ath.c revision 1.18 1 /* $NetBSD: ath.c,v 1.18 2003/12/16 06:48:09 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.36 2003/11/29 01:23:59 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.18 2003/12/16 06:48:09 dyoung Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81
82 #include <machine/bus.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105
106 #include <dev/ic/athcompat.h>
107
108 #define AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116
117 /* unaligned little endian access */
118 #define LE_READ_2(p) \
119 ((u_int16_t) \
120 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
121 #define LE_READ_4(p) \
122 ((u_int32_t) \
123 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
124 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125
126 #ifdef __FreeBSD__
127 static void ath_init(void *);
128 #else
129 static int ath_init(struct ifnet *);
130 #endif
131 static int ath_init1(struct ath_softc *);
132 static int ath_intr1(struct ath_softc *);
133 static void ath_stop(struct ifnet *);
134 static void ath_start(struct ifnet *);
135 static void ath_reset(struct ath_softc *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_initkeytable(struct ath_softc *);
143 static void ath_mode_init(struct ath_softc *);
144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void ath_beacon_proc(void *, int);
146 static void ath_beacon_free(struct ath_softc *);
147 static void ath_beacon_config(struct ath_softc *);
148 static int ath_desc_alloc(struct ath_softc *);
149 static void ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void ath_node_copy(struct ieee80211com *,
153 struct ieee80211_node *, const struct ieee80211_node *);
154 static u_int8_t ath_node_getrssi(struct ieee80211com *,
155 struct ieee80211_node *);
156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void ath_rx_proc(void *, int);
158 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 struct ath_buf *, struct mbuf *);
160 static void ath_tx_proc(void *, int);
161 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
162 static void ath_draintxq(struct ath_softc *);
163 static void ath_stoprecv(struct ath_softc *);
164 static int ath_startrecv(struct ath_softc *);
165 static void ath_next_scan(void *);
166 static void ath_calibrate(void *);
167 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 static void ath_newassoc(struct ieee80211com *,
169 struct ieee80211_node *, int);
170 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
171
172 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
173 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
174 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
175 static void ath_rate_ctl(void *, struct ieee80211_node *);
176
177 #ifdef __NetBSD__
178 int ath_enable(struct ath_softc *);
179 void ath_disable(struct ath_softc *);
180 void ath_power(int, void *);
181 #endif
182
183 #ifdef __FreeBSD__
184 SYSCTL_DECL(_hw_ath);
185 /* XXX validate sysctl values */
186 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
187 0, "channel dwell time (ms) for AP/station scanning");
188 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
189 0, "chip calibration interval (secs)");
190 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
191 0, "enable/disable outdoor operation");
192 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
193 0, "country code");
194 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
195 0, "regulatory domain");
196 #endif /* __FreeBSD__ */
197
198 static int ath_dwelltime = 200; /* 5 channels/second */
199 static int ath_calinterval = 30; /* calibrate every 30 secs */
200 static int ath_outdoor = AH_TRUE; /* outdoor operation */
201 static int ath_countrycode = CTRY_DEFAULT; /* country code */
202 static int ath_regdomain = 0; /* regulatory domain */
203
204 #ifdef AR_DEBUG
205 int ath_debug = 0;
206 #ifdef __FreeBSD__
207 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
208 0, "control debugging printfs");
209 #endif /* __FreeBSD__ */
210 #define IFF_DUMPPKTS(_ifp) \
211 (ath_debug || \
212 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
213 static void ath_printrxbuf(struct ath_buf *bf, int);
214 static void ath_printtxbuf(struct ath_buf *bf, int);
215 #define DPRINTF(X) if (ath_debug) printf X
216 #define DPRINTF2(X) if (ath_debug > 1) printf X
217 #else
218 #define IFF_DUMPPKTS(_ifp) \
219 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
220 #define DPRINTF(X)
221 #define DPRINTF2(X)
222 #endif
223
224 #ifdef __NetBSD__
225 int
226 ath_activate(struct device *self, enum devact act)
227 {
228 struct ath_softc *sc = (struct ath_softc *)self;
229 int rv = 0, s;
230
231 s = splnet();
232 switch (act) {
233 case DVACT_ACTIVATE:
234 rv = EOPNOTSUPP;
235 break;
236 case DVACT_DEACTIVATE:
237 if_deactivate(&sc->sc_ic.ic_if);
238 break;
239 }
240 splx(s);
241 return rv;
242 }
243
244 int
245 ath_enable(struct ath_softc *sc)
246 {
247 if (ATH_IS_ENABLED(sc) == 0) {
248 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
249 printf("%s: device enable failed\n",
250 sc->sc_dev.dv_xname);
251 return (EIO);
252 }
253 sc->sc_flags |= ATH_ENABLED;
254 }
255 return (0);
256 }
257
258 void
259 ath_disable(struct ath_softc *sc)
260 {
261 if (!ATH_IS_ENABLED(sc))
262 return;
263 if (sc->sc_disable != NULL)
264 (*sc->sc_disable)(sc);
265 sc->sc_flags &= ~ATH_ENABLED;
266 }
267 #endif /* #ifdef __NetBSD__ */
268
269 int
270 ath_attach(u_int16_t devid, struct ath_softc *sc)
271 {
272 struct ieee80211com *ic = &sc->sc_ic;
273 struct ifnet *ifp = &ic->ic_if;
274 struct ath_hal *ah;
275 HAL_STATUS status;
276 int error = 0;
277
278 DPRINTF(("ath_attach: devid 0x%x\n", devid));
279
280 #ifdef __FreeBSD__
281 /* set these up early for if_printf use */
282 if_initname(ifp, device_get_name(sc->sc_dev),
283 device_get_unit(sc->sc_dev));
284 #else
285 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
286 #endif
287
288 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
289 if (ah == NULL) {
290 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
291 status);
292 error = ENXIO;
293 goto bad;
294 }
295 if (ah->ah_abi != HAL_ABI_VERSION) {
296 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
297 ah->ah_abi, HAL_ABI_VERSION);
298 error = ENXIO;
299 goto bad;
300 }
301 if_printf(ifp, "mac %d.%d phy %d.%d",
302 ah->ah_macVersion, ah->ah_macRev,
303 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
304 if (ah->ah_analog5GhzRev)
305 printf(" 5ghz radio %d.%d",
306 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
307 if (ah->ah_analog2GhzRev)
308 printf(" 2ghz radio %d.%d",
309 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
310 printf("\n");
311 sc->sc_ah = ah;
312 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
313
314 /*
315 * Collect the channel list using the default country
316 * code and including outdoor channels. The 802.11 layer
317 * is resposible for filtering this list based on settings
318 * like the phy mode.
319 */
320 error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
321 if (error != 0)
322 goto bad;
323 /*
324 * Copy these back; they are set as a side effect
325 * of constructing the channel list.
326 */
327 ath_regdomain = ath_hal_getregdomain(ah);
328 ath_countrycode = ath_hal_getcountrycode(ah);
329
330 /*
331 * Setup rate tables for all potential media types.
332 */
333 ath_rate_setup(sc, IEEE80211_MODE_11A);
334 ath_rate_setup(sc, IEEE80211_MODE_11B);
335 ath_rate_setup(sc, IEEE80211_MODE_11G);
336 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
337
338 error = ath_desc_alloc(sc);
339 if (error != 0) {
340 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
341 goto bad;
342 }
343 ATH_CALLOUT_INIT(&sc->sc_scan_ch);
344 ATH_CALLOUT_INIT(&sc->sc_cal_ch);
345
346 #ifdef __FreeBSD__
347 ATH_TXBUF_LOCK_INIT(sc);
348 ATH_TXQ_LOCK_INIT(sc);
349 #endif
350
351 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
352 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
353 ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
354 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
355 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
356 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
357
358 /*
359 * For now just pre-allocate one data queue and one
360 * beacon queue. Note that the HAL handles resetting
361 * them at the needed time. Eventually we'll want to
362 * allocate more tx queues for splitting management
363 * frames and for QOS support.
364 */
365 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
366 HAL_TX_QUEUE_DATA,
367 AH_TRUE /* enable interrupts */
368 );
369 if (sc->sc_txhalq == (u_int) -1) {
370 if_printf(ifp, "unable to setup a data xmit queue!\n");
371 goto bad;
372 }
373 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
374 HAL_TX_QUEUE_BEACON,
375 AH_TRUE /* enable interrupts */
376 );
377 if (sc->sc_bhalq == (u_int) -1) {
378 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
379 goto bad;
380 }
381
382 ifp->if_softc = sc;
383 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
384 ifp->if_start = ath_start;
385 ifp->if_watchdog = ath_watchdog;
386 ifp->if_ioctl = ath_ioctl;
387 ifp->if_init = ath_init;
388 #ifdef __FreeBSD__
389 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
390 #else
391 #if 0
392 ifp->if_stop = ath_stop; /* XXX */
393 #endif
394 IFQ_SET_READY(&ifp->if_snd);
395 #endif
396
397 ic->ic_softc = sc;
398 ic->ic_newassoc = ath_newassoc;
399 /* XXX not right but it's not used anywhere important */
400 ic->ic_phytype = IEEE80211_T_OFDM;
401 ic->ic_opmode = IEEE80211_M_STA;
402 ic->ic_caps = IEEE80211_C_WEP /* wep supported */
403 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
404 | IEEE80211_C_HOSTAP /* hostap mode */
405 | IEEE80211_C_MONITOR /* monitor mode */
406 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
407 | IEEE80211_C_RCVMGT; /* recv management frames */
408
409 /* get mac address from hardware */
410 ath_hal_getmac(ah, ic->ic_myaddr);
411
412 #ifdef __NetBSD__
413 if_attach(ifp);
414 #endif
415 /* call MI attach routine. */
416 ieee80211_ifattach(ifp);
417 /* override default methods */
418 ic->ic_node_alloc = ath_node_alloc;
419 ic->ic_node_free = ath_node_free;
420 ic->ic_node_copy = ath_node_copy;
421 ic->ic_node_getrssi = ath_node_getrssi;
422 sc->sc_newstate = ic->ic_newstate;
423 ic->ic_newstate = ath_newstate;
424 /* complete initialization */
425 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
426
427 #if NBPFILTER > 0
428 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
429 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
430 &sc->sc_drvbpf);
431 #endif
432 /*
433 * Initialize constant fields.
434 *
435 * NB: the channel is setup each time we transition to the
436 * RUN state to avoid filling it in for each frame.
437 */
438 sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
439 sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
440
441 sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
442 sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
443
444 if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
445
446 #ifdef __NetBSD__
447 sc->sc_flags |= ATH_ATTACHED;
448 /*
449 * Make sure the interface is shutdown during reboot.
450 */
451 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
452 if (sc->sc_sdhook == NULL)
453 printf("%s: WARNING: unable to establish shutdown hook\n",
454 sc->sc_dev.dv_xname);
455 sc->sc_powerhook = powerhook_establish(ath_power, sc);
456 if (sc->sc_powerhook == NULL)
457 printf("%s: WARNING: unable to establish power hook\n",
458 sc->sc_dev.dv_xname);
459 #endif
460 return 0;
461 bad:
462 if (ah)
463 ath_hal_detach(ah);
464 sc->sc_invalid = 1;
465 return error;
466 }
467
468 int
469 ath_detach(struct ath_softc *sc)
470 {
471 struct ifnet *ifp = &sc->sc_ic.ic_if;
472 ath_softc_critsect_decl(s);
473
474 DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
475 if ((sc->sc_flags & ATH_ATTACHED) == 0)
476 return (0);
477
478 ath_softc_critsect_begin(sc, s);
479 ath_stop(ifp);
480 #if NBPFILTER > 0
481 bpfdetach(ifp);
482 #endif
483 ath_desc_free(sc);
484 ath_hal_detach(sc->sc_ah);
485 ieee80211_ifdetach(ifp);
486 #ifdef __NetBSD__
487 if_detach(ifp);
488 #endif /* __NetBSD__ */
489 ath_softc_critsect_end(sc, s);
490 #ifdef __NetBSD__
491 powerhook_disestablish(sc->sc_powerhook);
492 shutdownhook_disestablish(sc->sc_sdhook);
493 #endif /* __NetBSD__ */
494 #ifdef __FreeBSD__
495
496 ATH_TXBUF_LOCK_DESTROY(sc);
497 ATH_TXQ_LOCK_DESTROY(sc);
498
499 #endif /* __FreeBSD__ */
500 return 0;
501 }
502
503 #ifdef __NetBSD__
504 void
505 ath_power(int why, void *arg)
506 {
507 struct ath_softc *sc = arg;
508 int s;
509
510 DPRINTF(("ath_power(%d)\n", why));
511
512 s = splnet();
513 switch (why) {
514 case PWR_SUSPEND:
515 case PWR_STANDBY:
516 ath_suspend(sc, why);
517 break;
518 case PWR_RESUME:
519 ath_resume(sc, why);
520 break;
521 case PWR_SOFTSUSPEND:
522 case PWR_SOFTSTANDBY:
523 case PWR_SOFTRESUME:
524 break;
525 }
526 splx(s);
527 }
528 #endif
529
530 void
531 ath_suspend(struct ath_softc *sc, int why)
532 {
533 struct ifnet *ifp = &sc->sc_ic.ic_if;
534
535 DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
536
537 ath_stop(ifp);
538 if (sc->sc_power != NULL)
539 (*sc->sc_power)(sc, why);
540 }
541
542 void
543 ath_resume(struct ath_softc *sc, int why)
544 {
545 struct ifnet *ifp = &sc->sc_ic.ic_if;
546
547 DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
548
549 if (ifp->if_flags & IFF_UP) {
550 ath_init(ifp);
551 #if 0
552 (void)ath_intr(sc);
553 #endif
554 if (sc->sc_power != NULL)
555 (*sc->sc_power)(sc, why);
556 if (ifp->if_flags & IFF_RUNNING)
557 ath_start(ifp);
558 }
559 }
560
561 #ifdef __NetBSD__
562 void
563 ath_shutdown(void *arg)
564 {
565 struct ath_softc *sc = arg;
566
567 ath_stop(&sc->sc_ic.ic_if);
568 }
569 #else
570 void
571 ath_shutdown(struct ath_softc *sc)
572 {
573 #if 1
574 return;
575 #else
576 struct ifnet *ifp = &sc->sc_ic.ic_if;
577
578 DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
579
580 ath_stop(ifp);
581 #endif
582 }
583 #endif
584
585 #ifdef __NetBSD__
586 int
587 ath_intr(void *arg)
588 {
589 return ath_intr1((struct ath_softc *)arg);
590 }
591 #else
592 void
593 ath_intr(void *arg)
594 {
595 (void)ath_intr1((struct ath_softc *)arg);
596 }
597 #endif
598
599 static int
600 ath_intr1(struct ath_softc *sc)
601 {
602 struct ieee80211com *ic = &sc->sc_ic;
603 struct ifnet *ifp = &ic->ic_if;
604 struct ath_hal *ah = sc->sc_ah;
605 HAL_INT status;
606
607 if (sc->sc_invalid) {
608 /*
609 * The hardware is not ready/present, don't touch anything.
610 * Note this can happen early on if the IRQ is shared.
611 */
612 DPRINTF(("ath_intr: invalid; ignored\n"));
613 return 0;
614 }
615 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
616 DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
617 ath_hal_getisr(ah, &status); /* clear ISR */
618 ath_hal_intrset(ah, 0); /* disable further intr's */
619 return 1; /* XXX */
620 }
621 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
622 DPRINTF2(("ath_intr: status 0x%x\n", status));
623 #ifdef AR_DEBUG
624 if (ath_debug &&
625 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
626 if_printf(ifp, "ath_intr: status 0x%x\n", status);
627 ath_hal_dumpstate(ah);
628 }
629 #endif /* AR_DEBUG */
630 status &= sc->sc_imask; /* discard unasked for bits */
631 if (status & HAL_INT_FATAL) {
632 sc->sc_stats.ast_hardware++;
633 ath_hal_intrset(ah, 0); /* disable intr's until reset */
634 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
635 } else if (status & HAL_INT_RXORN) {
636 sc->sc_stats.ast_rxorn++;
637 ath_hal_intrset(ah, 0); /* disable intr's until reset */
638 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
639 } else {
640 if (status & HAL_INT_RXEOL) {
641 /*
642 * NB: the hardware should re-read the link when
643 * RXE bit is written, but it doesn't work at
644 * least on older hardware revs.
645 */
646 sc->sc_stats.ast_rxeol++;
647 sc->sc_rxlink = NULL;
648 }
649 if (status & HAL_INT_TXURN) {
650 sc->sc_stats.ast_txurn++;
651 /* bump tx trigger level */
652 ath_hal_updatetxtriglevel(ah, AH_TRUE);
653 }
654 if (status & HAL_INT_RX)
655 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
656 if (status & HAL_INT_TX)
657 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
658 if (status & HAL_INT_SWBA)
659 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
660 if (status & HAL_INT_BMISS) {
661 sc->sc_stats.ast_bmiss++;
662 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
663 }
664 }
665 return 1;
666 }
667
668 static void
669 ath_fatal_proc(void *arg, int pending)
670 {
671 struct ath_softc *sc = arg;
672
673 device_printf(sc->sc_dev, "hardware error; resetting\n");
674 ath_reset(sc);
675 }
676
677 static void
678 ath_rxorn_proc(void *arg, int pending)
679 {
680 struct ath_softc *sc = arg;
681
682 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
683 ath_reset(sc);
684 }
685
686 static void
687 ath_bmiss_proc(void *arg, int pending)
688 {
689 struct ath_softc *sc = arg;
690 struct ieee80211com *ic = &sc->sc_ic;
691
692 DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
693 if (ic->ic_opmode != IEEE80211_M_STA)
694 return;
695 if (ic->ic_state == IEEE80211_S_RUN) {
696 /*
697 * Rather than go directly to scan state, try to
698 * reassociate first. If that fails then the state
699 * machine will drop us into scanning after timing
700 * out waiting for a probe response.
701 */
702 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
703 }
704 }
705
706 static u_int
707 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
708 {
709 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
710
711 switch (mode) {
712 case IEEE80211_MODE_AUTO:
713 return 0;
714 case IEEE80211_MODE_11A:
715 return CHANNEL_A;
716 case IEEE80211_MODE_11B:
717 return CHANNEL_B;
718 case IEEE80211_MODE_11G:
719 return CHANNEL_PUREG;
720 case IEEE80211_MODE_TURBO:
721 return CHANNEL_T;
722 default:
723 panic("%s: unsupported mode %d\n", __func__, mode);
724 return 0;
725 }
726 }
727
728 #ifdef __NetBSD__
729 static int
730 ath_init(struct ifnet *ifp)
731 {
732 return ath_init1((struct ath_softc *)ifp->if_softc);
733 }
734 #else
735 static void
736 ath_init(void *arg)
737 {
738 (void)ath_init1((struct ath_softc *)arg);
739 }
740 #endif
741
742 static int
743 ath_init1(struct ath_softc *sc)
744 {
745 struct ieee80211com *ic = &sc->sc_ic;
746 struct ifnet *ifp = &ic->ic_if;
747 struct ieee80211_node *ni;
748 enum ieee80211_phymode mode;
749 struct ath_hal *ah = sc->sc_ah;
750 HAL_STATUS status;
751 HAL_CHANNEL hchan;
752 int error = 0;
753 ath_softc_critsect_decl(s);
754
755 DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
756
757 #ifdef __NetBSD__
758 if ((error = ath_enable(sc)) != 0)
759 return error;
760 #endif
761
762 ath_softc_critsect_begin(sc, s);
763 /*
764 * Stop anything previously setup. This is safe
765 * whether this is the first time through or not.
766 */
767 ath_stop(ifp);
768
769 /*
770 * The basic interface to setting the hardware in a good
771 * state is ``reset''. On return the hardware is known to
772 * be powered up and with interrupts disabled. This must
773 * be followed by initialization of the appropriate bits
774 * and then setup of the interrupt mask.
775 */
776 hchan.channel = ic->ic_ibss_chan->ic_freq;
777 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
778 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
779 if_printf(ifp, "unable to reset hardware; hal status %u\n",
780 status);
781 error = -1;
782 goto done;
783 }
784
785 /*
786 * Setup the hardware after reset: the key cache
787 * is filled as needed and the receive engine is
788 * set going. Frame transmit is handled entirely
789 * in the frame output path; there's nothing to do
790 * here except setup the interrupt mask.
791 */
792 if (ic->ic_flags & IEEE80211_F_WEPON)
793 ath_initkeytable(sc);
794 if ((error = ath_startrecv(sc)) != 0) {
795 if_printf(ifp, "unable to start recv logic\n");
796 goto done;
797 }
798
799 /*
800 * Enable interrupts.
801 */
802 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
803 | HAL_INT_RXEOL | HAL_INT_RXORN
804 | HAL_INT_FATAL | HAL_INT_GLOBAL;
805 ath_hal_intrset(ah, sc->sc_imask);
806
807 ifp->if_flags |= IFF_RUNNING;
808 ic->ic_state = IEEE80211_S_INIT;
809
810 /*
811 * The hardware should be ready to go now so it's safe
812 * to kick the 802.11 state machine as it's likely to
813 * immediately call back to us to send mgmt frames.
814 */
815 ni = ic->ic_bss;
816 ni->ni_chan = ic->ic_ibss_chan;
817 mode = ieee80211_chan2mode(ic, ni->ni_chan);
818 if (mode != sc->sc_curmode)
819 ath_setcurmode(sc, mode);
820 if (ic->ic_opmode != IEEE80211_M_MONITOR)
821 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
822 else
823 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
824 done:
825 ath_softc_critsect_end(sc, s);
826 return error;
827 }
828
829 static void
830 ath_stop(struct ifnet *ifp)
831 {
832 struct ieee80211com *ic = (struct ieee80211com *) ifp;
833 struct ath_softc *sc = ifp->if_softc;
834 struct ath_hal *ah = sc->sc_ah;
835 ath_softc_critsect_decl(s);
836
837 DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
838 sc->sc_invalid, ifp->if_flags));
839
840 ath_softc_critsect_begin(sc, s);
841 if (ifp->if_flags & IFF_RUNNING) {
842 /*
843 * Shutdown the hardware and driver:
844 * disable interrupts
845 * turn off timers
846 * clear transmit machinery
847 * clear receive machinery
848 * drain and release tx queues
849 * reclaim beacon resources
850 * reset 802.11 state machine
851 * power down hardware
852 *
853 * Note that some of this work is not possible if the
854 * hardware is gone (invalid).
855 */
856 ifp->if_flags &= ~IFF_RUNNING;
857 ifp->if_timer = 0;
858 if (!sc->sc_invalid)
859 ath_hal_intrset(ah, 0);
860 ath_draintxq(sc);
861 if (!sc->sc_invalid)
862 ath_stoprecv(sc);
863 else
864 sc->sc_rxlink = NULL;
865 #ifdef __FreeBSD__
866 IF_DRAIN(&ifp->if_snd);
867 #else
868 IF_PURGE(&ifp->if_snd);
869 #endif
870 ath_beacon_free(sc);
871 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
872 if (!sc->sc_invalid) {
873 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
874 }
875 #ifdef __NetBSD__
876 ath_disable(sc);
877 #endif
878 }
879 ath_softc_critsect_end(sc, s);
880 }
881
882 /*
883 * Reset the hardware w/o losing operational state. This is
884 * basically a more efficient way of doing ath_stop, ath_init,
885 * followed by state transitions to the current 802.11
886 * operational state. Used to recover from errors rx overrun
887 * and to reset the hardware when rf gain settings must be reset.
888 */
889 static void
890 ath_reset(struct ath_softc *sc)
891 {
892 struct ieee80211com *ic = &sc->sc_ic;
893 struct ifnet *ifp = &ic->ic_if;
894 struct ath_hal *ah = sc->sc_ah;
895 struct ieee80211_channel *c;
896 HAL_STATUS status;
897 HAL_CHANNEL hchan;
898
899 /*
900 * Convert to a HAL channel description with the flags
901 * constrained to reflect the current operating mode.
902 */
903 c = ic->ic_ibss_chan;
904 hchan.channel = c->ic_freq;
905 hchan.channelFlags = ath_chan2flags(ic, c);
906
907 ath_hal_intrset(ah, 0); /* disable interrupts */
908 ath_draintxq(sc); /* stop xmit side */
909 ath_stoprecv(sc); /* stop recv side */
910 /* NB: indicate channel change so we do a full reset */
911 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
912 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
913 __func__, status);
914 ath_hal_intrset(ah, sc->sc_imask);
915 if (ath_startrecv(sc) != 0) /* restart recv */
916 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
917 ath_start(ifp); /* restart xmit */
918 if (ic->ic_state == IEEE80211_S_RUN)
919 ath_beacon_config(sc); /* restart beacons */
920 }
921
922 static void
923 ath_start(struct ifnet *ifp)
924 {
925 struct ath_softc *sc = ifp->if_softc;
926 struct ath_hal *ah = sc->sc_ah;
927 struct ieee80211com *ic = &sc->sc_ic;
928 struct ieee80211_node *ni;
929 struct ath_buf *bf;
930 struct mbuf *m;
931 struct ieee80211_frame *wh;
932 ath_txbuf_critsect_decl(s);
933
934 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
935 return;
936 for (;;) {
937 /*
938 * Grab a TX buffer and associated resources.
939 */
940 ath_txbuf_critsect_begin(sc, s);
941 bf = TAILQ_FIRST(&sc->sc_txbuf);
942 if (bf != NULL)
943 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
944 ath_txbuf_critsect_end(sc, s);
945 if (bf == NULL) {
946 DPRINTF(("ath_start: out of xmit buffers\n"));
947 sc->sc_stats.ast_tx_qstop++;
948 ifp->if_flags |= IFF_OACTIVE;
949 break;
950 }
951 /*
952 * Poll the management queue for frames; they
953 * have priority over normal data frames.
954 */
955 IF_DEQUEUE(&ic->ic_mgtq, m);
956 if (m == NULL) {
957 /*
958 * No data frames go out unless we're associated.
959 */
960 if (ic->ic_state != IEEE80211_S_RUN) {
961 DPRINTF(("ath_start: ignore data packet, "
962 "state %u\n", ic->ic_state));
963 sc->sc_stats.ast_tx_discard++;
964 ath_txbuf_critsect_begin(sc, s);
965 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
966 ath_txbuf_critsect_end(sc, s);
967 break;
968 }
969 IF_DEQUEUE(&ifp->if_snd, m);
970 if (m == NULL) {
971 ath_txbuf_critsect_begin(sc, s);
972 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
973 ath_txbuf_critsect_end(sc, s);
974 break;
975 }
976 ifp->if_opackets++;
977
978 #ifdef __NetBSD__
979 #if NBPFILTER > 0
980 if (ifp->if_bpf)
981 bpf_mtap(ifp->if_bpf, m);
982 #endif
983 #endif
984 #ifdef __FreeBSD__
985 BPF_MTAP(ifp, m);
986 #endif
987 /*
988 * Encapsulate the packet in prep for transmission.
989 */
990 m = ieee80211_encap(ifp, m, &ni);
991 if (m == NULL) {
992 DPRINTF(("ath_start: encapsulation failure\n"));
993 sc->sc_stats.ast_tx_encap++;
994 goto bad;
995 }
996 wh = mtod(m, struct ieee80211_frame *);
997 if (ic->ic_flags & IEEE80211_F_WEPON)
998 wh->i_fc[1] |= IEEE80211_FC1_WEP;
999 } else {
1000 /*
1001 * Hack! The referenced node pointer is in the
1002 * rcvif field of the packet header. This is
1003 * placed there by ieee80211_mgmt_output because
1004 * we need to hold the reference with the frame
1005 * and there's no other way (other than packet
1006 * tags which we consider too expensive to use)
1007 * to pass it along.
1008 */
1009 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1010 m->m_pkthdr.rcvif = NULL;
1011
1012 wh = mtod(m, struct ieee80211_frame *);
1013 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1014 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1015 /* fill time stamp */
1016 u_int64_t tsf;
1017 u_int32_t *tstamp;
1018
1019 tsf = ath_hal_gettsf64(ah);
1020 /* XXX: adjust 100us delay to xmit */
1021 tsf += 100;
1022 tstamp = (u_int32_t *)&wh[1];
1023 tstamp[0] = htole32(tsf & 0xffffffff);
1024 tstamp[1] = htole32(tsf >> 32);
1025 }
1026 sc->sc_stats.ast_tx_mgmt++;
1027 }
1028 #if NBPFILTER > 0
1029 if (ic->ic_rawbpf)
1030 bpf_mtap(ic->ic_rawbpf, m);
1031 #endif
1032
1033 #if NBPFILTER > 0
1034 if (sc->sc_drvbpf) {
1035 #ifdef __FreeBSD__
1036 struct mbuf *mb;
1037
1038 MGETHDR(mb, M_DONTWAIT, m->m_type);
1039 if (mb != NULL) {
1040 sc->sc_tx_th.wt_rate =
1041 ni->ni_rates.rs_rates[ni->ni_txrate];
1042
1043 mb->m_next = m;
1044 mb->m_data = (caddr_t)&sc->sc_tx_th;
1045 mb->m_len = sizeof(sc->sc_tx_th);
1046 mb->m_pkthdr.len += mb->m_len;
1047 bpf_mtap(sc->sc_drvbpf, mb);
1048 m_free(mb);
1049 }
1050 #else
1051 struct mbuf mb;
1052
1053 M_COPY_PKTHDR(&mb, m);
1054 sc->sc_tx_th.wt_rate =
1055 ni->ni_rates.rs_rates[ni->ni_txrate];
1056
1057 mb.m_next = m;
1058 mb.m_data = (caddr_t)&sc->sc_tx_th;
1059 mb.m_len = sizeof(sc->sc_tx_th);
1060 mb.m_pkthdr.len += mb.m_len;
1061 bpf_mtap(sc->sc_drvbpf, &mb);
1062 #endif
1063 }
1064 #endif
1065
1066 if (ath_tx_start(sc, ni, bf, m)) {
1067 bad:
1068 ath_txbuf_critsect_begin(sc, s);
1069 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1070 ath_txbuf_critsect_end(sc, s);
1071 ifp->if_oerrors++;
1072 if (ni && ni != ic->ic_bss)
1073 ieee80211_free_node(ic, ni);
1074 continue;
1075 }
1076
1077 sc->sc_tx_timer = 5;
1078 ifp->if_timer = 1;
1079 }
1080 }
1081
1082 static int
1083 ath_media_change(struct ifnet *ifp)
1084 {
1085 int error;
1086
1087 error = ieee80211_media_change(ifp);
1088 if (error == ENETRESET) {
1089 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1090 (IFF_RUNNING|IFF_UP))
1091 ath_init(ifp); /* XXX lose error */
1092 error = 0;
1093 }
1094 return error;
1095 }
1096
1097 static void
1098 ath_watchdog(struct ifnet *ifp)
1099 {
1100 struct ath_softc *sc = ifp->if_softc;
1101 struct ieee80211com *ic = &sc->sc_ic;
1102
1103 ifp->if_timer = 0;
1104 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1105 return;
1106 if (sc->sc_tx_timer) {
1107 if (--sc->sc_tx_timer == 0) {
1108 if_printf(ifp, "device timeout\n");
1109 #ifdef AR_DEBUG
1110 if (ath_debug)
1111 ath_hal_dumpstate(sc->sc_ah);
1112 #endif /* AR_DEBUG */
1113 ath_init(ifp); /* XXX ath_reset??? */
1114 ifp->if_oerrors++;
1115 sc->sc_stats.ast_watchdog++;
1116 return;
1117 }
1118 ifp->if_timer = 1;
1119 }
1120 if (ic->ic_fixed_rate == -1) {
1121 /*
1122 * Run the rate control algorithm if we're not
1123 * locked at a fixed rate.
1124 */
1125 if (ic->ic_opmode == IEEE80211_M_STA)
1126 ath_rate_ctl(sc, ic->ic_bss);
1127 else
1128 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1129 }
1130 ieee80211_watchdog(ifp);
1131 }
1132
1133 static int
1134 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1135 {
1136 struct ath_softc *sc = ifp->if_softc;
1137 struct ifreq *ifr = (struct ifreq *)data;
1138 int error = 0;
1139 ath_softc_critsect_decl(s);
1140
1141 ath_softc_critsect_begin(sc, s);
1142 switch (cmd) {
1143 case SIOCSIFFLAGS:
1144 if (ifp->if_flags & IFF_UP) {
1145 if (ifp->if_flags & IFF_RUNNING) {
1146 /*
1147 * To avoid rescanning another access point,
1148 * do not call ath_init() here. Instead,
1149 * only reflect promisc mode settings.
1150 */
1151 ath_mode_init(sc);
1152 } else {
1153 /*
1154 * Beware of being called during detach to
1155 * reset promiscuous mode. In that case we
1156 * will still be marked UP but not RUNNING.
1157 * However trying to re-init the interface
1158 * is the wrong thing to do as we've already
1159 * torn down much of our state. There's
1160 * probably a better way to deal with this.
1161 */
1162 if (!sc->sc_invalid)
1163 ath_init(ifp); /* XXX lose error */
1164 }
1165 } else
1166 ath_stop(ifp);
1167 break;
1168 case SIOCADDMULTI:
1169 case SIOCDELMULTI:
1170 #ifdef __FreeBSD__
1171 /*
1172 * The upper layer has already installed/removed
1173 * the multicast address(es), just recalculate the
1174 * multicast filter for the card.
1175 */
1176 if (ifp->if_flags & IFF_RUNNING)
1177 ath_mode_init(sc);
1178 #endif
1179 #ifdef __NetBSD__
1180 error = (cmd == SIOCADDMULTI) ?
1181 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1182 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1183 if (error == ENETRESET) {
1184 if (ifp->if_flags & IFF_RUNNING)
1185 ath_mode_init(sc);
1186 error = 0;
1187 }
1188 #endif
1189 break;
1190 case SIOCGATHSTATS:
1191 error = copyout(&sc->sc_stats,
1192 ifr->ifr_data, sizeof (sc->sc_stats));
1193 break;
1194 case SIOCGATHDIAG: {
1195 struct ath_diag *ad = (struct ath_diag *)data;
1196 struct ath_hal *ah = sc->sc_ah;
1197 void *data;
1198 u_int size;
1199
1200 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
1201 if (size < ad->ad_size)
1202 ad->ad_size = size;
1203 if (data)
1204 error = copyout(data, ad->ad_data, ad->ad_size);
1205 } else
1206 error = EINVAL;
1207 break;
1208 }
1209 default:
1210 error = ieee80211_ioctl(ifp, cmd, data);
1211 if (error == ENETRESET) {
1212 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1213 (IFF_RUNNING|IFF_UP))
1214 ath_init(ifp); /* XXX lose error */
1215 error = 0;
1216 }
1217 break;
1218 }
1219 ath_softc_critsect_end(sc, s);
1220 return error;
1221 }
1222
1223 /*
1224 * Fill the hardware key cache with key entries.
1225 */
1226 static void
1227 ath_initkeytable(struct ath_softc *sc)
1228 {
1229 struct ieee80211com *ic = &sc->sc_ic;
1230 struct ath_hal *ah = sc->sc_ah;
1231 int i;
1232
1233 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1234 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1235 if (k->wk_len == 0)
1236 ath_hal_keyreset(ah, i);
1237 else
1238 /* XXX return value */
1239 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
1240 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
1241 }
1242 }
1243
1244 static void
1245 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1246 {
1247 u_int32_t val;
1248 u_int8_t pos;
1249
1250 val = LE_READ_4(dl + 0);
1251 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1252 val = LE_READ_4(dl + 3);
1253 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1254 pos &= 0x3f;
1255 (*mfilt)[pos / 32] |= (1 << (pos % 32));
1256 }
1257
1258 #ifdef __FreeBSD__
1259 static void
1260 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1261 {
1262 struct ieee80211com *ic = &sc->sc_ic;
1263 struct ifnet *ifp = &ic->ic_if;
1264 struct ifmultiaddr *ifma;
1265
1266 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1267 caddr_t dl;
1268
1269 /* calculate XOR of eight 6bit values */
1270 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1271 ath_mcastfilter_accum(dl, &mfilt);
1272 }
1273 }
1274 #else
1275 static void
1276 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1277 {
1278 struct ifnet *ifp = &sc->sc_ic.ic_if;
1279 struct ether_multi *enm;
1280 struct ether_multistep estep;
1281
1282 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1283 while (enm != NULL) {
1284 /* XXX Punt on ranges. */
1285 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1286 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1287 ifp->if_flags |= IFF_ALLMULTI;
1288 return;
1289 }
1290 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1291 ETHER_NEXT_MULTI(estep, enm);
1292 }
1293 ifp->if_flags &= ~IFF_ALLMULTI;
1294 }
1295 #endif
1296
1297 /*
1298 * Calculate the receive filter according to the
1299 * operating mode and state:
1300 *
1301 * o always accept unicast, broadcast, and multicast traffic
1302 * o maintain current state of phy error reception
1303 * o probe request frames are accepted only when operating in
1304 * hostap, adhoc, or monitor modes
1305 * o enable promiscuous mode according to the interface state
1306 * o accept beacons:
1307 * - when operating in adhoc mode so the 802.11 layer creates
1308 * node table entries for peers,
1309 * - when operating in station mode for collecting rssi data when
1310 * the station is otherwise quiet, or
1311 * - when scanning
1312 */
1313 static u_int32_t
1314 ath_calcrxfilter(struct ath_softc *sc)
1315 {
1316 struct ieee80211com *ic = &sc->sc_ic;
1317 struct ath_hal *ah = sc->sc_ah;
1318 struct ifnet *ifp = &ic->ic_if;
1319 u_int32_t rfilt;
1320
1321 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1322 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1323 if (ic->ic_opmode != IEEE80211_M_STA)
1324 rfilt |= HAL_RX_FILTER_PROBEREQ;
1325 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1326 (ifp->if_flags & IFF_PROMISC))
1327 rfilt |= HAL_RX_FILTER_PROM;
1328 if (ic->ic_opmode == IEEE80211_M_STA ||
1329 ic->ic_opmode == IEEE80211_M_IBSS ||
1330 ic->ic_state == IEEE80211_S_SCAN)
1331 rfilt |= HAL_RX_FILTER_BEACON;
1332 return rfilt;
1333 }
1334
1335 static void
1336 ath_mode_init(struct ath_softc *sc)
1337 {
1338 struct ieee80211com *ic = &sc->sc_ic;
1339 struct ath_hal *ah = sc->sc_ah;
1340 u_int32_t rfilt, mfilt[2];
1341
1342 /* configure rx filter */
1343 rfilt = ath_calcrxfilter(sc);
1344 ath_hal_setrxfilter(ah, rfilt);
1345
1346 /* configure operational mode */
1347 ath_hal_setopmode(ah, ic->ic_opmode);
1348
1349 /* calculate and install multicast filter */
1350 #ifdef __FreeBSD__
1351 if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
1352 mfilt[0] = mfilt[1] = 0;
1353 ath_mcastfilter_compute(sc, &mfilt);
1354 } else {
1355 mfilt[0] = mfilt[1] = ~0;
1356 }
1357 #endif
1358 #ifdef __NetBSD__
1359 mfilt[0] = mfilt[1] = 0;
1360 ath_mcastfilter_compute(sc, &mfilt);
1361 #endif
1362 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1363 DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1364 rfilt, mfilt[0], mfilt[1]));
1365 }
1366
1367 #ifdef __FreeBSD__
1368 static void
1369 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1370 {
1371 struct ath_buf *bf = arg;
1372
1373 KASSERT(nseg <= ATH_MAX_SCATTER,
1374 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1375 bf->bf_mapsize = mapsize;
1376 bf->bf_nseg = nseg;
1377 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1378 }
1379 #endif /* __FreeBSD__ */
1380
1381 static struct mbuf *
1382 ath_getmbuf(int flags, int type, u_int pktlen)
1383 {
1384 struct mbuf *m;
1385
1386 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1387 #ifdef __FreeBSD__
1388 if (pktlen <= MHLEN)
1389 MGETHDR(m, flags, type);
1390 else
1391 m = m_getcl(flags, type, M_PKTHDR);
1392 #else
1393 MGETHDR(m, flags, type);
1394 if (m != NULL && pktlen > MHLEN)
1395 MCLGET(m, flags);
1396 #endif
1397 return m;
1398 }
1399
1400 static int
1401 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1402 {
1403 struct ieee80211com *ic = &sc->sc_ic;
1404 struct ifnet *ifp = &ic->ic_if;
1405 struct ath_hal *ah = sc->sc_ah;
1406 struct ieee80211_frame *wh;
1407 struct ath_buf *bf;
1408 struct ath_desc *ds;
1409 struct mbuf *m;
1410 int error, pktlen;
1411 u_int8_t *frm, rate;
1412 u_int16_t capinfo;
1413 struct ieee80211_rateset *rs;
1414 const HAL_RATE_TABLE *rt;
1415
1416 bf = sc->sc_bcbuf;
1417 if (bf->bf_m != NULL) {
1418 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1419 m_freem(bf->bf_m);
1420 bf->bf_m = NULL;
1421 bf->bf_node = NULL;
1422 }
1423 /*
1424 * NB: the beacon data buffer must be 32-bit aligned;
1425 * we assume the mbuf routines will return us something
1426 * with this alignment (perhaps should assert).
1427 */
1428 rs = &ni->ni_rates;
1429 pktlen = sizeof (struct ieee80211_frame)
1430 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1431 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1432 pktlen += 2;
1433 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1434 if (m == NULL) {
1435 DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1436 pktlen));
1437 sc->sc_stats.ast_be_nombuf++;
1438 return ENOMEM;
1439 }
1440
1441 wh = mtod(m, struct ieee80211_frame *);
1442 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1443 IEEE80211_FC0_SUBTYPE_BEACON;
1444 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1445 *(u_int16_t *)wh->i_dur = 0;
1446 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1447 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1448 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1449 *(u_int16_t *)wh->i_seq = 0;
1450
1451 /*
1452 * beacon frame format
1453 * [8] time stamp
1454 * [2] beacon interval
1455 * [2] cabability information
1456 * [tlv] ssid
1457 * [tlv] supported rates
1458 * [tlv] parameter set (IBSS)
1459 * [tlv] extended supported rates
1460 */
1461 frm = (u_int8_t *)&wh[1];
1462 memset(frm, 0, 8); /* timestamp is set by hardware */
1463 frm += 8;
1464 *(u_int16_t *)frm = htole16(ni->ni_intval);
1465 frm += 2;
1466 if (ic->ic_opmode == IEEE80211_M_IBSS)
1467 capinfo = IEEE80211_CAPINFO_IBSS;
1468 else
1469 capinfo = IEEE80211_CAPINFO_ESS;
1470 if (ic->ic_flags & IEEE80211_F_WEPON)
1471 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1472 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1473 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1474 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1475 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1476 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1477 *(u_int16_t *)frm = htole16(capinfo);
1478 frm += 2;
1479 *frm++ = IEEE80211_ELEMID_SSID;
1480 *frm++ = ni->ni_esslen;
1481 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1482 frm += ni->ni_esslen;
1483 frm = ieee80211_add_rates(frm, rs);
1484 *frm++ = IEEE80211_ELEMID_DSPARMS;
1485 *frm++ = 1;
1486 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1487 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1488 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1489 *frm++ = 2;
1490 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1491 } else {
1492 /* TODO: TIM */
1493 *frm++ = IEEE80211_ELEMID_TIM;
1494 *frm++ = 4; /* length */
1495 *frm++ = 0; /* DTIM count */
1496 *frm++ = 1; /* DTIM period */
1497 *frm++ = 0; /* bitmap control */
1498 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1499 }
1500 frm = ieee80211_add_xrates(frm, rs);
1501 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1502 KASSERT(m->m_pkthdr.len <= pktlen,
1503 ("beacon bigger than expected, len %u calculated %u",
1504 m->m_pkthdr.len, pktlen));
1505
1506 DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1507 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1508 if (error != 0) {
1509 m_freem(m);
1510 return error;
1511 }
1512 KASSERT(bf->bf_nseg == 1,
1513 ("ath_beacon_alloc: multi-segment packet; nseg %u",
1514 bf->bf_nseg));
1515 bf->bf_m = m;
1516
1517 /* setup descriptors */
1518 ds = bf->bf_desc;
1519
1520 ds->ds_link = 0;
1521 ds->ds_data = bf->bf_segs[0].ds_addr;
1522
1523 DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
1524 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1525
1526 /*
1527 * Calculate rate code.
1528 * XXX everything at min xmit rate
1529 */
1530 rt = sc->sc_currates;
1531 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1532 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1533 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1534 else
1535 rate = rt->info[0].rateCode;
1536 if (!ath_hal_setuptxdesc(ah, ds
1537 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1538 , sizeof(struct ieee80211_frame) /* header length */
1539 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1540 , 0x20 /* txpower XXX */
1541 , rate, 1 /* series 0 rate/tries */
1542 , HAL_TXKEYIX_INVALID /* no encryption */
1543 , 0 /* antenna mode */
1544 , HAL_TXDESC_NOACK /* no ack for beacons */
1545 , 0 /* rts/cts rate */
1546 , 0 /* rts/cts duration */
1547 )) {
1548 printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1549 return -1;
1550 }
1551 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1552 /* XXX verify mbuf data area covers this roundup */
1553 if (!ath_hal_filltxdesc(ah, ds
1554 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1555 , AH_TRUE /* first segment */
1556 , AH_TRUE /* last segment */
1557 )) {
1558 printf("%s: ath_hal_filltxdesc failed\n", __func__);
1559 return -1;
1560 }
1561
1562 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1563
1564 return 0;
1565 }
1566
1567 static void
1568 ath_beacon_proc(void *arg, int pending)
1569 {
1570 struct ath_softc *sc = arg;
1571 struct ieee80211com *ic = &sc->sc_ic;
1572 struct ath_buf *bf = sc->sc_bcbuf;
1573 struct ath_hal *ah = sc->sc_ah;
1574
1575 DPRINTF2(("%s: pending %u\n", __func__, pending));
1576 if (ic->ic_opmode == IEEE80211_M_STA ||
1577 bf == NULL || bf->bf_m == NULL) {
1578 DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1579 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1580 return;
1581 }
1582 /* TODO: update beacon to reflect PS poll state */
1583 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1584 DPRINTF(("%s: beacon queue %u did not stop?",
1585 __func__, sc->sc_bhalq));
1586 return; /* busy, XXX is this right? */
1587 }
1588 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1589
1590 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1591 ath_hal_txstart(ah, sc->sc_bhalq);
1592 DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
1593 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1594 }
1595
1596 static void
1597 ath_beacon_free(struct ath_softc *sc)
1598 {
1599 struct ath_buf *bf = sc->sc_bcbuf;
1600
1601 if (bf->bf_m != NULL) {
1602 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1603 m_freem(bf->bf_m);
1604 bf->bf_m = NULL;
1605 bf->bf_node = NULL;
1606 }
1607 }
1608
1609 /*
1610 * Configure the beacon and sleep timers.
1611 *
1612 * When operating as an AP this resets the TSF and sets
1613 * up the hardware to notify us when we need to issue beacons.
1614 *
1615 * When operating in station mode this sets up the beacon
1616 * timers according to the timestamp of the last received
1617 * beacon and the current TSF, configures PCF and DTIM
1618 * handling, programs the sleep registers so the hardware
1619 * will wakeup in time to receive beacons, and configures
1620 * the beacon miss handling so we'll receive a BMISS
1621 * interrupt when we stop seeing beacons from the AP
1622 * we've associated with.
1623 */
1624 static void
1625 ath_beacon_config(struct ath_softc *sc)
1626 {
1627 struct ath_hal *ah = sc->sc_ah;
1628 struct ieee80211com *ic = &sc->sc_ic;
1629 struct ieee80211_node *ni = ic->ic_bss;
1630 u_int32_t nexttbtt;
1631
1632 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1633 (LE_READ_4(ni->ni_tstamp) >> 10);
1634 DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1635 nexttbtt += ni->ni_intval;
1636 if (ic->ic_opmode == IEEE80211_M_STA) {
1637 HAL_BEACON_STATE bs;
1638 u_int32_t bmisstime;
1639
1640 /* NB: no PCF support right now */
1641 memset(&bs, 0, sizeof(bs));
1642 bs.bs_intval = ni->ni_intval;
1643 bs.bs_nexttbtt = nexttbtt;
1644 bs.bs_dtimperiod = bs.bs_intval;
1645 bs.bs_nextdtim = nexttbtt;
1646 /*
1647 * Calculate the number of consecutive beacons to miss
1648 * before taking a BMISS interrupt. The configuration
1649 * is specified in ms, so we need to convert that to
1650 * TU's and then calculate based on the beacon interval.
1651 * Note that we clamp the result to at most 10 beacons.
1652 */
1653 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1654 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1655 if (bs.bs_bmissthreshold > 10)
1656 bs.bs_bmissthreshold = 10;
1657 else if (bs.bs_bmissthreshold <= 0)
1658 bs.bs_bmissthreshold = 1;
1659
1660 /*
1661 * Calculate sleep duration. The configuration is
1662 * given in ms. We insure a multiple of the beacon
1663 * period is used. Also, if the sleep duration is
1664 * greater than the DTIM period then it makes senses
1665 * to make it a multiple of that.
1666 *
1667 * XXX fixed at 100ms
1668 */
1669 bs.bs_sleepduration =
1670 roundup((100 * 1000) / 1024, bs.bs_intval);
1671 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1672 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1673
1674 DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1675 , __func__
1676 , bs.bs_intval
1677 , bs.bs_nexttbtt
1678 , bs.bs_dtimperiod
1679 , bs.bs_nextdtim
1680 , bs.bs_bmissthreshold
1681 , bs.bs_sleepduration
1682 ));
1683 ath_hal_intrset(ah, 0);
1684 /*
1685 * Reset our tsf so the hardware will update the
1686 * tsf register to reflect timestamps found in
1687 * received beacons.
1688 */
1689 ath_hal_resettsf(ah);
1690 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1691 sc->sc_imask |= HAL_INT_BMISS;
1692 ath_hal_intrset(ah, sc->sc_imask);
1693 } else {
1694 DPRINTF(("%s: intval %u nexttbtt %u\n",
1695 __func__, ni->ni_intval, nexttbtt));
1696 ath_hal_intrset(ah, 0);
1697 ath_hal_beaconinit(ah, ic->ic_opmode,
1698 nexttbtt, ni->ni_intval);
1699 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1700 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1701 ath_hal_intrset(ah, sc->sc_imask);
1702 }
1703 }
1704
1705 #ifdef __FreeBSD__
1706 static void
1707 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1708 {
1709 bus_addr_t *paddr = (bus_addr_t*) arg;
1710 *paddr = segs->ds_addr;
1711 }
1712 #endif
1713
1714 #ifdef __FreeBSD__
1715 static int
1716 ath_desc_alloc(struct ath_softc *sc)
1717 {
1718 int i, bsize, error;
1719 struct ath_desc *ds;
1720 struct ath_buf *bf;
1721
1722 /* allocate descriptors */
1723 sc->sc_desc_len = sizeof(struct ath_desc) *
1724 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1725 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1726 if (error != 0)
1727 return error;
1728
1729 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1730 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1731
1732 if (error != 0)
1733 goto fail0;
1734
1735 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1736 sc->sc_desc, sc->sc_desc_len,
1737 ath_load_cb, &sc->sc_desc_paddr,
1738 BUS_DMA_NOWAIT);
1739 if (error != 0)
1740 goto fail1;
1741
1742 ds = sc->sc_desc;
1743 DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1744 ds, sc->sc_desc_len,
1745 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1746
1747 /* allocate buffers */
1748 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1749 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1750 if (bf == NULL) {
1751 printf("%s: unable to allocate Tx/Rx buffers\n",
1752 sc->sc_dev.dv_xname);
1753 error = -1;
1754 goto fail2;
1755 }
1756 sc->sc_bufptr = bf;
1757
1758 TAILQ_INIT(&sc->sc_rxbuf);
1759 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1760 bf->bf_desc = ds;
1761 bf->bf_daddr = sc->sc_desc_paddr +
1762 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1763 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1764 &bf->bf_dmamap);
1765 if (error != 0)
1766 break;
1767 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1768 }
1769
1770 TAILQ_INIT(&sc->sc_txbuf);
1771 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1772 bf->bf_desc = ds;
1773 bf->bf_daddr = sc->sc_desc_paddr +
1774 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1775 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1776 &bf->bf_dmamap);
1777 if (error != 0)
1778 break;
1779 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1780 }
1781 TAILQ_INIT(&sc->sc_txq);
1782
1783 /* beacon buffer */
1784 bf->bf_desc = ds;
1785 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1786 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1787 if (error != 0)
1788 return error;
1789 sc->sc_bcbuf = bf;
1790 return 0;
1791
1792 fail2:
1793 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1794 fail1:
1795 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1796 fail0:
1797 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1798 sc->sc_ddmamap = NULL;
1799 return error;
1800 }
1801 #else
1802 static int
1803 ath_desc_alloc(struct ath_softc *sc)
1804 {
1805 int i, bsize, error = -1;
1806 struct ath_desc *ds;
1807 struct ath_buf *bf;
1808
1809 /* allocate descriptors */
1810 sc->sc_desc_len = sizeof(struct ath_desc) *
1811 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1812 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1813 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1814 printf("%s: unable to allocate control data, error = %d\n",
1815 sc->sc_dev.dv_xname, error);
1816 goto fail0;
1817 }
1818
1819 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1820 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1821 printf("%s: unable to map control data, error = %d\n",
1822 sc->sc_dev.dv_xname, error);
1823 goto fail1;
1824 }
1825
1826 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1827 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1828 printf("%s: unable to create control data DMA map, "
1829 "error = %d\n", sc->sc_dev.dv_xname, error);
1830 goto fail2;
1831 }
1832
1833 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1834 sc->sc_desc_len, NULL, 0)) != 0) {
1835 printf("%s: unable to load control data DMA map, error = %d\n",
1836 sc->sc_dev.dv_xname, error);
1837 goto fail3;
1838 }
1839
1840 ds = sc->sc_desc;
1841 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1842
1843 DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1844 ds, (u_long)sc->sc_desc_len,
1845 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1846
1847 /* allocate buffers */
1848 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1849 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1850 if (bf == NULL) {
1851 printf("%s: unable to allocate Tx/Rx buffers\n",
1852 sc->sc_dev.dv_xname);
1853 error = ENOMEM;
1854 goto fail3;
1855 }
1856 sc->sc_bufptr = bf;
1857
1858 TAILQ_INIT(&sc->sc_rxbuf);
1859 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1860 bf->bf_desc = ds;
1861 bf->bf_daddr = sc->sc_desc_paddr +
1862 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1863 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1864 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1865 printf("%s: unable to create Rx dmamap, error = %d\n",
1866 sc->sc_dev.dv_xname, error);
1867 goto fail4;
1868 }
1869 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1870 }
1871
1872 TAILQ_INIT(&sc->sc_txbuf);
1873 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1874 bf->bf_desc = ds;
1875 bf->bf_daddr = sc->sc_desc_paddr +
1876 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1877 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1878 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1879 printf("%s: unable to create Tx dmamap, error = %d\n",
1880 sc->sc_dev.dv_xname, error);
1881 goto fail5;
1882 }
1883 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1884 }
1885 TAILQ_INIT(&sc->sc_txq);
1886
1887 /* beacon buffer */
1888 bf->bf_desc = ds;
1889 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1890 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
1891 &bf->bf_dmamap)) != 0) {
1892 printf("%s: unable to create beacon dmamap, error = %d\n",
1893 sc->sc_dev.dv_xname, error);
1894 goto fail5;
1895 }
1896 sc->sc_bcbuf = bf;
1897 return 0;
1898
1899 fail5:
1900 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
1901 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1902 continue;
1903 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1904 }
1905 fail4:
1906 for (i = 0; i < ATH_RXBUF; i++) {
1907 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1908 continue;
1909 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1910 }
1911 fail3:
1912 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1913 fail2:
1914 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1915 sc->sc_ddmamap = NULL;
1916 fail1:
1917 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
1918 fail0:
1919 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1920 return error;
1921 }
1922 #endif
1923
1924 static void
1925 ath_desc_free(struct ath_softc *sc)
1926 {
1927 struct ath_buf *bf;
1928
1929 #ifdef __FreeBSD__
1930 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1931 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1932 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1933 #else
1934 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1935 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1936 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1937 #endif
1938
1939 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1940 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1941 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1942 m_freem(bf->bf_m);
1943 }
1944 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1945 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1946 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1947 if (bf->bf_m) {
1948 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1949 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1950 m_freem(bf->bf_m);
1951 bf->bf_m = NULL;
1952 }
1953 }
1954 if (sc->sc_bcbuf != NULL) {
1955 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1956 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1957 sc->sc_bcbuf = NULL;
1958 }
1959
1960 TAILQ_INIT(&sc->sc_rxbuf);
1961 TAILQ_INIT(&sc->sc_txbuf);
1962 TAILQ_INIT(&sc->sc_txq);
1963 free(sc->sc_bufptr, M_DEVBUF);
1964 sc->sc_bufptr = NULL;
1965 }
1966
1967 static struct ieee80211_node *
1968 ath_node_alloc(struct ieee80211com *ic)
1969 {
1970 struct ath_node *an =
1971 malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1972 if (an) {
1973 int i;
1974 for (i = 0; i < ATH_RHIST_SIZE; i++)
1975 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1976 an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1977 return &an->an_node;
1978 } else
1979 return NULL;
1980 }
1981
1982 static void
1983 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1984 {
1985 struct ath_softc *sc = ic->ic_if.if_softc;
1986 struct ath_buf *bf;
1987
1988 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1989 if (bf->bf_node == ni)
1990 bf->bf_node = NULL;
1991 }
1992 free(ni, M_DEVBUF);
1993 }
1994
1995 static void
1996 ath_node_copy(struct ieee80211com *ic,
1997 struct ieee80211_node *dst, const struct ieee80211_node *src)
1998 {
1999 *(struct ath_node *)dst = *(const struct ath_node *)src;
2000 }
2001
2002 static u_int8_t
2003 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
2004 {
2005 struct ath_node *an = ATH_NODE(ni);
2006 int i, now, nsamples, rssi;
2007
2008 /*
2009 * Calculate the average over the last second of sampled data.
2010 */
2011 now = ATH_TICKS();
2012 nsamples = 0;
2013 rssi = 0;
2014 i = an->an_rx_hist_next;
2015 do {
2016 struct ath_recv_hist *rh = &an->an_rx_hist[i];
2017 if (rh->arh_ticks == ATH_RHIST_NOTIME)
2018 goto done;
2019 if (now - rh->arh_ticks > hz)
2020 goto done;
2021 rssi += rh->arh_rssi;
2022 nsamples++;
2023 if (i == 0)
2024 i = ATH_RHIST_SIZE-1;
2025 else
2026 i--;
2027 } while (i != an->an_rx_hist_next);
2028 done:
2029 /*
2030 * Return either the average or the last known
2031 * value if there is no recent data.
2032 */
2033 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
2034 }
2035
2036 static int
2037 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2038 {
2039 struct ath_hal *ah = sc->sc_ah;
2040 int error;
2041 struct mbuf *m;
2042 struct ath_desc *ds;
2043
2044 m = bf->bf_m;
2045 if (m == NULL) {
2046 /*
2047 * NB: by assigning a page to the rx dma buffer we
2048 * implicitly satisfy the Atheros requirement that
2049 * this buffer be cache-line-aligned and sized to be
2050 * multiple of the cache line size. Not doing this
2051 * causes weird stuff to happen (for the 5210 at least).
2052 */
2053 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
2054 if (m == NULL) {
2055 DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
2056 sc->sc_stats.ast_rx_nombuf++;
2057 return ENOMEM;
2058 }
2059 bf->bf_m = m;
2060 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2061
2062 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
2063 BUS_DMA_NOWAIT);
2064 if (error != 0) {
2065 DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
2066 " error %d\n", error));
2067 sc->sc_stats.ast_rx_busdma++;
2068 return error;
2069 }
2070 KASSERT(bf->bf_nseg == 1,
2071 ("ath_rxbuf_init: multi-segment packet; nseg %u",
2072 bf->bf_nseg));
2073 }
2074 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
2075
2076 /*
2077 * Setup descriptors. For receive we always terminate
2078 * the descriptor list with a self-linked entry so we'll
2079 * not get overrun under high load (as can happen with a
2080 * 5212 when ANI processing enables PHY errors).
2081 *
2082 * To insure the last descriptor is self-linked we create
2083 * each descriptor as self-linked and add it to the end. As
2084 * each additional descriptor is added the previous self-linked
2085 * entry is ``fixed'' naturally. This should be safe even
2086 * if DMA is happening. When processing RX interrupts we
2087 * never remove/process the last, self-linked, entry on the
2088 * descriptor list. This insures the hardware always has
2089 * someplace to write a new frame.
2090 */
2091 ds = bf->bf_desc;
2092 ds->ds_link = bf->bf_daddr; /* link to self */
2093 ds->ds_data = bf->bf_segs[0].ds_addr;
2094 ath_hal_setuprxdesc(ah, ds
2095 , m->m_len /* buffer size */
2096 , 0
2097 );
2098
2099 if (sc->sc_rxlink != NULL)
2100 *sc->sc_rxlink = bf->bf_daddr;
2101 sc->sc_rxlink = &ds->ds_link;
2102 return 0;
2103 }
2104
2105 static void
2106 ath_rx_proc(void *arg, int npending)
2107 {
2108 #define PA2DESC(_sc, _pa) \
2109 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2110 ((_pa) - (_sc)->sc_desc_paddr)))
2111 struct ath_softc *sc = arg;
2112 struct ath_buf *bf;
2113 struct ieee80211com *ic = &sc->sc_ic;
2114 struct ifnet *ifp = &ic->ic_if;
2115 struct ath_hal *ah = sc->sc_ah;
2116 struct ath_desc *ds;
2117 struct mbuf *m;
2118 struct ieee80211_frame *wh, whbuf;
2119 struct ieee80211_node *ni;
2120 struct ath_node *an;
2121 struct ath_recv_hist *rh;
2122 int len;
2123 u_int phyerr;
2124 HAL_STATUS status;
2125
2126 DPRINTF2(("ath_rx_proc: pending %u\n", npending));
2127 do {
2128 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2129 if (bf == NULL) { /* NB: shouldn't happen */
2130 if_printf(ifp, "ath_rx_proc: no buffer!\n");
2131 break;
2132 }
2133 ds = bf->bf_desc;
2134 if (ds->ds_link == bf->bf_daddr) {
2135 /* NB: never process the self-linked entry at the end */
2136 break;
2137 }
2138 m = bf->bf_m;
2139 if (m == NULL) { /* NB: shouldn't happen */
2140 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
2141 continue;
2142 }
2143 /* XXX sync descriptor memory */
2144 /*
2145 * Must provide the virtual address of the current
2146 * descriptor, the physical address, and the virtual
2147 * address of the next descriptor in the h/w chain.
2148 * This allows the HAL to look ahead to see if the
2149 * hardware is done with a descriptor by checking the
2150 * done bit in the following descriptor and the address
2151 * of the current descriptor the DMA engine is working
2152 * on. All this is necessary because of our use of
2153 * a self-linked list to avoid rx overruns.
2154 */
2155 status = ath_hal_rxprocdesc(ah, ds,
2156 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2157 #ifdef AR_DEBUG
2158 if (ath_debug > 1)
2159 ath_printrxbuf(bf, status == HAL_OK);
2160 #endif
2161 if (status == HAL_EINPROGRESS)
2162 break;
2163 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
2164 if (ds->ds_rxstat.rs_status != 0) {
2165 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2166 sc->sc_stats.ast_rx_crcerr++;
2167 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2168 sc->sc_stats.ast_rx_fifoerr++;
2169 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2170 sc->sc_stats.ast_rx_badcrypt++;
2171 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2172 sc->sc_stats.ast_rx_phyerr++;
2173 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2174 sc->sc_stats.ast_rx_phy[phyerr]++;
2175 } else {
2176 /*
2177 * NB: don't count PHY errors as input errors;
2178 * we enable them on the 5212 to collect info
2179 * about environmental noise and, in that
2180 * setting, they don't really reflect tx/rx
2181 * errors.
2182 */
2183 ifp->if_ierrors++;
2184 }
2185 goto rx_next;
2186 }
2187
2188 len = ds->ds_rxstat.rs_datalen;
2189 if (len < IEEE80211_MIN_LEN) {
2190 DPRINTF(("ath_rx_proc: short packet %d\n", len));
2191 sc->sc_stats.ast_rx_tooshort++;
2192 goto rx_next;
2193 }
2194
2195 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2196
2197 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2198 bf->bf_m = NULL;
2199 m->m_pkthdr.rcvif = ifp;
2200 m->m_pkthdr.len = m->m_len = len;
2201
2202 #if NBPFILTER > 0
2203 if (sc->sc_drvbpf) {
2204 #ifdef __FreeBSD__
2205 struct mbuf *mb;
2206
2207 /* XXX pre-allocate space when setting up recv's */
2208 MGETHDR(mb, M_DONTWAIT, m->m_type);
2209 if (mb != NULL) {
2210 sc->sc_rx_th.wr_rate =
2211 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2212 sc->sc_rx_th.wr_antsignal =
2213 ds->ds_rxstat.rs_rssi;
2214 sc->sc_rx_th.wr_antenna =
2215 ds->ds_rxstat.rs_antenna;
2216 /* XXX TSF */
2217
2218 (void) m_dup_pkthdr(mb, m, M_DONTWAIT);
2219 mb->m_next = m;
2220 mb->m_data = (caddr_t)&sc->sc_rx_th;
2221 mb->m_len = sizeof(sc->sc_rx_th);
2222 mb->m_pkthdr.len += mb->m_len;
2223 bpf_mtap(sc->sc_drvbpf, mb);
2224 m_free(mb);
2225 }
2226 #else
2227 /* XXX pre-allocate space when setting up recv's */
2228 struct mbuf mb;
2229
2230 sc->sc_rx_th.wr_rate =
2231 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2232 sc->sc_rx_th.wr_antsignal =
2233 ds->ds_rxstat.rs_rssi;
2234 sc->sc_rx_th.wr_antenna =
2235 ds->ds_rxstat.rs_antenna;
2236 /* XXX TSF */
2237
2238 M_COPY_PKTHDR(&mb, m);
2239 mb.m_next = m;
2240 mb.m_data = (caddr_t)&sc->sc_rx_th;
2241 mb.m_len = sizeof(sc->sc_rx_th);
2242 mb.m_pkthdr.len += mb.m_len;
2243 bpf_mtap(sc->sc_drvbpf, &mb);
2244 #endif
2245 }
2246 #endif
2247
2248 m_adj(m, -IEEE80211_CRC_LEN);
2249 wh = mtod(m, struct ieee80211_frame *);
2250 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2251 /*
2252 * WEP is decrypted by hardware. Clear WEP bit
2253 * and trim WEP header for ieee80211_input().
2254 */
2255 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2256 memcpy(&whbuf, wh, sizeof(whbuf));
2257 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2258 wh = mtod(m, struct ieee80211_frame *);
2259 memcpy(wh, &whbuf, sizeof(whbuf));
2260 /*
2261 * Also trim WEP ICV from the tail.
2262 */
2263 m_adj(m, -IEEE80211_WEP_CRCLEN);
2264 /*
2265 * The header has probably moved.
2266 */
2267 wh = mtod(m, struct ieee80211_frame *);
2268 }
2269
2270 /*
2271 * Locate the node for sender, track state, and
2272 * then pass this node (referenced) up to the 802.11
2273 * layer for its use. We are required to pass
2274 * something so we fall back to ic_bss when this frame
2275 * is from an unknown sender.
2276 */
2277 ni = ieee80211_find_rxnode(ic, wh);
2278
2279 /*
2280 * Record driver-specific state.
2281 */
2282 an = ATH_NODE(ni);
2283 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2284 an->an_rx_hist_next = 0;
2285 rh = &an->an_rx_hist[an->an_rx_hist_next];
2286 rh->arh_ticks = ATH_TICKS();
2287 rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2288 rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2289
2290 /*
2291 * Send frame up for processing.
2292 */
2293 ieee80211_input(ifp, m, ni,
2294 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2295
2296 /*
2297 * The frame may have caused the node to be marked for
2298 * reclamation (e.g. in response to a DEAUTH message)
2299 * so use free_node here instead of unref_node.
2300 */
2301 if (ni == ic->ic_bss)
2302 ieee80211_unref_node(&ni);
2303 else
2304 ieee80211_free_node(ic, ni);
2305 rx_next:
2306 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2307 } while (ath_rxbuf_init(sc, bf) == 0);
2308
2309 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
2310 ath_hal_rxena(ah); /* in case of RXEOL */
2311
2312 #ifdef __NetBSD__
2313 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2314 ath_start(ifp);
2315 #endif /* __NetBSD__ */
2316 #undef PA2DESC
2317 }
2318
2319 /*
2320 * XXX Size of an ACK control frame in bytes.
2321 */
2322 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
2323
2324 static int
2325 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2326 struct mbuf *m0)
2327 {
2328 struct ieee80211com *ic = &sc->sc_ic;
2329 struct ath_hal *ah = sc->sc_ah;
2330 struct ifnet *ifp = &sc->sc_ic.ic_if;
2331 int i, error, iswep, hdrlen, pktlen;
2332 u_int8_t rix, cix, txrate, ctsrate;
2333 struct ath_desc *ds;
2334 struct mbuf *m;
2335 struct ieee80211_frame *wh;
2336 u_int32_t iv;
2337 u_int8_t *ivp;
2338 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2339 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2340 u_int subtype, flags, ctsduration, antenna;
2341 HAL_PKT_TYPE atype;
2342 const HAL_RATE_TABLE *rt;
2343 HAL_BOOL shortPreamble;
2344 struct ath_node *an;
2345 ath_txq_critsect_decl(s);
2346
2347 wh = mtod(m0, struct ieee80211_frame *);
2348 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2349 hdrlen = sizeof(struct ieee80211_frame);
2350 pktlen = m0->m_pkthdr.len;
2351
2352 if (iswep) {
2353 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2354 m_adj(m0, hdrlen);
2355 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2356 if (m0 == NULL) {
2357 sc->sc_stats.ast_tx_nombuf++;
2358 return ENOMEM;
2359 }
2360 ivp = hdrbuf + hdrlen;
2361 wh = mtod(m0, struct ieee80211_frame *);
2362 /*
2363 * XXX
2364 * IV must not duplicate during the lifetime of the key.
2365 * But no mechanism to renew keys is defined in IEEE 802.11
2366 * WEP. And IV may be duplicated between other stations
2367 * because of the session key itself is shared.
2368 * So we use pseudo random IV for now, though it is not the
2369 * right way.
2370 */
2371 iv = ic->ic_iv;
2372 /*
2373 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2374 * (B, 255, N) with 3 <= B < 8
2375 */
2376 if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
2377 iv += 0x000100;
2378 ic->ic_iv = iv + 1;
2379 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
2380 ivp[i] = iv;
2381 iv >>= 8;
2382 }
2383 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
2384 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2385 /*
2386 * The ICV length must be included into hdrlen and pktlen.
2387 */
2388 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2389 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2390 }
2391 pktlen += IEEE80211_CRC_LEN;
2392
2393 /*
2394 * Load the DMA map so any coalescing is done. This
2395 * also calculates the number of descriptors we need.
2396 */
2397 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2398 /*
2399 * Discard null packets and check for packets that
2400 * require too many TX descriptors. We try to convert
2401 * the latter to a cluster.
2402 */
2403 if (error == EFBIG) { /* too many desc's, linearize */
2404 sc->sc_stats.ast_tx_linear++;
2405 MGETHDR(m, M_DONTWAIT, MT_DATA);
2406 if (m == NULL) {
2407 sc->sc_stats.ast_tx_nombuf++;
2408 m_freem(m0);
2409 return ENOMEM;
2410 }
2411 #ifdef __FreeBSD__
2412 M_MOVE_PKTHDR(m, m0);
2413 #else
2414 M_COPY_PKTHDR(m, m0);
2415 #endif
2416 MCLGET(m, M_DONTWAIT);
2417 if ((m->m_flags & M_EXT) == 0) {
2418 sc->sc_stats.ast_tx_nomcl++;
2419 m_freem(m0);
2420 m_free(m);
2421 return ENOMEM;
2422 }
2423 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2424 m_freem(m0);
2425 m->m_len = m->m_pkthdr.len;
2426 m0 = m;
2427 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2428 BUS_DMA_NOWAIT);
2429 if (error != 0) {
2430 sc->sc_stats.ast_tx_busdma++;
2431 m_freem(m0);
2432 return error;
2433 }
2434 KASSERT(bf->bf_nseg == 1,
2435 ("ath_tx_start: packet not one segment; nseg %u",
2436 bf->bf_nseg));
2437 } else if (error != 0) {
2438 sc->sc_stats.ast_tx_busdma++;
2439 m_freem(m0);
2440 return error;
2441 } else if (bf->bf_nseg == 0) { /* null packet, discard */
2442 sc->sc_stats.ast_tx_nodata++;
2443 m_freem(m0);
2444 return EIO;
2445 }
2446 DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
2447 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2448 bf->bf_m = m0;
2449 bf->bf_node = ni; /* NB: held reference */
2450
2451 /* setup descriptors */
2452 ds = bf->bf_desc;
2453 rt = sc->sc_currates;
2454 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2455
2456 /*
2457 * Calculate Atheros packet type from IEEE80211 packet header
2458 * and setup for rate calculations.
2459 */
2460 atype = HAL_PKT_TYPE_NORMAL; /* default */
2461 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2462 case IEEE80211_FC0_TYPE_MGT:
2463 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2464 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2465 atype = HAL_PKT_TYPE_BEACON;
2466 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2467 atype = HAL_PKT_TYPE_PROBE_RESP;
2468 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2469 atype = HAL_PKT_TYPE_ATIM;
2470 rix = 0; /* XXX lowest rate */
2471 break;
2472 case IEEE80211_FC0_TYPE_CTL:
2473 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2474 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2475 atype = HAL_PKT_TYPE_PSPOLL;
2476 rix = 0; /* XXX lowest rate */
2477 break;
2478 default:
2479 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2480 IEEE80211_RATE_VAL];
2481 if (rix == 0xff) {
2482 if_printf(ifp, "bogus xmit rate 0x%x\n",
2483 ni->ni_rates.rs_rates[ni->ni_txrate]);
2484 sc->sc_stats.ast_tx_badrate++;
2485 m_freem(m0);
2486 return EIO;
2487 }
2488 break;
2489 }
2490 /*
2491 * NB: the 802.11 layer marks whether or not we should
2492 * use short preamble based on the current mode and
2493 * negotiated parameters.
2494 */
2495 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2496 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2497 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2498 shortPreamble = AH_TRUE;
2499 sc->sc_stats.ast_tx_shortpre++;
2500 } else {
2501 txrate = rt->info[rix].rateCode;
2502 shortPreamble = AH_FALSE;
2503 }
2504
2505 /*
2506 * Calculate miscellaneous flags.
2507 */
2508 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2509 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2510 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2511 sc->sc_stats.ast_tx_noack++;
2512 } else if (pktlen > ic->ic_rtsthreshold) {
2513 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2514 sc->sc_stats.ast_tx_rts++;
2515 }
2516
2517 /*
2518 * Calculate duration. This logically belongs in the 802.11
2519 * layer but it lacks sufficient information to calculate it.
2520 */
2521 if ((flags & HAL_TXDESC_NOACK) == 0 &&
2522 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2523 u_int16_t dur;
2524 /*
2525 * XXX not right with fragmentation.
2526 */
2527 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2528 rix, shortPreamble);
2529 *((u_int16_t*) wh->i_dur) = htole16(dur);
2530 }
2531
2532 /*
2533 * Calculate RTS/CTS rate and duration if needed.
2534 */
2535 ctsduration = 0;
2536 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2537 /*
2538 * CTS transmit rate is derived from the transmit rate
2539 * by looking in the h/w rate table. We must also factor
2540 * in whether or not a short preamble is to be used.
2541 */
2542 cix = rt->info[rix].controlRate;
2543 ctsrate = rt->info[cix].rateCode;
2544 if (shortPreamble)
2545 ctsrate |= rt->info[cix].shortPreamble;
2546 /*
2547 * Compute the transmit duration based on the size
2548 * of an ACK frame. We call into the HAL to do the
2549 * computation since it depends on the characteristics
2550 * of the actual PHY being used.
2551 */
2552 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2553 ctsduration += ath_hal_computetxtime(ah,
2554 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2555 }
2556 /* SIFS + data */
2557 ctsduration += ath_hal_computetxtime(ah,
2558 rt, pktlen, rix, shortPreamble);
2559 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2560 ctsduration += ath_hal_computetxtime(ah,
2561 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2562 }
2563 } else
2564 ctsrate = 0;
2565
2566 /*
2567 * For now use the antenna on which the last good
2568 * frame was received on. We assume this field is
2569 * initialized to 0 which gives us ``auto'' or the
2570 * ``default'' antenna.
2571 */
2572 an = (struct ath_node *) ni;
2573 if (an->an_tx_antenna)
2574 antenna = an->an_tx_antenna;
2575 else
2576 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2577
2578 /*
2579 * Formulate first tx descriptor with tx controls.
2580 */
2581 /* XXX check return value? */
2582 ath_hal_setuptxdesc(ah, ds
2583 , pktlen /* packet length */
2584 , hdrlen /* header length */
2585 , atype /* Atheros packet type */
2586 , 60 /* txpower XXX */
2587 , txrate, 1+10 /* series 0 rate/tries */
2588 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2589 , antenna /* antenna mode */
2590 , flags /* flags */
2591 , ctsrate /* rts/cts rate */
2592 , ctsduration /* rts/cts duration */
2593 );
2594 #ifdef notyet
2595 ath_hal_setupxtxdesc(ah, ds
2596 , AH_FALSE /* short preamble */
2597 , 0, 0 /* series 1 rate/tries */
2598 , 0, 0 /* series 2 rate/tries */
2599 , 0, 0 /* series 3 rate/tries */
2600 );
2601 #endif
2602 /*
2603 * Fillin the remainder of the descriptor info.
2604 */
2605 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2606 ds->ds_data = bf->bf_segs[i].ds_addr;
2607 if (i == bf->bf_nseg - 1)
2608 ds->ds_link = 0;
2609 else
2610 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2611 ath_hal_filltxdesc(ah, ds
2612 , bf->bf_segs[i].ds_len /* segment length */
2613 , i == 0 /* first segment */
2614 , i == bf->bf_nseg - 1 /* last segment */
2615 );
2616 DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2617 i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2618 ds->ds_hw[0], ds->ds_hw[1]));
2619 }
2620
2621 /*
2622 * Insert the frame on the outbound list and
2623 * pass it on to the hardware.
2624 */
2625 ath_txq_critsect_begin(sc, s);
2626 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2627 if (sc->sc_txlink == NULL) {
2628 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2629 DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2630 (caddr_t)bf->bf_daddr, bf->bf_desc));
2631 } else {
2632 *sc->sc_txlink = bf->bf_daddr;
2633 DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2634 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2635 }
2636 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2637 ath_txq_critsect_end(sc, s);
2638
2639 ath_hal_txstart(ah, sc->sc_txhalq);
2640 return 0;
2641 }
2642
2643 static void
2644 ath_tx_proc(void *arg, int npending)
2645 {
2646 struct ath_softc *sc = arg;
2647 struct ath_hal *ah = sc->sc_ah;
2648 struct ath_buf *bf;
2649 struct ieee80211com *ic = &sc->sc_ic;
2650 struct ifnet *ifp = &ic->ic_if;
2651 struct ath_desc *ds;
2652 struct ieee80211_node *ni;
2653 struct ath_node *an;
2654 int sr, lr;
2655 HAL_STATUS status;
2656 ath_txq_critsect_decl(s);
2657 ath_txbuf_critsect_decl(s2);
2658
2659 DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2660 npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2661 sc->sc_txlink));
2662 for (;;) {
2663 ath_txq_critsect_begin(sc, s);
2664 bf = TAILQ_FIRST(&sc->sc_txq);
2665 if (bf == NULL) {
2666 sc->sc_txlink = NULL;
2667 ath_txq_critsect_end(sc, s);
2668 break;
2669 }
2670 /* only the last descriptor is needed */
2671 ds = &bf->bf_desc[bf->bf_nseg - 1];
2672 status = ath_hal_txprocdesc(ah, ds);
2673 #ifdef AR_DEBUG
2674 if (ath_debug > 1)
2675 ath_printtxbuf(bf, status == HAL_OK);
2676 #endif
2677 if (status == HAL_EINPROGRESS) {
2678 ath_txq_critsect_end(sc, s);
2679 break;
2680 }
2681 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2682 ath_txq_critsect_end(sc, s);
2683
2684 ni = bf->bf_node;
2685 if (ni != NULL) {
2686 an = (struct ath_node *) ni;
2687 if (ds->ds_txstat.ts_status == 0) {
2688 an->an_tx_ok++;
2689 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2690 } else {
2691 an->an_tx_err++;
2692 ifp->if_oerrors++;
2693 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2694 sc->sc_stats.ast_tx_xretries++;
2695 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2696 sc->sc_stats.ast_tx_fifoerr++;
2697 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2698 sc->sc_stats.ast_tx_filtered++;
2699 an->an_tx_antenna = 0; /* invalidate */
2700 }
2701 sr = ds->ds_txstat.ts_shortretry;
2702 lr = ds->ds_txstat.ts_longretry;
2703 sc->sc_stats.ast_tx_shortretry += sr;
2704 sc->sc_stats.ast_tx_longretry += lr;
2705 if (sr + lr)
2706 an->an_tx_retr++;
2707 /*
2708 * Reclaim reference to node.
2709 *
2710 * NB: the node may be reclaimed here if, for example
2711 * this is a DEAUTH message that was sent and the
2712 * node was timed out due to inactivity.
2713 */
2714 if (ni != ic->ic_bss)
2715 ieee80211_free_node(ic, ni);
2716 }
2717 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2718 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2719 m_freem(bf->bf_m);
2720 bf->bf_m = NULL;
2721 bf->bf_node = NULL;
2722
2723 ath_txbuf_critsect_begin(sc, s2);
2724 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2725 ath_txbuf_critsect_end(sc, s2);
2726 }
2727 ifp->if_flags &= ~IFF_OACTIVE;
2728 sc->sc_tx_timer = 0;
2729
2730 ath_start(ifp);
2731 }
2732
2733 /*
2734 * Drain the transmit queue and reclaim resources.
2735 */
2736 static void
2737 ath_draintxq(struct ath_softc *sc)
2738 {
2739 struct ath_hal *ah = sc->sc_ah;
2740 struct ifnet *ifp = &sc->sc_ic.ic_if;
2741 struct ath_buf *bf;
2742 ath_txq_critsect_decl(s);
2743 ath_txbuf_critsect_decl(s2);
2744
2745 /* XXX return value */
2746 if (!sc->sc_invalid) {
2747 /* don't touch the hardware if marked invalid */
2748 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2749 DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2750 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2751 sc->sc_txlink));
2752 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2753 DPRINTF(("ath_draintxq: beacon queue %p\n",
2754 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2755 }
2756 for (;;) {
2757 ath_txq_critsect_begin(sc, s);
2758 bf = TAILQ_FIRST(&sc->sc_txq);
2759 if (bf == NULL) {
2760 sc->sc_txlink = NULL;
2761 ath_txq_critsect_end(sc, s);
2762 break;
2763 }
2764 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2765 ath_txq_critsect_end(sc, s);
2766 #ifdef AR_DEBUG
2767 if (ath_debug)
2768 ath_printtxbuf(bf,
2769 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2770 #endif /* AR_DEBUG */
2771 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2772 m_freem(bf->bf_m);
2773 bf->bf_m = NULL;
2774 bf->bf_node = NULL;
2775 ath_txbuf_critsect_begin(sc, s2);
2776 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2777 ath_txbuf_critsect_end(sc, s2);
2778 }
2779 ifp->if_flags &= ~IFF_OACTIVE;
2780 sc->sc_tx_timer = 0;
2781 }
2782
2783 /*
2784 * Disable the receive h/w in preparation for a reset.
2785 */
2786 static void
2787 ath_stoprecv(struct ath_softc *sc)
2788 {
2789 #define PA2DESC(_sc, _pa) \
2790 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2791 ((_pa) - (_sc)->sc_desc_paddr)))
2792 struct ath_hal *ah = sc->sc_ah;
2793
2794 ath_hal_stoppcurecv(ah); /* disable PCU */
2795 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2796 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2797 DELAY(3000); /* long enough for 1 frame */
2798 #ifdef AR_DEBUG
2799 if (ath_debug) {
2800 struct ath_buf *bf;
2801
2802 DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2803 (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2804 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2805 struct ath_desc *ds = bf->bf_desc;
2806 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2807 PA2DESC(sc, ds->ds_link)) == HAL_OK)
2808 ath_printrxbuf(bf, 1);
2809 }
2810 }
2811 #endif
2812 sc->sc_rxlink = NULL; /* just in case */
2813 #undef PA2DESC
2814 }
2815
2816 /*
2817 * Enable the receive h/w following a reset.
2818 */
2819 static int
2820 ath_startrecv(struct ath_softc *sc)
2821 {
2822 struct ath_hal *ah = sc->sc_ah;
2823 struct ath_buf *bf;
2824
2825 sc->sc_rxlink = NULL;
2826 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2827 int error = ath_rxbuf_init(sc, bf);
2828 if (error != 0) {
2829 DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2830 error));
2831 return error;
2832 }
2833 }
2834
2835 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2836 ath_hal_putrxbuf(ah, bf->bf_daddr);
2837 ath_hal_rxena(ah); /* enable recv descriptors */
2838 ath_mode_init(sc); /* set filters, etc. */
2839 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2840 return 0;
2841 }
2842
2843 /*
2844 * Set/change channels. If the channel is really being changed,
2845 * it's done by resetting the chip. To accomplish this we must
2846 * first cleanup any pending DMA, then restart stuff after a la
2847 * ath_init.
2848 */
2849 static int
2850 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2851 {
2852 struct ath_hal *ah = sc->sc_ah;
2853 struct ieee80211com *ic = &sc->sc_ic;
2854
2855 DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2856 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2857 ic->ic_ibss_chan->ic_freq,
2858 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2859 if (chan != ic->ic_ibss_chan) {
2860 HAL_STATUS status;
2861 HAL_CHANNEL hchan;
2862 enum ieee80211_phymode mode;
2863
2864 /*
2865 * To switch channels clear any pending DMA operations;
2866 * wait long enough for the RX fifo to drain, reset the
2867 * hardware at the new frequency, and then re-enable
2868 * the relevant bits of the h/w.
2869 */
2870 ath_hal_intrset(ah, 0); /* disable interrupts */
2871 ath_draintxq(sc); /* clear pending tx frames */
2872 ath_stoprecv(sc); /* turn off frame recv */
2873 /*
2874 * Convert to a HAL channel description with
2875 * the flags constrained to reflect the current
2876 * operating mode.
2877 */
2878 hchan.channel = chan->ic_freq;
2879 hchan.channelFlags = ath_chan2flags(ic, chan);
2880 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2881 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2882 "channel %u (%u Mhz)\n",
2883 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2884 return EIO;
2885 }
2886 /*
2887 * Re-enable rx framework.
2888 */
2889 if (ath_startrecv(sc) != 0) {
2890 if_printf(&ic->ic_if,
2891 "ath_chan_set: unable to restart recv logic\n");
2892 return EIO;
2893 }
2894
2895 /*
2896 * Update BPF state.
2897 */
2898 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2899 htole16(chan->ic_freq);
2900 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2901 htole16(chan->ic_flags);
2902
2903 /*
2904 * Change channels and update the h/w rate map
2905 * if we're switching; e.g. 11a to 11b/g.
2906 */
2907 ic->ic_ibss_chan = chan;
2908 mode = ieee80211_chan2mode(ic, chan);
2909 if (mode != sc->sc_curmode)
2910 ath_setcurmode(sc, mode);
2911
2912 /*
2913 * Re-enable interrupts.
2914 */
2915 ath_hal_intrset(ah, sc->sc_imask);
2916 }
2917 return 0;
2918 }
2919
2920 static void
2921 ath_next_scan(void *arg)
2922 {
2923 struct ath_softc *sc = arg;
2924 struct ieee80211com *ic = &sc->sc_ic;
2925 struct ifnet *ifp = &ic->ic_if;
2926 int s;
2927
2928 /* don't call ath_start w/o network interrupts blocked */
2929 s = splnet();
2930
2931 if (ic->ic_state == IEEE80211_S_SCAN)
2932 ieee80211_next_scan(ifp);
2933 splx(s);
2934 }
2935
2936 /*
2937 * Periodically recalibrate the PHY to account
2938 * for temperature/environment changes.
2939 */
2940 static void
2941 ath_calibrate(void *arg)
2942 {
2943 struct ath_softc *sc = arg;
2944 struct ath_hal *ah = sc->sc_ah;
2945 struct ieee80211com *ic = &sc->sc_ic;
2946 struct ieee80211_channel *c;
2947 HAL_CHANNEL hchan;
2948
2949 sc->sc_stats.ast_per_cal++;
2950
2951 /*
2952 * Convert to a HAL channel description with the flags
2953 * constrained to reflect the current operating mode.
2954 */
2955 c = ic->ic_ibss_chan;
2956 hchan.channel = c->ic_freq;
2957 hchan.channelFlags = ath_chan2flags(ic, c);
2958
2959 DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2960
2961 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2962 /*
2963 * Rfgain is out of bounds, reset the chip
2964 * to load new gain values.
2965 */
2966 sc->sc_stats.ast_per_rfgain++;
2967 ath_reset(sc);
2968 }
2969 if (!ath_hal_calibrate(ah, &hchan)) {
2970 DPRINTF(("%s: calibration of channel %u failed\n",
2971 __func__, c->ic_freq));
2972 sc->sc_stats.ast_per_calfail++;
2973 }
2974 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2975 }
2976
2977 static HAL_LED_STATE
2978 ath_state_to_led(enum ieee80211_state state)
2979 {
2980 switch (state) {
2981 case IEEE80211_S_INIT:
2982 return HAL_LED_INIT;
2983 case IEEE80211_S_SCAN:
2984 return HAL_LED_SCAN;
2985 case IEEE80211_S_AUTH:
2986 return HAL_LED_AUTH;
2987 case IEEE80211_S_ASSOC:
2988 return HAL_LED_ASSOC;
2989 case IEEE80211_S_RUN:
2990 return HAL_LED_RUN;
2991 default:
2992 panic("%s: unknown 802.11 state %d\n", __func__, state);
2993 return HAL_LED_INIT;
2994 }
2995 }
2996
2997 static int
2998 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2999 {
3000 struct ifnet *ifp = &ic->ic_if;
3001 struct ath_softc *sc = ifp->if_softc;
3002 struct ath_hal *ah = sc->sc_ah;
3003 struct ieee80211_node *ni;
3004 int i, error;
3005 const u_int8_t *bssid;
3006 u_int32_t rfilt;
3007
3008 DPRINTF(("%s: %s -> %s\n", __func__,
3009 ieee80211_state_name[ic->ic_state],
3010 ieee80211_state_name[nstate]));
3011
3012 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */
3013
3014 if (nstate == IEEE80211_S_INIT) {
3015 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3016 ath_hal_intrset(ah, sc->sc_imask);
3017 callout_stop(&sc->sc_scan_ch);
3018 callout_stop(&sc->sc_cal_ch);
3019 return (*sc->sc_newstate)(ic, nstate, arg);
3020 }
3021 ni = ic->ic_bss;
3022 error = ath_chan_set(sc, ni->ni_chan);
3023 if (error != 0)
3024 goto bad;
3025 rfilt = ath_calcrxfilter(sc);
3026 if (nstate == IEEE80211_S_SCAN) {
3027 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
3028 ath_next_scan, sc);
3029 bssid = ifp->if_broadcastaddr;
3030 } else {
3031 callout_stop(&sc->sc_scan_ch);
3032 bssid = ni->ni_bssid;
3033 }
3034 ath_hal_setrxfilter(ah, rfilt);
3035 DPRINTF(("%s: RX filter 0x%x bssid %s\n",
3036 __func__, rfilt, ether_sprintf(bssid)));
3037
3038 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3039 ath_hal_setassocid(ah, bssid, ni->ni_associd);
3040 else
3041 ath_hal_setassocid(ah, bssid, 0);
3042 if (ic->ic_flags & IEEE80211_F_WEPON) {
3043 for (i = 0; i < IEEE80211_WEP_NKID; i++)
3044 if (ath_hal_keyisvalid(ah, i))
3045 ath_hal_keysetmac(ah, i, bssid);
3046 }
3047
3048 if (nstate == IEEE80211_S_RUN) {
3049 DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3050 "capinfo=0x%04x chan=%d\n"
3051 , __func__
3052 , ic->ic_flags
3053 , ni->ni_intval
3054 , ether_sprintf(ni->ni_bssid)
3055 , ni->ni_capinfo
3056 , ieee80211_chan2ieee(ic, ni->ni_chan)));
3057
3058 /*
3059 * Allocate and setup the beacon frame for AP or adhoc mode.
3060 */
3061 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3062 ic->ic_opmode == IEEE80211_M_IBSS) {
3063 error = ath_beacon_alloc(sc, ni);
3064 if (error != 0)
3065 goto bad;
3066 }
3067
3068 /*
3069 * Configure the beacon and sleep timers.
3070 */
3071 ath_beacon_config(sc);
3072
3073 /* start periodic recalibration timer */
3074 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
3075 ath_calibrate, sc);
3076 } else {
3077 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3078 ath_hal_intrset(ah, sc->sc_imask);
3079 callout_stop(&sc->sc_cal_ch); /* no calibration */
3080 }
3081 /*
3082 * Reset the rate control state.
3083 */
3084 ath_rate_ctl_reset(sc, nstate);
3085 /*
3086 * Invoke the parent method to complete the work.
3087 */
3088 return (*sc->sc_newstate)(ic, nstate, arg);
3089 bad:
3090 callout_stop(&sc->sc_scan_ch);
3091 callout_stop(&sc->sc_cal_ch);
3092 /* NB: do not invoke the parent */
3093 return error;
3094 }
3095
3096 /*
3097 * Setup driver-specific state for a newly associated node.
3098 * Note that we're called also on a re-associate, the isnew
3099 * param tells us if this is the first time or not.
3100 */
3101 static void
3102 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3103 {
3104 if (isnew) {
3105 struct ath_node *an = (struct ath_node *) ni;
3106
3107 an->an_tx_ok = an->an_tx_err =
3108 an->an_tx_retr = an->an_tx_upper = 0;
3109 /* start with highest negotiated rate */
3110 /*
3111 * XXX should do otherwise but only when
3112 * the rate control algorithm is better.
3113 */
3114 KASSERT(ni->ni_rates.rs_nrates > 0,
3115 ("new association w/ no rates!"));
3116 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3117 }
3118 }
3119
3120 static int
3121 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
3122 {
3123 struct ieee80211com *ic = &sc->sc_ic;
3124 struct ifnet *ifp = &ic->ic_if;
3125 struct ath_hal *ah = sc->sc_ah;
3126 HAL_CHANNEL *chans;
3127 int i, ix, nchan;
3128
3129 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3130 M_TEMP, M_NOWAIT);
3131 if (chans == NULL) {
3132 if_printf(ifp, "unable to allocate channel table\n");
3133 return ENOMEM;
3134 }
3135 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3136 cc, HAL_MODE_ALL, outdoor)) {
3137 if_printf(ifp, "unable to collect channel list from hal\n");
3138 free(chans, M_TEMP);
3139 return EINVAL;
3140 }
3141
3142 /*
3143 * Convert HAL channels to ieee80211 ones and insert
3144 * them in the table according to their channel number.
3145 */
3146 for (i = 0; i < nchan; i++) {
3147 HAL_CHANNEL *c = &chans[i];
3148 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3149 if (ix > IEEE80211_CHAN_MAX) {
3150 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3151 ix, c->channel, c->channelFlags);
3152 continue;
3153 }
3154 /* NB: flags are known to be compatible */
3155 if (ic->ic_channels[ix].ic_freq == 0) {
3156 ic->ic_channels[ix].ic_freq = c->channel;
3157 ic->ic_channels[ix].ic_flags = c->channelFlags;
3158 } else {
3159 /* channels overlap; e.g. 11g and 11b */
3160 ic->ic_channels[ix].ic_flags |= c->channelFlags;
3161 }
3162 }
3163 free(chans, M_TEMP);
3164 return 0;
3165 }
3166
3167 static int
3168 ath_rate_setup(struct ath_softc *sc, u_int mode)
3169 {
3170 struct ath_hal *ah = sc->sc_ah;
3171 struct ieee80211com *ic = &sc->sc_ic;
3172 const HAL_RATE_TABLE *rt;
3173 struct ieee80211_rateset *rs;
3174 int i, maxrates;
3175
3176 switch (mode) {
3177 case IEEE80211_MODE_11A:
3178 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
3179 break;
3180 case IEEE80211_MODE_11B:
3181 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
3182 break;
3183 case IEEE80211_MODE_11G:
3184 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
3185 break;
3186 case IEEE80211_MODE_TURBO:
3187 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
3188 break;
3189 default:
3190 DPRINTF(("%s: invalid mode %u\n", __func__, mode));
3191 return 0;
3192 }
3193 rt = sc->sc_rates[mode];
3194 if (rt == NULL)
3195 return 0;
3196 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3197 DPRINTF(("%s: rate table too small (%u > %u)\n",
3198 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3199 maxrates = IEEE80211_RATE_MAXSIZE;
3200 } else
3201 maxrates = rt->rateCount;
3202 rs = &ic->ic_sup_rates[mode];
3203 for (i = 0; i < maxrates; i++)
3204 rs->rs_rates[i] = rt->info[i].dot11Rate;
3205 rs->rs_nrates = maxrates;
3206 return 1;
3207 }
3208
3209 static void
3210 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3211 {
3212 const HAL_RATE_TABLE *rt;
3213 int i;
3214
3215 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3216 rt = sc->sc_rates[mode];
3217 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3218 for (i = 0; i < rt->rateCount; i++)
3219 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3220 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3221 for (i = 0; i < 32; i++)
3222 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3223 sc->sc_currates = rt;
3224 sc->sc_curmode = mode;
3225 }
3226
3227 /*
3228 * Reset the rate control state for each 802.11 state transition.
3229 */
3230 static void
3231 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3232 {
3233 struct ieee80211com *ic = &sc->sc_ic;
3234 struct ieee80211_node *ni;
3235 struct ath_node *an;
3236
3237 if (ic->ic_opmode != IEEE80211_M_STA) {
3238 /*
3239 * When operating as a station the node table holds
3240 * the AP's that were discovered during scanning.
3241 * For any other operating mode we want to reset the
3242 * tx rate state of each node.
3243 */
3244 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3245 ni->ni_txrate = 0; /* use lowest rate */
3246 an = (struct ath_node *) ni;
3247 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3248 an->an_tx_upper = 0;
3249 }
3250 }
3251 /*
3252 * Reset local xmit state; this is really only meaningful
3253 * when operating in station or adhoc mode.
3254 */
3255 ni = ic->ic_bss;
3256 an = (struct ath_node *) ni;
3257 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3258 if (state == IEEE80211_S_RUN) {
3259 /* start with highest negotiated rate */
3260 KASSERT(ni->ni_rates.rs_nrates > 0,
3261 ("transition to RUN state w/ no rates!"));
3262 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3263 } else {
3264 /* use lowest rate */
3265 ni->ni_txrate = 0;
3266 }
3267 }
3268
3269 /*
3270 * Examine and potentially adjust the transmit rate.
3271 */
3272 static void
3273 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3274 {
3275 struct ath_softc *sc = arg;
3276 struct ath_node *an = (struct ath_node *) ni;
3277 struct ieee80211_rateset *rs = &ni->ni_rates;
3278 int mod = 0, orate, enough;
3279
3280 /*
3281 * Rate control
3282 * XXX: very primitive version.
3283 */
3284 sc->sc_stats.ast_rate_calls++;
3285
3286 enough = (an->an_tx_ok + an->an_tx_err >= 10);
3287
3288 /* no packet reached -> down */
3289 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3290 mod = -1;
3291
3292 /* all packets needs retry in average -> down */
3293 if (enough && an->an_tx_ok < an->an_tx_retr)
3294 mod = -1;
3295
3296 /* no error and less than 10% of packets needs retry -> up */
3297 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3298 mod = 1;
3299
3300 orate = ni->ni_txrate;
3301 switch (mod) {
3302 case 0:
3303 if (enough && an->an_tx_upper > 0)
3304 an->an_tx_upper--;
3305 break;
3306 case -1:
3307 if (ni->ni_txrate > 0) {
3308 ni->ni_txrate--;
3309 sc->sc_stats.ast_rate_drop++;
3310 }
3311 an->an_tx_upper = 0;
3312 break;
3313 case 1:
3314 if (++an->an_tx_upper < 2)
3315 break;
3316 an->an_tx_upper = 0;
3317 if (ni->ni_txrate + 1 < rs->rs_nrates) {
3318 ni->ni_txrate++;
3319 sc->sc_stats.ast_rate_raise++;
3320 }
3321 break;
3322 }
3323
3324 if (ni->ni_txrate != orate) {
3325 DPRINTF(("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3326 __func__,
3327 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3328 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3329 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3330 }
3331 if (ni->ni_txrate != orate || enough)
3332 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3333 }
3334
3335 #ifdef AR_DEBUG
3336 #ifdef __FreeBSD__
3337 static int
3338 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3339 {
3340 char dmode[64];
3341 int error;
3342
3343 strncpy(dmode, "", sizeof(dmode) - 1);
3344 dmode[sizeof(dmode) - 1] = '\0';
3345 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3346
3347 if (error == 0 && req->newptr != NULL) {
3348 struct ifnet *ifp;
3349 struct ath_softc *sc;
3350
3351 ifp = ifunit("ath0"); /* XXX */
3352 if (!ifp)
3353 return EINVAL;
3354 sc = ifp->if_softc;
3355 if (strcmp(dmode, "hal") == 0)
3356 ath_hal_dumpstate(sc->sc_ah);
3357 else
3358 return EINVAL;
3359 }
3360 return error;
3361 }
3362 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3363 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3364 #endif /* __FreeBSD__ */
3365
3366 static void
3367 ath_printrxbuf(struct ath_buf *bf, int done)
3368 {
3369 struct ath_desc *ds;
3370 int i;
3371
3372 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3373 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3374 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3375 ds->ds_link, ds->ds_data,
3376 ds->ds_ctl0, ds->ds_ctl1,
3377 ds->ds_hw[0], ds->ds_hw[1],
3378 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3379 }
3380 }
3381
3382 static void
3383 ath_printtxbuf(struct ath_buf *bf, int done)
3384 {
3385 struct ath_desc *ds;
3386 int i;
3387
3388 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3389 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3390 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3391 ds->ds_link, ds->ds_data,
3392 ds->ds_ctl0, ds->ds_ctl1,
3393 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3394 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3395 }
3396 }
3397 #endif /* AR_DEBUG */
3398