ath.c revision 1.2 1 /*-
2 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 * redistribution must be conditioned upon including a substantially
14 * similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 * of any contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37 #include <sys/cdefs.h>
38 #ifdef __FreeBSD__
39 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.14 2003/09/05 22:22:49 sam Exp $");
40 #endif
41 #ifdef __NetBSD__
42 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.2 2003/10/13 05:34:30 dyoung Exp $");
43 #endif
44
45 /*
46 * Driver for the Atheros Wireless LAN controller.
47 *
48 * This software is derived from work of Atsushi Onoe; his contribution
49 * is greatly appreciated.
50 */
51
52 #include "opt_inet.h"
53
54 #ifdef __NetBSD__
55 #include "bpfilter.h"
56 #endif /* __NetBSD__ */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/types.h>
61 #include <sys/sysctl.h>
62 #include <sys/mbuf.h>
63 #include <sys/malloc.h>
64 #include <sys/lock.h>
65 #ifdef __FreeBSD__
66 #include <sys/mutex.h>
67 #endif
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #ifdef __FreeBSD__
74 #include <sys/bus.h>
75 #else
76 #include <machine/bus.h>
77 #endif
78 #include <sys/endian.h>
79
80 #include <machine/bus.h>
81
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_arp.h>
86 #ifdef __FreeBSD__
87 #include <net/ethernet.h>
88 #else
89 #include <net/if_ether.h>
90 #endif
91 #include <net/if_llc.h>
92
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_compat.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #endif
99
100 #ifdef INET
101 #include <netinet/in.h>
102 #endif
103
104 #include <dev/ic/athcompat.h>
105
106 #define AR_DEBUG
107 #ifdef __FreeBSD__
108 #include <dev/ath/if_athvar.h>
109 #include <contrib/dev/ath/ah_desc.h>
110 #else
111 #include <dev/ic/athvar.h>
112 #include <../contrib/sys/dev/ic/athhal_desc.h>
113 #endif
114
115 /* unalligned little endian access */
116 #define LE_READ_2(p) \
117 ((u_int16_t) \
118 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
119 #define LE_READ_4(p) \
120 ((u_int32_t) \
121 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
122 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
123
124 #ifdef __FreeBSD__
125 static void ath_init(void *);
126 #else
127 static int ath_init(struct ifnet *);
128 #endif
129 static int ath_init1(struct ath_softc *);
130 static int ath_intr1(struct ath_softc *);
131 static void ath_stop(struct ifnet *);
132 static void ath_start(struct ifnet *);
133 static void ath_reset(struct ath_softc *);
134 static int ath_media_change(struct ifnet *);
135 static void ath_watchdog(struct ifnet *);
136 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
137 static void ath_fatal_proc(void *, int);
138 static void ath_rxorn_proc(void *, int);
139 static void ath_bmiss_proc(void *, int);
140 static void ath_initkeytable(struct ath_softc *);
141 static void ath_mode_init(struct ath_softc *);
142 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
143 static void ath_beacon_proc(void *, int);
144 static void ath_beacon_free(struct ath_softc *);
145 static void ath_beacon_config(struct ath_softc *);
146 static int ath_desc_alloc(struct ath_softc *);
147 static void ath_desc_free(struct ath_softc *);
148 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
149 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
150 static void ath_node_copy(struct ieee80211com *,
151 struct ieee80211_node *, const struct ieee80211_node *);
152 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
153 static void ath_rx_proc(void *, int);
154 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
155 struct ath_buf *, struct mbuf *);
156 static void ath_tx_proc(void *, int);
157 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
158 static void ath_draintxq(struct ath_softc *);
159 static void ath_stoprecv(struct ath_softc *);
160 static int ath_startrecv(struct ath_softc *);
161 static void ath_next_scan(void *);
162 static void ath_calibrate(void *);
163 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
164 static void ath_newassoc(struct ieee80211com *,
165 struct ieee80211_node *, int);
166 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
167
168 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
169 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
170 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
171 static void ath_rate_ctl(void *, struct ieee80211_node *);
172
173 #ifdef __FreeBSD__
174 SYSCTL_DECL(_hw_ath);
175 /* XXX validate sysctl values */
176 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
177 0, "channel dwell time (ms) for AP/station scanning");
178 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
179 0, "chip calibration interval (secs)");
180 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
181 0, "enable/disable outdoor operation");
182 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
183 0, "country code");
184 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
185 0, "regulatory domain");
186 #endif /* __FreeBSD__ */
187
188 static int ath_dwelltime = 200; /* 5 channels/second */
189 static int ath_calinterval = 30; /* calibrate every 30 secs */
190 static int ath_outdoor = AH_TRUE; /* outdoor operation */
191 static int ath_countrycode = CTRY_DEFAULT; /* country code */
192 static int ath_regdomain = 0; /* regulatory domain */
193
194 #ifdef AR_DEBUG
195 int ath_debug = 0;
196 #ifdef __FreeBSD__
197 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
198 0, "control debugging printfs");
199 #endif /* __FreeBSD__ */
200 #define IFF_DUMPPKTS(_ifp) \
201 (ath_debug || \
202 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
203 static void ath_printrxbuf(struct ath_buf *bf, int);
204 static void ath_printtxbuf(struct ath_buf *bf, int);
205 #define DPRINTF(X) if (ath_debug) printf X
206 #define DPRINTF2(X) if (ath_debug > 1) printf X
207 #else
208 #define IFF_DUMPPKTS(_ifp) \
209 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
210 #define DPRINTF(X)
211 #define DPRINTF2(X)
212 #endif
213
214 int
215 ath_attach(u_int16_t devid, struct ath_softc *sc)
216 {
217 struct ieee80211com *ic = &sc->sc_ic;
218 struct ifnet *ifp = &ic->ic_if;
219 struct ath_hal *ah;
220 HAL_STATUS status;
221 int error = 0;
222
223 DPRINTF(("ath_attach: devid 0x%x\n", devid));
224
225 #ifdef __FreeBSD__
226 /* set these up early for if_printf use */
227 ifp->if_unit = device_get_unit(sc->sc_dev);
228 ifp->if_name = "ath";
229 #else
230 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
231 #endif
232
233 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
234 if (ah == NULL) {
235 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
236 status);
237 error = ENXIO;
238 goto bad;
239 }
240 sc->sc_ah = ah;
241 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
242
243 /*
244 * Collect the channel list using the default country
245 * code and including outdoor channels. The 802.11 layer
246 * is resposible for filtering this list based on settings
247 * like the phy mode.
248 */
249 error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
250 if (error != 0)
251 goto bad;
252 /*
253 * Copy these back; they are set as a side effect
254 * of constructing the channel list.
255 */
256 ath_regdomain = ath_hal_getregdomain(ah);
257 ath_countrycode = ath_hal_getcountrycode(ah);
258
259 /*
260 * Setup rate tables for all potential media types.
261 */
262 ath_rate_setup(sc, IEEE80211_MODE_11A);
263 ath_rate_setup(sc, IEEE80211_MODE_11B);
264 ath_rate_setup(sc, IEEE80211_MODE_11G);
265 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
266
267 error = ath_desc_alloc(sc);
268 if (error != 0) {
269 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
270 goto bad;
271 }
272 ATH_CALLOUT_INIT(&sc->sc_scan_ch);
273 ATH_CALLOUT_INIT(&sc->sc_cal_ch);
274
275 #ifdef __FreeBSD__
276 mtx_init(&sc->sc_txbuflock,
277 device_get_nameunit(sc->sc_dev), "xmit buf q", MTX_DEF);
278 mtx_init(&sc->sc_txqlock,
279 device_get_nameunit(sc->sc_dev), "xmit q", MTX_DEF);
280 #endif
281
282 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
283 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
284 ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
285 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
286 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
287 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
288
289 /*
290 * For now just pre-allocate one data queue and one
291 * beacon queue. Note that the HAL handles resetting
292 * them at the needed time. Eventually we'll want to
293 * allocate more tx queues for splitting management
294 * frames and for QOS support.
295 */
296 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
297 HAL_TX_QUEUE_DATA,
298 AH_TRUE /* enable interrupts */
299 );
300 if (sc->sc_txhalq == (u_int) -1) {
301 if_printf(ifp, "unable to setup a data xmit queue!\n");
302 goto bad;
303 }
304 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
305 HAL_TX_QUEUE_BEACON,
306 AH_TRUE /* enable interrupts */
307 );
308 if (sc->sc_bhalq == (u_int) -1) {
309 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
310 goto bad;
311 }
312
313 ifp->if_softc = sc;
314 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
315 ifp->if_start = ath_start;
316 ifp->if_watchdog = ath_watchdog;
317 ifp->if_ioctl = ath_ioctl;
318 ifp->if_init = ath_init;
319 #ifdef __FreeBSD__
320 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
321 #else
322 #if 0
323 ifp->if_stop = ath_stop; /* XXX */
324 #endif
325 IFQ_SET_READY(&ifp->if_snd);
326 #endif
327
328 ic->ic_softc = sc;
329 ic->ic_newassoc = ath_newassoc;
330 /* XXX not right but it's not used anywhere important */
331 ic->ic_phytype = IEEE80211_T_OFDM;
332 ic->ic_opmode = IEEE80211_M_STA;
333 ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP
334 | IEEE80211_C_MONITOR;
335 /* NB: 11g support is identified when we fetch the channel set */
336 if (sc->sc_have11g)
337 ic->ic_caps |= IEEE80211_C_SHPREAMBLE;
338
339 /* get mac address from hardware */
340 ath_hal_getmac(ah, ic->ic_myaddr);
341
342 #ifdef __NetBSD__
343 if_attach(ifp);
344 #endif
345 /* call MI attach routine. */
346 ieee80211_ifattach(ifp);
347 /* override default methods */
348 ic->ic_node_alloc = ath_node_alloc;
349 ic->ic_node_free = ath_node_free;
350 ic->ic_node_copy = ath_node_copy;
351 sc->sc_newstate = ic->ic_newstate;
352 ic->ic_newstate = ath_newstate;
353 /* complete initialization */
354 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
355
356 #if NBPFILTER > 0
357 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
358 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
359 &sc->sc_drvbpf);
360 #endif
361 /*
362 * Initialize constant fields.
363 *
364 * NB: the channel is setup each time we transition to the
365 * RUN state to avoid filling it in for each frame.
366 */
367 sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
368 sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
369
370 sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
371 sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
372
373 if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
374
375 return 0;
376 bad:
377 if (ah)
378 ath_hal_detach(ah);
379 sc->sc_invalid = 1;
380 return error;
381 }
382
383 int
384 ath_detach(struct ath_softc *sc)
385 {
386 struct ifnet *ifp = &sc->sc_ic.ic_if;
387 ath_softc_critsect_decl(s);
388
389 DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
390
391 ath_softc_critsect_begin(sc, s);
392 ath_stop(ifp);
393 #if NBPFILTER > 0
394 bpfdetach(ifp);
395 #endif
396 ath_desc_free(sc);
397 ath_hal_detach(sc->sc_ah);
398 ieee80211_ifdetach(ifp);
399 #ifdef __NetBSD__
400 if_detach(ifp);
401 #endif
402 ath_softc_critsect_end(sc, s);
403 return 0;
404 }
405
406 void
407 ath_suspend(struct ath_softc *sc)
408 {
409 struct ifnet *ifp = &sc->sc_ic.ic_if;
410
411 DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
412
413 ath_stop(ifp);
414 }
415
416 void
417 ath_resume(struct ath_softc *sc)
418 {
419 struct ifnet *ifp = &sc->sc_ic.ic_if;
420
421 DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
422
423 if (ifp->if_flags & IFF_UP) {
424 ath_init(ifp);
425 if (ifp->if_flags & IFF_RUNNING)
426 ath_start(ifp);
427 }
428 }
429
430 void
431 ath_shutdown(struct ath_softc *sc)
432 {
433 #if 1
434 return;
435 #else
436 struct ifnet *ifp = &sc->sc_ic.ic_if;
437
438 DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
439
440 ath_stop(ifp);
441 #endif
442 }
443
444 #ifdef __NetBSD__
445 int
446 ath_intr(void *arg)
447 {
448 return ath_intr1((struct ath_softc *)arg);
449 }
450 #else
451 void
452 ath_intr(void *arg)
453 {
454 (void)ath_intr1((struct ath_softc *)arg);
455 }
456 #endif
457
458 static int
459 ath_intr1(struct ath_softc *sc)
460 {
461 struct ieee80211com *ic = &sc->sc_ic;
462 struct ifnet *ifp = &ic->ic_if;
463 struct ath_hal *ah = sc->sc_ah;
464 HAL_INT status;
465
466 if (sc->sc_invalid) {
467 /*
468 * The hardware is not ready/present, don't touch anything.
469 * Note this can happen early on if the IRQ is shared.
470 */
471 DPRINTF(("ath_intr: invalid; ignored\n"));
472 return 0;
473 }
474 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
475 DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
476 ath_hal_getisr(ah, &status); /* clear ISR */
477 ath_hal_intrset(ah, 0); /* disable further intr's */
478 return 1; /* XXX */
479 }
480 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
481 DPRINTF2(("ath_intr: status 0x%x\n", status));
482 #ifdef AR_DEBUG
483 if (ath_debug &&
484 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
485 if_printf(ifp, "ath_intr: status 0x%x\n", status);
486 ath_hal_dumpstate(ah);
487 }
488 #endif /* AR_DEBUG */
489 if (status & HAL_INT_FATAL) {
490 sc->sc_stats.ast_hardware++;
491 ath_hal_intrset(ah, 0); /* disable intr's until reset */
492 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
493 } else if (status & HAL_INT_RXORN) {
494 sc->sc_stats.ast_rxorn++;
495 ath_hal_intrset(ah, 0); /* disable intr's until reset */
496 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
497 } else {
498 if (status & HAL_INT_RXEOL) {
499 /*
500 * NB: the hardware should re-read the link when
501 * RXE bit is written, but it doesn't work at
502 * least on older hardware revs.
503 */
504 sc->sc_stats.ast_rxeol++;
505 sc->sc_rxlink = NULL;
506 }
507 if (status & HAL_INT_TXURN) {
508 sc->sc_stats.ast_txurn++;
509 /* bump tx trigger level */
510 ath_hal_updatetxtriglevel(ah, AH_TRUE);
511 }
512 if (status & HAL_INT_RX)
513 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
514 if (status & HAL_INT_TX)
515 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
516 if (status & HAL_INT_SWBA)
517 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
518 if (status & HAL_INT_BMISS) {
519 sc->sc_stats.ast_bmiss++;
520 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
521 }
522 }
523 return 1;
524 }
525
526 static void
527 ath_fatal_proc(void *arg, int pending)
528 {
529 struct ath_softc *sc = arg;
530
531 device_printf(sc->sc_dev, "hardware error; resetting\n");
532 ath_reset(sc);
533 }
534
535 static void
536 ath_rxorn_proc(void *arg, int pending)
537 {
538 struct ath_softc *sc = arg;
539
540 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
541 ath_reset(sc);
542 }
543
544 static void
545 ath_bmiss_proc(void *arg, int pending)
546 {
547 struct ath_softc *sc = arg;
548 struct ieee80211com *ic = &sc->sc_ic;
549
550 DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
551 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
552 ("unexpect operating mode %u", ic->ic_opmode));
553 if (ic->ic_state == IEEE80211_S_RUN)
554 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
555 }
556
557 static u_int
558 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
559 {
560 static const u_int modeflags[] = {
561 0, /* IEEE80211_MODE_AUTO */
562 CHANNEL_A, /* IEEE80211_MODE_11A */
563 CHANNEL_B, /* IEEE80211_MODE_11B */
564 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
565 CHANNEL_T /* IEEE80211_MODE_TURBO */
566 };
567 return modeflags[ieee80211_chan2mode(ic, chan)];
568 }
569
570 #ifdef __NetBSD__
571 static int
572 ath_init(struct ifnet *ifp)
573 {
574 return ath_init1((struct ath_softc *)ifp->if_softc);
575 }
576 #else
577 static void
578 ath_init(void *arg)
579 {
580 (void)ath_init1((struct ath_softc *)arg);
581 }
582 #endif
583
584 static int
585 ath_init1(struct ath_softc *sc)
586 {
587 struct ieee80211com *ic = &sc->sc_ic;
588 struct ifnet *ifp = &ic->ic_if;
589 struct ieee80211_node *ni;
590 enum ieee80211_phymode mode;
591 struct ath_hal *ah = sc->sc_ah;
592 HAL_STATUS status;
593 HAL_CHANNEL hchan;
594 int error = 0;
595 ath_softc_critsect_decl(s);
596
597 DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
598
599 ath_softc_critsect_begin(sc, s);
600 /*
601 * Stop anything previously setup. This is safe
602 * whether this is the first time through or not.
603 */
604 ath_stop(ifp);
605
606 /*
607 * The basic interface to setting the hardware in a good
608 * state is ``reset''. On return the hardware is known to
609 * be powered up and with interrupts disabled. This must
610 * be followed by initialization of the appropriate bits
611 * and then setup of the interrupt mask.
612 */
613 hchan.channel = ic->ic_ibss_chan->ic_freq;
614 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
615 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
616 if_printf(ifp, "unable to reset hardware; hal status %u\n",
617 status);
618 error = -1;
619 goto done;
620 }
621
622 /*
623 * Setup the hardware after reset: the key cache
624 * is filled as needed and the receive engine is
625 * set going. Frame transmit is handled entirely
626 * in the frame output path; there's nothing to do
627 * here except setup the interrupt mask.
628 */
629 if (ic->ic_flags & IEEE80211_F_WEPON)
630 ath_initkeytable(sc);
631 if ((error = ath_startrecv(sc)) != 0) {
632 if_printf(ifp, "unable to start recv logic\n");
633 goto done;
634 }
635
636 /*
637 * Enable interrupts.
638 */
639 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
640 | HAL_INT_RXEOL | HAL_INT_RXORN
641 | HAL_INT_FATAL | HAL_INT_GLOBAL;
642 ath_hal_intrset(ah, sc->sc_imask);
643
644 ifp->if_flags |= IFF_RUNNING;
645 ic->ic_state = IEEE80211_S_INIT;
646
647 /*
648 * The hardware should be ready to go now so it's safe
649 * to kick the 802.11 state machine as it's likely to
650 * immediately call back to us to send mgmt frames.
651 */
652 ni = ic->ic_bss;
653 ni->ni_chan = ic->ic_ibss_chan;
654 mode = ieee80211_chan2mode(ic, ni->ni_chan);
655 if (mode != sc->sc_curmode)
656 ath_setcurmode(sc, mode);
657 if (ic->ic_opmode != IEEE80211_M_MONITOR)
658 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
659 else
660 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
661 done:
662 ath_softc_critsect_end(sc, s);
663 return error;
664 }
665
666 static void
667 ath_stop(struct ifnet *ifp)
668 {
669 struct ieee80211com *ic = (struct ieee80211com *) ifp;
670 struct ath_softc *sc = ifp->if_softc;
671 struct ath_hal *ah = sc->sc_ah;
672 ath_softc_critsect_decl(s);
673
674 DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
675 sc->sc_invalid, ifp->if_flags));
676
677 ath_softc_critsect_begin(sc, s);
678 if (ifp->if_flags & IFF_RUNNING) {
679 /*
680 * Shutdown the hardware and driver:
681 * disable interrupts
682 * turn off timers
683 * clear transmit machinery
684 * clear receive machinery
685 * drain and release tx queues
686 * reclaim beacon resources
687 * reset 802.11 state machine
688 * power down hardware
689 *
690 * Note that some of this work is not possible if the
691 * hardware is gone (invalid).
692 */
693 ifp->if_flags &= ~IFF_RUNNING;
694 ifp->if_timer = 0;
695 if (!sc->sc_invalid)
696 ath_hal_intrset(ah, 0);
697 ath_draintxq(sc);
698 if (!sc->sc_invalid)
699 ath_stoprecv(sc);
700 else
701 sc->sc_rxlink = NULL;
702 #ifdef __FreeBSD__
703 IF_DRAIN(&ifp->if_snd);
704 #else
705 IF_PURGE(&ifp->if_snd);
706 #endif
707 ath_beacon_free(sc);
708 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
709 if (!sc->sc_invalid)
710 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
711 }
712 ath_softc_critsect_end(sc, s);
713 }
714
715 /*
716 * Reset the hardware w/o losing operational state. This is
717 * basically a more efficient way of doing ath_stop, ath_init,
718 * followed by state transitions to the current 802.11
719 * operational state. Used to recover from errors rx overrun
720 * and to reset the hardware when rf gain settings must be reset.
721 */
722 static void
723 ath_reset(struct ath_softc *sc)
724 {
725 struct ieee80211com *ic = &sc->sc_ic;
726 struct ifnet *ifp = &ic->ic_if;
727 struct ath_hal *ah = sc->sc_ah;
728 struct ieee80211_channel *c;
729 HAL_STATUS status;
730 HAL_CHANNEL hchan;
731
732 /*
733 * Convert to a HAL channel description with the flags
734 * constrained to reflect the current operating mode.
735 */
736 c = ic->ic_ibss_chan;
737 hchan.channel = c->ic_freq;
738 hchan.channelFlags = ath_chan2flags(ic, c);
739
740 ath_hal_intrset(ah, 0); /* disable interrupts */
741 ath_draintxq(sc); /* stop xmit side */
742 ath_stoprecv(sc); /* stop recv side */
743 /* NB: indicate channel change so we do a full reset */
744 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
745 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
746 __func__, status);
747 ath_hal_intrset(ah, sc->sc_imask);
748 if (ath_startrecv(sc) != 0) /* restart recv */
749 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
750 ath_start(ifp); /* restart xmit */
751 if (ic->ic_state == IEEE80211_S_RUN)
752 ath_beacon_config(sc); /* restart beacons */
753 }
754
755 static void
756 ath_start(struct ifnet *ifp)
757 {
758 struct ath_softc *sc = ifp->if_softc;
759 struct ath_hal *ah = sc->sc_ah;
760 struct ieee80211com *ic = &sc->sc_ic;
761 struct ieee80211_node *ni;
762 struct ath_buf *bf;
763 struct mbuf *m;
764 struct ieee80211_frame *wh;
765 ath_txbuf_critsect_decl(s);
766
767 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
768 return;
769 for (;;) {
770 /*
771 * Grab a TX buffer and associated resources.
772 */
773 ath_txbuf_critsect_begin(sc, s);
774 bf = TAILQ_FIRST(&sc->sc_txbuf);
775 if (bf != NULL)
776 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
777 ath_txbuf_critsect_end(sc, s);
778 if (bf == NULL) {
779 DPRINTF(("ath_start: out of xmit buffers\n"));
780 sc->sc_stats.ast_tx_qstop++;
781 ifp->if_flags |= IFF_OACTIVE;
782 break;
783 }
784 /*
785 * Poll the management queue for frames; they
786 * have priority over normal data frames.
787 */
788 IF_DEQUEUE(&ic->ic_mgtq, m);
789 if (m == NULL) {
790 /*
791 * No data frames go out unless we're associated.
792 */
793 if (ic->ic_state != IEEE80211_S_RUN) {
794 DPRINTF(("ath_start: ignore data packet, "
795 "state %u\n", ic->ic_state));
796 sc->sc_stats.ast_tx_discard++;
797 ath_txbuf_critsect_begin(sc, s);
798 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
799 ath_txbuf_critsect_end(sc, s);
800 break;
801 }
802 IF_DEQUEUE(&ifp->if_snd, m);
803 if (m == NULL) {
804 ath_txbuf_critsect_begin(sc, s);
805 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
806 ath_txbuf_critsect_end(sc, s);
807 break;
808 }
809 ifp->if_opackets++;
810
811 #ifdef __NetBSD__
812 #if NBPFILTER > 0
813 if (ifp->if_bpf)
814 bpf_mtap(ifp->if_bpf, m);
815 #endif
816 #endif
817 #ifdef __FreeBSD__
818 BPF_MTAP(ifp, m);
819 #endif
820 /*
821 * Encapsulate the packet in prep for transmission.
822 */
823 m = ieee80211_encap(ifp, m, &ni);
824 if (m == NULL) {
825 DPRINTF(("ath_start: encapsulation failure\n"));
826 sc->sc_stats.ast_tx_encap++;
827 goto bad;
828 }
829 wh = mtod(m, struct ieee80211_frame *);
830 if (ic->ic_flags & IEEE80211_F_WEPON)
831 wh->i_fc[1] |= IEEE80211_FC1_WEP;
832 } else {
833 /*
834 * Hack! The referenced node pointer is in the
835 * rcvif field of the packet header. This is
836 * placed there by ieee80211_mgmt_output because
837 * we need to hold the reference with the frame
838 * and there's no other way (other than packet
839 * tags which we consider too expensive to use)
840 * to pass it along.
841 */
842 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
843 m->m_pkthdr.rcvif = NULL;
844
845 wh = mtod(m, struct ieee80211_frame *);
846 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
847 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
848 /* fill time stamp */
849 u_int64_t tsf;
850 u_int32_t *tstamp;
851
852 tsf = ath_hal_gettsf64(ah);
853 /* XXX: adjust 100us delay to xmit */
854 tsf += 100;
855 tstamp = (u_int32_t *)&wh[1];
856 tstamp[0] = htole32(tsf & 0xffffffff);
857 tstamp[1] = htole32(tsf >> 32);
858 }
859 sc->sc_stats.ast_tx_mgmt++;
860 }
861 #if NBPFILTER > 0
862 if (ic->ic_rawbpf)
863 bpf_mtap(ic->ic_rawbpf, m);
864 #endif
865
866 #if NBPFILTER > 0
867 if (sc->sc_drvbpf) {
868 #ifdef __FreeBSD__
869 struct mbuf *mb;
870
871 MGETHDR(mb, M_DONTWAIT, m->m_type);
872 if (mb != NULL) {
873 sc->sc_tx_th.wt_rate =
874 ni->ni_rates.rs_rates[ni->ni_txrate];
875
876 mb->m_next = m;
877 mb->m_data = (caddr_t)&sc->sc_tx_th;
878 mb->m_len = sizeof(sc->sc_tx_th);
879 mb->m_pkthdr.len += mb->m_len;
880 bpf_mtap(sc->sc_drvbpf, mb);
881 m_free(mb);
882 }
883 #else
884 struct mbuf mb;
885
886 M_COPY_PKTHDR(&mb, m);
887 sc->sc_tx_th.wt_rate =
888 ni->ni_rates.rs_rates[ni->ni_txrate];
889
890 mb.m_next = m;
891 mb.m_data = (caddr_t)&sc->sc_tx_th;
892 mb.m_len = sizeof(sc->sc_tx_th);
893 mb.m_pkthdr.len += mb.m_len;
894 bpf_mtap(sc->sc_drvbpf, &mb);
895 #endif
896 }
897 #endif
898
899 /*
900 * TODO:
901 * The duration field of 802.11 header should be filled.
902 * XXX This may be done in the ieee80211 layer, but the upper
903 * doesn't know the detail of parameters such as IFS
904 * for now..
905 */
906 if (ath_tx_start(sc, ni, bf, m)) {
907 bad:
908 ath_txbuf_critsect_begin(sc, s);
909 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
910 ath_txbuf_critsect_end(sc, s);
911 ifp->if_oerrors++;
912 if (ni && ni != ic->ic_bss)
913 ieee80211_free_node(ic, ni);
914 continue;
915 }
916
917 sc->sc_tx_timer = 5;
918 ifp->if_timer = 1;
919 }
920 }
921
922 static int
923 ath_media_change(struct ifnet *ifp)
924 {
925 int error;
926
927 error = ieee80211_media_change(ifp);
928 if (error == ENETRESET) {
929 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
930 (IFF_RUNNING|IFF_UP))
931 ath_init(ifp); /* XXX lose error */
932 error = 0;
933 }
934 return error;
935 }
936
937 static void
938 ath_watchdog(struct ifnet *ifp)
939 {
940 struct ath_softc *sc = ifp->if_softc;
941 struct ieee80211com *ic = &sc->sc_ic;
942
943 ifp->if_timer = 0;
944 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
945 return;
946 if (sc->sc_tx_timer) {
947 if (--sc->sc_tx_timer == 0) {
948 if_printf(ifp, "device timeout\n");
949 #ifdef AR_DEBUG
950 if (ath_debug)
951 ath_hal_dumpstate(sc->sc_ah);
952 #endif /* AR_DEBUG */
953 ath_init(ifp); /* XXX ath_reset??? */
954 ifp->if_oerrors++;
955 sc->sc_stats.ast_watchdog++;
956 return;
957 }
958 ifp->if_timer = 1;
959 }
960 if (ic->ic_fixed_rate == -1) {
961 /*
962 * Run the rate control algorithm if we're not
963 * locked at a fixed rate.
964 */
965 if (ic->ic_opmode == IEEE80211_M_STA)
966 ath_rate_ctl(sc, ic->ic_bss);
967 else
968 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
969 }
970 ieee80211_watchdog(ifp);
971 }
972
973 static int
974 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
975 {
976 struct ath_softc *sc = ifp->if_softc;
977 struct ifreq *ifr = (struct ifreq *)data;
978 int error = 0;
979 ath_softc_critsect_decl(s);
980
981 ath_softc_critsect_begin(sc, s);
982 switch (cmd) {
983 case SIOCSIFFLAGS:
984 if (ifp->if_flags & IFF_UP) {
985 if (ifp->if_flags & IFF_RUNNING) {
986 /*
987 * To avoid rescanning another access point,
988 * do not call ath_init() here. Instead,
989 * only reflect promisc mode settings.
990 */
991 ath_mode_init(sc);
992 } else
993 ath_init(ifp); /* XXX lose error */
994 } else
995 ath_stop(ifp);
996 break;
997 case SIOCADDMULTI:
998 case SIOCDELMULTI:
999 /*
1000 * The upper layer has already installed/removed
1001 * the multicast address(es), just recalculate the
1002 * multicast filter for the card.
1003 */
1004 if (ifp->if_flags & IFF_RUNNING)
1005 ath_mode_init(sc);
1006 break;
1007 case SIOCGATHSTATS:
1008 copyout(&sc->sc_stats, ifr->ifr_data, sizeof (sc->sc_stats));
1009 break;
1010 default:
1011 error = ieee80211_ioctl(ifp, cmd, data);
1012 if (error == ENETRESET) {
1013 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1014 (IFF_RUNNING|IFF_UP))
1015 ath_init(ifp); /* XXX lose error */
1016 error = 0;
1017 }
1018 break;
1019 }
1020 ath_softc_critsect_end(sc, s);
1021 return error;
1022 }
1023
1024 /*
1025 * Fill the hardware key cache with key entries.
1026 */
1027 static void
1028 ath_initkeytable(struct ath_softc *sc)
1029 {
1030 struct ieee80211com *ic = &sc->sc_ic;
1031 struct ath_hal *ah = sc->sc_ah;
1032 int i;
1033
1034 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1035 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1036 if (k->wk_len == 0)
1037 ath_hal_keyreset(ah, i);
1038 else
1039 /* XXX return value */
1040 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
1041 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
1042 }
1043 }
1044
1045 static void
1046 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1047 {
1048 u_int32_t val;
1049 u_int8_t pos;
1050
1051 val = LE_READ_4(dl + 0);
1052 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1053 val = LE_READ_4(dl + 3);
1054 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1055 pos &= 0x3f;
1056 (*mfilt)[pos / 32] |= (1 << (pos % 32));
1057 }
1058
1059 #ifdef __FreeBSD__
1060 static void
1061 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1062 {
1063 struct ieee80211com *ic = &sc->sc_ic;
1064 struct ifnet *ifp = &ic->ic_if;
1065 struct ifmultiaddr *ifma;
1066
1067 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1068 caddr_t dl;
1069
1070 /* calculate XOR of eight 6bit values */
1071 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1072 ath_mcastfilter_accum(dl, &mfilt);
1073 }
1074 }
1075 #else
1076 static void
1077 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1078 {
1079 struct ether_multi *enm;
1080 struct ether_multistep estep;
1081
1082 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1083 while (enm != NULL) {
1084 /* XXX Punt on ranges. */
1085 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1086 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1087 break;
1088 }
1089 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1090 ETHER_NEXT_MULTI(estep, enm);
1091 }
1092 }
1093 #endif
1094
1095 static void
1096 ath_mode_init(struct ath_softc *sc)
1097 {
1098 struct ieee80211com *ic = &sc->sc_ic;
1099 struct ath_hal *ah = sc->sc_ah;
1100 struct ifnet *ifp = &ic->ic_if;
1101 u_int32_t rfilt, mfilt[2];
1102
1103 /* configure operational mode */
1104 ath_hal_setopmode(ah, ic->ic_opmode);
1105
1106 /* receive filter */
1107 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1108 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1109 if (ic->ic_opmode != IEEE80211_M_STA)
1110 rfilt |= HAL_RX_FILTER_PROBEREQ;
1111 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1112 (ifp->if_flags & IFF_PROMISC))
1113 rfilt |= HAL_RX_FILTER_PROM;
1114 if (ic->ic_state == IEEE80211_S_SCAN)
1115 rfilt |= HAL_RX_FILTER_BEACON;
1116 ath_hal_setrxfilter(ah, rfilt);
1117
1118 /* calculate and install multicast filter */
1119 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1120 mfilt[0] = mfilt[1] = 0;
1121 ath_mcastfilter_compute(sc, &mfilt);
1122 } else {
1123 mfilt[0] = mfilt[1] = ~0;
1124 }
1125 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1126 DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1127 rfilt, mfilt[0], mfilt[1]));
1128 }
1129
1130 #ifdef __FreeBSD__
1131 static void
1132 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1133 {
1134 struct ath_buf *bf = arg;
1135
1136 KASSERT(nseg <= ATH_MAX_SCATTER,
1137 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1138 bf->bf_mapsize = mapsize;
1139 bf->bf_nseg = nseg;
1140 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1141 }
1142 #endif /* __FreeBSD__ */
1143
1144 static struct mbuf *
1145 ath_getmbuf(int flags, int type, u_int pktlen)
1146 {
1147 struct mbuf *m;
1148
1149 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1150 #ifdef __FreeBSD__
1151 if (pktlen <= MHLEN)
1152 MGETHDR(m, flags, type);
1153 else
1154 m = m_getcl(flags, type, M_PKTHDR);
1155 #else
1156 MGETHDR(m, flags, type);
1157 if (m != NULL && pktlen > MHLEN)
1158 MCLGET(m, flags);
1159 #endif
1160 return m;
1161 }
1162
1163 static int
1164 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1165 {
1166 struct ieee80211com *ic = &sc->sc_ic;
1167 struct ifnet *ifp = &ic->ic_if;
1168 struct ath_hal *ah = sc->sc_ah;
1169 struct ieee80211_frame *wh;
1170 struct ath_buf *bf;
1171 struct ath_desc *ds;
1172 struct mbuf *m;
1173 int error, pktlen;
1174 u_int8_t *frm, rate;
1175 u_int16_t capinfo;
1176 struct ieee80211_rateset *rs;
1177 const HAL_RATE_TABLE *rt;
1178
1179 bf = sc->sc_bcbuf;
1180 if (bf->bf_m != NULL) {
1181 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1182 m_freem(bf->bf_m);
1183 bf->bf_m = NULL;
1184 bf->bf_node = NULL;
1185 }
1186 /*
1187 * NB: the beacon data buffer must be 32-bit aligned;
1188 * we assume the mbuf routines will return us something
1189 * with this alignment (perhaps should assert).
1190 */
1191 rs = &ni->ni_rates;
1192 pktlen = sizeof (struct ieee80211_frame)
1193 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 6;
1194 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1195 pktlen += 2;
1196 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1197 if (m == NULL) {
1198 DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1199 pktlen));
1200 sc->sc_stats.ast_be_nombuf++;
1201 return ENOMEM;
1202 }
1203
1204 wh = mtod(m, struct ieee80211_frame *);
1205 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1206 IEEE80211_FC0_SUBTYPE_BEACON;
1207 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1208 *(u_int16_t *)wh->i_dur = 0;
1209 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1210 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1211 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1212 *(u_int16_t *)wh->i_seq = 0;
1213
1214 /*
1215 * beacon frame format
1216 * [8] time stamp
1217 * [2] beacon interval
1218 * [2] cabability information
1219 * [tlv] ssid
1220 * [tlv] supported rates
1221 * [tlv] parameter set (IBSS)
1222 * [tlv] extended supported rates
1223 */
1224 frm = (u_int8_t *)&wh[1];
1225 memset(frm, 0, 8); /* timestamp is set by hardware */
1226 frm += 8;
1227 *(u_int16_t *)frm = htole16(ni->ni_intval);
1228 frm += 2;
1229 if (ic->ic_opmode == IEEE80211_M_IBSS)
1230 capinfo = IEEE80211_CAPINFO_IBSS;
1231 else
1232 capinfo = IEEE80211_CAPINFO_ESS;
1233 if (ic->ic_flags & IEEE80211_F_WEPON)
1234 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1235 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1236 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1237 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1238 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1239 *(u_int16_t *)frm = htole16(capinfo);
1240 frm += 2;
1241 *frm++ = IEEE80211_ELEMID_SSID;
1242 *frm++ = ni->ni_esslen;
1243 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1244 frm += ni->ni_esslen;
1245 frm = ieee80211_add_rates(frm, rs);
1246 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1247 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1248 *frm++ = 2;
1249 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1250 } else {
1251 /* TODO: TIM */
1252 *frm++ = IEEE80211_ELEMID_TIM;
1253 *frm++ = 4; /* length */
1254 *frm++ = 0; /* DTIM count */
1255 *frm++ = 1; /* DTIM period */
1256 *frm++ = 0; /* bitmap control */
1257 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1258 }
1259 frm = ieee80211_add_xrates(frm, rs);
1260 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1261 KASSERT(m->m_pkthdr.len <= pktlen,
1262 ("beacon bigger than expected, len %u calculated %u",
1263 m->m_pkthdr.len, pktlen));
1264
1265 DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1266 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1267 if (error != 0) {
1268 m_freem(m);
1269 return error;
1270 }
1271 KASSERT(bf->bf_nseg == 1,
1272 ("ath_beacon_alloc: multi-segment packet; nseg %u",
1273 bf->bf_nseg));
1274 bf->bf_m = m;
1275
1276 /* setup descriptors */
1277 ds = bf->bf_desc;
1278
1279 ds->ds_link = 0;
1280 ds->ds_data = bf->bf_segs[0].ds_addr;
1281
1282 DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
1283 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1284
1285 /*
1286 * Calculate rate code.
1287 * XXX everything at min xmit rate
1288 */
1289 rt = sc->sc_currates;
1290 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1291 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1292 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1293 else
1294 rate = rt->info[0].rateCode;
1295 if (!ath_hal_setuptxdesc(ah, ds
1296 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1297 , sizeof(struct ieee80211_frame) /* header length */
1298 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1299 , 0x20 /* txpower XXX */
1300 , rate, 1 /* series 0 rate/tries */
1301 , HAL_TXKEYIX_INVALID /* no encryption */
1302 , 0 /* antenna mode */
1303 , HAL_TXDESC_NOACK /* no ack for beacons */
1304 , 0 /* rts/cts rate */
1305 , 0 /* rts/cts duration */
1306 )) {
1307 printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1308 return -1;
1309 }
1310 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1311 /* XXX verify mbuf data area covers this roundup */
1312 if (!ath_hal_filltxdesc(ah, ds
1313 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1314 , AH_TRUE /* first segment */
1315 , AH_TRUE /* last segment */
1316 )) {
1317 printf("%s: ath_hal_filltxdesc failed\n", __func__);
1318 return -1;
1319 }
1320
1321 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1322
1323 return 0;
1324 }
1325
1326 static void
1327 ath_beacon_proc(void *arg, int pending)
1328 {
1329 struct ath_softc *sc = arg;
1330 struct ieee80211com *ic = &sc->sc_ic;
1331 struct ath_buf *bf = sc->sc_bcbuf;
1332 struct ath_hal *ah = sc->sc_ah;
1333
1334 DPRINTF2(("%s: pending %u\n", __func__, pending));
1335 if (ic->ic_opmode == IEEE80211_M_STA ||
1336 bf == NULL || bf->bf_m == NULL) {
1337 DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1338 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1339 return;
1340 }
1341 /* TODO: update beacon to reflect PS poll state */
1342 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1343 DPRINTF(("%s: beacon queue %u did not stop?",
1344 __func__, sc->sc_bhalq));
1345 return; /* busy, XXX is this right? */
1346 }
1347 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1348
1349 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1350 ath_hal_txstart(ah, sc->sc_bhalq);
1351 DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
1352 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1353 }
1354
1355 static void
1356 ath_beacon_free(struct ath_softc *sc)
1357 {
1358 struct ath_buf *bf = sc->sc_bcbuf;
1359
1360 if (bf->bf_m != NULL) {
1361 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1362 m_freem(bf->bf_m);
1363 bf->bf_m = NULL;
1364 bf->bf_node = NULL;
1365 }
1366 }
1367
1368 /*
1369 * Configure the beacon and sleep timers.
1370 *
1371 * When operating as an AP this resets the TSF and sets
1372 * up the hardware to notify us when we need to issue beacons.
1373 *
1374 * When operating in station mode this sets up the beacon
1375 * timers according to the timestamp of the last received
1376 * beacon and the current TSF, configures PCF and DTIM
1377 * handling, programs the sleep registers so the hardware
1378 * will wakeup in time to receive beacons, and configures
1379 * the beacon miss handling so we'll receive a BMISS
1380 * interrupt when we stop seeing beacons from the AP
1381 * we've associated with.
1382 */
1383 static void
1384 ath_beacon_config(struct ath_softc *sc)
1385 {
1386 struct ath_hal *ah = sc->sc_ah;
1387 struct ieee80211com *ic = &sc->sc_ic;
1388 struct ieee80211_node *ni = ic->ic_bss;
1389 u_int32_t nexttbtt;
1390
1391 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1392 (LE_READ_4(ni->ni_tstamp) >> 10);
1393 DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1394 nexttbtt += ni->ni_intval;
1395 if (ic->ic_opmode == IEEE80211_M_STA) {
1396 HAL_BEACON_STATE bs;
1397 u_int32_t bmisstime;
1398
1399 /* NB: no PCF support right now */
1400 memset(&bs, 0, sizeof(bs));
1401 bs.bs_intval = ni->ni_intval;
1402 bs.bs_nexttbtt = nexttbtt;
1403 bs.bs_dtimperiod = bs.bs_intval;
1404 bs.bs_nextdtim = nexttbtt;
1405 /*
1406 * Calculate the number of consecutive beacons to miss
1407 * before taking a BMISS interrupt. The configuration
1408 * is specified in ms, so we need to convert that to
1409 * TU's and then calculate based on the beacon interval.
1410 * Note that we clamp the result to at most 10 beacons.
1411 */
1412 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1413 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1414 if (bs.bs_bmissthreshold > 10)
1415 bs.bs_bmissthreshold = 10;
1416 else if (bs.bs_bmissthreshold <= 0)
1417 bs.bs_bmissthreshold = 1;
1418
1419 /*
1420 * Calculate sleep duration. The configuration is
1421 * given in ms. We insure a multiple of the beacon
1422 * period is used. Also, if the sleep duration is
1423 * greater than the DTIM period then it makes senses
1424 * to make it a multiple of that.
1425 *
1426 * XXX fixed at 100ms
1427 */
1428 bs.bs_sleepduration =
1429 roundup((100 * 1000) / 1024, bs.bs_intval);
1430 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1431 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1432
1433 DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1434 , __func__
1435 , bs.bs_intval
1436 , bs.bs_nexttbtt
1437 , bs.bs_dtimperiod
1438 , bs.bs_nextdtim
1439 , bs.bs_bmissthreshold
1440 , bs.bs_sleepduration
1441 ));
1442 ath_hal_intrset(ah, 0);
1443 /*
1444 * Reset our tsf so the hardware will update the
1445 * tsf register to reflect timestamps found in
1446 * received beacons.
1447 */
1448 ath_hal_resettsf(ah);
1449 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1450 sc->sc_imask |= HAL_INT_BMISS;
1451 ath_hal_intrset(ah, sc->sc_imask);
1452 } else {
1453 DPRINTF(("%s: intval %u nexttbtt %u\n",
1454 __func__, ni->ni_intval, nexttbtt));
1455 ath_hal_intrset(ah, 0);
1456 ath_hal_beaconinit(ah, ic->ic_opmode,
1457 nexttbtt, ni->ni_intval);
1458 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1459 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1460 ath_hal_intrset(ah, sc->sc_imask);
1461 }
1462 }
1463
1464 #ifdef __FreeBSD__
1465 static void
1466 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1467 {
1468 bus_addr_t *paddr = (bus_addr_t*) arg;
1469 *paddr = segs->ds_addr;
1470 }
1471 #endif
1472
1473 #ifdef __FreeBSD__
1474 static int
1475 ath_desc_alloc(struct ath_softc *sc)
1476 {
1477 int i, bsize, error;
1478 struct ath_desc *ds;
1479 struct ath_buf *bf;
1480
1481 /* allocate descriptors */
1482 sc->sc_desc_len = sizeof(struct ath_desc) *
1483 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1484 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1485 if (error != 0)
1486 return error;
1487
1488 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1489 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1490
1491 if (error != 0)
1492 goto fail0;
1493
1494 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1495 sc->sc_desc, sc->sc_desc_len,
1496 ath_load_cb, &sc->sc_desc_paddr,
1497 BUS_DMA_NOWAIT);
1498 if (error != 0)
1499 goto fail1;
1500
1501 ds = sc->sc_desc;
1502 DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1503 ds, sc->sc_desc_len,
1504 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1505
1506 /* allocate buffers */
1507 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1508 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1509 if (bf == NULL) {
1510 printf("%s: unable to allocate Tx/Rx buffers\n",
1511 sc->sc_dev.dv_xname);
1512 error = -1;
1513 goto fail2;
1514 }
1515 sc->sc_bufptr = bf;
1516
1517 TAILQ_INIT(&sc->sc_rxbuf);
1518 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1519 bf->bf_desc = ds;
1520 bf->bf_daddr = sc->sc_desc_paddr +
1521 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1522 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1523 &bf->bf_dmamap);
1524 if (error != 0)
1525 break;
1526 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1527 }
1528
1529 TAILQ_INIT(&sc->sc_txbuf);
1530 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1531 bf->bf_desc = ds;
1532 bf->bf_daddr = sc->sc_desc_paddr +
1533 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1534 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1535 &bf->bf_dmamap);
1536 if (error != 0)
1537 break;
1538 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1539 }
1540 TAILQ_INIT(&sc->sc_txq);
1541
1542 /* beacon buffer */
1543 bf->bf_desc = ds;
1544 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1545 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1546 if (error != 0)
1547 return error;
1548 sc->sc_bcbuf = bf;
1549 return 0;
1550
1551 fail2:
1552 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1553 fail1:
1554 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1555 fail0:
1556 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1557 sc->sc_ddmamap = NULL;
1558 return error;
1559 }
1560 #else
1561 static int
1562 ath_desc_alloc(struct ath_softc *sc)
1563 {
1564 int i, bsize, error = -1;
1565 struct ath_desc *ds;
1566 struct ath_buf *bf;
1567
1568 /* allocate descriptors */
1569 sc->sc_desc_len = sizeof(struct ath_desc) *
1570 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1571 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1572 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1573 printf("%s: unable to allocate control data, error = %d\n",
1574 sc->sc_dev.dv_xname, error);
1575 goto fail0;
1576 }
1577
1578 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1579 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1580 printf("%s: unable to map control data, error = %d\n",
1581 sc->sc_dev.dv_xname, error);
1582 goto fail1;
1583 }
1584
1585 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1586 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1587 printf("%s: unable to create control data DMA map, "
1588 "error = %d\n", sc->sc_dev.dv_xname, error);
1589 goto fail2;
1590 }
1591
1592 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1593 sc->sc_desc_len, NULL, 0)) != 0) {
1594 printf("%s: unable to load control data DMA map, error = %d\n",
1595 sc->sc_dev.dv_xname, error);
1596 goto fail3;
1597 }
1598
1599 ds = sc->sc_desc;
1600 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1601
1602 DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1603 ds, (u_long)sc->sc_desc_len,
1604 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1605
1606 /* allocate buffers */
1607 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1608 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1609 if (bf == NULL) {
1610 printf("%s: unable to allocate Tx/Rx buffers\n",
1611 sc->sc_dev.dv_xname);
1612 error = ENOMEM;
1613 goto fail3;
1614 }
1615 sc->sc_bufptr = bf;
1616
1617 TAILQ_INIT(&sc->sc_rxbuf);
1618 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1619 bf->bf_desc = ds;
1620 bf->bf_daddr = sc->sc_desc_paddr +
1621 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1622 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1623 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1624 printf("%s: unable to create Rx dmamap, error = %d\n",
1625 sc->sc_dev.dv_xname, error);
1626 goto fail4;
1627 }
1628 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1629 }
1630
1631 TAILQ_INIT(&sc->sc_txbuf);
1632 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1633 bf->bf_desc = ds;
1634 bf->bf_daddr = sc->sc_desc_paddr +
1635 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1636 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1637 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1638 printf("%s: unable to create Tx dmamap, error = %d\n",
1639 sc->sc_dev.dv_xname, error);
1640 goto fail5;
1641 }
1642 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1643 }
1644 TAILQ_INIT(&sc->sc_txq);
1645
1646 /* beacon buffer */
1647 bf->bf_desc = ds;
1648 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1649 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
1650 &bf->bf_dmamap)) != 0) {
1651 printf("%s: unable to create beacon dmamap, error = %d\n",
1652 sc->sc_dev.dv_xname, error);
1653 goto fail5;
1654 }
1655 sc->sc_bcbuf = bf;
1656 return 0;
1657
1658 fail5:
1659 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
1660 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1661 continue;
1662 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1663 }
1664 fail4:
1665 for (i = 0; i < ATH_RXBUF; i++) {
1666 if (sc->sc_bufptr[i].bf_dmamap == NULL)
1667 continue;
1668 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1669 }
1670 fail3:
1671 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1672 fail2:
1673 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1674 sc->sc_ddmamap = NULL;
1675 fail1:
1676 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
1677 fail0:
1678 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1679 return error;
1680 }
1681 #endif
1682
1683 static void
1684 ath_desc_free(struct ath_softc *sc)
1685 {
1686 struct ath_buf *bf;
1687
1688 #ifdef __FreeBSD__
1689 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1690 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1691 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1692 #else
1693 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1694 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1695 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1696 #endif
1697
1698 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1699 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1700 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1701 m_freem(bf->bf_m);
1702 }
1703 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1704 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1705 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1706 if (bf->bf_m) {
1707 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1708 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1709 m_freem(bf->bf_m);
1710 bf->bf_m = NULL;
1711 }
1712 }
1713 if (sc->sc_bcbuf != NULL) {
1714 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1715 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1716 sc->sc_bcbuf = NULL;
1717 }
1718
1719 TAILQ_INIT(&sc->sc_rxbuf);
1720 TAILQ_INIT(&sc->sc_txbuf);
1721 TAILQ_INIT(&sc->sc_txq);
1722 free(sc->sc_bufptr, M_DEVBUF);
1723 sc->sc_bufptr = NULL;
1724 }
1725
1726 static struct ieee80211_node *
1727 ath_node_alloc(struct ieee80211com *ic)
1728 {
1729 struct ath_node *an =
1730 malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1731 return an ? &an->an_node : NULL;
1732 }
1733
1734 static void
1735 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1736 {
1737 struct ath_softc *sc = ic->ic_if.if_softc;
1738 struct ath_buf *bf;
1739
1740 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1741 if (bf->bf_node == ni)
1742 bf->bf_node = NULL;
1743 }
1744 free(ni, M_DEVBUF);
1745 }
1746
1747 static void
1748 ath_node_copy(struct ieee80211com *ic,
1749 struct ieee80211_node *dst, const struct ieee80211_node *src)
1750 {
1751 *(struct ath_node *)dst = *(const struct ath_node *)src;
1752 }
1753
1754 static int
1755 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1756 {
1757 struct ath_hal *ah = sc->sc_ah;
1758 int error;
1759 struct mbuf *m;
1760 struct ath_desc *ds;
1761
1762 m = bf->bf_m;
1763 if (m == NULL) {
1764 /*
1765 * NB: by assigning a page to the rx dma buffer we
1766 * implicitly satisfy the Atheros requirement that
1767 * this buffer be cache-line-aligned and sized to be
1768 * multiple of the cache line size. Not doing this
1769 * causes weird stuff to happen (for the 5210 at least).
1770 */
1771 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
1772 if (m == NULL) {
1773 DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
1774 sc->sc_stats.ast_rx_nombuf++;
1775 return ENOMEM;
1776 }
1777 bf->bf_m = m;
1778 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1779
1780 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
1781 BUS_DMA_NOWAIT);
1782 if (error != 0) {
1783 DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
1784 " error %d\n", error));
1785 sc->sc_stats.ast_rx_busdma++;
1786 return error;
1787 }
1788 KASSERT(bf->bf_nseg == 1,
1789 ("ath_rxbuf_init: multi-segment packet; nseg %u",
1790 bf->bf_nseg));
1791 }
1792 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
1793
1794 /* setup descriptors */
1795 ds = bf->bf_desc;
1796 ds->ds_link = 0;
1797 ds->ds_data = bf->bf_segs[0].ds_addr;
1798 ath_hal_setuprxdesc(ah, ds
1799 , m->m_len /* buffer size */
1800 , 0
1801 );
1802
1803 if (sc->sc_rxlink != NULL)
1804 *sc->sc_rxlink = bf->bf_daddr;
1805 sc->sc_rxlink = &ds->ds_link;
1806 return 0;
1807 }
1808
1809 static void
1810 ath_rx_proc(void *arg, int npending)
1811 {
1812 struct ath_softc *sc = arg;
1813 struct ath_buf *bf;
1814 struct ieee80211com *ic = &sc->sc_ic;
1815 struct ifnet *ifp = &ic->ic_if;
1816 struct ath_hal *ah = sc->sc_ah;
1817 struct ath_desc *ds;
1818 struct mbuf *m;
1819 struct ieee80211_frame *wh, whbuf;
1820 struct ieee80211_node *ni;
1821 int len;
1822 u_int phyerr;
1823 HAL_STATUS status;
1824
1825 DPRINTF2(("ath_rx_proc: pending %u\n", npending));
1826 do {
1827 bf = TAILQ_FIRST(&sc->sc_rxbuf);
1828 if (bf == NULL) { /* NB: shouldn't happen */
1829 if_printf(ifp, "ath_rx_proc: no buffer!\n");
1830 break;
1831 }
1832 m = bf->bf_m;
1833 if (m == NULL) { /* NB: shouldn't happen */
1834 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1835 continue;
1836 }
1837 ds = bf->bf_desc;
1838 status = ath_hal_rxprocdesc(ah, ds);
1839 #ifdef AR_DEBUG
1840 if (ath_debug > 1)
1841 ath_printrxbuf(bf, status == HAL_OK);
1842 #endif
1843 if (status == HAL_EINPROGRESS)
1844 break;
1845 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1846 if (ds->ds_rxstat.rs_status != 0) {
1847 ifp->if_ierrors++;
1848 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1849 sc->sc_stats.ast_rx_crcerr++;
1850 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1851 sc->sc_stats.ast_rx_fifoerr++;
1852 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1853 sc->sc_stats.ast_rx_badcrypt++;
1854 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1855 sc->sc_stats.ast_rx_phyerr++;
1856 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1857 sc->sc_stats.ast_rx_phy[phyerr]++;
1858 }
1859 goto rx_next;
1860 }
1861
1862 len = ds->ds_rxstat.rs_datalen;
1863 if (len < sizeof(struct ieee80211_frame)) {
1864 DPRINTF(("ath_rx_proc: short packet %d\n", len));
1865 sc->sc_stats.ast_rx_tooshort++;
1866 goto rx_next;
1867 }
1868
1869 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
1870
1871 wh = mtod(m, struct ieee80211_frame *);
1872 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1873 IEEE80211_FC0_TYPE_CTL &&
1874 ic->ic_opmode != IEEE80211_M_MONITOR) {
1875 /*
1876 * Discard control frame when not in monitor mode.
1877 */
1878 DPRINTF(("ath_rx_proc: control frame\n"));
1879 sc->sc_stats.ast_rx_ctl++;
1880 goto rx_next;
1881 }
1882
1883 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1884 bf->bf_m = NULL;
1885 m->m_pkthdr.rcvif = ifp;
1886 m->m_pkthdr.len = m->m_len = len;
1887
1888 #if NBPFILTER > 0
1889 if (sc->sc_drvbpf) {
1890 #ifdef __FreeBSD__
1891 struct mbuf *mb;
1892
1893 /* XXX pre-allocate space when setting up recv's */
1894 MGETHDR(mb, M_DONTWAIT, m->m_type);
1895 if (mb != NULL) {
1896 sc->sc_rx_th.wr_rate =
1897 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
1898 sc->sc_rx_th.wr_antsignal =
1899 ds->ds_rxstat.rs_rssi;
1900 sc->sc_rx_th.wr_antenna =
1901 ds->ds_rxstat.rs_antenna;
1902 /* XXX TSF */
1903
1904 (void) m_dup_pkthdr(mb, m, M_DONTWAIT);
1905 mb->m_next = m;
1906 mb->m_data = (caddr_t)&sc->sc_rx_th;
1907 mb->m_len = sizeof(sc->sc_rx_th);
1908 mb->m_pkthdr.len += mb->m_len;
1909 bpf_mtap(sc->sc_drvbpf, mb);
1910 m_free(mb);
1911 }
1912 #else
1913 /* XXX pre-allocate space when setting up recv's */
1914 struct mbuf mb;
1915
1916 sc->sc_rx_th.wr_rate =
1917 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
1918 sc->sc_rx_th.wr_antsignal =
1919 ds->ds_rxstat.rs_rssi;
1920 sc->sc_rx_th.wr_antenna =
1921 ds->ds_rxstat.rs_antenna;
1922 /* XXX TSF */
1923
1924 M_COPY_PKTHDR(&mb, m);
1925 mb.m_next = m;
1926 mb.m_data = (caddr_t)&sc->sc_rx_th;
1927 mb.m_len = sizeof(sc->sc_rx_th);
1928 mb.m_pkthdr.len += mb.m_len;
1929 bpf_mtap(sc->sc_drvbpf, &mb);
1930 #endif
1931 }
1932 #endif
1933
1934 m_adj(m, -IEEE80211_CRC_LEN);
1935 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1936 /*
1937 * WEP is decrypted by hardware. Clear WEP bit
1938 * and trim WEP header for ieee80211_input().
1939 */
1940 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1941 memcpy(&whbuf, wh, sizeof(whbuf));
1942 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1943 memcpy(mtod(m, caddr_t), &whbuf, sizeof(whbuf));
1944 /*
1945 * Also trim WEP ICV from the tail.
1946 */
1947 m_adj(m, -IEEE80211_WEP_CRCLEN);
1948 }
1949
1950 /*
1951 * Locate the node for sender, track state, and
1952 * then pass this node (referenced) up to the 802.11
1953 * layer for its use. We are required to pass
1954 * something so we fall back to ic_bss when this frame
1955 * is from an unknown sender.
1956 */
1957 if (ic->ic_opmode != IEEE80211_M_STA) {
1958 ni = ieee80211_find_node(ic, wh->i_addr2);
1959 if (ni == NULL)
1960 ni = ieee80211_ref_node(ic->ic_bss);
1961 } else
1962 ni = ieee80211_ref_node(ic->ic_bss);
1963 ATH_NODE(ni)->an_rx_antenna = ds->ds_rxstat.rs_antenna;
1964 /*
1965 * Send frame up for processing.
1966 */
1967 ieee80211_input(ifp, m, ni,
1968 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
1969 /*
1970 * The frame may have caused the node to be marked for
1971 * reclamation (e.g. in response to a DEAUTH message)
1972 * so use free_node here instead of unref_node.
1973 */
1974 if (ni == ic->ic_bss)
1975 ieee80211_unref_node(&ni);
1976 else
1977 ieee80211_free_node(ic, ni);
1978 rx_next:
1979 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1980 } while (ath_rxbuf_init(sc, bf) == 0);
1981
1982 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
1983 ath_hal_rxena(ah); /* in case of RXEOL */
1984 }
1985
1986 /*
1987 * XXX Size of an ACK control frame in bytes.
1988 */
1989 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
1990
1991 static int
1992 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
1993 struct mbuf *m0)
1994 {
1995 struct ieee80211com *ic = &sc->sc_ic;
1996 struct ath_hal *ah = sc->sc_ah;
1997 struct ifnet *ifp = &sc->sc_ic.ic_if;
1998 int i, error, iswep, hdrlen, pktlen;
1999 u_int8_t rix, cix, txrate, ctsrate;
2000 struct ath_desc *ds;
2001 struct mbuf *m;
2002 struct ieee80211_frame *wh;
2003 u_int32_t iv;
2004 u_int8_t *ivp;
2005 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2006 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2007 u_int subtype, flags, ctsduration, antenna;
2008 HAL_PKT_TYPE atype;
2009 const HAL_RATE_TABLE *rt;
2010 HAL_BOOL shortPreamble;
2011 struct ath_node *an;
2012 ath_txq_critsect_decl(s);
2013
2014 wh = mtod(m0, struct ieee80211_frame *);
2015 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2016 hdrlen = sizeof(struct ieee80211_frame);
2017 pktlen = m0->m_pkthdr.len;
2018
2019 if (iswep) {
2020 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2021 m_adj(m0, hdrlen);
2022 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2023 if (m0 == NULL) {
2024 sc->sc_stats.ast_tx_nombuf++;
2025 return ENOMEM;
2026 }
2027 ivp = hdrbuf + hdrlen;
2028 /*
2029 * XXX
2030 * IV must not duplicate during the lifetime of the key.
2031 * But no mechanism to renew keys is defined in IEEE 802.11
2032 * WEP. And IV may be duplicated between other stations
2033 * because of the session key itself is shared.
2034 * So we use pseudo random IV for now, though it is not the
2035 * right way.
2036 */
2037 iv = arc4random();
2038 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
2039 ivp[i] = iv;
2040 iv >>= 8;
2041 }
2042 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
2043 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2044 /*
2045 * The ICV length must be included into hdrlen and pktlen.
2046 */
2047 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2048 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2049 }
2050 pktlen += IEEE80211_CRC_LEN;
2051
2052 /*
2053 * Load the DMA map so any coalescing is done. This
2054 * also calculates the number of descriptors we need.
2055 */
2056 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2057 if (error != 0) {
2058 sc->sc_stats.ast_tx_busdma++;
2059 m_freem(m0);
2060 return error;
2061 }
2062 /*
2063 * Discard null packets and check for packets that
2064 * require too many TX descriptors. We try to convert
2065 * the latter to a cluster.
2066 */
2067 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
2068 sc->sc_stats.ast_tx_linear++;
2069 MGETHDR(m, M_DONTWAIT, MT_DATA);
2070 if (m == NULL) {
2071 sc->sc_stats.ast_tx_nombuf++;
2072 m_freem(m0);
2073 return ENOMEM;
2074 }
2075 #ifdef __FreeBSD__
2076 M_MOVE_PKTHDR(m, m0);
2077 #else
2078 M_COPY_PKTHDR(m, m0);
2079 #endif
2080 MCLGET(m, M_DONTWAIT);
2081 if ((m->m_flags & M_EXT) == 0) {
2082 sc->sc_stats.ast_tx_nomcl++;
2083 m_freem(m0);
2084 m_free(m);
2085 return ENOMEM;
2086 }
2087 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2088 m_freem(m0);
2089 m->m_len = m->m_pkthdr.len;
2090 m0 = m;
2091 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2092 BUS_DMA_NOWAIT);
2093 if (error != 0) {
2094 sc->sc_stats.ast_tx_busdma++;
2095 m_freem(m0);
2096 return error;
2097 }
2098 KASSERT(bf->bf_nseg == 1,
2099 ("ath_tx_start: packet not one segment; nseg %u",
2100 bf->bf_nseg));
2101 } else if (bf->bf_nseg == 0) { /* null packet, discard */
2102 sc->sc_stats.ast_tx_nodata++;
2103 m_freem(m0);
2104 return EIO;
2105 }
2106 DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
2107 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2108 bf->bf_m = m0;
2109 bf->bf_node = ni; /* NB: held reference */
2110
2111 /* setup descriptors */
2112 ds = bf->bf_desc;
2113 rt = sc->sc_currates;
2114 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2115
2116 /*
2117 * Calculate Atheros packet type from IEEE80211 packet header
2118 * and setup for rate calculations.
2119 */
2120 atype = HAL_PKT_TYPE_NORMAL; /* default */
2121 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2122 case IEEE80211_FC0_TYPE_MGT:
2123 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2124 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2125 atype = HAL_PKT_TYPE_BEACON;
2126 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2127 atype = HAL_PKT_TYPE_PROBE_RESP;
2128 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2129 atype = HAL_PKT_TYPE_ATIM;
2130 rix = 0; /* XXX lowest rate */
2131 break;
2132 case IEEE80211_FC0_TYPE_CTL:
2133 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2134 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2135 atype = HAL_PKT_TYPE_PSPOLL;
2136 rix = 0; /* XXX lowest rate */
2137 break;
2138 default:
2139 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2140 IEEE80211_RATE_VAL];
2141 if (rix == 0xff) {
2142 if_printf(ifp, "bogus xmit rate 0x%x\n",
2143 ni->ni_rates.rs_rates[ni->ni_txrate]);
2144 sc->sc_stats.ast_tx_badrate++;
2145 m_freem(m0);
2146 return EIO;
2147 }
2148 break;
2149 }
2150 /*
2151 * NB: the 802.11 layer marks whether or not we should
2152 * use short preamble based on the current mode and
2153 * negotiated parameters.
2154 */
2155 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
2156 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2157 shortPreamble = AH_TRUE;
2158 sc->sc_stats.ast_tx_shortpre++;
2159 } else {
2160 txrate = rt->info[rix].rateCode;
2161 shortPreamble = AH_FALSE;
2162 }
2163
2164 /*
2165 * Calculate miscellaneous flags.
2166 */
2167 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2168 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2169 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2170 sc->sc_stats.ast_tx_noack++;
2171 } else if (pktlen > ic->ic_rtsthreshold) {
2172 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2173 sc->sc_stats.ast_tx_rts++;
2174 }
2175
2176 /*
2177 * Calculate RTS/CTS rate and duration if needed.
2178 */
2179 ctsduration = 0;
2180 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2181 /*
2182 * CTS transmit rate is derived from the transmit rate
2183 * by looking in the h/w rate table. We must also factor
2184 * in whether or not a short preamble is to be used.
2185 */
2186 cix = rt->info[rix].controlRate;
2187 ctsrate = rt->info[cix].rateCode;
2188 if (shortPreamble)
2189 ctsrate |= rt->info[cix].shortPreamble;
2190 /*
2191 * Compute the transmit duration based on the size
2192 * of an ACK frame. We call into the HAL to do the
2193 * computation since it depends on the characteristics
2194 * of the actual PHY being used.
2195 */
2196 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2197 ctsduration += ath_hal_computetxtime(ah,
2198 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2199 }
2200 /* SIFS + data */
2201 ctsduration += ath_hal_computetxtime(ah,
2202 rt, pktlen, rix, shortPreamble);
2203 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2204 ctsduration += ath_hal_computetxtime(ah,
2205 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2206 }
2207 } else
2208 ctsrate = 0;
2209
2210 /*
2211 * For now use the antenna on which the last good
2212 * frame was received on. We assume this field is
2213 * initialized to 0 which gives us ``auto'' or the
2214 * ``default'' antenna.
2215 */
2216 an = (struct ath_node *) ni;
2217 if (an->an_tx_antenna)
2218 antenna = an->an_tx_antenna;
2219 else
2220 antenna = an->an_rx_antenna;
2221
2222 /*
2223 * Formulate first tx descriptor with tx controls.
2224 */
2225 /* XXX check return value? */
2226 ath_hal_setuptxdesc(ah, ds
2227 , pktlen /* packet length */
2228 , hdrlen /* header length */
2229 , atype /* Atheros packet type */
2230 , 60 /* txpower XXX */
2231 , txrate, 1+10 /* series 0 rate/tries */
2232 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2233 , antenna /* antenna mode */
2234 , flags /* flags */
2235 , ctsrate /* rts/cts rate */
2236 , ctsduration /* rts/cts duration */
2237 );
2238 #ifdef notyet
2239 ath_hal_setupxtxdesc(ah, ds
2240 , AH_FALSE /* short preamble */
2241 , 0, 0 /* series 1 rate/tries */
2242 , 0, 0 /* series 2 rate/tries */
2243 , 0, 0 /* series 3 rate/tries */
2244 );
2245 #endif
2246 /*
2247 * Fillin the remainder of the descriptor info.
2248 */
2249 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2250 ds->ds_data = bf->bf_segs[i].ds_addr;
2251 if (i == bf->bf_nseg - 1)
2252 ds->ds_link = 0;
2253 else
2254 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2255 ath_hal_filltxdesc(ah, ds
2256 , bf->bf_segs[i].ds_len /* segment length */
2257 , i == 0 /* first segment */
2258 , i == bf->bf_nseg - 1 /* last segment */
2259 );
2260 DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2261 i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2262 ds->ds_hw[0], ds->ds_hw[1]));
2263 }
2264
2265 /*
2266 * Insert the frame on the outbound list and
2267 * pass it on to the hardware.
2268 */
2269 ath_txq_critsect_begin(sc, s);
2270 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2271 if (sc->sc_txlink == NULL) {
2272 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2273 DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2274 (caddr_t)bf->bf_daddr, bf->bf_desc));
2275 } else {
2276 *sc->sc_txlink = bf->bf_daddr;
2277 DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2278 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2279 }
2280 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2281 ath_txq_critsect_end(sc, s);
2282
2283 ath_hal_txstart(ah, sc->sc_txhalq);
2284 return 0;
2285 }
2286
2287 static void
2288 ath_tx_proc(void *arg, int npending)
2289 {
2290 struct ath_softc *sc = arg;
2291 struct ath_hal *ah = sc->sc_ah;
2292 struct ath_buf *bf;
2293 struct ieee80211com *ic = &sc->sc_ic;
2294 struct ifnet *ifp = &ic->ic_if;
2295 struct ath_desc *ds;
2296 struct ieee80211_node *ni;
2297 struct ath_node *an;
2298 int sr, lr;
2299 HAL_STATUS status;
2300 ath_txq_critsect_decl(s);
2301 ath_txbuf_critsect_decl(s2);
2302
2303 DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2304 npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2305 sc->sc_txlink));
2306 for (;;) {
2307 ath_txq_critsect_begin(sc, s);
2308 bf = TAILQ_FIRST(&sc->sc_txq);
2309 if (bf == NULL) {
2310 sc->sc_txlink = NULL;
2311 ath_txq_critsect_end(sc, s);
2312 break;
2313 }
2314 /* only the last descriptor is needed */
2315 ds = &bf->bf_desc[bf->bf_nseg - 1];
2316 status = ath_hal_txprocdesc(ah, ds);
2317 #ifdef AR_DEBUG
2318 if (ath_debug > 1)
2319 ath_printtxbuf(bf, status == HAL_OK);
2320 #endif
2321 if (status == HAL_EINPROGRESS) {
2322 ath_txq_critsect_end(sc, s);
2323 break;
2324 }
2325 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2326 ath_txq_critsect_end(sc, s);
2327
2328 ni = bf->bf_node;
2329 if (ni != NULL) {
2330 an = (struct ath_node *) ni;
2331 if (ds->ds_txstat.ts_status == 0) {
2332 an->an_tx_ok++;
2333 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2334 } else {
2335 an->an_tx_err++;
2336 ifp->if_oerrors++;
2337 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2338 sc->sc_stats.ast_tx_xretries++;
2339 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2340 sc->sc_stats.ast_tx_fifoerr++;
2341 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2342 sc->sc_stats.ast_tx_filtered++;
2343 an->an_tx_antenna = 0; /* invalidate */
2344 }
2345 sr = ds->ds_txstat.ts_shortretry;
2346 lr = ds->ds_txstat.ts_longretry;
2347 sc->sc_stats.ast_tx_shortretry += sr;
2348 sc->sc_stats.ast_tx_longretry += lr;
2349 if (sr + lr)
2350 an->an_tx_retr++;
2351 /*
2352 * Reclaim reference to node.
2353 *
2354 * NB: the node may be reclaimed here if, for example
2355 * this is a DEAUTH message that was sent and the
2356 * node was timed out due to inactivity.
2357 */
2358 if (ni != ic->ic_bss)
2359 ieee80211_free_node(ic, ni);
2360 }
2361 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2362 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2363 m_freem(bf->bf_m);
2364 bf->bf_m = NULL;
2365 bf->bf_node = NULL;
2366
2367 ath_txbuf_critsect_begin(sc, s2);
2368 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2369 ath_txbuf_critsect_end(sc, s2);
2370 }
2371 ifp->if_flags &= ~IFF_OACTIVE;
2372 sc->sc_tx_timer = 0;
2373
2374 ath_start(ifp);
2375 }
2376
2377 /*
2378 * Drain the transmit queue and reclaim resources.
2379 */
2380 static void
2381 ath_draintxq(struct ath_softc *sc)
2382 {
2383 struct ath_hal *ah = sc->sc_ah;
2384 struct ifnet *ifp = &sc->sc_ic.ic_if;
2385 struct ath_buf *bf;
2386 ath_txq_critsect_decl(s);
2387 ath_txbuf_critsect_decl(s2);
2388
2389 /* XXX return value */
2390 if (!sc->sc_invalid) {
2391 /* don't touch the hardware if marked invalid */
2392 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2393 DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2394 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2395 sc->sc_txlink));
2396 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2397 DPRINTF(("ath_draintxq: beacon queue %p\n",
2398 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2399 }
2400 for (;;) {
2401 ath_txq_critsect_begin(sc, s);
2402 bf = TAILQ_FIRST(&sc->sc_txq);
2403 if (bf == NULL) {
2404 sc->sc_txlink = NULL;
2405 ath_txq_critsect_end(sc, s);
2406 break;
2407 }
2408 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2409 ath_txq_critsect_end(sc, s);
2410 #ifdef AR_DEBUG
2411 if (ath_debug)
2412 ath_printtxbuf(bf,
2413 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2414 #endif /* AR_DEBUG */
2415 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2416 m_freem(bf->bf_m);
2417 bf->bf_m = NULL;
2418 bf->bf_node = NULL;
2419 ath_txbuf_critsect_begin(sc, s2);
2420 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2421 ath_txbuf_critsect_end(sc, s2);
2422 }
2423 ifp->if_flags &= ~IFF_OACTIVE;
2424 sc->sc_tx_timer = 0;
2425 }
2426
2427 /*
2428 * Disable the receive h/w in preparation for a reset.
2429 */
2430 static void
2431 ath_stoprecv(struct ath_softc *sc)
2432 {
2433 struct ath_hal *ah = sc->sc_ah;
2434
2435 ath_hal_stoppcurecv(ah); /* disable PCU */
2436 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2437 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2438 DELAY(3000); /* long enough for 1 frame */
2439 #ifdef AR_DEBUG
2440 if (ath_debug) {
2441 struct ath_buf *bf;
2442
2443 DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2444 (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2445 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2446 if (ath_hal_rxprocdesc(ah, bf->bf_desc) == HAL_OK)
2447 ath_printrxbuf(bf, 1);
2448 }
2449 }
2450 #endif
2451 sc->sc_rxlink = NULL; /* just in case */
2452 }
2453
2454 /*
2455 * Enable the receive h/w following a reset.
2456 */
2457 static int
2458 ath_startrecv(struct ath_softc *sc)
2459 {
2460 struct ath_hal *ah = sc->sc_ah;
2461 struct ath_buf *bf;
2462
2463 sc->sc_rxlink = NULL;
2464 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2465 int error = ath_rxbuf_init(sc, bf);
2466 if (error != 0) {
2467 DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2468 error));
2469 return error;
2470 }
2471 }
2472
2473 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2474 ath_hal_putrxbuf(ah, bf->bf_daddr);
2475 ath_hal_rxena(ah); /* enable recv descriptors */
2476 ath_mode_init(sc); /* set filters, etc. */
2477 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2478 return 0;
2479 }
2480
2481 /*
2482 * Set/change channels. If the channel is really being changed,
2483 * it's done by resetting the chip. To accomplish this we must
2484 * first cleanup any pending DMA, then restart stuff after a la
2485 * ath_init.
2486 */
2487 static int
2488 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2489 {
2490 struct ath_hal *ah = sc->sc_ah;
2491 struct ieee80211com *ic = &sc->sc_ic;
2492
2493 DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2494 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2495 ic->ic_ibss_chan->ic_freq,
2496 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2497 if (chan != ic->ic_ibss_chan) {
2498 HAL_STATUS status;
2499 HAL_CHANNEL hchan;
2500 enum ieee80211_phymode mode;
2501
2502 /*
2503 * To switch channels clear any pending DMA operations;
2504 * wait long enough for the RX fifo to drain, reset the
2505 * hardware at the new frequency, and then re-enable
2506 * the relevant bits of the h/w.
2507 */
2508 ath_hal_intrset(ah, 0); /* disable interrupts */
2509 ath_draintxq(sc); /* clear pending tx frames */
2510 ath_stoprecv(sc); /* turn off frame recv */
2511 /*
2512 * Convert to a HAL channel description with
2513 * the flags constrained to reflect the current
2514 * operating mode.
2515 */
2516 hchan.channel = chan->ic_freq;
2517 hchan.channelFlags = ath_chan2flags(ic, chan);
2518 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2519 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2520 "channel %u (%u Mhz)\n",
2521 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2522 return EIO;
2523 }
2524 /*
2525 * Re-enable rx framework.
2526 */
2527 if (ath_startrecv(sc) != 0) {
2528 if_printf(&ic->ic_if,
2529 "ath_chan_set: unable to restart recv logic\n");
2530 return EIO;
2531 }
2532
2533 /*
2534 * Update BPF state.
2535 */
2536 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2537 htole16(chan->ic_freq);
2538 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2539 htole16(chan->ic_flags);
2540
2541 /*
2542 * Change channels and update the h/w rate map
2543 * if we're switching; e.g. 11a to 11b/g.
2544 */
2545 ic->ic_ibss_chan = chan;
2546 mode = ieee80211_chan2mode(ic, chan);
2547 if (mode != sc->sc_curmode)
2548 ath_setcurmode(sc, mode);
2549
2550 /*
2551 * Re-enable interrupts.
2552 */
2553 ath_hal_intrset(ah, sc->sc_imask);
2554 }
2555 return 0;
2556 }
2557
2558 static void
2559 ath_next_scan(void *arg)
2560 {
2561 struct ath_softc *sc = arg;
2562 struct ieee80211com *ic = &sc->sc_ic;
2563 struct ifnet *ifp = &ic->ic_if;
2564 int s;
2565
2566 /* don't call ath_start w/o network interrupts blocked */
2567 s = splnet();
2568
2569 if (ic->ic_state == IEEE80211_S_SCAN)
2570 ieee80211_next_scan(ifp);
2571 splx(s);
2572 }
2573
2574 /*
2575 * Periodically recalibrate the PHY to account
2576 * for temperature/environment changes.
2577 */
2578 static void
2579 ath_calibrate(void *arg)
2580 {
2581 struct ath_softc *sc = arg;
2582 struct ath_hal *ah = sc->sc_ah;
2583 struct ieee80211com *ic = &sc->sc_ic;
2584 struct ieee80211_channel *c;
2585 HAL_CHANNEL hchan;
2586
2587 sc->sc_stats.ast_per_cal++;
2588
2589 /*
2590 * Convert to a HAL channel description with the flags
2591 * constrained to reflect the current operating mode.
2592 */
2593 c = ic->ic_ibss_chan;
2594 hchan.channel = c->ic_freq;
2595 hchan.channelFlags = ath_chan2flags(ic, c);
2596
2597 DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2598
2599 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2600 /*
2601 * Rfgain is out of bounds, reset the chip
2602 * to load new gain values.
2603 */
2604 sc->sc_stats.ast_per_rfgain++;
2605 ath_reset(sc);
2606 }
2607 if (!ath_hal_calibrate(ah, &hchan)) {
2608 DPRINTF(("%s: calibration of channel %u failed\n",
2609 __func__, c->ic_freq));
2610 sc->sc_stats.ast_per_calfail++;
2611 }
2612 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2613 }
2614
2615 static int
2616 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2617 {
2618 struct ifnet *ifp = &ic->ic_if;
2619 struct ath_softc *sc = ifp->if_softc;
2620 struct ath_hal *ah = sc->sc_ah;
2621 struct ieee80211_node *ni;
2622 int i, error;
2623 u_int8_t *bssid;
2624 u_int32_t rfilt;
2625 static const HAL_LED_STATE leds[] = {
2626 HAL_LED_INIT, /* IEEE80211_S_INIT */
2627 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
2628 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
2629 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
2630 HAL_LED_RUN, /* IEEE80211_S_RUN */
2631 };
2632
2633 DPRINTF(("%s: %s -> %s\n", __func__,
2634 ieee80211_state_name[ic->ic_state],
2635 ieee80211_state_name[nstate]));
2636
2637 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
2638
2639 if (nstate == IEEE80211_S_INIT) {
2640 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2641 ath_hal_intrset(ah, sc->sc_imask);
2642 callout_stop(&sc->sc_scan_ch);
2643 callout_stop(&sc->sc_cal_ch);
2644 return (*sc->sc_newstate)(ic, nstate, arg);
2645 }
2646 ni = ic->ic_bss;
2647 error = ath_chan_set(sc, ni->ni_chan);
2648 if (error != 0)
2649 goto bad;
2650 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
2651 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2652 if (ic->ic_opmode != IEEE80211_M_STA)
2653 rfilt |= HAL_RX_FILTER_PROBEREQ;
2654 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
2655 (ifp->if_flags & IFF_PROMISC))
2656 rfilt |= HAL_RX_FILTER_PROM;
2657 if (nstate == IEEE80211_S_SCAN) {
2658 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2659 ath_next_scan, sc);
2660 bssid = ifp->if_broadcastaddr;
2661 rfilt |= HAL_RX_FILTER_BEACON;
2662 } else {
2663 callout_stop(&sc->sc_scan_ch);
2664 bssid = ni->ni_bssid;
2665 }
2666 ath_hal_setrxfilter(ah, rfilt);
2667 DPRINTF(("%s: RX filter 0x%x bssid %s\n",
2668 __func__, rfilt, ether_sprintf(bssid)));
2669
2670 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2671 ath_hal_setassocid(ah, bssid, ni->ni_associd);
2672 else
2673 ath_hal_setassocid(ah, bssid, 0);
2674 if (ic->ic_flags & IEEE80211_F_WEPON) {
2675 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2676 if (ath_hal_keyisvalid(ah, i))
2677 ath_hal_keysetmac(ah, i, bssid);
2678 }
2679
2680 if (nstate == IEEE80211_S_RUN) {
2681 DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2682 "capinfo=0x%04x chan=%d\n"
2683 , __func__
2684 , ic->ic_flags
2685 , ni->ni_intval
2686 , ether_sprintf(ni->ni_bssid)
2687 , ni->ni_capinfo
2688 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2689
2690 /*
2691 * Allocate and setup the beacon frame for AP or adhoc mode.
2692 */
2693 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2694 ic->ic_opmode == IEEE80211_M_IBSS) {
2695 error = ath_beacon_alloc(sc, ni);
2696 if (error != 0)
2697 goto bad;
2698 }
2699
2700 /*
2701 * Configure the beacon and sleep timers.
2702 */
2703 ath_beacon_config(sc);
2704
2705 /* start periodic recalibration timer */
2706 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2707 ath_calibrate, sc);
2708 } else {
2709 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2710 ath_hal_intrset(ah, sc->sc_imask);
2711 callout_stop(&sc->sc_cal_ch); /* no calibration */
2712 }
2713 /*
2714 * Reset the rate control state.
2715 */
2716 ath_rate_ctl_reset(sc, nstate);
2717 /*
2718 * Invoke the parent method to complete the work.
2719 */
2720 return (*sc->sc_newstate)(ic, nstate, arg);
2721 bad:
2722 callout_stop(&sc->sc_scan_ch);
2723 callout_stop(&sc->sc_cal_ch);
2724 /* NB: do not invoke the parent */
2725 return error;
2726 }
2727
2728 /*
2729 * Setup driver-specific state for a newly associated node.
2730 * Note that we're called also on a re-associate, the isnew
2731 * param tells us if this is the first time or not.
2732 */
2733 static void
2734 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2735 {
2736 if (isnew) {
2737 struct ath_node *an = (struct ath_node *) ni;
2738
2739 an->an_tx_ok = an->an_tx_err =
2740 an->an_tx_retr = an->an_tx_upper = 0;
2741 /* start with highest negotiated rate */
2742 /*
2743 * XXX should do otherwise but only when
2744 * the rate control algorithm is better.
2745 */
2746 KASSERT(ni->ni_rates.rs_nrates > 0,
2747 ("new association w/ no rates!"));
2748 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2749 }
2750 }
2751
2752 static int
2753 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2754 {
2755 struct ieee80211com *ic = &sc->sc_ic;
2756 struct ifnet *ifp = &ic->ic_if;
2757 struct ath_hal *ah = sc->sc_ah;
2758 HAL_CHANNEL *chans;
2759 int i, ix, nchan;
2760
2761 sc->sc_have11g = 0;
2762 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2763 M_TEMP, M_NOWAIT);
2764 if (chans == NULL) {
2765 if_printf(ifp, "unable to allocate channel table\n");
2766 return ENOMEM;
2767 }
2768 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2769 cc, HAL_MODE_ALL, outdoor)) {
2770 if_printf(ifp, "unable to collect channel list from hal\n");
2771 free(chans, M_TEMP);
2772 return EINVAL;
2773 }
2774
2775 /*
2776 * Convert HAL channels to ieee80211 ones and insert
2777 * them in the table according to their channel number.
2778 */
2779 for (i = 0; i < nchan; i++) {
2780 HAL_CHANNEL *c = &chans[i];
2781 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2782 if (ix > IEEE80211_CHAN_MAX) {
2783 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2784 ix, c->channel, c->channelFlags);
2785 continue;
2786 }
2787 /* NB: flags are known to be compatible */
2788 if (ic->ic_channels[ix].ic_freq == 0) {
2789 ic->ic_channels[ix].ic_freq = c->channel;
2790 ic->ic_channels[ix].ic_flags = c->channelFlags;
2791 } else {
2792 /* channels overlap; e.g. 11g and 11b */
2793 ic->ic_channels[ix].ic_flags |= c->channelFlags;
2794 }
2795 if ((c->channelFlags & CHANNEL_G) == CHANNEL_G)
2796 sc->sc_have11g = 1;
2797 }
2798 free(chans, M_TEMP);
2799 return 0;
2800 }
2801
2802 static int
2803 ath_rate_setup(struct ath_softc *sc, u_int mode)
2804 {
2805 struct ath_hal *ah = sc->sc_ah;
2806 struct ieee80211com *ic = &sc->sc_ic;
2807 const HAL_RATE_TABLE *rt;
2808 struct ieee80211_rateset *rs;
2809 int i, maxrates;
2810
2811 switch (mode) {
2812 case IEEE80211_MODE_11A:
2813 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2814 break;
2815 case IEEE80211_MODE_11B:
2816 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2817 break;
2818 case IEEE80211_MODE_11G:
2819 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2820 break;
2821 case IEEE80211_MODE_TURBO:
2822 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2823 break;
2824 default:
2825 DPRINTF(("%s: invalid mode %u\n", __func__, mode));
2826 return 0;
2827 }
2828 rt = sc->sc_rates[mode];
2829 if (rt == NULL)
2830 return 0;
2831 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2832 DPRINTF(("%s: rate table too small (%u > %u)\n",
2833 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2834 maxrates = IEEE80211_RATE_MAXSIZE;
2835 } else
2836 maxrates = rt->rateCount;
2837 rs = &ic->ic_sup_rates[mode];
2838 for (i = 0; i < maxrates; i++)
2839 rs->rs_rates[i] = rt->info[i].dot11Rate;
2840 rs->rs_nrates = maxrates;
2841 return 1;
2842 }
2843
2844 static void
2845 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
2846 {
2847 const HAL_RATE_TABLE *rt;
2848 int i;
2849
2850 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
2851 rt = sc->sc_rates[mode];
2852 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
2853 for (i = 0; i < rt->rateCount; i++)
2854 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
2855 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
2856 for (i = 0; i < 32; i++)
2857 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
2858 sc->sc_currates = rt;
2859 sc->sc_curmode = mode;
2860 }
2861
2862 /*
2863 * Reset the rate control state for each 802.11 state transition.
2864 */
2865 static void
2866 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
2867 {
2868 struct ieee80211com *ic = &sc->sc_ic;
2869 struct ieee80211_node *ni;
2870 struct ath_node *an;
2871
2872 an = (struct ath_node *) ic->ic_bss;
2873 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
2874 if (ic->ic_opmode == IEEE80211_M_STA) {
2875 ni = ic->ic_bss;
2876 if (state == IEEE80211_S_RUN) {
2877 /* start with highest negotiated rate */
2878 KASSERT(ni->ni_rates.rs_nrates > 0,
2879 ("transition to RUN state w/ no rates!"));
2880 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2881 } else {
2882 /* use lowest rate */
2883 ni->ni_txrate = 0;
2884 }
2885 } else {
2886 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
2887 ni->ni_txrate = 0; /* use lowest rate */
2888 an = (struct ath_node *) ni;
2889 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
2890 an->an_tx_upper = 0;
2891 }
2892 }
2893 }
2894
2895 /*
2896 * Examine and potentially adjust the transmit rate.
2897 */
2898 static void
2899 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
2900 {
2901 struct ath_softc *sc = arg;
2902 struct ath_node *an = (struct ath_node *) ni;
2903 struct ieee80211_rateset *rs = &ni->ni_rates;
2904 int mod = 0, orate, enough;
2905
2906 /*
2907 * Rate control
2908 * XXX: very primitive version.
2909 */
2910 sc->sc_stats.ast_rate_calls++;
2911
2912 enough = (an->an_tx_ok + an->an_tx_err >= 10);
2913
2914 /* no packet reached -> down */
2915 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
2916 mod = -1;
2917
2918 /* all packets needs retry in average -> down */
2919 if (enough && an->an_tx_ok < an->an_tx_retr)
2920 mod = -1;
2921
2922 /* no error and less than 10% of packets needs retry -> up */
2923 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
2924 mod = 1;
2925
2926 orate = ni->ni_txrate;
2927 switch (mod) {
2928 case 0:
2929 if (enough && an->an_tx_upper > 0)
2930 an->an_tx_upper--;
2931 break;
2932 case -1:
2933 if (ni->ni_txrate > 0) {
2934 ni->ni_txrate--;
2935 sc->sc_stats.ast_rate_drop++;
2936 }
2937 an->an_tx_upper = 0;
2938 break;
2939 case 1:
2940 if (++an->an_tx_upper < 2)
2941 break;
2942 an->an_tx_upper = 0;
2943 if (ni->ni_txrate + 1 < rs->rs_nrates) {
2944 ni->ni_txrate++;
2945 sc->sc_stats.ast_rate_raise++;
2946 }
2947 break;
2948 }
2949
2950 if (ni->ni_txrate != orate) {
2951 printf("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
2952 __func__,
2953 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
2954 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
2955 an->an_tx_ok, an->an_tx_err, an->an_tx_retr);
2956 }
2957 if (ni->ni_txrate != orate || enough)
2958 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
2959 }
2960
2961 #ifdef AR_DEBUG
2962 #ifdef __FreeBSD__
2963 static int
2964 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
2965 {
2966 char dmode[64];
2967 int error;
2968
2969 strncpy(dmode, "", sizeof(dmode) - 1);
2970 dmode[sizeof(dmode) - 1] = '\0';
2971 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2972
2973 if (error == 0 && req->newptr != NULL) {
2974 struct ifnet *ifp;
2975 struct ath_softc *sc;
2976
2977 ifp = ifunit("ath0"); /* XXX */
2978 if (!ifp)
2979 return EINVAL;
2980 sc = ifp->if_softc;
2981 if (strcmp(dmode, "hal") == 0)
2982 ath_hal_dumpstate(sc->sc_ah);
2983 else if (strcmp(dmode, "eeprom") == 0)
2984 ath_hal_dumpeeprom(sc->sc_ah);
2985 else if (strcmp(dmode, "rfgain") == 0)
2986 ath_hal_dumprfgain(sc->sc_ah);
2987 else if (strcmp(dmode, "ani") == 0)
2988 ath_hal_dumpani(sc->sc_ah);
2989 else
2990 return EINVAL;
2991 }
2992 return error;
2993 }
2994 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2995 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
2996 #endif /* __FreeBSD__ */
2997
2998 static void
2999 ath_printrxbuf(struct ath_buf *bf, int done)
3000 {
3001 struct ath_desc *ds;
3002 int i;
3003
3004 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3005 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3006 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3007 ds->ds_link, ds->ds_data,
3008 ds->ds_ctl0, ds->ds_ctl1,
3009 ds->ds_hw[0], ds->ds_hw[1],
3010 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3011 }
3012 }
3013
3014 static void
3015 ath_printtxbuf(struct ath_buf *bf, int done)
3016 {
3017 struct ath_desc *ds;
3018 int i;
3019
3020 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3021 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3022 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3023 ds->ds_link, ds->ds_data,
3024 ds->ds_ctl0, ds->ds_ctl1,
3025 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3026 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3027 }
3028 }
3029 #endif /* AR_DEBUG */
3030