf_node = ieee80211_ref_node(ni);
   2185 	} else {
   2186 		m_freem(m);
   2187 	}
   2188 	return error;
   2189 }
   2190 
   2191 /*
   2192  * Setup the beacon frame for transmit.
   2193  */
   2194 static void
   2195 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
   2196 {
   2197 #define	USE_SHPREAMBLE(_ic) \
   2198 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
   2199 		== IEEE80211_F_SHPREAMBLE)
   2200 	struct ieee80211_node *ni = bf->bf_node;
   2201 	struct ieee80211com *ic = ni->ni_ic;
   2202 	struct mbuf *m = bf->bf_m;
   2203 	struct ath_hal *ah = sc->sc_ah;
   2204 	struct ath_desc *ds;
   2205 	int flags, antenna;
   2206 	const HAL_RATE_TABLE *rt;
   2207 	u_int8_t rix, rate;
   2208 
   2209 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
   2210 		__func__, m, m->m_len);
   2211 
   2212 	/* setup descriptors */
   2213 	ds = bf->bf_desc;
   2214 
   2215 	flags = HAL_TXDESC_NOACK;
   2216 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
   2217 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
   2218 		flags |= HAL_TXDESC_VEOL;
   2219 		/*
   2220 		 * Let hardware handle antenna switching unless
   2221 		 * the user has selected a transmit antenna
   2222 		 * (sc_txantenna is not 0).
   2223 		 */
   2224 		antenna = sc->sc_txantenna;
   2225 	} else {
   2226 		ds->ds_link = 0;
   2227 		/*
   2228 		 * Switch antenna every 4 beacons, unless the user
   2229 		 * has selected a transmit antenna (sc_txantenna
   2230 		 * is not 0).
   2231 		 *
   2232 		 * XXX assumes two antenna
   2233 		 */
   2234 		if (sc->sc_txantenna == 0)
   2235 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
   2236 		else
   2237 			antenna = sc->sc_txantenna;
   2238 	}
   2239 
   2240 	KASSERTMSG(bf->bf_nseg == 1,
   2241 		"multi-segment beacon frame; nseg %u", bf->bf_nseg);
   2242 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2243 	/*
   2244 	 * Calculate rate code.
   2245 	 * XXX everything at min xmit rate
   2246 	 */
   2247 	rix = sc->sc_minrateix;
   2248 	rt = sc->sc_currates;
   2249 	rate = rt->info[rix].rateCode;
   2250 	if (USE_SHPREAMBLE(ic))
   2251 		rate |= rt->info[rix].shortPreamble;
   2252 	ath_hal_setuptxdesc(ah, ds
   2253 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
   2254 		, sizeof(struct ieee80211_frame)/* header length */
   2255 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   2256 		, ni->ni_txpower		/* txpower XXX */
   2257 		, rate, 1			/* series 0 rate/tries */
   2258 		, HAL_TXKEYIX_INVALID		/* no encryption */
   2259 		, antenna			/* antenna mode */
   2260 		, flags				/* no ack, veol for beacons */
   2261 		, 0				/* rts/cts rate */
   2262 		, 0				/* rts/cts duration */
   2263 	);
   2264 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   2265 	ath_hal_filltxdesc(ah, ds
   2266 		, roundup(m->m_len, 4)		/* buffer length */
   2267 		, AH_TRUE			/* first segment */
   2268 		, AH_TRUE			/* last segment */
   2269 		, ds				/* first descriptor */
   2270 	);
   2271 
   2272 	/* NB: The desc swap function becomes void, if descriptor swapping
   2273 	 * is not enabled
   2274 	 */
   2275 	ath_desc_swap(ds);
   2276 
   2277 #undef USE_SHPREAMBLE
   2278 }
   2279 
   2280 /*
   2281  * Transmit a beacon frame at SWBA.  Dynamic updates to the
   2282  * frame contents are done as needed and the slot time is
   2283  * also adjusted based on current state.
   2284  */
   2285 static void
   2286 ath_beacon_proc(void *arg, int pending)
   2287 {
   2288 	struct ath_softc *sc = arg;
   2289 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
   2290 	struct ieee80211_node *ni = bf->bf_node;
   2291 	struct ieee80211com *ic = ni->ni_ic;
   2292 	struct ath_hal *ah = sc->sc_ah;
   2293 	struct mbuf *m;
   2294 	int ncabq, error, otherant;
   2295 
   2296 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
   2297 		__func__, pending);
   2298 
   2299 	if (ic->ic_opmode == IEEE80211_M_STA ||
   2300 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
   2301 	    bf == NULL || bf->bf_m == NULL) {
   2302 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
   2303 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
   2304 		return;
   2305 	}
   2306 	/*
   2307 	 * Check if the previous beacon has gone out.  If
   2308 	 * not don't try to post another, skip this period
   2309 	 * and wait for the next.  Missed beacons indicate
   2310 	 * a problem and should not occur.  If we miss too
   2311 	 * many consecutive beacons reset the device.
   2312 	 */
   2313 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
   2314 		sc->sc_bmisscount++;
   2315 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2316 			"%s: missed %u consecutive beacons\n",
   2317 			__func__, sc->sc_bmisscount);
   2318 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
   2319 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
   2320 		return;
   2321 	}
   2322 	if (sc->sc_bmisscount != 0) {
   2323 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2324 			"%s: resume beacon xmit after %u misses\n",
   2325 			__func__, sc->sc_bmisscount);
   2326 		sc->sc_bmisscount = 0;
   2327 	}
   2328 
   2329 	/*
   2330 	 * Update dynamic beacon contents.  If this returns
   2331 	 * non-zero then we need to remap the memory because
   2332 	 * the beacon frame changed size (probably because
   2333 	 * of the TIM bitmap).
   2334 	 */
   2335 	m = bf->bf_m;
   2336 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
   2337 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
   2338 		/* XXX too conservative? */
   2339 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2340 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
   2341 					     BUS_DMA_NOWAIT);
   2342 		if (error != 0) {
   2343 			if_printf(&sc->sc_if,
   2344 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
   2345 			    __func__, error);
   2346 			return;
   2347 		}
   2348 	}
   2349 
   2350 	/*
   2351 	 * Handle slot time change when a non-ERP station joins/leaves
   2352 	 * an 11g network.  The 802.11 layer notifies us via callback,
   2353 	 * we mark updateslot, then wait one beacon before effecting
   2354 	 * the change.  This gives associated stations at least one
   2355 	 * beacon interval to note the state change.
   2356 	 */
   2357 	/* XXX locking */
   2358 	if (sc->sc_updateslot == UPDATE)
   2359 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
   2360 	else if (sc->sc_updateslot == COMMIT)
   2361 		ath_setslottime(sc);		/* commit change to h/w */
   2362 
   2363 	/*
   2364 	 * Check recent per-antenna transmit statistics and flip
   2365 	 * the default antenna if noticeably more frames went out
   2366 	 * on the non-default antenna.
   2367 	 * XXX assumes 2 anntenae
   2368 	 */
   2369 	otherant = sc->sc_defant & 1 ? 2 : 1;
   2370 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
   2371 		ath_setdefantenna(sc, otherant);
   2372 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
   2373 
   2374 	/*
   2375 	 * Construct tx descriptor.
   2376 	 */
   2377 	ath_beacon_setup(sc, bf);
   2378 
   2379 	/*
   2380 	 * Stop any current dma and put the new frame on the queue.
   2381 	 * This should never fail since we check above that no frames
   2382 	 * are still pending on the queue.
   2383 	 */
   2384 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   2385 		DPRINTF(sc, ATH_DEBUG_ANY,
   2386 			"%s: beacon queue %u did not stop?\n",
   2387 			__func__, sc->sc_bhalq);
   2388 	}
   2389 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2390 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2391 
   2392 	/*
   2393 	 * Enable the CAB queue before the beacon queue to
   2394 	 * insure cab frames are triggered by this beacon.
   2395 	 */
   2396 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
   2397 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
   2398 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   2399 	ath_hal_txstart(ah, sc->sc_bhalq);
   2400 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
   2401 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
   2402 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
   2403 
   2404 	sc->sc_stats.ast_be_xmit++;
   2405 }
   2406 
   2407 /*
   2408  * Reset the hardware after detecting beacons have stopped.
   2409  */
   2410 static void
   2411 ath_bstuck_proc(void *arg, int pending)
   2412 {
   2413 	struct ath_softc *sc = arg;
   2414 	struct ifnet *ifp = &sc->sc_if;
   2415 #ifdef __NetBSD__
   2416 	int s;
   2417 #endif
   2418 
   2419 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
   2420 		sc->sc_bmisscount);
   2421 #ifdef __NetBSD__
   2422 	s = splnet();
   2423 #endif
   2424 	ath_reset(ifp);
   2425 #ifdef __NetBSD__
   2426 	splx(s);
   2427 #endif
   2428 }
   2429 
   2430 /*
   2431  * Reclaim beacon resources.
   2432  */
   2433 static void
   2434 ath_beacon_free(struct ath_softc *sc)
   2435 {
   2436 	struct ath_buf *bf;
   2437 
   2438 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
   2439 		if (bf->bf_m != NULL) {
   2440 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2441 			m_freem(bf->bf_m);
   2442 			bf->bf_m = NULL;
   2443 		}
   2444 		if (bf->bf_node != NULL) {
   2445 			ieee80211_free_node(bf->bf_node);
   2446 			bf->bf_node = NULL;
   2447 		}
   2448 	}
   2449 }
   2450 
   2451 /*
   2452  * Configure the beacon and sleep timers.
   2453  *
   2454  * When operating as an AP this resets the TSF and sets
   2455  * up the hardware to notify us when we need to issue beacons.
   2456  *
   2457  * When operating in station mode this sets up the beacon
   2458  * timers according to the timestamp of the last received
   2459  * beacon and the current TSF, configures PCF and DTIM
   2460  * handling, programs the sleep registers so the hardware
   2461  * will wakeup in time to receive beacons, and configures
   2462  * the beacon miss handling so we'll receive a BMISS
   2463  * interrupt when we stop seeing beacons from the AP
   2464  * we've associated with.
   2465  */
   2466 static void
   2467 ath_beacon_config(struct ath_softc *sc)
   2468 {
   2469 #define	TSF_TO_TU(_h,_l) \
   2470 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
   2471 #define	FUDGE	2
   2472 	struct ath_hal *ah = sc->sc_ah;
   2473 	struct ieee80211com *ic = &sc->sc_ic;
   2474 	struct ieee80211_node *ni = ic->ic_bss;
   2475 	u_int32_t nexttbtt, intval, tsftu;
   2476 	u_int64_t tsf;
   2477 
   2478 	/* extract tstamp from last beacon and convert to TU */
   2479 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
   2480 			     LE_READ_4(ni->ni_tstamp.data));
   2481 	/* NB: the beacon interval is kept internally in TU's */
   2482 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
   2483 	if (nexttbtt == 0)		/* e.g. for ap mode */
   2484 		nexttbtt = intval;
   2485 	else if (intval)		/* NB: can be 0 for monitor mode */
   2486 		nexttbtt = roundup(nexttbtt, intval);
   2487 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
   2488 		__func__, nexttbtt, intval, ni->ni_intval);
   2489 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2490 		HAL_BEACON_STATE bs;
   2491 		int dtimperiod, dtimcount;
   2492 		int cfpperiod, cfpcount;
   2493 
   2494 		/*
   2495 		 * Setup dtim and cfp parameters according to
   2496 		 * last beacon we received (which may be none).
   2497 		 */
   2498 		dtimperiod = ni->ni_dtim_period;
   2499 		if (dtimperiod <= 0)		/* NB: 0 if not known */
   2500 			dtimperiod = 1;
   2501 		dtimcount = ni->ni_dtim_count;
   2502 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
   2503 			dtimcount = 0;		/* XXX? */
   2504 		cfpperiod = 1;			/* NB: no PCF support yet */
   2505 		cfpcount = 0;
   2506 		/*
   2507 		 * Pull nexttbtt forward to reflect the current
   2508 		 * TSF and calculate dtim+cfp state for the result.
   2509 		 */
   2510 		tsf = ath_hal_gettsf64(ah);
   2511 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2512 		do {
   2513 			nexttbtt += intval;
   2514 			if (--dtimcount < 0) {
   2515 				dtimcount = dtimperiod - 1;
   2516 				if (--cfpcount < 0)
   2517 					cfpcount = cfpperiod - 1;
   2518 			}
   2519 		} while (nexttbtt < tsftu);
   2520 		memset(&bs, 0, sizeof(bs));
   2521 		bs.bs_intval = intval;
   2522 		bs.bs_nexttbtt = nexttbtt;
   2523 		bs.bs_dtimperiod = dtimperiod*intval;
   2524 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
   2525 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
   2526 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
   2527 		bs.bs_cfpmaxduration = 0;
   2528 #if 0
   2529 		/*
   2530 		 * The 802.11 layer records the offset to the DTIM
   2531 		 * bitmap while receiving beacons; use it here to
   2532 		 * enable h/w detection of our AID being marked in
   2533 		 * the bitmap vector (to indicate frames for us are
   2534 		 * pending at the AP).
   2535 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
   2536 		 * XXX enable based on h/w rev for newer chips
   2537 		 */
   2538 		bs.bs_timoffset = ni->ni_timoff;
   2539 #endif
   2540 		/*
   2541 		 * Calculate the number of consecutive beacons to miss
   2542 		 * before taking a BMISS interrupt.  The configuration
   2543 		 * is specified in ms, so we need to convert that to
   2544 		 * TU's and then calculate based on the beacon interval.
   2545 		 * Note that we clamp the result to at most 10 beacons.
   2546 		 */
   2547 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
   2548 		if (bs.bs_bmissthreshold > 10)
   2549 			bs.bs_bmissthreshold = 10;
   2550 		else if (bs.bs_bmissthreshold <= 0)
   2551 			bs.bs_bmissthreshold = 1;
   2552 
   2553 		/*
   2554 		 * Calculate sleep duration.  The configuration is
   2555 		 * given in ms.  We insure a multiple of the beacon
   2556 		 * period is used.  Also, if the sleep duration is
   2557 		 * greater than the DTIM period then it makes senses
   2558 		 * to make it a multiple of that.
   2559 		 *
   2560 		 * XXX fixed at 100ms
   2561 		 */
   2562 		bs.bs_sleepduration =
   2563 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
   2564 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   2565 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   2566 
   2567 		DPRINTF(sc, ATH_DEBUG_BEACON,
   2568 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
   2569 			, __func__
   2570 			, tsf, tsftu
   2571 			, bs.bs_intval
   2572 			, bs.bs_nexttbtt
   2573 			, bs.bs_dtimperiod
   2574 			, bs.bs_nextdtim
   2575 			, bs.bs_bmissthreshold
   2576 			, bs.bs_sleepduration
   2577 			, bs.bs_cfpperiod
   2578 			, bs.bs_cfpmaxduration
   2579 			, bs.bs_cfpnext
   2580 			, bs.bs_timoffset
   2581 		);
   2582 		ath_hal_intrset(ah, 0);
   2583 		ath_hal_beacontimers(ah, &bs);
   2584 		sc->sc_imask |= HAL_INT_BMISS;
   2585 		ath_hal_intrset(ah, sc->sc_imask);
   2586 	} else {
   2587 		ath_hal_intrset(ah, 0);
   2588 		if (nexttbtt == intval)
   2589 			intval |= HAL_BEACON_RESET_TSF;
   2590 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   2591 			/*
   2592 			 * In IBSS mode enable the beacon timers but only
   2593 			 * enable SWBA interrupts if we need to manually
   2594 			 * prepare beacon frames.  Otherwise we use a
   2595 			 * self-linked tx descriptor and let the hardware
   2596 			 * deal with things.
   2597 			 */
   2598 			intval |= HAL_BEACON_ENA;
   2599 			if (!sc->sc_hasveol)
   2600 				sc->sc_imask |= HAL_INT_SWBA;
   2601 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
   2602 				/*
   2603 				 * Pull nexttbtt forward to reflect
   2604 				 * the current TSF.
   2605 				 */
   2606 				tsf = ath_hal_gettsf64(ah);
   2607 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
   2608 				do {
   2609 					nexttbtt += intval;
   2610 				} while (nexttbtt < tsftu);
   2611 			}
   2612 			ath_beaconq_config(sc);
   2613 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2614 			/*
   2615 			 * In AP mode we enable the beacon timers and
   2616 			 * SWBA interrupts to prepare beacon frames.
   2617 			 */
   2618 			intval |= HAL_BEACON_ENA;
   2619 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   2620 			ath_beaconq_config(sc);
   2621 		}
   2622 		ath_hal_beaconinit(ah, nexttbtt, intval);
   2623 		sc->sc_bmisscount = 0;
   2624 		ath_hal_intrset(ah, sc->sc_imask);
   2625 		/*
   2626 		 * When using a self-linked beacon descriptor in
   2627 		 * ibss mode load it once here.
   2628 		 */
   2629 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
   2630 			ath_beacon_proc(sc, 0);
   2631 	}
   2632 	sc->sc_syncbeacon = 0;
   2633 #undef UNDEF
   2634 #undef TSF_TO_TU
   2635 }
   2636 
   2637 static int
   2638 ath_descdma_setup(struct ath_softc *sc,
   2639 	struct ath_descdma *dd, ath_bufhead *head,
   2640 	const char *name, int nbuf, int ndesc)
   2641 {
   2642 #define	DS2PHYS(_dd, _ds) \
   2643 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
   2644 	struct ifnet *ifp = &sc->sc_if;
   2645 	struct ath_desc *ds;
   2646 	struct ath_buf *bf;
   2647 	int i, bsize, error;
   2648 
   2649 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
   2650 	    __func__, name, nbuf, ndesc);
   2651 
   2652 	dd->dd_name = name;
   2653 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
   2654 
   2655 	/*
   2656 	 * Setup DMA descriptor area.
   2657 	 */
   2658 	dd->dd_dmat = sc->sc_dmat;
   2659 
   2660 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
   2661 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
   2662 
   2663 	if (error != 0) {
   2664 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
   2665 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
   2666 		goto fail0;
   2667 	}
   2668 
   2669 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
   2670 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
   2671 	if (error != 0) {
   2672 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
   2673 		    nbuf * ndesc, dd->dd_name, error);
   2674 		goto fail1;
   2675 	}
   2676 
   2677 	/* allocate descriptors */
   2678 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
   2679 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
   2680 	if (error != 0) {
   2681 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
   2682 			"error %u\n", dd->dd_name, error);
   2683 		goto fail2;
   2684 	}
   2685 
   2686 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
   2687 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
   2688 	if (error != 0) {
   2689 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
   2690 			dd->dd_name, error);
   2691 		goto fail3;
   2692 	}
   2693 
   2694 	ds = dd->dd_desc;
   2695 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
   2696 	DPRINTF(sc, ATH_DEBUG_RESET,
   2697 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
   2698 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
   2699 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
   2700 
   2701 	/* allocate rx buffers */
   2702 	bsize = sizeof(struct ath_buf) * nbuf;
   2703 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
   2704 	if (bf == NULL) {
   2705 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
   2706 			dd->dd_name, bsize);
   2707 		goto fail4;
   2708 	}
   2709 	dd->dd_bufptr = bf;
   2710 
   2711 	STAILQ_INIT(head);
   2712 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
   2713 		bf->bf_desc = ds;
   2714 		bf->bf_daddr = DS2PHYS(dd, ds);
   2715 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
   2716 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   2717 		if (error != 0) {
   2718 			if_printf(ifp, "unable to create dmamap for %s "
   2719 				"buffer %u, error %u\n", dd->dd_name, i, error);
   2720 			ath_descdma_cleanup(sc, dd, head);
   2721 			return error;
   2722 		}
   2723 		STAILQ_INSERT_TAIL(head, bf, bf_list);
   2724 	}
   2725 	return 0;
   2726 fail4:
   2727 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2728 fail3:
   2729 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2730 fail2:
   2731 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2732 fail1:
   2733 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2734 fail0:
   2735 	memset(dd, 0, sizeof(*dd));
   2736 	return error;
   2737 #undef DS2PHYS
   2738 }
   2739 
   2740 static void
   2741 ath_descdma_cleanup(struct ath_softc *sc,
   2742 	struct ath_descdma *dd, ath_bufhead *head)
   2743 {
   2744 	struct ath_buf *bf;
   2745 	struct ieee80211_node *ni;
   2746 
   2747 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
   2748 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
   2749 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
   2750 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
   2751 
   2752 	STAILQ_FOREACH(bf, head, bf_list) {
   2753 		if (bf->bf_m) {
   2754 			m_freem(bf->bf_m);
   2755 			bf->bf_m = NULL;
   2756 		}
   2757 		if (bf->bf_dmamap != NULL) {
   2758 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2759 			bf->bf_dmamap = NULL;
   2760 		}
   2761 		ni = bf->bf_node;
   2762 		bf->bf_node = NULL;
   2763 		if (ni != NULL) {
   2764 			/*
   2765 			 * Reclaim node reference.
   2766 			 */
   2767 			ieee80211_free_node(ni);
   2768 		}
   2769 	}
   2770 
   2771 	STAILQ_INIT(head);
   2772 	free(dd->dd_bufptr, M_ATHDEV);
   2773 	memset(dd, 0, sizeof(*dd));
   2774 }
   2775 
   2776 static int
   2777 ath_desc_alloc(struct ath_softc *sc)
   2778 {
   2779 	int error;
   2780 
   2781 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
   2782 			"rx", ath_rxbuf, 1);
   2783 	if (error != 0)
   2784 		return error;
   2785 
   2786 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
   2787 			"tx", ath_txbuf, ATH_TXDESC);
   2788 	if (error != 0) {
   2789 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2790 		return error;
   2791 	}
   2792 
   2793 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
   2794 			"beacon", 1, 1);
   2795 	if (error != 0) {
   2796 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2797 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2798 		return error;
   2799 	}
   2800 	return 0;
   2801 }
   2802 
   2803 static void
   2804 ath_desc_free(struct ath_softc *sc)
   2805 {
   2806 
   2807 	if (sc->sc_bdma.dd_desc_len != 0)
   2808 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
   2809 	if (sc->sc_txdma.dd_desc_len != 0)
   2810 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
   2811 	if (sc->sc_rxdma.dd_desc_len != 0)
   2812 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
   2813 }
   2814 
   2815 static struct ieee80211_node *
   2816 ath_node_alloc(struct ieee80211_node_table *nt)
   2817 {
   2818 	struct ieee80211com *ic = nt->nt_ic;
   2819 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2820 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
   2821 	struct ath_node *an;
   2822 
   2823 	an = malloc(space, M_80211_NODE, M_NOWAIT | M_ZERO);
   2824 	if (an == NULL) {
   2825 		/* XXX stat+msg */
   2826 		return NULL;
   2827 	}
   2828 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
   2829 	ath_rate_node_init(sc, an);
   2830 
   2831 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
   2832 	return &an->an_node;
   2833 }
   2834 
   2835 static void
   2836 ath_node_free(struct ieee80211_node *ni)
   2837 {
   2838 	struct ieee80211com *ic = ni->ni_ic;
   2839         struct ath_softc *sc = ic->ic_ifp->if_softc;
   2840 
   2841 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
   2842 
   2843 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
   2844 	sc->sc_node_free(ni);
   2845 }
   2846 
   2847 static u_int8_t
   2848 ath_node_getrssi(const struct ieee80211_node *ni)
   2849 {
   2850 #define	HAL_EP_RND(x, mul) \
   2851 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
   2852 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
   2853 	int32_t rssi;
   2854 
   2855 	/*
   2856 	 * When only one frame is received there will be no state in
   2857 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
   2858 	 */
   2859 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
   2860 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
   2861 	else
   2862 		rssi = ni->ni_rssi;
   2863 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
   2864 #undef HAL_EP_RND
   2865 }
   2866 
   2867 static int
   2868 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2869 {
   2870 	struct ath_hal *ah = sc->sc_ah;
   2871 	int error;
   2872 	struct mbuf *m;
   2873 	struct ath_desc *ds;
   2874 
   2875 	m = bf->bf_m;
   2876 	if (m == NULL) {
   2877 		/*
   2878 		 * NB: by assigning a page to the rx dma buffer we
   2879 		 * implicitly satisfy the Atheros requirement that
   2880 		 * this buffer be cache-line-aligned and sized to be
   2881 		 * multiple of the cache line size.  Not doing this
   2882 		 * causes weird stuff to happen (for the 5210 at least).
   2883 		 */
   2884 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
   2885 		if (m == NULL) {
   2886 			DPRINTF(sc, ATH_DEBUG_ANY,
   2887 				"%s: no mbuf/cluster\n", __func__);
   2888 			sc->sc_stats.ast_rx_nombuf++;
   2889 			return ENOMEM;
   2890 		}
   2891 		bf->bf_m = m;
   2892 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2893 
   2894 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
   2895 					     bf->bf_dmamap, m,
   2896 					     BUS_DMA_NOWAIT);
   2897 		if (error != 0) {
   2898 			DPRINTF(sc, ATH_DEBUG_ANY,
   2899 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
   2900 			    __func__, error);
   2901 			sc->sc_stats.ast_rx_busdma++;
   2902 			return error;
   2903 		}
   2904 		KASSERTMSG(bf->bf_nseg == 1,
   2905 			"multi-segment packet; nseg %u", bf->bf_nseg);
   2906 	}
   2907 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   2908 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2909 
   2910 	/*
   2911 	 * Setup descriptors.  For receive we always terminate
   2912 	 * the descriptor list with a self-linked entry so we'll
   2913 	 * not get overrun under high load (as can happen with a
   2914 	 * 5212 when ANI processing enables PHY error frames).
   2915 	 *
   2916 	 * To insure the last descriptor is self-linked we create
   2917 	 * each descriptor as self-linked and add it to the end.  As
   2918 	 * each additional descriptor is added the previous self-linked
   2919 	 * entry is ``fixed'' naturally.  This should be safe even
   2920 	 * if DMA is happening.  When processing RX interrupts we
   2921 	 * never remove/process the last, self-linked, entry on the
   2922 	 * descriptor list.  This insures the hardware always has
   2923 	 * someplace to write a new frame.
   2924 	 */
   2925 	ds = bf->bf_desc;
   2926 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
   2927 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2928 	/* ds->ds_vdata = mtod(m, void *);	for radar */
   2929 	ath_hal_setuprxdesc(ah, ds
   2930 		, m->m_len		/* buffer size */
   2931 		, 0
   2932 	);
   2933 
   2934 	if (sc->sc_rxlink != NULL)
   2935 		*sc->sc_rxlink = bf->bf_daddr;
   2936 	sc->sc_rxlink = &ds->ds_link;
   2937 	return 0;
   2938 }
   2939 
   2940 /*
   2941  * Extend 15-bit time stamp from rx descriptor to
   2942  * a full 64-bit TSF using the specified TSF.
   2943  */
   2944 static inline u_int64_t
   2945 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
   2946 {
   2947 	if ((tsf & 0x7fff) < rstamp)
   2948 		tsf -= 0x8000;
   2949 	return ((tsf &~ 0x7fff) | rstamp);
   2950 }
   2951 
   2952 /*
   2953  * Intercept management frames to collect beacon rssi data
   2954  * and to do ibss merges.
   2955  */
   2956 static void
   2957 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
   2958 	struct ieee80211_node *ni,
   2959 	int subtype, int rssi, u_int32_t rstamp)
   2960 {
   2961 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   2962 
   2963 	/*
   2964 	 * Call up first so subsequent work can use information
   2965 	 * potentially stored in the node (e.g. for ibss merge).
   2966 	 */
   2967 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
   2968 	switch (subtype) {
   2969 	case IEEE80211_FC0_SUBTYPE_BEACON:
   2970 		/* update rssi statistics for use by the hal */
   2971 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
   2972 		if (sc->sc_syncbeacon &&
   2973 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
   2974 			/*
   2975 			 * Resync beacon timers using the tsf of the beacon
   2976 			 * frame we just received.
   2977 			 */
   2978 			ath_beacon_config(sc);
   2979 		}
   2980 		/* fall thru... */
   2981 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
   2982 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
   2983 		    ic->ic_state == IEEE80211_S_RUN) {
   2984 			u_int64_t tsf = ath_extend_tsf(rstamp,
   2985 				ath_hal_gettsf64(sc->sc_ah));
   2986 
   2987 			/*
   2988 			 * Handle ibss merge as needed; check the tsf on the
   2989 			 * frame before attempting the merge.  The 802.11 spec
   2990 			 * says the station should change its bssid to match
   2991 			 * the oldest station with the same ssid, where oldest
   2992 			 * is determined by the tsf.  Note that hardware
   2993 			 * reconfiguration happens through callback to
   2994 			 * ath_newstate as the state machine will go from
   2995 			 * RUN -> RUN when this happens.
   2996 			 */
   2997 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
   2998 				DPRINTF(sc, ATH_DEBUG_STATE,
   2999 				    "ibss merge, rstamp %u tsf %ju "
   3000 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
   3001 				    (uintmax_t)ni->ni_tstamp.tsf);
   3002 				(void) ieee80211_ibss_merge(ni);
   3003 			}
   3004 		}
   3005 		break;
   3006 	}
   3007 }
   3008 
   3009 /*
   3010  * Set the default antenna.
   3011  */
   3012 static void
   3013 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
   3014 {
   3015 	struct ath_hal *ah = sc->sc_ah;
   3016 
   3017 	/* XXX block beacon interrupts */
   3018 	ath_hal_setdefantenna(ah, antenna);
   3019 	if (sc->sc_defant != antenna)
   3020 		sc->sc_stats.ast_ant_defswitch++;
   3021 	sc->sc_defant = antenna;
   3022 	sc->sc_rxotherant = 0;
   3023 }
   3024 
   3025 static void
   3026 ath_handle_micerror(struct ieee80211com *ic,
   3027 	struct ieee80211_frame *wh, int keyix)
   3028 {
   3029 	struct ieee80211_node *ni;
   3030 
   3031 	/* XXX recheck MIC to deal w/ chips that lie */
   3032 	/* XXX discard MIC errors on !data frames */
   3033 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
   3034 	if (ni != NULL) {
   3035 		ieee80211_notify_michael_failure(ic, wh, keyix);
   3036 		ieee80211_free_node(ni);
   3037 	}
   3038 }
   3039 
   3040 static void
   3041 ath_rx_proc(void *arg, int npending)
   3042 {
   3043 #define	PA2DESC(_sc, _pa) \
   3044 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   3045 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   3046 	struct ath_softc *sc = arg;
   3047 	struct ath_buf *bf;
   3048 	struct ieee80211com *ic = &sc->sc_ic;
   3049 	struct ifnet *ifp = &sc->sc_if;
   3050 	struct ath_hal *ah = sc->sc_ah;
   3051 	struct ath_desc *ds;
   3052 	struct mbuf *m;
   3053 	struct ieee80211_node *ni;
   3054 	struct ath_node *an;
   3055 	int len, ngood, type;
   3056 	u_int phyerr;
   3057 	HAL_STATUS status;
   3058 	int16_t nf;
   3059 	u_int64_t tsf;
   3060 	uint8_t rxerr_tap, rxerr_mon;
   3061 	NET_LOCK_GIANT_FUNC_INIT();
   3062 
   3063 	NET_LOCK_GIANT();		/* XXX */
   3064 
   3065 	rxerr_tap =
   3066 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
   3067 
   3068 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
   3069 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3070 	else if (ifp->if_flags & IFF_PROMISC)
   3071 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
   3072 
   3073 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
   3074 	ngood = 0;
   3075 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
   3076 	tsf = ath_hal_gettsf64(ah);
   3077 	do {
   3078 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
   3079 		if (bf == NULL) {		/* NB: shouldn't happen */
   3080 			if_printf(ifp, "%s: no buffer!\n", __func__);
   3081 			break;
   3082 		}
   3083 		ds = bf->bf_desc;
   3084 		if (ds->ds_link == bf->bf_daddr) {
   3085 			/* NB: never process the self-linked entry at the end */
   3086 			break;
   3087 		}
   3088 		m = bf->bf_m;
   3089 		if (m == NULL) {		/* NB: shouldn't happen */
   3090 			if_printf(ifp, "%s: no mbuf!\n", __func__);
   3091 			break;
   3092 		}
   3093 		/* XXX sync descriptor memory */
   3094 		/*
   3095 		 * Must provide the virtual address of the current
   3096 		 * descriptor, the physical address, and the virtual
   3097 		 * address of the next descriptor in the h/w chain.
   3098 		 * This allows the HAL to look ahead to see if the
   3099 		 * hardware is done with a descriptor by checking the
   3100 		 * done bit in the following descriptor and the address
   3101 		 * of the current descriptor the DMA engine is working
   3102 		 * on.  All this is necessary because of our use of
   3103 		 * a self-linked list to avoid rx overruns.
   3104 		 */
   3105 		status = ath_hal_rxprocdesc(ah, ds,
   3106 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   3107 				&ds->ds_rxstat);
   3108 #ifdef AR_DEBUG
   3109 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
   3110 			ath_printrxbuf(bf, status == HAL_OK);
   3111 #endif
   3112 		if (status == HAL_EINPROGRESS)
   3113 			break;
   3114 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
   3115 		if (ds->ds_rxstat.rs_more) {
   3116 			/*
   3117 			 * Frame spans multiple descriptors; this
   3118 			 * cannot happen yet as we don't support
   3119 			 * jumbograms.  If not in monitor mode,
   3120 			 * discard the frame.
   3121 			 */
   3122 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3123 				sc->sc_stats.ast_rx_toobig++;
   3124 				goto rx_next;
   3125 			}
   3126 			/* fall thru for monitor mode handling... */
   3127 		} else if (ds->ds_rxstat.rs_status != 0) {
   3128 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   3129 				sc->sc_stats.ast_rx_crcerr++;
   3130 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   3131 				sc->sc_stats.ast_rx_fifoerr++;
   3132 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   3133 				sc->sc_stats.ast_rx_phyerr++;
   3134 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   3135 				sc->sc_stats.ast_rx_phy[phyerr]++;
   3136 				goto rx_next;
   3137 			}
   3138 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
   3139 				/*
   3140 				 * Decrypt error.  If the error occurred
   3141 				 * because there was no hardware key, then
   3142 				 * let the frame through so the upper layers
   3143 				 * can process it.  This is necessary for 5210
   3144 				 * parts which have no way to setup a ``clear''
   3145 				 * key cache entry.
   3146 				 *
   3147 				 * XXX do key cache faulting
   3148 				 */
   3149 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
   3150 					goto rx_accept;
   3151 				sc->sc_stats.ast_rx_badcrypt++;
   3152 			}
   3153 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
   3154 				sc->sc_stats.ast_rx_badmic++;
   3155 				/*
   3156 				 * Do minimal work required to hand off
   3157 				 * the 802.11 header for notifcation.
   3158 				 */
   3159 				/* XXX frag's and qos frames */
   3160 				len = ds->ds_rxstat.rs_datalen;
   3161 				if (len >= sizeof (struct ieee80211_frame)) {
   3162 					bus_dmamap_sync(sc->sc_dmat,
   3163 					    bf->bf_dmamap,
   3164 					    0, bf->bf_dmamap->dm_mapsize,
   3165 					    BUS_DMASYNC_POSTREAD);
   3166 					ath_handle_micerror(ic,
   3167 					    mtod(m, struct ieee80211_frame *),
   3168 					    sc->sc_splitmic ?
   3169 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
   3170 				}
   3171 			}
   3172 			ifp->if_ierrors++;
   3173 			/*
   3174 			 * Reject error frames, we normally don't want
   3175 			 * to see them in monitor mode (in monitor mode
   3176 			 * allow through packets that have crypto problems).
   3177 			 */
   3178 
   3179 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
   3180 				goto rx_next;
   3181 		}
   3182 rx_accept:
   3183 		/*
   3184 		 * Sync and unmap the frame.  At this point we're
   3185 		 * committed to passing the mbuf somewhere so clear
   3186 		 * bf_m; this means a new sk_buff must be allocated
   3187 		 * when the rx descriptor is setup again to receive
   3188 		 * another frame.
   3189 		 */
   3190 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
   3191 		    0, bf->bf_dmamap->dm_mapsize,
   3192 		    BUS_DMASYNC_POSTREAD);
   3193 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   3194 		bf->bf_m = NULL;
   3195 
   3196 		m_set_rcvif(m, ifp);
   3197 		len = ds->ds_rxstat.rs_datalen;
   3198 		m->m_pkthdr.len = m->m_len = len;
   3199 
   3200 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
   3201 
   3202 		if (sc->sc_drvbpf) {
   3203 			u_int8_t rix;
   3204 
   3205 			/*
   3206 			 * Discard anything shorter than an ack or cts.
   3207 			 */
   3208 			if (len < IEEE80211_ACK_LEN) {
   3209 				DPRINTF(sc, ATH_DEBUG_RECV,
   3210 					"%s: runt packet %d\n",
   3211 					__func__, len);
   3212 				sc->sc_stats.ast_rx_tooshort++;
   3213 				m_freem(m);
   3214 				goto rx_next;
   3215 			}
   3216 			rix = ds->ds_rxstat.rs_rate;
   3217 			sc->sc_rx_th.wr_tsf = htole64(
   3218 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
   3219 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
   3220 			if (ds->ds_rxstat.rs_status &
   3221 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
   3222 				sc->sc_rx_th.wr_flags |=
   3223 				    IEEE80211_RADIOTAP_F_BADFCS;
   3224 			}
   3225 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
   3226 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
   3227 			sc->sc_rx_th.wr_antnoise = nf;
   3228 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   3229 
   3230 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
   3231 			    sc->sc_rx_th_len, m, BPF_D_IN);
   3232 		}
   3233 
   3234 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
   3235 			m_freem(m);
   3236 			goto rx_next;
   3237 		}
   3238 		/*
   3239 		 * From this point on we assume the frame is at least
   3240 		 * as large as ieee80211_frame_min; verify that.
   3241 		 */
   3242 		if (len < IEEE80211_MIN_LEN) {
   3243 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
   3244 				__func__, len);
   3245 			sc->sc_stats.ast_rx_tooshort++;
   3246 			m_freem(m);
   3247 			goto rx_next;
   3248 		}
   3249 
   3250 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
   3251 			ieee80211_dump_pkt(mtod(m, void *), len,
   3252 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
   3253 				   ds->ds_rxstat.rs_rssi);
   3254 		}
   3255 
   3256 		m_adj(m, -IEEE80211_CRC_LEN);
   3257 
   3258 		/*
   3259 		 * Locate the node for sender, track state, and then
   3260 		 * pass the (referenced) node up to the 802.11 layer
   3261 		 * for its use.
   3262 		 */
   3263 		ni = ieee80211_find_rxnode_withkey(ic,
   3264 			mtod(m, const struct ieee80211_frame_min *),
   3265 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
   3266 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
   3267 		/*
   3268 		 * Track rx rssi and do any rx antenna management.
   3269 		 */
   3270 		an = ATH_NODE(ni);
   3271 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
   3272 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
   3273 		/*
   3274 		 * Send frame up for processing.
   3275 		 */
   3276 		type = ieee80211_input(ic, m, ni,
   3277 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   3278 		ieee80211_free_node(ni);
   3279 		if (sc->sc_diversity) {
   3280 			/*
   3281 			 * When using fast diversity, change the default rx
   3282 			 * antenna if diversity chooses the other antenna 3
   3283 			 * times in a row.
   3284 			 */
   3285 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
   3286 				if (++sc->sc_rxotherant >= 3)
   3287 					ath_setdefantenna(sc,
   3288 						ds->ds_rxstat.rs_antenna);
   3289 			} else
   3290 				sc->sc_rxotherant = 0;
   3291 		}
   3292 		if (sc->sc_softled) {
   3293 			/*
   3294 			 * Blink for any data frame.  Otherwise do a
   3295 			 * heartbeat-style blink when idle.  The latter
   3296 			 * is mainly for station mode where we depend on
   3297 			 * periodic beacon frames to trigger the poll event.
   3298 			 */
   3299 			if (type == IEEE80211_FC0_TYPE_DATA) {
   3300 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
   3301 				ath_led_event(sc, ATH_LED_RX);
   3302 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
   3303 				ath_led_event(sc, ATH_LED_POLL);
   3304 		}
   3305 		/*
   3306 		 * Arrange to update the last rx timestamp only for
   3307 		 * frames from our ap when operating in station mode.
   3308 		 * This assumes the rx key is always setup when associated.
   3309 		 */
   3310 		if (ic->ic_opmode == IEEE80211_M_STA &&
   3311 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
   3312 			ngood++;
   3313 rx_next:
   3314 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   3315 	} while (ath_rxbuf_init(sc, bf) == 0);
   3316 
   3317 	/* rx signal state monitoring */
   3318 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
   3319 #if 0
   3320 	if (ath_hal_radar_event(ah))
   3321 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
   3322 #endif
   3323 	if (ngood)
   3324 		sc->sc_lastrx = tsf;
   3325 
   3326 #ifdef __NetBSD__
   3327 	/* XXX Why isn't this necessary in FreeBSD? */
   3328 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   3329 		ath_start(ifp);
   3330 #endif /* __NetBSD__ */
   3331 
   3332 	NET_UNLOCK_GIANT();		/* XXX */
   3333 #undef PA2DESC
   3334 }
   3335 
   3336 /*
   3337  * Setup a h/w transmit queue.
   3338  */
   3339 static struct ath_txq *
   3340 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
   3341 {
   3342 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3343 	struct ath_hal *ah = sc->sc_ah;
   3344 	HAL_TXQ_INFO qi;
   3345 	int qnum;
   3346 
   3347 	memset(&qi, 0, sizeof(qi));
   3348 	qi.tqi_subtype = subtype;
   3349 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
   3350 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
   3351 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
   3352 	/*
   3353 	 * Enable interrupts only for EOL and DESC conditions.
   3354 	 * We mark tx descriptors to receive a DESC interrupt
   3355 	 * when a tx queue gets deep; otherwise waiting for the
   3356 	 * EOL to reap descriptors.  Note that this is done to
   3357 	 * reduce interrupt load and this only defers reaping
   3358 	 * descriptors, never transmitting frames.  Aside from
   3359 	 * reducing interrupts this also permits more concurrency.
   3360 	 * The only potential downside is if the tx queue backs
   3361 	 * up in which case the top half of the kernel may backup
   3362 	 * due to a lack of tx descriptors.
   3363 	 */
   3364 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
   3365 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
   3366 	if (qnum == -1) {
   3367 		/*
   3368 		 * NB: don't print a message, this happens
   3369 		 * normally on parts with too few tx queues
   3370 		 */
   3371 		return NULL;
   3372 	}
   3373 	if (qnum >= N(sc->sc_txq)) {
   3374 		device_printf(sc->sc_dev,
   3375 			"hal qnum %u out of range, max %zu!\n",
   3376 			qnum, N(sc->sc_txq));
   3377 		ath_hal_releasetxqueue(ah, qnum);
   3378 		return NULL;
   3379 	}
   3380 	if (!ATH_TXQ_SETUP(sc, qnum)) {
   3381 		struct ath_txq *txq = &sc->sc_txq[qnum];
   3382 
   3383 		txq->axq_qnum = qnum;
   3384 		txq->axq_depth = 0;
   3385 		txq->axq_intrcnt = 0;
   3386 		txq->axq_link = NULL;
   3387 		STAILQ_INIT(&txq->axq_q);
   3388 		ATH_TXQ_LOCK_INIT(sc, txq);
   3389 		sc->sc_txqsetup |= 1<<qnum;
   3390 	}
   3391 	return &sc->sc_txq[qnum];
   3392 #undef N
   3393 }
   3394 
   3395 /*
   3396  * Setup a hardware data transmit queue for the specified
   3397  * access control.  The hal may not support all requested
   3398  * queues in which case it will return a reference to a
   3399  * previously setup queue.  We record the mapping from ac's
   3400  * to h/w queues for use by ath_tx_start and also track
   3401  * the set of h/w queues being used to optimize work in the
   3402  * transmit interrupt handler and related routines.
   3403  */
   3404 static int
   3405 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
   3406 {
   3407 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   3408 	struct ath_txq *txq;
   3409 
   3410 	if (ac >= N(sc->sc_ac2q)) {
   3411 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
   3412 			ac, N(sc->sc_ac2q));
   3413 		return 0;
   3414 	}
   3415 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
   3416 	if (txq != NULL) {
   3417 		sc->sc_ac2q[ac] = txq;
   3418 		return 1;
   3419 	} else
   3420 		return 0;
   3421 #undef N
   3422 }
   3423 
   3424 /*
   3425  * Update WME parameters for a transmit queue.
   3426  */
   3427 static int
   3428 ath_txq_update(struct ath_softc *sc, int ac)
   3429 {
   3430 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
   3431 #define	ATH_TXOP_TO_US(v)		(v<<5)
   3432 	struct ieee80211com *ic = &sc->sc_ic;
   3433 	struct ath_txq *txq = sc->sc_ac2q[ac];
   3434 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   3435 	struct ath_hal *ah = sc->sc_ah;
   3436 	HAL_TXQ_INFO qi;
   3437 
   3438 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
   3439 	qi.tqi_aifs = wmep->wmep_aifsn;
   3440 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
   3441 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
   3442 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
   3443 
   3444 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
   3445 		device_printf(sc->sc_dev, "unable to update hardware queue "
   3446 			"parameters for %s traffic!\n",
   3447 			ieee80211_wme_acnames[ac]);
   3448 		return 0;
   3449 	} else {
   3450 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
   3451 		return 1;
   3452 	}
   3453 #undef ATH_TXOP_TO_US
   3454 #undef ATH_EXPONENT_TO_VALUE
   3455 }
   3456 
   3457 /*
   3458  * Callback from the 802.11 layer to update WME parameters.
   3459  */
   3460 static int
   3461 ath_wme_update(struct ieee80211com *ic)
   3462 {
   3463 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   3464 
   3465 	return !ath_txq_update(sc, WME_AC_BE) ||
   3466 	    !ath_txq_update(sc, WME_AC_BK) ||
   3467 	    !ath_txq_update(sc, WME_AC_VI) ||
   3468 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
   3469 }
   3470 
   3471 /*
   3472  * Reclaim resources for a setup queue.
   3473  */
   3474 static void
   3475 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
   3476 {
   3477 
   3478 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
   3479 	ATH_TXQ_LOCK_DESTROY(txq);
   3480 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
   3481 }
   3482 
   3483 /*
   3484  * Reclaim all tx queue resources.
   3485  */
   3486 static void
   3487 ath_tx_cleanup(struct ath_softc *sc)
   3488 {
   3489 	int i;
   3490 
   3491 	ATH_TXBUF_LOCK_DESTROY(sc);
   3492 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   3493 		if (ATH_TXQ_SETUP(sc, i))
   3494 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
   3495 }
   3496 
   3497 /*
   3498  * Defragment an mbuf chain, returning at most maxfrags separate
   3499  * mbufs+clusters.  If this is not possible NULL is returned and
   3500  * the original mbuf chain is left in its present (potentially
   3501  * modified) state.  We use two techniques: collapsing consecutive
   3502  * mbufs and replacing consecutive mbufs by a cluster.
   3503  */
   3504 static struct mbuf *
   3505 ath_defrag(struct mbuf *m0, int how, int maxfrags)
   3506 {
   3507 	struct mbuf *m, *n, *n2, **prev;
   3508 	u_int curfrags;
   3509 
   3510 	/*
   3511 	 * Calculate the current number of frags.
   3512 	 */
   3513 	curfrags = 0;
   3514 	for (m = m0; m != NULL; m = m->m_next)
   3515 		curfrags++;
   3516 	/*
   3517 	 * First, try to collapse mbufs.  Note that we always collapse
   3518 	 * towards the front so we don't need to deal with moving the
   3519 	 * pkthdr.  This may be suboptimal if the first mbuf has much
   3520 	 * less data than the following.
   3521 	 */
   3522 	m = m0;
   3523 again:
   3524 	for (;;) {
   3525 		n = m->m_next;
   3526 		if (n == NULL)
   3527 			break;
   3528 		if (n->m_len < M_TRAILINGSPACE(m)) {
   3529 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
   3530 				n->m_len);
   3531 			m->m_len += n->m_len;
   3532 			m->m_next = n->m_next;
   3533 			m_free(n);
   3534 			if (--curfrags <= maxfrags)
   3535 				return m0;
   3536 		} else
   3537 			m = n;
   3538 	}
   3539 	KASSERTMSG(maxfrags > 1,
   3540 		"maxfrags %u, but normal collapse failed", maxfrags);
   3541 	/*
   3542 	 * Collapse consecutive mbufs to a cluster.
   3543 	 */
   3544 	prev = &m0->m_next;		/* NB: not the first mbuf */
   3545 	while ((n = *prev) != NULL) {
   3546 		if ((n2 = n->m_next) != NULL &&
   3547 		    n->m_len + n2->m_len < MCLBYTES) {
   3548 			m = m_getcl(how, MT_DATA, 0);
   3549 			if (m == NULL)
   3550 				goto bad;
   3551 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
   3552 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
   3553 				n2->m_len);
   3554 			m->m_len = n->m_len + n2->m_len;
   3555 			m->m_next = n2->m_next;
   3556 			*prev = m;
   3557 			m_free(n);
   3558 			m_free(n2);
   3559 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
   3560 				return m0;
   3561 			/*
   3562 			 * Still not there, try the normal collapse
   3563 			 * again before we allocate another cluster.
   3564 			 */
   3565 			goto again;
   3566 		}
   3567 		prev = &n->m_next;
   3568 	}
   3569 	/*
   3570 	 * No place where we can collapse to a cluster; punt.
   3571 	 * This can occur if, for example, you request 2 frags
   3572 	 * but the packet requires that both be clusters (we
   3573 	 * never reallocate the first mbuf to avoid moving the
   3574 	 * packet header).
   3575 	 */
   3576 bad:
   3577 	return NULL;
   3578 }
   3579 
   3580 /*
   3581  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
   3582  */
   3583 static int
   3584 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
   3585 {
   3586 	int i;
   3587 
   3588 	for (i = 0; i < rt->rateCount; i++)
   3589 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
   3590 			return i;
   3591 	return 0;		/* NB: lowest rate */
   3592 }
   3593 
   3594 static void
   3595 ath_freetx(struct mbuf *m)
   3596 {
   3597 	struct mbuf *next;
   3598 
   3599 	do {
   3600 		next = m->m_nextpkt;
   3601 		m->m_nextpkt = NULL;
   3602 		m_freem(m);
   3603 	} while ((m = next) != NULL);
   3604 }
   3605 
   3606 static int
   3607 deduct_pad_bytes(int len, int hdrlen)
   3608 {
   3609 	/* XXX I am suspicious that this code, which I extracted
   3610 	 * XXX from ath_tx_start() for reuse, does the right thing.
   3611 	 */
   3612 	return len - (hdrlen & 3);
   3613 }
   3614 
   3615 static int
   3616 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   3617     struct mbuf *m0)
   3618 {
   3619 	struct ieee80211com *ic = &sc->sc_ic;
   3620 	struct ath_hal *ah = sc->sc_ah;
   3621 	struct ifnet *ifp = &sc->sc_if;
   3622 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
   3623 	int i, error, iswep, ismcast, isfrag, ismrr;
   3624 	int keyix, hdrlen, pktlen, try0;
   3625 	u_int8_t rix, txrate, ctsrate;
   3626 	u_int8_t cix = 0xff;		/* NB: silence compiler */
   3627 	struct ath_desc *ds, *ds0;
   3628 	struct ath_txq *txq;
   3629 	struct ieee80211_frame *wh;
   3630 	u_int subtype, flags, ctsduration;
   3631 	HAL_PKT_TYPE atype;
   3632 	const HAL_RATE_TABLE *rt;
   3633 	HAL_BOOL shortPreamble;
   3634 	struct ath_node *an;
   3635 	struct mbuf *m;
   3636 	u_int pri;
   3637 
   3638 	wh = mtod(m0, struct ieee80211_frame *);
   3639 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   3640 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
   3641 	isfrag = m0->m_flags & M_FRAG;
   3642 	hdrlen = ieee80211_anyhdrsize(wh);
   3643 	/*
   3644 	 * Packet length must not include any
   3645 	 * pad bytes; deduct them here.
   3646 	 */
   3647 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
   3648 
   3649 	if (iswep) {
   3650 		const struct ieee80211_cipher *cip;
   3651 		struct ieee80211_key *k;
   3652 
   3653 		/*
   3654 		 * Construct the 802.11 header+trailer for an encrypted
   3655 		 * frame. The only reason this can fail is because of an
   3656 		 * unknown or unsupported cipher/key type.
   3657 		 */
   3658 		k = ieee80211_crypto_encap(ic, ni, m0);
   3659 		if (k == NULL) {
   3660 			/*
   3661 			 * This can happen when the key is yanked after the
   3662 			 * frame was queued.  Just discard the frame; the
   3663 			 * 802.11 layer counts failures and provides
   3664 			 * debugging/diagnostics.
   3665 			 */
   3666 			ath_freetx(m0);
   3667 			return EIO;
   3668 		}
   3669 		/*
   3670 		 * Adjust the packet + header lengths for the crypto
   3671 		 * additions and calculate the h/w key index.  When
   3672 		 * a s/w mic is done the frame will have had any mic
   3673 		 * added to it prior to entry so m0->m_pkthdr.len above will
   3674 		 * account for it. Otherwise we need to add it to the
   3675 		 * packet length.
   3676 		 */
   3677 		cip = k->wk_cipher;
   3678 		hdrlen += cip->ic_header;
   3679 		pktlen += cip->ic_header + cip->ic_trailer;
   3680 		/* NB: frags always have any TKIP MIC done in s/w */
   3681 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
   3682 			pktlen += cip->ic_miclen;
   3683 		keyix = k->wk_keyix;
   3684 
   3685 		/* packet header may have moved, reset our local pointer */
   3686 		wh = mtod(m0, struct ieee80211_frame *);
   3687 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
   3688 		/*
   3689 		 * Use station key cache slot, if assigned.
   3690 		 */
   3691 		keyix = ni->ni_ucastkey.wk_keyix;
   3692 		if (keyix == IEEE80211_KEYIX_NONE)
   3693 			keyix = HAL_TXKEYIX_INVALID;
   3694 	} else
   3695 		keyix = HAL_TXKEYIX_INVALID;
   3696 
   3697 	pktlen += IEEE80211_CRC_LEN;
   3698 
   3699 	/*
   3700 	 * Load the DMA map so any coalescing is done.  This
   3701 	 * also calculates the number of descriptors we need.
   3702 	 */
   3703 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3704 				     BUS_DMA_NOWAIT);
   3705 	if (error == EFBIG) {
   3706 		/* XXX packet requires too many descriptors */
   3707 		bf->bf_nseg = ATH_TXDESC+1;
   3708 	} else if (error != 0) {
   3709 		sc->sc_stats.ast_tx_busdma++;
   3710 		ath_freetx(m0);
   3711 		return error;
   3712 	}
   3713 	/*
   3714 	 * Discard null packets and check for packets that
   3715 	 * require too many TX descriptors.  We try to convert
   3716 	 * the latter to a cluster.
   3717 	 */
   3718 	if (error == EFBIG) {		/* too many desc's, linearize */
   3719 		sc->sc_stats.ast_tx_linear++;
   3720 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
   3721 		if (m == NULL) {
   3722 			ath_freetx(m0);
   3723 			sc->sc_stats.ast_tx_nombuf++;
   3724 			return ENOMEM;
   3725 		}
   3726 		m0 = m;
   3727 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
   3728 					     BUS_DMA_NOWAIT);
   3729 		if (error != 0) {
   3730 			sc->sc_stats.ast_tx_busdma++;
   3731 			ath_freetx(m0);
   3732 			return error;
   3733 		}
   3734 		KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
   3735 		    "too many segments after defrag; nseg %u", bf->bf_nseg);
   3736 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   3737 		sc->sc_stats.ast_tx_nodata++;
   3738 		ath_freetx(m0);
   3739 		return EIO;
   3740 	}
   3741 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
   3742 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   3743             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
   3744 	bf->bf_m = m0;
   3745 	bf->bf_node = ni;			/* NB: held reference */
   3746 
   3747 	/* setup descriptors */
   3748 	ds = bf->bf_desc;
   3749 	rt = sc->sc_currates;
   3750 	KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
   3751 
   3752 	/*
   3753 	 * NB: the 802.11 layer marks whether or not we should
   3754 	 * use short preamble based on the current mode and
   3755 	 * negotiated parameters.
   3756 	 */
   3757 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   3758 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
   3759 		shortPreamble = AH_TRUE;
   3760 		sc->sc_stats.ast_tx_shortpre++;
   3761 	} else {
   3762 		shortPreamble = AH_FALSE;
   3763 	}
   3764 
   3765 	an = ATH_NODE(ni);
   3766 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
   3767 	ismrr = 0;				/* default no multi-rate retry*/
   3768 	/*
   3769 	 * Calculate Atheros packet type from IEEE80211 packet header,
   3770 	 * setup for rate calculations, and select h/w transmit queue.
   3771 	 */
   3772 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   3773 	case IEEE80211_FC0_TYPE_MGT:
   3774 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   3775 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   3776 			atype = HAL_PKT_TYPE_BEACON;
   3777 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   3778 			atype = HAL_PKT_TYPE_PROBE_RESP;
   3779 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   3780 			atype = HAL_PKT_TYPE_ATIM;
   3781 		else
   3782 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
   3783 		rix = sc->sc_minrateix;
   3784 		txrate = rt->info[rix].rateCode;
   3785 		if (shortPreamble)
   3786 			txrate |= rt->info[rix].shortPreamble;
   3787 		try0 = ATH_TXMGTTRY;
   3788 		/* NB: force all management frames to highest queue */
   3789 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3790 			/* NB: force all management frames to highest queue */
   3791 			pri = WME_AC_VO;
   3792 		} else
   3793 			pri = WME_AC_BE;
   3794 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3795 		break;
   3796 	case IEEE80211_FC0_TYPE_CTL:
   3797 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
   3798 		rix = sc->sc_minrateix;
   3799 		txrate = rt->info[rix].rateCode;
   3800 		if (shortPreamble)
   3801 			txrate |= rt->info[rix].shortPreamble;
   3802 		try0 = ATH_TXMGTTRY;
   3803 		/* NB: force all ctl frames to highest queue */
   3804 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
   3805 			/* NB: force all ctl frames to highest queue */
   3806 			pri = WME_AC_VO;
   3807 		} else
   3808 			pri = WME_AC_BE;
   3809 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
   3810 		break;
   3811 	case IEEE80211_FC0_TYPE_DATA:
   3812 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
   3813 		/*
   3814 		 * Data frames: multicast frames go out at a fixed rate,
   3815 		 * otherwise consult the rate control module for the
   3816 		 * rate to use.
   3817 		 */
   3818 		if (ismcast) {
   3819 			/*
   3820 			 * Check mcast rate setting in case it's changed.
   3821 			 * XXX move out of fastpath
   3822 			 */
   3823 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
   3824 				sc->sc_mcastrix =
   3825 					ath_tx_findrix(rt, ic->ic_mcast_rate);
   3826 				sc->sc_mcastrate = ic->ic_mcast_rate;
   3827 			}
   3828 			rix = sc->sc_mcastrix;
   3829 			txrate = rt->info[rix].rateCode;
   3830 			try0 = 1;
   3831 		} else {
   3832 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
   3833 				&rix, &try0, &txrate);
   3834 			sc->sc_txrate = txrate;		/* for LED blinking */
   3835 			if (try0 != ATH_TXMAXTRY)
   3836 				ismrr = 1;
   3837 		}
   3838 		pri = M_WME_GETAC(m0);
   3839 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
   3840 			flags |= HAL_TXDESC_NOACK;
   3841 		break;
   3842 	default:
   3843 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
   3844 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
   3845 		/* XXX statistic */
   3846 		ath_freetx(m0);
   3847 		return EIO;
   3848 	}
   3849 	txq = sc->sc_ac2q[pri];
   3850 
   3851 	/*
   3852 	 * When servicing one or more stations in power-save mode
   3853 	 * multicast frames must be buffered until after the beacon.
   3854 	 * We use the CAB queue for that.
   3855 	 */
   3856 	if (ismcast && ic->ic_ps_sta) {
   3857 		txq = sc->sc_cabq;
   3858 		/* XXX? more bit in 802.11 frame header */
   3859 	}
   3860 
   3861 	/*
   3862 	 * Calculate miscellaneous flags.
   3863 	 */
   3864 	if (ismcast) {
   3865 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   3866 	} else if (pktlen > ic->ic_rtsthreshold) {
   3867 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   3868 		cix = rt->info[rix].controlRate;
   3869 		sc->sc_stats.ast_tx_rts++;
   3870 	}
   3871 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
   3872 		sc->sc_stats.ast_tx_noack++;
   3873 
   3874 	/*
   3875 	 * If 802.11g protection is enabled, determine whether
   3876 	 * to use RTS/CTS or just CTS.  Note that this is only
   3877 	 * done for OFDM unicast frames.
   3878 	 */
   3879 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   3880 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
   3881 	    (flags & HAL_TXDESC_NOACK) == 0) {
   3882 		/* XXX fragments must use CCK rates w/ protection */
   3883 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   3884 			flags |= HAL_TXDESC_RTSENA;
   3885 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   3886 			flags |= HAL_TXDESC_CTSENA;
   3887 		if (isfrag) {
   3888 			/*
   3889 			 * For frags it would be desirable to use the
   3890 			 * highest CCK rate for RTS/CTS.  But stations
   3891 			 * farther away may detect it at a lower CCK rate
   3892 			 * so use the configured protection rate instead
   3893 			 * (for now).
   3894 			 */
   3895 			cix = rt->info[sc->sc_protrix].controlRate;
   3896 		} else
   3897 			cix = rt->info[sc->sc_protrix].controlRate;
   3898 		sc->sc_stats.ast_tx_protect++;
   3899 	}
   3900 
   3901 	/*
   3902 	 * Calculate duration.  This logically belongs in the 802.11
   3903 	 * layer but it lacks sufficient information to calculate it.
   3904 	 */
   3905 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   3906 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   3907 		u_int16_t dur;
   3908 		/*
   3909 		 * XXX not right with fragmentation.
   3910 		 */
   3911 		if (shortPreamble)
   3912 			dur = rt->info[rix].spAckDuration;
   3913 		else
   3914 			dur = rt->info[rix].lpAckDuration;
   3915 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
   3916 			dur += dur;             /* additional SIFS+ACK */
   3917 			KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
   3918 			/*
   3919 			 * Include the size of next fragment so NAV is
   3920 			 * updated properly.  The last fragment uses only
   3921 			 * the ACK duration
   3922 			 */
   3923 			dur += ath_hal_computetxtime(ah, rt,
   3924 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
   3925 			        hdrlen) -
   3926 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
   3927 			    rix, shortPreamble);
   3928 		}
   3929 		if (isfrag) {
   3930 			/*
   3931 			 * Force hardware to use computed duration for next
   3932 			 * fragment by disabling multi-rate retry which updates
   3933 			 * duration based on the multi-rate duration table.
   3934 			 */
   3935 			try0 = ATH_TXMAXTRY;
   3936 		}
   3937 		*(u_int16_t *)wh->i_dur = htole16(dur);
   3938 	}
   3939 
   3940 	/*
   3941 	 * Calculate RTS/CTS rate and duration if needed.
   3942 	 */
   3943 	ctsduration = 0;
   3944 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   3945 		/*
   3946 		 * CTS transmit rate is derived from the transmit rate
   3947 		 * by looking in the h/w rate table.  We must also factor
   3948 		 * in whether or not a short preamble is to be used.
   3949 		 */
   3950 		/* NB: cix is set above where RTS/CTS is enabled */
   3951 		KASSERTMSG(cix != 0xff, "cix not setup");
   3952 		ctsrate = rt->info[cix].rateCode;
   3953 		/*
   3954 		 * Compute the transmit duration based on the frame
   3955 		 * size and the size of an ACK frame.  We call into the
   3956 		 * HAL to do the computation since it depends on the
   3957 		 * characteristics of the actual PHY being used.
   3958 		 *
   3959 		 * NB: CTS is assumed the same size as an ACK so we can
   3960 		 *     use the precalculated ACK durations.
   3961 		 */
   3962 		if (shortPreamble) {
   3963 			ctsrate |= rt->info[cix].shortPreamble;
   3964 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3965 				ctsduration += rt->info[cix].spAckDuration;
   3966 			ctsduration += ath_hal_computetxtime(ah,
   3967 				rt, pktlen, rix, AH_TRUE);
   3968 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3969 				ctsduration += rt->info[rix].spAckDuration;
   3970 		} else {
   3971 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
   3972 				ctsduration += rt->info[cix].lpAckDuration;
   3973 			ctsduration += ath_hal_computetxtime(ah,
   3974 				rt, pktlen, rix, AH_FALSE);
   3975 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
   3976 				ctsduration += rt->info[rix].lpAckDuration;
   3977 		}
   3978 		/*
   3979 		 * Must disable multi-rate retry when using RTS/CTS.
   3980 		 */
   3981 		ismrr = 0;
   3982 		try0 = ATH_TXMGTTRY;		/* XXX */
   3983 	} else
   3984 		ctsrate = 0;
   3985 
   3986 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
   3987 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
   3988 			sc->sc_hwmap[txrate].ieeerate, -1);
   3989 	bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
   3990 	if (sc->sc_drvbpf) {
   3991 		u_int64_t tsf = ath_hal_gettsf64(ah);
   3992 
   3993 		sc->sc_tx_th.wt_tsf = htole64(tsf);
   3994 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
   3995 		if (iswep)
   3996 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   3997 		if (isfrag)
   3998 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
   3999 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
   4000 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
   4001 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
   4002 
   4003 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0,
   4004 		    BPF_D_OUT);
   4005 	}
   4006 
   4007 	/*
   4008 	 * Determine if a tx interrupt should be generated for
   4009 	 * this descriptor.  We take a tx interrupt to reap
   4010 	 * descriptors when the h/w hits an EOL condition or
   4011 	 * when the descriptor is specifically marked to generate
   4012 	 * an interrupt.  We periodically mark descriptors in this
   4013 	 * way to insure timely replenishing of the supply needed
   4014 	 * for sending frames.  Defering interrupts reduces system
   4015 	 * load and potentially allows more concurrent work to be
   4016 	 * done but if done to aggressively can cause senders to
   4017 	 * backup.
   4018 	 *
   4019 	 * NB: use >= to deal with sc_txintrperiod changing
   4020 	 *     dynamically through sysctl.
   4021 	 */
   4022 	if (flags & HAL_TXDESC_INTREQ) {
   4023 		txq->axq_intrcnt = 0;
   4024 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
   4025 		flags |= HAL_TXDESC_INTREQ;
   4026 		txq->axq_intrcnt = 0;
   4027 	}
   4028 
   4029 	/*
   4030 	 * Formulate first tx descriptor with tx controls.
   4031 	 */
   4032 	/* XXX check return value? */
   4033 	ath_hal_setuptxdesc(ah, ds
   4034 		, pktlen		/* packet length */
   4035 		, hdrlen		/* header length */
   4036 		, atype			/* Atheros packet type */
   4037 		, ni->ni_txpower	/* txpower */
   4038 		, txrate, try0		/* series 0 rate/tries */
   4039 		, keyix			/* key cache index */
   4040 		, sc->sc_txantenna	/* antenna mode */
   4041 		, flags			/* flags */
   4042 		, ctsrate		/* rts/cts rate */
   4043 		, ctsduration		/* rts/cts duration */
   4044 	);
   4045 	bf->bf_flags = flags;
   4046 	/*
   4047 	 * Setup the multi-rate retry state only when we're
   4048 	 * going to use it.  This assumes ath_hal_setuptxdesc
   4049 	 * initializes the descriptors (so we don't have to)
   4050 	 * when the hardware supports multi-rate retry and
   4051 	 * we don't use it.
   4052 	 */
   4053 	if (ismrr)
   4054 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
   4055 
   4056 	/*
   4057 	 * Fillin the remainder of the descriptor info.
   4058 	 */
   4059 	ds0 = ds;
   4060 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   4061 		ds->ds_data = bf->bf_segs[i].ds_addr;
   4062 		if (i == bf->bf_nseg - 1)
   4063 			ds->ds_link = 0;
   4064 		else
   4065 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   4066 		ath_hal_filltxdesc(ah, ds
   4067 			, bf->bf_segs[i].ds_len	/* segment length */
   4068 			, i == 0		/* first segment */
   4069 			, i == bf->bf_nseg - 1	/* last segment */
   4070 			, ds0			/* first descriptor */
   4071 		);
   4072 
   4073 		/* NB: The desc swap function becomes void,
   4074 		 * if descriptor swapping is not enabled
   4075 		 */
   4076 		ath_desc_swap(ds);
   4077 
   4078 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4079 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
   4080 			__func__, i, ds->ds_link, ds->ds_data,
   4081 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
   4082 	}
   4083 	/*
   4084 	 * Insert the frame on the outbound list and
   4085 	 * pass it on to the hardware.
   4086 	 */
   4087 	ATH_TXQ_LOCK(txq);
   4088 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
   4089 	if (txq->axq_link == NULL) {
   4090 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
   4091 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4092 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
   4093 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
   4094 		    txq->axq_depth);
   4095 	} else {
   4096 		*txq->axq_link = HTOAH32(bf->bf_daddr);
   4097 		DPRINTF(sc, ATH_DEBUG_XMIT,
   4098 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
   4099 		    __func__, txq->axq_qnum, txq->axq_link,
   4100 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
   4101 	}
   4102 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   4103 	/*
   4104 	 * The CAB queue is started from the SWBA handler since
   4105 	 * frames only go out on DTIM and to avoid possible races.
   4106 	 */
   4107 	if (txq != sc->sc_cabq)
   4108 		ath_hal_txstart(ah, txq->axq_qnum);
   4109 	ATH_TXQ_UNLOCK(txq);
   4110 
   4111 	return 0;
   4112 }
   4113 
   4114 /*
   4115  * Process completed xmit descriptors from the specified queue.
   4116  */
   4117 static int
   4118 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
   4119 {
   4120 	struct ath_hal *ah = sc->sc_ah;
   4121 	struct ieee80211com *ic = &sc->sc_ic;
   4122 	struct ath_buf *bf;
   4123 	struct ath_desc *ds, *ds0;
   4124 	struct ieee80211_node *ni;
   4125 	struct ath_node *an;
   4126 	int sr, lr, pri, nacked;
   4127 	HAL_STATUS status;
   4128 
   4129 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
   4130 		__func__, txq->axq_qnum,
   4131 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
   4132 		txq->axq_link);
   4133 	nacked = 0;
   4134 	for (;;) {
   4135 		ATH_TXQ_LOCK(txq);
   4136 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
   4137 		bf = STAILQ_FIRST(&txq->axq_q);
   4138 		if (bf == NULL) {
   4139 			txq->axq_link = NULL;
   4140 			ATH_TXQ_UNLOCK(txq);
   4141 			break;
   4142 		}
   4143 		ds0 = &bf->bf_desc[0];
   4144 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4145 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
   4146 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
   4147 			ath_printtxbuf(bf, status == HAL_OK);
   4148 		if (status == HAL_EINPROGRESS) {
   4149 			ATH_TXQ_UNLOCK(txq);
   4150 			break;
   4151 		}
   4152 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4153 		ATH_TXQ_UNLOCK(txq);
   4154 
   4155 		ni = bf->bf_node;
   4156 		if (ni != NULL) {
   4157 			an = ATH_NODE(ni);
   4158 			if (ds->ds_txstat.ts_status == 0) {
   4159 				u_int8_t txant = ds->ds_txstat.ts_antenna;
   4160 				sc->sc_stats.ast_ant_tx[txant]++;
   4161 				sc->sc_ant_tx[txant]++;
   4162 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
   4163 					sc->sc_stats.ast_tx_altrate++;
   4164 				sc->sc_stats.ast_tx_rssi =
   4165 					ds->ds_txstat.ts_rssi;
   4166 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
   4167 					ds->ds_txstat.ts_rssi);
   4168 				pri = M_WME_GETAC(bf->bf_m);
   4169 				if (pri >= WME_AC_VO)
   4170 					ic->ic_wme.wme_hipri_traffic++;
   4171 				ni->ni_inact = ni->ni_inact_reload;
   4172 			} else {
   4173 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   4174 					sc->sc_stats.ast_tx_xretries++;
   4175 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   4176 					sc->sc_stats.ast_tx_fifoerr++;
   4177 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   4178 					sc->sc_stats.ast_tx_filtered++;
   4179 			}
   4180 			sr = ds->ds_txstat.ts_shortretry;
   4181 			lr = ds->ds_txstat.ts_longretry;
   4182 			sc->sc_stats.ast_tx_shortretry += sr;
   4183 			sc->sc_stats.ast_tx_longretry += lr;
   4184 			/*
   4185 			 * Hand the descriptor to the rate control algorithm.
   4186 			 */
   4187 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
   4188 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
   4189 				/*
   4190 				 * If frame was ack'd update the last rx time
   4191 				 * used to workaround phantom bmiss interrupts.
   4192 				 */
   4193 				if (ds->ds_txstat.ts_status == 0)
   4194 					nacked++;
   4195 				ath_rate_tx_complete(sc, an, ds, ds0);
   4196 			}
   4197 			/*
   4198 			 * Reclaim reference to node.
   4199 			 *
   4200 			 * NB: the node may be reclaimed here if, for example
   4201 			 *     this is a DEAUTH message that was sent and the
   4202 			 *     node was timed out due to inactivity.
   4203 			 */
   4204 			ieee80211_free_node(ni);
   4205 		}
   4206 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
   4207 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4208 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4209 		m_freem(bf->bf_m);
   4210 		bf->bf_m = NULL;
   4211 		bf->bf_node = NULL;
   4212 
   4213 		ATH_TXBUF_LOCK(sc);
   4214 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4215 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4216 		ATH_TXBUF_UNLOCK(sc);
   4217 	}
   4218 	return nacked;
   4219 }
   4220 
   4221 static inline int
   4222 txqactive(struct ath_hal *ah, int qnum)
   4223 {
   4224 	u_int32_t txqs = 1<<qnum;
   4225 	ath_hal_gettxintrtxqs(ah, &txqs);
   4226 	return (txqs & (1<<qnum));
   4227 }
   4228 
   4229 /*
   4230  * Deferred processing of transmit interrupt; special-cased
   4231  * for a single hardware transmit queue (e.g. 5210 and 5211).
   4232  */
   4233 static void
   4234 ath_tx_proc_q0(void *arg, int npending)
   4235 {
   4236 	struct ath_softc *sc = arg;
   4237 	struct ifnet *ifp = &sc->sc_if;
   4238 #ifdef __NetBSD__
   4239 	int s;
   4240 #endif
   4241 
   4242 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0)
   4243 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4244 
   4245 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4246 		ath_tx_processq(sc, sc->sc_cabq);
   4247 
   4248 	if (sc->sc_softled)
   4249 		ath_led_event(sc, ATH_LED_TX);
   4250 
   4251 #ifdef __NetBSD__
   4252 	s = splnet();
   4253 #endif
   4254 	ath_start(ifp);
   4255 #ifdef __NetBSD__
   4256 	splx(s);
   4257 #endif
   4258 }
   4259 
   4260 /*
   4261  * Deferred processing of transmit interrupt; special-cased
   4262  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
   4263  */
   4264 static void
   4265 ath_tx_proc_q0123(void *arg, int npending)
   4266 {
   4267 	struct ath_softc *sc = arg;
   4268 	struct ifnet *ifp = &sc->sc_if;
   4269 	int nacked;
   4270 #ifdef __NetBSD__
   4271 	int s;
   4272 #endif
   4273 
   4274 	/*
   4275 	 * Process each active queue.
   4276 	 */
   4277 	nacked = 0;
   4278 	if (txqactive(sc->sc_ah, 0))
   4279 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
   4280 	if (txqactive(sc->sc_ah, 1))
   4281 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
   4282 	if (txqactive(sc->sc_ah, 2))
   4283 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
   4284 	if (txqactive(sc->sc_ah, 3))
   4285 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
   4286 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
   4287 		ath_tx_processq(sc, sc->sc_cabq);
   4288 	if (nacked) {
   4289 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4290 	}
   4291 
   4292 	if (sc->sc_softled)
   4293 		ath_led_event(sc, ATH_LED_TX);
   4294 
   4295 #ifdef __NetBSD__
   4296 	s = splnet();
   4297 #endif
   4298 	ath_start(ifp);
   4299 #ifdef __NetBSD__
   4300 	splx(s);
   4301 #endif
   4302 }
   4303 
   4304 /*
   4305  * Deferred processing of transmit interrupt.
   4306  */
   4307 static void
   4308 ath_tx_proc(void *arg, int npending)
   4309 {
   4310 	struct ath_softc *sc = arg;
   4311 	struct ifnet *ifp = &sc->sc_if;
   4312 	int i, nacked;
   4313 #ifdef __NetBSD__
   4314 	int s;
   4315 #endif
   4316 
   4317 	/*
   4318 	 * Process each active queue.
   4319 	 */
   4320 	nacked = 0;
   4321 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4322 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
   4323 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
   4324 	if (nacked) {
   4325 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
   4326 	}
   4327 
   4328 	if (sc->sc_softled)
   4329 		ath_led_event(sc, ATH_LED_TX);
   4330 
   4331 #ifdef __NetBSD__
   4332 	s = splnet();
   4333 #endif
   4334 	ath_start(ifp);
   4335 #ifdef __NetBSD__
   4336 	splx(s);
   4337 #endif
   4338 }
   4339 
   4340 static void
   4341 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
   4342 {
   4343 	struct ath_hal *ah = sc->sc_ah;
   4344 	struct ieee80211_node *ni;
   4345 	struct ath_buf *bf;
   4346 	struct ath_desc *ds;
   4347 
   4348 	/*
   4349 	 * NB: this assumes output has been stopped and
   4350 	 *     we do not need to block ath_tx_tasklet
   4351 	 */
   4352 	for (;;) {
   4353 		ATH_TXQ_LOCK(txq);
   4354 		bf = STAILQ_FIRST(&txq->axq_q);
   4355 		if (bf == NULL) {
   4356 			txq->axq_link = NULL;
   4357 			ATH_TXQ_UNLOCK(txq);
   4358 			break;
   4359 		}
   4360 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
   4361 		ATH_TXQ_UNLOCK(txq);
   4362 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   4363 		if (sc->sc_debug & ATH_DEBUG_RESET)
   4364 			ath_printtxbuf(bf,
   4365 				ath_hal_txprocdesc(ah, bf->bf_desc,
   4366 					&ds->ds_txstat) == HAL_OK);
   4367 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   4368 		m_freem(bf->bf_m);
   4369 		bf->bf_m = NULL;
   4370 		ni = bf->bf_node;
   4371 		bf->bf_node = NULL;
   4372 		if (ni != NULL) {
   4373 			/*
   4374 			 * Reclaim node reference.
   4375 			 */
   4376 			ieee80211_free_node(ni);
   4377 		}
   4378 		ATH_TXBUF_LOCK(sc);
   4379 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   4380 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4381 		ATH_TXBUF_UNLOCK(sc);
   4382 	}
   4383 }
   4384 
   4385 static void
   4386 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
   4387 {
   4388 	struct ath_hal *ah = sc->sc_ah;
   4389 
   4390 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
   4391 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
   4392 	    __func__, txq->axq_qnum,
   4393 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
   4394 	    txq->axq_link);
   4395 }
   4396 
   4397 /*
   4398  * Drain the transmit queues and reclaim resources.
   4399  */
   4400 static void
   4401 ath_draintxq(struct ath_softc *sc)
   4402 {
   4403 	struct ath_hal *ah = sc->sc_ah;
   4404 	int i;
   4405 
   4406 	/* XXX return value */
   4407 	if (device_is_active(sc->sc_dev)) {
   4408 		/* don't touch the hardware if marked invalid */
   4409 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4410 		DPRINTF(sc, ATH_DEBUG_RESET,
   4411 		    "%s: beacon queue %p\n", __func__,
   4412 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
   4413 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4414 			if (ATH_TXQ_SETUP(sc, i))
   4415 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
   4416 	}
   4417 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
   4418 		if (ATH_TXQ_SETUP(sc, i))
   4419 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
   4420 }
   4421 
   4422 /*
   4423  * Disable the receive h/w in preparation for a reset.
   4424  */
   4425 static void
   4426 ath_stoprecv(struct ath_softc *sc)
   4427 {
   4428 #define	PA2DESC(_sc, _pa) \
   4429 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
   4430 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
   4431 	struct ath_hal *ah = sc->sc_ah;
   4432 
   4433 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   4434 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   4435 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   4436 	DELAY(3000);			/* 3ms is long enough for 1 frame */
   4437 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
   4438 		struct ath_buf *bf;
   4439 
   4440 		printf("%s: rx queue %p, link %p\n", __func__,
   4441 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   4442 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4443 			struct ath_desc *ds = bf->bf_desc;
   4444 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
   4445 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
   4446 				&ds->ds_rxstat);
   4447 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
   4448 				ath_printrxbuf(bf, status == HAL_OK);
   4449 		}
   4450 	}
   4451 	sc->sc_rxlink = NULL;		/* just in case */
   4452 #undef PA2DESC
   4453 }
   4454 
   4455 /*
   4456  * Enable the receive h/w following a reset.
   4457  */
   4458 static int
   4459 ath_startrecv(struct ath_softc *sc)
   4460 {
   4461 	struct ath_hal *ah = sc->sc_ah;
   4462 	struct ath_buf *bf;
   4463 
   4464 	sc->sc_rxlink = NULL;
   4465 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   4466 		int error = ath_rxbuf_init(sc, bf);
   4467 		if (error != 0) {
   4468 			DPRINTF(sc, ATH_DEBUG_RECV,
   4469 				"%s: ath_rxbuf_init failed %d\n",
   4470 				__func__, error);
   4471 			return error;
   4472 		}
   4473 	}
   4474 
   4475 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
   4476 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   4477 	ath_hal_rxena(ah);		/* enable recv descriptors */
   4478 	ath_mode_init(sc);		/* set filters, etc. */
   4479 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   4480 	return 0;
   4481 }
   4482 
   4483 /*
   4484  * Update internal state after a channel change.
   4485  */
   4486 static void
   4487 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
   4488 {
   4489 	struct ieee80211com *ic = &sc->sc_ic;
   4490 	enum ieee80211_phymode mode;
   4491 	u_int16_t flags;
   4492 
   4493 	/*
   4494 	 * Change channels and update the h/w rate map
   4495 	 * if we're switching; e.g. 11a to 11b/g.
   4496 	 */
   4497 	mode = ieee80211_chan2mode(ic, chan);
   4498 	if (mode != sc->sc_curmode)
   4499 		ath_setcurmode(sc, mode);
   4500 	/*
   4501 	 * Update BPF state.  NB: ethereal et. al. don't handle
   4502 	 * merged flags well so pick a unique mode for their use.
   4503 	 */
   4504 	if (IEEE80211_IS_CHAN_A(chan))
   4505 		flags = IEEE80211_CHAN_A;
   4506 	/* XXX 11g schizophrenia */
   4507 	else if (IEEE80211_IS_CHAN_G(chan) ||
   4508 	    IEEE80211_IS_CHAN_PUREG(chan))
   4509 		flags = IEEE80211_CHAN_G;
   4510 	else
   4511 		flags = IEEE80211_CHAN_B;
   4512 	if (IEEE80211_IS_CHAN_T(chan))
   4513 		flags |= IEEE80211_CHAN_TURBO;
   4514 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   4515 		htole16(chan->ic_freq);
   4516 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   4517 		htole16(flags);
   4518 }
   4519 
   4520 #if 0
   4521 /*
   4522  * Poll for a channel clear indication; this is required
   4523  * for channels requiring DFS and not previously visited
   4524  * and/or with a recent radar detection.
   4525  */
   4526 static void
   4527 ath_dfswait(void *arg)
   4528 {
   4529 	struct ath_softc *sc = arg;
   4530 	struct ath_hal *ah = sc->sc_ah;
   4531 	HAL_CHANNEL hchan;
   4532 
   4533 	ath_hal_radar_wait(ah, &hchan);
   4534 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
   4535 		if_printf(&sc->sc_if,
   4536 		    "channel %u/0x%x/0x%x has interference\n",
   4537 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4538 		return;
   4539 	}
   4540 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
   4541 		/* XXX should not happen */
   4542 		return;
   4543 	}
   4544 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
   4545 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
   4546 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   4547 		if_printf(&sc->sc_if,
   4548 		    "channel %u/0x%x/0x%x marked clear\n",
   4549 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
   4550 	} else
   4551 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
   4552 }
   4553 #endif
   4554 
   4555 /*
   4556  * Set/change channels.  If the channel is really being changed,
   4557  * it's done by reseting the chip.  To accomplish this we must
   4558  * first cleanup any pending DMA, then restart stuff after a la
   4559  * ath_init.
   4560  */
   4561 static int
   4562 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   4563 {
   4564 	struct ath_hal *ah = sc->sc_ah;
   4565 	struct ieee80211com *ic = &sc->sc_ic;
   4566 	HAL_CHANNEL hchan;
   4567 
   4568 	/*
   4569 	 * Convert to a HAL channel description with
   4570 	 * the flags constrained to reflect the current
   4571 	 * operating mode.
   4572 	 */
   4573 	hchan.channel = chan->ic_freq;
   4574 	hchan.channelFlags = ath_chan2flags(ic, chan);
   4575 
   4576 	DPRINTF(sc, ATH_DEBUG_RESET,
   4577 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
   4578 	    __func__,
   4579 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
   4580 		sc->sc_curchan.channelFlags),
   4581 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
   4582 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
   4583 	        hchan.channel, hchan.channelFlags);
   4584 	if (hchan.channel != sc->sc_curchan.channel ||
   4585 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
   4586 		HAL_STATUS status;
   4587 
   4588 		/*
   4589 		 * To switch channels clear any pending DMA operations;
   4590 		 * wait long enough for the RX fifo to drain, reset the
   4591 		 * hardware at the new frequency, and then re-enable
   4592 		 * the relevant bits of the h/w.
   4593 		 */
   4594 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   4595 		ath_draintxq(sc);		/* clear pending tx frames */
   4596 		ath_stoprecv(sc);		/* turn off frame recv */
   4597 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   4598 			if_printf(ic->ic_ifp, "%s: unable to reset "
   4599 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
   4600 			    __func__, ieee80211_chan2ieee(ic, chan),
   4601 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
   4602 			return EIO;
   4603 		}
   4604 		sc->sc_curchan = hchan;
   4605 		ath_update_txpow(sc);		/* update tx power state */
   4606 		ath_restore_diversity(sc);
   4607 		sc->sc_calinterval = 1;
   4608 		sc->sc_caltries = 0;
   4609 
   4610 		/*
   4611 		 * Re-enable rx framework.
   4612 		 */
   4613 		if (ath_startrecv(sc) != 0) {
   4614 			if_printf(&sc->sc_if,
   4615 				"%s: unable to restart recv logic\n", __func__);
   4616 			return EIO;
   4617 		}
   4618 
   4619 		/*
   4620 		 * Change channels and update the h/w rate map
   4621 		 * if we're switching; e.g. 11a to 11b/g.
   4622 		 */
   4623 		ic->ic_ibss_chan = chan;
   4624 		ath_chan_change(sc, chan);
   4625 
   4626 #if 0
   4627 		/*
   4628 		 * Handle DFS required waiting period to determine
   4629 		 * if channel is clear of radar traffic.
   4630 		 */
   4631 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   4632 #define	DFS_AND_NOT_CLEAR(_c) \
   4633 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
   4634 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
   4635 				if_printf(&sc->sc_if,
   4636 					"wait for DFS clear channel signal\n");
   4637 				/* XXX stop sndq */
   4638 				sc->sc_if.if_flags |= IFF_OACTIVE;
   4639 				callout_reset(&sc->sc_dfs_ch,
   4640 					2 * hz, ath_dfswait, sc);
   4641 			} else
   4642 				callout_stop(&sc->sc_dfs_ch);
   4643 #undef DFS_NOT_CLEAR
   4644 		}
   4645 #endif
   4646 
   4647 		/*
   4648 		 * Re-enable interrupts.
   4649 		 */
   4650 		ath_hal_intrset(ah, sc->sc_imask);
   4651 	}
   4652 	return 0;
   4653 }
   4654 
   4655 static void
   4656 ath_next_scan(void *arg)
   4657 {
   4658 	struct ath_softc *sc = arg;
   4659 	struct ieee80211com *ic = &sc->sc_ic;
   4660 	int s;
   4661 
   4662 	/* don't call ath_start w/o network interrupts blocked */
   4663 	s = splnet();
   4664 
   4665 	if (ic->ic_state == IEEE80211_S_SCAN)
   4666 		ieee80211_next_scan(ic);
   4667 	splx(s);
   4668 }
   4669 
   4670 /*
   4671  * Periodically recalibrate the PHY to account
   4672  * for temperature/environment changes.
   4673  */
   4674 static void
   4675 ath_calibrate(void *arg)
   4676 {
   4677 	struct ath_softc *sc = arg;
   4678 	struct ath_hal *ah = sc->sc_ah;
   4679 	HAL_BOOL iqCalDone;
   4680 	int s;
   4681 
   4682 	sc->sc_stats.ast_per_cal++;
   4683 
   4684 	 s = splnet();
   4685 
   4686 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   4687 		/*
   4688 		 * Rfgain is out of bounds, reset the chip
   4689 		 * to load new gain values.
   4690 		 */
   4691 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4692 			"%s: rfgain change\n", __func__);
   4693 		sc->sc_stats.ast_per_rfgain++;
   4694 		ath_reset(&sc->sc_if);
   4695 	}
   4696 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
   4697 		DPRINTF(sc, ATH_DEBUG_ANY,
   4698 			"%s: calibration of channel %u failed\n",
   4699 			__func__, sc->sc_curchan.channel);
   4700 		sc->sc_stats.ast_per_calfail++;
   4701 	}
   4702 	/*
   4703 	 * Calibrate noise floor data again in case of change.
   4704 	 */
   4705 	ath_hal_process_noisefloor(ah);
   4706 	/*
   4707 	 * Poll more frequently when the IQ calibration is in
   4708 	 * progress to speedup loading the final settings.
   4709 	 * We temper this aggressive polling with an exponential
   4710 	 * back off after 4 tries up to ath_calinterval.
   4711 	 */
   4712 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
   4713 		sc->sc_caltries = 0;
   4714 		sc->sc_calinterval = ath_calinterval;
   4715 	} else if (sc->sc_caltries > 4) {
   4716 		sc->sc_caltries = 0;
   4717 		sc->sc_calinterval <<= 1;
   4718 		if (sc->sc_calinterval > ath_calinterval)
   4719 			sc->sc_calinterval = ath_calinterval;
   4720 	}
   4721 	KASSERTMSG(0 < sc->sc_calinterval &&
   4722 	           sc->sc_calinterval <= ath_calinterval,
   4723 		   "bad calibration interval %u", sc->sc_calinterval);
   4724 
   4725 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
   4726 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
   4727 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
   4728 	sc->sc_caltries++;
   4729 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4730 		ath_calibrate, sc);
   4731 	splx(s);
   4732 }
   4733 
   4734 static int
   4735 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   4736 {
   4737 	struct ifnet *ifp = ic->ic_ifp;
   4738 	struct ath_softc *sc = ifp->if_softc;
   4739 	struct ath_hal *ah = sc->sc_ah;
   4740 	struct ieee80211_node *ni;
   4741 	int i, error;
   4742 	const u_int8_t *bssid;
   4743 	u_int32_t rfilt;
   4744 	static const HAL_LED_STATE leds[] = {
   4745 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   4746 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   4747 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   4748 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   4749 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   4750 	};
   4751 
   4752 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
   4753 		ieee80211_state_name[ic->ic_state],
   4754 		ieee80211_state_name[nstate]);
   4755 
   4756 	callout_stop(&sc->sc_scan_ch);
   4757 	callout_stop(&sc->sc_cal_ch);
   4758 #if 0
   4759 	callout_stop(&sc->sc_dfs_ch);
   4760 #endif
   4761 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   4762 
   4763 	if (nstate == IEEE80211_S_INIT) {
   4764 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4765 		/*
   4766 		 * NB: disable interrupts so we don't rx frames.
   4767 		 */
   4768 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
   4769 		/*
   4770 		 * Notify the rate control algorithm.
   4771 		 */
   4772 		ath_rate_newstate(sc, nstate);
   4773 		goto done;
   4774 	}
   4775 	ni = ic->ic_bss;
   4776 	error = ath_chan_set(sc, ic->ic_curchan);
   4777 	if (error != 0)
   4778 		goto bad;
   4779 	rfilt = ath_calcrxfilter(sc, nstate);
   4780 	if (nstate == IEEE80211_S_SCAN)
   4781 		bssid = ifp->if_broadcastaddr;
   4782 	else
   4783 		bssid = ni->ni_bssid;
   4784 	ath_hal_setrxfilter(ah, rfilt);
   4785 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
   4786 		 __func__, rfilt, ether_sprintf(bssid));
   4787 
   4788 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   4789 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   4790 	else
   4791 		ath_hal_setassocid(ah, bssid, 0);
   4792 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
   4793 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   4794 			if (ath_hal_keyisvalid(ah, i))
   4795 				ath_hal_keysetmac(ah, i, bssid);
   4796 	}
   4797 
   4798 	/*
   4799 	 * Notify the rate control algorithm so rates
   4800 	 * are setup should ath_beacon_alloc be called.
   4801 	 */
   4802 	ath_rate_newstate(sc, nstate);
   4803 
   4804 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
   4805 		/* nothing to do */;
   4806 	} else if (nstate == IEEE80211_S_RUN) {
   4807 		DPRINTF(sc, ATH_DEBUG_STATE,
   4808 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   4809 			"capinfo=0x%04x chan=%d\n"
   4810 			 , __func__
   4811 			 , ic->ic_flags
   4812 			 , ni->ni_intval
   4813 			 , ether_sprintf(ni->ni_bssid)
   4814 			 , ni->ni_capinfo
   4815 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
   4816 
   4817 		switch (ic->ic_opmode) {
   4818 		case IEEE80211_M_HOSTAP:
   4819 		case IEEE80211_M_IBSS:
   4820 			/*
   4821 			 * Allocate and setup the beacon frame.
   4822 			 *
   4823 			 * Stop any previous beacon DMA.  This may be
   4824 			 * necessary, for example, when an ibss merge
   4825 			 * causes reconfiguration; there will be a state
   4826 			 * transition from RUN->RUN that means we may
   4827 			 * be called with beacon transmission active.
   4828 			 */
   4829 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
   4830 			ath_beacon_free(sc);
   4831 			error = ath_beacon_alloc(sc, ni);
   4832 			if (error != 0)
   4833 				goto bad;
   4834 			/*
   4835 			 * If joining an adhoc network defer beacon timer
   4836 			 * configuration to the next beacon frame so we
   4837 			 * have a current TSF to use.  Otherwise we're
   4838 			 * starting an ibss/bss so there's no need to delay.
   4839 			 */
   4840 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
   4841 			    ic->ic_bss->ni_tstamp.tsf != 0)
   4842 				sc->sc_syncbeacon = 1;
   4843 			else
   4844 				ath_beacon_config(sc);
   4845 			break;
   4846 		case IEEE80211_M_STA:
   4847 			/*
   4848 			 * Allocate a key cache slot to the station.
   4849 			 */
   4850 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
   4851 			    sc->sc_hasclrkey &&
   4852 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
   4853 				ath_setup_stationkey(ni);
   4854 			/*
   4855 			 * Defer beacon timer configuration to the next
   4856 			 * beacon frame so we have a current TSF to use
   4857 			 * (any TSF collected when scanning is likely old).
   4858 			 */
   4859 			sc->sc_syncbeacon = 1;
   4860 			break;
   4861 		default:
   4862 			break;
   4863 		}
   4864 		/*
   4865 		 * Let the hal process statistics collected during a
   4866 		 * scan so it can provide calibrated noise floor data.
   4867 		 */
   4868 		ath_hal_process_noisefloor(ah);
   4869 		/*
   4870 		 * Reset rssi stats; maybe not the best place...
   4871 		 */
   4872 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
   4873 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
   4874 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
   4875 	} else {
   4876 		ath_hal_intrset(ah,
   4877 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
   4878 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   4879 	}
   4880 done:
   4881 	/*
   4882 	 * Invoke the parent method to complete the work.
   4883 	 */
   4884 	error = sc->sc_newstate(ic, nstate, arg);
   4885 	/*
   4886 	 * Finally, start any timers.
   4887 	 */
   4888 	if (nstate == IEEE80211_S_RUN) {
   4889 		/* start periodic recalibration timer */
   4890 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
   4891 			ath_calibrate, sc);
   4892 	} else if (nstate == IEEE80211_S_SCAN) {
   4893 		/* start ap/neighbor scan timer */
   4894 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
   4895 			ath_next_scan, sc);
   4896 	}
   4897 bad:
   4898 	return error;
   4899 }
   4900 
   4901 /*
   4902  * Allocate a key cache slot to the station so we can
   4903  * setup a mapping from key index to node. The key cache
   4904  * slot is needed for managing antenna state and for
   4905  * compression when stations do not use crypto.  We do
   4906  * it uniliaterally here; if crypto is employed this slot
   4907  * will be reassigned.
   4908  */
   4909 static void
   4910 ath_setup_stationkey(struct ieee80211_node *ni)
   4911 {
   4912 	struct ieee80211com *ic = ni->ni_ic;
   4913 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4914 	ieee80211_keyix keyix, rxkeyix;
   4915 
   4916 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
   4917 		/*
   4918 		 * Key cache is full; we'll fall back to doing
   4919 		 * the more expensive lookup in software.  Note
   4920 		 * this also means no h/w compression.
   4921 		 */
   4922 		/* XXX msg+statistic */
   4923 	} else {
   4924 		/* XXX locking? */
   4925 		ni->ni_ucastkey.wk_keyix = keyix;
   4926 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
   4927 		/* NB: this will create a pass-thru key entry */
   4928 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
   4929 	}
   4930 }
   4931 
   4932 /*
   4933  * Setup driver-specific state for a newly associated node.
   4934  * Note that we're called also on a re-associate, the isnew
   4935  * param tells us if this is the first time or not.
   4936  */
   4937 static void
   4938 ath_newassoc(struct ieee80211_node *ni, int isnew)
   4939 {
   4940 	struct ieee80211com *ic = ni->ni_ic;
   4941 	struct ath_softc *sc = ic->ic_ifp->if_softc;
   4942 
   4943 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
   4944 	if (isnew &&
   4945 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
   4946 		KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
   4947 		    "new assoc with a unicast key already setup (keyix %u)",
   4948 		    ni->ni_ucastkey.wk_keyix);
   4949 		ath_setup_stationkey(ni);
   4950 	}
   4951 }
   4952 
   4953 static int
   4954 ath_getchannels(struct ath_softc *sc, u_int cc,
   4955 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
   4956 {
   4957 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   4958 	struct ieee80211com *ic = &sc->sc_ic;
   4959 	struct ifnet *ifp = &sc->sc_if;
   4960 	struct ath_hal *ah = sc->sc_ah;
   4961 	HAL_CHANNEL *chans;
   4962 	int i, ix, nchan;
   4963 
   4964 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   4965 			M_TEMP, M_NOWAIT);
   4966 	if (chans == NULL) {
   4967 		if_printf(ifp, "unable to allocate channel table\n");
   4968 		return ENOMEM;
   4969 	}
   4970 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   4971 	    NULL, 0, NULL,
   4972 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   4973 		u_int32_t rd;
   4974 
   4975 		(void)ath_hal_getregdomain(ah, &rd);
   4976 		if_printf(ifp, "unable to collect channel list from hal; "
   4977 			"regdomain likely %u country code %u\n", rd, cc);
   4978 		free(chans, M_TEMP);
   4979 		return EINVAL;
   4980 	}
   4981 
   4982 	/*
   4983 	 * Convert HAL channels to ieee80211 ones and insert
   4984 	 * them in the table according to their channel number.
   4985 	 */
   4986 	for (i = 0; i < nchan; i++) {
   4987 		HAL_CHANNEL *c = &chans[i];
   4988 		u_int16_t flags;
   4989 
   4990 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
   4991 		if (ix > IEEE80211_CHAN_MAX) {
   4992 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
   4993 				ix, c->channel, c->channelFlags);
   4994 			continue;
   4995 		}
   4996 		if (ix < 0) {
   4997 			/* XXX can't handle stuff <2400 right now */
   4998 			if (bootverbose)
   4999 				if_printf(ifp, "hal channel %d (%u/%x) "
   5000 				    "cannot be handled; ignored\n",
   5001 				    ix, c->channel, c->channelFlags);
   5002 			continue;
   5003 		}
   5004 		/*
   5005 		 * Calculate net80211 flags; most are compatible
   5006 		 * but some need massaging.  Note the static turbo
   5007 		 * conversion can be removed once net80211 is updated
   5008 		 * to understand static vs. dynamic turbo.
   5009 		 */
   5010 		flags = c->channelFlags & COMPAT;
   5011 		if (c->channelFlags & CHANNEL_STURBO)
   5012 			flags |= IEEE80211_CHAN_TURBO;
   5013 		if (ic->ic_channels[ix].ic_freq == 0) {
   5014 			ic->ic_channels[ix].ic_freq = c->channel;
   5015 			ic->ic_channels[ix].ic_flags = flags;
   5016 		} else {
   5017 			/* channels overlap; e.g. 11g and 11b */
   5018 			ic->ic_channels[ix].ic_flags |= flags;
   5019 		}
   5020 	}
   5021 	free(chans, M_TEMP);
   5022 	return 0;
   5023 #undef COMPAT
   5024 }
   5025 
   5026 static void
   5027 ath_led_done(void *arg)
   5028 {
   5029 	struct ath_softc *sc = arg;
   5030 
   5031 	sc->sc_blinking = 0;
   5032 }
   5033 
   5034 /*
   5035  * Turn the LED off: flip the pin and then set a timer so no
   5036  * update will happen for the specified duration.
   5037  */
   5038 static void
   5039 ath_led_off(void *arg)
   5040 {
   5041 	struct ath_softc *sc = arg;
   5042 
   5043 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
   5044 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
   5045 }
   5046 
   5047 /*
   5048  * Blink the LED according to the specified on/off times.
   5049  */
   5050 static void
   5051 ath_led_blink(struct ath_softc *sc, int on, int off)
   5052 {
   5053 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
   5054 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
   5055 	sc->sc_blinking = 1;
   5056 	sc->sc_ledoff = off;
   5057 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
   5058 }
   5059 
   5060 static void
   5061 ath_led_event(struct ath_softc *sc, int event)
   5062 {
   5063 
   5064 	sc->sc_ledevent = ticks;	/* time of last event */
   5065 	if (sc->sc_blinking)		/* don't interrupt active blink */
   5066 		return;
   5067 	switch (event) {
   5068 	case ATH_LED_POLL:
   5069 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
   5070 			sc->sc_hwmap[0].ledoff);
   5071 		break;
   5072 	case ATH_LED_TX:
   5073 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
   5074 			sc->sc_hwmap[sc->sc_txrate].ledoff);
   5075 		break;
   5076 	case ATH_LED_RX:
   5077 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
   5078 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
   5079 		break;
   5080 	}
   5081 }
   5082 
   5083 static void
   5084 ath_update_txpow(struct ath_softc *sc)
   5085 {
   5086 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
   5087 	struct ieee80211com *ic = &sc->sc_ic;
   5088 	struct ath_hal *ah = sc->sc_ah;
   5089 	u_int32_t txpow;
   5090 
   5091 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
   5092 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
   5093 		/* read back in case value is clamped */
   5094 		(void)ath_hal_gettxpowlimit(ah, &txpow);
   5095 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
   5096 	}
   5097 	/*
   5098 	 * Fetch max tx power level for status requests.
   5099 	 */
   5100 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
   5101 	ic->ic_bss->ni_txpower = txpow;
   5102 }
   5103 
   5104 static void
   5105 rate_setup(struct ath_softc *sc,
   5106 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
   5107 {
   5108 	int i, maxrates;
   5109 
   5110 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   5111 		DPRINTF(sc, ATH_DEBUG_ANY,
   5112 			"%s: rate table too small (%u > %u)\n",
   5113 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
   5114 		maxrates = IEEE80211_RATE_MAXSIZE;
   5115 	} else
   5116 		maxrates = rt->rateCount;
   5117 	for (i = 0; i < maxrates; i++)
   5118 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   5119 	rs->rs_nrates = maxrates;
   5120 }
   5121 
   5122 static int
   5123 ath_rate_setup(struct ath_softc *sc, u_int mode)
   5124 {
   5125 	struct ath_hal *ah = sc->sc_ah;
   5126 	struct ieee80211com *ic = &sc->sc_ic;
   5127 	const HAL_RATE_TABLE *rt;
   5128 
   5129 	switch (mode) {
   5130 	case IEEE80211_MODE_11A:
   5131 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
   5132 		break;
   5133 	case IEEE80211_MODE_11B:
   5134 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
   5135 		break;
   5136 	case IEEE80211_MODE_11G:
   5137 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
   5138 		break;
   5139 	case IEEE80211_MODE_TURBO_A:
   5140 		/* XXX until static/dynamic turbo is fixed */
   5141 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   5142 		break;
   5143 	case IEEE80211_MODE_TURBO_G:
   5144 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
   5145 		break;
   5146 	default:
   5147 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
   5148 			__func__, mode);
   5149 		return 0;
   5150 	}
   5151 	sc->sc_rates[mode] = rt;
   5152 	if (rt != NULL) {
   5153 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
   5154 		return 1;
   5155 	} else
   5156 		return 0;
   5157 }
   5158 
   5159 static void
   5160 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   5161 {
   5162 #define	N(a)	(sizeof(a)/sizeof(a[0]))
   5163 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
   5164 	static const struct {
   5165 		u_int		rate;		/* tx/rx 802.11 rate */
   5166 		u_int16_t	timeOn;		/* LED on time (ms) */
   5167 		u_int16_t	timeOff;	/* LED off time (ms) */
   5168 	} blinkrates[] = {
   5169 		{ 108,  40,  10 },
   5170 		{  96,  44,  11 },
   5171 		{  72,  50,  13 },
   5172 		{  48,  57,  14 },
   5173 		{  36,  67,  16 },
   5174 		{  24,  80,  20 },
   5175 		{  22, 100,  25 },
   5176 		{  18, 133,  34 },
   5177 		{  12, 160,  40 },
   5178 		{  10, 200,  50 },
   5179 		{   6, 240,  58 },
   5180 		{   4, 267,  66 },
   5181 		{   2, 400, 100 },
   5182 		{   0, 500, 130 },
   5183 	};
   5184 	const HAL_RATE_TABLE *rt;
   5185 	int i, j;
   5186 
   5187 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   5188 	rt = sc->sc_rates[mode];
   5189 	KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
   5190 	for (i = 0; i < rt->rateCount; i++)
   5191 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   5192 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   5193 	for (i = 0; i < 32; i++) {
   5194 		u_int8_t ix = rt->rateCodeToIndex[i];
   5195 		if (ix == 0xff) {
   5196 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
   5197 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
   5198 			continue;
   5199 		}
   5200 		sc->sc_hwmap[i].ieeerate =
   5201 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
   5202 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
   5203 		if (rt->info[ix].shortPreamble ||
   5204 		    rt->info[ix].phy == IEEE80211_T_OFDM)
   5205 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   5206 		/* NB: receive frames include FCS */
   5207 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
   5208 			IEEE80211_RADIOTAP_F_FCS;
   5209 		/* setup blink rate table to avoid per-packet lookup */
   5210 		for (j = 0; j < N(blinkrates)-1; j++)
   5211 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
   5212 				break;
   5213 		/* NB: this uses the last entry if the rate isn't found */
   5214 		/* XXX beware of overlow */
   5215 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
   5216 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
   5217 	}
   5218 	sc->sc_currates = rt;
   5219 	sc->sc_curmode = mode;
   5220 	/*
   5221 	 * All protection frames are transmited at 2Mb/s for
   5222 	 * 11g, otherwise at 1Mb/s.
   5223 	 */
   5224 	if (mode == IEEE80211_MODE_11G)
   5225 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
   5226 	else
   5227 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
   5228 	/* rate index used to send management frames */
   5229 	sc->sc_minrateix = 0;
   5230 	/*
   5231 	 * Setup multicast rate state.
   5232 	 */
   5233 	/* XXX layering violation */
   5234 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
   5235 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
   5236 	/* NB: caller is responsible for reseting rate control state */
   5237 #undef N
   5238 }
   5239 
   5240 #ifdef AR_DEBUG
   5241 static void
   5242 ath_printrxbuf(struct ath_buf *bf, int done)
   5243 {
   5244 	struct ath_desc *ds;
   5245 	int i;
   5246 
   5247 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5248 		printf("R%d (%p %" PRIx64
   5249 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
   5250 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5251 		    ds->ds_link, ds->ds_data,
   5252 		    ds->ds_ctl0, ds->ds_ctl1,
   5253 		    ds->ds_hw[0], ds->ds_hw[1],
   5254 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
   5255 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   5256 	}
   5257 }
   5258 
   5259 static void
   5260 ath_printtxbuf(struct ath_buf *bf, int done)
   5261 {
   5262 	struct ath_desc *ds;
   5263 	int i;
   5264 
   5265 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   5266 		printf("T%d (%p %" PRIx64
   5267 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   5268 		    i, ds,
   5269 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
   5270 		    ds->ds_link, ds->ds_data,
   5271 		    ds->ds_ctl0, ds->ds_ctl1,
   5272 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   5273 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   5274 	}
   5275 }
   5276 #endif	/* AR_DEBUG */
   5277 
   5278 static void
   5279 ath_watchdog(struct ifnet *ifp)
   5280 {
   5281 	struct ath_softc *sc = ifp->if_softc;
   5282 	struct ieee80211com *ic = &sc->sc_ic;
   5283 	struct ath_txq *axq;
   5284 	int i;
   5285 
   5286 	ifp->if_timer = 0;
   5287 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   5288 	    !device_is_active(sc->sc_dev))
   5289 		return;
   5290 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
   5291 		if (!ATH_TXQ_SETUP(sc, i))
   5292 			continue;
   5293 		axq = &sc->sc_txq[i];
   5294 		ATH_TXQ_LOCK(axq);
   5295 		if (axq->axq_timer == 0)
   5296 			;
   5297 		else if (--axq->axq_timer == 0) {
   5298 			ATH_TXQ_UNLOCK(axq);
   5299 			if_printf(ifp, "device timeout (txq %d, "
   5300 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
   5301 			if (sc->sc_txintrperiod > 1)
   5302 				sc->sc_txintrperiod--;
   5303 			ath_reset(ifp);
   5304 			ifp->if_oerrors++;
   5305 			sc->sc_stats.ast_watchdog++;
   5306 			break;
   5307 		} else
   5308 			ifp->if_timer = 1;
   5309 		ATH_TXQ_UNLOCK(axq);
   5310 	}
   5311 	ieee80211_watchdog(ic);
   5312 }
   5313 
   5314 /*
   5315  * Diagnostic interface to the HAL.  This is used by various
   5316  * tools to do things like retrieve register contents for
   5317  * debugging.  The mechanism is intentionally opaque so that
   5318  * it can change frequently w/o concern for compatiblity.
   5319  */
   5320 static int
   5321 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
   5322 {
   5323 	struct ath_hal *ah = sc->sc_ah;
   5324 	u_int id = ad->ad_id & ATH_DIAG_ID;
   5325 	void *indata = NULL;
   5326 	void *outdata = NULL;
   5327 	u_int32_t insize = ad->ad_in_size;
   5328 	u_int32_t outsize = ad->ad_out_size;
   5329 	int error = 0;
   5330 
   5331 	if (ad->ad_id & ATH_DIAG_IN) {
   5332 		/*
   5333 		 * Copy in data.
   5334 		 */
   5335 		indata = malloc(insize, M_TEMP, M_NOWAIT);
   5336 		if (indata == NULL) {
   5337 			error = ENOMEM;
   5338 			goto bad;
   5339 		}
   5340 		error = copyin(ad->ad_in_data, indata, insize);
   5341 		if (error)
   5342 			goto bad;
   5343 	}
   5344 	if (ad->ad_id & ATH_DIAG_DYN) {
   5345 		/*
   5346 		 * Allocate a buffer for the results (otherwise the HAL
   5347 		 * returns a pointer to a buffer where we can read the
   5348 		 * results).  Note that we depend on the HAL leaving this
   5349 		 * pointer for us to use below in reclaiming the buffer;
   5350 		 * may want to be more defensive.
   5351 		 */
   5352 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
   5353 		if (outdata == NULL) {
   5354 			error = ENOMEM;
   5355 			goto bad;
   5356 		}
   5357 	}
   5358 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
   5359 		if (outsize < ad->ad_out_size)
   5360 			ad->ad_out_size = outsize;
   5361 		if (outdata != NULL)
   5362 			error = copyout(outdata, ad->ad_out_data,
   5363 					ad->ad_out_size);
   5364 	} else {
   5365 		error = EINVAL;
   5366 	}
   5367 bad:
   5368 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
   5369 		free(indata, M_TEMP);
   5370 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
   5371 		free(outdata, M_TEMP);
   5372 	return error;
   5373 }
   5374 
   5375 static int
   5376 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   5377 {
   5378 #define	IS_RUNNING(ifp) \
   5379 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   5380 	struct ath_softc *sc = ifp->if_softc;
   5381 	struct ieee80211com *ic = &sc->sc_ic;
   5382 	struct ifreq *ifr = (struct ifreq *)data;
   5383 	int error = 0, s;
   5384 
   5385 	s = splnet();
   5386 	switch (cmd) {
   5387 	case SIOCSIFFLAGS:
   5388 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   5389 			break;
   5390 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   5391 		case IFF_UP | IFF_RUNNING:
   5392 			/*
   5393 			 * To avoid rescanning another access point,
   5394 			 * do not call ath_init() here.  Instead,
   5395 			 * only reflect promisc mode settings.
   5396 			 */
   5397 			ath_mode_init(sc);
   5398 			break;
   5399 		case IFF_UP:
   5400 			/*
   5401 			 * Beware of being called during attach/detach
   5402 			 * to reset promiscuous mode.  In that case we
   5403 			 * will still be marked UP but not RUNNING.
   5404 			 * However trying to re-init the interface
   5405 			 * is the wrong thing to do as we've already
   5406 			 * torn down much of our state.  There's
   5407 			 * probably a better way to deal with this.
   5408 			 */
   5409 			error = ath_init(sc);
   5410 			break;
   5411 		case IFF_RUNNING:
   5412 			ath_stop_locked(ifp, 1);
   5413 			break;
   5414 		case 0:
   5415 			break;
   5416 		}
   5417 		break;
   5418 	case SIOCADDMULTI:
   5419 	case SIOCDELMULTI:
   5420 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   5421 			if (ifp->if_flags & IFF_RUNNING)
   5422 				ath_mode_init(sc);
   5423 			error = 0;
   5424 		}
   5425 		break;
   5426 	case SIOCGATHSTATS:
   5427 		/* NB: embed these numbers to get a consistent view */
   5428 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
   5429 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
   5430 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
   5431 		splx(s);
   5432 		/*
   5433 		 * NB: Drop the softc lock in case of a page fault;
   5434 		 * we'll accept any potential inconsisentcy in the
   5435 		 * statistics.  The alternative is to copy the data
   5436 		 * to a local structure.
   5437 		 */
   5438 		return copyout(&sc->sc_stats,
   5439 				ifr->ifr_data, sizeof (sc->sc_stats));
   5440 	case SIOCGATHDIAG:
   5441 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
   5442 		break;
   5443 	default:
   5444 		error = ieee80211_ioctl(ic, cmd, data);
   5445 		if (error != ENETRESET)
   5446 			;
   5447 		else if (IS_RUNNING(ifp) &&
   5448 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   5449 			error = ath_init(sc);
   5450 		else
   5451 			error = 0;
   5452 		break;
   5453 	}
   5454 	splx(s);
   5455 	return error;
   5456 #undef IS_RUNNING
   5457 }
   5458 
   5459 static void
   5460 ath_bpfattach(struct ath_softc *sc)
   5461 {
   5462 	struct ifnet *ifp = &sc->sc_if;
   5463 
   5464 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
   5465 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
   5466 	    &sc->sc_drvbpf);
   5467 
   5468 	/*
   5469 	 * Initialize constant fields.
   5470 	 * XXX make header lengths a multiple of 32-bits so subsequent
   5471 	 *     headers are properly aligned; this is a kludge to keep
   5472 	 *     certain applications happy.
   5473 	 *
   5474 	 * NB: the channel is setup each time we transition to the
   5475 	 *     RUN state to avoid filling it in for each frame.
   5476 	 */
   5477 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
   5478 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
   5479 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
   5480 
   5481 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
   5482 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
   5483 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
   5484 }
   5485 
   5486 /*
   5487  * Announce various information on device/driver attach.
   5488  */
   5489 static void
   5490 ath_announce(struct ath_softc *sc)
   5491 {
   5492 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
   5493 	struct ifnet *ifp = &sc->sc_if;
   5494 	struct ath_hal *ah = sc->sc_ah;
   5495 	u_int modes, cc;
   5496 
   5497 	if_printf(ifp, "mac %d.%d phy %d.%d",
   5498 		ah->ah_macVersion, ah->ah_macRev,
   5499 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
   5500 	/*
   5501 	 * Print radio revision(s).  We check the wireless modes
   5502 	 * to avoid falsely printing revs for inoperable parts.
   5503 	 * Dual-band radio revs are returned in the 5 GHz rev number.
   5504 	 */
   5505 	ath_hal_getcountrycode(ah, &cc);
   5506 	modes = ath_hal_getwirelessmodes(ah, cc);
   5507 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
   5508 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
   5509 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
   5510 				ah->ah_analog5GhzRev >> 4,
   5511 				ah->ah_analog5GhzRev & 0xf,
   5512 				ah->ah_analog2GhzRev >> 4,
   5513 				ah->ah_analog2GhzRev & 0xf);
   5514 		else
   5515 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5516 				ah->ah_analog5GhzRev & 0xf);
   5517 	} else
   5518 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
   5519 			ah->ah_analog5GhzRev & 0xf);
   5520 	printf("\n");
   5521 	if (bootverbose) {
   5522 		int i;
   5523 		for (i = 0; i <= WME_AC_VO; i++) {
   5524 			struct ath_txq *txq = sc->sc_ac2q[i];
   5525 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
   5526 				txq->axq_qnum, ieee80211_wme_acnames[i]);
   5527 		}
   5528 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
   5529 			sc->sc_cabq->axq_qnum);
   5530 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
   5531 	}
   5532 	if (ath_rxbuf != ATH_RXBUF)
   5533 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
   5534 	if (ath_txbuf != ATH_TXBUF)
   5535 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
   5536 #undef HAL_MODE_DUALBAND
   5537 }
   5538