ath.c revision 1.126 1 /* $NetBSD: ath.c,v 1.126 2019/05/23 13:10:51 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.126 2019/05/23 13:10:51 msaitoh Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #ifdef _KERNEL_OPT
55 #include "opt_inet.h"
56 #endif
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/errno.h>
69 #include <sys/callout.h>
70 #include <sys/bus.h>
71 #include <sys/endian.h>
72
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_types.h>
77 #include <net/if_arp.h>
78 #include <net/if_ether.h>
79 #include <net/if_llc.h>
80
81 #include <net80211/ieee80211_netbsd.h>
82 #include <net80211/ieee80211_var.h>
83
84 #include <net/bpf.h>
85
86 #ifdef INET
87 #include <netinet/in.h>
88 #endif
89
90 #include <sys/device.h>
91 #include <dev/ic/ath_netbsd.h>
92
93 #define AR_DEBUG
94 #include <dev/ic/athvar.h>
95 #include "ah_desc.h"
96 #include "ah_devid.h" /* XXX for softled */
97 #include "opt_ah.h"
98
99 #ifdef ATH_TX99_DIAG
100 #include <dev/ath/ath_tx99/ath_tx99.h>
101 #endif
102
103 /* unaligned little endian access */
104 #define LE_READ_2(p) \
105 ((u_int16_t) \
106 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
107 #define LE_READ_4(p) \
108 ((u_int32_t) \
109 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
110 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
111
112 enum {
113 ATH_LED_TX,
114 ATH_LED_RX,
115 ATH_LED_POLL,
116 };
117
118 #ifdef AH_NEED_DESC_SWAP
119 #define HTOAH32(x) htole32(x)
120 #else
121 #define HTOAH32(x) (x)
122 #endif
123
124 static int ath_ifinit(struct ifnet *);
125 static int ath_init(struct ath_softc *);
126 static void ath_stop_locked(struct ifnet *, int);
127 static void ath_stop(struct ifnet *, int);
128 static void ath_start(struct ifnet *);
129 static int ath_media_change(struct ifnet *);
130 static void ath_watchdog(struct ifnet *);
131 static int ath_ioctl(struct ifnet *, u_long, void *);
132 static void ath_fatal_proc(void *, int);
133 static void ath_rxorn_proc(void *, int);
134 static void ath_bmiss_proc(void *, int);
135 static void ath_radar_proc(void *, int);
136 static int ath_key_alloc(struct ieee80211com *,
137 const struct ieee80211_key *,
138 ieee80211_keyix *, ieee80211_keyix *);
139 static int ath_key_delete(struct ieee80211com *,
140 const struct ieee80211_key *);
141 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
142 const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void ath_key_update_begin(struct ieee80211com *);
144 static void ath_key_update_end(struct ieee80211com *);
145 static void ath_mode_init(struct ath_softc *);
146 static void ath_setslottime(struct ath_softc *);
147 static void ath_updateslot(struct ifnet *);
148 static int ath_beaconq_setup(struct ath_hal *);
149 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
150 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
151 static void ath_beacon_proc(void *, int);
152 static void ath_bstuck_proc(void *, int);
153 static void ath_beacon_free(struct ath_softc *);
154 static void ath_beacon_config(struct ath_softc *);
155 static void ath_descdma_cleanup(struct ath_softc *sc,
156 struct ath_descdma *, ath_bufhead *);
157 static int ath_desc_alloc(struct ath_softc *);
158 static void ath_desc_free(struct ath_softc *);
159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
160 static void ath_node_free(struct ieee80211_node *);
161 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
162 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
163 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
164 struct ieee80211_node *ni,
165 int subtype, int rssi, u_int32_t rstamp);
166 static void ath_setdefantenna(struct ath_softc *, u_int);
167 static void ath_rx_proc(void *, int);
168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
169 static int ath_tx_setup(struct ath_softc *, int, int);
170 static int ath_wme_update(struct ieee80211com *);
171 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
172 static void ath_tx_cleanup(struct ath_softc *);
173 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
174 struct ath_buf *, struct mbuf *);
175 static void ath_tx_proc_q0(void *, int);
176 static void ath_tx_proc_q0123(void *, int);
177 static void ath_tx_proc(void *, int);
178 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179 static void ath_draintxq(struct ath_softc *);
180 static void ath_stoprecv(struct ath_softc *);
181 static int ath_startrecv(struct ath_softc *);
182 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
183 static void ath_next_scan(void *);
184 static void ath_calibrate(void *);
185 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
186 static void ath_setup_stationkey(struct ieee80211_node *);
187 static void ath_newassoc(struct ieee80211_node *, int);
188 static int ath_getchannels(struct ath_softc *, u_int cc,
189 HAL_BOOL outdoor, HAL_BOOL xchanmode);
190 static void ath_led_event(struct ath_softc *, int);
191 static void ath_update_txpow(struct ath_softc *);
192 static void ath_freetx(struct mbuf *);
193 static void ath_restore_diversity(struct ath_softc *);
194
195 static int ath_rate_setup(struct ath_softc *, u_int mode);
196 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
197
198 static void ath_bpfattach(struct ath_softc *);
199 static void ath_announce(struct ath_softc *);
200
201 #ifdef __NetBSD__
202 #define ATH_TASK_FUNC(__func) \
203 static void __CONCAT(__func, _si)(void *arg) \
204 { \
205 __func(arg, 1); \
206 }
207 ATH_TASK_FUNC(ath_rx_proc);
208 ATH_TASK_FUNC(ath_rxorn_proc);
209 ATH_TASK_FUNC(ath_fatal_proc);
210 ATH_TASK_FUNC(ath_bmiss_proc);
211 ATH_TASK_FUNC(ath_bstuck_proc);
212 ATH_TASK_FUNC(ath_radar_proc);
213 ATH_TASK_FUNC(ath_tx_proc_q0);
214 ATH_TASK_FUNC(ath_tx_proc_q0123);
215 ATH_TASK_FUNC(ath_tx_proc);
216 #endif
217
218 int ath_dwelltime = 200; /* 5 channels/second */
219 int ath_calinterval = 30; /* calibrate every 30 secs */
220 int ath_outdoor = AH_TRUE; /* outdoor operation */
221 int ath_xchanmode = AH_TRUE; /* enable extended channels */
222 int ath_countrycode = CTRY_DEFAULT; /* country code */
223 int ath_regdomain = 0; /* regulatory domain */
224 int ath_debug = 0;
225 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
226 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
227
228 #ifdef AR_DEBUG
229 enum {
230 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
231 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
232 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
233 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
234 ATH_DEBUG_RATE = 0x00000010, /* rate control */
235 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
236 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
237 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
238 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
239 ATH_DEBUG_INTR = 0x00001000, /* ISR */
240 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
241 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
242 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
243 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
244 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
245 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
246 ATH_DEBUG_NODE = 0x00080000, /* node management */
247 ATH_DEBUG_LED = 0x00100000, /* led management */
248 ATH_DEBUG_FF = 0x00200000, /* fast frames */
249 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
250 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
251 ATH_DEBUG_ANY = 0xffffffff
252 };
253 #define IFF_DUMPPKTS(sc, m) \
254 ((sc->sc_debug & (m)) || \
255 (sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2)) \
256 == (IFF_DEBUG | IFF_LINK2))
257 #define DPRINTF(sc, m, fmt, ...) do { \
258 if (sc->sc_debug & (m)) \
259 printf(fmt, __VA_ARGS__); \
260 } while (0)
261 #define KEYPRINTF(sc, ix, hk, mac) do { \
262 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
263 ath_keyprint(__func__, ix, hk, mac); \
264 } while (0)
265 static void ath_printrxbuf(struct ath_buf *bf, int);
266 static void ath_printtxbuf(struct ath_buf *bf, int);
267 #else
268 #define IFF_DUMPPKTS(sc, m) \
269 ((sc->sc_if.if_flags & (IFF_DEBUG | IFF_LINK2)) \
270 == (IFF_DEBUG | IFF_LINK2))
271 #define DPRINTF(m, fmt, ...)
272 #define KEYPRINTF(sc, k, ix, mac)
273 #endif
274
275 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
276
277 int
278 ath_attach(u_int16_t devid, struct ath_softc *sc)
279 {
280 struct ifnet *ifp = &sc->sc_if;
281 struct ieee80211com *ic = &sc->sc_ic;
282 struct ath_hal *ah = NULL;
283 HAL_STATUS status;
284 int error = 0, i;
285
286 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
287
288 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
289
290 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
291
292 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
293 if (ah == NULL) {
294 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
295 status);
296 error = ENXIO;
297 goto bad;
298 }
299 if (ah->ah_abi != HAL_ABI_VERSION) {
300 if_printf(ifp, "HAL ABI mismatch detected "
301 "(HAL:0x%x != driver:0x%x)\n",
302 ah->ah_abi, HAL_ABI_VERSION);
303 error = ENXIO;
304 goto bad;
305 }
306 sc->sc_ah = ah;
307
308 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
309 "pmf-powerdown", false))
310 goto bad;
311
312 /*
313 * Check if the MAC has multi-rate retry support.
314 * We do this by trying to setup a fake extended
315 * descriptor. MAC's that don't have support will
316 * return false w/o doing anything. MAC's that do
317 * support it will return true w/o doing anything.
318 */
319 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
320
321 /*
322 * Check if the device has hardware counters for PHY
323 * errors. If so we need to enable the MIB interrupt
324 * so we can act on stat triggers.
325 */
326 if (ath_hal_hwphycounters(ah))
327 sc->sc_needmib = 1;
328
329 /*
330 * Get the hardware key cache size.
331 */
332 sc->sc_keymax = ath_hal_keycachesize(ah);
333 if (sc->sc_keymax > ATH_KEYMAX) {
334 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
335 ATH_KEYMAX, sc->sc_keymax);
336 sc->sc_keymax = ATH_KEYMAX;
337 }
338 /*
339 * Reset the key cache since some parts do not
340 * reset the contents on initial power up.
341 */
342 for (i = 0; i < sc->sc_keymax; i++)
343 ath_hal_keyreset(ah, i);
344 /*
345 * Mark key cache slots associated with global keys
346 * as in use. If we knew TKIP was not to be used we
347 * could leave the +32, +64, and +32+64 slots free.
348 * XXX only for splitmic.
349 */
350 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
351 setbit(sc->sc_keymap, i);
352 setbit(sc->sc_keymap, i+32);
353 setbit(sc->sc_keymap, i+64);
354 setbit(sc->sc_keymap, i+32+64);
355 }
356
357 /*
358 * Collect the channel list using the default country
359 * code and including outdoor channels. The 802.11 layer
360 * is resposible for filtering this list based on settings
361 * like the phy mode.
362 */
363 error = ath_getchannels(sc, ath_countrycode,
364 ath_outdoor, ath_xchanmode);
365 if (error != 0)
366 goto bad;
367
368 /*
369 * Setup rate tables for all potential media types.
370 */
371 ath_rate_setup(sc, IEEE80211_MODE_11A);
372 ath_rate_setup(sc, IEEE80211_MODE_11B);
373 ath_rate_setup(sc, IEEE80211_MODE_11G);
374 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
375 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
376 /* NB: setup here so ath_rate_update is happy */
377 ath_setcurmode(sc, IEEE80211_MODE_11A);
378
379 /*
380 * Allocate tx+rx descriptors and populate the lists.
381 */
382 error = ath_desc_alloc(sc);
383 if (error != 0) {
384 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
385 goto bad;
386 }
387 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
388 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
389 #if 0
390 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
391 #endif
392
393 ATH_TXBUF_LOCK_INIT(sc);
394
395 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
396 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
397 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
398 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
399 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
400 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
401
402 /*
403 * Allocate hardware transmit queues: one queue for
404 * beacon frames and one data queue for each QoS
405 * priority. Note that the hal handles reseting
406 * these queues at the needed time.
407 *
408 * XXX PS-Poll
409 */
410 sc->sc_bhalq = ath_beaconq_setup(ah);
411 if (sc->sc_bhalq == (u_int) -1) {
412 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
413 error = EIO;
414 goto bad2;
415 }
416 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
417 if (sc->sc_cabq == NULL) {
418 if_printf(ifp, "unable to setup CAB xmit queue!\n");
419 error = EIO;
420 goto bad2;
421 }
422 /* NB: insure BK queue is the lowest priority h/w queue */
423 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
424 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
425 ieee80211_wme_acnames[WME_AC_BK]);
426 error = EIO;
427 goto bad2;
428 }
429 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
430 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
431 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
432 /*
433 * Not enough hardware tx queues to properly do WME;
434 * just punt and assign them all to the same h/w queue.
435 * We could do a better job of this if, for example,
436 * we allocate queues when we switch from station to
437 * AP mode.
438 */
439 if (sc->sc_ac2q[WME_AC_VI] != NULL)
440 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
441 if (sc->sc_ac2q[WME_AC_BE] != NULL)
442 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
443 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
444 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
445 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
446 }
447
448 /*
449 * Special case certain configurations. Note the
450 * CAB queue is handled by these specially so don't
451 * include them when checking the txq setup mask.
452 */
453 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
454 case 0x01:
455 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
456 break;
457 case 0x0f:
458 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
459 break;
460 default:
461 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
462 break;
463 }
464
465 /*
466 * Setup rate control. Some rate control modules
467 * call back to change the anntena state so expose
468 * the necessary entry points.
469 * XXX maybe belongs in struct ath_ratectrl?
470 */
471 sc->sc_setdefantenna = ath_setdefantenna;
472 sc->sc_rc = ath_rate_attach(sc);
473 if (sc->sc_rc == NULL) {
474 error = EIO;
475 goto bad2;
476 }
477
478 sc->sc_blinking = 0;
479 sc->sc_ledstate = 1;
480 sc->sc_ledon = 0; /* low true */
481 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
482 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
483 /*
484 * Auto-enable soft led processing for IBM cards and for
485 * 5211 minipci cards. Users can also manually enable/disable
486 * support with a sysctl.
487 */
488 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
489 if (sc->sc_softled) {
490 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
491 HAL_GPIO_MUX_MAC_NETWORK_LED);
492 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
493 }
494
495 ifp->if_softc = sc;
496 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
497 ifp->if_start = ath_start;
498 ifp->if_stop = ath_stop;
499 ifp->if_watchdog = ath_watchdog;
500 ifp->if_ioctl = ath_ioctl;
501 ifp->if_init = ath_ifinit;
502 IFQ_SET_READY(&ifp->if_snd);
503
504 ic->ic_ifp = ifp;
505 ic->ic_reset = ath_reset;
506 ic->ic_newassoc = ath_newassoc;
507 ic->ic_updateslot = ath_updateslot;
508 ic->ic_wme.wme_update = ath_wme_update;
509 /* XXX not right but it's not used anywhere important */
510 ic->ic_phytype = IEEE80211_T_OFDM;
511 ic->ic_opmode = IEEE80211_M_STA;
512 ic->ic_caps =
513 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
514 | IEEE80211_C_HOSTAP /* hostap mode */
515 | IEEE80211_C_MONITOR /* monitor mode */
516 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
517 | IEEE80211_C_SHSLOT /* short slot time supported */
518 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
519 | IEEE80211_C_TXFRAG /* handle tx frags */
520 ;
521 /*
522 * Query the hal to figure out h/w crypto support.
523 */
524 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
525 ic->ic_caps |= IEEE80211_C_WEP;
526 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
527 ic->ic_caps |= IEEE80211_C_AES;
528 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
529 ic->ic_caps |= IEEE80211_C_AES_CCM;
530 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
531 ic->ic_caps |= IEEE80211_C_CKIP;
532 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
533 ic->ic_caps |= IEEE80211_C_TKIP;
534 /*
535 * Check if h/w does the MIC and/or whether the
536 * separate key cache entries are required to
537 * handle both tx+rx MIC keys.
538 */
539 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
540 ic->ic_caps |= IEEE80211_C_TKIPMIC;
541
542 /*
543 * If the h/w supports storing tx+rx MIC keys
544 * in one cache slot automatically enable use.
545 */
546 if (ath_hal_hastkipsplit(ah) ||
547 !ath_hal_settkipsplit(ah, AH_FALSE))
548 sc->sc_splitmic = 1;
549
550 /*
551 * If the h/w can do TKIP MIC together with WME then
552 * we use it; otherwise we force the MIC to be done
553 * in software by the net80211 layer.
554 */
555 if (ath_hal_haswmetkipmic(ah))
556 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
557 }
558 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
559 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
560 /*
561 * Mark key cache slots associated with global keys
562 * as in use. If we knew TKIP was not to be used we
563 * could leave the +32, +64, and +32+64 slots free.
564 */
565 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
566 setbit(sc->sc_keymap, i);
567 setbit(sc->sc_keymap, i+64);
568 if (sc->sc_splitmic) {
569 setbit(sc->sc_keymap, i+32);
570 setbit(sc->sc_keymap, i+32+64);
571 }
572 }
573 /*
574 * TPC support can be done either with a global cap or
575 * per-packet support. The latter is not available on
576 * all parts. We're a bit pedantic here as all parts
577 * support a global cap.
578 */
579 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
580 ic->ic_caps |= IEEE80211_C_TXPMGT;
581
582 /*
583 * Mark WME capability only if we have sufficient
584 * hardware queues to do proper priority scheduling.
585 */
586 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
587 ic->ic_caps |= IEEE80211_C_WME;
588 /*
589 * Check for misc other capabilities.
590 */
591 if (ath_hal_hasbursting(ah))
592 ic->ic_caps |= IEEE80211_C_BURST;
593
594 /*
595 * Indicate we need the 802.11 header padded to a
596 * 32-bit boundary for 4-address and QoS frames.
597 */
598 ic->ic_flags |= IEEE80211_F_DATAPAD;
599
600 /*
601 * Query the hal about antenna support.
602 */
603 sc->sc_defant = ath_hal_getdefantenna(ah);
604
605 /*
606 * Not all chips have the VEOL support we want to
607 * use with IBSS beacons; check here for it.
608 */
609 sc->sc_hasveol = ath_hal_hasveol(ah);
610
611 /* get mac address from hardware */
612 ath_hal_getmac(ah, ic->ic_myaddr);
613
614 if_attach(ifp);
615 /* call MI attach routine. */
616 ieee80211_ifattach(ic);
617 /* override default methods */
618 ic->ic_node_alloc = ath_node_alloc;
619 sc->sc_node_free = ic->ic_node_free;
620 ic->ic_node_free = ath_node_free;
621 ic->ic_node_getrssi = ath_node_getrssi;
622 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
623 ic->ic_recv_mgmt = ath_recv_mgmt;
624 sc->sc_newstate = ic->ic_newstate;
625 ic->ic_newstate = ath_newstate;
626 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
627 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
628 ic->ic_crypto.cs_key_delete = ath_key_delete;
629 ic->ic_crypto.cs_key_set = ath_key_set;
630 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
631 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
632 /* complete initialization */
633 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
634
635 ath_bpfattach(sc);
636
637 sc->sc_flags |= ATH_ATTACHED;
638
639 /*
640 * Setup dynamic sysctl's now that country code and
641 * regdomain are available from the hal.
642 */
643 ath_sysctlattach(sc);
644
645 ieee80211_announce(ic);
646 ath_announce(sc);
647 return 0;
648 bad2:
649 ath_tx_cleanup(sc);
650 ath_desc_free(sc);
651 bad:
652 if (ah)
653 ath_hal_detach(ah);
654 /* XXX don't get under the abstraction like this */
655 sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
656 return error;
657 }
658
659 int
660 ath_detach(struct ath_softc *sc)
661 {
662 struct ifnet *ifp = &sc->sc_if;
663 int s;
664
665 if ((sc->sc_flags & ATH_ATTACHED) == 0)
666 return (0);
667
668 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
669 __func__, ifp->if_flags);
670
671 s = splnet();
672 ath_stop(ifp, 1);
673 bpf_detach(ifp);
674 /*
675 * NB: the order of these is important:
676 * o call the 802.11 layer before detaching the hal to
677 * insure callbacks into the driver to delete global
678 * key cache entries can be handled
679 * o reclaim the tx queue data structures after calling
680 * the 802.11 layer as we'll get called back to reclaim
681 * node state and potentially want to use them
682 * o to cleanup the tx queues the hal is called, so detach
683 * it last
684 * Other than that, it's straightforward...
685 */
686 ieee80211_ifdetach(&sc->sc_ic);
687 #ifdef ATH_TX99_DIAG
688 if (sc->sc_tx99 != NULL)
689 sc->sc_tx99->detach(sc->sc_tx99);
690 #endif
691 ath_rate_detach(sc->sc_rc);
692 ath_desc_free(sc);
693 ath_tx_cleanup(sc);
694 sysctl_teardown(&sc->sc_sysctllog);
695 ath_hal_detach(sc->sc_ah);
696 if_detach(ifp);
697 splx(s);
698
699 return 0;
700 }
701
702 void
703 ath_suspend(struct ath_softc *sc)
704 {
705 #if notyet
706 /*
707 * Set the chip in full sleep mode. Note that we are
708 * careful to do this only when bringing the interface
709 * completely to a stop. When the chip is in this state
710 * it must be carefully woken up or references to
711 * registers in the PCI clock domain may freeze the bus
712 * (and system). This varies by chip and is mostly an
713 * issue with newer parts that go to sleep more quickly.
714 */
715 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
716 #endif
717 }
718
719 bool
720 ath_resume(struct ath_softc *sc)
721 {
722 struct ath_hal *ah = sc->sc_ah;
723 struct ieee80211com *ic = &sc->sc_ic;
724 HAL_STATUS status;
725 int i;
726
727 #if notyet
728 ath_hal_setpower(ah, HAL_PM_AWAKE);
729 #else
730 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
731 #endif
732
733 /*
734 * Reset the key cache since some parts do not
735 * reset the contents on initial power up.
736 */
737 for (i = 0; i < sc->sc_keymax; i++)
738 ath_hal_keyreset(ah, i);
739
740 ath_hal_resettxqueue(ah, sc->sc_bhalq);
741 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
742 if (ATH_TXQ_SETUP(sc, i))
743 ath_hal_resettxqueue(ah, i);
744
745 if (sc->sc_softled) {
746 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
747 HAL_GPIO_MUX_MAC_NETWORK_LED);
748 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
749 }
750 return true;
751 }
752
753 /*
754 * Interrupt handler. Most of the actual processing is deferred.
755 */
756 int
757 ath_intr(void *arg)
758 {
759 struct ath_softc *sc = arg;
760 struct ifnet *ifp = &sc->sc_if;
761 struct ath_hal *ah = sc->sc_ah;
762 HAL_INT status = 0;
763
764 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
765 /*
766 * The hardware is not ready/present, don't touch anything.
767 * Note this can happen early on if the IRQ is shared.
768 */
769 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
770 return 0;
771 }
772
773 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
774 return 0;
775
776 if ((ifp->if_flags & (IFF_RUNNING |IFF_UP)) != (IFF_RUNNING |IFF_UP)) {
777 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
778 __func__, ifp->if_flags);
779 ath_hal_getisr(ah, &status); /* clear ISR */
780 ath_hal_intrset(ah, 0); /* disable further intr's */
781 return 1; /* XXX */
782 }
783 /*
784 * Figure out the reason(s) for the interrupt. Note
785 * that the hal returns a pseudo-ISR that may include
786 * bits we haven't explicitly enabled so we mask the
787 * value to insure we only process bits we requested.
788 */
789 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
790 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
791 status &= sc->sc_imask; /* discard unasked for bits */
792 if (status & HAL_INT_FATAL) {
793 /*
794 * Fatal errors are unrecoverable. Typically
795 * these are caused by DMA errors. Unfortunately
796 * the exact reason is not (presently) returned
797 * by the hal.
798 */
799 sc->sc_stats.ast_hardware++;
800 ath_hal_intrset(ah, 0); /* disable intr's until reset */
801 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
802 } else if (status & HAL_INT_RXORN) {
803 sc->sc_stats.ast_rxorn++;
804 ath_hal_intrset(ah, 0); /* disable intr's until reset */
805 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
806 } else {
807 if (status & HAL_INT_SWBA) {
808 /*
809 * Software beacon alert--time to send a beacon.
810 * Handle beacon transmission directly; deferring
811 * this is too slow to meet timing constraints
812 * under load.
813 */
814 ath_beacon_proc(sc, 0);
815 }
816 if (status & HAL_INT_RXEOL) {
817 /*
818 * NB: the hardware should re-read the link when
819 * RXE bit is written, but it doesn't work at
820 * least on older hardware revs.
821 */
822 sc->sc_stats.ast_rxeol++;
823 sc->sc_rxlink = NULL;
824 }
825 if (status & HAL_INT_TXURN) {
826 sc->sc_stats.ast_txurn++;
827 /* bump tx trigger level */
828 ath_hal_updatetxtriglevel(ah, AH_TRUE);
829 }
830 if (status & HAL_INT_RX)
831 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
832 if (status & HAL_INT_TX)
833 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
834 if (status & HAL_INT_BMISS) {
835 sc->sc_stats.ast_bmiss++;
836 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
837 }
838 if (status & HAL_INT_MIB) {
839 sc->sc_stats.ast_mib++;
840 /*
841 * Disable interrupts until we service the MIB
842 * interrupt; otherwise it will continue to fire.
843 */
844 ath_hal_intrset(ah, 0);
845 /*
846 * Let the hal handle the event. We assume it will
847 * clear whatever condition caused the interrupt.
848 */
849 ath_hal_mibevent(ah, &sc->sc_halstats);
850 ath_hal_intrset(ah, sc->sc_imask);
851 }
852 }
853 return 1;
854 }
855
856 /* Swap transmit descriptor.
857 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
858 * function.
859 */
860 static inline void
861 ath_desc_swap(struct ath_desc *ds)
862 {
863 #ifdef AH_NEED_DESC_SWAP
864 ds->ds_link = htole32(ds->ds_link);
865 ds->ds_data = htole32(ds->ds_data);
866 ds->ds_ctl0 = htole32(ds->ds_ctl0);
867 ds->ds_ctl1 = htole32(ds->ds_ctl1);
868 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
869 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
870 #endif
871 }
872
873 static void
874 ath_fatal_proc(void *arg, int pending)
875 {
876 struct ath_softc *sc = arg;
877 struct ifnet *ifp = &sc->sc_if;
878 #ifdef __NetBSD__
879 int s;
880 #endif
881
882 if_printf(ifp, "hardware error; resetting\n");
883 #ifdef __NetBSD__
884 s = splnet();
885 #endif
886 ath_reset(ifp);
887 #ifdef __NetBSD__
888 splx(s);
889 #endif
890 }
891
892 static void
893 ath_rxorn_proc(void *arg, int pending)
894 {
895 struct ath_softc *sc = arg;
896 struct ifnet *ifp = &sc->sc_if;
897 #ifdef __NetBSD__
898 int s;
899 #endif
900
901 if_printf(ifp, "rx FIFO overrun; resetting\n");
902 #ifdef __NetBSD__
903 s = splnet();
904 #endif
905 ath_reset(ifp);
906 #ifdef __NetBSD__
907 splx(s);
908 #endif
909 }
910
911 static void
912 ath_bmiss_proc(void *arg, int pending)
913 {
914 struct ath_softc *sc = arg;
915 struct ieee80211com *ic = &sc->sc_ic;
916 NET_LOCK_GIANT_FUNC_INIT();
917
918 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
919 KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
920 "unexpect operating mode %u", ic->ic_opmode);
921 if (ic->ic_state == IEEE80211_S_RUN) {
922 u_int64_t lastrx = sc->sc_lastrx;
923 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
924
925 DPRINTF(sc, ATH_DEBUG_BEACON,
926 "%s: tsf %" PRIu64 " lastrx %" PRId64
927 " (%" PRIu64 ") bmiss %u\n",
928 __func__, tsf, tsf - lastrx, lastrx,
929 ic->ic_bmisstimeout*1024);
930 /*
931 * Workaround phantom bmiss interrupts by sanity-checking
932 * the time of our last rx'd frame. If it is within the
933 * beacon miss interval then ignore the interrupt. If it's
934 * truly a bmiss we'll get another interrupt soon and that'll
935 * be dispatched up for processing.
936 */
937 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
938 NET_LOCK_GIANT();
939 ieee80211_beacon_miss(ic);
940 NET_UNLOCK_GIANT();
941 } else
942 sc->sc_stats.ast_bmiss_phantom++;
943 }
944 }
945
946 static void
947 ath_radar_proc(void *arg, int pending)
948 {
949 #if 0
950 struct ath_softc *sc = arg;
951 struct ifnet *ifp = &sc->sc_if;
952 struct ath_hal *ah = sc->sc_ah;
953 HAL_CHANNEL hchan;
954
955 if (ath_hal_procdfs(ah, &hchan)) {
956 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
957 hchan.channel, hchan.channelFlags, hchan.privFlags);
958 /*
959 * Initiate channel change.
960 */
961 /* XXX not yet */
962 }
963 #endif
964 }
965
966 static u_int
967 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
968 {
969 #define N(a) (sizeof(a) / sizeof(a[0]))
970 static const u_int modeflags[] = {
971 0, /* IEEE80211_MODE_AUTO */
972 CHANNEL_A, /* IEEE80211_MODE_11A */
973 CHANNEL_B, /* IEEE80211_MODE_11B */
974 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
975 0, /* IEEE80211_MODE_FH */
976 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
977 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
978 };
979 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
980
981 KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
982 KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
983 return modeflags[mode];
984 #undef N
985 }
986
987 static int
988 ath_ifinit(struct ifnet *ifp)
989 {
990 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
991
992 return ath_init(sc);
993 }
994
995 static void
996 ath_settkipmic(struct ath_softc *sc)
997 {
998 struct ieee80211com *ic = &sc->sc_ic;
999 struct ath_hal *ah = sc->sc_ah;
1000
1001 if ((ic->ic_caps & IEEE80211_C_TKIP) &&
1002 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
1003 if (ic->ic_flags & IEEE80211_F_WME) {
1004 (void)ath_hal_settkipmic(ah, AH_FALSE);
1005 ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
1006 } else {
1007 (void)ath_hal_settkipmic(ah, AH_TRUE);
1008 ic->ic_caps |= IEEE80211_C_TKIPMIC;
1009 }
1010 }
1011 }
1012
1013 static int
1014 ath_init(struct ath_softc *sc)
1015 {
1016 struct ifnet *ifp = &sc->sc_if;
1017 struct ieee80211com *ic = &sc->sc_ic;
1018 struct ath_hal *ah = sc->sc_ah;
1019 HAL_STATUS status;
1020 int error = 0, s;
1021
1022 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1023 __func__, ifp->if_flags);
1024
1025 if (device_is_active(sc->sc_dev)) {
1026 s = splnet();
1027 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1028 !device_is_active(sc->sc_dev))
1029 return 0;
1030 else
1031 s = splnet();
1032
1033 /*
1034 * Stop anything previously setup. This is safe
1035 * whether this is the first time through or not.
1036 */
1037 ath_stop_locked(ifp, 0);
1038
1039 /*
1040 * The basic interface to setting the hardware in a good
1041 * state is ``reset''. On return the hardware is known to
1042 * be powered up and with interrupts disabled. This must
1043 * be followed by initialization of the appropriate bits
1044 * and then setup of the interrupt mask.
1045 */
1046 ath_settkipmic(sc);
1047 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1048 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1049 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1050 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1051 status);
1052 error = EIO;
1053 goto done;
1054 }
1055
1056 /*
1057 * This is needed only to setup initial state
1058 * but it's best done after a reset.
1059 */
1060 ath_update_txpow(sc);
1061 /*
1062 * Likewise this is set during reset so update
1063 * state cached in the driver.
1064 */
1065 ath_restore_diversity(sc);
1066 sc->sc_calinterval = 1;
1067 sc->sc_caltries = 0;
1068
1069 /*
1070 * Setup the hardware after reset: the key cache
1071 * is filled as needed and the receive engine is
1072 * set going. Frame transmit is handled entirely
1073 * in the frame output path; there's nothing to do
1074 * here except setup the interrupt mask.
1075 */
1076 if ((error = ath_startrecv(sc)) != 0) {
1077 if_printf(ifp, "unable to start recv logic\n");
1078 goto done;
1079 }
1080
1081 /*
1082 * Enable interrupts.
1083 */
1084 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1085 | HAL_INT_RXEOL | HAL_INT_RXORN
1086 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1087 /*
1088 * Enable MIB interrupts when there are hardware phy counters.
1089 * Note we only do this (at the moment) for station mode.
1090 */
1091 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1092 sc->sc_imask |= HAL_INT_MIB;
1093 ath_hal_intrset(ah, sc->sc_imask);
1094
1095 ifp->if_flags |= IFF_RUNNING;
1096 ic->ic_state = IEEE80211_S_INIT;
1097
1098 /*
1099 * The hardware should be ready to go now so it's safe
1100 * to kick the 802.11 state machine as it's likely to
1101 * immediately call back to us to send mgmt frames.
1102 */
1103 ath_chan_change(sc, ic->ic_curchan);
1104 #ifdef ATH_TX99_DIAG
1105 if (sc->sc_tx99 != NULL)
1106 sc->sc_tx99->start(sc->sc_tx99);
1107 else
1108 #endif
1109 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1110 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1111 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1112 } else
1113 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1114 done:
1115 splx(s);
1116 return error;
1117 }
1118
1119 static void
1120 ath_stop_locked(struct ifnet *ifp, int disable)
1121 {
1122 struct ath_softc *sc = ifp->if_softc;
1123 struct ieee80211com *ic = &sc->sc_ic;
1124 struct ath_hal *ah = sc->sc_ah;
1125
1126 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1127 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1128
1129 /* KASSERT() IPL_NET */
1130 if (ifp->if_flags & IFF_RUNNING) {
1131 /*
1132 * Shutdown the hardware and driver:
1133 * reset 802.11 state machine
1134 * turn off timers
1135 * disable interrupts
1136 * turn off the radio
1137 * clear transmit machinery
1138 * clear receive machinery
1139 * drain and release tx queues
1140 * reclaim beacon resources
1141 * power down hardware
1142 *
1143 * Note that some of this work is not possible if the
1144 * hardware is gone (invalid).
1145 */
1146 #ifdef ATH_TX99_DIAG
1147 if (sc->sc_tx99 != NULL)
1148 sc->sc_tx99->stop(sc->sc_tx99);
1149 #endif
1150 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1151 ifp->if_flags &= ~IFF_RUNNING;
1152 ifp->if_timer = 0;
1153 if (device_is_enabled(sc->sc_dev)) {
1154 if (sc->sc_softled) {
1155 callout_stop(&sc->sc_ledtimer);
1156 ath_hal_gpioset(ah, sc->sc_ledpin,
1157 !sc->sc_ledon);
1158 sc->sc_blinking = 0;
1159 }
1160 ath_hal_intrset(ah, 0);
1161 }
1162 ath_draintxq(sc);
1163 if (device_is_enabled(sc->sc_dev)) {
1164 ath_stoprecv(sc);
1165 ath_hal_phydisable(ah);
1166 } else
1167 sc->sc_rxlink = NULL;
1168 IF_PURGE(&ifp->if_snd);
1169 ath_beacon_free(sc);
1170 }
1171 if (disable)
1172 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1173 }
1174
1175 static void
1176 ath_stop(struct ifnet *ifp, int disable)
1177 {
1178 int s;
1179
1180 s = splnet();
1181 ath_stop_locked(ifp, disable);
1182 splx(s);
1183 }
1184
1185 static void
1186 ath_restore_diversity(struct ath_softc *sc)
1187 {
1188 struct ifnet *ifp = &sc->sc_if;
1189 struct ath_hal *ah = sc->sc_ah;
1190
1191 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1192 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1193 if_printf(ifp, "could not restore diversity setting %d\n",
1194 sc->sc_diversity);
1195 sc->sc_diversity = ath_hal_getdiversity(ah);
1196 }
1197 }
1198
1199 /*
1200 * Reset the hardware w/o losing operational state. This is
1201 * basically a more efficient way of doing ath_stop, ath_init,
1202 * followed by state transitions to the current 802.11
1203 * operational state. Used to recover from various errors and
1204 * to reset or reload hardware state.
1205 */
1206 int
1207 ath_reset(struct ifnet *ifp)
1208 {
1209 struct ath_softc *sc = ifp->if_softc;
1210 struct ieee80211com *ic = &sc->sc_ic;
1211 struct ath_hal *ah = sc->sc_ah;
1212 struct ieee80211_channel *c;
1213 HAL_STATUS status;
1214
1215 /*
1216 * Convert to a HAL channel description with the flags
1217 * constrained to reflect the current operating mode.
1218 */
1219 c = ic->ic_curchan;
1220 sc->sc_curchan.channel = c->ic_freq;
1221 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1222
1223 ath_hal_intrset(ah, 0); /* disable interrupts */
1224 ath_draintxq(sc); /* stop xmit side */
1225 ath_stoprecv(sc); /* stop recv side */
1226 ath_settkipmic(sc); /* configure TKIP MIC handling */
1227 /* NB: indicate channel change so we do a full reset */
1228 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1229 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1230 __func__, status);
1231 ath_update_txpow(sc); /* update tx power state */
1232 ath_restore_diversity(sc);
1233 sc->sc_calinterval = 1;
1234 sc->sc_caltries = 0;
1235 if (ath_startrecv(sc) != 0) /* restart recv */
1236 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1237 /*
1238 * We may be doing a reset in response to an ioctl
1239 * that changes the channel so update any state that
1240 * might change as a result.
1241 */
1242 ath_chan_change(sc, c);
1243 if (ic->ic_state == IEEE80211_S_RUN)
1244 ath_beacon_config(sc); /* restart beacons */
1245 ath_hal_intrset(ah, sc->sc_imask);
1246
1247 ath_start(ifp); /* restart xmit */
1248 return 0;
1249 }
1250
1251 /*
1252 * Cleanup driver resources when we run out of buffers
1253 * while processing fragments; return the tx buffers
1254 * allocated and drop node references.
1255 */
1256 static void
1257 ath_txfrag_cleanup(struct ath_softc *sc,
1258 ath_bufhead *frags, struct ieee80211_node *ni)
1259 {
1260 struct ath_buf *bf;
1261
1262 ATH_TXBUF_LOCK_ASSERT(sc);
1263
1264 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1265 STAILQ_REMOVE_HEAD(frags, bf_list);
1266 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1267 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1268 ieee80211_node_decref(ni);
1269 }
1270 }
1271
1272 /*
1273 * Setup xmit of a fragmented frame. Allocate a buffer
1274 * for each frag and bump the node reference count to
1275 * reflect the held reference to be setup by ath_tx_start.
1276 */
1277 static int
1278 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1279 struct mbuf *m0, struct ieee80211_node *ni)
1280 {
1281 struct mbuf *m;
1282 struct ath_buf *bf;
1283
1284 ATH_TXBUF_LOCK(sc);
1285 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1286 bf = STAILQ_FIRST(&sc->sc_txbuf);
1287 if (bf == NULL) { /* out of buffers, cleanup */
1288 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1289 __func__);
1290 sc->sc_if.if_flags |= IFF_OACTIVE;
1291 ath_txfrag_cleanup(sc, frags, ni);
1292 break;
1293 }
1294 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1295 ieee80211_node_incref(ni);
1296 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1297 }
1298 ATH_TXBUF_UNLOCK(sc);
1299
1300 return !STAILQ_EMPTY(frags);
1301 }
1302
1303 static void
1304 ath_start(struct ifnet *ifp)
1305 {
1306 struct ath_softc *sc = ifp->if_softc;
1307 struct ath_hal *ah = sc->sc_ah;
1308 struct ieee80211com *ic = &sc->sc_ic;
1309 struct ieee80211_node *ni;
1310 struct ath_buf *bf;
1311 struct mbuf *m, *next;
1312 struct ieee80211_frame *wh;
1313 struct ether_header *eh;
1314 ath_bufhead frags;
1315
1316 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1317 !device_is_active(sc->sc_dev))
1318 return;
1319
1320 if (sc->sc_flags & ATH_KEY_UPDATING)
1321 return;
1322
1323 for (;;) {
1324 /*
1325 * Grab a TX buffer and associated resources.
1326 */
1327 ATH_TXBUF_LOCK(sc);
1328 bf = STAILQ_FIRST(&sc->sc_txbuf);
1329 if (bf != NULL)
1330 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1331 ATH_TXBUF_UNLOCK(sc);
1332 if (bf == NULL) {
1333 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1334 __func__);
1335 sc->sc_stats.ast_tx_qstop++;
1336 ifp->if_flags |= IFF_OACTIVE;
1337 break;
1338 }
1339 /*
1340 * Poll the management queue for frames; they
1341 * have priority over normal data frames.
1342 */
1343 IF_DEQUEUE(&ic->ic_mgtq, m);
1344 if (m == NULL) {
1345 /*
1346 * No data frames go out unless we're associated.
1347 */
1348 if (ic->ic_state != IEEE80211_S_RUN) {
1349 DPRINTF(sc, ATH_DEBUG_XMIT,
1350 "%s: discard data packet, state %s\n",
1351 __func__,
1352 ieee80211_state_name[ic->ic_state]);
1353 sc->sc_stats.ast_tx_discard++;
1354 ATH_TXBUF_LOCK(sc);
1355 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1356 ATH_TXBUF_UNLOCK(sc);
1357 break;
1358 }
1359 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1360 if (m == NULL) {
1361 ATH_TXBUF_LOCK(sc);
1362 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1363 ATH_TXBUF_UNLOCK(sc);
1364 break;
1365 }
1366 STAILQ_INIT(&frags);
1367 /*
1368 * Find the node for the destination so we can do
1369 * things like power save and fast frames aggregation.
1370 */
1371 if (m->m_len < sizeof(struct ether_header) &&
1372 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1373 ic->ic_stats.is_tx_nobuf++; /* XXX */
1374 ni = NULL;
1375 goto bad;
1376 }
1377 eh = mtod(m, struct ether_header *);
1378 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1379 if (ni == NULL) {
1380 /* NB: ieee80211_find_txnode does stat+msg */
1381 m_freem(m);
1382 goto bad;
1383 }
1384 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1385 (m->m_flags & M_PWR_SAV) == 0) {
1386 /*
1387 * Station in power save mode; pass the frame
1388 * to the 802.11 layer and continue. We'll get
1389 * the frame back when the time is right.
1390 */
1391 ieee80211_pwrsave(ic, ni, m);
1392 goto reclaim;
1393 }
1394 /* calculate priority so we can find the tx queue */
1395 if (ieee80211_classify(ic, m, ni)) {
1396 DPRINTF(sc, ATH_DEBUG_XMIT,
1397 "%s: discard, classification failure\n",
1398 __func__);
1399 m_freem(m);
1400 goto bad;
1401 }
1402 ifp->if_opackets++;
1403
1404 bpf_mtap(ifp, m, BPF_D_OUT);
1405 /*
1406 * Encapsulate the packet in prep for transmission.
1407 */
1408 m = ieee80211_encap(ic, m, ni);
1409 if (m == NULL) {
1410 DPRINTF(sc, ATH_DEBUG_XMIT,
1411 "%s: encapsulation failure\n",
1412 __func__);
1413 sc->sc_stats.ast_tx_encap++;
1414 goto bad;
1415 }
1416 /*
1417 * Check for fragmentation. If this has frame
1418 * has been broken up verify we have enough
1419 * buffers to send all the fragments so all
1420 * go out or none...
1421 */
1422 if ((m->m_flags & M_FRAG) &&
1423 !ath_txfrag_setup(sc, &frags, m, ni)) {
1424 DPRINTF(sc, ATH_DEBUG_ANY,
1425 "%s: out of txfrag buffers\n", __func__);
1426 ic->ic_stats.is_tx_nobuf++; /* XXX */
1427 ath_freetx(m);
1428 goto bad;
1429 }
1430 } else {
1431 /*
1432 * Hack! The referenced node pointer is in the
1433 * rcvif field of the packet header. This is
1434 * placed there by ieee80211_mgmt_output because
1435 * we need to hold the reference with the frame
1436 * and there's no other way (other than packet
1437 * tags which we consider too expensive to use)
1438 * to pass it along.
1439 */
1440 ni = M_GETCTX(m, struct ieee80211_node *);
1441 M_CLEARCTX(m);
1442
1443 wh = mtod(m, struct ieee80211_frame *);
1444 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1445 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1446 /* fill time stamp */
1447 u_int64_t tsf;
1448 u_int32_t *tstamp;
1449
1450 tsf = ath_hal_gettsf64(ah);
1451 /* XXX: adjust 100us delay to xmit */
1452 tsf += 100;
1453 tstamp = (u_int32_t *)&wh[1];
1454 tstamp[0] = htole32(tsf & 0xffffffff);
1455 tstamp[1] = htole32(tsf >> 32);
1456 }
1457 sc->sc_stats.ast_tx_mgmt++;
1458 }
1459
1460 nextfrag:
1461 next = m->m_nextpkt;
1462 if (ath_tx_start(sc, ni, bf, m)) {
1463 bad:
1464 ifp->if_oerrors++;
1465 reclaim:
1466 ATH_TXBUF_LOCK(sc);
1467 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1468 ath_txfrag_cleanup(sc, &frags, ni);
1469 ATH_TXBUF_UNLOCK(sc);
1470 if (ni != NULL)
1471 ieee80211_free_node(ni);
1472 continue;
1473 }
1474 if (next != NULL) {
1475 m = next;
1476 bf = STAILQ_FIRST(&frags);
1477 KASSERTMSG(bf != NULL, "no buf for txfrag");
1478 STAILQ_REMOVE_HEAD(&frags, bf_list);
1479 goto nextfrag;
1480 }
1481
1482 ifp->if_timer = 1;
1483 }
1484 }
1485
1486 static int
1487 ath_media_change(struct ifnet *ifp)
1488 {
1489 #define IS_UP(ifp) \
1490 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1491 int error;
1492
1493 error = ieee80211_media_change(ifp);
1494 if (error == ENETRESET) {
1495 if (IS_UP(ifp))
1496 ath_init(ifp->if_softc); /* XXX lose error */
1497 error = 0;
1498 }
1499 return error;
1500 #undef IS_UP
1501 }
1502
1503 #ifdef AR_DEBUG
1504 static void
1505 ath_keyprint(const char *tag, u_int ix,
1506 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1507 {
1508 static const char *ciphers[] = {
1509 "WEP",
1510 "AES-OCB",
1511 "AES-CCM",
1512 "CKIP",
1513 "TKIP",
1514 "CLR",
1515 };
1516 int i, n;
1517
1518 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1519 for (i = 0, n = hk->kv_len; i < n; i++)
1520 printf("%02x", hk->kv_val[i]);
1521 printf(" mac %s", ether_sprintf(mac));
1522 if (hk->kv_type == HAL_CIPHER_TKIP) {
1523 printf(" mic ");
1524 for (i = 0; i < sizeof(hk->kv_mic); i++)
1525 printf("%02x", hk->kv_mic[i]);
1526 }
1527 printf("\n");
1528 }
1529 #endif
1530
1531 /*
1532 * Set a TKIP key into the hardware. This handles the
1533 * potential distribution of key state to multiple key
1534 * cache slots for TKIP.
1535 */
1536 static int
1537 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1538 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1539 {
1540 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1541 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1542 struct ath_hal *ah = sc->sc_ah;
1543
1544 KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1545 "got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
1546 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1547 if (sc->sc_splitmic) {
1548 /*
1549 * TX key goes at first index, RX key at the rx index.
1550 * The hal handles the MIC keys at index+64.
1551 */
1552 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1553 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1554 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1555 zerobssid))
1556 return 0;
1557
1558 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1559 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1560 /* XXX delete tx key on failure? */
1561 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1562 hk, mac);
1563 } else {
1564 /*
1565 * Room for both TX+RX MIC keys in one key cache
1566 * slot, just set key at the first index; the HAL
1567 * will handle the reset.
1568 */
1569 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1570 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1571 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1572 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1573 }
1574 } else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1575 if (sc->sc_splitmic) {
1576 /*
1577 * NB: must pass MIC key in expected location when
1578 * the keycache only holds one MIC key per entry.
1579 */
1580 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1581 } else
1582 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1583 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1584 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1585 } else if (k->wk_flags & IEEE80211_KEY_RECV) {
1586 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1587 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1588 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1589 }
1590 return 0;
1591 #undef IEEE80211_KEY_XR
1592 }
1593
1594 /*
1595 * Set a net80211 key into the hardware. This handles the
1596 * potential distribution of key state to multiple key
1597 * cache slots for TKIP with hardware MIC support.
1598 */
1599 static int
1600 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1601 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1602 struct ieee80211_node *bss)
1603 {
1604 #define N(a) (sizeof(a)/sizeof(a[0]))
1605 static const u_int8_t ciphermap[] = {
1606 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1607 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1608 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1609 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1610 (u_int8_t) -1, /* 4 is not allocated */
1611 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1612 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1613 };
1614 struct ath_hal *ah = sc->sc_ah;
1615 const struct ieee80211_cipher *cip = k->wk_cipher;
1616 u_int8_t gmac[IEEE80211_ADDR_LEN];
1617 const u_int8_t *mac;
1618 HAL_KEYVAL hk;
1619
1620 memset(&hk, 0, sizeof(hk));
1621 /*
1622 * Software crypto uses a "clear key" so non-crypto
1623 * state kept in the key cache are maintained and
1624 * so that rx frames have an entry to match.
1625 */
1626 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1627 KASSERTMSG(cip->ic_cipher < N(ciphermap),
1628 "invalid cipher type %u", cip->ic_cipher);
1629 hk.kv_type = ciphermap[cip->ic_cipher];
1630 hk.kv_len = k->wk_keylen;
1631 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1632 } else
1633 hk.kv_type = HAL_CIPHER_CLR;
1634
1635 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1636 /*
1637 * Group keys on hardware that supports multicast frame
1638 * key search use a mac that is the sender's address with
1639 * the high bit set instead of the app-specified address.
1640 */
1641 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1642 gmac[0] |= 0x80;
1643 mac = gmac;
1644 } else
1645 mac = mac0;
1646
1647 if ((hk.kv_type == HAL_CIPHER_TKIP &&
1648 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1649 return ath_keyset_tkip(sc, k, &hk, mac);
1650 } else {
1651 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1652 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1653 }
1654 #undef N
1655 }
1656
1657 /*
1658 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1659 * each key, one for decrypt/encrypt and the other for the MIC.
1660 */
1661 static u_int16_t
1662 key_alloc_2pair(struct ath_softc *sc,
1663 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1664 {
1665 #define N(a) (sizeof(a)/sizeof(a[0]))
1666 u_int i, keyix;
1667
1668 KASSERTMSG(sc->sc_splitmic, "key cache !split");
1669 /* XXX could optimize */
1670 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1671 u_int8_t b = sc->sc_keymap[i];
1672 if (b != 0xff) {
1673 /*
1674 * One or more slots in this byte are free.
1675 */
1676 keyix = i*NBBY;
1677 while (b & 1) {
1678 again:
1679 keyix++;
1680 b >>= 1;
1681 }
1682 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1683 if (isset(sc->sc_keymap, keyix+32) ||
1684 isset(sc->sc_keymap, keyix+64) ||
1685 isset(sc->sc_keymap, keyix+32+64)) {
1686 /* full pair unavailable */
1687 /* XXX statistic */
1688 if (keyix == (i+1)*NBBY) {
1689 /* no slots were appropriate, advance */
1690 continue;
1691 }
1692 goto again;
1693 }
1694 setbit(sc->sc_keymap, keyix);
1695 setbit(sc->sc_keymap, keyix+64);
1696 setbit(sc->sc_keymap, keyix+32);
1697 setbit(sc->sc_keymap, keyix+32+64);
1698 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1699 "%s: key pair %u,%u %u,%u\n",
1700 __func__, keyix, keyix+64,
1701 keyix+32, keyix+32+64);
1702 *txkeyix = keyix;
1703 *rxkeyix = keyix+32;
1704 return keyix;
1705 }
1706 }
1707 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1708 return IEEE80211_KEYIX_NONE;
1709 #undef N
1710 }
1711
1712 /*
1713 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1714 * each key, one for decrypt/encrypt and the other for the MIC.
1715 */
1716 static int
1717 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1718 ieee80211_keyix *rxkeyix)
1719 {
1720 #define N(a) (sizeof(a)/sizeof(a[0]))
1721 u_int i, keyix;
1722
1723 KASSERTMSG(!sc->sc_splitmic, "key cache split");
1724 /* XXX could optimize */
1725 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1726 uint8_t b = sc->sc_keymap[i];
1727 if (b != 0xff) {
1728 /*
1729 * One or more slots in this byte are free.
1730 */
1731 keyix = i*NBBY;
1732 while (b & 1) {
1733 again:
1734 keyix++;
1735 b >>= 1;
1736 }
1737 if (isset(sc->sc_keymap, keyix+64)) {
1738 /* full pair unavailable */
1739 /* XXX statistic */
1740 if (keyix == (i+1)*NBBY) {
1741 /* no slots were appropriate, advance */
1742 continue;
1743 }
1744 goto again;
1745 }
1746 setbit(sc->sc_keymap, keyix);
1747 setbit(sc->sc_keymap, keyix+64);
1748 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1749 "%s: key pair %u,%u\n",
1750 __func__, keyix, keyix+64);
1751 *txkeyix = *rxkeyix = keyix;
1752 return 1;
1753 }
1754 }
1755 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1756 return 0;
1757 #undef N
1758 }
1759
1760 /*
1761 * Allocate a single key cache slot.
1762 */
1763 static int
1764 key_alloc_single(struct ath_softc *sc,
1765 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1766 {
1767 #define N(a) (sizeof(a)/sizeof(a[0]))
1768 u_int i, keyix;
1769
1770 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1771 for (i = 0; i < N(sc->sc_keymap); i++) {
1772 u_int8_t b = sc->sc_keymap[i];
1773 if (b != 0xff) {
1774 /*
1775 * One or more slots are free.
1776 */
1777 keyix = i*NBBY;
1778 while (b & 1)
1779 keyix++, b >>= 1;
1780 setbit(sc->sc_keymap, keyix);
1781 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1782 __func__, keyix);
1783 *txkeyix = *rxkeyix = keyix;
1784 return 1;
1785 }
1786 }
1787 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1788 return 0;
1789 #undef N
1790 }
1791
1792 /*
1793 * Allocate one or more key cache slots for a uniacst key. The
1794 * key itself is needed only to identify the cipher. For hardware
1795 * TKIP with split cipher+MIC keys we allocate two key cache slot
1796 * pairs so that we can setup separate TX and RX MIC keys. Note
1797 * that the MIC key for a TKIP key at slot i is assumed by the
1798 * hardware to be at slot i+64. This limits TKIP keys to the first
1799 * 64 entries.
1800 */
1801 static int
1802 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1803 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1804 {
1805 struct ath_softc *sc = ic->ic_ifp->if_softc;
1806
1807 /*
1808 * Group key allocation must be handled specially for
1809 * parts that do not support multicast key cache search
1810 * functionality. For those parts the key id must match
1811 * the h/w key index so lookups find the right key. On
1812 * parts w/ the key search facility we install the sender's
1813 * mac address (with the high bit set) and let the hardware
1814 * find the key w/o using the key id. This is preferred as
1815 * it permits us to support multiple users for adhoc and/or
1816 * multi-station operation.
1817 */
1818 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1819 if (!(&ic->ic_nw_keys[0] <= k &&
1820 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1821 /* should not happen */
1822 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1823 "%s: bogus group key\n", __func__);
1824 return 0;
1825 }
1826 /*
1827 * XXX we pre-allocate the global keys so
1828 * have no way to check if they've already been allocated.
1829 */
1830 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1831 return 1;
1832 }
1833
1834 /*
1835 * We allocate two pair for TKIP when using the h/w to do
1836 * the MIC. For everything else, including software crypto,
1837 * we allocate a single entry. Note that s/w crypto requires
1838 * a pass-through slot on the 5211 and 5212. The 5210 does
1839 * not support pass-through cache entries and we map all
1840 * those requests to slot 0.
1841 */
1842 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1843 return key_alloc_single(sc, keyix, rxkeyix);
1844 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1845 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1846 if (sc->sc_splitmic)
1847 return key_alloc_2pair(sc, keyix, rxkeyix);
1848 else
1849 return key_alloc_pair(sc, keyix, rxkeyix);
1850 } else {
1851 return key_alloc_single(sc, keyix, rxkeyix);
1852 }
1853 }
1854
1855 /*
1856 * Delete an entry in the key cache allocated by ath_key_alloc.
1857 */
1858 static int
1859 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1860 {
1861 struct ath_softc *sc = ic->ic_ifp->if_softc;
1862 struct ath_hal *ah = sc->sc_ah;
1863 const struct ieee80211_cipher *cip = k->wk_cipher;
1864 u_int keyix = k->wk_keyix;
1865
1866 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1867
1868 if (!device_has_power(sc->sc_dev)) {
1869 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1870 k->wk_keyix);
1871 }
1872
1873 ath_hal_keyreset(ah, keyix);
1874 /*
1875 * Handle split tx/rx keying required for TKIP with h/w MIC.
1876 */
1877 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1878 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1879 ath_hal_keyreset(ah, keyix+32); /* RX key */
1880 if (keyix >= IEEE80211_WEP_NKID) {
1881 /*
1882 * Don't touch keymap entries for global keys so
1883 * they are never considered for dynamic allocation.
1884 */
1885 clrbit(sc->sc_keymap, keyix);
1886 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1887 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1888 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1889 if (sc->sc_splitmic) {
1890 /* +32 for RX key, +32+64 for RX key MIC */
1891 clrbit(sc->sc_keymap, keyix+32);
1892 clrbit(sc->sc_keymap, keyix+32+64);
1893 }
1894 }
1895 }
1896 return 1;
1897 }
1898
1899 /*
1900 * Set the key cache contents for the specified key. Key cache
1901 * slot(s) must already have been allocated by ath_key_alloc.
1902 */
1903 static int
1904 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1905 const u_int8_t mac[IEEE80211_ADDR_LEN])
1906 {
1907 struct ath_softc *sc = ic->ic_ifp->if_softc;
1908
1909 if (!device_has_power(sc->sc_dev)) {
1910 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1911 k->wk_keyix);
1912 }
1913 return ath_keyset(sc, k, mac, ic->ic_bss);
1914 }
1915
1916 /*
1917 * Block/unblock tx+rx processing while a key change is done.
1918 * We assume the caller serializes key management operations
1919 * so we only need to worry about synchronization with other
1920 * uses that originate in the driver.
1921 */
1922 static void
1923 ath_key_update_begin(struct ieee80211com *ic)
1924 {
1925 struct ifnet *ifp = ic->ic_ifp;
1926 struct ath_softc *sc = ifp->if_softc;
1927
1928 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1929 #if 0
1930 tasklet_disable(&sc->sc_rxtq);
1931 #endif
1932 sc->sc_flags |= ATH_KEY_UPDATING;
1933 }
1934
1935 static void
1936 ath_key_update_end(struct ieee80211com *ic)
1937 {
1938 struct ifnet *ifp = ic->ic_ifp;
1939 struct ath_softc *sc = ifp->if_softc;
1940
1941 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1942 sc->sc_flags &= ~ATH_KEY_UPDATING;
1943 #if 0
1944 tasklet_enable(&sc->sc_rxtq);
1945 #endif
1946 }
1947
1948 /*
1949 * Calculate the receive filter according to the
1950 * operating mode and state:
1951 *
1952 * o always accept unicast, broadcast, and multicast traffic
1953 * o maintain current state of phy error reception (the hal
1954 * may enable phy error frames for noise immunity work)
1955 * o probe request frames are accepted only when operating in
1956 * hostap, adhoc, or monitor modes
1957 * o enable promiscuous mode according to the interface state
1958 * o accept beacons:
1959 * - when operating in adhoc mode so the 802.11 layer creates
1960 * node table entries for peers,
1961 * - when operating in station mode for collecting rssi data when
1962 * the station is otherwise quiet, or
1963 * - when scanning
1964 */
1965 static u_int32_t
1966 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1967 {
1968 struct ieee80211com *ic = &sc->sc_ic;
1969 struct ath_hal *ah = sc->sc_ah;
1970 struct ifnet *ifp = &sc->sc_if;
1971 u_int32_t rfilt;
1972
1973 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1974 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1975 if (ic->ic_opmode != IEEE80211_M_STA)
1976 rfilt |= HAL_RX_FILTER_PROBEREQ;
1977 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1978 (ifp->if_flags & IFF_PROMISC))
1979 rfilt |= HAL_RX_FILTER_PROM;
1980 if (ifp->if_flags & IFF_PROMISC)
1981 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1982 if (ic->ic_opmode == IEEE80211_M_STA ||
1983 ic->ic_opmode == IEEE80211_M_IBSS ||
1984 state == IEEE80211_S_SCAN)
1985 rfilt |= HAL_RX_FILTER_BEACON;
1986 return rfilt;
1987 }
1988
1989 static void
1990 ath_mode_init(struct ath_softc *sc)
1991 {
1992 struct ifnet *ifp = &sc->sc_if;
1993 struct ieee80211com *ic = &sc->sc_ic;
1994 struct ath_hal *ah = sc->sc_ah;
1995 struct ether_multi *enm;
1996 struct ether_multistep estep;
1997 u_int32_t rfilt, mfilt[2], val;
1998 int i;
1999 uint8_t pos;
2000
2001 /* configure rx filter */
2002 rfilt = ath_calcrxfilter(sc, ic->ic_state);
2003 ath_hal_setrxfilter(ah, rfilt);
2004
2005 /* configure operational mode */
2006 ath_hal_setopmode(ah);
2007
2008 /* Write keys to hardware; it may have been powered down. */
2009 ath_key_update_begin(ic);
2010 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2011 ath_key_set(ic,
2012 &ic->ic_crypto.cs_nw_keys[i],
2013 ic->ic_myaddr);
2014 }
2015 ath_key_update_end(ic);
2016
2017 /*
2018 * Handle any link-level address change. Note that we only
2019 * need to force ic_myaddr; any other addresses are handled
2020 * as a byproduct of the ifnet code marking the interface
2021 * down then up.
2022 *
2023 * XXX should get from lladdr instead of arpcom but that's more work
2024 */
2025 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
2026 ath_hal_setmac(ah, ic->ic_myaddr);
2027
2028 /* calculate and install multicast filter */
2029 ifp->if_flags &= ~IFF_ALLMULTI;
2030 mfilt[0] = mfilt[1] = 0;
2031 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
2032 while (enm != NULL) {
2033 void *dl;
2034 /* XXX Punt on ranges. */
2035 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
2036 mfilt[0] = mfilt[1] = 0xffffffff;
2037 ifp->if_flags |= IFF_ALLMULTI;
2038 break;
2039 }
2040 dl = enm->enm_addrlo;
2041 val = LE_READ_4((char *)dl + 0);
2042 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2043 val = LE_READ_4((char *)dl + 3);
2044 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2045 pos &= 0x3f;
2046 mfilt[pos / 32] |= (1 << (pos % 32));
2047
2048 ETHER_NEXT_MULTI(estep, enm);
2049 }
2050
2051 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2052 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2053 __func__, rfilt, mfilt[0], mfilt[1]);
2054 }
2055
2056 /*
2057 * Set the slot time based on the current setting.
2058 */
2059 static void
2060 ath_setslottime(struct ath_softc *sc)
2061 {
2062 struct ieee80211com *ic = &sc->sc_ic;
2063 struct ath_hal *ah = sc->sc_ah;
2064
2065 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2066 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2067 else
2068 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2069 sc->sc_updateslot = OK;
2070 }
2071
2072 /*
2073 * Callback from the 802.11 layer to update the
2074 * slot time based on the current setting.
2075 */
2076 static void
2077 ath_updateslot(struct ifnet *ifp)
2078 {
2079 struct ath_softc *sc = ifp->if_softc;
2080 struct ieee80211com *ic = &sc->sc_ic;
2081
2082 /*
2083 * When not coordinating the BSS, change the hardware
2084 * immediately. For other operation we defer the change
2085 * until beacon updates have propagated to the stations.
2086 */
2087 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2088 sc->sc_updateslot = UPDATE;
2089 else
2090 ath_setslottime(sc);
2091 }
2092
2093 /*
2094 * Setup a h/w transmit queue for beacons.
2095 */
2096 static int
2097 ath_beaconq_setup(struct ath_hal *ah)
2098 {
2099 HAL_TXQ_INFO qi;
2100
2101 memset(&qi, 0, sizeof(qi));
2102 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2103 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2104 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2105 /* NB: for dynamic turbo, don't enable any other interrupts */
2106 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2107 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2108 }
2109
2110 /*
2111 * Setup the transmit queue parameters for the beacon queue.
2112 */
2113 static int
2114 ath_beaconq_config(struct ath_softc *sc)
2115 {
2116 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2117 struct ieee80211com *ic = &sc->sc_ic;
2118 struct ath_hal *ah = sc->sc_ah;
2119 HAL_TXQ_INFO qi;
2120
2121 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2122 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2123 /*
2124 * Always burst out beacon and CAB traffic.
2125 */
2126 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2127 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2128 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2129 } else {
2130 struct wmeParams *wmep =
2131 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2132 /*
2133 * Adhoc mode; important thing is to use 2x cwmin.
2134 */
2135 qi.tqi_aifs = wmep->wmep_aifsn;
2136 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2137 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2138 }
2139
2140 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2141 device_printf(sc->sc_dev, "unable to update parameters for "
2142 "beacon hardware queue!\n");
2143 return 0;
2144 } else {
2145 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2146 return 1;
2147 }
2148 #undef ATH_EXPONENT_TO_VALUE
2149 }
2150
2151 /*
2152 * Allocate and setup an initial beacon frame.
2153 */
2154 static int
2155 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2156 {
2157 struct ieee80211com *ic = ni->ni_ic;
2158 struct ath_buf *bf;
2159 struct mbuf *m;
2160 int error;
2161
2162 bf = STAILQ_FIRST(&sc->sc_bbuf);
2163 if (bf == NULL) {
2164 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2165 sc->sc_stats.ast_be_nombuf++; /* XXX */
2166 return ENOMEM; /* XXX */
2167 }
2168 /*
2169 * NB: the beacon data buffer must be 32-bit aligned;
2170 * we assume the mbuf routines will return us something
2171 * with this alignment (perhaps should assert).
2172 */
2173 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2174 if (m == NULL) {
2175 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2176 __func__);
2177 sc->sc_stats.ast_be_nombuf++;
2178 return ENOMEM;
2179 }
2180 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2181 BUS_DMA_NOWAIT);
2182 if (error == 0) {
2183 bf->bf_m = m;
2184 bf->bf_node = ieee80211_ref_node(ni);
2185 } else {
2186 m_freem(m);
2187 }
2188 return error;
2189 }
2190
2191 /*
2192 * Setup the beacon frame for transmit.
2193 */
2194 static void
2195 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2196 {
2197 #define USE_SHPREAMBLE(_ic) \
2198 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2199 == IEEE80211_F_SHPREAMBLE)
2200 struct ieee80211_node *ni = bf->bf_node;
2201 struct ieee80211com *ic = ni->ni_ic;
2202 struct mbuf *m = bf->bf_m;
2203 struct ath_hal *ah = sc->sc_ah;
2204 struct ath_desc *ds;
2205 int flags, antenna;
2206 const HAL_RATE_TABLE *rt;
2207 u_int8_t rix, rate;
2208
2209 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2210 __func__, m, m->m_len);
2211
2212 /* setup descriptors */
2213 ds = bf->bf_desc;
2214
2215 flags = HAL_TXDESC_NOACK;
2216 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2217 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2218 flags |= HAL_TXDESC_VEOL;
2219 /*
2220 * Let hardware handle antenna switching unless
2221 * the user has selected a transmit antenna
2222 * (sc_txantenna is not 0).
2223 */
2224 antenna = sc->sc_txantenna;
2225 } else {
2226 ds->ds_link = 0;
2227 /*
2228 * Switch antenna every 4 beacons, unless the user
2229 * has selected a transmit antenna (sc_txantenna
2230 * is not 0).
2231 *
2232 * XXX assumes two antenna
2233 */
2234 if (sc->sc_txantenna == 0)
2235 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2236 else
2237 antenna = sc->sc_txantenna;
2238 }
2239
2240 KASSERTMSG(bf->bf_nseg == 1,
2241 "multi-segment beacon frame; nseg %u", bf->bf_nseg);
2242 ds->ds_data = bf->bf_segs[0].ds_addr;
2243 /*
2244 * Calculate rate code.
2245 * XXX everything at min xmit rate
2246 */
2247 rix = sc->sc_minrateix;
2248 rt = sc->sc_currates;
2249 rate = rt->info[rix].rateCode;
2250 if (USE_SHPREAMBLE(ic))
2251 rate |= rt->info[rix].shortPreamble;
2252 ath_hal_setuptxdesc(ah, ds
2253 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2254 , sizeof(struct ieee80211_frame)/* header length */
2255 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2256 , ni->ni_txpower /* txpower XXX */
2257 , rate, 1 /* series 0 rate/tries */
2258 , HAL_TXKEYIX_INVALID /* no encryption */
2259 , antenna /* antenna mode */
2260 , flags /* no ack, veol for beacons */
2261 , 0 /* rts/cts rate */
2262 , 0 /* rts/cts duration */
2263 );
2264 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2265 ath_hal_filltxdesc(ah, ds
2266 , roundup(m->m_len, 4) /* buffer length */
2267 , AH_TRUE /* first segment */
2268 , AH_TRUE /* last segment */
2269 , ds /* first descriptor */
2270 );
2271
2272 /* NB: The desc swap function becomes void, if descriptor swapping
2273 * is not enabled
2274 */
2275 ath_desc_swap(ds);
2276
2277 #undef USE_SHPREAMBLE
2278 }
2279
2280 /*
2281 * Transmit a beacon frame at SWBA. Dynamic updates to the
2282 * frame contents are done as needed and the slot time is
2283 * also adjusted based on current state.
2284 */
2285 static void
2286 ath_beacon_proc(void *arg, int pending)
2287 {
2288 struct ath_softc *sc = arg;
2289 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2290 struct ieee80211_node *ni = bf->bf_node;
2291 struct ieee80211com *ic = ni->ni_ic;
2292 struct ath_hal *ah = sc->sc_ah;
2293 struct mbuf *m;
2294 int ncabq, error, otherant;
2295
2296 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2297 __func__, pending);
2298
2299 if (ic->ic_opmode == IEEE80211_M_STA ||
2300 ic->ic_opmode == IEEE80211_M_MONITOR ||
2301 bf == NULL || bf->bf_m == NULL) {
2302 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2303 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2304 return;
2305 }
2306 /*
2307 * Check if the previous beacon has gone out. If
2308 * not don't try to post another, skip this period
2309 * and wait for the next. Missed beacons indicate
2310 * a problem and should not occur. If we miss too
2311 * many consecutive beacons reset the device.
2312 */
2313 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2314 sc->sc_bmisscount++;
2315 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2316 "%s: missed %u consecutive beacons\n",
2317 __func__, sc->sc_bmisscount);
2318 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2319 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2320 return;
2321 }
2322 if (sc->sc_bmisscount != 0) {
2323 DPRINTF(sc, ATH_DEBUG_BEACON,
2324 "%s: resume beacon xmit after %u misses\n",
2325 __func__, sc->sc_bmisscount);
2326 sc->sc_bmisscount = 0;
2327 }
2328
2329 /*
2330 * Update dynamic beacon contents. If this returns
2331 * non-zero then we need to remap the memory because
2332 * the beacon frame changed size (probably because
2333 * of the TIM bitmap).
2334 */
2335 m = bf->bf_m;
2336 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2337 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2338 /* XXX too conservative? */
2339 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2340 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2341 BUS_DMA_NOWAIT);
2342 if (error != 0) {
2343 if_printf(&sc->sc_if,
2344 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2345 __func__, error);
2346 return;
2347 }
2348 }
2349
2350 /*
2351 * Handle slot time change when a non-ERP station joins/leaves
2352 * an 11g network. The 802.11 layer notifies us via callback,
2353 * we mark updateslot, then wait one beacon before effecting
2354 * the change. This gives associated stations at least one
2355 * beacon interval to note the state change.
2356 */
2357 /* XXX locking */
2358 if (sc->sc_updateslot == UPDATE)
2359 sc->sc_updateslot = COMMIT; /* commit next beacon */
2360 else if (sc->sc_updateslot == COMMIT)
2361 ath_setslottime(sc); /* commit change to h/w */
2362
2363 /*
2364 * Check recent per-antenna transmit statistics and flip
2365 * the default antenna if noticeably more frames went out
2366 * on the non-default antenna.
2367 * XXX assumes 2 anntenae
2368 */
2369 otherant = sc->sc_defant & 1 ? 2 : 1;
2370 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2371 ath_setdefantenna(sc, otherant);
2372 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2373
2374 /*
2375 * Construct tx descriptor.
2376 */
2377 ath_beacon_setup(sc, bf);
2378
2379 /*
2380 * Stop any current dma and put the new frame on the queue.
2381 * This should never fail since we check above that no frames
2382 * are still pending on the queue.
2383 */
2384 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2385 DPRINTF(sc, ATH_DEBUG_ANY,
2386 "%s: beacon queue %u did not stop?\n",
2387 __func__, sc->sc_bhalq);
2388 }
2389 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2390 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2391
2392 /*
2393 * Enable the CAB queue before the beacon queue to
2394 * insure cab frames are triggered by this beacon.
2395 */
2396 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2397 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2398 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2399 ath_hal_txstart(ah, sc->sc_bhalq);
2400 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2401 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2402 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2403
2404 sc->sc_stats.ast_be_xmit++;
2405 }
2406
2407 /*
2408 * Reset the hardware after detecting beacons have stopped.
2409 */
2410 static void
2411 ath_bstuck_proc(void *arg, int pending)
2412 {
2413 struct ath_softc *sc = arg;
2414 struct ifnet *ifp = &sc->sc_if;
2415 #ifdef __NetBSD__
2416 int s;
2417 #endif
2418
2419 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2420 sc->sc_bmisscount);
2421 #ifdef __NetBSD__
2422 s = splnet();
2423 #endif
2424 ath_reset(ifp);
2425 #ifdef __NetBSD__
2426 splx(s);
2427 #endif
2428 }
2429
2430 /*
2431 * Reclaim beacon resources.
2432 */
2433 static void
2434 ath_beacon_free(struct ath_softc *sc)
2435 {
2436 struct ath_buf *bf;
2437
2438 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2439 if (bf->bf_m != NULL) {
2440 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2441 m_freem(bf->bf_m);
2442 bf->bf_m = NULL;
2443 }
2444 if (bf->bf_node != NULL) {
2445 ieee80211_free_node(bf->bf_node);
2446 bf->bf_node = NULL;
2447 }
2448 }
2449 }
2450
2451 /*
2452 * Configure the beacon and sleep timers.
2453 *
2454 * When operating as an AP this resets the TSF and sets
2455 * up the hardware to notify us when we need to issue beacons.
2456 *
2457 * When operating in station mode this sets up the beacon
2458 * timers according to the timestamp of the last received
2459 * beacon and the current TSF, configures PCF and DTIM
2460 * handling, programs the sleep registers so the hardware
2461 * will wakeup in time to receive beacons, and configures
2462 * the beacon miss handling so we'll receive a BMISS
2463 * interrupt when we stop seeing beacons from the AP
2464 * we've associated with.
2465 */
2466 static void
2467 ath_beacon_config(struct ath_softc *sc)
2468 {
2469 #define TSF_TO_TU(_h,_l) \
2470 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2471 #define FUDGE 2
2472 struct ath_hal *ah = sc->sc_ah;
2473 struct ieee80211com *ic = &sc->sc_ic;
2474 struct ieee80211_node *ni = ic->ic_bss;
2475 u_int32_t nexttbtt, intval, tsftu;
2476 u_int64_t tsf;
2477
2478 /* extract tstamp from last beacon and convert to TU */
2479 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2480 LE_READ_4(ni->ni_tstamp.data));
2481 /* NB: the beacon interval is kept internally in TU's */
2482 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2483 if (nexttbtt == 0) /* e.g. for ap mode */
2484 nexttbtt = intval;
2485 else if (intval) /* NB: can be 0 for monitor mode */
2486 nexttbtt = roundup(nexttbtt, intval);
2487 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2488 __func__, nexttbtt, intval, ni->ni_intval);
2489 if (ic->ic_opmode == IEEE80211_M_STA) {
2490 HAL_BEACON_STATE bs;
2491 int dtimperiod, dtimcount;
2492 int cfpperiod, cfpcount;
2493
2494 /*
2495 * Setup dtim and cfp parameters according to
2496 * last beacon we received (which may be none).
2497 */
2498 dtimperiod = ni->ni_dtim_period;
2499 if (dtimperiod <= 0) /* NB: 0 if not known */
2500 dtimperiod = 1;
2501 dtimcount = ni->ni_dtim_count;
2502 if (dtimcount >= dtimperiod) /* NB: sanity check */
2503 dtimcount = 0; /* XXX? */
2504 cfpperiod = 1; /* NB: no PCF support yet */
2505 cfpcount = 0;
2506 /*
2507 * Pull nexttbtt forward to reflect the current
2508 * TSF and calculate dtim+cfp state for the result.
2509 */
2510 tsf = ath_hal_gettsf64(ah);
2511 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2512 do {
2513 nexttbtt += intval;
2514 if (--dtimcount < 0) {
2515 dtimcount = dtimperiod - 1;
2516 if (--cfpcount < 0)
2517 cfpcount = cfpperiod - 1;
2518 }
2519 } while (nexttbtt < tsftu);
2520 memset(&bs, 0, sizeof(bs));
2521 bs.bs_intval = intval;
2522 bs.bs_nexttbtt = nexttbtt;
2523 bs.bs_dtimperiod = dtimperiod*intval;
2524 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2525 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2526 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2527 bs.bs_cfpmaxduration = 0;
2528 #if 0
2529 /*
2530 * The 802.11 layer records the offset to the DTIM
2531 * bitmap while receiving beacons; use it here to
2532 * enable h/w detection of our AID being marked in
2533 * the bitmap vector (to indicate frames for us are
2534 * pending at the AP).
2535 * XXX do DTIM handling in s/w to WAR old h/w bugs
2536 * XXX enable based on h/w rev for newer chips
2537 */
2538 bs.bs_timoffset = ni->ni_timoff;
2539 #endif
2540 /*
2541 * Calculate the number of consecutive beacons to miss
2542 * before taking a BMISS interrupt. The configuration
2543 * is specified in ms, so we need to convert that to
2544 * TU's and then calculate based on the beacon interval.
2545 * Note that we clamp the result to at most 10 beacons.
2546 */
2547 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2548 if (bs.bs_bmissthreshold > 10)
2549 bs.bs_bmissthreshold = 10;
2550 else if (bs.bs_bmissthreshold <= 0)
2551 bs.bs_bmissthreshold = 1;
2552
2553 /*
2554 * Calculate sleep duration. The configuration is
2555 * given in ms. We insure a multiple of the beacon
2556 * period is used. Also, if the sleep duration is
2557 * greater than the DTIM period then it makes senses
2558 * to make it a multiple of that.
2559 *
2560 * XXX fixed at 100ms
2561 */
2562 bs.bs_sleepduration =
2563 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2564 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2565 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2566
2567 DPRINTF(sc, ATH_DEBUG_BEACON,
2568 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2569 , __func__
2570 , tsf, tsftu
2571 , bs.bs_intval
2572 , bs.bs_nexttbtt
2573 , bs.bs_dtimperiod
2574 , bs.bs_nextdtim
2575 , bs.bs_bmissthreshold
2576 , bs.bs_sleepduration
2577 , bs.bs_cfpperiod
2578 , bs.bs_cfpmaxduration
2579 , bs.bs_cfpnext
2580 , bs.bs_timoffset
2581 );
2582 ath_hal_intrset(ah, 0);
2583 ath_hal_beacontimers(ah, &bs);
2584 sc->sc_imask |= HAL_INT_BMISS;
2585 ath_hal_intrset(ah, sc->sc_imask);
2586 } else {
2587 ath_hal_intrset(ah, 0);
2588 if (nexttbtt == intval)
2589 intval |= HAL_BEACON_RESET_TSF;
2590 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2591 /*
2592 * In IBSS mode enable the beacon timers but only
2593 * enable SWBA interrupts if we need to manually
2594 * prepare beacon frames. Otherwise we use a
2595 * self-linked tx descriptor and let the hardware
2596 * deal with things.
2597 */
2598 intval |= HAL_BEACON_ENA;
2599 if (!sc->sc_hasveol)
2600 sc->sc_imask |= HAL_INT_SWBA;
2601 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2602 /*
2603 * Pull nexttbtt forward to reflect
2604 * the current TSF.
2605 */
2606 tsf = ath_hal_gettsf64(ah);
2607 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2608 do {
2609 nexttbtt += intval;
2610 } while (nexttbtt < tsftu);
2611 }
2612 ath_beaconq_config(sc);
2613 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2614 /*
2615 * In AP mode we enable the beacon timers and
2616 * SWBA interrupts to prepare beacon frames.
2617 */
2618 intval |= HAL_BEACON_ENA;
2619 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2620 ath_beaconq_config(sc);
2621 }
2622 ath_hal_beaconinit(ah, nexttbtt, intval);
2623 sc->sc_bmisscount = 0;
2624 ath_hal_intrset(ah, sc->sc_imask);
2625 /*
2626 * When using a self-linked beacon descriptor in
2627 * ibss mode load it once here.
2628 */
2629 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2630 ath_beacon_proc(sc, 0);
2631 }
2632 sc->sc_syncbeacon = 0;
2633 #undef UNDEF
2634 #undef TSF_TO_TU
2635 }
2636
2637 static int
2638 ath_descdma_setup(struct ath_softc *sc,
2639 struct ath_descdma *dd, ath_bufhead *head,
2640 const char *name, int nbuf, int ndesc)
2641 {
2642 #define DS2PHYS(_dd, _ds) \
2643 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2644 struct ifnet *ifp = &sc->sc_if;
2645 struct ath_desc *ds;
2646 struct ath_buf *bf;
2647 int i, bsize, error;
2648
2649 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2650 __func__, name, nbuf, ndesc);
2651
2652 dd->dd_name = name;
2653 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2654
2655 /*
2656 * Setup DMA descriptor area.
2657 */
2658 dd->dd_dmat = sc->sc_dmat;
2659
2660 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2661 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2662
2663 if (error != 0) {
2664 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2665 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2666 goto fail0;
2667 }
2668
2669 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2670 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2671 if (error != 0) {
2672 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2673 nbuf * ndesc, dd->dd_name, error);
2674 goto fail1;
2675 }
2676
2677 /* allocate descriptors */
2678 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2679 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2680 if (error != 0) {
2681 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2682 "error %u\n", dd->dd_name, error);
2683 goto fail2;
2684 }
2685
2686 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2687 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2688 if (error != 0) {
2689 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2690 dd->dd_name, error);
2691 goto fail3;
2692 }
2693
2694 ds = dd->dd_desc;
2695 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2696 DPRINTF(sc, ATH_DEBUG_RESET,
2697 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2698 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2699 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2700
2701 /* allocate rx buffers */
2702 bsize = sizeof(struct ath_buf) * nbuf;
2703 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2704 if (bf == NULL) {
2705 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2706 dd->dd_name, bsize);
2707 goto fail4;
2708 }
2709 dd->dd_bufptr = bf;
2710
2711 STAILQ_INIT(head);
2712 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2713 bf->bf_desc = ds;
2714 bf->bf_daddr = DS2PHYS(dd, ds);
2715 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2716 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2717 if (error != 0) {
2718 if_printf(ifp, "unable to create dmamap for %s "
2719 "buffer %u, error %u\n", dd->dd_name, i, error);
2720 ath_descdma_cleanup(sc, dd, head);
2721 return error;
2722 }
2723 STAILQ_INSERT_TAIL(head, bf, bf_list);
2724 }
2725 return 0;
2726 fail4:
2727 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2728 fail3:
2729 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2730 fail2:
2731 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2732 fail1:
2733 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2734 fail0:
2735 memset(dd, 0, sizeof(*dd));
2736 return error;
2737 #undef DS2PHYS
2738 }
2739
2740 static void
2741 ath_descdma_cleanup(struct ath_softc *sc,
2742 struct ath_descdma *dd, ath_bufhead *head)
2743 {
2744 struct ath_buf *bf;
2745 struct ieee80211_node *ni;
2746
2747 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2748 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2749 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2750 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2751
2752 STAILQ_FOREACH(bf, head, bf_list) {
2753 if (bf->bf_m) {
2754 m_freem(bf->bf_m);
2755 bf->bf_m = NULL;
2756 }
2757 if (bf->bf_dmamap != NULL) {
2758 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2759 bf->bf_dmamap = NULL;
2760 }
2761 ni = bf->bf_node;
2762 bf->bf_node = NULL;
2763 if (ni != NULL) {
2764 /*
2765 * Reclaim node reference.
2766 */
2767 ieee80211_free_node(ni);
2768 }
2769 }
2770
2771 STAILQ_INIT(head);
2772 free(dd->dd_bufptr, M_ATHDEV);
2773 memset(dd, 0, sizeof(*dd));
2774 }
2775
2776 static int
2777 ath_desc_alloc(struct ath_softc *sc)
2778 {
2779 int error;
2780
2781 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2782 "rx", ath_rxbuf, 1);
2783 if (error != 0)
2784 return error;
2785
2786 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2787 "tx", ath_txbuf, ATH_TXDESC);
2788 if (error != 0) {
2789 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2790 return error;
2791 }
2792
2793 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2794 "beacon", 1, 1);
2795 if (error != 0) {
2796 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2797 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2798 return error;
2799 }
2800 return 0;
2801 }
2802
2803 static void
2804 ath_desc_free(struct ath_softc *sc)
2805 {
2806
2807 if (sc->sc_bdma.dd_desc_len != 0)
2808 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2809 if (sc->sc_txdma.dd_desc_len != 0)
2810 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2811 if (sc->sc_rxdma.dd_desc_len != 0)
2812 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2813 }
2814
2815 static struct ieee80211_node *
2816 ath_node_alloc(struct ieee80211_node_table *nt)
2817 {
2818 struct ieee80211com *ic = nt->nt_ic;
2819 struct ath_softc *sc = ic->ic_ifp->if_softc;
2820 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2821 struct ath_node *an;
2822
2823 an = malloc(space, M_80211_NODE, M_NOWAIT | M_ZERO);
2824 if (an == NULL) {
2825 /* XXX stat+msg */
2826 return NULL;
2827 }
2828 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2829 ath_rate_node_init(sc, an);
2830
2831 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2832 return &an->an_node;
2833 }
2834
2835 static void
2836 ath_node_free(struct ieee80211_node *ni)
2837 {
2838 struct ieee80211com *ic = ni->ni_ic;
2839 struct ath_softc *sc = ic->ic_ifp->if_softc;
2840
2841 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2842
2843 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2844 sc->sc_node_free(ni);
2845 }
2846
2847 static u_int8_t
2848 ath_node_getrssi(const struct ieee80211_node *ni)
2849 {
2850 #define HAL_EP_RND(x, mul) \
2851 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2852 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2853 int32_t rssi;
2854
2855 /*
2856 * When only one frame is received there will be no state in
2857 * avgrssi so fallback on the value recorded by the 802.11 layer.
2858 */
2859 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2860 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2861 else
2862 rssi = ni->ni_rssi;
2863 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2864 #undef HAL_EP_RND
2865 }
2866
2867 static int
2868 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2869 {
2870 struct ath_hal *ah = sc->sc_ah;
2871 int error;
2872 struct mbuf *m;
2873 struct ath_desc *ds;
2874
2875 m = bf->bf_m;
2876 if (m == NULL) {
2877 /*
2878 * NB: by assigning a page to the rx dma buffer we
2879 * implicitly satisfy the Atheros requirement that
2880 * this buffer be cache-line-aligned and sized to be
2881 * multiple of the cache line size. Not doing this
2882 * causes weird stuff to happen (for the 5210 at least).
2883 */
2884 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2885 if (m == NULL) {
2886 DPRINTF(sc, ATH_DEBUG_ANY,
2887 "%s: no mbuf/cluster\n", __func__);
2888 sc->sc_stats.ast_rx_nombuf++;
2889 return ENOMEM;
2890 }
2891 bf->bf_m = m;
2892 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2893
2894 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2895 bf->bf_dmamap, m,
2896 BUS_DMA_NOWAIT);
2897 if (error != 0) {
2898 DPRINTF(sc, ATH_DEBUG_ANY,
2899 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2900 __func__, error);
2901 sc->sc_stats.ast_rx_busdma++;
2902 return error;
2903 }
2904 KASSERTMSG(bf->bf_nseg == 1,
2905 "multi-segment packet; nseg %u", bf->bf_nseg);
2906 }
2907 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2908 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2909
2910 /*
2911 * Setup descriptors. For receive we always terminate
2912 * the descriptor list with a self-linked entry so we'll
2913 * not get overrun under high load (as can happen with a
2914 * 5212 when ANI processing enables PHY error frames).
2915 *
2916 * To insure the last descriptor is self-linked we create
2917 * each descriptor as self-linked and add it to the end. As
2918 * each additional descriptor is added the previous self-linked
2919 * entry is ``fixed'' naturally. This should be safe even
2920 * if DMA is happening. When processing RX interrupts we
2921 * never remove/process the last, self-linked, entry on the
2922 * descriptor list. This insures the hardware always has
2923 * someplace to write a new frame.
2924 */
2925 ds = bf->bf_desc;
2926 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2927 ds->ds_data = bf->bf_segs[0].ds_addr;
2928 /* ds->ds_vdata = mtod(m, void *); for radar */
2929 ath_hal_setuprxdesc(ah, ds
2930 , m->m_len /* buffer size */
2931 , 0
2932 );
2933
2934 if (sc->sc_rxlink != NULL)
2935 *sc->sc_rxlink = bf->bf_daddr;
2936 sc->sc_rxlink = &ds->ds_link;
2937 return 0;
2938 }
2939
2940 /*
2941 * Extend 15-bit time stamp from rx descriptor to
2942 * a full 64-bit TSF using the specified TSF.
2943 */
2944 static inline u_int64_t
2945 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2946 {
2947 if ((tsf & 0x7fff) < rstamp)
2948 tsf -= 0x8000;
2949 return ((tsf &~ 0x7fff) | rstamp);
2950 }
2951
2952 /*
2953 * Intercept management frames to collect beacon rssi data
2954 * and to do ibss merges.
2955 */
2956 static void
2957 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2958 struct ieee80211_node *ni,
2959 int subtype, int rssi, u_int32_t rstamp)
2960 {
2961 struct ath_softc *sc = ic->ic_ifp->if_softc;
2962
2963 /*
2964 * Call up first so subsequent work can use information
2965 * potentially stored in the node (e.g. for ibss merge).
2966 */
2967 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2968 switch (subtype) {
2969 case IEEE80211_FC0_SUBTYPE_BEACON:
2970 /* update rssi statistics for use by the hal */
2971 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2972 if (sc->sc_syncbeacon &&
2973 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2974 /*
2975 * Resync beacon timers using the tsf of the beacon
2976 * frame we just received.
2977 */
2978 ath_beacon_config(sc);
2979 }
2980 /* fall thru... */
2981 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2982 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2983 ic->ic_state == IEEE80211_S_RUN) {
2984 u_int64_t tsf = ath_extend_tsf(rstamp,
2985 ath_hal_gettsf64(sc->sc_ah));
2986
2987 /*
2988 * Handle ibss merge as needed; check the tsf on the
2989 * frame before attempting the merge. The 802.11 spec
2990 * says the station should change its bssid to match
2991 * the oldest station with the same ssid, where oldest
2992 * is determined by the tsf. Note that hardware
2993 * reconfiguration happens through callback to
2994 * ath_newstate as the state machine will go from
2995 * RUN -> RUN when this happens.
2996 */
2997 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2998 DPRINTF(sc, ATH_DEBUG_STATE,
2999 "ibss merge, rstamp %u tsf %ju "
3000 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3001 (uintmax_t)ni->ni_tstamp.tsf);
3002 (void) ieee80211_ibss_merge(ni);
3003 }
3004 }
3005 break;
3006 }
3007 }
3008
3009 /*
3010 * Set the default antenna.
3011 */
3012 static void
3013 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3014 {
3015 struct ath_hal *ah = sc->sc_ah;
3016
3017 /* XXX block beacon interrupts */
3018 ath_hal_setdefantenna(ah, antenna);
3019 if (sc->sc_defant != antenna)
3020 sc->sc_stats.ast_ant_defswitch++;
3021 sc->sc_defant = antenna;
3022 sc->sc_rxotherant = 0;
3023 }
3024
3025 static void
3026 ath_handle_micerror(struct ieee80211com *ic,
3027 struct ieee80211_frame *wh, int keyix)
3028 {
3029 struct ieee80211_node *ni;
3030
3031 /* XXX recheck MIC to deal w/ chips that lie */
3032 /* XXX discard MIC errors on !data frames */
3033 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
3034 if (ni != NULL) {
3035 ieee80211_notify_michael_failure(ic, wh, keyix);
3036 ieee80211_free_node(ni);
3037 }
3038 }
3039
3040 static void
3041 ath_rx_proc(void *arg, int npending)
3042 {
3043 #define PA2DESC(_sc, _pa) \
3044 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
3045 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3046 struct ath_softc *sc = arg;
3047 struct ath_buf *bf;
3048 struct ieee80211com *ic = &sc->sc_ic;
3049 struct ifnet *ifp = &sc->sc_if;
3050 struct ath_hal *ah = sc->sc_ah;
3051 struct ath_desc *ds;
3052 struct mbuf *m;
3053 struct ieee80211_node *ni;
3054 struct ath_node *an;
3055 int len, ngood, type;
3056 u_int phyerr;
3057 HAL_STATUS status;
3058 int16_t nf;
3059 u_int64_t tsf;
3060 uint8_t rxerr_tap, rxerr_mon;
3061 NET_LOCK_GIANT_FUNC_INIT();
3062
3063 NET_LOCK_GIANT(); /* XXX */
3064
3065 rxerr_tap =
3066 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3067
3068 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3069 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3070 else if (ifp->if_flags & IFF_PROMISC)
3071 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3072
3073 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3074 ngood = 0;
3075 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3076 tsf = ath_hal_gettsf64(ah);
3077 do {
3078 bf = STAILQ_FIRST(&sc->sc_rxbuf);
3079 if (bf == NULL) { /* NB: shouldn't happen */
3080 if_printf(ifp, "%s: no buffer!\n", __func__);
3081 break;
3082 }
3083 ds = bf->bf_desc;
3084 if (ds->ds_link == bf->bf_daddr) {
3085 /* NB: never process the self-linked entry at the end */
3086 break;
3087 }
3088 m = bf->bf_m;
3089 if (m == NULL) { /* NB: shouldn't happen */
3090 if_printf(ifp, "%s: no mbuf!\n", __func__);
3091 break;
3092 }
3093 /* XXX sync descriptor memory */
3094 /*
3095 * Must provide the virtual address of the current
3096 * descriptor, the physical address, and the virtual
3097 * address of the next descriptor in the h/w chain.
3098 * This allows the HAL to look ahead to see if the
3099 * hardware is done with a descriptor by checking the
3100 * done bit in the following descriptor and the address
3101 * of the current descriptor the DMA engine is working
3102 * on. All this is necessary because of our use of
3103 * a self-linked list to avoid rx overruns.
3104 */
3105 status = ath_hal_rxprocdesc(ah, ds,
3106 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3107 &ds->ds_rxstat);
3108 #ifdef AR_DEBUG
3109 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3110 ath_printrxbuf(bf, status == HAL_OK);
3111 #endif
3112 if (status == HAL_EINPROGRESS)
3113 break;
3114 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3115 if (ds->ds_rxstat.rs_more) {
3116 /*
3117 * Frame spans multiple descriptors; this
3118 * cannot happen yet as we don't support
3119 * jumbograms. If not in monitor mode,
3120 * discard the frame.
3121 */
3122 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3123 sc->sc_stats.ast_rx_toobig++;
3124 goto rx_next;
3125 }
3126 /* fall thru for monitor mode handling... */
3127 } else if (ds->ds_rxstat.rs_status != 0) {
3128 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3129 sc->sc_stats.ast_rx_crcerr++;
3130 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3131 sc->sc_stats.ast_rx_fifoerr++;
3132 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3133 sc->sc_stats.ast_rx_phyerr++;
3134 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3135 sc->sc_stats.ast_rx_phy[phyerr]++;
3136 goto rx_next;
3137 }
3138 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3139 /*
3140 * Decrypt error. If the error occurred
3141 * because there was no hardware key, then
3142 * let the frame through so the upper layers
3143 * can process it. This is necessary for 5210
3144 * parts which have no way to setup a ``clear''
3145 * key cache entry.
3146 *
3147 * XXX do key cache faulting
3148 */
3149 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3150 goto rx_accept;
3151 sc->sc_stats.ast_rx_badcrypt++;
3152 }
3153 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3154 sc->sc_stats.ast_rx_badmic++;
3155 /*
3156 * Do minimal work required to hand off
3157 * the 802.11 header for notifcation.
3158 */
3159 /* XXX frag's and qos frames */
3160 len = ds->ds_rxstat.rs_datalen;
3161 if (len >= sizeof (struct ieee80211_frame)) {
3162 bus_dmamap_sync(sc->sc_dmat,
3163 bf->bf_dmamap,
3164 0, bf->bf_dmamap->dm_mapsize,
3165 BUS_DMASYNC_POSTREAD);
3166 ath_handle_micerror(ic,
3167 mtod(m, struct ieee80211_frame *),
3168 sc->sc_splitmic ?
3169 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3170 }
3171 }
3172 ifp->if_ierrors++;
3173 /*
3174 * Reject error frames, we normally don't want
3175 * to see them in monitor mode (in monitor mode
3176 * allow through packets that have crypto problems).
3177 */
3178
3179 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3180 goto rx_next;
3181 }
3182 rx_accept:
3183 /*
3184 * Sync and unmap the frame. At this point we're
3185 * committed to passing the mbuf somewhere so clear
3186 * bf_m; this means a new sk_buff must be allocated
3187 * when the rx descriptor is setup again to receive
3188 * another frame.
3189 */
3190 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3191 0, bf->bf_dmamap->dm_mapsize,
3192 BUS_DMASYNC_POSTREAD);
3193 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3194 bf->bf_m = NULL;
3195
3196 m_set_rcvif(m, ifp);
3197 len = ds->ds_rxstat.rs_datalen;
3198 m->m_pkthdr.len = m->m_len = len;
3199
3200 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3201
3202 if (sc->sc_drvbpf) {
3203 u_int8_t rix;
3204
3205 /*
3206 * Discard anything shorter than an ack or cts.
3207 */
3208 if (len < IEEE80211_ACK_LEN) {
3209 DPRINTF(sc, ATH_DEBUG_RECV,
3210 "%s: runt packet %d\n",
3211 __func__, len);
3212 sc->sc_stats.ast_rx_tooshort++;
3213 m_freem(m);
3214 goto rx_next;
3215 }
3216 rix = ds->ds_rxstat.rs_rate;
3217 sc->sc_rx_th.wr_tsf = htole64(
3218 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3219 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3220 if (ds->ds_rxstat.rs_status &
3221 (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3222 sc->sc_rx_th.wr_flags |=
3223 IEEE80211_RADIOTAP_F_BADFCS;
3224 }
3225 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3226 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3227 sc->sc_rx_th.wr_antnoise = nf;
3228 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3229
3230 bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3231 sc->sc_rx_th_len, m, BPF_D_IN);
3232 }
3233
3234 if (ds->ds_rxstat.rs_status & rxerr_tap) {
3235 m_freem(m);
3236 goto rx_next;
3237 }
3238 /*
3239 * From this point on we assume the frame is at least
3240 * as large as ieee80211_frame_min; verify that.
3241 */
3242 if (len < IEEE80211_MIN_LEN) {
3243 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3244 __func__, len);
3245 sc->sc_stats.ast_rx_tooshort++;
3246 m_freem(m);
3247 goto rx_next;
3248 }
3249
3250 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3251 ieee80211_dump_pkt(mtod(m, void *), len,
3252 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3253 ds->ds_rxstat.rs_rssi);
3254 }
3255
3256 m_adj(m, -IEEE80211_CRC_LEN);
3257
3258 /*
3259 * Locate the node for sender, track state, and then
3260 * pass the (referenced) node up to the 802.11 layer
3261 * for its use.
3262 */
3263 ni = ieee80211_find_rxnode_withkey(ic,
3264 mtod(m, const struct ieee80211_frame_min *),
3265 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3266 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3267 /*
3268 * Track rx rssi and do any rx antenna management.
3269 */
3270 an = ATH_NODE(ni);
3271 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3272 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3273 /*
3274 * Send frame up for processing.
3275 */
3276 type = ieee80211_input(ic, m, ni,
3277 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3278 ieee80211_free_node(ni);
3279 if (sc->sc_diversity) {
3280 /*
3281 * When using fast diversity, change the default rx
3282 * antenna if diversity chooses the other antenna 3
3283 * times in a row.
3284 */
3285 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3286 if (++sc->sc_rxotherant >= 3)
3287 ath_setdefantenna(sc,
3288 ds->ds_rxstat.rs_antenna);
3289 } else
3290 sc->sc_rxotherant = 0;
3291 }
3292 if (sc->sc_softled) {
3293 /*
3294 * Blink for any data frame. Otherwise do a
3295 * heartbeat-style blink when idle. The latter
3296 * is mainly for station mode where we depend on
3297 * periodic beacon frames to trigger the poll event.
3298 */
3299 if (type == IEEE80211_FC0_TYPE_DATA) {
3300 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3301 ath_led_event(sc, ATH_LED_RX);
3302 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3303 ath_led_event(sc, ATH_LED_POLL);
3304 }
3305 /*
3306 * Arrange to update the last rx timestamp only for
3307 * frames from our ap when operating in station mode.
3308 * This assumes the rx key is always setup when associated.
3309 */
3310 if (ic->ic_opmode == IEEE80211_M_STA &&
3311 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3312 ngood++;
3313 rx_next:
3314 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3315 } while (ath_rxbuf_init(sc, bf) == 0);
3316
3317 /* rx signal state monitoring */
3318 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3319 #if 0
3320 if (ath_hal_radar_event(ah))
3321 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3322 #endif
3323 if (ngood)
3324 sc->sc_lastrx = tsf;
3325
3326 #ifdef __NetBSD__
3327 /* XXX Why isn't this necessary in FreeBSD? */
3328 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3329 ath_start(ifp);
3330 #endif /* __NetBSD__ */
3331
3332 NET_UNLOCK_GIANT(); /* XXX */
3333 #undef PA2DESC
3334 }
3335
3336 /*
3337 * Setup a h/w transmit queue.
3338 */
3339 static struct ath_txq *
3340 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3341 {
3342 #define N(a) (sizeof(a)/sizeof(a[0]))
3343 struct ath_hal *ah = sc->sc_ah;
3344 HAL_TXQ_INFO qi;
3345 int qnum;
3346
3347 memset(&qi, 0, sizeof(qi));
3348 qi.tqi_subtype = subtype;
3349 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3350 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3351 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3352 /*
3353 * Enable interrupts only for EOL and DESC conditions.
3354 * We mark tx descriptors to receive a DESC interrupt
3355 * when a tx queue gets deep; otherwise waiting for the
3356 * EOL to reap descriptors. Note that this is done to
3357 * reduce interrupt load and this only defers reaping
3358 * descriptors, never transmitting frames. Aside from
3359 * reducing interrupts this also permits more concurrency.
3360 * The only potential downside is if the tx queue backs
3361 * up in which case the top half of the kernel may backup
3362 * due to a lack of tx descriptors.
3363 */
3364 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3365 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3366 if (qnum == -1) {
3367 /*
3368 * NB: don't print a message, this happens
3369 * normally on parts with too few tx queues
3370 */
3371 return NULL;
3372 }
3373 if (qnum >= N(sc->sc_txq)) {
3374 device_printf(sc->sc_dev,
3375 "hal qnum %u out of range, max %zu!\n",
3376 qnum, N(sc->sc_txq));
3377 ath_hal_releasetxqueue(ah, qnum);
3378 return NULL;
3379 }
3380 if (!ATH_TXQ_SETUP(sc, qnum)) {
3381 struct ath_txq *txq = &sc->sc_txq[qnum];
3382
3383 txq->axq_qnum = qnum;
3384 txq->axq_depth = 0;
3385 txq->axq_intrcnt = 0;
3386 txq->axq_link = NULL;
3387 STAILQ_INIT(&txq->axq_q);
3388 ATH_TXQ_LOCK_INIT(sc, txq);
3389 sc->sc_txqsetup |= 1<<qnum;
3390 }
3391 return &sc->sc_txq[qnum];
3392 #undef N
3393 }
3394
3395 /*
3396 * Setup a hardware data transmit queue for the specified
3397 * access control. The hal may not support all requested
3398 * queues in which case it will return a reference to a
3399 * previously setup queue. We record the mapping from ac's
3400 * to h/w queues for use by ath_tx_start and also track
3401 * the set of h/w queues being used to optimize work in the
3402 * transmit interrupt handler and related routines.
3403 */
3404 static int
3405 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3406 {
3407 #define N(a) (sizeof(a)/sizeof(a[0]))
3408 struct ath_txq *txq;
3409
3410 if (ac >= N(sc->sc_ac2q)) {
3411 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3412 ac, N(sc->sc_ac2q));
3413 return 0;
3414 }
3415 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3416 if (txq != NULL) {
3417 sc->sc_ac2q[ac] = txq;
3418 return 1;
3419 } else
3420 return 0;
3421 #undef N
3422 }
3423
3424 /*
3425 * Update WME parameters for a transmit queue.
3426 */
3427 static int
3428 ath_txq_update(struct ath_softc *sc, int ac)
3429 {
3430 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3431 #define ATH_TXOP_TO_US(v) (v<<5)
3432 struct ieee80211com *ic = &sc->sc_ic;
3433 struct ath_txq *txq = sc->sc_ac2q[ac];
3434 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3435 struct ath_hal *ah = sc->sc_ah;
3436 HAL_TXQ_INFO qi;
3437
3438 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3439 qi.tqi_aifs = wmep->wmep_aifsn;
3440 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3441 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3442 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3443
3444 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3445 device_printf(sc->sc_dev, "unable to update hardware queue "
3446 "parameters for %s traffic!\n",
3447 ieee80211_wme_acnames[ac]);
3448 return 0;
3449 } else {
3450 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3451 return 1;
3452 }
3453 #undef ATH_TXOP_TO_US
3454 #undef ATH_EXPONENT_TO_VALUE
3455 }
3456
3457 /*
3458 * Callback from the 802.11 layer to update WME parameters.
3459 */
3460 static int
3461 ath_wme_update(struct ieee80211com *ic)
3462 {
3463 struct ath_softc *sc = ic->ic_ifp->if_softc;
3464
3465 return !ath_txq_update(sc, WME_AC_BE) ||
3466 !ath_txq_update(sc, WME_AC_BK) ||
3467 !ath_txq_update(sc, WME_AC_VI) ||
3468 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3469 }
3470
3471 /*
3472 * Reclaim resources for a setup queue.
3473 */
3474 static void
3475 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3476 {
3477
3478 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3479 ATH_TXQ_LOCK_DESTROY(txq);
3480 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3481 }
3482
3483 /*
3484 * Reclaim all tx queue resources.
3485 */
3486 static void
3487 ath_tx_cleanup(struct ath_softc *sc)
3488 {
3489 int i;
3490
3491 ATH_TXBUF_LOCK_DESTROY(sc);
3492 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3493 if (ATH_TXQ_SETUP(sc, i))
3494 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3495 }
3496
3497 /*
3498 * Defragment an mbuf chain, returning at most maxfrags separate
3499 * mbufs+clusters. If this is not possible NULL is returned and
3500 * the original mbuf chain is left in its present (potentially
3501 * modified) state. We use two techniques: collapsing consecutive
3502 * mbufs and replacing consecutive mbufs by a cluster.
3503 */
3504 static struct mbuf *
3505 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3506 {
3507 struct mbuf *m, *n, *n2, **prev;
3508 u_int curfrags;
3509
3510 /*
3511 * Calculate the current number of frags.
3512 */
3513 curfrags = 0;
3514 for (m = m0; m != NULL; m = m->m_next)
3515 curfrags++;
3516 /*
3517 * First, try to collapse mbufs. Note that we always collapse
3518 * towards the front so we don't need to deal with moving the
3519 * pkthdr. This may be suboptimal if the first mbuf has much
3520 * less data than the following.
3521 */
3522 m = m0;
3523 again:
3524 for (;;) {
3525 n = m->m_next;
3526 if (n == NULL)
3527 break;
3528 if (n->m_len < M_TRAILINGSPACE(m)) {
3529 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3530 n->m_len);
3531 m->m_len += n->m_len;
3532 m->m_next = n->m_next;
3533 m_free(n);
3534 if (--curfrags <= maxfrags)
3535 return m0;
3536 } else
3537 m = n;
3538 }
3539 KASSERTMSG(maxfrags > 1,
3540 "maxfrags %u, but normal collapse failed", maxfrags);
3541 /*
3542 * Collapse consecutive mbufs to a cluster.
3543 */
3544 prev = &m0->m_next; /* NB: not the first mbuf */
3545 while ((n = *prev) != NULL) {
3546 if ((n2 = n->m_next) != NULL &&
3547 n->m_len + n2->m_len < MCLBYTES) {
3548 m = m_getcl(how, MT_DATA, 0);
3549 if (m == NULL)
3550 goto bad;
3551 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3552 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3553 n2->m_len);
3554 m->m_len = n->m_len + n2->m_len;
3555 m->m_next = n2->m_next;
3556 *prev = m;
3557 m_free(n);
3558 m_free(n2);
3559 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3560 return m0;
3561 /*
3562 * Still not there, try the normal collapse
3563 * again before we allocate another cluster.
3564 */
3565 goto again;
3566 }
3567 prev = &n->m_next;
3568 }
3569 /*
3570 * No place where we can collapse to a cluster; punt.
3571 * This can occur if, for example, you request 2 frags
3572 * but the packet requires that both be clusters (we
3573 * never reallocate the first mbuf to avoid moving the
3574 * packet header).
3575 */
3576 bad:
3577 return NULL;
3578 }
3579
3580 /*
3581 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3582 */
3583 static int
3584 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3585 {
3586 int i;
3587
3588 for (i = 0; i < rt->rateCount; i++)
3589 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3590 return i;
3591 return 0; /* NB: lowest rate */
3592 }
3593
3594 static void
3595 ath_freetx(struct mbuf *m)
3596 {
3597 struct mbuf *next;
3598
3599 do {
3600 next = m->m_nextpkt;
3601 m->m_nextpkt = NULL;
3602 m_freem(m);
3603 } while ((m = next) != NULL);
3604 }
3605
3606 static int
3607 deduct_pad_bytes(int len, int hdrlen)
3608 {
3609 /* XXX I am suspicious that this code, which I extracted
3610 * XXX from ath_tx_start() for reuse, does the right thing.
3611 */
3612 return len - (hdrlen & 3);
3613 }
3614
3615 static int
3616 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3617 struct mbuf *m0)
3618 {
3619 struct ieee80211com *ic = &sc->sc_ic;
3620 struct ath_hal *ah = sc->sc_ah;
3621 struct ifnet *ifp = &sc->sc_if;
3622 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3623 int i, error, iswep, ismcast, isfrag, ismrr;
3624 int keyix, hdrlen, pktlen, try0;
3625 u_int8_t rix, txrate, ctsrate;
3626 u_int8_t cix = 0xff; /* NB: silence compiler */
3627 struct ath_desc *ds, *ds0;
3628 struct ath_txq *txq;
3629 struct ieee80211_frame *wh;
3630 u_int subtype, flags, ctsduration;
3631 HAL_PKT_TYPE atype;
3632 const HAL_RATE_TABLE *rt;
3633 HAL_BOOL shortPreamble;
3634 struct ath_node *an;
3635 struct mbuf *m;
3636 u_int pri;
3637
3638 wh = mtod(m0, struct ieee80211_frame *);
3639 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3640 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3641 isfrag = m0->m_flags & M_FRAG;
3642 hdrlen = ieee80211_anyhdrsize(wh);
3643 /*
3644 * Packet length must not include any
3645 * pad bytes; deduct them here.
3646 */
3647 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3648
3649 if (iswep) {
3650 const struct ieee80211_cipher *cip;
3651 struct ieee80211_key *k;
3652
3653 /*
3654 * Construct the 802.11 header+trailer for an encrypted
3655 * frame. The only reason this can fail is because of an
3656 * unknown or unsupported cipher/key type.
3657 */
3658 k = ieee80211_crypto_encap(ic, ni, m0);
3659 if (k == NULL) {
3660 /*
3661 * This can happen when the key is yanked after the
3662 * frame was queued. Just discard the frame; the
3663 * 802.11 layer counts failures and provides
3664 * debugging/diagnostics.
3665 */
3666 ath_freetx(m0);
3667 return EIO;
3668 }
3669 /*
3670 * Adjust the packet + header lengths for the crypto
3671 * additions and calculate the h/w key index. When
3672 * a s/w mic is done the frame will have had any mic
3673 * added to it prior to entry so m0->m_pkthdr.len above will
3674 * account for it. Otherwise we need to add it to the
3675 * packet length.
3676 */
3677 cip = k->wk_cipher;
3678 hdrlen += cip->ic_header;
3679 pktlen += cip->ic_header + cip->ic_trailer;
3680 /* NB: frags always have any TKIP MIC done in s/w */
3681 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3682 pktlen += cip->ic_miclen;
3683 keyix = k->wk_keyix;
3684
3685 /* packet header may have moved, reset our local pointer */
3686 wh = mtod(m0, struct ieee80211_frame *);
3687 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3688 /*
3689 * Use station key cache slot, if assigned.
3690 */
3691 keyix = ni->ni_ucastkey.wk_keyix;
3692 if (keyix == IEEE80211_KEYIX_NONE)
3693 keyix = HAL_TXKEYIX_INVALID;
3694 } else
3695 keyix = HAL_TXKEYIX_INVALID;
3696
3697 pktlen += IEEE80211_CRC_LEN;
3698
3699 /*
3700 * Load the DMA map so any coalescing is done. This
3701 * also calculates the number of descriptors we need.
3702 */
3703 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3704 BUS_DMA_NOWAIT);
3705 if (error == EFBIG) {
3706 /* XXX packet requires too many descriptors */
3707 bf->bf_nseg = ATH_TXDESC+1;
3708 } else if (error != 0) {
3709 sc->sc_stats.ast_tx_busdma++;
3710 ath_freetx(m0);
3711 return error;
3712 }
3713 /*
3714 * Discard null packets and check for packets that
3715 * require too many TX descriptors. We try to convert
3716 * the latter to a cluster.
3717 */
3718 if (error == EFBIG) { /* too many desc's, linearize */
3719 sc->sc_stats.ast_tx_linear++;
3720 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3721 if (m == NULL) {
3722 ath_freetx(m0);
3723 sc->sc_stats.ast_tx_nombuf++;
3724 return ENOMEM;
3725 }
3726 m0 = m;
3727 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3728 BUS_DMA_NOWAIT);
3729 if (error != 0) {
3730 sc->sc_stats.ast_tx_busdma++;
3731 ath_freetx(m0);
3732 return error;
3733 }
3734 KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
3735 "too many segments after defrag; nseg %u", bf->bf_nseg);
3736 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3737 sc->sc_stats.ast_tx_nodata++;
3738 ath_freetx(m0);
3739 return EIO;
3740 }
3741 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3742 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3743 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3744 bf->bf_m = m0;
3745 bf->bf_node = ni; /* NB: held reference */
3746
3747 /* setup descriptors */
3748 ds = bf->bf_desc;
3749 rt = sc->sc_currates;
3750 KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
3751
3752 /*
3753 * NB: the 802.11 layer marks whether or not we should
3754 * use short preamble based on the current mode and
3755 * negotiated parameters.
3756 */
3757 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3758 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3759 shortPreamble = AH_TRUE;
3760 sc->sc_stats.ast_tx_shortpre++;
3761 } else {
3762 shortPreamble = AH_FALSE;
3763 }
3764
3765 an = ATH_NODE(ni);
3766 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3767 ismrr = 0; /* default no multi-rate retry*/
3768 /*
3769 * Calculate Atheros packet type from IEEE80211 packet header,
3770 * setup for rate calculations, and select h/w transmit queue.
3771 */
3772 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3773 case IEEE80211_FC0_TYPE_MGT:
3774 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3775 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3776 atype = HAL_PKT_TYPE_BEACON;
3777 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3778 atype = HAL_PKT_TYPE_PROBE_RESP;
3779 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3780 atype = HAL_PKT_TYPE_ATIM;
3781 else
3782 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3783 rix = sc->sc_minrateix;
3784 txrate = rt->info[rix].rateCode;
3785 if (shortPreamble)
3786 txrate |= rt->info[rix].shortPreamble;
3787 try0 = ATH_TXMGTTRY;
3788 /* NB: force all management frames to highest queue */
3789 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3790 /* NB: force all management frames to highest queue */
3791 pri = WME_AC_VO;
3792 } else
3793 pri = WME_AC_BE;
3794 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3795 break;
3796 case IEEE80211_FC0_TYPE_CTL:
3797 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3798 rix = sc->sc_minrateix;
3799 txrate = rt->info[rix].rateCode;
3800 if (shortPreamble)
3801 txrate |= rt->info[rix].shortPreamble;
3802 try0 = ATH_TXMGTTRY;
3803 /* NB: force all ctl frames to highest queue */
3804 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3805 /* NB: force all ctl frames to highest queue */
3806 pri = WME_AC_VO;
3807 } else
3808 pri = WME_AC_BE;
3809 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3810 break;
3811 case IEEE80211_FC0_TYPE_DATA:
3812 atype = HAL_PKT_TYPE_NORMAL; /* default */
3813 /*
3814 * Data frames: multicast frames go out at a fixed rate,
3815 * otherwise consult the rate control module for the
3816 * rate to use.
3817 */
3818 if (ismcast) {
3819 /*
3820 * Check mcast rate setting in case it's changed.
3821 * XXX move out of fastpath
3822 */
3823 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3824 sc->sc_mcastrix =
3825 ath_tx_findrix(rt, ic->ic_mcast_rate);
3826 sc->sc_mcastrate = ic->ic_mcast_rate;
3827 }
3828 rix = sc->sc_mcastrix;
3829 txrate = rt->info[rix].rateCode;
3830 try0 = 1;
3831 } else {
3832 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3833 &rix, &try0, &txrate);
3834 sc->sc_txrate = txrate; /* for LED blinking */
3835 if (try0 != ATH_TXMAXTRY)
3836 ismrr = 1;
3837 }
3838 pri = M_WME_GETAC(m0);
3839 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3840 flags |= HAL_TXDESC_NOACK;
3841 break;
3842 default:
3843 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3844 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3845 /* XXX statistic */
3846 ath_freetx(m0);
3847 return EIO;
3848 }
3849 txq = sc->sc_ac2q[pri];
3850
3851 /*
3852 * When servicing one or more stations in power-save mode
3853 * multicast frames must be buffered until after the beacon.
3854 * We use the CAB queue for that.
3855 */
3856 if (ismcast && ic->ic_ps_sta) {
3857 txq = sc->sc_cabq;
3858 /* XXX? more bit in 802.11 frame header */
3859 }
3860
3861 /*
3862 * Calculate miscellaneous flags.
3863 */
3864 if (ismcast) {
3865 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3866 } else if (pktlen > ic->ic_rtsthreshold) {
3867 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3868 cix = rt->info[rix].controlRate;
3869 sc->sc_stats.ast_tx_rts++;
3870 }
3871 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3872 sc->sc_stats.ast_tx_noack++;
3873
3874 /*
3875 * If 802.11g protection is enabled, determine whether
3876 * to use RTS/CTS or just CTS. Note that this is only
3877 * done for OFDM unicast frames.
3878 */
3879 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3880 rt->info[rix].phy == IEEE80211_T_OFDM &&
3881 (flags & HAL_TXDESC_NOACK) == 0) {
3882 /* XXX fragments must use CCK rates w/ protection */
3883 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3884 flags |= HAL_TXDESC_RTSENA;
3885 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3886 flags |= HAL_TXDESC_CTSENA;
3887 if (isfrag) {
3888 /*
3889 * For frags it would be desirable to use the
3890 * highest CCK rate for RTS/CTS. But stations
3891 * farther away may detect it at a lower CCK rate
3892 * so use the configured protection rate instead
3893 * (for now).
3894 */
3895 cix = rt->info[sc->sc_protrix].controlRate;
3896 } else
3897 cix = rt->info[sc->sc_protrix].controlRate;
3898 sc->sc_stats.ast_tx_protect++;
3899 }
3900
3901 /*
3902 * Calculate duration. This logically belongs in the 802.11
3903 * layer but it lacks sufficient information to calculate it.
3904 */
3905 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3906 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3907 u_int16_t dur;
3908 /*
3909 * XXX not right with fragmentation.
3910 */
3911 if (shortPreamble)
3912 dur = rt->info[rix].spAckDuration;
3913 else
3914 dur = rt->info[rix].lpAckDuration;
3915 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3916 dur += dur; /* additional SIFS+ACK */
3917 KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
3918 /*
3919 * Include the size of next fragment so NAV is
3920 * updated properly. The last fragment uses only
3921 * the ACK duration
3922 */
3923 dur += ath_hal_computetxtime(ah, rt,
3924 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3925 hdrlen) -
3926 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3927 rix, shortPreamble);
3928 }
3929 if (isfrag) {
3930 /*
3931 * Force hardware to use computed duration for next
3932 * fragment by disabling multi-rate retry which updates
3933 * duration based on the multi-rate duration table.
3934 */
3935 try0 = ATH_TXMAXTRY;
3936 }
3937 *(u_int16_t *)wh->i_dur = htole16(dur);
3938 }
3939
3940 /*
3941 * Calculate RTS/CTS rate and duration if needed.
3942 */
3943 ctsduration = 0;
3944 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3945 /*
3946 * CTS transmit rate is derived from the transmit rate
3947 * by looking in the h/w rate table. We must also factor
3948 * in whether or not a short preamble is to be used.
3949 */
3950 /* NB: cix is set above where RTS/CTS is enabled */
3951 KASSERTMSG(cix != 0xff, "cix not setup");
3952 ctsrate = rt->info[cix].rateCode;
3953 /*
3954 * Compute the transmit duration based on the frame
3955 * size and the size of an ACK frame. We call into the
3956 * HAL to do the computation since it depends on the
3957 * characteristics of the actual PHY being used.
3958 *
3959 * NB: CTS is assumed the same size as an ACK so we can
3960 * use the precalculated ACK durations.
3961 */
3962 if (shortPreamble) {
3963 ctsrate |= rt->info[cix].shortPreamble;
3964 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3965 ctsduration += rt->info[cix].spAckDuration;
3966 ctsduration += ath_hal_computetxtime(ah,
3967 rt, pktlen, rix, AH_TRUE);
3968 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3969 ctsduration += rt->info[rix].spAckDuration;
3970 } else {
3971 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3972 ctsduration += rt->info[cix].lpAckDuration;
3973 ctsduration += ath_hal_computetxtime(ah,
3974 rt, pktlen, rix, AH_FALSE);
3975 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3976 ctsduration += rt->info[rix].lpAckDuration;
3977 }
3978 /*
3979 * Must disable multi-rate retry when using RTS/CTS.
3980 */
3981 ismrr = 0;
3982 try0 = ATH_TXMGTTRY; /* XXX */
3983 } else
3984 ctsrate = 0;
3985
3986 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3987 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3988 sc->sc_hwmap[txrate].ieeerate, -1);
3989 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3990 if (sc->sc_drvbpf) {
3991 u_int64_t tsf = ath_hal_gettsf64(ah);
3992
3993 sc->sc_tx_th.wt_tsf = htole64(tsf);
3994 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3995 if (iswep)
3996 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3997 if (isfrag)
3998 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3999 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
4000 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4001 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4002
4003 bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0,
4004 BPF_D_OUT);
4005 }
4006
4007 /*
4008 * Determine if a tx interrupt should be generated for
4009 * this descriptor. We take a tx interrupt to reap
4010 * descriptors when the h/w hits an EOL condition or
4011 * when the descriptor is specifically marked to generate
4012 * an interrupt. We periodically mark descriptors in this
4013 * way to insure timely replenishing of the supply needed
4014 * for sending frames. Defering interrupts reduces system
4015 * load and potentially allows more concurrent work to be
4016 * done but if done to aggressively can cause senders to
4017 * backup.
4018 *
4019 * NB: use >= to deal with sc_txintrperiod changing
4020 * dynamically through sysctl.
4021 */
4022 if (flags & HAL_TXDESC_INTREQ) {
4023 txq->axq_intrcnt = 0;
4024 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4025 flags |= HAL_TXDESC_INTREQ;
4026 txq->axq_intrcnt = 0;
4027 }
4028
4029 /*
4030 * Formulate first tx descriptor with tx controls.
4031 */
4032 /* XXX check return value? */
4033 ath_hal_setuptxdesc(ah, ds
4034 , pktlen /* packet length */
4035 , hdrlen /* header length */
4036 , atype /* Atheros packet type */
4037 , ni->ni_txpower /* txpower */
4038 , txrate, try0 /* series 0 rate/tries */
4039 , keyix /* key cache index */
4040 , sc->sc_txantenna /* antenna mode */
4041 , flags /* flags */
4042 , ctsrate /* rts/cts rate */
4043 , ctsduration /* rts/cts duration */
4044 );
4045 bf->bf_flags = flags;
4046 /*
4047 * Setup the multi-rate retry state only when we're
4048 * going to use it. This assumes ath_hal_setuptxdesc
4049 * initializes the descriptors (so we don't have to)
4050 * when the hardware supports multi-rate retry and
4051 * we don't use it.
4052 */
4053 if (ismrr)
4054 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4055
4056 /*
4057 * Fillin the remainder of the descriptor info.
4058 */
4059 ds0 = ds;
4060 for (i = 0; i < bf->bf_nseg; i++, ds++) {
4061 ds->ds_data = bf->bf_segs[i].ds_addr;
4062 if (i == bf->bf_nseg - 1)
4063 ds->ds_link = 0;
4064 else
4065 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4066 ath_hal_filltxdesc(ah, ds
4067 , bf->bf_segs[i].ds_len /* segment length */
4068 , i == 0 /* first segment */
4069 , i == bf->bf_nseg - 1 /* last segment */
4070 , ds0 /* first descriptor */
4071 );
4072
4073 /* NB: The desc swap function becomes void,
4074 * if descriptor swapping is not enabled
4075 */
4076 ath_desc_swap(ds);
4077
4078 DPRINTF(sc, ATH_DEBUG_XMIT,
4079 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
4080 __func__, i, ds->ds_link, ds->ds_data,
4081 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4082 }
4083 /*
4084 * Insert the frame on the outbound list and
4085 * pass it on to the hardware.
4086 */
4087 ATH_TXQ_LOCK(txq);
4088 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4089 if (txq->axq_link == NULL) {
4090 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4091 DPRINTF(sc, ATH_DEBUG_XMIT,
4092 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4093 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4094 txq->axq_depth);
4095 } else {
4096 *txq->axq_link = HTOAH32(bf->bf_daddr);
4097 DPRINTF(sc, ATH_DEBUG_XMIT,
4098 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4099 __func__, txq->axq_qnum, txq->axq_link,
4100 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4101 }
4102 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4103 /*
4104 * The CAB queue is started from the SWBA handler since
4105 * frames only go out on DTIM and to avoid possible races.
4106 */
4107 if (txq != sc->sc_cabq)
4108 ath_hal_txstart(ah, txq->axq_qnum);
4109 ATH_TXQ_UNLOCK(txq);
4110
4111 return 0;
4112 }
4113
4114 /*
4115 * Process completed xmit descriptors from the specified queue.
4116 */
4117 static int
4118 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4119 {
4120 struct ath_hal *ah = sc->sc_ah;
4121 struct ieee80211com *ic = &sc->sc_ic;
4122 struct ath_buf *bf;
4123 struct ath_desc *ds, *ds0;
4124 struct ieee80211_node *ni;
4125 struct ath_node *an;
4126 int sr, lr, pri, nacked;
4127 HAL_STATUS status;
4128
4129 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4130 __func__, txq->axq_qnum,
4131 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4132 txq->axq_link);
4133 nacked = 0;
4134 for (;;) {
4135 ATH_TXQ_LOCK(txq);
4136 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4137 bf = STAILQ_FIRST(&txq->axq_q);
4138 if (bf == NULL) {
4139 txq->axq_link = NULL;
4140 ATH_TXQ_UNLOCK(txq);
4141 break;
4142 }
4143 ds0 = &bf->bf_desc[0];
4144 ds = &bf->bf_desc[bf->bf_nseg - 1];
4145 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4146 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4147 ath_printtxbuf(bf, status == HAL_OK);
4148 if (status == HAL_EINPROGRESS) {
4149 ATH_TXQ_UNLOCK(txq);
4150 break;
4151 }
4152 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4153 ATH_TXQ_UNLOCK(txq);
4154
4155 ni = bf->bf_node;
4156 if (ni != NULL) {
4157 an = ATH_NODE(ni);
4158 if (ds->ds_txstat.ts_status == 0) {
4159 u_int8_t txant = ds->ds_txstat.ts_antenna;
4160 sc->sc_stats.ast_ant_tx[txant]++;
4161 sc->sc_ant_tx[txant]++;
4162 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4163 sc->sc_stats.ast_tx_altrate++;
4164 sc->sc_stats.ast_tx_rssi =
4165 ds->ds_txstat.ts_rssi;
4166 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4167 ds->ds_txstat.ts_rssi);
4168 pri = M_WME_GETAC(bf->bf_m);
4169 if (pri >= WME_AC_VO)
4170 ic->ic_wme.wme_hipri_traffic++;
4171 ni->ni_inact = ni->ni_inact_reload;
4172 } else {
4173 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4174 sc->sc_stats.ast_tx_xretries++;
4175 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4176 sc->sc_stats.ast_tx_fifoerr++;
4177 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4178 sc->sc_stats.ast_tx_filtered++;
4179 }
4180 sr = ds->ds_txstat.ts_shortretry;
4181 lr = ds->ds_txstat.ts_longretry;
4182 sc->sc_stats.ast_tx_shortretry += sr;
4183 sc->sc_stats.ast_tx_longretry += lr;
4184 /*
4185 * Hand the descriptor to the rate control algorithm.
4186 */
4187 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4188 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4189 /*
4190 * If frame was ack'd update the last rx time
4191 * used to workaround phantom bmiss interrupts.
4192 */
4193 if (ds->ds_txstat.ts_status == 0)
4194 nacked++;
4195 ath_rate_tx_complete(sc, an, ds, ds0);
4196 }
4197 /*
4198 * Reclaim reference to node.
4199 *
4200 * NB: the node may be reclaimed here if, for example
4201 * this is a DEAUTH message that was sent and the
4202 * node was timed out due to inactivity.
4203 */
4204 ieee80211_free_node(ni);
4205 }
4206 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4207 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4208 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4209 m_freem(bf->bf_m);
4210 bf->bf_m = NULL;
4211 bf->bf_node = NULL;
4212
4213 ATH_TXBUF_LOCK(sc);
4214 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4215 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4216 ATH_TXBUF_UNLOCK(sc);
4217 }
4218 return nacked;
4219 }
4220
4221 static inline int
4222 txqactive(struct ath_hal *ah, int qnum)
4223 {
4224 u_int32_t txqs = 1<<qnum;
4225 ath_hal_gettxintrtxqs(ah, &txqs);
4226 return (txqs & (1<<qnum));
4227 }
4228
4229 /*
4230 * Deferred processing of transmit interrupt; special-cased
4231 * for a single hardware transmit queue (e.g. 5210 and 5211).
4232 */
4233 static void
4234 ath_tx_proc_q0(void *arg, int npending)
4235 {
4236 struct ath_softc *sc = arg;
4237 struct ifnet *ifp = &sc->sc_if;
4238 #ifdef __NetBSD__
4239 int s;
4240 #endif
4241
4242 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0)
4243 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4244
4245 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4246 ath_tx_processq(sc, sc->sc_cabq);
4247
4248 if (sc->sc_softled)
4249 ath_led_event(sc, ATH_LED_TX);
4250
4251 #ifdef __NetBSD__
4252 s = splnet();
4253 #endif
4254 ath_start(ifp);
4255 #ifdef __NetBSD__
4256 splx(s);
4257 #endif
4258 }
4259
4260 /*
4261 * Deferred processing of transmit interrupt; special-cased
4262 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4263 */
4264 static void
4265 ath_tx_proc_q0123(void *arg, int npending)
4266 {
4267 struct ath_softc *sc = arg;
4268 struct ifnet *ifp = &sc->sc_if;
4269 int nacked;
4270 #ifdef __NetBSD__
4271 int s;
4272 #endif
4273
4274 /*
4275 * Process each active queue.
4276 */
4277 nacked = 0;
4278 if (txqactive(sc->sc_ah, 0))
4279 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4280 if (txqactive(sc->sc_ah, 1))
4281 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4282 if (txqactive(sc->sc_ah, 2))
4283 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4284 if (txqactive(sc->sc_ah, 3))
4285 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4286 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4287 ath_tx_processq(sc, sc->sc_cabq);
4288 if (nacked) {
4289 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4290 }
4291
4292 if (sc->sc_softled)
4293 ath_led_event(sc, ATH_LED_TX);
4294
4295 #ifdef __NetBSD__
4296 s = splnet();
4297 #endif
4298 ath_start(ifp);
4299 #ifdef __NetBSD__
4300 splx(s);
4301 #endif
4302 }
4303
4304 /*
4305 * Deferred processing of transmit interrupt.
4306 */
4307 static void
4308 ath_tx_proc(void *arg, int npending)
4309 {
4310 struct ath_softc *sc = arg;
4311 struct ifnet *ifp = &sc->sc_if;
4312 int i, nacked;
4313 #ifdef __NetBSD__
4314 int s;
4315 #endif
4316
4317 /*
4318 * Process each active queue.
4319 */
4320 nacked = 0;
4321 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4322 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4323 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4324 if (nacked) {
4325 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4326 }
4327
4328 if (sc->sc_softled)
4329 ath_led_event(sc, ATH_LED_TX);
4330
4331 #ifdef __NetBSD__
4332 s = splnet();
4333 #endif
4334 ath_start(ifp);
4335 #ifdef __NetBSD__
4336 splx(s);
4337 #endif
4338 }
4339
4340 static void
4341 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4342 {
4343 struct ath_hal *ah = sc->sc_ah;
4344 struct ieee80211_node *ni;
4345 struct ath_buf *bf;
4346 struct ath_desc *ds;
4347
4348 /*
4349 * NB: this assumes output has been stopped and
4350 * we do not need to block ath_tx_tasklet
4351 */
4352 for (;;) {
4353 ATH_TXQ_LOCK(txq);
4354 bf = STAILQ_FIRST(&txq->axq_q);
4355 if (bf == NULL) {
4356 txq->axq_link = NULL;
4357 ATH_TXQ_UNLOCK(txq);
4358 break;
4359 }
4360 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4361 ATH_TXQ_UNLOCK(txq);
4362 ds = &bf->bf_desc[bf->bf_nseg - 1];
4363 if (sc->sc_debug & ATH_DEBUG_RESET)
4364 ath_printtxbuf(bf,
4365 ath_hal_txprocdesc(ah, bf->bf_desc,
4366 &ds->ds_txstat) == HAL_OK);
4367 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4368 m_freem(bf->bf_m);
4369 bf->bf_m = NULL;
4370 ni = bf->bf_node;
4371 bf->bf_node = NULL;
4372 if (ni != NULL) {
4373 /*
4374 * Reclaim node reference.
4375 */
4376 ieee80211_free_node(ni);
4377 }
4378 ATH_TXBUF_LOCK(sc);
4379 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4380 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4381 ATH_TXBUF_UNLOCK(sc);
4382 }
4383 }
4384
4385 static void
4386 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4387 {
4388 struct ath_hal *ah = sc->sc_ah;
4389
4390 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4391 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4392 __func__, txq->axq_qnum,
4393 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4394 txq->axq_link);
4395 }
4396
4397 /*
4398 * Drain the transmit queues and reclaim resources.
4399 */
4400 static void
4401 ath_draintxq(struct ath_softc *sc)
4402 {
4403 struct ath_hal *ah = sc->sc_ah;
4404 int i;
4405
4406 /* XXX return value */
4407 if (device_is_active(sc->sc_dev)) {
4408 /* don't touch the hardware if marked invalid */
4409 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4410 DPRINTF(sc, ATH_DEBUG_RESET,
4411 "%s: beacon queue %p\n", __func__,
4412 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4413 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4414 if (ATH_TXQ_SETUP(sc, i))
4415 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4416 }
4417 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4418 if (ATH_TXQ_SETUP(sc, i))
4419 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4420 }
4421
4422 /*
4423 * Disable the receive h/w in preparation for a reset.
4424 */
4425 static void
4426 ath_stoprecv(struct ath_softc *sc)
4427 {
4428 #define PA2DESC(_sc, _pa) \
4429 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4430 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4431 struct ath_hal *ah = sc->sc_ah;
4432
4433 ath_hal_stoppcurecv(ah); /* disable PCU */
4434 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4435 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4436 DELAY(3000); /* 3ms is long enough for 1 frame */
4437 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4438 struct ath_buf *bf;
4439
4440 printf("%s: rx queue %p, link %p\n", __func__,
4441 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4442 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4443 struct ath_desc *ds = bf->bf_desc;
4444 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4445 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4446 &ds->ds_rxstat);
4447 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4448 ath_printrxbuf(bf, status == HAL_OK);
4449 }
4450 }
4451 sc->sc_rxlink = NULL; /* just in case */
4452 #undef PA2DESC
4453 }
4454
4455 /*
4456 * Enable the receive h/w following a reset.
4457 */
4458 static int
4459 ath_startrecv(struct ath_softc *sc)
4460 {
4461 struct ath_hal *ah = sc->sc_ah;
4462 struct ath_buf *bf;
4463
4464 sc->sc_rxlink = NULL;
4465 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4466 int error = ath_rxbuf_init(sc, bf);
4467 if (error != 0) {
4468 DPRINTF(sc, ATH_DEBUG_RECV,
4469 "%s: ath_rxbuf_init failed %d\n",
4470 __func__, error);
4471 return error;
4472 }
4473 }
4474
4475 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4476 ath_hal_putrxbuf(ah, bf->bf_daddr);
4477 ath_hal_rxena(ah); /* enable recv descriptors */
4478 ath_mode_init(sc); /* set filters, etc. */
4479 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4480 return 0;
4481 }
4482
4483 /*
4484 * Update internal state after a channel change.
4485 */
4486 static void
4487 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4488 {
4489 struct ieee80211com *ic = &sc->sc_ic;
4490 enum ieee80211_phymode mode;
4491 u_int16_t flags;
4492
4493 /*
4494 * Change channels and update the h/w rate map
4495 * if we're switching; e.g. 11a to 11b/g.
4496 */
4497 mode = ieee80211_chan2mode(ic, chan);
4498 if (mode != sc->sc_curmode)
4499 ath_setcurmode(sc, mode);
4500 /*
4501 * Update BPF state. NB: ethereal et. al. don't handle
4502 * merged flags well so pick a unique mode for their use.
4503 */
4504 if (IEEE80211_IS_CHAN_A(chan))
4505 flags = IEEE80211_CHAN_A;
4506 /* XXX 11g schizophrenia */
4507 else if (IEEE80211_IS_CHAN_G(chan) ||
4508 IEEE80211_IS_CHAN_PUREG(chan))
4509 flags = IEEE80211_CHAN_G;
4510 else
4511 flags = IEEE80211_CHAN_B;
4512 if (IEEE80211_IS_CHAN_T(chan))
4513 flags |= IEEE80211_CHAN_TURBO;
4514 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4515 htole16(chan->ic_freq);
4516 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4517 htole16(flags);
4518 }
4519
4520 #if 0
4521 /*
4522 * Poll for a channel clear indication; this is required
4523 * for channels requiring DFS and not previously visited
4524 * and/or with a recent radar detection.
4525 */
4526 static void
4527 ath_dfswait(void *arg)
4528 {
4529 struct ath_softc *sc = arg;
4530 struct ath_hal *ah = sc->sc_ah;
4531 HAL_CHANNEL hchan;
4532
4533 ath_hal_radar_wait(ah, &hchan);
4534 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4535 if_printf(&sc->sc_if,
4536 "channel %u/0x%x/0x%x has interference\n",
4537 hchan.channel, hchan.channelFlags, hchan.privFlags);
4538 return;
4539 }
4540 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4541 /* XXX should not happen */
4542 return;
4543 }
4544 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4545 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4546 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4547 if_printf(&sc->sc_if,
4548 "channel %u/0x%x/0x%x marked clear\n",
4549 hchan.channel, hchan.channelFlags, hchan.privFlags);
4550 } else
4551 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4552 }
4553 #endif
4554
4555 /*
4556 * Set/change channels. If the channel is really being changed,
4557 * it's done by reseting the chip. To accomplish this we must
4558 * first cleanup any pending DMA, then restart stuff after a la
4559 * ath_init.
4560 */
4561 static int
4562 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4563 {
4564 struct ath_hal *ah = sc->sc_ah;
4565 struct ieee80211com *ic = &sc->sc_ic;
4566 HAL_CHANNEL hchan;
4567
4568 /*
4569 * Convert to a HAL channel description with
4570 * the flags constrained to reflect the current
4571 * operating mode.
4572 */
4573 hchan.channel = chan->ic_freq;
4574 hchan.channelFlags = ath_chan2flags(ic, chan);
4575
4576 DPRINTF(sc, ATH_DEBUG_RESET,
4577 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4578 __func__,
4579 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4580 sc->sc_curchan.channelFlags),
4581 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4582 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4583 hchan.channel, hchan.channelFlags);
4584 if (hchan.channel != sc->sc_curchan.channel ||
4585 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4586 HAL_STATUS status;
4587
4588 /*
4589 * To switch channels clear any pending DMA operations;
4590 * wait long enough for the RX fifo to drain, reset the
4591 * hardware at the new frequency, and then re-enable
4592 * the relevant bits of the h/w.
4593 */
4594 ath_hal_intrset(ah, 0); /* disable interrupts */
4595 ath_draintxq(sc); /* clear pending tx frames */
4596 ath_stoprecv(sc); /* turn off frame recv */
4597 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4598 if_printf(ic->ic_ifp, "%s: unable to reset "
4599 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4600 __func__, ieee80211_chan2ieee(ic, chan),
4601 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4602 return EIO;
4603 }
4604 sc->sc_curchan = hchan;
4605 ath_update_txpow(sc); /* update tx power state */
4606 ath_restore_diversity(sc);
4607 sc->sc_calinterval = 1;
4608 sc->sc_caltries = 0;
4609
4610 /*
4611 * Re-enable rx framework.
4612 */
4613 if (ath_startrecv(sc) != 0) {
4614 if_printf(&sc->sc_if,
4615 "%s: unable to restart recv logic\n", __func__);
4616 return EIO;
4617 }
4618
4619 /*
4620 * Change channels and update the h/w rate map
4621 * if we're switching; e.g. 11a to 11b/g.
4622 */
4623 ic->ic_ibss_chan = chan;
4624 ath_chan_change(sc, chan);
4625
4626 #if 0
4627 /*
4628 * Handle DFS required waiting period to determine
4629 * if channel is clear of radar traffic.
4630 */
4631 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4632 #define DFS_AND_NOT_CLEAR(_c) \
4633 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4634 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4635 if_printf(&sc->sc_if,
4636 "wait for DFS clear channel signal\n");
4637 /* XXX stop sndq */
4638 sc->sc_if.if_flags |= IFF_OACTIVE;
4639 callout_reset(&sc->sc_dfs_ch,
4640 2 * hz, ath_dfswait, sc);
4641 } else
4642 callout_stop(&sc->sc_dfs_ch);
4643 #undef DFS_NOT_CLEAR
4644 }
4645 #endif
4646
4647 /*
4648 * Re-enable interrupts.
4649 */
4650 ath_hal_intrset(ah, sc->sc_imask);
4651 }
4652 return 0;
4653 }
4654
4655 static void
4656 ath_next_scan(void *arg)
4657 {
4658 struct ath_softc *sc = arg;
4659 struct ieee80211com *ic = &sc->sc_ic;
4660 int s;
4661
4662 /* don't call ath_start w/o network interrupts blocked */
4663 s = splnet();
4664
4665 if (ic->ic_state == IEEE80211_S_SCAN)
4666 ieee80211_next_scan(ic);
4667 splx(s);
4668 }
4669
4670 /*
4671 * Periodically recalibrate the PHY to account
4672 * for temperature/environment changes.
4673 */
4674 static void
4675 ath_calibrate(void *arg)
4676 {
4677 struct ath_softc *sc = arg;
4678 struct ath_hal *ah = sc->sc_ah;
4679 HAL_BOOL iqCalDone;
4680 int s;
4681
4682 sc->sc_stats.ast_per_cal++;
4683
4684 s = splnet();
4685
4686 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4687 /*
4688 * Rfgain is out of bounds, reset the chip
4689 * to load new gain values.
4690 */
4691 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4692 "%s: rfgain change\n", __func__);
4693 sc->sc_stats.ast_per_rfgain++;
4694 ath_reset(&sc->sc_if);
4695 }
4696 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4697 DPRINTF(sc, ATH_DEBUG_ANY,
4698 "%s: calibration of channel %u failed\n",
4699 __func__, sc->sc_curchan.channel);
4700 sc->sc_stats.ast_per_calfail++;
4701 }
4702 /*
4703 * Calibrate noise floor data again in case of change.
4704 */
4705 ath_hal_process_noisefloor(ah);
4706 /*
4707 * Poll more frequently when the IQ calibration is in
4708 * progress to speedup loading the final settings.
4709 * We temper this aggressive polling with an exponential
4710 * back off after 4 tries up to ath_calinterval.
4711 */
4712 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4713 sc->sc_caltries = 0;
4714 sc->sc_calinterval = ath_calinterval;
4715 } else if (sc->sc_caltries > 4) {
4716 sc->sc_caltries = 0;
4717 sc->sc_calinterval <<= 1;
4718 if (sc->sc_calinterval > ath_calinterval)
4719 sc->sc_calinterval = ath_calinterval;
4720 }
4721 KASSERTMSG(0 < sc->sc_calinterval &&
4722 sc->sc_calinterval <= ath_calinterval,
4723 "bad calibration interval %u", sc->sc_calinterval);
4724
4725 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4726 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4727 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4728 sc->sc_caltries++;
4729 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4730 ath_calibrate, sc);
4731 splx(s);
4732 }
4733
4734 static int
4735 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4736 {
4737 struct ifnet *ifp = ic->ic_ifp;
4738 struct ath_softc *sc = ifp->if_softc;
4739 struct ath_hal *ah = sc->sc_ah;
4740 struct ieee80211_node *ni;
4741 int i, error;
4742 const u_int8_t *bssid;
4743 u_int32_t rfilt;
4744 static const HAL_LED_STATE leds[] = {
4745 HAL_LED_INIT, /* IEEE80211_S_INIT */
4746 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4747 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4748 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4749 HAL_LED_RUN, /* IEEE80211_S_RUN */
4750 };
4751
4752 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4753 ieee80211_state_name[ic->ic_state],
4754 ieee80211_state_name[nstate]);
4755
4756 callout_stop(&sc->sc_scan_ch);
4757 callout_stop(&sc->sc_cal_ch);
4758 #if 0
4759 callout_stop(&sc->sc_dfs_ch);
4760 #endif
4761 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4762
4763 if (nstate == IEEE80211_S_INIT) {
4764 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4765 /*
4766 * NB: disable interrupts so we don't rx frames.
4767 */
4768 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4769 /*
4770 * Notify the rate control algorithm.
4771 */
4772 ath_rate_newstate(sc, nstate);
4773 goto done;
4774 }
4775 ni = ic->ic_bss;
4776 error = ath_chan_set(sc, ic->ic_curchan);
4777 if (error != 0)
4778 goto bad;
4779 rfilt = ath_calcrxfilter(sc, nstate);
4780 if (nstate == IEEE80211_S_SCAN)
4781 bssid = ifp->if_broadcastaddr;
4782 else
4783 bssid = ni->ni_bssid;
4784 ath_hal_setrxfilter(ah, rfilt);
4785 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4786 __func__, rfilt, ether_sprintf(bssid));
4787
4788 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4789 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4790 else
4791 ath_hal_setassocid(ah, bssid, 0);
4792 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4793 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4794 if (ath_hal_keyisvalid(ah, i))
4795 ath_hal_keysetmac(ah, i, bssid);
4796 }
4797
4798 /*
4799 * Notify the rate control algorithm so rates
4800 * are setup should ath_beacon_alloc be called.
4801 */
4802 ath_rate_newstate(sc, nstate);
4803
4804 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4805 /* nothing to do */;
4806 } else if (nstate == IEEE80211_S_RUN) {
4807 DPRINTF(sc, ATH_DEBUG_STATE,
4808 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4809 "capinfo=0x%04x chan=%d\n"
4810 , __func__
4811 , ic->ic_flags
4812 , ni->ni_intval
4813 , ether_sprintf(ni->ni_bssid)
4814 , ni->ni_capinfo
4815 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4816
4817 switch (ic->ic_opmode) {
4818 case IEEE80211_M_HOSTAP:
4819 case IEEE80211_M_IBSS:
4820 /*
4821 * Allocate and setup the beacon frame.
4822 *
4823 * Stop any previous beacon DMA. This may be
4824 * necessary, for example, when an ibss merge
4825 * causes reconfiguration; there will be a state
4826 * transition from RUN->RUN that means we may
4827 * be called with beacon transmission active.
4828 */
4829 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4830 ath_beacon_free(sc);
4831 error = ath_beacon_alloc(sc, ni);
4832 if (error != 0)
4833 goto bad;
4834 /*
4835 * If joining an adhoc network defer beacon timer
4836 * configuration to the next beacon frame so we
4837 * have a current TSF to use. Otherwise we're
4838 * starting an ibss/bss so there's no need to delay.
4839 */
4840 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4841 ic->ic_bss->ni_tstamp.tsf != 0)
4842 sc->sc_syncbeacon = 1;
4843 else
4844 ath_beacon_config(sc);
4845 break;
4846 case IEEE80211_M_STA:
4847 /*
4848 * Allocate a key cache slot to the station.
4849 */
4850 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4851 sc->sc_hasclrkey &&
4852 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4853 ath_setup_stationkey(ni);
4854 /*
4855 * Defer beacon timer configuration to the next
4856 * beacon frame so we have a current TSF to use
4857 * (any TSF collected when scanning is likely old).
4858 */
4859 sc->sc_syncbeacon = 1;
4860 break;
4861 default:
4862 break;
4863 }
4864 /*
4865 * Let the hal process statistics collected during a
4866 * scan so it can provide calibrated noise floor data.
4867 */
4868 ath_hal_process_noisefloor(ah);
4869 /*
4870 * Reset rssi stats; maybe not the best place...
4871 */
4872 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4873 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4874 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4875 } else {
4876 ath_hal_intrset(ah,
4877 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4878 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4879 }
4880 done:
4881 /*
4882 * Invoke the parent method to complete the work.
4883 */
4884 error = sc->sc_newstate(ic, nstate, arg);
4885 /*
4886 * Finally, start any timers.
4887 */
4888 if (nstate == IEEE80211_S_RUN) {
4889 /* start periodic recalibration timer */
4890 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4891 ath_calibrate, sc);
4892 } else if (nstate == IEEE80211_S_SCAN) {
4893 /* start ap/neighbor scan timer */
4894 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4895 ath_next_scan, sc);
4896 }
4897 bad:
4898 return error;
4899 }
4900
4901 /*
4902 * Allocate a key cache slot to the station so we can
4903 * setup a mapping from key index to node. The key cache
4904 * slot is needed for managing antenna state and for
4905 * compression when stations do not use crypto. We do
4906 * it uniliaterally here; if crypto is employed this slot
4907 * will be reassigned.
4908 */
4909 static void
4910 ath_setup_stationkey(struct ieee80211_node *ni)
4911 {
4912 struct ieee80211com *ic = ni->ni_ic;
4913 struct ath_softc *sc = ic->ic_ifp->if_softc;
4914 ieee80211_keyix keyix, rxkeyix;
4915
4916 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4917 /*
4918 * Key cache is full; we'll fall back to doing
4919 * the more expensive lookup in software. Note
4920 * this also means no h/w compression.
4921 */
4922 /* XXX msg+statistic */
4923 } else {
4924 /* XXX locking? */
4925 ni->ni_ucastkey.wk_keyix = keyix;
4926 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4927 /* NB: this will create a pass-thru key entry */
4928 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4929 }
4930 }
4931
4932 /*
4933 * Setup driver-specific state for a newly associated node.
4934 * Note that we're called also on a re-associate, the isnew
4935 * param tells us if this is the first time or not.
4936 */
4937 static void
4938 ath_newassoc(struct ieee80211_node *ni, int isnew)
4939 {
4940 struct ieee80211com *ic = ni->ni_ic;
4941 struct ath_softc *sc = ic->ic_ifp->if_softc;
4942
4943 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4944 if (isnew &&
4945 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4946 KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4947 "new assoc with a unicast key already setup (keyix %u)",
4948 ni->ni_ucastkey.wk_keyix);
4949 ath_setup_stationkey(ni);
4950 }
4951 }
4952
4953 static int
4954 ath_getchannels(struct ath_softc *sc, u_int cc,
4955 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4956 {
4957 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4958 struct ieee80211com *ic = &sc->sc_ic;
4959 struct ifnet *ifp = &sc->sc_if;
4960 struct ath_hal *ah = sc->sc_ah;
4961 HAL_CHANNEL *chans;
4962 int i, ix, nchan;
4963
4964 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4965 M_TEMP, M_NOWAIT);
4966 if (chans == NULL) {
4967 if_printf(ifp, "unable to allocate channel table\n");
4968 return ENOMEM;
4969 }
4970 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4971 NULL, 0, NULL,
4972 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4973 u_int32_t rd;
4974
4975 (void)ath_hal_getregdomain(ah, &rd);
4976 if_printf(ifp, "unable to collect channel list from hal; "
4977 "regdomain likely %u country code %u\n", rd, cc);
4978 free(chans, M_TEMP);
4979 return EINVAL;
4980 }
4981
4982 /*
4983 * Convert HAL channels to ieee80211 ones and insert
4984 * them in the table according to their channel number.
4985 */
4986 for (i = 0; i < nchan; i++) {
4987 HAL_CHANNEL *c = &chans[i];
4988 u_int16_t flags;
4989
4990 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4991 if (ix > IEEE80211_CHAN_MAX) {
4992 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4993 ix, c->channel, c->channelFlags);
4994 continue;
4995 }
4996 if (ix < 0) {
4997 /* XXX can't handle stuff <2400 right now */
4998 if (bootverbose)
4999 if_printf(ifp, "hal channel %d (%u/%x) "
5000 "cannot be handled; ignored\n",
5001 ix, c->channel, c->channelFlags);
5002 continue;
5003 }
5004 /*
5005 * Calculate net80211 flags; most are compatible
5006 * but some need massaging. Note the static turbo
5007 * conversion can be removed once net80211 is updated
5008 * to understand static vs. dynamic turbo.
5009 */
5010 flags = c->channelFlags & COMPAT;
5011 if (c->channelFlags & CHANNEL_STURBO)
5012 flags |= IEEE80211_CHAN_TURBO;
5013 if (ic->ic_channels[ix].ic_freq == 0) {
5014 ic->ic_channels[ix].ic_freq = c->channel;
5015 ic->ic_channels[ix].ic_flags = flags;
5016 } else {
5017 /* channels overlap; e.g. 11g and 11b */
5018 ic->ic_channels[ix].ic_flags |= flags;
5019 }
5020 }
5021 free(chans, M_TEMP);
5022 return 0;
5023 #undef COMPAT
5024 }
5025
5026 static void
5027 ath_led_done(void *arg)
5028 {
5029 struct ath_softc *sc = arg;
5030
5031 sc->sc_blinking = 0;
5032 }
5033
5034 /*
5035 * Turn the LED off: flip the pin and then set a timer so no
5036 * update will happen for the specified duration.
5037 */
5038 static void
5039 ath_led_off(void *arg)
5040 {
5041 struct ath_softc *sc = arg;
5042
5043 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5044 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5045 }
5046
5047 /*
5048 * Blink the LED according to the specified on/off times.
5049 */
5050 static void
5051 ath_led_blink(struct ath_softc *sc, int on, int off)
5052 {
5053 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5054 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5055 sc->sc_blinking = 1;
5056 sc->sc_ledoff = off;
5057 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5058 }
5059
5060 static void
5061 ath_led_event(struct ath_softc *sc, int event)
5062 {
5063
5064 sc->sc_ledevent = ticks; /* time of last event */
5065 if (sc->sc_blinking) /* don't interrupt active blink */
5066 return;
5067 switch (event) {
5068 case ATH_LED_POLL:
5069 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
5070 sc->sc_hwmap[0].ledoff);
5071 break;
5072 case ATH_LED_TX:
5073 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
5074 sc->sc_hwmap[sc->sc_txrate].ledoff);
5075 break;
5076 case ATH_LED_RX:
5077 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
5078 sc->sc_hwmap[sc->sc_rxrate].ledoff);
5079 break;
5080 }
5081 }
5082
5083 static void
5084 ath_update_txpow(struct ath_softc *sc)
5085 {
5086 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5087 struct ieee80211com *ic = &sc->sc_ic;
5088 struct ath_hal *ah = sc->sc_ah;
5089 u_int32_t txpow;
5090
5091 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5092 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5093 /* read back in case value is clamped */
5094 (void)ath_hal_gettxpowlimit(ah, &txpow);
5095 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5096 }
5097 /*
5098 * Fetch max tx power level for status requests.
5099 */
5100 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5101 ic->ic_bss->ni_txpower = txpow;
5102 }
5103
5104 static void
5105 rate_setup(struct ath_softc *sc,
5106 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5107 {
5108 int i, maxrates;
5109
5110 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5111 DPRINTF(sc, ATH_DEBUG_ANY,
5112 "%s: rate table too small (%u > %u)\n",
5113 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5114 maxrates = IEEE80211_RATE_MAXSIZE;
5115 } else
5116 maxrates = rt->rateCount;
5117 for (i = 0; i < maxrates; i++)
5118 rs->rs_rates[i] = rt->info[i].dot11Rate;
5119 rs->rs_nrates = maxrates;
5120 }
5121
5122 static int
5123 ath_rate_setup(struct ath_softc *sc, u_int mode)
5124 {
5125 struct ath_hal *ah = sc->sc_ah;
5126 struct ieee80211com *ic = &sc->sc_ic;
5127 const HAL_RATE_TABLE *rt;
5128
5129 switch (mode) {
5130 case IEEE80211_MODE_11A:
5131 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5132 break;
5133 case IEEE80211_MODE_11B:
5134 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5135 break;
5136 case IEEE80211_MODE_11G:
5137 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5138 break;
5139 case IEEE80211_MODE_TURBO_A:
5140 /* XXX until static/dynamic turbo is fixed */
5141 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5142 break;
5143 case IEEE80211_MODE_TURBO_G:
5144 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5145 break;
5146 default:
5147 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5148 __func__, mode);
5149 return 0;
5150 }
5151 sc->sc_rates[mode] = rt;
5152 if (rt != NULL) {
5153 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5154 return 1;
5155 } else
5156 return 0;
5157 }
5158
5159 static void
5160 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5161 {
5162 #define N(a) (sizeof(a)/sizeof(a[0]))
5163 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5164 static const struct {
5165 u_int rate; /* tx/rx 802.11 rate */
5166 u_int16_t timeOn; /* LED on time (ms) */
5167 u_int16_t timeOff; /* LED off time (ms) */
5168 } blinkrates[] = {
5169 { 108, 40, 10 },
5170 { 96, 44, 11 },
5171 { 72, 50, 13 },
5172 { 48, 57, 14 },
5173 { 36, 67, 16 },
5174 { 24, 80, 20 },
5175 { 22, 100, 25 },
5176 { 18, 133, 34 },
5177 { 12, 160, 40 },
5178 { 10, 200, 50 },
5179 { 6, 240, 58 },
5180 { 4, 267, 66 },
5181 { 2, 400, 100 },
5182 { 0, 500, 130 },
5183 };
5184 const HAL_RATE_TABLE *rt;
5185 int i, j;
5186
5187 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5188 rt = sc->sc_rates[mode];
5189 KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
5190 for (i = 0; i < rt->rateCount; i++)
5191 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5192 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5193 for (i = 0; i < 32; i++) {
5194 u_int8_t ix = rt->rateCodeToIndex[i];
5195 if (ix == 0xff) {
5196 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5197 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5198 continue;
5199 }
5200 sc->sc_hwmap[i].ieeerate =
5201 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5202 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5203 if (rt->info[ix].shortPreamble ||
5204 rt->info[ix].phy == IEEE80211_T_OFDM)
5205 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5206 /* NB: receive frames include FCS */
5207 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5208 IEEE80211_RADIOTAP_F_FCS;
5209 /* setup blink rate table to avoid per-packet lookup */
5210 for (j = 0; j < N(blinkrates)-1; j++)
5211 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5212 break;
5213 /* NB: this uses the last entry if the rate isn't found */
5214 /* XXX beware of overlow */
5215 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5216 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5217 }
5218 sc->sc_currates = rt;
5219 sc->sc_curmode = mode;
5220 /*
5221 * All protection frames are transmited at 2Mb/s for
5222 * 11g, otherwise at 1Mb/s.
5223 */
5224 if (mode == IEEE80211_MODE_11G)
5225 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5226 else
5227 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5228 /* rate index used to send management frames */
5229 sc->sc_minrateix = 0;
5230 /*
5231 * Setup multicast rate state.
5232 */
5233 /* XXX layering violation */
5234 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5235 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5236 /* NB: caller is responsible for reseting rate control state */
5237 #undef N
5238 }
5239
5240 #ifdef AR_DEBUG
5241 static void
5242 ath_printrxbuf(struct ath_buf *bf, int done)
5243 {
5244 struct ath_desc *ds;
5245 int i;
5246
5247 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5248 printf("R%d (%p %" PRIx64
5249 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5250 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5251 ds->ds_link, ds->ds_data,
5252 ds->ds_ctl0, ds->ds_ctl1,
5253 ds->ds_hw[0], ds->ds_hw[1],
5254 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5255 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5256 }
5257 }
5258
5259 static void
5260 ath_printtxbuf(struct ath_buf *bf, int done)
5261 {
5262 struct ath_desc *ds;
5263 int i;
5264
5265 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5266 printf("T%d (%p %" PRIx64
5267 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5268 i, ds,
5269 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5270 ds->ds_link, ds->ds_data,
5271 ds->ds_ctl0, ds->ds_ctl1,
5272 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5273 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5274 }
5275 }
5276 #endif /* AR_DEBUG */
5277
5278 static void
5279 ath_watchdog(struct ifnet *ifp)
5280 {
5281 struct ath_softc *sc = ifp->if_softc;
5282 struct ieee80211com *ic = &sc->sc_ic;
5283 struct ath_txq *axq;
5284 int i;
5285
5286 ifp->if_timer = 0;
5287 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5288 !device_is_active(sc->sc_dev))
5289 return;
5290 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5291 if (!ATH_TXQ_SETUP(sc, i))
5292 continue;
5293 axq = &sc->sc_txq[i];
5294 ATH_TXQ_LOCK(axq);
5295 if (axq->axq_timer == 0)
5296 ;
5297 else if (--axq->axq_timer == 0) {
5298 ATH_TXQ_UNLOCK(axq);
5299 if_printf(ifp, "device timeout (txq %d, "
5300 "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5301 if (sc->sc_txintrperiod > 1)
5302 sc->sc_txintrperiod--;
5303 ath_reset(ifp);
5304 ifp->if_oerrors++;
5305 sc->sc_stats.ast_watchdog++;
5306 break;
5307 } else
5308 ifp->if_timer = 1;
5309 ATH_TXQ_UNLOCK(axq);
5310 }
5311 ieee80211_watchdog(ic);
5312 }
5313
5314 /*
5315 * Diagnostic interface to the HAL. This is used by various
5316 * tools to do things like retrieve register contents for
5317 * debugging. The mechanism is intentionally opaque so that
5318 * it can change frequently w/o concern for compatiblity.
5319 */
5320 static int
5321 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5322 {
5323 struct ath_hal *ah = sc->sc_ah;
5324 u_int id = ad->ad_id & ATH_DIAG_ID;
5325 void *indata = NULL;
5326 void *outdata = NULL;
5327 u_int32_t insize = ad->ad_in_size;
5328 u_int32_t outsize = ad->ad_out_size;
5329 int error = 0;
5330
5331 if (ad->ad_id & ATH_DIAG_IN) {
5332 /*
5333 * Copy in data.
5334 */
5335 indata = malloc(insize, M_TEMP, M_NOWAIT);
5336 if (indata == NULL) {
5337 error = ENOMEM;
5338 goto bad;
5339 }
5340 error = copyin(ad->ad_in_data, indata, insize);
5341 if (error)
5342 goto bad;
5343 }
5344 if (ad->ad_id & ATH_DIAG_DYN) {
5345 /*
5346 * Allocate a buffer for the results (otherwise the HAL
5347 * returns a pointer to a buffer where we can read the
5348 * results). Note that we depend on the HAL leaving this
5349 * pointer for us to use below in reclaiming the buffer;
5350 * may want to be more defensive.
5351 */
5352 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5353 if (outdata == NULL) {
5354 error = ENOMEM;
5355 goto bad;
5356 }
5357 }
5358 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5359 if (outsize < ad->ad_out_size)
5360 ad->ad_out_size = outsize;
5361 if (outdata != NULL)
5362 error = copyout(outdata, ad->ad_out_data,
5363 ad->ad_out_size);
5364 } else {
5365 error = EINVAL;
5366 }
5367 bad:
5368 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5369 free(indata, M_TEMP);
5370 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5371 free(outdata, M_TEMP);
5372 return error;
5373 }
5374
5375 static int
5376 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5377 {
5378 #define IS_RUNNING(ifp) \
5379 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5380 struct ath_softc *sc = ifp->if_softc;
5381 struct ieee80211com *ic = &sc->sc_ic;
5382 struct ifreq *ifr = (struct ifreq *)data;
5383 int error = 0, s;
5384
5385 s = splnet();
5386 switch (cmd) {
5387 case SIOCSIFFLAGS:
5388 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5389 break;
5390 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
5391 case IFF_UP | IFF_RUNNING:
5392 /*
5393 * To avoid rescanning another access point,
5394 * do not call ath_init() here. Instead,
5395 * only reflect promisc mode settings.
5396 */
5397 ath_mode_init(sc);
5398 break;
5399 case IFF_UP:
5400 /*
5401 * Beware of being called during attach/detach
5402 * to reset promiscuous mode. In that case we
5403 * will still be marked UP but not RUNNING.
5404 * However trying to re-init the interface
5405 * is the wrong thing to do as we've already
5406 * torn down much of our state. There's
5407 * probably a better way to deal with this.
5408 */
5409 error = ath_init(sc);
5410 break;
5411 case IFF_RUNNING:
5412 ath_stop_locked(ifp, 1);
5413 break;
5414 case 0:
5415 break;
5416 }
5417 break;
5418 case SIOCADDMULTI:
5419 case SIOCDELMULTI:
5420 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5421 if (ifp->if_flags & IFF_RUNNING)
5422 ath_mode_init(sc);
5423 error = 0;
5424 }
5425 break;
5426 case SIOCGATHSTATS:
5427 /* NB: embed these numbers to get a consistent view */
5428 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5429 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5430 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5431 splx(s);
5432 /*
5433 * NB: Drop the softc lock in case of a page fault;
5434 * we'll accept any potential inconsisentcy in the
5435 * statistics. The alternative is to copy the data
5436 * to a local structure.
5437 */
5438 return copyout(&sc->sc_stats,
5439 ifr->ifr_data, sizeof (sc->sc_stats));
5440 case SIOCGATHDIAG:
5441 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5442 break;
5443 default:
5444 error = ieee80211_ioctl(ic, cmd, data);
5445 if (error != ENETRESET)
5446 ;
5447 else if (IS_RUNNING(ifp) &&
5448 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5449 error = ath_init(sc);
5450 else
5451 error = 0;
5452 break;
5453 }
5454 splx(s);
5455 return error;
5456 #undef IS_RUNNING
5457 }
5458
5459 static void
5460 ath_bpfattach(struct ath_softc *sc)
5461 {
5462 struct ifnet *ifp = &sc->sc_if;
5463
5464 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5465 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5466 &sc->sc_drvbpf);
5467
5468 /*
5469 * Initialize constant fields.
5470 * XXX make header lengths a multiple of 32-bits so subsequent
5471 * headers are properly aligned; this is a kludge to keep
5472 * certain applications happy.
5473 *
5474 * NB: the channel is setup each time we transition to the
5475 * RUN state to avoid filling it in for each frame.
5476 */
5477 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5478 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5479 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5480
5481 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5482 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5483 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5484 }
5485
5486 /*
5487 * Announce various information on device/driver attach.
5488 */
5489 static void
5490 ath_announce(struct ath_softc *sc)
5491 {
5492 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5493 struct ifnet *ifp = &sc->sc_if;
5494 struct ath_hal *ah = sc->sc_ah;
5495 u_int modes, cc;
5496
5497 if_printf(ifp, "mac %d.%d phy %d.%d",
5498 ah->ah_macVersion, ah->ah_macRev,
5499 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5500 /*
5501 * Print radio revision(s). We check the wireless modes
5502 * to avoid falsely printing revs for inoperable parts.
5503 * Dual-band radio revs are returned in the 5 GHz rev number.
5504 */
5505 ath_hal_getcountrycode(ah, &cc);
5506 modes = ath_hal_getwirelessmodes(ah, cc);
5507 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5508 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5509 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5510 ah->ah_analog5GhzRev >> 4,
5511 ah->ah_analog5GhzRev & 0xf,
5512 ah->ah_analog2GhzRev >> 4,
5513 ah->ah_analog2GhzRev & 0xf);
5514 else
5515 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5516 ah->ah_analog5GhzRev & 0xf);
5517 } else
5518 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5519 ah->ah_analog5GhzRev & 0xf);
5520 printf("\n");
5521 if (bootverbose) {
5522 int i;
5523 for (i = 0; i <= WME_AC_VO; i++) {
5524 struct ath_txq *txq = sc->sc_ac2q[i];
5525 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5526 txq->axq_qnum, ieee80211_wme_acnames[i]);
5527 }
5528 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5529 sc->sc_cabq->axq_qnum);
5530 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5531 }
5532 if (ath_rxbuf != ATH_RXBUF)
5533 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5534 if (ath_txbuf != ATH_TXBUF)
5535 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5536 #undef HAL_MODE_DUALBAND
5537 }
5538