ath.c revision 1.19 1 /* $NetBSD: ath.c,v 1.19 2004/02/29 00:47:21 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.36 2003/11/29 01:23:59 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.19 2004/02/29 00:47:21 dyoung Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81
82 #include <machine/bus.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105
106 #include <dev/ic/athcompat.h>
107
108 #define AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116
117 /* unaligned little endian access */
118 #define LE_READ_2(p) \
119 ((u_int16_t) \
120 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
121 #define LE_READ_4(p) \
122 ((u_int32_t) \
123 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
124 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125
126 #ifdef __FreeBSD__
127 static void ath_init(void *);
128 #else
129 static int ath_init(struct ifnet *);
130 #endif
131 static int ath_init1(struct ath_softc *);
132 static int ath_intr1(struct ath_softc *);
133 static void ath_stop(struct ifnet *);
134 static void ath_start(struct ifnet *);
135 static void ath_reset(struct ath_softc *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_initkeytable(struct ath_softc *);
143 static void ath_mode_init(struct ath_softc *);
144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void ath_beacon_proc(void *, int);
146 static void ath_beacon_free(struct ath_softc *);
147 static void ath_beacon_config(struct ath_softc *);
148 static int ath_desc_alloc(struct ath_softc *);
149 static void ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void ath_node_copy(struct ieee80211com *,
153 struct ieee80211_node *, const struct ieee80211_node *);
154 static u_int8_t ath_node_getrssi(struct ieee80211com *,
155 struct ieee80211_node *);
156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void ath_rx_proc(void *, int);
158 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 struct ath_buf *, struct mbuf *);
160 static void ath_tx_proc(void *, int);
161 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
162 static void ath_draintxq(struct ath_softc *);
163 static void ath_stoprecv(struct ath_softc *);
164 static int ath_startrecv(struct ath_softc *);
165 static void ath_next_scan(void *);
166 static void ath_calibrate(void *);
167 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 static void ath_newassoc(struct ieee80211com *,
169 struct ieee80211_node *, int);
170 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
171
172 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
173 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
174 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
175 static void ath_rate_ctl(void *, struct ieee80211_node *);
176
177 #ifdef __NetBSD__
178 int ath_enable(struct ath_softc *);
179 void ath_disable(struct ath_softc *);
180 void ath_power(int, void *);
181 #endif
182
183 #ifdef __FreeBSD__
184 SYSCTL_DECL(_hw_ath);
185 /* XXX validate sysctl values */
186 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
187 0, "channel dwell time (ms) for AP/station scanning");
188 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
189 0, "chip calibration interval (secs)");
190 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
191 0, "enable/disable outdoor operation");
192 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
193 0, "country code");
194 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
195 0, "regulatory domain");
196 #endif /* __FreeBSD__ */
197
198 static int ath_dwelltime = 200; /* 5 channels/second */
199 static int ath_calinterval = 30; /* calibrate every 30 secs */
200 static int ath_outdoor = AH_TRUE; /* outdoor operation */
201 static int ath_countrycode = CTRY_DEFAULT; /* country code */
202 static int ath_regdomain = 0; /* regulatory domain */
203
204 #ifdef AR_DEBUG
205 int ath_debug = 0;
206 #ifdef __FreeBSD__
207 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
208 0, "control debugging printfs");
209 #endif /* __FreeBSD__ */
210 #define IFF_DUMPPKTS(_ifp) \
211 (ath_debug || \
212 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
213 static void ath_printrxbuf(struct ath_buf *bf, int);
214 static void ath_printtxbuf(struct ath_buf *bf, int);
215 #define DPRINTF(X) if (ath_debug) printf X
216 #define DPRINTF2(X) if (ath_debug > 1) printf X
217 #else
218 #define IFF_DUMPPKTS(_ifp) \
219 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
220 #define DPRINTF(X)
221 #define DPRINTF2(X)
222 #endif
223
224 #ifdef __NetBSD__
225 int
226 ath_activate(struct device *self, enum devact act)
227 {
228 struct ath_softc *sc = (struct ath_softc *)self;
229 int rv = 0, s;
230
231 s = splnet();
232 switch (act) {
233 case DVACT_ACTIVATE:
234 rv = EOPNOTSUPP;
235 break;
236 case DVACT_DEACTIVATE:
237 if_deactivate(&sc->sc_ic.ic_if);
238 break;
239 }
240 splx(s);
241 return rv;
242 }
243
244 int
245 ath_enable(struct ath_softc *sc)
246 {
247 if (ATH_IS_ENABLED(sc) == 0) {
248 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
249 printf("%s: device enable failed\n",
250 sc->sc_dev.dv_xname);
251 return (EIO);
252 }
253 sc->sc_flags |= ATH_ENABLED;
254 }
255 return (0);
256 }
257
258 void
259 ath_disable(struct ath_softc *sc)
260 {
261 if (!ATH_IS_ENABLED(sc))
262 return;
263 if (sc->sc_disable != NULL)
264 (*sc->sc_disable)(sc);
265 sc->sc_flags &= ~ATH_ENABLED;
266 }
267 #endif /* #ifdef __NetBSD__ */
268
269 int
270 ath_attach(u_int16_t devid, struct ath_softc *sc)
271 {
272 struct ieee80211com *ic = &sc->sc_ic;
273 struct ifnet *ifp = &ic->ic_if;
274 struct ath_hal *ah;
275 HAL_STATUS status;
276 int error = 0;
277
278 DPRINTF(("ath_attach: devid 0x%x\n", devid));
279
280 #ifdef __FreeBSD__
281 /* set these up early for if_printf use */
282 if_initname(ifp, device_get_name(sc->sc_dev),
283 device_get_unit(sc->sc_dev));
284 #else
285 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
286 #endif
287
288 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
289 if (ah == NULL) {
290 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
291 status);
292 error = ENXIO;
293 goto bad;
294 }
295 if (ah->ah_abi != HAL_ABI_VERSION) {
296 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
297 ah->ah_abi, HAL_ABI_VERSION);
298 error = ENXIO;
299 goto bad;
300 }
301 if_printf(ifp, "mac %d.%d phy %d.%d",
302 ah->ah_macVersion, ah->ah_macRev,
303 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
304 if (ah->ah_analog5GhzRev)
305 printf(" 5ghz radio %d.%d",
306 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
307 if (ah->ah_analog2GhzRev)
308 printf(" 2ghz radio %d.%d",
309 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
310 printf("\n");
311 sc->sc_ah = ah;
312 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
313
314 /*
315 * Collect the channel list using the default country
316 * code and including outdoor channels. The 802.11 layer
317 * is resposible for filtering this list based on settings
318 * like the phy mode.
319 */
320 error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
321 if (error != 0)
322 goto bad;
323 /*
324 * Copy these back; they are set as a side effect
325 * of constructing the channel list.
326 */
327 ath_regdomain = ath_hal_getregdomain(ah);
328 ath_countrycode = ath_hal_getcountrycode(ah);
329
330 /*
331 * Setup rate tables for all potential media types.
332 */
333 ath_rate_setup(sc, IEEE80211_MODE_11A);
334 ath_rate_setup(sc, IEEE80211_MODE_11B);
335 ath_rate_setup(sc, IEEE80211_MODE_11G);
336 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
337
338 error = ath_desc_alloc(sc);
339 if (error != 0) {
340 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
341 goto bad;
342 }
343 ATH_CALLOUT_INIT(&sc->sc_scan_ch);
344 ATH_CALLOUT_INIT(&sc->sc_cal_ch);
345
346 #ifdef __FreeBSD__
347 ATH_TXBUF_LOCK_INIT(sc);
348 ATH_TXQ_LOCK_INIT(sc);
349 #endif
350
351 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
352 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
353 ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
354 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
355 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
356 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
357
358 /*
359 * For now just pre-allocate one data queue and one
360 * beacon queue. Note that the HAL handles resetting
361 * them at the needed time. Eventually we'll want to
362 * allocate more tx queues for splitting management
363 * frames and for QOS support.
364 */
365 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
366 HAL_TX_QUEUE_DATA,
367 AH_TRUE /* enable interrupts */
368 );
369 if (sc->sc_txhalq == (u_int) -1) {
370 if_printf(ifp, "unable to setup a data xmit queue!\n");
371 goto bad;
372 }
373 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
374 HAL_TX_QUEUE_BEACON,
375 AH_TRUE /* enable interrupts */
376 );
377 if (sc->sc_bhalq == (u_int) -1) {
378 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
379 goto bad;
380 }
381
382 ifp->if_softc = sc;
383 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
384 ifp->if_start = ath_start;
385 ifp->if_watchdog = ath_watchdog;
386 ifp->if_ioctl = ath_ioctl;
387 ifp->if_init = ath_init;
388 #ifdef __FreeBSD__
389 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
390 #else
391 #if 0
392 ifp->if_stop = ath_stop; /* XXX */
393 #endif
394 IFQ_SET_READY(&ifp->if_snd);
395 #endif
396
397 ic->ic_softc = sc;
398 ic->ic_newassoc = ath_newassoc;
399 /* XXX not right but it's not used anywhere important */
400 ic->ic_phytype = IEEE80211_T_OFDM;
401 ic->ic_opmode = IEEE80211_M_STA;
402 ic->ic_caps = IEEE80211_C_WEP /* wep supported */
403 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
404 | IEEE80211_C_HOSTAP /* hostap mode */
405 | IEEE80211_C_MONITOR /* monitor mode */
406 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
407 | IEEE80211_C_RCVMGT; /* recv management frames */
408
409 /* get mac address from hardware */
410 ath_hal_getmac(ah, ic->ic_myaddr);
411
412 #ifdef __NetBSD__
413 if_attach(ifp);
414 #endif
415 /* call MI attach routine. */
416 ieee80211_ifattach(ifp);
417 /* override default methods */
418 ic->ic_node_alloc = ath_node_alloc;
419 ic->ic_node_free = ath_node_free;
420 ic->ic_node_copy = ath_node_copy;
421 ic->ic_node_getrssi = ath_node_getrssi;
422 sc->sc_newstate = ic->ic_newstate;
423 ic->ic_newstate = ath_newstate;
424 /* complete initialization */
425 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
426
427 #if NBPFILTER > 0
428 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
429 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
430 &sc->sc_drvbpf);
431 #endif
432 /*
433 * Initialize constant fields.
434 *
435 * NB: the channel is setup each time we transition to the
436 * RUN state to avoid filling it in for each frame.
437 */
438 sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
439 sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
440
441 sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
442 sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
443
444 if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
445
446 #ifdef __NetBSD__
447 sc->sc_flags |= ATH_ATTACHED;
448 /*
449 * Make sure the interface is shutdown during reboot.
450 */
451 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
452 if (sc->sc_sdhook == NULL)
453 printf("%s: WARNING: unable to establish shutdown hook\n",
454 sc->sc_dev.dv_xname);
455 sc->sc_powerhook = powerhook_establish(ath_power, sc);
456 if (sc->sc_powerhook == NULL)
457 printf("%s: WARNING: unable to establish power hook\n",
458 sc->sc_dev.dv_xname);
459 #endif
460 return 0;
461 bad:
462 if (ah)
463 ath_hal_detach(ah);
464 sc->sc_invalid = 1;
465 return error;
466 }
467
468 int
469 ath_detach(struct ath_softc *sc)
470 {
471 struct ifnet *ifp = &sc->sc_ic.ic_if;
472 ath_softc_critsect_decl(s);
473
474 DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
475 if ((sc->sc_flags & ATH_ATTACHED) == 0)
476 return (0);
477
478 ath_softc_critsect_begin(sc, s);
479 ath_stop(ifp);
480 #if NBPFILTER > 0
481 bpfdetach(ifp);
482 #endif
483 ath_desc_free(sc);
484 ath_hal_detach(sc->sc_ah);
485 ieee80211_ifdetach(ifp);
486 #ifdef __NetBSD__
487 if_detach(ifp);
488 #endif /* __NetBSD__ */
489 ath_softc_critsect_end(sc, s);
490 #ifdef __NetBSD__
491 powerhook_disestablish(sc->sc_powerhook);
492 shutdownhook_disestablish(sc->sc_sdhook);
493 #endif /* __NetBSD__ */
494 #ifdef __FreeBSD__
495
496 ATH_TXBUF_LOCK_DESTROY(sc);
497 ATH_TXQ_LOCK_DESTROY(sc);
498
499 #endif /* __FreeBSD__ */
500 return 0;
501 }
502
503 #ifdef __NetBSD__
504 void
505 ath_power(int why, void *arg)
506 {
507 struct ath_softc *sc = arg;
508 int s;
509
510 DPRINTF(("ath_power(%d)\n", why));
511
512 s = splnet();
513 switch (why) {
514 case PWR_SUSPEND:
515 case PWR_STANDBY:
516 ath_suspend(sc, why);
517 break;
518 case PWR_RESUME:
519 ath_resume(sc, why);
520 break;
521 case PWR_SOFTSUSPEND:
522 case PWR_SOFTSTANDBY:
523 case PWR_SOFTRESUME:
524 break;
525 }
526 splx(s);
527 }
528 #endif
529
530 void
531 ath_suspend(struct ath_softc *sc, int why)
532 {
533 struct ifnet *ifp = &sc->sc_ic.ic_if;
534
535 DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
536
537 ath_stop(ifp);
538 if (sc->sc_power != NULL)
539 (*sc->sc_power)(sc, why);
540 }
541
542 void
543 ath_resume(struct ath_softc *sc, int why)
544 {
545 struct ifnet *ifp = &sc->sc_ic.ic_if;
546
547 DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
548
549 if (ifp->if_flags & IFF_UP) {
550 ath_init(ifp);
551 #if 0
552 (void)ath_intr(sc);
553 #endif
554 if (sc->sc_power != NULL)
555 (*sc->sc_power)(sc, why);
556 if (ifp->if_flags & IFF_RUNNING)
557 ath_start(ifp);
558 }
559 }
560
561 #ifdef __NetBSD__
562 void
563 ath_shutdown(void *arg)
564 {
565 struct ath_softc *sc = arg;
566
567 ath_stop(&sc->sc_ic.ic_if);
568 }
569 #else
570 void
571 ath_shutdown(struct ath_softc *sc)
572 {
573 #if 1
574 return;
575 #else
576 struct ifnet *ifp = &sc->sc_ic.ic_if;
577
578 DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
579
580 ath_stop(ifp);
581 #endif
582 }
583 #endif
584
585 #ifdef __NetBSD__
586 int
587 ath_intr(void *arg)
588 {
589 return ath_intr1((struct ath_softc *)arg);
590 }
591 #else
592 void
593 ath_intr(void *arg)
594 {
595 (void)ath_intr1((struct ath_softc *)arg);
596 }
597 #endif
598
599 static int
600 ath_intr1(struct ath_softc *sc)
601 {
602 struct ieee80211com *ic = &sc->sc_ic;
603 struct ifnet *ifp = &ic->ic_if;
604 struct ath_hal *ah = sc->sc_ah;
605 HAL_INT status;
606
607 if (sc->sc_invalid) {
608 /*
609 * The hardware is not ready/present, don't touch anything.
610 * Note this can happen early on if the IRQ is shared.
611 */
612 DPRINTF(("ath_intr: invalid; ignored\n"));
613 return 0;
614 }
615 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
616 DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
617 ath_hal_getisr(ah, &status); /* clear ISR */
618 ath_hal_intrset(ah, 0); /* disable further intr's */
619 return 1; /* XXX */
620 }
621 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
622 DPRINTF2(("ath_intr: status 0x%x\n", status));
623 #ifdef AR_DEBUG
624 if (ath_debug &&
625 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
626 if_printf(ifp, "ath_intr: status 0x%x\n", status);
627 ath_hal_dumpstate(ah);
628 }
629 #endif /* AR_DEBUG */
630 status &= sc->sc_imask; /* discard unasked for bits */
631 if (status & HAL_INT_FATAL) {
632 sc->sc_stats.ast_hardware++;
633 ath_hal_intrset(ah, 0); /* disable intr's until reset */
634 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
635 } else if (status & HAL_INT_RXORN) {
636 sc->sc_stats.ast_rxorn++;
637 ath_hal_intrset(ah, 0); /* disable intr's until reset */
638 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
639 } else {
640 if (status & HAL_INT_RXEOL) {
641 /*
642 * NB: the hardware should re-read the link when
643 * RXE bit is written, but it doesn't work at
644 * least on older hardware revs.
645 */
646 sc->sc_stats.ast_rxeol++;
647 sc->sc_rxlink = NULL;
648 }
649 if (status & HAL_INT_TXURN) {
650 sc->sc_stats.ast_txurn++;
651 /* bump tx trigger level */
652 ath_hal_updatetxtriglevel(ah, AH_TRUE);
653 }
654 if (status & HAL_INT_RX)
655 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
656 if (status & HAL_INT_TX)
657 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
658 if (status & HAL_INT_SWBA)
659 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
660 if (status & HAL_INT_BMISS) {
661 sc->sc_stats.ast_bmiss++;
662 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
663 }
664 }
665 return 1;
666 }
667
668 static void
669 ath_fatal_proc(void *arg, int pending)
670 {
671 struct ath_softc *sc = arg;
672
673 device_printf(sc->sc_dev, "hardware error; resetting\n");
674 ath_reset(sc);
675 }
676
677 static void
678 ath_rxorn_proc(void *arg, int pending)
679 {
680 struct ath_softc *sc = arg;
681
682 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
683 ath_reset(sc);
684 }
685
686 static void
687 ath_bmiss_proc(void *arg, int pending)
688 {
689 struct ath_softc *sc = arg;
690 struct ieee80211com *ic = &sc->sc_ic;
691
692 DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
693 if (ic->ic_opmode != IEEE80211_M_STA)
694 return;
695 if (ic->ic_state == IEEE80211_S_RUN) {
696 /*
697 * Rather than go directly to scan state, try to
698 * reassociate first. If that fails then the state
699 * machine will drop us into scanning after timing
700 * out waiting for a probe response.
701 */
702 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
703 }
704 }
705
706 static u_int
707 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
708 {
709 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
710
711 switch (mode) {
712 case IEEE80211_MODE_AUTO:
713 return 0;
714 case IEEE80211_MODE_11A:
715 return CHANNEL_A;
716 case IEEE80211_MODE_11B:
717 return CHANNEL_B;
718 case IEEE80211_MODE_11G:
719 return CHANNEL_PUREG;
720 case IEEE80211_MODE_TURBO:
721 return CHANNEL_T;
722 default:
723 panic("%s: unsupported mode %d\n", __func__, mode);
724 return 0;
725 }
726 }
727
728 #ifdef __NetBSD__
729 static int
730 ath_init(struct ifnet *ifp)
731 {
732 return ath_init1((struct ath_softc *)ifp->if_softc);
733 }
734 #else
735 static void
736 ath_init(void *arg)
737 {
738 (void)ath_init1((struct ath_softc *)arg);
739 }
740 #endif
741
742 static int
743 ath_init1(struct ath_softc *sc)
744 {
745 struct ieee80211com *ic = &sc->sc_ic;
746 struct ifnet *ifp = &ic->ic_if;
747 struct ieee80211_node *ni;
748 enum ieee80211_phymode mode;
749 struct ath_hal *ah = sc->sc_ah;
750 HAL_STATUS status;
751 HAL_CHANNEL hchan;
752 int error = 0;
753 ath_softc_critsect_decl(s);
754
755 DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
756
757 #ifdef __NetBSD__
758 if ((error = ath_enable(sc)) != 0)
759 return error;
760 #endif
761
762 ath_softc_critsect_begin(sc, s);
763 /*
764 * Stop anything previously setup. This is safe
765 * whether this is the first time through or not.
766 */
767 ath_stop(ifp);
768
769 /*
770 * The basic interface to setting the hardware in a good
771 * state is ``reset''. On return the hardware is known to
772 * be powered up and with interrupts disabled. This must
773 * be followed by initialization of the appropriate bits
774 * and then setup of the interrupt mask.
775 */
776 hchan.channel = ic->ic_ibss_chan->ic_freq;
777 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
778 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
779 if_printf(ifp, "unable to reset hardware; hal status %u\n",
780 status);
781 error = -1;
782 goto done;
783 }
784
785 /*
786 * Setup the hardware after reset: the key cache
787 * is filled as needed and the receive engine is
788 * set going. Frame transmit is handled entirely
789 * in the frame output path; there's nothing to do
790 * here except setup the interrupt mask.
791 */
792 if (ic->ic_flags & IEEE80211_F_WEPON)
793 ath_initkeytable(sc);
794 if ((error = ath_startrecv(sc)) != 0) {
795 if_printf(ifp, "unable to start recv logic\n");
796 goto done;
797 }
798
799 /*
800 * Enable interrupts.
801 */
802 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
803 | HAL_INT_RXEOL | HAL_INT_RXORN
804 | HAL_INT_FATAL | HAL_INT_GLOBAL;
805 ath_hal_intrset(ah, sc->sc_imask);
806
807 ifp->if_flags |= IFF_RUNNING;
808 ic->ic_state = IEEE80211_S_INIT;
809
810 /*
811 * The hardware should be ready to go now so it's safe
812 * to kick the 802.11 state machine as it's likely to
813 * immediately call back to us to send mgmt frames.
814 */
815 ni = ic->ic_bss;
816 ni->ni_chan = ic->ic_ibss_chan;
817 mode = ieee80211_chan2mode(ic, ni->ni_chan);
818 if (mode != sc->sc_curmode)
819 ath_setcurmode(sc, mode);
820 if (ic->ic_opmode != IEEE80211_M_MONITOR)
821 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
822 else
823 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
824 done:
825 ath_softc_critsect_end(sc, s);
826 return error;
827 }
828
829 static void
830 ath_stop(struct ifnet *ifp)
831 {
832 struct ieee80211com *ic = (struct ieee80211com *) ifp;
833 struct ath_softc *sc = ifp->if_softc;
834 struct ath_hal *ah = sc->sc_ah;
835 ath_softc_critsect_decl(s);
836
837 DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
838 sc->sc_invalid, ifp->if_flags));
839
840 ath_softc_critsect_begin(sc, s);
841 if (ifp->if_flags & IFF_RUNNING) {
842 /*
843 * Shutdown the hardware and driver:
844 * disable interrupts
845 * turn off timers
846 * clear transmit machinery
847 * clear receive machinery
848 * drain and release tx queues
849 * reclaim beacon resources
850 * reset 802.11 state machine
851 * power down hardware
852 *
853 * Note that some of this work is not possible if the
854 * hardware is gone (invalid).
855 */
856 ifp->if_flags &= ~IFF_RUNNING;
857 ifp->if_timer = 0;
858 if (!sc->sc_invalid)
859 ath_hal_intrset(ah, 0);
860 ath_draintxq(sc);
861 if (!sc->sc_invalid)
862 ath_stoprecv(sc);
863 else
864 sc->sc_rxlink = NULL;
865 #ifdef __FreeBSD__
866 IF_DRAIN(&ifp->if_snd);
867 #else
868 IF_PURGE(&ifp->if_snd);
869 #endif
870 ath_beacon_free(sc);
871 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
872 if (!sc->sc_invalid) {
873 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
874 }
875 #ifdef __NetBSD__
876 ath_disable(sc);
877 #endif
878 }
879 ath_softc_critsect_end(sc, s);
880 }
881
882 /*
883 * Reset the hardware w/o losing operational state. This is
884 * basically a more efficient way of doing ath_stop, ath_init,
885 * followed by state transitions to the current 802.11
886 * operational state. Used to recover from errors rx overrun
887 * and to reset the hardware when rf gain settings must be reset.
888 */
889 static void
890 ath_reset(struct ath_softc *sc)
891 {
892 struct ieee80211com *ic = &sc->sc_ic;
893 struct ifnet *ifp = &ic->ic_if;
894 struct ath_hal *ah = sc->sc_ah;
895 struct ieee80211_channel *c;
896 HAL_STATUS status;
897 HAL_CHANNEL hchan;
898
899 /*
900 * Convert to a HAL channel description with the flags
901 * constrained to reflect the current operating mode.
902 */
903 c = ic->ic_ibss_chan;
904 hchan.channel = c->ic_freq;
905 hchan.channelFlags = ath_chan2flags(ic, c);
906
907 ath_hal_intrset(ah, 0); /* disable interrupts */
908 ath_draintxq(sc); /* stop xmit side */
909 ath_stoprecv(sc); /* stop recv side */
910 /* NB: indicate channel change so we do a full reset */
911 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
912 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
913 __func__, status);
914 ath_hal_intrset(ah, sc->sc_imask);
915 if (ath_startrecv(sc) != 0) /* restart recv */
916 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
917 ath_start(ifp); /* restart xmit */
918 if (ic->ic_state == IEEE80211_S_RUN)
919 ath_beacon_config(sc); /* restart beacons */
920 }
921
922 static void
923 ath_start(struct ifnet *ifp)
924 {
925 struct ath_softc *sc = ifp->if_softc;
926 struct ath_hal *ah = sc->sc_ah;
927 struct ieee80211com *ic = &sc->sc_ic;
928 struct ieee80211_node *ni;
929 struct ath_buf *bf;
930 struct mbuf *m;
931 struct ieee80211_frame *wh;
932 ath_txbuf_critsect_decl(s);
933
934 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
935 return;
936 for (;;) {
937 /*
938 * Grab a TX buffer and associated resources.
939 */
940 ath_txbuf_critsect_begin(sc, s);
941 bf = TAILQ_FIRST(&sc->sc_txbuf);
942 if (bf != NULL)
943 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
944 ath_txbuf_critsect_end(sc, s);
945 if (bf == NULL) {
946 DPRINTF(("ath_start: out of xmit buffers\n"));
947 sc->sc_stats.ast_tx_qstop++;
948 ifp->if_flags |= IFF_OACTIVE;
949 break;
950 }
951 /*
952 * Poll the management queue for frames; they
953 * have priority over normal data frames.
954 */
955 IF_DEQUEUE(&ic->ic_mgtq, m);
956 if (m == NULL) {
957 /*
958 * No data frames go out unless we're associated.
959 */
960 if (ic->ic_state != IEEE80211_S_RUN) {
961 DPRINTF(("ath_start: ignore data packet, "
962 "state %u\n", ic->ic_state));
963 sc->sc_stats.ast_tx_discard++;
964 ath_txbuf_critsect_begin(sc, s);
965 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
966 ath_txbuf_critsect_end(sc, s);
967 break;
968 }
969 IF_DEQUEUE(&ifp->if_snd, m);
970 if (m == NULL) {
971 ath_txbuf_critsect_begin(sc, s);
972 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
973 ath_txbuf_critsect_end(sc, s);
974 break;
975 }
976 ifp->if_opackets++;
977
978 #ifdef __NetBSD__
979 #if NBPFILTER > 0
980 if (ifp->if_bpf)
981 bpf_mtap(ifp->if_bpf, m);
982 #endif
983 #endif
984 #ifdef __FreeBSD__
985 BPF_MTAP(ifp, m);
986 #endif
987 /*
988 * Encapsulate the packet in prep for transmission.
989 */
990 m = ieee80211_encap(ifp, m, &ni);
991 if (m == NULL) {
992 DPRINTF(("ath_start: encapsulation failure\n"));
993 sc->sc_stats.ast_tx_encap++;
994 goto bad;
995 }
996 wh = mtod(m, struct ieee80211_frame *);
997 if (ic->ic_flags & IEEE80211_F_WEPON)
998 wh->i_fc[1] |= IEEE80211_FC1_WEP;
999 } else {
1000 /*
1001 * Hack! The referenced node pointer is in the
1002 * rcvif field of the packet header. This is
1003 * placed there by ieee80211_mgmt_output because
1004 * we need to hold the reference with the frame
1005 * and there's no other way (other than packet
1006 * tags which we consider too expensive to use)
1007 * to pass it along.
1008 */
1009 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1010 m->m_pkthdr.rcvif = NULL;
1011
1012 wh = mtod(m, struct ieee80211_frame *);
1013 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1014 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1015 /* fill time stamp */
1016 u_int64_t tsf;
1017 u_int32_t *tstamp;
1018
1019 tsf = ath_hal_gettsf64(ah);
1020 /* XXX: adjust 100us delay to xmit */
1021 tsf += 100;
1022 tstamp = (u_int32_t *)&wh[1];
1023 tstamp[0] = htole32(tsf & 0xffffffff);
1024 tstamp[1] = htole32(tsf >> 32);
1025 }
1026 sc->sc_stats.ast_tx_mgmt++;
1027 }
1028 #if NBPFILTER > 0
1029 if (ic->ic_rawbpf)
1030 bpf_mtap(ic->ic_rawbpf, m);
1031 #endif
1032
1033 #if NBPFILTER > 0
1034 if (sc->sc_drvbpf) {
1035 #ifdef __FreeBSD__
1036 struct mbuf *mb;
1037
1038 MGETHDR(mb, M_DONTWAIT, m->m_type);
1039 if (mb != NULL) {
1040 sc->sc_tx_th.wt_rate =
1041 ni->ni_rates.rs_rates[ni->ni_txrate];
1042
1043 mb->m_next = m;
1044 mb->m_data = (caddr_t)&sc->sc_tx_th;
1045 mb->m_len = sizeof(sc->sc_tx_th);
1046 mb->m_pkthdr.len += mb->m_len;
1047 bpf_mtap(sc->sc_drvbpf, mb);
1048 m_free(mb);
1049 }
1050 #else
1051 struct mbuf mb;
1052
1053 M_COPY_PKTHDR(&mb, m);
1054 sc->sc_tx_th.wt_rate =
1055 ni->ni_rates.rs_rates[ni->ni_txrate];
1056
1057 mb.m_next = m;
1058 mb.m_data = (caddr_t)&sc->sc_tx_th;
1059 mb.m_len = sizeof(sc->sc_tx_th);
1060 mb.m_pkthdr.len += mb.m_len;
1061 bpf_mtap(sc->sc_drvbpf, &mb);
1062 #endif
1063 }
1064 #endif
1065
1066 if (ath_tx_start(sc, ni, bf, m)) {
1067 bad:
1068 ath_txbuf_critsect_begin(sc, s);
1069 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1070 ath_txbuf_critsect_end(sc, s);
1071 ifp->if_oerrors++;
1072 if (ni && ni != ic->ic_bss)
1073 ieee80211_free_node(ic, ni);
1074 continue;
1075 }
1076
1077 sc->sc_tx_timer = 5;
1078 ifp->if_timer = 1;
1079 }
1080 }
1081
1082 static int
1083 ath_media_change(struct ifnet *ifp)
1084 {
1085 int error;
1086
1087 error = ieee80211_media_change(ifp);
1088 if (error == ENETRESET) {
1089 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1090 (IFF_RUNNING|IFF_UP))
1091 ath_init(ifp); /* XXX lose error */
1092 error = 0;
1093 }
1094 return error;
1095 }
1096
1097 static void
1098 ath_watchdog(struct ifnet *ifp)
1099 {
1100 struct ath_softc *sc = ifp->if_softc;
1101 struct ieee80211com *ic = &sc->sc_ic;
1102
1103 ifp->if_timer = 0;
1104 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1105 return;
1106 if (sc->sc_tx_timer) {
1107 if (--sc->sc_tx_timer == 0) {
1108 if_printf(ifp, "device timeout\n");
1109 #ifdef AR_DEBUG
1110 if (ath_debug)
1111 ath_hal_dumpstate(sc->sc_ah);
1112 #endif /* AR_DEBUG */
1113 ath_init(ifp); /* XXX ath_reset??? */
1114 ifp->if_oerrors++;
1115 sc->sc_stats.ast_watchdog++;
1116 return;
1117 }
1118 ifp->if_timer = 1;
1119 }
1120 if (ic->ic_fixed_rate == -1) {
1121 /*
1122 * Run the rate control algorithm if we're not
1123 * locked at a fixed rate.
1124 */
1125 if (ic->ic_opmode == IEEE80211_M_STA)
1126 ath_rate_ctl(sc, ic->ic_bss);
1127 else
1128 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1129 }
1130 ieee80211_watchdog(ifp);
1131 }
1132
1133 static int
1134 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1135 {
1136 struct ath_softc *sc = ifp->if_softc;
1137 struct ifreq *ifr = (struct ifreq *)data;
1138 int error = 0;
1139 ath_softc_critsect_decl(s);
1140
1141 ath_softc_critsect_begin(sc, s);
1142 switch (cmd) {
1143 case SIOCSIFFLAGS:
1144 if (ifp->if_flags & IFF_UP) {
1145 if (ifp->if_flags & IFF_RUNNING) {
1146 /*
1147 * To avoid rescanning another access point,
1148 * do not call ath_init() here. Instead,
1149 * only reflect promisc mode settings.
1150 */
1151 ath_mode_init(sc);
1152 } else {
1153 /*
1154 * Beware of being called during detach to
1155 * reset promiscuous mode. In that case we
1156 * will still be marked UP but not RUNNING.
1157 * However trying to re-init the interface
1158 * is the wrong thing to do as we've already
1159 * torn down much of our state. There's
1160 * probably a better way to deal with this.
1161 */
1162 if (!sc->sc_invalid)
1163 ath_init(ifp); /* XXX lose error */
1164 }
1165 } else
1166 ath_stop(ifp);
1167 break;
1168 case SIOCADDMULTI:
1169 case SIOCDELMULTI:
1170 #ifdef __FreeBSD__
1171 /*
1172 * The upper layer has already installed/removed
1173 * the multicast address(es), just recalculate the
1174 * multicast filter for the card.
1175 */
1176 if (ifp->if_flags & IFF_RUNNING)
1177 ath_mode_init(sc);
1178 #endif
1179 #ifdef __NetBSD__
1180 error = (cmd == SIOCADDMULTI) ?
1181 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1182 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1183 if (error == ENETRESET) {
1184 if (ifp->if_flags & IFF_RUNNING)
1185 ath_mode_init(sc);
1186 error = 0;
1187 }
1188 #endif
1189 break;
1190 case SIOCGATHSTATS:
1191 error = copyout(&sc->sc_stats,
1192 ifr->ifr_data, sizeof (sc->sc_stats));
1193 break;
1194 case SIOCGATHDIAG: {
1195 struct ath_diag *ad = (struct ath_diag *)data;
1196 struct ath_hal *ah = sc->sc_ah;
1197 void *data;
1198 u_int size;
1199
1200 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
1201 if (size < ad->ad_size)
1202 ad->ad_size = size;
1203 if (data)
1204 error = copyout(data, ad->ad_data, ad->ad_size);
1205 } else
1206 error = EINVAL;
1207 break;
1208 }
1209 default:
1210 error = ieee80211_ioctl(ifp, cmd, data);
1211 if (error == ENETRESET) {
1212 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1213 (IFF_RUNNING|IFF_UP))
1214 ath_init(ifp); /* XXX lose error */
1215 error = 0;
1216 }
1217 break;
1218 }
1219 ath_softc_critsect_end(sc, s);
1220 return error;
1221 }
1222
1223 /*
1224 * Fill the hardware key cache with key entries.
1225 */
1226 static void
1227 ath_initkeytable(struct ath_softc *sc)
1228 {
1229 struct ieee80211com *ic = &sc->sc_ic;
1230 struct ath_hal *ah = sc->sc_ah;
1231 int i;
1232
1233 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1234 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1235 if (k->wk_len == 0)
1236 ath_hal_keyreset(ah, i);
1237 else
1238 /* XXX return value */
1239 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
1240 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
1241 }
1242 }
1243
1244 static void
1245 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1246 {
1247 u_int32_t val;
1248 u_int8_t pos;
1249
1250 val = LE_READ_4(dl + 0);
1251 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1252 val = LE_READ_4(dl + 3);
1253 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1254 pos &= 0x3f;
1255 (*mfilt)[pos / 32] |= (1 << (pos % 32));
1256 }
1257
1258 #ifdef __FreeBSD__
1259 static void
1260 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1261 {
1262 struct ieee80211com *ic = &sc->sc_ic;
1263 struct ifnet *ifp = &ic->ic_if;
1264 struct ifmultiaddr *ifma;
1265
1266 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1267 caddr_t dl;
1268
1269 /* calculate XOR of eight 6bit values */
1270 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1271 ath_mcastfilter_accum(dl, &mfilt);
1272 }
1273 }
1274 #else
1275 static void
1276 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1277 {
1278 struct ifnet *ifp = &sc->sc_ic.ic_if;
1279 struct ether_multi *enm;
1280 struct ether_multistep estep;
1281
1282 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1283 while (enm != NULL) {
1284 /* XXX Punt on ranges. */
1285 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1286 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1287 ifp->if_flags |= IFF_ALLMULTI;
1288 return;
1289 }
1290 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1291 ETHER_NEXT_MULTI(estep, enm);
1292 }
1293 ifp->if_flags &= ~IFF_ALLMULTI;
1294 }
1295 #endif
1296
1297 /*
1298 * Calculate the receive filter according to the
1299 * operating mode and state:
1300 *
1301 * o always accept unicast, broadcast, and multicast traffic
1302 * o maintain current state of phy error reception
1303 * o probe request frames are accepted only when operating in
1304 * hostap, adhoc, or monitor modes
1305 * o enable promiscuous mode according to the interface state
1306 * o accept beacons:
1307 * - when operating in adhoc mode so the 802.11 layer creates
1308 * node table entries for peers,
1309 * - when operating in station mode for collecting rssi data when
1310 * the station is otherwise quiet, or
1311 * - when scanning
1312 */
1313 static u_int32_t
1314 ath_calcrxfilter(struct ath_softc *sc)
1315 {
1316 struct ieee80211com *ic = &sc->sc_ic;
1317 struct ath_hal *ah = sc->sc_ah;
1318 struct ifnet *ifp = &ic->ic_if;
1319 u_int32_t rfilt;
1320
1321 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1322 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1323 if (ic->ic_opmode != IEEE80211_M_STA)
1324 rfilt |= HAL_RX_FILTER_PROBEREQ;
1325 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1326 (ifp->if_flags & IFF_PROMISC))
1327 rfilt |= HAL_RX_FILTER_PROM;
1328 if (ic->ic_opmode == IEEE80211_M_STA ||
1329 ic->ic_opmode == IEEE80211_M_IBSS ||
1330 ic->ic_state == IEEE80211_S_SCAN)
1331 rfilt |= HAL_RX_FILTER_BEACON;
1332 return rfilt;
1333 }
1334
1335 static void
1336 ath_mode_init(struct ath_softc *sc)
1337 {
1338 #ifdef __FreeBSD__
1339 struct ieee80211com *ic = &sc->sc_ic;
1340 #endif
1341 struct ath_hal *ah = sc->sc_ah;
1342 u_int32_t rfilt, mfilt[2];
1343
1344 /* configure rx filter */
1345 rfilt = ath_calcrxfilter(sc);
1346 ath_hal_setrxfilter(ah, rfilt);
1347
1348 /* configure operational mode */
1349 ath_hal_setopmode(ah);
1350
1351 /* calculate and install multicast filter */
1352 #ifdef __FreeBSD__
1353 if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
1354 mfilt[0] = mfilt[1] = 0;
1355 ath_mcastfilter_compute(sc, &mfilt);
1356 } else {
1357 mfilt[0] = mfilt[1] = ~0;
1358 }
1359 #endif
1360 #ifdef __NetBSD__
1361 mfilt[0] = mfilt[1] = 0;
1362 ath_mcastfilter_compute(sc, &mfilt);
1363 #endif
1364 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1365 DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1366 rfilt, mfilt[0], mfilt[1]));
1367 }
1368
1369 #ifdef __FreeBSD__
1370 static void
1371 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1372 {
1373 struct ath_buf *bf = arg;
1374
1375 KASSERT(nseg <= ATH_MAX_SCATTER,
1376 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1377 bf->bf_mapsize = mapsize;
1378 bf->bf_nseg = nseg;
1379 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1380 }
1381 #endif /* __FreeBSD__ */
1382
1383 static struct mbuf *
1384 ath_getmbuf(int flags, int type, u_int pktlen)
1385 {
1386 struct mbuf *m;
1387
1388 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1389 #ifdef __FreeBSD__
1390 if (pktlen <= MHLEN)
1391 MGETHDR(m, flags, type);
1392 else
1393 m = m_getcl(flags, type, M_PKTHDR);
1394 #else
1395 MGETHDR(m, flags, type);
1396 if (m != NULL && pktlen > MHLEN)
1397 MCLGET(m, flags);
1398 #endif
1399 return m;
1400 }
1401
1402 static int
1403 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1404 {
1405 struct ieee80211com *ic = &sc->sc_ic;
1406 struct ifnet *ifp = &ic->ic_if;
1407 struct ath_hal *ah = sc->sc_ah;
1408 struct ieee80211_frame *wh;
1409 struct ath_buf *bf;
1410 struct ath_desc *ds;
1411 struct mbuf *m;
1412 int error, pktlen;
1413 u_int8_t *frm, rate;
1414 u_int16_t capinfo;
1415 struct ieee80211_rateset *rs;
1416 const HAL_RATE_TABLE *rt;
1417
1418 bf = sc->sc_bcbuf;
1419 if (bf->bf_m != NULL) {
1420 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1421 m_freem(bf->bf_m);
1422 bf->bf_m = NULL;
1423 bf->bf_node = NULL;
1424 }
1425 /*
1426 * NB: the beacon data buffer must be 32-bit aligned;
1427 * we assume the mbuf routines will return us something
1428 * with this alignment (perhaps should assert).
1429 */
1430 rs = &ni->ni_rates;
1431 pktlen = sizeof (struct ieee80211_frame)
1432 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1433 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1434 pktlen += 2;
1435 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1436 if (m == NULL) {
1437 DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1438 pktlen));
1439 sc->sc_stats.ast_be_nombuf++;
1440 return ENOMEM;
1441 }
1442
1443 wh = mtod(m, struct ieee80211_frame *);
1444 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1445 IEEE80211_FC0_SUBTYPE_BEACON;
1446 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1447 *(u_int16_t *)wh->i_dur = 0;
1448 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1449 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1450 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1451 *(u_int16_t *)wh->i_seq = 0;
1452
1453 /*
1454 * beacon frame format
1455 * [8] time stamp
1456 * [2] beacon interval
1457 * [2] cabability information
1458 * [tlv] ssid
1459 * [tlv] supported rates
1460 * [tlv] parameter set (IBSS)
1461 * [tlv] extended supported rates
1462 */
1463 frm = (u_int8_t *)&wh[1];
1464 memset(frm, 0, 8); /* timestamp is set by hardware */
1465 frm += 8;
1466 *(u_int16_t *)frm = htole16(ni->ni_intval);
1467 frm += 2;
1468 if (ic->ic_opmode == IEEE80211_M_IBSS)
1469 capinfo = IEEE80211_CAPINFO_IBSS;
1470 else
1471 capinfo = IEEE80211_CAPINFO_ESS;
1472 if (ic->ic_flags & IEEE80211_F_WEPON)
1473 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1474 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1475 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1476 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1477 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1478 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1479 *(u_int16_t *)frm = htole16(capinfo);
1480 frm += 2;
1481 *frm++ = IEEE80211_ELEMID_SSID;
1482 *frm++ = ni->ni_esslen;
1483 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1484 frm += ni->ni_esslen;
1485 frm = ieee80211_add_rates(frm, rs);
1486 *frm++ = IEEE80211_ELEMID_DSPARMS;
1487 *frm++ = 1;
1488 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1489 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1490 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1491 *frm++ = 2;
1492 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1493 } else {
1494 /* TODO: TIM */
1495 *frm++ = IEEE80211_ELEMID_TIM;
1496 *frm++ = 4; /* length */
1497 *frm++ = 0; /* DTIM count */
1498 *frm++ = 1; /* DTIM period */
1499 *frm++ = 0; /* bitmap control */
1500 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1501 }
1502 frm = ieee80211_add_xrates(frm, rs);
1503 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1504 KASSERT(m->m_pkthdr.len <= pktlen,
1505 ("beacon bigger than expected, len %u calculated %u",
1506 m->m_pkthdr.len, pktlen));
1507
1508 DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1509 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1510 if (error != 0) {
1511 m_freem(m);
1512 return error;
1513 }
1514 KASSERT(bf->bf_nseg == 1,
1515 ("ath_beacon_alloc: multi-segment packet; nseg %u",
1516 bf->bf_nseg));
1517 bf->bf_m = m;
1518
1519 /* setup descriptors */
1520 ds = bf->bf_desc;
1521
1522 ds->ds_link = 0;
1523 ds->ds_data = bf->bf_segs[0].ds_addr;
1524
1525 DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
1526 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1527
1528 /*
1529 * Calculate rate code.
1530 * XXX everything at min xmit rate
1531 */
1532 rt = sc->sc_currates;
1533 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1534 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1535 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1536 else
1537 rate = rt->info[0].rateCode;
1538 if (!ath_hal_setuptxdesc(ah, ds
1539 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1540 , sizeof(struct ieee80211_frame) /* header length */
1541 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1542 , 0x20 /* txpower XXX */
1543 , rate, 1 /* series 0 rate/tries */
1544 , HAL_TXKEYIX_INVALID /* no encryption */
1545 , 0 /* antenna mode */
1546 , HAL_TXDESC_NOACK /* no ack for beacons */
1547 , 0 /* rts/cts rate */
1548 , 0 /* rts/cts duration */
1549 )) {
1550 printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1551 return -1;
1552 }
1553 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1554 /* XXX verify mbuf data area covers this roundup */
1555 if (!ath_hal_filltxdesc(ah, ds
1556 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1557 , AH_TRUE /* first segment */
1558 , AH_TRUE /* last segment */
1559 )) {
1560 printf("%s: ath_hal_filltxdesc failed\n", __func__);
1561 return -1;
1562 }
1563
1564 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1565
1566 return 0;
1567 }
1568
1569 static void
1570 ath_beacon_proc(void *arg, int pending)
1571 {
1572 struct ath_softc *sc = arg;
1573 struct ieee80211com *ic = &sc->sc_ic;
1574 struct ath_buf *bf = sc->sc_bcbuf;
1575 struct ath_hal *ah = sc->sc_ah;
1576
1577 DPRINTF2(("%s: pending %u\n", __func__, pending));
1578 if (ic->ic_opmode == IEEE80211_M_STA ||
1579 bf == NULL || bf->bf_m == NULL) {
1580 DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1581 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1582 return;
1583 }
1584 /* TODO: update beacon to reflect PS poll state */
1585 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1586 DPRINTF(("%s: beacon queue %u did not stop?",
1587 __func__, sc->sc_bhalq));
1588 return; /* busy, XXX is this right? */
1589 }
1590 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1591
1592 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1593 ath_hal_txstart(ah, sc->sc_bhalq);
1594 DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
1595 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1596 }
1597
1598 static void
1599 ath_beacon_free(struct ath_softc *sc)
1600 {
1601 struct ath_buf *bf = sc->sc_bcbuf;
1602
1603 if (bf->bf_m != NULL) {
1604 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1605 m_freem(bf->bf_m);
1606 bf->bf_m = NULL;
1607 bf->bf_node = NULL;
1608 }
1609 }
1610
1611 /*
1612 * Configure the beacon and sleep timers.
1613 *
1614 * When operating as an AP this resets the TSF and sets
1615 * up the hardware to notify us when we need to issue beacons.
1616 *
1617 * When operating in station mode this sets up the beacon
1618 * timers according to the timestamp of the last received
1619 * beacon and the current TSF, configures PCF and DTIM
1620 * handling, programs the sleep registers so the hardware
1621 * will wakeup in time to receive beacons, and configures
1622 * the beacon miss handling so we'll receive a BMISS
1623 * interrupt when we stop seeing beacons from the AP
1624 * we've associated with.
1625 */
1626 static void
1627 ath_beacon_config(struct ath_softc *sc)
1628 {
1629 struct ath_hal *ah = sc->sc_ah;
1630 struct ieee80211com *ic = &sc->sc_ic;
1631 struct ieee80211_node *ni = ic->ic_bss;
1632 u_int32_t nexttbtt;
1633
1634 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1635 (LE_READ_4(ni->ni_tstamp) >> 10);
1636 DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1637 nexttbtt += ni->ni_intval;
1638 if (ic->ic_opmode == IEEE80211_M_STA) {
1639 HAL_BEACON_STATE bs;
1640 u_int32_t bmisstime;
1641
1642 /* NB: no PCF support right now */
1643 memset(&bs, 0, sizeof(bs));
1644 bs.bs_intval = ni->ni_intval;
1645 bs.bs_nexttbtt = nexttbtt;
1646 bs.bs_dtimperiod = bs.bs_intval;
1647 bs.bs_nextdtim = nexttbtt;
1648 /*
1649 * Calculate the number of consecutive beacons to miss
1650 * before taking a BMISS interrupt. The configuration
1651 * is specified in ms, so we need to convert that to
1652 * TU's and then calculate based on the beacon interval.
1653 * Note that we clamp the result to at most 10 beacons.
1654 */
1655 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1656 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1657 if (bs.bs_bmissthreshold > 10)
1658 bs.bs_bmissthreshold = 10;
1659 else if (bs.bs_bmissthreshold <= 0)
1660 bs.bs_bmissthreshold = 1;
1661
1662 /*
1663 * Calculate sleep duration. The configuration is
1664 * given in ms. We insure a multiple of the beacon
1665 * period is used. Also, if the sleep duration is
1666 * greater than the DTIM period then it makes senses
1667 * to make it a multiple of that.
1668 *
1669 * XXX fixed at 100ms
1670 */
1671 bs.bs_sleepduration =
1672 roundup((100 * 1000) / 1024, bs.bs_intval);
1673 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1674 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1675
1676 DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1677 , __func__
1678 , bs.bs_intval
1679 , bs.bs_nexttbtt
1680 , bs.bs_dtimperiod
1681 , bs.bs_nextdtim
1682 , bs.bs_bmissthreshold
1683 , bs.bs_sleepduration
1684 ));
1685 ath_hal_intrset(ah, 0);
1686 /*
1687 * Reset our tsf so the hardware will update the
1688 * tsf register to reflect timestamps found in
1689 * received beacons.
1690 */
1691 ath_hal_resettsf(ah);
1692 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1693 sc->sc_imask |= HAL_INT_BMISS;
1694 ath_hal_intrset(ah, sc->sc_imask);
1695 } else {
1696 DPRINTF(("%s: intval %u nexttbtt %u\n",
1697 __func__, ni->ni_intval, nexttbtt));
1698 ath_hal_intrset(ah, 0);
1699 ath_hal_beaconinit(ah, nexttbtt, ni->ni_intval);
1700 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1701 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1702 ath_hal_intrset(ah, sc->sc_imask);
1703 }
1704 }
1705
1706 #ifdef __FreeBSD__
1707 static void
1708 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1709 {
1710 bus_addr_t *paddr = (bus_addr_t*) arg;
1711 *paddr = segs->ds_addr;
1712 }
1713 #endif
1714
1715 #ifdef __FreeBSD__
1716 static int
1717 ath_desc_alloc(struct ath_softc *sc)
1718 {
1719 int i, bsize, error;
1720 struct ath_desc *ds;
1721 struct ath_buf *bf;
1722
1723 /* allocate descriptors */
1724 sc->sc_desc_len = sizeof(struct ath_desc) *
1725 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1726 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1727 if (error != 0)
1728 return error;
1729
1730 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1731 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1732
1733 if (error != 0)
1734 goto fail0;
1735
1736 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1737 sc->sc_desc, sc->sc_desc_len,
1738 ath_load_cb, &sc->sc_desc_paddr,
1739 BUS_DMA_NOWAIT);
1740 if (error != 0)
1741 goto fail1;
1742
1743 ds = sc->sc_desc;
1744 DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1745 ds, sc->sc_desc_len,
1746 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1747
1748 /* allocate buffers */
1749 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1750 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1751 if (bf == NULL) {
1752 printf("%s: unable to allocate Tx/Rx buffers\n",
1753 sc->sc_dev.dv_xname);
1754 error = -1;
1755 goto fail2;
1756 }
1757 sc->sc_bufptr = bf;
1758
1759 TAILQ_INIT(&sc->sc_rxbuf);
1760 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1761 bf->bf_desc = ds;
1762 bf->bf_daddr = sc->sc_desc_paddr +
1763 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1764 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1765 &bf->bf_dmamap);
1766 if (error != 0)
1767 break;
1768 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1769 }
1770
1771 TAILQ_INIT(&sc->sc_txbuf);
1772 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1773 bf->bf_desc = ds;
1774 bf->bf_daddr = sc->sc_desc_paddr +
1775 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1776 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1777 &bf->bf_dmamap);
1778 if (error != 0)
1779 break;
1780 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1781 }
1782 TAILQ_INIT(&sc->sc_txq);
1783
1784 /* beacon buffer */
1785 bf->bf_desc = ds;
1786 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1787 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1788 if (error != 0)
1789 return error;
1790 sc->sc_bcbuf = bf;
1791 return 0;
1792
1793 fail2:
1794 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1795 fail1:
1796 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1797 fail0:
1798 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1799 sc->sc_ddmamap = NULL;
1800 return error;
1801 }
1802 #else
1803 static int
1804 ath_desc_alloc(struct ath_softc *sc)
1805 {
1806 int i, bsize, error = -1;
1807 struct ath_desc *ds;
1808 struct ath_buf *bf;
1809
1810 /* allocate descriptors */
1811 sc->sc_desc_len = sizeof(struct ath_desc) *
1812 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1813 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1814 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1815 printf("%s: unable to allocate control data, error = %d\n",
1816 sc->sc_dev.dv_xname, error);
1817 goto fail0;
1818 }
1819
1820 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1821 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1822 printf("%s: unable to map control data, error = %d\n",
1823 sc->sc_dev.dv_xname, error);
1824 goto fail1;
1825 }
1826
1827 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1828 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1829 printf("%s: unable to create control data DMA map, "
1830 "error = %d\n", sc->sc_dev.dv_xname, error);
1831 goto fail2;
1832 }
1833
1834 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1835 sc->sc_desc_len, NULL, 0)) != 0) {
1836 printf("%s: unable to load control data DMA map, error = %d\n",
1837 sc->sc_dev.dv_xname, error);
1838 goto fail3;
1839 }
1840
1841 ds = sc->sc_desc;
1842 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1843
1844 DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1845 ds, (u_long)sc->sc_desc_len,
1846 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1847
1848 /* allocate buffers */
1849 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1850 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1851 if (bf == NULL) {
1852 printf("%s: unable to allocate Tx/Rx buffers\n",
1853 sc->sc_dev.dv_xname);
1854 error = ENOMEM;
1855 goto fail3;
1856 }
1857 sc->sc_bufptr = bf;
1858
1859 TAILQ_INIT(&sc->sc_rxbuf);
1860 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1861 bf->bf_desc = ds;
1862 bf->bf_daddr = sc->sc_desc_paddr +
1863 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1864 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1865 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1866 printf("%s: unable to create Rx dmamap, error = %d\n",
1867 sc->sc_dev.dv_xname, error);
1868 goto fail4;
1869 }
1870 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1871 }
1872
1873 TAILQ_INIT(&sc->sc_txbuf);
1874 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1875 bf->bf_desc = ds;
1876 bf->bf_daddr = sc->sc_desc_paddr +
1877 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1878 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1879 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1880 printf("%s: unable to create Tx dmamap, error = %d\n",
1881 sc->sc_dev.dv_xname, error);
1882 goto fail5;
1883 }
1884 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1885 }
1886 TAILQ_INIT(&sc->sc_txq);
1887
1888 /* beacon buffer */
1889 bf->bf_desc = ds;
1890 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1891 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
1892 &bf->bf_dmamap)) != 0) {
1893 printf("%s: unable to create beacon dmamap, error = %d\n",
1894 sc->sc_dev.dv_xname, error);
1895 goto fail5;
1896 }
1897 sc->sc_bcbuf = bf;
1898 return 0;
1899
1900 fail5:
1901 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
1902 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1903 continue;
1904 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1905 }
1906 fail4:
1907 for (i = 0; i < ATH_RXBUF; i++) {
1908 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1909 continue;
1910 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1911 }
1912 fail3:
1913 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1914 fail2:
1915 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1916 sc->sc_ddmamap = NULL;
1917 fail1:
1918 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
1919 fail0:
1920 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1921 return error;
1922 }
1923 #endif
1924
1925 static void
1926 ath_desc_free(struct ath_softc *sc)
1927 {
1928 struct ath_buf *bf;
1929
1930 #ifdef __FreeBSD__
1931 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1932 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1933 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1934 #else
1935 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1936 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1937 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1938 #endif
1939
1940 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1941 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1942 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1943 m_freem(bf->bf_m);
1944 }
1945 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1946 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1947 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1948 if (bf->bf_m) {
1949 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1950 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1951 m_freem(bf->bf_m);
1952 bf->bf_m = NULL;
1953 }
1954 }
1955 if (sc->sc_bcbuf != NULL) {
1956 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1957 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1958 sc->sc_bcbuf = NULL;
1959 }
1960
1961 TAILQ_INIT(&sc->sc_rxbuf);
1962 TAILQ_INIT(&sc->sc_txbuf);
1963 TAILQ_INIT(&sc->sc_txq);
1964 free(sc->sc_bufptr, M_DEVBUF);
1965 sc->sc_bufptr = NULL;
1966 }
1967
1968 static struct ieee80211_node *
1969 ath_node_alloc(struct ieee80211com *ic)
1970 {
1971 struct ath_node *an =
1972 malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1973 if (an) {
1974 int i;
1975 for (i = 0; i < ATH_RHIST_SIZE; i++)
1976 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1977 an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1978 return &an->an_node;
1979 } else
1980 return NULL;
1981 }
1982
1983 static void
1984 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1985 {
1986 struct ath_softc *sc = ic->ic_if.if_softc;
1987 struct ath_buf *bf;
1988
1989 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1990 if (bf->bf_node == ni)
1991 bf->bf_node = NULL;
1992 }
1993 free(ni, M_DEVBUF);
1994 }
1995
1996 static void
1997 ath_node_copy(struct ieee80211com *ic,
1998 struct ieee80211_node *dst, const struct ieee80211_node *src)
1999 {
2000 *(struct ath_node *)dst = *(const struct ath_node *)src;
2001 }
2002
2003 static u_int8_t
2004 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
2005 {
2006 struct ath_node *an = ATH_NODE(ni);
2007 int i, now, nsamples, rssi;
2008
2009 /*
2010 * Calculate the average over the last second of sampled data.
2011 */
2012 now = ATH_TICKS();
2013 nsamples = 0;
2014 rssi = 0;
2015 i = an->an_rx_hist_next;
2016 do {
2017 struct ath_recv_hist *rh = &an->an_rx_hist[i];
2018 if (rh->arh_ticks == ATH_RHIST_NOTIME)
2019 goto done;
2020 if (now - rh->arh_ticks > hz)
2021 goto done;
2022 rssi += rh->arh_rssi;
2023 nsamples++;
2024 if (i == 0)
2025 i = ATH_RHIST_SIZE-1;
2026 else
2027 i--;
2028 } while (i != an->an_rx_hist_next);
2029 done:
2030 /*
2031 * Return either the average or the last known
2032 * value if there is no recent data.
2033 */
2034 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
2035 }
2036
2037 static int
2038 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2039 {
2040 struct ath_hal *ah = sc->sc_ah;
2041 int error;
2042 struct mbuf *m;
2043 struct ath_desc *ds;
2044
2045 m = bf->bf_m;
2046 if (m == NULL) {
2047 /*
2048 * NB: by assigning a page to the rx dma buffer we
2049 * implicitly satisfy the Atheros requirement that
2050 * this buffer be cache-line-aligned and sized to be
2051 * multiple of the cache line size. Not doing this
2052 * causes weird stuff to happen (for the 5210 at least).
2053 */
2054 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
2055 if (m == NULL) {
2056 DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
2057 sc->sc_stats.ast_rx_nombuf++;
2058 return ENOMEM;
2059 }
2060 bf->bf_m = m;
2061 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2062
2063 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
2064 BUS_DMA_NOWAIT);
2065 if (error != 0) {
2066 DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
2067 " error %d\n", error));
2068 sc->sc_stats.ast_rx_busdma++;
2069 return error;
2070 }
2071 KASSERT(bf->bf_nseg == 1,
2072 ("ath_rxbuf_init: multi-segment packet; nseg %u",
2073 bf->bf_nseg));
2074 }
2075 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
2076
2077 /*
2078 * Setup descriptors. For receive we always terminate
2079 * the descriptor list with a self-linked entry so we'll
2080 * not get overrun under high load (as can happen with a
2081 * 5212 when ANI processing enables PHY errors).
2082 *
2083 * To insure the last descriptor is self-linked we create
2084 * each descriptor as self-linked and add it to the end. As
2085 * each additional descriptor is added the previous self-linked
2086 * entry is ``fixed'' naturally. This should be safe even
2087 * if DMA is happening. When processing RX interrupts we
2088 * never remove/process the last, self-linked, entry on the
2089 * descriptor list. This insures the hardware always has
2090 * someplace to write a new frame.
2091 */
2092 ds = bf->bf_desc;
2093 ds->ds_link = bf->bf_daddr; /* link to self */
2094 ds->ds_data = bf->bf_segs[0].ds_addr;
2095 ath_hal_setuprxdesc(ah, ds
2096 , m->m_len /* buffer size */
2097 , 0
2098 );
2099
2100 if (sc->sc_rxlink != NULL)
2101 *sc->sc_rxlink = bf->bf_daddr;
2102 sc->sc_rxlink = &ds->ds_link;
2103 return 0;
2104 }
2105
2106 static void
2107 ath_rx_proc(void *arg, int npending)
2108 {
2109 #define PA2DESC(_sc, _pa) \
2110 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2111 ((_pa) - (_sc)->sc_desc_paddr)))
2112 struct ath_softc *sc = arg;
2113 struct ath_buf *bf;
2114 struct ieee80211com *ic = &sc->sc_ic;
2115 struct ifnet *ifp = &ic->ic_if;
2116 struct ath_hal *ah = sc->sc_ah;
2117 struct ath_desc *ds;
2118 struct mbuf *m;
2119 struct ieee80211_frame *wh, whbuf;
2120 struct ieee80211_node *ni;
2121 struct ath_node *an;
2122 struct ath_recv_hist *rh;
2123 int len;
2124 u_int phyerr;
2125 HAL_STATUS status;
2126
2127 DPRINTF2(("ath_rx_proc: pending %u\n", npending));
2128 do {
2129 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2130 if (bf == NULL) { /* NB: shouldn't happen */
2131 if_printf(ifp, "ath_rx_proc: no buffer!\n");
2132 break;
2133 }
2134 ds = bf->bf_desc;
2135 if (ds->ds_link == bf->bf_daddr) {
2136 /* NB: never process the self-linked entry at the end */
2137 break;
2138 }
2139 m = bf->bf_m;
2140 if (m == NULL) { /* NB: shouldn't happen */
2141 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
2142 continue;
2143 }
2144 /* XXX sync descriptor memory */
2145 /*
2146 * Must provide the virtual address of the current
2147 * descriptor, the physical address, and the virtual
2148 * address of the next descriptor in the h/w chain.
2149 * This allows the HAL to look ahead to see if the
2150 * hardware is done with a descriptor by checking the
2151 * done bit in the following descriptor and the address
2152 * of the current descriptor the DMA engine is working
2153 * on. All this is necessary because of our use of
2154 * a self-linked list to avoid rx overruns.
2155 */
2156 status = ath_hal_rxprocdesc(ah, ds,
2157 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2158 #ifdef AR_DEBUG
2159 if (ath_debug > 1)
2160 ath_printrxbuf(bf, status == HAL_OK);
2161 #endif
2162 if (status == HAL_EINPROGRESS)
2163 break;
2164 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
2165 if (ds->ds_rxstat.rs_status != 0) {
2166 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2167 sc->sc_stats.ast_rx_crcerr++;
2168 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2169 sc->sc_stats.ast_rx_fifoerr++;
2170 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2171 sc->sc_stats.ast_rx_badcrypt++;
2172 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2173 sc->sc_stats.ast_rx_phyerr++;
2174 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2175 sc->sc_stats.ast_rx_phy[phyerr]++;
2176 } else {
2177 /*
2178 * NB: don't count PHY errors as input errors;
2179 * we enable them on the 5212 to collect info
2180 * about environmental noise and, in that
2181 * setting, they don't really reflect tx/rx
2182 * errors.
2183 */
2184 ifp->if_ierrors++;
2185 }
2186 goto rx_next;
2187 }
2188
2189 len = ds->ds_rxstat.rs_datalen;
2190 if (len < IEEE80211_MIN_LEN) {
2191 DPRINTF(("ath_rx_proc: short packet %d\n", len));
2192 sc->sc_stats.ast_rx_tooshort++;
2193 goto rx_next;
2194 }
2195
2196 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2197
2198 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2199 bf->bf_m = NULL;
2200 m->m_pkthdr.rcvif = ifp;
2201 m->m_pkthdr.len = m->m_len = len;
2202
2203 #if NBPFILTER > 0
2204 if (sc->sc_drvbpf) {
2205 #ifdef __FreeBSD__
2206 struct mbuf *mb;
2207
2208 /* XXX pre-allocate space when setting up recv's */
2209 MGETHDR(mb, M_DONTWAIT, m->m_type);
2210 if (mb != NULL) {
2211 sc->sc_rx_th.wr_rate =
2212 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2213 sc->sc_rx_th.wr_antsignal =
2214 ds->ds_rxstat.rs_rssi;
2215 sc->sc_rx_th.wr_antenna =
2216 ds->ds_rxstat.rs_antenna;
2217 /* XXX TSF */
2218
2219 (void) m_dup_pkthdr(mb, m, M_DONTWAIT);
2220 mb->m_next = m;
2221 mb->m_data = (caddr_t)&sc->sc_rx_th;
2222 mb->m_len = sizeof(sc->sc_rx_th);
2223 mb->m_pkthdr.len += mb->m_len;
2224 bpf_mtap(sc->sc_drvbpf, mb);
2225 m_free(mb);
2226 }
2227 #else
2228 /* XXX pre-allocate space when setting up recv's */
2229 struct mbuf mb;
2230
2231 sc->sc_rx_th.wr_rate =
2232 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2233 sc->sc_rx_th.wr_antsignal =
2234 ds->ds_rxstat.rs_rssi;
2235 sc->sc_rx_th.wr_antenna =
2236 ds->ds_rxstat.rs_antenna;
2237 /* XXX TSF */
2238
2239 M_COPY_PKTHDR(&mb, m);
2240 mb.m_next = m;
2241 mb.m_data = (caddr_t)&sc->sc_rx_th;
2242 mb.m_len = sizeof(sc->sc_rx_th);
2243 mb.m_pkthdr.len += mb.m_len;
2244 bpf_mtap(sc->sc_drvbpf, &mb);
2245 #endif
2246 }
2247 #endif
2248
2249 m_adj(m, -IEEE80211_CRC_LEN);
2250 wh = mtod(m, struct ieee80211_frame *);
2251 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2252 /*
2253 * WEP is decrypted by hardware. Clear WEP bit
2254 * and trim WEP header for ieee80211_input().
2255 */
2256 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2257 memcpy(&whbuf, wh, sizeof(whbuf));
2258 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2259 wh = mtod(m, struct ieee80211_frame *);
2260 memcpy(wh, &whbuf, sizeof(whbuf));
2261 /*
2262 * Also trim WEP ICV from the tail.
2263 */
2264 m_adj(m, -IEEE80211_WEP_CRCLEN);
2265 /*
2266 * The header has probably moved.
2267 */
2268 wh = mtod(m, struct ieee80211_frame *);
2269 }
2270
2271 /*
2272 * Locate the node for sender, track state, and
2273 * then pass this node (referenced) up to the 802.11
2274 * layer for its use. We are required to pass
2275 * something so we fall back to ic_bss when this frame
2276 * is from an unknown sender.
2277 */
2278 ni = ieee80211_find_rxnode(ic, wh);
2279
2280 /*
2281 * Record driver-specific state.
2282 */
2283 an = ATH_NODE(ni);
2284 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2285 an->an_rx_hist_next = 0;
2286 rh = &an->an_rx_hist[an->an_rx_hist_next];
2287 rh->arh_ticks = ATH_TICKS();
2288 rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2289 rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2290
2291 /*
2292 * Send frame up for processing.
2293 */
2294 ieee80211_input(ifp, m, ni,
2295 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2296
2297 /*
2298 * The frame may have caused the node to be marked for
2299 * reclamation (e.g. in response to a DEAUTH message)
2300 * so use free_node here instead of unref_node.
2301 */
2302 if (ni == ic->ic_bss)
2303 ieee80211_unref_node(&ni);
2304 else
2305 ieee80211_free_node(ic, ni);
2306 rx_next:
2307 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2308 } while (ath_rxbuf_init(sc, bf) == 0);
2309
2310 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
2311 ath_hal_rxena(ah); /* in case of RXEOL */
2312
2313 #ifdef __NetBSD__
2314 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2315 ath_start(ifp);
2316 #endif /* __NetBSD__ */
2317 #undef PA2DESC
2318 }
2319
2320 /*
2321 * XXX Size of an ACK control frame in bytes.
2322 */
2323 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
2324
2325 static int
2326 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2327 struct mbuf *m0)
2328 {
2329 struct ieee80211com *ic = &sc->sc_ic;
2330 struct ath_hal *ah = sc->sc_ah;
2331 struct ifnet *ifp = &sc->sc_ic.ic_if;
2332 int i, error, iswep, hdrlen, pktlen;
2333 u_int8_t rix, cix, txrate, ctsrate;
2334 struct ath_desc *ds;
2335 struct mbuf *m;
2336 struct ieee80211_frame *wh;
2337 u_int32_t iv;
2338 u_int8_t *ivp;
2339 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2340 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2341 u_int subtype, flags, ctsduration, antenna;
2342 HAL_PKT_TYPE atype;
2343 const HAL_RATE_TABLE *rt;
2344 HAL_BOOL shortPreamble;
2345 struct ath_node *an;
2346 ath_txq_critsect_decl(s);
2347
2348 wh = mtod(m0, struct ieee80211_frame *);
2349 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2350 hdrlen = sizeof(struct ieee80211_frame);
2351 pktlen = m0->m_pkthdr.len;
2352
2353 if (iswep) {
2354 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2355 m_adj(m0, hdrlen);
2356 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2357 if (m0 == NULL) {
2358 sc->sc_stats.ast_tx_nombuf++;
2359 return ENOMEM;
2360 }
2361 ivp = hdrbuf + hdrlen;
2362 wh = mtod(m0, struct ieee80211_frame *);
2363 /*
2364 * XXX
2365 * IV must not duplicate during the lifetime of the key.
2366 * But no mechanism to renew keys is defined in IEEE 802.11
2367 * WEP. And IV may be duplicated between other stations
2368 * because of the session key itself is shared.
2369 * So we use pseudo random IV for now, though it is not the
2370 * right way.
2371 */
2372 iv = ic->ic_iv;
2373 /*
2374 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2375 * (B, 255, N) with 3 <= B < 8
2376 */
2377 if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
2378 iv += 0x000100;
2379 ic->ic_iv = iv + 1;
2380 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
2381 ivp[i] = iv;
2382 iv >>= 8;
2383 }
2384 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
2385 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2386 /*
2387 * The ICV length must be included into hdrlen and pktlen.
2388 */
2389 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2390 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2391 }
2392 pktlen += IEEE80211_CRC_LEN;
2393
2394 /*
2395 * Load the DMA map so any coalescing is done. This
2396 * also calculates the number of descriptors we need.
2397 */
2398 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2399 /*
2400 * Discard null packets and check for packets that
2401 * require too many TX descriptors. We try to convert
2402 * the latter to a cluster.
2403 */
2404 if (error == EFBIG) { /* too many desc's, linearize */
2405 sc->sc_stats.ast_tx_linear++;
2406 MGETHDR(m, M_DONTWAIT, MT_DATA);
2407 if (m == NULL) {
2408 sc->sc_stats.ast_tx_nombuf++;
2409 m_freem(m0);
2410 return ENOMEM;
2411 }
2412 #ifdef __FreeBSD__
2413 M_MOVE_PKTHDR(m, m0);
2414 #else
2415 M_COPY_PKTHDR(m, m0);
2416 #endif
2417 MCLGET(m, M_DONTWAIT);
2418 if ((m->m_flags & M_EXT) == 0) {
2419 sc->sc_stats.ast_tx_nomcl++;
2420 m_freem(m0);
2421 m_free(m);
2422 return ENOMEM;
2423 }
2424 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2425 m_freem(m0);
2426 m->m_len = m->m_pkthdr.len;
2427 m0 = m;
2428 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2429 BUS_DMA_NOWAIT);
2430 if (error != 0) {
2431 sc->sc_stats.ast_tx_busdma++;
2432 m_freem(m0);
2433 return error;
2434 }
2435 KASSERT(bf->bf_nseg == 1,
2436 ("ath_tx_start: packet not one segment; nseg %u",
2437 bf->bf_nseg));
2438 } else if (error != 0) {
2439 sc->sc_stats.ast_tx_busdma++;
2440 m_freem(m0);
2441 return error;
2442 } else if (bf->bf_nseg == 0) { /* null packet, discard */
2443 sc->sc_stats.ast_tx_nodata++;
2444 m_freem(m0);
2445 return EIO;
2446 }
2447 DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
2448 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2449 bf->bf_m = m0;
2450 bf->bf_node = ni; /* NB: held reference */
2451
2452 /* setup descriptors */
2453 ds = bf->bf_desc;
2454 rt = sc->sc_currates;
2455 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2456
2457 /*
2458 * Calculate Atheros packet type from IEEE80211 packet header
2459 * and setup for rate calculations.
2460 */
2461 atype = HAL_PKT_TYPE_NORMAL; /* default */
2462 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2463 case IEEE80211_FC0_TYPE_MGT:
2464 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2465 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2466 atype = HAL_PKT_TYPE_BEACON;
2467 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2468 atype = HAL_PKT_TYPE_PROBE_RESP;
2469 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2470 atype = HAL_PKT_TYPE_ATIM;
2471 rix = 0; /* XXX lowest rate */
2472 break;
2473 case IEEE80211_FC0_TYPE_CTL:
2474 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2475 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2476 atype = HAL_PKT_TYPE_PSPOLL;
2477 rix = 0; /* XXX lowest rate */
2478 break;
2479 default:
2480 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2481 IEEE80211_RATE_VAL];
2482 if (rix == 0xff) {
2483 if_printf(ifp, "bogus xmit rate 0x%x\n",
2484 ni->ni_rates.rs_rates[ni->ni_txrate]);
2485 sc->sc_stats.ast_tx_badrate++;
2486 m_freem(m0);
2487 return EIO;
2488 }
2489 break;
2490 }
2491 /*
2492 * NB: the 802.11 layer marks whether or not we should
2493 * use short preamble based on the current mode and
2494 * negotiated parameters.
2495 */
2496 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2497 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2498 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2499 shortPreamble = AH_TRUE;
2500 sc->sc_stats.ast_tx_shortpre++;
2501 } else {
2502 txrate = rt->info[rix].rateCode;
2503 shortPreamble = AH_FALSE;
2504 }
2505
2506 /*
2507 * Calculate miscellaneous flags.
2508 */
2509 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2510 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2511 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2512 sc->sc_stats.ast_tx_noack++;
2513 } else if (pktlen > ic->ic_rtsthreshold) {
2514 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2515 sc->sc_stats.ast_tx_rts++;
2516 }
2517
2518 /*
2519 * Calculate duration. This logically belongs in the 802.11
2520 * layer but it lacks sufficient information to calculate it.
2521 */
2522 if ((flags & HAL_TXDESC_NOACK) == 0 &&
2523 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2524 u_int16_t dur;
2525 /*
2526 * XXX not right with fragmentation.
2527 */
2528 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2529 rix, shortPreamble);
2530 *((u_int16_t*) wh->i_dur) = htole16(dur);
2531 }
2532
2533 /*
2534 * Calculate RTS/CTS rate and duration if needed.
2535 */
2536 ctsduration = 0;
2537 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2538 /*
2539 * CTS transmit rate is derived from the transmit rate
2540 * by looking in the h/w rate table. We must also factor
2541 * in whether or not a short preamble is to be used.
2542 */
2543 cix = rt->info[rix].controlRate;
2544 ctsrate = rt->info[cix].rateCode;
2545 if (shortPreamble)
2546 ctsrate |= rt->info[cix].shortPreamble;
2547 /*
2548 * Compute the transmit duration based on the size
2549 * of an ACK frame. We call into the HAL to do the
2550 * computation since it depends on the characteristics
2551 * of the actual PHY being used.
2552 */
2553 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2554 ctsduration += ath_hal_computetxtime(ah,
2555 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2556 }
2557 /* SIFS + data */
2558 ctsduration += ath_hal_computetxtime(ah,
2559 rt, pktlen, rix, shortPreamble);
2560 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2561 ctsduration += ath_hal_computetxtime(ah,
2562 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2563 }
2564 } else
2565 ctsrate = 0;
2566
2567 /*
2568 * For now use the antenna on which the last good
2569 * frame was received on. We assume this field is
2570 * initialized to 0 which gives us ``auto'' or the
2571 * ``default'' antenna.
2572 */
2573 an = (struct ath_node *) ni;
2574 if (an->an_tx_antenna)
2575 antenna = an->an_tx_antenna;
2576 else
2577 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2578
2579 /*
2580 * Formulate first tx descriptor with tx controls.
2581 */
2582 /* XXX check return value? */
2583 ath_hal_setuptxdesc(ah, ds
2584 , pktlen /* packet length */
2585 , hdrlen /* header length */
2586 , atype /* Atheros packet type */
2587 , 60 /* txpower XXX */
2588 , txrate, 1+10 /* series 0 rate/tries */
2589 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2590 , antenna /* antenna mode */
2591 , flags /* flags */
2592 , ctsrate /* rts/cts rate */
2593 , ctsduration /* rts/cts duration */
2594 );
2595 #ifdef notyet
2596 ath_hal_setupxtxdesc(ah, ds
2597 , AH_FALSE /* short preamble */
2598 , 0, 0 /* series 1 rate/tries */
2599 , 0, 0 /* series 2 rate/tries */
2600 , 0, 0 /* series 3 rate/tries */
2601 );
2602 #endif
2603 /*
2604 * Fillin the remainder of the descriptor info.
2605 */
2606 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2607 ds->ds_data = bf->bf_segs[i].ds_addr;
2608 if (i == bf->bf_nseg - 1)
2609 ds->ds_link = 0;
2610 else
2611 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2612 ath_hal_filltxdesc(ah, ds
2613 , bf->bf_segs[i].ds_len /* segment length */
2614 , i == 0 /* first segment */
2615 , i == bf->bf_nseg - 1 /* last segment */
2616 );
2617 DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2618 i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2619 ds->ds_hw[0], ds->ds_hw[1]));
2620 }
2621
2622 /*
2623 * Insert the frame on the outbound list and
2624 * pass it on to the hardware.
2625 */
2626 ath_txq_critsect_begin(sc, s);
2627 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2628 if (sc->sc_txlink == NULL) {
2629 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2630 DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2631 (caddr_t)bf->bf_daddr, bf->bf_desc));
2632 } else {
2633 *sc->sc_txlink = bf->bf_daddr;
2634 DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2635 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2636 }
2637 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2638 ath_txq_critsect_end(sc, s);
2639
2640 ath_hal_txstart(ah, sc->sc_txhalq);
2641 return 0;
2642 }
2643
2644 static void
2645 ath_tx_proc(void *arg, int npending)
2646 {
2647 struct ath_softc *sc = arg;
2648 struct ath_hal *ah = sc->sc_ah;
2649 struct ath_buf *bf;
2650 struct ieee80211com *ic = &sc->sc_ic;
2651 struct ifnet *ifp = &ic->ic_if;
2652 struct ath_desc *ds;
2653 struct ieee80211_node *ni;
2654 struct ath_node *an;
2655 int sr, lr;
2656 HAL_STATUS status;
2657 ath_txq_critsect_decl(s);
2658 ath_txbuf_critsect_decl(s2);
2659
2660 DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2661 npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2662 sc->sc_txlink));
2663 for (;;) {
2664 ath_txq_critsect_begin(sc, s);
2665 bf = TAILQ_FIRST(&sc->sc_txq);
2666 if (bf == NULL) {
2667 sc->sc_txlink = NULL;
2668 ath_txq_critsect_end(sc, s);
2669 break;
2670 }
2671 /* only the last descriptor is needed */
2672 ds = &bf->bf_desc[bf->bf_nseg - 1];
2673 status = ath_hal_txprocdesc(ah, ds);
2674 #ifdef AR_DEBUG
2675 if (ath_debug > 1)
2676 ath_printtxbuf(bf, status == HAL_OK);
2677 #endif
2678 if (status == HAL_EINPROGRESS) {
2679 ath_txq_critsect_end(sc, s);
2680 break;
2681 }
2682 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2683 ath_txq_critsect_end(sc, s);
2684
2685 ni = bf->bf_node;
2686 if (ni != NULL) {
2687 an = (struct ath_node *) ni;
2688 if (ds->ds_txstat.ts_status == 0) {
2689 an->an_tx_ok++;
2690 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2691 } else {
2692 an->an_tx_err++;
2693 ifp->if_oerrors++;
2694 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2695 sc->sc_stats.ast_tx_xretries++;
2696 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2697 sc->sc_stats.ast_tx_fifoerr++;
2698 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2699 sc->sc_stats.ast_tx_filtered++;
2700 an->an_tx_antenna = 0; /* invalidate */
2701 }
2702 sr = ds->ds_txstat.ts_shortretry;
2703 lr = ds->ds_txstat.ts_longretry;
2704 sc->sc_stats.ast_tx_shortretry += sr;
2705 sc->sc_stats.ast_tx_longretry += lr;
2706 if (sr + lr)
2707 an->an_tx_retr++;
2708 /*
2709 * Reclaim reference to node.
2710 *
2711 * NB: the node may be reclaimed here if, for example
2712 * this is a DEAUTH message that was sent and the
2713 * node was timed out due to inactivity.
2714 */
2715 if (ni != ic->ic_bss)
2716 ieee80211_free_node(ic, ni);
2717 }
2718 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2719 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2720 m_freem(bf->bf_m);
2721 bf->bf_m = NULL;
2722 bf->bf_node = NULL;
2723
2724 ath_txbuf_critsect_begin(sc, s2);
2725 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2726 ath_txbuf_critsect_end(sc, s2);
2727 }
2728 ifp->if_flags &= ~IFF_OACTIVE;
2729 sc->sc_tx_timer = 0;
2730
2731 ath_start(ifp);
2732 }
2733
2734 /*
2735 * Drain the transmit queue and reclaim resources.
2736 */
2737 static void
2738 ath_draintxq(struct ath_softc *sc)
2739 {
2740 struct ath_hal *ah = sc->sc_ah;
2741 struct ifnet *ifp = &sc->sc_ic.ic_if;
2742 struct ath_buf *bf;
2743 ath_txq_critsect_decl(s);
2744 ath_txbuf_critsect_decl(s2);
2745
2746 /* XXX return value */
2747 if (!sc->sc_invalid) {
2748 /* don't touch the hardware if marked invalid */
2749 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2750 DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2751 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2752 sc->sc_txlink));
2753 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2754 DPRINTF(("ath_draintxq: beacon queue %p\n",
2755 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2756 }
2757 for (;;) {
2758 ath_txq_critsect_begin(sc, s);
2759 bf = TAILQ_FIRST(&sc->sc_txq);
2760 if (bf == NULL) {
2761 sc->sc_txlink = NULL;
2762 ath_txq_critsect_end(sc, s);
2763 break;
2764 }
2765 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2766 ath_txq_critsect_end(sc, s);
2767 #ifdef AR_DEBUG
2768 if (ath_debug)
2769 ath_printtxbuf(bf,
2770 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2771 #endif /* AR_DEBUG */
2772 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2773 m_freem(bf->bf_m);
2774 bf->bf_m = NULL;
2775 bf->bf_node = NULL;
2776 ath_txbuf_critsect_begin(sc, s2);
2777 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2778 ath_txbuf_critsect_end(sc, s2);
2779 }
2780 ifp->if_flags &= ~IFF_OACTIVE;
2781 sc->sc_tx_timer = 0;
2782 }
2783
2784 /*
2785 * Disable the receive h/w in preparation for a reset.
2786 */
2787 static void
2788 ath_stoprecv(struct ath_softc *sc)
2789 {
2790 #define PA2DESC(_sc, _pa) \
2791 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2792 ((_pa) - (_sc)->sc_desc_paddr)))
2793 struct ath_hal *ah = sc->sc_ah;
2794
2795 ath_hal_stoppcurecv(ah); /* disable PCU */
2796 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2797 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2798 DELAY(3000); /* long enough for 1 frame */
2799 #ifdef AR_DEBUG
2800 if (ath_debug) {
2801 struct ath_buf *bf;
2802
2803 DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2804 (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2805 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2806 struct ath_desc *ds = bf->bf_desc;
2807 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2808 PA2DESC(sc, ds->ds_link)) == HAL_OK)
2809 ath_printrxbuf(bf, 1);
2810 }
2811 }
2812 #endif
2813 sc->sc_rxlink = NULL; /* just in case */
2814 #undef PA2DESC
2815 }
2816
2817 /*
2818 * Enable the receive h/w following a reset.
2819 */
2820 static int
2821 ath_startrecv(struct ath_softc *sc)
2822 {
2823 struct ath_hal *ah = sc->sc_ah;
2824 struct ath_buf *bf;
2825
2826 sc->sc_rxlink = NULL;
2827 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2828 int error = ath_rxbuf_init(sc, bf);
2829 if (error != 0) {
2830 DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2831 error));
2832 return error;
2833 }
2834 }
2835
2836 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2837 ath_hal_putrxbuf(ah, bf->bf_daddr);
2838 ath_hal_rxena(ah); /* enable recv descriptors */
2839 ath_mode_init(sc); /* set filters, etc. */
2840 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2841 return 0;
2842 }
2843
2844 /*
2845 * Set/change channels. If the channel is really being changed,
2846 * it's done by resetting the chip. To accomplish this we must
2847 * first cleanup any pending DMA, then restart stuff after a la
2848 * ath_init.
2849 */
2850 static int
2851 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2852 {
2853 struct ath_hal *ah = sc->sc_ah;
2854 struct ieee80211com *ic = &sc->sc_ic;
2855
2856 DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2857 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2858 ic->ic_ibss_chan->ic_freq,
2859 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2860 if (chan != ic->ic_ibss_chan) {
2861 HAL_STATUS status;
2862 HAL_CHANNEL hchan;
2863 enum ieee80211_phymode mode;
2864
2865 /*
2866 * To switch channels clear any pending DMA operations;
2867 * wait long enough for the RX fifo to drain, reset the
2868 * hardware at the new frequency, and then re-enable
2869 * the relevant bits of the h/w.
2870 */
2871 ath_hal_intrset(ah, 0); /* disable interrupts */
2872 ath_draintxq(sc); /* clear pending tx frames */
2873 ath_stoprecv(sc); /* turn off frame recv */
2874 /*
2875 * Convert to a HAL channel description with
2876 * the flags constrained to reflect the current
2877 * operating mode.
2878 */
2879 hchan.channel = chan->ic_freq;
2880 hchan.channelFlags = ath_chan2flags(ic, chan);
2881 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2882 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2883 "channel %u (%u Mhz)\n",
2884 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2885 return EIO;
2886 }
2887 /*
2888 * Re-enable rx framework.
2889 */
2890 if (ath_startrecv(sc) != 0) {
2891 if_printf(&ic->ic_if,
2892 "ath_chan_set: unable to restart recv logic\n");
2893 return EIO;
2894 }
2895
2896 /*
2897 * Update BPF state.
2898 */
2899 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2900 htole16(chan->ic_freq);
2901 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2902 htole16(chan->ic_flags);
2903
2904 /*
2905 * Change channels and update the h/w rate map
2906 * if we're switching; e.g. 11a to 11b/g.
2907 */
2908 ic->ic_ibss_chan = chan;
2909 mode = ieee80211_chan2mode(ic, chan);
2910 if (mode != sc->sc_curmode)
2911 ath_setcurmode(sc, mode);
2912
2913 /*
2914 * Re-enable interrupts.
2915 */
2916 ath_hal_intrset(ah, sc->sc_imask);
2917 }
2918 return 0;
2919 }
2920
2921 static void
2922 ath_next_scan(void *arg)
2923 {
2924 struct ath_softc *sc = arg;
2925 struct ieee80211com *ic = &sc->sc_ic;
2926 struct ifnet *ifp = &ic->ic_if;
2927 int s;
2928
2929 /* don't call ath_start w/o network interrupts blocked */
2930 s = splnet();
2931
2932 if (ic->ic_state == IEEE80211_S_SCAN)
2933 ieee80211_next_scan(ifp);
2934 splx(s);
2935 }
2936
2937 /*
2938 * Periodically recalibrate the PHY to account
2939 * for temperature/environment changes.
2940 */
2941 static void
2942 ath_calibrate(void *arg)
2943 {
2944 struct ath_softc *sc = arg;
2945 struct ath_hal *ah = sc->sc_ah;
2946 struct ieee80211com *ic = &sc->sc_ic;
2947 struct ieee80211_channel *c;
2948 HAL_CHANNEL hchan;
2949
2950 sc->sc_stats.ast_per_cal++;
2951
2952 /*
2953 * Convert to a HAL channel description with the flags
2954 * constrained to reflect the current operating mode.
2955 */
2956 c = ic->ic_ibss_chan;
2957 hchan.channel = c->ic_freq;
2958 hchan.channelFlags = ath_chan2flags(ic, c);
2959
2960 DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2961
2962 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2963 /*
2964 * Rfgain is out of bounds, reset the chip
2965 * to load new gain values.
2966 */
2967 sc->sc_stats.ast_per_rfgain++;
2968 ath_reset(sc);
2969 }
2970 if (!ath_hal_calibrate(ah, &hchan)) {
2971 DPRINTF(("%s: calibration of channel %u failed\n",
2972 __func__, c->ic_freq));
2973 sc->sc_stats.ast_per_calfail++;
2974 }
2975 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2976 }
2977
2978 static HAL_LED_STATE
2979 ath_state_to_led(enum ieee80211_state state)
2980 {
2981 switch (state) {
2982 case IEEE80211_S_INIT:
2983 return HAL_LED_INIT;
2984 case IEEE80211_S_SCAN:
2985 return HAL_LED_SCAN;
2986 case IEEE80211_S_AUTH:
2987 return HAL_LED_AUTH;
2988 case IEEE80211_S_ASSOC:
2989 return HAL_LED_ASSOC;
2990 case IEEE80211_S_RUN:
2991 return HAL_LED_RUN;
2992 default:
2993 panic("%s: unknown 802.11 state %d\n", __func__, state);
2994 return HAL_LED_INIT;
2995 }
2996 }
2997
2998 static int
2999 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3000 {
3001 struct ifnet *ifp = &ic->ic_if;
3002 struct ath_softc *sc = ifp->if_softc;
3003 struct ath_hal *ah = sc->sc_ah;
3004 struct ieee80211_node *ni;
3005 int i, error;
3006 const u_int8_t *bssid;
3007 u_int32_t rfilt;
3008
3009 DPRINTF(("%s: %s -> %s\n", __func__,
3010 ieee80211_state_name[ic->ic_state],
3011 ieee80211_state_name[nstate]));
3012
3013 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */
3014
3015 if (nstate == IEEE80211_S_INIT) {
3016 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3017 ath_hal_intrset(ah, sc->sc_imask);
3018 callout_stop(&sc->sc_scan_ch);
3019 callout_stop(&sc->sc_cal_ch);
3020 return (*sc->sc_newstate)(ic, nstate, arg);
3021 }
3022 ni = ic->ic_bss;
3023 error = ath_chan_set(sc, ni->ni_chan);
3024 if (error != 0)
3025 goto bad;
3026 rfilt = ath_calcrxfilter(sc);
3027 if (nstate == IEEE80211_S_SCAN) {
3028 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
3029 ath_next_scan, sc);
3030 bssid = ifp->if_broadcastaddr;
3031 } else {
3032 callout_stop(&sc->sc_scan_ch);
3033 bssid = ni->ni_bssid;
3034 }
3035 ath_hal_setrxfilter(ah, rfilt);
3036 DPRINTF(("%s: RX filter 0x%x bssid %s\n",
3037 __func__, rfilt, ether_sprintf(bssid)));
3038
3039 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3040 ath_hal_setassocid(ah, bssid, ni->ni_associd);
3041 else
3042 ath_hal_setassocid(ah, bssid, 0);
3043 if (ic->ic_flags & IEEE80211_F_WEPON) {
3044 for (i = 0; i < IEEE80211_WEP_NKID; i++)
3045 if (ath_hal_keyisvalid(ah, i))
3046 ath_hal_keysetmac(ah, i, bssid);
3047 }
3048
3049 if (nstate == IEEE80211_S_RUN) {
3050 DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3051 "capinfo=0x%04x chan=%d\n"
3052 , __func__
3053 , ic->ic_flags
3054 , ni->ni_intval
3055 , ether_sprintf(ni->ni_bssid)
3056 , ni->ni_capinfo
3057 , ieee80211_chan2ieee(ic, ni->ni_chan)));
3058
3059 /*
3060 * Allocate and setup the beacon frame for AP or adhoc mode.
3061 */
3062 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3063 ic->ic_opmode == IEEE80211_M_IBSS) {
3064 error = ath_beacon_alloc(sc, ni);
3065 if (error != 0)
3066 goto bad;
3067 }
3068
3069 /*
3070 * Configure the beacon and sleep timers.
3071 */
3072 ath_beacon_config(sc);
3073
3074 /* start periodic recalibration timer */
3075 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
3076 ath_calibrate, sc);
3077 } else {
3078 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3079 ath_hal_intrset(ah, sc->sc_imask);
3080 callout_stop(&sc->sc_cal_ch); /* no calibration */
3081 }
3082 /*
3083 * Reset the rate control state.
3084 */
3085 ath_rate_ctl_reset(sc, nstate);
3086 /*
3087 * Invoke the parent method to complete the work.
3088 */
3089 return (*sc->sc_newstate)(ic, nstate, arg);
3090 bad:
3091 callout_stop(&sc->sc_scan_ch);
3092 callout_stop(&sc->sc_cal_ch);
3093 /* NB: do not invoke the parent */
3094 return error;
3095 }
3096
3097 /*
3098 * Setup driver-specific state for a newly associated node.
3099 * Note that we're called also on a re-associate, the isnew
3100 * param tells us if this is the first time or not.
3101 */
3102 static void
3103 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3104 {
3105 if (isnew) {
3106 struct ath_node *an = (struct ath_node *) ni;
3107
3108 an->an_tx_ok = an->an_tx_err =
3109 an->an_tx_retr = an->an_tx_upper = 0;
3110 /* start with highest negotiated rate */
3111 /*
3112 * XXX should do otherwise but only when
3113 * the rate control algorithm is better.
3114 */
3115 KASSERT(ni->ni_rates.rs_nrates > 0,
3116 ("new association w/ no rates!"));
3117 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3118 }
3119 }
3120
3121 static int
3122 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
3123 {
3124 struct ieee80211com *ic = &sc->sc_ic;
3125 struct ifnet *ifp = &ic->ic_if;
3126 struct ath_hal *ah = sc->sc_ah;
3127 HAL_CHANNEL *chans;
3128 int i, ix, nchan;
3129
3130 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3131 M_TEMP, M_NOWAIT);
3132 if (chans == NULL) {
3133 if_printf(ifp, "unable to allocate channel table\n");
3134 return ENOMEM;
3135 }
3136 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3137 cc, HAL_MODE_ALL, outdoor, 0 /* no extended channels */)) {
3138 if_printf(ifp, "unable to collect channel list from hal\n");
3139 free(chans, M_TEMP);
3140 return EINVAL;
3141 }
3142
3143 /*
3144 * Convert HAL channels to ieee80211 ones and insert
3145 * them in the table according to their channel number.
3146 */
3147 for (i = 0; i < nchan; i++) {
3148 HAL_CHANNEL *c = &chans[i];
3149 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3150 if (ix > IEEE80211_CHAN_MAX) {
3151 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3152 ix, c->channel, c->channelFlags);
3153 continue;
3154 }
3155 /* NB: flags are known to be compatible */
3156 if (ic->ic_channels[ix].ic_freq == 0) {
3157 ic->ic_channels[ix].ic_freq = c->channel;
3158 ic->ic_channels[ix].ic_flags = c->channelFlags;
3159 } else {
3160 /* channels overlap; e.g. 11g and 11b */
3161 ic->ic_channels[ix].ic_flags |= c->channelFlags;
3162 }
3163 }
3164 free(chans, M_TEMP);
3165 return 0;
3166 }
3167
3168 static int
3169 ath_rate_setup(struct ath_softc *sc, u_int mode)
3170 {
3171 struct ath_hal *ah = sc->sc_ah;
3172 struct ieee80211com *ic = &sc->sc_ic;
3173 const HAL_RATE_TABLE *rt;
3174 struct ieee80211_rateset *rs;
3175 int i, maxrates;
3176
3177 switch (mode) {
3178 case IEEE80211_MODE_11A:
3179 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
3180 break;
3181 case IEEE80211_MODE_11B:
3182 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
3183 break;
3184 case IEEE80211_MODE_11G:
3185 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
3186 break;
3187 case IEEE80211_MODE_TURBO:
3188 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
3189 break;
3190 default:
3191 DPRINTF(("%s: invalid mode %u\n", __func__, mode));
3192 return 0;
3193 }
3194 rt = sc->sc_rates[mode];
3195 if (rt == NULL)
3196 return 0;
3197 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3198 DPRINTF(("%s: rate table too small (%u > %u)\n",
3199 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3200 maxrates = IEEE80211_RATE_MAXSIZE;
3201 } else
3202 maxrates = rt->rateCount;
3203 rs = &ic->ic_sup_rates[mode];
3204 for (i = 0; i < maxrates; i++)
3205 rs->rs_rates[i] = rt->info[i].dot11Rate;
3206 rs->rs_nrates = maxrates;
3207 return 1;
3208 }
3209
3210 static void
3211 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3212 {
3213 const HAL_RATE_TABLE *rt;
3214 int i;
3215
3216 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3217 rt = sc->sc_rates[mode];
3218 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3219 for (i = 0; i < rt->rateCount; i++)
3220 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3221 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3222 for (i = 0; i < 32; i++)
3223 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3224 sc->sc_currates = rt;
3225 sc->sc_curmode = mode;
3226 }
3227
3228 /*
3229 * Reset the rate control state for each 802.11 state transition.
3230 */
3231 static void
3232 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3233 {
3234 struct ieee80211com *ic = &sc->sc_ic;
3235 struct ieee80211_node *ni;
3236 struct ath_node *an;
3237
3238 if (ic->ic_opmode != IEEE80211_M_STA) {
3239 /*
3240 * When operating as a station the node table holds
3241 * the AP's that were discovered during scanning.
3242 * For any other operating mode we want to reset the
3243 * tx rate state of each node.
3244 */
3245 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3246 ni->ni_txrate = 0; /* use lowest rate */
3247 an = (struct ath_node *) ni;
3248 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3249 an->an_tx_upper = 0;
3250 }
3251 }
3252 /*
3253 * Reset local xmit state; this is really only meaningful
3254 * when operating in station or adhoc mode.
3255 */
3256 ni = ic->ic_bss;
3257 an = (struct ath_node *) ni;
3258 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3259 if (state == IEEE80211_S_RUN) {
3260 /* start with highest negotiated rate */
3261 KASSERT(ni->ni_rates.rs_nrates > 0,
3262 ("transition to RUN state w/ no rates!"));
3263 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3264 } else {
3265 /* use lowest rate */
3266 ni->ni_txrate = 0;
3267 }
3268 }
3269
3270 /*
3271 * Examine and potentially adjust the transmit rate.
3272 */
3273 static void
3274 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3275 {
3276 struct ath_softc *sc = arg;
3277 struct ath_node *an = (struct ath_node *) ni;
3278 struct ieee80211_rateset *rs = &ni->ni_rates;
3279 int mod = 0, orate, enough;
3280
3281 /*
3282 * Rate control
3283 * XXX: very primitive version.
3284 */
3285 sc->sc_stats.ast_rate_calls++;
3286
3287 enough = (an->an_tx_ok + an->an_tx_err >= 10);
3288
3289 /* no packet reached -> down */
3290 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3291 mod = -1;
3292
3293 /* all packets needs retry in average -> down */
3294 if (enough && an->an_tx_ok < an->an_tx_retr)
3295 mod = -1;
3296
3297 /* no error and less than 10% of packets needs retry -> up */
3298 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3299 mod = 1;
3300
3301 orate = ni->ni_txrate;
3302 switch (mod) {
3303 case 0:
3304 if (enough && an->an_tx_upper > 0)
3305 an->an_tx_upper--;
3306 break;
3307 case -1:
3308 if (ni->ni_txrate > 0) {
3309 ni->ni_txrate--;
3310 sc->sc_stats.ast_rate_drop++;
3311 }
3312 an->an_tx_upper = 0;
3313 break;
3314 case 1:
3315 if (++an->an_tx_upper < 2)
3316 break;
3317 an->an_tx_upper = 0;
3318 if (ni->ni_txrate + 1 < rs->rs_nrates) {
3319 ni->ni_txrate++;
3320 sc->sc_stats.ast_rate_raise++;
3321 }
3322 break;
3323 }
3324
3325 if (ni->ni_txrate != orate) {
3326 DPRINTF(("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3327 __func__,
3328 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3329 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3330 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3331 }
3332 if (ni->ni_txrate != orate || enough)
3333 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3334 }
3335
3336 #ifdef AR_DEBUG
3337 #ifdef __FreeBSD__
3338 static int
3339 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3340 {
3341 char dmode[64];
3342 int error;
3343
3344 strncpy(dmode, "", sizeof(dmode) - 1);
3345 dmode[sizeof(dmode) - 1] = '\0';
3346 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3347
3348 if (error == 0 && req->newptr != NULL) {
3349 struct ifnet *ifp;
3350 struct ath_softc *sc;
3351
3352 ifp = ifunit("ath0"); /* XXX */
3353 if (!ifp)
3354 return EINVAL;
3355 sc = ifp->if_softc;
3356 if (strcmp(dmode, "hal") == 0)
3357 ath_hal_dumpstate(sc->sc_ah);
3358 else
3359 return EINVAL;
3360 }
3361 return error;
3362 }
3363 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3364 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3365 #endif /* __FreeBSD__ */
3366
3367 static void
3368 ath_printrxbuf(struct ath_buf *bf, int done)
3369 {
3370 struct ath_desc *ds;
3371 int i;
3372
3373 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3374 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3375 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3376 ds->ds_link, ds->ds_data,
3377 ds->ds_ctl0, ds->ds_ctl1,
3378 ds->ds_hw[0], ds->ds_hw[1],
3379 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3380 }
3381 }
3382
3383 static void
3384 ath_printtxbuf(struct ath_buf *bf, int done)
3385 {
3386 struct ath_desc *ds;
3387 int i;
3388
3389 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3390 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3391 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3392 ds->ds_link, ds->ds_data,
3393 ds->ds_ctl0, ds->ds_ctl1,
3394 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3395 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3396 }
3397 }
3398 #endif /* AR_DEBUG */
3399