ath.c revision 1.20 1 /* $NetBSD: ath.c,v 1.20 2004/03/01 01:19:45 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.36 2003/11/29 01:23:59 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.20 2004/03/01 01:19:45 dyoung Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81
82 #include <machine/bus.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105
106 #include <dev/ic/athcompat.h>
107
108 #define AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116
117 /* unaligned little endian access */
118 #define LE_READ_2(p) \
119 ((u_int16_t) \
120 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
121 #define LE_READ_4(p) \
122 ((u_int32_t) \
123 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
124 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125
126 #ifdef __FreeBSD__
127 static void ath_init(void *);
128 #else
129 static int ath_init(struct ifnet *);
130 #endif
131 static int ath_init1(struct ath_softc *);
132 static int ath_intr1(struct ath_softc *);
133 static void ath_stop(struct ifnet *);
134 static void ath_start(struct ifnet *);
135 static void ath_reset(struct ath_softc *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_initkeytable(struct ath_softc *);
143 static void ath_mode_init(struct ath_softc *);
144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void ath_beacon_proc(void *, int);
146 static void ath_beacon_free(struct ath_softc *);
147 static void ath_beacon_config(struct ath_softc *);
148 static int ath_desc_alloc(struct ath_softc *);
149 static void ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void ath_node_copy(struct ieee80211com *,
153 struct ieee80211_node *, const struct ieee80211_node *);
154 static u_int8_t ath_node_getrssi(struct ieee80211com *,
155 struct ieee80211_node *);
156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void ath_rx_proc(void *, int);
158 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 struct ath_buf *, struct mbuf *);
160 static void ath_tx_proc(void *, int);
161 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
162 static void ath_draintxq(struct ath_softc *);
163 static void ath_stoprecv(struct ath_softc *);
164 static int ath_startrecv(struct ath_softc *);
165 static void ath_next_scan(void *);
166 static void ath_calibrate(void *);
167 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 static void ath_newassoc(struct ieee80211com *,
169 struct ieee80211_node *, int);
170 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
171
172 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
173 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
174 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
175 static void ath_rate_ctl(void *, struct ieee80211_node *);
176
177 #ifdef __NetBSD__
178 int ath_enable(struct ath_softc *);
179 void ath_disable(struct ath_softc *);
180 void ath_power(int, void *);
181 #endif
182
183 #ifdef __FreeBSD__
184 SYSCTL_DECL(_hw_ath);
185 /* XXX validate sysctl values */
186 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
187 0, "channel dwell time (ms) for AP/station scanning");
188 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
189 0, "chip calibration interval (secs)");
190 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
191 0, "enable/disable outdoor operation");
192 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
193 0, "country code");
194 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
195 0, "regulatory domain");
196 #endif /* __FreeBSD__ */
197
198 #ifdef __NetBSD__
199 static struct sysctlnode *ath_node_root;
200 static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum,
201 ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum;
202 #endif /* __NetBSD__ */
203
204 static int ath_dwelltime = 200; /* 5 channels/second */
205 static int ath_calinterval = 30; /* calibrate every 30 secs */
206 static int ath_outdoor = AH_TRUE; /* outdoor operation */
207 static int ath_countrycode = CTRY_DEFAULT; /* country code */
208 static int ath_regdomain = 0; /* regulatory domain */
209
210 #ifdef AR_DEBUG
211 int ath_debug = 0;
212 #ifdef __FreeBSD__
213 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
214 0, "control debugging printfs");
215 #endif /* __FreeBSD__ */
216 #define IFF_DUMPPKTS(_ifp) \
217 (ath_debug || \
218 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
219 static void ath_printrxbuf(struct ath_buf *bf, int);
220 static void ath_printtxbuf(struct ath_buf *bf, int);
221 #define DPRINTF(X) if (ath_debug) printf X
222 #define DPRINTF2(X) if (ath_debug > 1) printf X
223 #else
224 #define IFF_DUMPPKTS(_ifp) \
225 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
226 #define DPRINTF(X)
227 #define DPRINTF2(X)
228 #endif
229
230 #ifdef __NetBSD__
231 int
232 ath_activate(struct device *self, enum devact act)
233 {
234 struct ath_softc *sc = (struct ath_softc *)self;
235 int rv = 0, s;
236
237 s = splnet();
238 switch (act) {
239 case DVACT_ACTIVATE:
240 rv = EOPNOTSUPP;
241 break;
242 case DVACT_DEACTIVATE:
243 if_deactivate(&sc->sc_ic.ic_if);
244 break;
245 }
246 splx(s);
247 return rv;
248 }
249
250 int
251 ath_enable(struct ath_softc *sc)
252 {
253 if (ATH_IS_ENABLED(sc) == 0) {
254 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
255 printf("%s: device enable failed\n",
256 sc->sc_dev.dv_xname);
257 return (EIO);
258 }
259 sc->sc_flags |= ATH_ENABLED;
260 }
261 return (0);
262 }
263
264 void
265 ath_disable(struct ath_softc *sc)
266 {
267 if (!ATH_IS_ENABLED(sc))
268 return;
269 if (sc->sc_disable != NULL)
270 (*sc->sc_disable)(sc);
271 sc->sc_flags &= ~ATH_ENABLED;
272 }
273
274 static int
275 sysctl_ath_verify(SYSCTLFN_ARGS)
276 {
277 int error, t;
278 struct sysctlnode node;
279
280 node = *rnode;
281 t = *(int*)rnode->sysctl_data;
282 node.sysctl_data = &t;
283 error = sysctl_lookup(SYSCTLFN_CALL(&node));
284 if (error || newp == NULL)
285 return (error);
286
287 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
288 node.sysctl_num, rnode->sysctl_num));
289
290 if (node.sysctl_num == ath_dwelltime_nodenum) {
291 if (t <= 0)
292 return (EINVAL);
293 } else if (node.sysctl_num == ath_calibrate_nodenum) {
294 if (t <= 0)
295 return (EINVAL);
296 #ifdef AR_DEBUG
297 } else if (node.sysctl_num == ath_debug_nodenum) {
298 if (t < 0 || t > 2)
299 return (EINVAL);
300 #endif /* AR_DEBUG */
301 } else
302 return (EINVAL);
303
304 *(int*)rnode->sysctl_data = t;
305
306 return (0);
307 }
308
309 /*
310 * Setup sysctl(3) MIB, ath.*.
311 *
312 * TBD condition SYSCTL_PERMANENT on being an LKM or not
313 */
314 SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup")
315 {
316 int rc;
317 struct sysctlnode *node = NULL;
318
319 if ((rc = sysctl_createv(SYSCTL_PERMANENT, CTLTYPE_NODE, "ath",
320 &node, NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
321 goto err;
322
323 ath_node_root = node;
324 node = NULL;
325
326 /* channel dwell time (ms) for AP/station scanning */
327 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
328 CTLTYPE_INT, "dwell", &node, sysctl_ath_verify, 0, &ath_dwelltime,
329 0, ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
330 goto err;
331
332 ath_dwelltime_nodenum = node->sysctl_num;
333
334 node = NULL;
335
336 /* chip calibration interval (secs) */
337 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
338 CTLTYPE_INT, "calibrate", &node, sysctl_ath_verify,
339 0, &ath_calinterval, 0, ath_node_root->sysctl_num, CTL_CREATE,
340 CTL_EOL)) != 0)
341 goto err;
342
343 ath_calibrate_nodenum = node->sysctl_num;
344
345 node = NULL;
346
347 /* enable/disable outdoor operation */
348 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READONLY, CTLTYPE_INT,
349 "outdoor", &node, NULL, 0, &ath_outdoor, 0,
350 ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
351 goto err;
352
353 ath_outdoor_nodenum = node->sysctl_num;
354
355 node = NULL;
356
357 /* country code */
358 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READONLY, CTLTYPE_INT,
359 "countrycode", &node, NULL, 0, &ath_countrycode, 0,
360 ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
361 goto err;
362
363 ath_countrycode_nodenum = node->sysctl_num;
364
365 node = NULL;
366
367 /* regulatory domain */
368 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READONLY, CTLTYPE_INT,
369 "regdomain", &node, NULL, 0, &ath_regdomain, 0,
370 ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
371 goto err;
372
373 ath_regdomain_nodenum = node->sysctl_num;
374
375 #ifdef AR_DEBUG
376 node = NULL;
377
378 /* control debugging printfs */
379 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE, CTLTYPE_INT,
380 "debug", &node, sysctl_ath_verify, 0, &ath_debug, 0,
381 ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
382 goto err;
383
384 ath_debug_nodenum = node->sysctl_num;
385
386 #endif /* AR_DEBUG */
387 return;
388 err:
389 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
390 }
391 #endif /* __NetBSD__ */
392
393 int
394 ath_attach(u_int16_t devid, struct ath_softc *sc)
395 {
396 struct ieee80211com *ic = &sc->sc_ic;
397 struct ifnet *ifp = &ic->ic_if;
398 struct ath_hal *ah;
399 HAL_STATUS status;
400 int error = 0;
401
402 DPRINTF(("ath_attach: devid 0x%x\n", devid));
403
404 #ifdef __FreeBSD__
405 /* set these up early for if_printf use */
406 if_initname(ifp, device_get_name(sc->sc_dev),
407 device_get_unit(sc->sc_dev));
408 #else
409 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
410 #endif
411
412 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
413 if (ah == NULL) {
414 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
415 status);
416 error = ENXIO;
417 goto bad;
418 }
419 if (ah->ah_abi != HAL_ABI_VERSION) {
420 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
421 ah->ah_abi, HAL_ABI_VERSION);
422 error = ENXIO;
423 goto bad;
424 }
425 if_printf(ifp, "mac %d.%d phy %d.%d",
426 ah->ah_macVersion, ah->ah_macRev,
427 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
428 if (ah->ah_analog5GhzRev)
429 printf(" 5ghz radio %d.%d",
430 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
431 if (ah->ah_analog2GhzRev)
432 printf(" 2ghz radio %d.%d",
433 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
434 printf("\n");
435 sc->sc_ah = ah;
436 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
437
438 /*
439 * Collect the channel list using the default country
440 * code and including outdoor channels. The 802.11 layer
441 * is resposible for filtering this list based on settings
442 * like the phy mode.
443 */
444 error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
445 if (error != 0)
446 goto bad;
447 /*
448 * Copy these back; they are set as a side effect
449 * of constructing the channel list.
450 */
451 ath_regdomain = ath_hal_getregdomain(ah);
452 ath_countrycode = ath_hal_getcountrycode(ah);
453
454 /*
455 * Setup rate tables for all potential media types.
456 */
457 ath_rate_setup(sc, IEEE80211_MODE_11A);
458 ath_rate_setup(sc, IEEE80211_MODE_11B);
459 ath_rate_setup(sc, IEEE80211_MODE_11G);
460 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
461
462 error = ath_desc_alloc(sc);
463 if (error != 0) {
464 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
465 goto bad;
466 }
467 ATH_CALLOUT_INIT(&sc->sc_scan_ch);
468 ATH_CALLOUT_INIT(&sc->sc_cal_ch);
469
470 #ifdef __FreeBSD__
471 ATH_TXBUF_LOCK_INIT(sc);
472 ATH_TXQ_LOCK_INIT(sc);
473 #endif
474
475 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
476 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
477 ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
478 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
479 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
480 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
481
482 /*
483 * For now just pre-allocate one data queue and one
484 * beacon queue. Note that the HAL handles resetting
485 * them at the needed time. Eventually we'll want to
486 * allocate more tx queues for splitting management
487 * frames and for QOS support.
488 */
489 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
490 HAL_TX_QUEUE_DATA,
491 AH_TRUE /* enable interrupts */
492 );
493 if (sc->sc_txhalq == (u_int) -1) {
494 if_printf(ifp, "unable to setup a data xmit queue!\n");
495 goto bad;
496 }
497 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
498 HAL_TX_QUEUE_BEACON,
499 AH_TRUE /* enable interrupts */
500 );
501 if (sc->sc_bhalq == (u_int) -1) {
502 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
503 goto bad;
504 }
505
506 ifp->if_softc = sc;
507 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
508 ifp->if_start = ath_start;
509 ifp->if_watchdog = ath_watchdog;
510 ifp->if_ioctl = ath_ioctl;
511 ifp->if_init = ath_init;
512 #ifdef __FreeBSD__
513 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
514 #else
515 #if 0
516 ifp->if_stop = ath_stop; /* XXX */
517 #endif
518 IFQ_SET_READY(&ifp->if_snd);
519 #endif
520
521 ic->ic_softc = sc;
522 ic->ic_newassoc = ath_newassoc;
523 /* XXX not right but it's not used anywhere important */
524 ic->ic_phytype = IEEE80211_T_OFDM;
525 ic->ic_opmode = IEEE80211_M_STA;
526 ic->ic_caps = IEEE80211_C_WEP /* wep supported */
527 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
528 | IEEE80211_C_HOSTAP /* hostap mode */
529 | IEEE80211_C_MONITOR /* monitor mode */
530 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
531 | IEEE80211_C_RCVMGT; /* recv management frames */
532
533 /* get mac address from hardware */
534 ath_hal_getmac(ah, ic->ic_myaddr);
535
536 #ifdef __NetBSD__
537 if_attach(ifp);
538 #endif
539 /* call MI attach routine. */
540 ieee80211_ifattach(ifp);
541 /* override default methods */
542 ic->ic_node_alloc = ath_node_alloc;
543 ic->ic_node_free = ath_node_free;
544 ic->ic_node_copy = ath_node_copy;
545 ic->ic_node_getrssi = ath_node_getrssi;
546 sc->sc_newstate = ic->ic_newstate;
547 ic->ic_newstate = ath_newstate;
548 /* complete initialization */
549 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
550
551 #if NBPFILTER > 0
552 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
553 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
554 &sc->sc_drvbpf);
555 #endif
556 /*
557 * Initialize constant fields.
558 *
559 * NB: the channel is setup each time we transition to the
560 * RUN state to avoid filling it in for each frame.
561 */
562 sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
563 sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
564
565 sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
566 sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
567
568 if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
569
570 #ifdef __NetBSD__
571 sc->sc_flags |= ATH_ATTACHED;
572 /*
573 * Make sure the interface is shutdown during reboot.
574 */
575 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
576 if (sc->sc_sdhook == NULL)
577 printf("%s: WARNING: unable to establish shutdown hook\n",
578 sc->sc_dev.dv_xname);
579 sc->sc_powerhook = powerhook_establish(ath_power, sc);
580 if (sc->sc_powerhook == NULL)
581 printf("%s: WARNING: unable to establish power hook\n",
582 sc->sc_dev.dv_xname);
583 #endif
584 return 0;
585 bad:
586 if (ah)
587 ath_hal_detach(ah);
588 sc->sc_invalid = 1;
589 return error;
590 }
591
592 int
593 ath_detach(struct ath_softc *sc)
594 {
595 struct ifnet *ifp = &sc->sc_ic.ic_if;
596 ath_softc_critsect_decl(s);
597
598 DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
599 if ((sc->sc_flags & ATH_ATTACHED) == 0)
600 return (0);
601
602 ath_softc_critsect_begin(sc, s);
603 ath_stop(ifp);
604 #if NBPFILTER > 0
605 bpfdetach(ifp);
606 #endif
607 ath_desc_free(sc);
608 ath_hal_detach(sc->sc_ah);
609 ieee80211_ifdetach(ifp);
610 #ifdef __NetBSD__
611 if_detach(ifp);
612 #endif /* __NetBSD__ */
613 ath_softc_critsect_end(sc, s);
614 #ifdef __NetBSD__
615 powerhook_disestablish(sc->sc_powerhook);
616 shutdownhook_disestablish(sc->sc_sdhook);
617 #endif /* __NetBSD__ */
618 #ifdef __FreeBSD__
619
620 ATH_TXBUF_LOCK_DESTROY(sc);
621 ATH_TXQ_LOCK_DESTROY(sc);
622
623 #endif /* __FreeBSD__ */
624 return 0;
625 }
626
627 #ifdef __NetBSD__
628 void
629 ath_power(int why, void *arg)
630 {
631 struct ath_softc *sc = arg;
632 int s;
633
634 DPRINTF(("ath_power(%d)\n", why));
635
636 s = splnet();
637 switch (why) {
638 case PWR_SUSPEND:
639 case PWR_STANDBY:
640 ath_suspend(sc, why);
641 break;
642 case PWR_RESUME:
643 ath_resume(sc, why);
644 break;
645 case PWR_SOFTSUSPEND:
646 case PWR_SOFTSTANDBY:
647 case PWR_SOFTRESUME:
648 break;
649 }
650 splx(s);
651 }
652 #endif
653
654 void
655 ath_suspend(struct ath_softc *sc, int why)
656 {
657 struct ifnet *ifp = &sc->sc_ic.ic_if;
658
659 DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
660
661 ath_stop(ifp);
662 if (sc->sc_power != NULL)
663 (*sc->sc_power)(sc, why);
664 }
665
666 void
667 ath_resume(struct ath_softc *sc, int why)
668 {
669 struct ifnet *ifp = &sc->sc_ic.ic_if;
670
671 DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
672
673 if (ifp->if_flags & IFF_UP) {
674 ath_init(ifp);
675 #if 0
676 (void)ath_intr(sc);
677 #endif
678 if (sc->sc_power != NULL)
679 (*sc->sc_power)(sc, why);
680 if (ifp->if_flags & IFF_RUNNING)
681 ath_start(ifp);
682 }
683 }
684
685 #ifdef __NetBSD__
686 void
687 ath_shutdown(void *arg)
688 {
689 struct ath_softc *sc = arg;
690
691 ath_stop(&sc->sc_ic.ic_if);
692 }
693 #else
694 void
695 ath_shutdown(struct ath_softc *sc)
696 {
697 #if 1
698 return;
699 #else
700 struct ifnet *ifp = &sc->sc_ic.ic_if;
701
702 DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
703
704 ath_stop(ifp);
705 #endif
706 }
707 #endif
708
709 #ifdef __NetBSD__
710 int
711 ath_intr(void *arg)
712 {
713 return ath_intr1((struct ath_softc *)arg);
714 }
715 #else
716 void
717 ath_intr(void *arg)
718 {
719 (void)ath_intr1((struct ath_softc *)arg);
720 }
721 #endif
722
723 static int
724 ath_intr1(struct ath_softc *sc)
725 {
726 struct ieee80211com *ic = &sc->sc_ic;
727 struct ifnet *ifp = &ic->ic_if;
728 struct ath_hal *ah = sc->sc_ah;
729 HAL_INT status;
730
731 if (sc->sc_invalid) {
732 /*
733 * The hardware is not ready/present, don't touch anything.
734 * Note this can happen early on if the IRQ is shared.
735 */
736 DPRINTF(("ath_intr: invalid; ignored\n"));
737 return 0;
738 }
739 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
740 DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
741 ath_hal_getisr(ah, &status); /* clear ISR */
742 ath_hal_intrset(ah, 0); /* disable further intr's */
743 return 1; /* XXX */
744 }
745 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
746 DPRINTF2(("ath_intr: status 0x%x\n", status));
747 #ifdef AR_DEBUG
748 if (ath_debug &&
749 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
750 if_printf(ifp, "ath_intr: status 0x%x\n", status);
751 ath_hal_dumpstate(ah);
752 }
753 #endif /* AR_DEBUG */
754 status &= sc->sc_imask; /* discard unasked for bits */
755 if (status & HAL_INT_FATAL) {
756 sc->sc_stats.ast_hardware++;
757 ath_hal_intrset(ah, 0); /* disable intr's until reset */
758 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
759 } else if (status & HAL_INT_RXORN) {
760 sc->sc_stats.ast_rxorn++;
761 ath_hal_intrset(ah, 0); /* disable intr's until reset */
762 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
763 } else {
764 if (status & HAL_INT_RXEOL) {
765 /*
766 * NB: the hardware should re-read the link when
767 * RXE bit is written, but it doesn't work at
768 * least on older hardware revs.
769 */
770 sc->sc_stats.ast_rxeol++;
771 sc->sc_rxlink = NULL;
772 }
773 if (status & HAL_INT_TXURN) {
774 sc->sc_stats.ast_txurn++;
775 /* bump tx trigger level */
776 ath_hal_updatetxtriglevel(ah, AH_TRUE);
777 }
778 if (status & HAL_INT_RX)
779 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
780 if (status & HAL_INT_TX)
781 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
782 if (status & HAL_INT_SWBA)
783 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
784 if (status & HAL_INT_BMISS) {
785 sc->sc_stats.ast_bmiss++;
786 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
787 }
788 }
789 return 1;
790 }
791
792 static void
793 ath_fatal_proc(void *arg, int pending)
794 {
795 struct ath_softc *sc = arg;
796
797 device_printf(sc->sc_dev, "hardware error; resetting\n");
798 ath_reset(sc);
799 }
800
801 static void
802 ath_rxorn_proc(void *arg, int pending)
803 {
804 struct ath_softc *sc = arg;
805
806 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
807 ath_reset(sc);
808 }
809
810 static void
811 ath_bmiss_proc(void *arg, int pending)
812 {
813 struct ath_softc *sc = arg;
814 struct ieee80211com *ic = &sc->sc_ic;
815
816 DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
817 if (ic->ic_opmode != IEEE80211_M_STA)
818 return;
819 if (ic->ic_state == IEEE80211_S_RUN) {
820 /*
821 * Rather than go directly to scan state, try to
822 * reassociate first. If that fails then the state
823 * machine will drop us into scanning after timing
824 * out waiting for a probe response.
825 */
826 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
827 }
828 }
829
830 static u_int
831 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
832 {
833 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
834
835 switch (mode) {
836 case IEEE80211_MODE_AUTO:
837 return 0;
838 case IEEE80211_MODE_11A:
839 return CHANNEL_A;
840 case IEEE80211_MODE_11B:
841 return CHANNEL_B;
842 case IEEE80211_MODE_11G:
843 return CHANNEL_PUREG;
844 case IEEE80211_MODE_TURBO:
845 return CHANNEL_T;
846 default:
847 panic("%s: unsupported mode %d\n", __func__, mode);
848 return 0;
849 }
850 }
851
852 #ifdef __NetBSD__
853 static int
854 ath_init(struct ifnet *ifp)
855 {
856 return ath_init1((struct ath_softc *)ifp->if_softc);
857 }
858 #else
859 static void
860 ath_init(void *arg)
861 {
862 (void)ath_init1((struct ath_softc *)arg);
863 }
864 #endif
865
866 static int
867 ath_init1(struct ath_softc *sc)
868 {
869 struct ieee80211com *ic = &sc->sc_ic;
870 struct ifnet *ifp = &ic->ic_if;
871 struct ieee80211_node *ni;
872 enum ieee80211_phymode mode;
873 struct ath_hal *ah = sc->sc_ah;
874 HAL_STATUS status;
875 HAL_CHANNEL hchan;
876 int error = 0;
877 ath_softc_critsect_decl(s);
878
879 DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
880
881 #ifdef __NetBSD__
882 if ((error = ath_enable(sc)) != 0)
883 return error;
884 #endif
885
886 ath_softc_critsect_begin(sc, s);
887 /*
888 * Stop anything previously setup. This is safe
889 * whether this is the first time through or not.
890 */
891 ath_stop(ifp);
892
893 /*
894 * The basic interface to setting the hardware in a good
895 * state is ``reset''. On return the hardware is known to
896 * be powered up and with interrupts disabled. This must
897 * be followed by initialization of the appropriate bits
898 * and then setup of the interrupt mask.
899 */
900 hchan.channel = ic->ic_ibss_chan->ic_freq;
901 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
902 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
903 if_printf(ifp, "unable to reset hardware; hal status %u\n",
904 status);
905 error = -1;
906 goto done;
907 }
908
909 /*
910 * Setup the hardware after reset: the key cache
911 * is filled as needed and the receive engine is
912 * set going. Frame transmit is handled entirely
913 * in the frame output path; there's nothing to do
914 * here except setup the interrupt mask.
915 */
916 if (ic->ic_flags & IEEE80211_F_WEPON)
917 ath_initkeytable(sc);
918 if ((error = ath_startrecv(sc)) != 0) {
919 if_printf(ifp, "unable to start recv logic\n");
920 goto done;
921 }
922
923 /*
924 * Enable interrupts.
925 */
926 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
927 | HAL_INT_RXEOL | HAL_INT_RXORN
928 | HAL_INT_FATAL | HAL_INT_GLOBAL;
929 ath_hal_intrset(ah, sc->sc_imask);
930
931 ifp->if_flags |= IFF_RUNNING;
932 ic->ic_state = IEEE80211_S_INIT;
933
934 /*
935 * The hardware should be ready to go now so it's safe
936 * to kick the 802.11 state machine as it's likely to
937 * immediately call back to us to send mgmt frames.
938 */
939 ni = ic->ic_bss;
940 ni->ni_chan = ic->ic_ibss_chan;
941 mode = ieee80211_chan2mode(ic, ni->ni_chan);
942 if (mode != sc->sc_curmode)
943 ath_setcurmode(sc, mode);
944 if (ic->ic_opmode != IEEE80211_M_MONITOR)
945 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
946 else
947 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
948 done:
949 ath_softc_critsect_end(sc, s);
950 return error;
951 }
952
953 static void
954 ath_stop(struct ifnet *ifp)
955 {
956 struct ieee80211com *ic = (struct ieee80211com *) ifp;
957 struct ath_softc *sc = ifp->if_softc;
958 struct ath_hal *ah = sc->sc_ah;
959 ath_softc_critsect_decl(s);
960
961 DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
962 sc->sc_invalid, ifp->if_flags));
963
964 ath_softc_critsect_begin(sc, s);
965 if (ifp->if_flags & IFF_RUNNING) {
966 /*
967 * Shutdown the hardware and driver:
968 * disable interrupts
969 * turn off timers
970 * clear transmit machinery
971 * clear receive machinery
972 * drain and release tx queues
973 * reclaim beacon resources
974 * reset 802.11 state machine
975 * power down hardware
976 *
977 * Note that some of this work is not possible if the
978 * hardware is gone (invalid).
979 */
980 ifp->if_flags &= ~IFF_RUNNING;
981 ifp->if_timer = 0;
982 if (!sc->sc_invalid)
983 ath_hal_intrset(ah, 0);
984 ath_draintxq(sc);
985 if (!sc->sc_invalid)
986 ath_stoprecv(sc);
987 else
988 sc->sc_rxlink = NULL;
989 #ifdef __FreeBSD__
990 IF_DRAIN(&ifp->if_snd);
991 #else
992 IF_PURGE(&ifp->if_snd);
993 #endif
994 ath_beacon_free(sc);
995 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
996 if (!sc->sc_invalid) {
997 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
998 }
999 #ifdef __NetBSD__
1000 ath_disable(sc);
1001 #endif
1002 }
1003 ath_softc_critsect_end(sc, s);
1004 }
1005
1006 /*
1007 * Reset the hardware w/o losing operational state. This is
1008 * basically a more efficient way of doing ath_stop, ath_init,
1009 * followed by state transitions to the current 802.11
1010 * operational state. Used to recover from errors rx overrun
1011 * and to reset the hardware when rf gain settings must be reset.
1012 */
1013 static void
1014 ath_reset(struct ath_softc *sc)
1015 {
1016 struct ieee80211com *ic = &sc->sc_ic;
1017 struct ifnet *ifp = &ic->ic_if;
1018 struct ath_hal *ah = sc->sc_ah;
1019 struct ieee80211_channel *c;
1020 HAL_STATUS status;
1021 HAL_CHANNEL hchan;
1022
1023 /*
1024 * Convert to a HAL channel description with the flags
1025 * constrained to reflect the current operating mode.
1026 */
1027 c = ic->ic_ibss_chan;
1028 hchan.channel = c->ic_freq;
1029 hchan.channelFlags = ath_chan2flags(ic, c);
1030
1031 ath_hal_intrset(ah, 0); /* disable interrupts */
1032 ath_draintxq(sc); /* stop xmit side */
1033 ath_stoprecv(sc); /* stop recv side */
1034 /* NB: indicate channel change so we do a full reset */
1035 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
1036 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1037 __func__, status);
1038 ath_hal_intrset(ah, sc->sc_imask);
1039 if (ath_startrecv(sc) != 0) /* restart recv */
1040 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1041 ath_start(ifp); /* restart xmit */
1042 if (ic->ic_state == IEEE80211_S_RUN)
1043 ath_beacon_config(sc); /* restart beacons */
1044 }
1045
1046 static void
1047 ath_start(struct ifnet *ifp)
1048 {
1049 struct ath_softc *sc = ifp->if_softc;
1050 struct ath_hal *ah = sc->sc_ah;
1051 struct ieee80211com *ic = &sc->sc_ic;
1052 struct ieee80211_node *ni;
1053 struct ath_buf *bf;
1054 struct mbuf *m;
1055 struct ieee80211_frame *wh;
1056 ath_txbuf_critsect_decl(s);
1057
1058 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1059 return;
1060 for (;;) {
1061 /*
1062 * Grab a TX buffer and associated resources.
1063 */
1064 ath_txbuf_critsect_begin(sc, s);
1065 bf = TAILQ_FIRST(&sc->sc_txbuf);
1066 if (bf != NULL)
1067 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
1068 ath_txbuf_critsect_end(sc, s);
1069 if (bf == NULL) {
1070 DPRINTF(("ath_start: out of xmit buffers\n"));
1071 sc->sc_stats.ast_tx_qstop++;
1072 ifp->if_flags |= IFF_OACTIVE;
1073 break;
1074 }
1075 /*
1076 * Poll the management queue for frames; they
1077 * have priority over normal data frames.
1078 */
1079 IF_DEQUEUE(&ic->ic_mgtq, m);
1080 if (m == NULL) {
1081 /*
1082 * No data frames go out unless we're associated.
1083 */
1084 if (ic->ic_state != IEEE80211_S_RUN) {
1085 DPRINTF(("ath_start: ignore data packet, "
1086 "state %u\n", ic->ic_state));
1087 sc->sc_stats.ast_tx_discard++;
1088 ath_txbuf_critsect_begin(sc, s);
1089 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1090 ath_txbuf_critsect_end(sc, s);
1091 break;
1092 }
1093 IF_DEQUEUE(&ifp->if_snd, m);
1094 if (m == NULL) {
1095 ath_txbuf_critsect_begin(sc, s);
1096 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1097 ath_txbuf_critsect_end(sc, s);
1098 break;
1099 }
1100 ifp->if_opackets++;
1101
1102 #ifdef __NetBSD__
1103 #if NBPFILTER > 0
1104 if (ifp->if_bpf)
1105 bpf_mtap(ifp->if_bpf, m);
1106 #endif
1107 #endif
1108 #ifdef __FreeBSD__
1109 BPF_MTAP(ifp, m);
1110 #endif
1111 /*
1112 * Encapsulate the packet in prep for transmission.
1113 */
1114 m = ieee80211_encap(ifp, m, &ni);
1115 if (m == NULL) {
1116 DPRINTF(("ath_start: encapsulation failure\n"));
1117 sc->sc_stats.ast_tx_encap++;
1118 goto bad;
1119 }
1120 wh = mtod(m, struct ieee80211_frame *);
1121 if (ic->ic_flags & IEEE80211_F_WEPON)
1122 wh->i_fc[1] |= IEEE80211_FC1_WEP;
1123 } else {
1124 /*
1125 * Hack! The referenced node pointer is in the
1126 * rcvif field of the packet header. This is
1127 * placed there by ieee80211_mgmt_output because
1128 * we need to hold the reference with the frame
1129 * and there's no other way (other than packet
1130 * tags which we consider too expensive to use)
1131 * to pass it along.
1132 */
1133 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1134 m->m_pkthdr.rcvif = NULL;
1135
1136 wh = mtod(m, struct ieee80211_frame *);
1137 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1138 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1139 /* fill time stamp */
1140 u_int64_t tsf;
1141 u_int32_t *tstamp;
1142
1143 tsf = ath_hal_gettsf64(ah);
1144 /* XXX: adjust 100us delay to xmit */
1145 tsf += 100;
1146 tstamp = (u_int32_t *)&wh[1];
1147 tstamp[0] = htole32(tsf & 0xffffffff);
1148 tstamp[1] = htole32(tsf >> 32);
1149 }
1150 sc->sc_stats.ast_tx_mgmt++;
1151 }
1152 #if NBPFILTER > 0
1153 if (ic->ic_rawbpf)
1154 bpf_mtap(ic->ic_rawbpf, m);
1155 #endif
1156
1157 #if NBPFILTER > 0
1158 if (sc->sc_drvbpf) {
1159 #ifdef __FreeBSD__
1160 struct mbuf *mb;
1161
1162 MGETHDR(mb, M_DONTWAIT, m->m_type);
1163 if (mb != NULL) {
1164 sc->sc_tx_th.wt_rate =
1165 ni->ni_rates.rs_rates[ni->ni_txrate];
1166
1167 mb->m_next = m;
1168 mb->m_data = (caddr_t)&sc->sc_tx_th;
1169 mb->m_len = sizeof(sc->sc_tx_th);
1170 mb->m_pkthdr.len += mb->m_len;
1171 bpf_mtap(sc->sc_drvbpf, mb);
1172 m_free(mb);
1173 }
1174 #else
1175 struct mbuf mb;
1176
1177 M_COPY_PKTHDR(&mb, m);
1178 sc->sc_tx_th.wt_rate =
1179 ni->ni_rates.rs_rates[ni->ni_txrate];
1180
1181 mb.m_next = m;
1182 mb.m_data = (caddr_t)&sc->sc_tx_th;
1183 mb.m_len = sizeof(sc->sc_tx_th);
1184 mb.m_pkthdr.len += mb.m_len;
1185 bpf_mtap(sc->sc_drvbpf, &mb);
1186 #endif
1187 }
1188 #endif
1189
1190 if (ath_tx_start(sc, ni, bf, m)) {
1191 bad:
1192 ath_txbuf_critsect_begin(sc, s);
1193 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1194 ath_txbuf_critsect_end(sc, s);
1195 ifp->if_oerrors++;
1196 if (ni && ni != ic->ic_bss)
1197 ieee80211_free_node(ic, ni);
1198 continue;
1199 }
1200
1201 sc->sc_tx_timer = 5;
1202 ifp->if_timer = 1;
1203 }
1204 }
1205
1206 static int
1207 ath_media_change(struct ifnet *ifp)
1208 {
1209 int error;
1210
1211 error = ieee80211_media_change(ifp);
1212 if (error == ENETRESET) {
1213 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1214 (IFF_RUNNING|IFF_UP))
1215 ath_init(ifp); /* XXX lose error */
1216 error = 0;
1217 }
1218 return error;
1219 }
1220
1221 static void
1222 ath_watchdog(struct ifnet *ifp)
1223 {
1224 struct ath_softc *sc = ifp->if_softc;
1225 struct ieee80211com *ic = &sc->sc_ic;
1226
1227 ifp->if_timer = 0;
1228 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1229 return;
1230 if (sc->sc_tx_timer) {
1231 if (--sc->sc_tx_timer == 0) {
1232 if_printf(ifp, "device timeout\n");
1233 #ifdef AR_DEBUG
1234 if (ath_debug)
1235 ath_hal_dumpstate(sc->sc_ah);
1236 #endif /* AR_DEBUG */
1237 ath_init(ifp); /* XXX ath_reset??? */
1238 ifp->if_oerrors++;
1239 sc->sc_stats.ast_watchdog++;
1240 return;
1241 }
1242 ifp->if_timer = 1;
1243 }
1244 if (ic->ic_fixed_rate == -1) {
1245 /*
1246 * Run the rate control algorithm if we're not
1247 * locked at a fixed rate.
1248 */
1249 if (ic->ic_opmode == IEEE80211_M_STA)
1250 ath_rate_ctl(sc, ic->ic_bss);
1251 else
1252 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1253 }
1254 ieee80211_watchdog(ifp);
1255 }
1256
1257 static int
1258 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1259 {
1260 struct ath_softc *sc = ifp->if_softc;
1261 struct ifreq *ifr = (struct ifreq *)data;
1262 int error = 0;
1263 ath_softc_critsect_decl(s);
1264
1265 ath_softc_critsect_begin(sc, s);
1266 switch (cmd) {
1267 case SIOCSIFFLAGS:
1268 if (ifp->if_flags & IFF_UP) {
1269 if (ifp->if_flags & IFF_RUNNING) {
1270 /*
1271 * To avoid rescanning another access point,
1272 * do not call ath_init() here. Instead,
1273 * only reflect promisc mode settings.
1274 */
1275 ath_mode_init(sc);
1276 } else {
1277 /*
1278 * Beware of being called during detach to
1279 * reset promiscuous mode. In that case we
1280 * will still be marked UP but not RUNNING.
1281 * However trying to re-init the interface
1282 * is the wrong thing to do as we've already
1283 * torn down much of our state. There's
1284 * probably a better way to deal with this.
1285 */
1286 if (!sc->sc_invalid)
1287 ath_init(ifp); /* XXX lose error */
1288 }
1289 } else
1290 ath_stop(ifp);
1291 break;
1292 case SIOCADDMULTI:
1293 case SIOCDELMULTI:
1294 #ifdef __FreeBSD__
1295 /*
1296 * The upper layer has already installed/removed
1297 * the multicast address(es), just recalculate the
1298 * multicast filter for the card.
1299 */
1300 if (ifp->if_flags & IFF_RUNNING)
1301 ath_mode_init(sc);
1302 #endif
1303 #ifdef __NetBSD__
1304 error = (cmd == SIOCADDMULTI) ?
1305 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1306 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1307 if (error == ENETRESET) {
1308 if (ifp->if_flags & IFF_RUNNING)
1309 ath_mode_init(sc);
1310 error = 0;
1311 }
1312 #endif
1313 break;
1314 case SIOCGATHSTATS:
1315 error = copyout(&sc->sc_stats,
1316 ifr->ifr_data, sizeof (sc->sc_stats));
1317 break;
1318 case SIOCGATHDIAG: {
1319 struct ath_diag *ad = (struct ath_diag *)data;
1320 struct ath_hal *ah = sc->sc_ah;
1321 void *data;
1322 u_int size;
1323
1324 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
1325 if (size < ad->ad_size)
1326 ad->ad_size = size;
1327 if (data)
1328 error = copyout(data, ad->ad_data, ad->ad_size);
1329 } else
1330 error = EINVAL;
1331 break;
1332 }
1333 default:
1334 error = ieee80211_ioctl(ifp, cmd, data);
1335 if (error == ENETRESET) {
1336 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1337 (IFF_RUNNING|IFF_UP))
1338 ath_init(ifp); /* XXX lose error */
1339 error = 0;
1340 }
1341 break;
1342 }
1343 ath_softc_critsect_end(sc, s);
1344 return error;
1345 }
1346
1347 /*
1348 * Fill the hardware key cache with key entries.
1349 */
1350 static void
1351 ath_initkeytable(struct ath_softc *sc)
1352 {
1353 struct ieee80211com *ic = &sc->sc_ic;
1354 struct ath_hal *ah = sc->sc_ah;
1355 int i;
1356
1357 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1358 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1359 if (k->wk_len == 0)
1360 ath_hal_keyreset(ah, i);
1361 else
1362 /* XXX return value */
1363 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
1364 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
1365 }
1366 }
1367
1368 static void
1369 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1370 {
1371 u_int32_t val;
1372 u_int8_t pos;
1373
1374 val = LE_READ_4(dl + 0);
1375 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1376 val = LE_READ_4(dl + 3);
1377 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1378 pos &= 0x3f;
1379 (*mfilt)[pos / 32] |= (1 << (pos % 32));
1380 }
1381
1382 #ifdef __FreeBSD__
1383 static void
1384 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1385 {
1386 struct ieee80211com *ic = &sc->sc_ic;
1387 struct ifnet *ifp = &ic->ic_if;
1388 struct ifmultiaddr *ifma;
1389
1390 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1391 caddr_t dl;
1392
1393 /* calculate XOR of eight 6bit values */
1394 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1395 ath_mcastfilter_accum(dl, &mfilt);
1396 }
1397 }
1398 #else
1399 static void
1400 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1401 {
1402 struct ifnet *ifp = &sc->sc_ic.ic_if;
1403 struct ether_multi *enm;
1404 struct ether_multistep estep;
1405
1406 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1407 while (enm != NULL) {
1408 /* XXX Punt on ranges. */
1409 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1410 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1411 ifp->if_flags |= IFF_ALLMULTI;
1412 return;
1413 }
1414 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1415 ETHER_NEXT_MULTI(estep, enm);
1416 }
1417 ifp->if_flags &= ~IFF_ALLMULTI;
1418 }
1419 #endif
1420
1421 /*
1422 * Calculate the receive filter according to the
1423 * operating mode and state:
1424 *
1425 * o always accept unicast, broadcast, and multicast traffic
1426 * o maintain current state of phy error reception
1427 * o probe request frames are accepted only when operating in
1428 * hostap, adhoc, or monitor modes
1429 * o enable promiscuous mode according to the interface state
1430 * o accept beacons:
1431 * - when operating in adhoc mode so the 802.11 layer creates
1432 * node table entries for peers,
1433 * - when operating in station mode for collecting rssi data when
1434 * the station is otherwise quiet, or
1435 * - when scanning
1436 */
1437 static u_int32_t
1438 ath_calcrxfilter(struct ath_softc *sc)
1439 {
1440 struct ieee80211com *ic = &sc->sc_ic;
1441 struct ath_hal *ah = sc->sc_ah;
1442 struct ifnet *ifp = &ic->ic_if;
1443 u_int32_t rfilt;
1444
1445 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1446 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1447 if (ic->ic_opmode != IEEE80211_M_STA)
1448 rfilt |= HAL_RX_FILTER_PROBEREQ;
1449 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1450 (ifp->if_flags & IFF_PROMISC))
1451 rfilt |= HAL_RX_FILTER_PROM;
1452 if (ic->ic_opmode == IEEE80211_M_STA ||
1453 ic->ic_opmode == IEEE80211_M_IBSS ||
1454 ic->ic_state == IEEE80211_S_SCAN)
1455 rfilt |= HAL_RX_FILTER_BEACON;
1456 return rfilt;
1457 }
1458
1459 static void
1460 ath_mode_init(struct ath_softc *sc)
1461 {
1462 #ifdef __FreeBSD__
1463 struct ieee80211com *ic = &sc->sc_ic;
1464 #endif
1465 struct ath_hal *ah = sc->sc_ah;
1466 u_int32_t rfilt, mfilt[2];
1467
1468 /* configure rx filter */
1469 rfilt = ath_calcrxfilter(sc);
1470 ath_hal_setrxfilter(ah, rfilt);
1471
1472 /* configure operational mode */
1473 ath_hal_setopmode(ah);
1474
1475 /* calculate and install multicast filter */
1476 #ifdef __FreeBSD__
1477 if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
1478 mfilt[0] = mfilt[1] = 0;
1479 ath_mcastfilter_compute(sc, &mfilt);
1480 } else {
1481 mfilt[0] = mfilt[1] = ~0;
1482 }
1483 #endif
1484 #ifdef __NetBSD__
1485 mfilt[0] = mfilt[1] = 0;
1486 ath_mcastfilter_compute(sc, &mfilt);
1487 #endif
1488 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1489 DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1490 rfilt, mfilt[0], mfilt[1]));
1491 }
1492
1493 #ifdef __FreeBSD__
1494 static void
1495 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1496 {
1497 struct ath_buf *bf = arg;
1498
1499 KASSERT(nseg <= ATH_MAX_SCATTER,
1500 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1501 bf->bf_mapsize = mapsize;
1502 bf->bf_nseg = nseg;
1503 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1504 }
1505 #endif /* __FreeBSD__ */
1506
1507 static struct mbuf *
1508 ath_getmbuf(int flags, int type, u_int pktlen)
1509 {
1510 struct mbuf *m;
1511
1512 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1513 #ifdef __FreeBSD__
1514 if (pktlen <= MHLEN)
1515 MGETHDR(m, flags, type);
1516 else
1517 m = m_getcl(flags, type, M_PKTHDR);
1518 #else
1519 MGETHDR(m, flags, type);
1520 if (m != NULL && pktlen > MHLEN)
1521 MCLGET(m, flags);
1522 #endif
1523 return m;
1524 }
1525
1526 static int
1527 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1528 {
1529 struct ieee80211com *ic = &sc->sc_ic;
1530 struct ifnet *ifp = &ic->ic_if;
1531 struct ath_hal *ah = sc->sc_ah;
1532 struct ieee80211_frame *wh;
1533 struct ath_buf *bf;
1534 struct ath_desc *ds;
1535 struct mbuf *m;
1536 int error, pktlen;
1537 u_int8_t *frm, rate;
1538 u_int16_t capinfo;
1539 struct ieee80211_rateset *rs;
1540 const HAL_RATE_TABLE *rt;
1541
1542 bf = sc->sc_bcbuf;
1543 if (bf->bf_m != NULL) {
1544 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1545 m_freem(bf->bf_m);
1546 bf->bf_m = NULL;
1547 bf->bf_node = NULL;
1548 }
1549 /*
1550 * NB: the beacon data buffer must be 32-bit aligned;
1551 * we assume the mbuf routines will return us something
1552 * with this alignment (perhaps should assert).
1553 */
1554 rs = &ni->ni_rates;
1555 pktlen = sizeof (struct ieee80211_frame)
1556 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1557 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1558 pktlen += 2;
1559 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1560 if (m == NULL) {
1561 DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1562 pktlen));
1563 sc->sc_stats.ast_be_nombuf++;
1564 return ENOMEM;
1565 }
1566
1567 wh = mtod(m, struct ieee80211_frame *);
1568 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1569 IEEE80211_FC0_SUBTYPE_BEACON;
1570 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1571 *(u_int16_t *)wh->i_dur = 0;
1572 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1573 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1574 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1575 *(u_int16_t *)wh->i_seq = 0;
1576
1577 /*
1578 * beacon frame format
1579 * [8] time stamp
1580 * [2] beacon interval
1581 * [2] cabability information
1582 * [tlv] ssid
1583 * [tlv] supported rates
1584 * [tlv] parameter set (IBSS)
1585 * [tlv] extended supported rates
1586 */
1587 frm = (u_int8_t *)&wh[1];
1588 memset(frm, 0, 8); /* timestamp is set by hardware */
1589 frm += 8;
1590 *(u_int16_t *)frm = htole16(ni->ni_intval);
1591 frm += 2;
1592 if (ic->ic_opmode == IEEE80211_M_IBSS)
1593 capinfo = IEEE80211_CAPINFO_IBSS;
1594 else
1595 capinfo = IEEE80211_CAPINFO_ESS;
1596 if (ic->ic_flags & IEEE80211_F_WEPON)
1597 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1598 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1599 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1600 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1601 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1602 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1603 *(u_int16_t *)frm = htole16(capinfo);
1604 frm += 2;
1605 *frm++ = IEEE80211_ELEMID_SSID;
1606 *frm++ = ni->ni_esslen;
1607 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1608 frm += ni->ni_esslen;
1609 frm = ieee80211_add_rates(frm, rs);
1610 *frm++ = IEEE80211_ELEMID_DSPARMS;
1611 *frm++ = 1;
1612 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1613 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1614 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1615 *frm++ = 2;
1616 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1617 } else {
1618 /* TODO: TIM */
1619 *frm++ = IEEE80211_ELEMID_TIM;
1620 *frm++ = 4; /* length */
1621 *frm++ = 0; /* DTIM count */
1622 *frm++ = 1; /* DTIM period */
1623 *frm++ = 0; /* bitmap control */
1624 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1625 }
1626 frm = ieee80211_add_xrates(frm, rs);
1627 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1628 KASSERT(m->m_pkthdr.len <= pktlen,
1629 ("beacon bigger than expected, len %u calculated %u",
1630 m->m_pkthdr.len, pktlen));
1631
1632 DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1633 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1634 if (error != 0) {
1635 m_freem(m);
1636 return error;
1637 }
1638 KASSERT(bf->bf_nseg == 1,
1639 ("ath_beacon_alloc: multi-segment packet; nseg %u",
1640 bf->bf_nseg));
1641 bf->bf_m = m;
1642
1643 /* setup descriptors */
1644 ds = bf->bf_desc;
1645
1646 ds->ds_link = 0;
1647 ds->ds_data = bf->bf_segs[0].ds_addr;
1648
1649 DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
1650 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1651
1652 /*
1653 * Calculate rate code.
1654 * XXX everything at min xmit rate
1655 */
1656 rt = sc->sc_currates;
1657 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1658 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1659 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1660 else
1661 rate = rt->info[0].rateCode;
1662 if (!ath_hal_setuptxdesc(ah, ds
1663 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1664 , sizeof(struct ieee80211_frame) /* header length */
1665 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1666 , 0x20 /* txpower XXX */
1667 , rate, 1 /* series 0 rate/tries */
1668 , HAL_TXKEYIX_INVALID /* no encryption */
1669 , 0 /* antenna mode */
1670 , HAL_TXDESC_NOACK /* no ack for beacons */
1671 , 0 /* rts/cts rate */
1672 , 0 /* rts/cts duration */
1673 )) {
1674 printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1675 return -1;
1676 }
1677 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1678 /* XXX verify mbuf data area covers this roundup */
1679 if (!ath_hal_filltxdesc(ah, ds
1680 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1681 , AH_TRUE /* first segment */
1682 , AH_TRUE /* last segment */
1683 )) {
1684 printf("%s: ath_hal_filltxdesc failed\n", __func__);
1685 return -1;
1686 }
1687
1688 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1689
1690 return 0;
1691 }
1692
1693 static void
1694 ath_beacon_proc(void *arg, int pending)
1695 {
1696 struct ath_softc *sc = arg;
1697 struct ieee80211com *ic = &sc->sc_ic;
1698 struct ath_buf *bf = sc->sc_bcbuf;
1699 struct ath_hal *ah = sc->sc_ah;
1700
1701 DPRINTF2(("%s: pending %u\n", __func__, pending));
1702 if (ic->ic_opmode == IEEE80211_M_STA ||
1703 bf == NULL || bf->bf_m == NULL) {
1704 DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1705 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1706 return;
1707 }
1708 /* TODO: update beacon to reflect PS poll state */
1709 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1710 DPRINTF(("%s: beacon queue %u did not stop?",
1711 __func__, sc->sc_bhalq));
1712 return; /* busy, XXX is this right? */
1713 }
1714 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1715
1716 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1717 ath_hal_txstart(ah, sc->sc_bhalq);
1718 DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
1719 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1720 }
1721
1722 static void
1723 ath_beacon_free(struct ath_softc *sc)
1724 {
1725 struct ath_buf *bf = sc->sc_bcbuf;
1726
1727 if (bf->bf_m != NULL) {
1728 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1729 m_freem(bf->bf_m);
1730 bf->bf_m = NULL;
1731 bf->bf_node = NULL;
1732 }
1733 }
1734
1735 /*
1736 * Configure the beacon and sleep timers.
1737 *
1738 * When operating as an AP this resets the TSF and sets
1739 * up the hardware to notify us when we need to issue beacons.
1740 *
1741 * When operating in station mode this sets up the beacon
1742 * timers according to the timestamp of the last received
1743 * beacon and the current TSF, configures PCF and DTIM
1744 * handling, programs the sleep registers so the hardware
1745 * will wakeup in time to receive beacons, and configures
1746 * the beacon miss handling so we'll receive a BMISS
1747 * interrupt when we stop seeing beacons from the AP
1748 * we've associated with.
1749 */
1750 static void
1751 ath_beacon_config(struct ath_softc *sc)
1752 {
1753 struct ath_hal *ah = sc->sc_ah;
1754 struct ieee80211com *ic = &sc->sc_ic;
1755 struct ieee80211_node *ni = ic->ic_bss;
1756 u_int32_t nexttbtt;
1757
1758 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1759 (LE_READ_4(ni->ni_tstamp) >> 10);
1760 DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1761 nexttbtt += ni->ni_intval;
1762 if (ic->ic_opmode == IEEE80211_M_STA) {
1763 HAL_BEACON_STATE bs;
1764 u_int32_t bmisstime;
1765
1766 /* NB: no PCF support right now */
1767 memset(&bs, 0, sizeof(bs));
1768 bs.bs_intval = ni->ni_intval;
1769 bs.bs_nexttbtt = nexttbtt;
1770 bs.bs_dtimperiod = bs.bs_intval;
1771 bs.bs_nextdtim = nexttbtt;
1772 /*
1773 * Calculate the number of consecutive beacons to miss
1774 * before taking a BMISS interrupt. The configuration
1775 * is specified in ms, so we need to convert that to
1776 * TU's and then calculate based on the beacon interval.
1777 * Note that we clamp the result to at most 10 beacons.
1778 */
1779 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1780 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1781 if (bs.bs_bmissthreshold > 10)
1782 bs.bs_bmissthreshold = 10;
1783 else if (bs.bs_bmissthreshold <= 0)
1784 bs.bs_bmissthreshold = 1;
1785
1786 /*
1787 * Calculate sleep duration. The configuration is
1788 * given in ms. We insure a multiple of the beacon
1789 * period is used. Also, if the sleep duration is
1790 * greater than the DTIM period then it makes senses
1791 * to make it a multiple of that.
1792 *
1793 * XXX fixed at 100ms
1794 */
1795 bs.bs_sleepduration =
1796 roundup((100 * 1000) / 1024, bs.bs_intval);
1797 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1798 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1799
1800 DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1801 , __func__
1802 , bs.bs_intval
1803 , bs.bs_nexttbtt
1804 , bs.bs_dtimperiod
1805 , bs.bs_nextdtim
1806 , bs.bs_bmissthreshold
1807 , bs.bs_sleepduration
1808 ));
1809 ath_hal_intrset(ah, 0);
1810 /*
1811 * Reset our tsf so the hardware will update the
1812 * tsf register to reflect timestamps found in
1813 * received beacons.
1814 */
1815 ath_hal_resettsf(ah);
1816 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1817 sc->sc_imask |= HAL_INT_BMISS;
1818 ath_hal_intrset(ah, sc->sc_imask);
1819 } else {
1820 DPRINTF(("%s: intval %u nexttbtt %u\n",
1821 __func__, ni->ni_intval, nexttbtt));
1822 ath_hal_intrset(ah, 0);
1823 ath_hal_beaconinit(ah, nexttbtt, ni->ni_intval);
1824 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1825 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1826 ath_hal_intrset(ah, sc->sc_imask);
1827 }
1828 }
1829
1830 #ifdef __FreeBSD__
1831 static void
1832 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1833 {
1834 bus_addr_t *paddr = (bus_addr_t*) arg;
1835 *paddr = segs->ds_addr;
1836 }
1837 #endif
1838
1839 #ifdef __FreeBSD__
1840 static int
1841 ath_desc_alloc(struct ath_softc *sc)
1842 {
1843 int i, bsize, error;
1844 struct ath_desc *ds;
1845 struct ath_buf *bf;
1846
1847 /* allocate descriptors */
1848 sc->sc_desc_len = sizeof(struct ath_desc) *
1849 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1850 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1851 if (error != 0)
1852 return error;
1853
1854 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1855 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1856
1857 if (error != 0)
1858 goto fail0;
1859
1860 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1861 sc->sc_desc, sc->sc_desc_len,
1862 ath_load_cb, &sc->sc_desc_paddr,
1863 BUS_DMA_NOWAIT);
1864 if (error != 0)
1865 goto fail1;
1866
1867 ds = sc->sc_desc;
1868 DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1869 ds, sc->sc_desc_len,
1870 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1871
1872 /* allocate buffers */
1873 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1874 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1875 if (bf == NULL) {
1876 printf("%s: unable to allocate Tx/Rx buffers\n",
1877 sc->sc_dev.dv_xname);
1878 error = -1;
1879 goto fail2;
1880 }
1881 sc->sc_bufptr = bf;
1882
1883 TAILQ_INIT(&sc->sc_rxbuf);
1884 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1885 bf->bf_desc = ds;
1886 bf->bf_daddr = sc->sc_desc_paddr +
1887 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1888 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1889 &bf->bf_dmamap);
1890 if (error != 0)
1891 break;
1892 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1893 }
1894
1895 TAILQ_INIT(&sc->sc_txbuf);
1896 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1897 bf->bf_desc = ds;
1898 bf->bf_daddr = sc->sc_desc_paddr +
1899 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1900 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1901 &bf->bf_dmamap);
1902 if (error != 0)
1903 break;
1904 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1905 }
1906 TAILQ_INIT(&sc->sc_txq);
1907
1908 /* beacon buffer */
1909 bf->bf_desc = ds;
1910 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1911 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1912 if (error != 0)
1913 return error;
1914 sc->sc_bcbuf = bf;
1915 return 0;
1916
1917 fail2:
1918 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1919 fail1:
1920 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1921 fail0:
1922 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1923 sc->sc_ddmamap = NULL;
1924 return error;
1925 }
1926 #else
1927 static int
1928 ath_desc_alloc(struct ath_softc *sc)
1929 {
1930 int i, bsize, error = -1;
1931 struct ath_desc *ds;
1932 struct ath_buf *bf;
1933
1934 /* allocate descriptors */
1935 sc->sc_desc_len = sizeof(struct ath_desc) *
1936 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1937 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1938 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1939 printf("%s: unable to allocate control data, error = %d\n",
1940 sc->sc_dev.dv_xname, error);
1941 goto fail0;
1942 }
1943
1944 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1945 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1946 printf("%s: unable to map control data, error = %d\n",
1947 sc->sc_dev.dv_xname, error);
1948 goto fail1;
1949 }
1950
1951 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1952 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1953 printf("%s: unable to create control data DMA map, "
1954 "error = %d\n", sc->sc_dev.dv_xname, error);
1955 goto fail2;
1956 }
1957
1958 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1959 sc->sc_desc_len, NULL, 0)) != 0) {
1960 printf("%s: unable to load control data DMA map, error = %d\n",
1961 sc->sc_dev.dv_xname, error);
1962 goto fail3;
1963 }
1964
1965 ds = sc->sc_desc;
1966 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1967
1968 DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1969 ds, (u_long)sc->sc_desc_len,
1970 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1971
1972 /* allocate buffers */
1973 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1974 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1975 if (bf == NULL) {
1976 printf("%s: unable to allocate Tx/Rx buffers\n",
1977 sc->sc_dev.dv_xname);
1978 error = ENOMEM;
1979 goto fail3;
1980 }
1981 sc->sc_bufptr = bf;
1982
1983 TAILQ_INIT(&sc->sc_rxbuf);
1984 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1985 bf->bf_desc = ds;
1986 bf->bf_daddr = sc->sc_desc_paddr +
1987 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1988 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1989 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1990 printf("%s: unable to create Rx dmamap, error = %d\n",
1991 sc->sc_dev.dv_xname, error);
1992 goto fail4;
1993 }
1994 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1995 }
1996
1997 TAILQ_INIT(&sc->sc_txbuf);
1998 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1999 bf->bf_desc = ds;
2000 bf->bf_daddr = sc->sc_desc_paddr +
2001 ((caddr_t)ds - (caddr_t)sc->sc_desc);
2002 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
2003 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2004 printf("%s: unable to create Tx dmamap, error = %d\n",
2005 sc->sc_dev.dv_xname, error);
2006 goto fail5;
2007 }
2008 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2009 }
2010 TAILQ_INIT(&sc->sc_txq);
2011
2012 /* beacon buffer */
2013 bf->bf_desc = ds;
2014 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
2015 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
2016 &bf->bf_dmamap)) != 0) {
2017 printf("%s: unable to create beacon dmamap, error = %d\n",
2018 sc->sc_dev.dv_xname, error);
2019 goto fail5;
2020 }
2021 sc->sc_bcbuf = bf;
2022 return 0;
2023
2024 fail5:
2025 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
2026 if (sc->sc_bufptr[i].bf_dmamap == NULL)
2027 continue;
2028 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2029 }
2030 fail4:
2031 for (i = 0; i < ATH_RXBUF; i++) {
2032 if (sc->sc_bufptr[i].bf_dmamap == NULL)
2033 continue;
2034 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2035 }
2036 fail3:
2037 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2038 fail2:
2039 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2040 sc->sc_ddmamap = NULL;
2041 fail1:
2042 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
2043 fail0:
2044 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2045 return error;
2046 }
2047 #endif
2048
2049 static void
2050 ath_desc_free(struct ath_softc *sc)
2051 {
2052 struct ath_buf *bf;
2053
2054 #ifdef __FreeBSD__
2055 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2056 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
2057 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2058 #else
2059 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2060 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2061 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2062 #endif
2063
2064 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2065 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2066 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2067 m_freem(bf->bf_m);
2068 }
2069 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
2070 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2071 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2072 if (bf->bf_m) {
2073 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2074 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2075 m_freem(bf->bf_m);
2076 bf->bf_m = NULL;
2077 }
2078 }
2079 if (sc->sc_bcbuf != NULL) {
2080 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2081 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2082 sc->sc_bcbuf = NULL;
2083 }
2084
2085 TAILQ_INIT(&sc->sc_rxbuf);
2086 TAILQ_INIT(&sc->sc_txbuf);
2087 TAILQ_INIT(&sc->sc_txq);
2088 free(sc->sc_bufptr, M_DEVBUF);
2089 sc->sc_bufptr = NULL;
2090 }
2091
2092 static struct ieee80211_node *
2093 ath_node_alloc(struct ieee80211com *ic)
2094 {
2095 struct ath_node *an =
2096 malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
2097 if (an) {
2098 int i;
2099 for (i = 0; i < ATH_RHIST_SIZE; i++)
2100 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
2101 an->an_rx_hist_next = ATH_RHIST_SIZE-1;
2102 return &an->an_node;
2103 } else
2104 return NULL;
2105 }
2106
2107 static void
2108 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2109 {
2110 struct ath_softc *sc = ic->ic_if.if_softc;
2111 struct ath_buf *bf;
2112
2113 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2114 if (bf->bf_node == ni)
2115 bf->bf_node = NULL;
2116 }
2117 free(ni, M_DEVBUF);
2118 }
2119
2120 static void
2121 ath_node_copy(struct ieee80211com *ic,
2122 struct ieee80211_node *dst, const struct ieee80211_node *src)
2123 {
2124 *(struct ath_node *)dst = *(const struct ath_node *)src;
2125 }
2126
2127 static u_int8_t
2128 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
2129 {
2130 struct ath_node *an = ATH_NODE(ni);
2131 int i, now, nsamples, rssi;
2132
2133 /*
2134 * Calculate the average over the last second of sampled data.
2135 */
2136 now = ATH_TICKS();
2137 nsamples = 0;
2138 rssi = 0;
2139 i = an->an_rx_hist_next;
2140 do {
2141 struct ath_recv_hist *rh = &an->an_rx_hist[i];
2142 if (rh->arh_ticks == ATH_RHIST_NOTIME)
2143 goto done;
2144 if (now - rh->arh_ticks > hz)
2145 goto done;
2146 rssi += rh->arh_rssi;
2147 nsamples++;
2148 if (i == 0)
2149 i = ATH_RHIST_SIZE-1;
2150 else
2151 i--;
2152 } while (i != an->an_rx_hist_next);
2153 done:
2154 /*
2155 * Return either the average or the last known
2156 * value if there is no recent data.
2157 */
2158 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
2159 }
2160
2161 static int
2162 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2163 {
2164 struct ath_hal *ah = sc->sc_ah;
2165 int error;
2166 struct mbuf *m;
2167 struct ath_desc *ds;
2168
2169 m = bf->bf_m;
2170 if (m == NULL) {
2171 /*
2172 * NB: by assigning a page to the rx dma buffer we
2173 * implicitly satisfy the Atheros requirement that
2174 * this buffer be cache-line-aligned and sized to be
2175 * multiple of the cache line size. Not doing this
2176 * causes weird stuff to happen (for the 5210 at least).
2177 */
2178 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
2179 if (m == NULL) {
2180 DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
2181 sc->sc_stats.ast_rx_nombuf++;
2182 return ENOMEM;
2183 }
2184 bf->bf_m = m;
2185 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2186
2187 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
2188 BUS_DMA_NOWAIT);
2189 if (error != 0) {
2190 DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
2191 " error %d\n", error));
2192 sc->sc_stats.ast_rx_busdma++;
2193 return error;
2194 }
2195 KASSERT(bf->bf_nseg == 1,
2196 ("ath_rxbuf_init: multi-segment packet; nseg %u",
2197 bf->bf_nseg));
2198 }
2199 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
2200
2201 /*
2202 * Setup descriptors. For receive we always terminate
2203 * the descriptor list with a self-linked entry so we'll
2204 * not get overrun under high load (as can happen with a
2205 * 5212 when ANI processing enables PHY errors).
2206 *
2207 * To insure the last descriptor is self-linked we create
2208 * each descriptor as self-linked and add it to the end. As
2209 * each additional descriptor is added the previous self-linked
2210 * entry is ``fixed'' naturally. This should be safe even
2211 * if DMA is happening. When processing RX interrupts we
2212 * never remove/process the last, self-linked, entry on the
2213 * descriptor list. This insures the hardware always has
2214 * someplace to write a new frame.
2215 */
2216 ds = bf->bf_desc;
2217 ds->ds_link = bf->bf_daddr; /* link to self */
2218 ds->ds_data = bf->bf_segs[0].ds_addr;
2219 ath_hal_setuprxdesc(ah, ds
2220 , m->m_len /* buffer size */
2221 , 0
2222 );
2223
2224 if (sc->sc_rxlink != NULL)
2225 *sc->sc_rxlink = bf->bf_daddr;
2226 sc->sc_rxlink = &ds->ds_link;
2227 return 0;
2228 }
2229
2230 static void
2231 ath_rx_proc(void *arg, int npending)
2232 {
2233 #define PA2DESC(_sc, _pa) \
2234 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2235 ((_pa) - (_sc)->sc_desc_paddr)))
2236 struct ath_softc *sc = arg;
2237 struct ath_buf *bf;
2238 struct ieee80211com *ic = &sc->sc_ic;
2239 struct ifnet *ifp = &ic->ic_if;
2240 struct ath_hal *ah = sc->sc_ah;
2241 struct ath_desc *ds;
2242 struct mbuf *m;
2243 struct ieee80211_frame *wh, whbuf;
2244 struct ieee80211_node *ni;
2245 struct ath_node *an;
2246 struct ath_recv_hist *rh;
2247 int len;
2248 u_int phyerr;
2249 HAL_STATUS status;
2250
2251 DPRINTF2(("ath_rx_proc: pending %u\n", npending));
2252 do {
2253 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2254 if (bf == NULL) { /* NB: shouldn't happen */
2255 if_printf(ifp, "ath_rx_proc: no buffer!\n");
2256 break;
2257 }
2258 ds = bf->bf_desc;
2259 if (ds->ds_link == bf->bf_daddr) {
2260 /* NB: never process the self-linked entry at the end */
2261 break;
2262 }
2263 m = bf->bf_m;
2264 if (m == NULL) { /* NB: shouldn't happen */
2265 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
2266 continue;
2267 }
2268 /* XXX sync descriptor memory */
2269 /*
2270 * Must provide the virtual address of the current
2271 * descriptor, the physical address, and the virtual
2272 * address of the next descriptor in the h/w chain.
2273 * This allows the HAL to look ahead to see if the
2274 * hardware is done with a descriptor by checking the
2275 * done bit in the following descriptor and the address
2276 * of the current descriptor the DMA engine is working
2277 * on. All this is necessary because of our use of
2278 * a self-linked list to avoid rx overruns.
2279 */
2280 status = ath_hal_rxprocdesc(ah, ds,
2281 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2282 #ifdef AR_DEBUG
2283 if (ath_debug > 1)
2284 ath_printrxbuf(bf, status == HAL_OK);
2285 #endif
2286 if (status == HAL_EINPROGRESS)
2287 break;
2288 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
2289 if (ds->ds_rxstat.rs_status != 0) {
2290 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2291 sc->sc_stats.ast_rx_crcerr++;
2292 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2293 sc->sc_stats.ast_rx_fifoerr++;
2294 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2295 sc->sc_stats.ast_rx_badcrypt++;
2296 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2297 sc->sc_stats.ast_rx_phyerr++;
2298 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2299 sc->sc_stats.ast_rx_phy[phyerr]++;
2300 } else {
2301 /*
2302 * NB: don't count PHY errors as input errors;
2303 * we enable them on the 5212 to collect info
2304 * about environmental noise and, in that
2305 * setting, they don't really reflect tx/rx
2306 * errors.
2307 */
2308 ifp->if_ierrors++;
2309 }
2310 goto rx_next;
2311 }
2312
2313 len = ds->ds_rxstat.rs_datalen;
2314 if (len < IEEE80211_MIN_LEN) {
2315 DPRINTF(("ath_rx_proc: short packet %d\n", len));
2316 sc->sc_stats.ast_rx_tooshort++;
2317 goto rx_next;
2318 }
2319
2320 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2321
2322 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2323 bf->bf_m = NULL;
2324 m->m_pkthdr.rcvif = ifp;
2325 m->m_pkthdr.len = m->m_len = len;
2326
2327 #if NBPFILTER > 0
2328 if (sc->sc_drvbpf) {
2329 #ifdef __FreeBSD__
2330 struct mbuf *mb;
2331
2332 /* XXX pre-allocate space when setting up recv's */
2333 MGETHDR(mb, M_DONTWAIT, m->m_type);
2334 if (mb != NULL) {
2335 sc->sc_rx_th.wr_rate =
2336 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2337 sc->sc_rx_th.wr_antsignal =
2338 ds->ds_rxstat.rs_rssi;
2339 sc->sc_rx_th.wr_antenna =
2340 ds->ds_rxstat.rs_antenna;
2341 /* XXX TSF */
2342
2343 (void) m_dup_pkthdr(mb, m, M_DONTWAIT);
2344 mb->m_next = m;
2345 mb->m_data = (caddr_t)&sc->sc_rx_th;
2346 mb->m_len = sizeof(sc->sc_rx_th);
2347 mb->m_pkthdr.len += mb->m_len;
2348 bpf_mtap(sc->sc_drvbpf, mb);
2349 m_free(mb);
2350 }
2351 #else
2352 /* XXX pre-allocate space when setting up recv's */
2353 struct mbuf mb;
2354
2355 sc->sc_rx_th.wr_rate =
2356 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2357 sc->sc_rx_th.wr_antsignal =
2358 ds->ds_rxstat.rs_rssi;
2359 sc->sc_rx_th.wr_antenna =
2360 ds->ds_rxstat.rs_antenna;
2361 /* XXX TSF */
2362
2363 M_COPY_PKTHDR(&mb, m);
2364 mb.m_next = m;
2365 mb.m_data = (caddr_t)&sc->sc_rx_th;
2366 mb.m_len = sizeof(sc->sc_rx_th);
2367 mb.m_pkthdr.len += mb.m_len;
2368 bpf_mtap(sc->sc_drvbpf, &mb);
2369 #endif
2370 }
2371 #endif
2372
2373 m_adj(m, -IEEE80211_CRC_LEN);
2374 wh = mtod(m, struct ieee80211_frame *);
2375 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2376 /*
2377 * WEP is decrypted by hardware. Clear WEP bit
2378 * and trim WEP header for ieee80211_input().
2379 */
2380 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2381 memcpy(&whbuf, wh, sizeof(whbuf));
2382 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2383 wh = mtod(m, struct ieee80211_frame *);
2384 memcpy(wh, &whbuf, sizeof(whbuf));
2385 /*
2386 * Also trim WEP ICV from the tail.
2387 */
2388 m_adj(m, -IEEE80211_WEP_CRCLEN);
2389 /*
2390 * The header has probably moved.
2391 */
2392 wh = mtod(m, struct ieee80211_frame *);
2393 }
2394
2395 /*
2396 * Locate the node for sender, track state, and
2397 * then pass this node (referenced) up to the 802.11
2398 * layer for its use. We are required to pass
2399 * something so we fall back to ic_bss when this frame
2400 * is from an unknown sender.
2401 */
2402 ni = ieee80211_find_rxnode(ic, wh);
2403
2404 /*
2405 * Record driver-specific state.
2406 */
2407 an = ATH_NODE(ni);
2408 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2409 an->an_rx_hist_next = 0;
2410 rh = &an->an_rx_hist[an->an_rx_hist_next];
2411 rh->arh_ticks = ATH_TICKS();
2412 rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2413 rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2414
2415 /*
2416 * Send frame up for processing.
2417 */
2418 ieee80211_input(ifp, m, ni,
2419 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2420
2421 /*
2422 * The frame may have caused the node to be marked for
2423 * reclamation (e.g. in response to a DEAUTH message)
2424 * so use free_node here instead of unref_node.
2425 */
2426 if (ni == ic->ic_bss)
2427 ieee80211_unref_node(&ni);
2428 else
2429 ieee80211_free_node(ic, ni);
2430 rx_next:
2431 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2432 } while (ath_rxbuf_init(sc, bf) == 0);
2433
2434 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
2435 ath_hal_rxena(ah); /* in case of RXEOL */
2436
2437 #ifdef __NetBSD__
2438 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2439 ath_start(ifp);
2440 #endif /* __NetBSD__ */
2441 #undef PA2DESC
2442 }
2443
2444 /*
2445 * XXX Size of an ACK control frame in bytes.
2446 */
2447 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
2448
2449 static int
2450 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2451 struct mbuf *m0)
2452 {
2453 struct ieee80211com *ic = &sc->sc_ic;
2454 struct ath_hal *ah = sc->sc_ah;
2455 struct ifnet *ifp = &sc->sc_ic.ic_if;
2456 int i, error, iswep, hdrlen, pktlen;
2457 u_int8_t rix, cix, txrate, ctsrate;
2458 struct ath_desc *ds;
2459 struct mbuf *m;
2460 struct ieee80211_frame *wh;
2461 u_int32_t iv;
2462 u_int8_t *ivp;
2463 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2464 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2465 u_int subtype, flags, ctsduration, antenna;
2466 HAL_PKT_TYPE atype;
2467 const HAL_RATE_TABLE *rt;
2468 HAL_BOOL shortPreamble;
2469 struct ath_node *an;
2470 ath_txq_critsect_decl(s);
2471
2472 wh = mtod(m0, struct ieee80211_frame *);
2473 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2474 hdrlen = sizeof(struct ieee80211_frame);
2475 pktlen = m0->m_pkthdr.len;
2476
2477 if (iswep) {
2478 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2479 m_adj(m0, hdrlen);
2480 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2481 if (m0 == NULL) {
2482 sc->sc_stats.ast_tx_nombuf++;
2483 return ENOMEM;
2484 }
2485 ivp = hdrbuf + hdrlen;
2486 wh = mtod(m0, struct ieee80211_frame *);
2487 /*
2488 * XXX
2489 * IV must not duplicate during the lifetime of the key.
2490 * But no mechanism to renew keys is defined in IEEE 802.11
2491 * WEP. And IV may be duplicated between other stations
2492 * because of the session key itself is shared.
2493 * So we use pseudo random IV for now, though it is not the
2494 * right way.
2495 */
2496 iv = ic->ic_iv;
2497 /*
2498 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2499 * (B, 255, N) with 3 <= B < 8
2500 */
2501 if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
2502 iv += 0x000100;
2503 ic->ic_iv = iv + 1;
2504 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
2505 ivp[i] = iv;
2506 iv >>= 8;
2507 }
2508 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
2509 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2510 /*
2511 * The ICV length must be included into hdrlen and pktlen.
2512 */
2513 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2514 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2515 }
2516 pktlen += IEEE80211_CRC_LEN;
2517
2518 /*
2519 * Load the DMA map so any coalescing is done. This
2520 * also calculates the number of descriptors we need.
2521 */
2522 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2523 /*
2524 * Discard null packets and check for packets that
2525 * require too many TX descriptors. We try to convert
2526 * the latter to a cluster.
2527 */
2528 if (error == EFBIG) { /* too many desc's, linearize */
2529 sc->sc_stats.ast_tx_linear++;
2530 MGETHDR(m, M_DONTWAIT, MT_DATA);
2531 if (m == NULL) {
2532 sc->sc_stats.ast_tx_nombuf++;
2533 m_freem(m0);
2534 return ENOMEM;
2535 }
2536 #ifdef __FreeBSD__
2537 M_MOVE_PKTHDR(m, m0);
2538 #else
2539 M_COPY_PKTHDR(m, m0);
2540 #endif
2541 MCLGET(m, M_DONTWAIT);
2542 if ((m->m_flags & M_EXT) == 0) {
2543 sc->sc_stats.ast_tx_nomcl++;
2544 m_freem(m0);
2545 m_free(m);
2546 return ENOMEM;
2547 }
2548 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2549 m_freem(m0);
2550 m->m_len = m->m_pkthdr.len;
2551 m0 = m;
2552 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2553 BUS_DMA_NOWAIT);
2554 if (error != 0) {
2555 sc->sc_stats.ast_tx_busdma++;
2556 m_freem(m0);
2557 return error;
2558 }
2559 KASSERT(bf->bf_nseg == 1,
2560 ("ath_tx_start: packet not one segment; nseg %u",
2561 bf->bf_nseg));
2562 } else if (error != 0) {
2563 sc->sc_stats.ast_tx_busdma++;
2564 m_freem(m0);
2565 return error;
2566 } else if (bf->bf_nseg == 0) { /* null packet, discard */
2567 sc->sc_stats.ast_tx_nodata++;
2568 m_freem(m0);
2569 return EIO;
2570 }
2571 DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
2572 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2573 bf->bf_m = m0;
2574 bf->bf_node = ni; /* NB: held reference */
2575
2576 /* setup descriptors */
2577 ds = bf->bf_desc;
2578 rt = sc->sc_currates;
2579 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2580
2581 /*
2582 * Calculate Atheros packet type from IEEE80211 packet header
2583 * and setup for rate calculations.
2584 */
2585 atype = HAL_PKT_TYPE_NORMAL; /* default */
2586 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2587 case IEEE80211_FC0_TYPE_MGT:
2588 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2589 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2590 atype = HAL_PKT_TYPE_BEACON;
2591 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2592 atype = HAL_PKT_TYPE_PROBE_RESP;
2593 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2594 atype = HAL_PKT_TYPE_ATIM;
2595 rix = 0; /* XXX lowest rate */
2596 break;
2597 case IEEE80211_FC0_TYPE_CTL:
2598 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2599 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2600 atype = HAL_PKT_TYPE_PSPOLL;
2601 rix = 0; /* XXX lowest rate */
2602 break;
2603 default:
2604 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2605 IEEE80211_RATE_VAL];
2606 if (rix == 0xff) {
2607 if_printf(ifp, "bogus xmit rate 0x%x\n",
2608 ni->ni_rates.rs_rates[ni->ni_txrate]);
2609 sc->sc_stats.ast_tx_badrate++;
2610 m_freem(m0);
2611 return EIO;
2612 }
2613 break;
2614 }
2615 /*
2616 * NB: the 802.11 layer marks whether or not we should
2617 * use short preamble based on the current mode and
2618 * negotiated parameters.
2619 */
2620 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2621 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2622 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2623 shortPreamble = AH_TRUE;
2624 sc->sc_stats.ast_tx_shortpre++;
2625 } else {
2626 txrate = rt->info[rix].rateCode;
2627 shortPreamble = AH_FALSE;
2628 }
2629
2630 /*
2631 * Calculate miscellaneous flags.
2632 */
2633 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2634 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2635 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2636 sc->sc_stats.ast_tx_noack++;
2637 } else if (pktlen > ic->ic_rtsthreshold) {
2638 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2639 sc->sc_stats.ast_tx_rts++;
2640 }
2641
2642 /*
2643 * Calculate duration. This logically belongs in the 802.11
2644 * layer but it lacks sufficient information to calculate it.
2645 */
2646 if ((flags & HAL_TXDESC_NOACK) == 0 &&
2647 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2648 u_int16_t dur;
2649 /*
2650 * XXX not right with fragmentation.
2651 */
2652 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2653 rix, shortPreamble);
2654 *((u_int16_t*) wh->i_dur) = htole16(dur);
2655 }
2656
2657 /*
2658 * Calculate RTS/CTS rate and duration if needed.
2659 */
2660 ctsduration = 0;
2661 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2662 /*
2663 * CTS transmit rate is derived from the transmit rate
2664 * by looking in the h/w rate table. We must also factor
2665 * in whether or not a short preamble is to be used.
2666 */
2667 cix = rt->info[rix].controlRate;
2668 ctsrate = rt->info[cix].rateCode;
2669 if (shortPreamble)
2670 ctsrate |= rt->info[cix].shortPreamble;
2671 /*
2672 * Compute the transmit duration based on the size
2673 * of an ACK frame. We call into the HAL to do the
2674 * computation since it depends on the characteristics
2675 * of the actual PHY being used.
2676 */
2677 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2678 ctsduration += ath_hal_computetxtime(ah,
2679 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2680 }
2681 /* SIFS + data */
2682 ctsduration += ath_hal_computetxtime(ah,
2683 rt, pktlen, rix, shortPreamble);
2684 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2685 ctsduration += ath_hal_computetxtime(ah,
2686 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2687 }
2688 } else
2689 ctsrate = 0;
2690
2691 /*
2692 * For now use the antenna on which the last good
2693 * frame was received on. We assume this field is
2694 * initialized to 0 which gives us ``auto'' or the
2695 * ``default'' antenna.
2696 */
2697 an = (struct ath_node *) ni;
2698 if (an->an_tx_antenna)
2699 antenna = an->an_tx_antenna;
2700 else
2701 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2702
2703 /*
2704 * Formulate first tx descriptor with tx controls.
2705 */
2706 /* XXX check return value? */
2707 ath_hal_setuptxdesc(ah, ds
2708 , pktlen /* packet length */
2709 , hdrlen /* header length */
2710 , atype /* Atheros packet type */
2711 , 60 /* txpower XXX */
2712 , txrate, 1+10 /* series 0 rate/tries */
2713 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2714 , antenna /* antenna mode */
2715 , flags /* flags */
2716 , ctsrate /* rts/cts rate */
2717 , ctsduration /* rts/cts duration */
2718 );
2719 #ifdef notyet
2720 ath_hal_setupxtxdesc(ah, ds
2721 , AH_FALSE /* short preamble */
2722 , 0, 0 /* series 1 rate/tries */
2723 , 0, 0 /* series 2 rate/tries */
2724 , 0, 0 /* series 3 rate/tries */
2725 );
2726 #endif
2727 /*
2728 * Fillin the remainder of the descriptor info.
2729 */
2730 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2731 ds->ds_data = bf->bf_segs[i].ds_addr;
2732 if (i == bf->bf_nseg - 1)
2733 ds->ds_link = 0;
2734 else
2735 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2736 ath_hal_filltxdesc(ah, ds
2737 , bf->bf_segs[i].ds_len /* segment length */
2738 , i == 0 /* first segment */
2739 , i == bf->bf_nseg - 1 /* last segment */
2740 );
2741 DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2742 i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2743 ds->ds_hw[0], ds->ds_hw[1]));
2744 }
2745
2746 /*
2747 * Insert the frame on the outbound list and
2748 * pass it on to the hardware.
2749 */
2750 ath_txq_critsect_begin(sc, s);
2751 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2752 if (sc->sc_txlink == NULL) {
2753 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2754 DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2755 (caddr_t)bf->bf_daddr, bf->bf_desc));
2756 } else {
2757 *sc->sc_txlink = bf->bf_daddr;
2758 DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2759 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2760 }
2761 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2762 ath_txq_critsect_end(sc, s);
2763
2764 ath_hal_txstart(ah, sc->sc_txhalq);
2765 return 0;
2766 }
2767
2768 static void
2769 ath_tx_proc(void *arg, int npending)
2770 {
2771 struct ath_softc *sc = arg;
2772 struct ath_hal *ah = sc->sc_ah;
2773 struct ath_buf *bf;
2774 struct ieee80211com *ic = &sc->sc_ic;
2775 struct ifnet *ifp = &ic->ic_if;
2776 struct ath_desc *ds;
2777 struct ieee80211_node *ni;
2778 struct ath_node *an;
2779 int sr, lr;
2780 HAL_STATUS status;
2781 ath_txq_critsect_decl(s);
2782 ath_txbuf_critsect_decl(s2);
2783
2784 DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2785 npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2786 sc->sc_txlink));
2787 for (;;) {
2788 ath_txq_critsect_begin(sc, s);
2789 bf = TAILQ_FIRST(&sc->sc_txq);
2790 if (bf == NULL) {
2791 sc->sc_txlink = NULL;
2792 ath_txq_critsect_end(sc, s);
2793 break;
2794 }
2795 /* only the last descriptor is needed */
2796 ds = &bf->bf_desc[bf->bf_nseg - 1];
2797 status = ath_hal_txprocdesc(ah, ds);
2798 #ifdef AR_DEBUG
2799 if (ath_debug > 1)
2800 ath_printtxbuf(bf, status == HAL_OK);
2801 #endif
2802 if (status == HAL_EINPROGRESS) {
2803 ath_txq_critsect_end(sc, s);
2804 break;
2805 }
2806 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2807 ath_txq_critsect_end(sc, s);
2808
2809 ni = bf->bf_node;
2810 if (ni != NULL) {
2811 an = (struct ath_node *) ni;
2812 if (ds->ds_txstat.ts_status == 0) {
2813 an->an_tx_ok++;
2814 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2815 } else {
2816 an->an_tx_err++;
2817 ifp->if_oerrors++;
2818 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2819 sc->sc_stats.ast_tx_xretries++;
2820 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2821 sc->sc_stats.ast_tx_fifoerr++;
2822 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2823 sc->sc_stats.ast_tx_filtered++;
2824 an->an_tx_antenna = 0; /* invalidate */
2825 }
2826 sr = ds->ds_txstat.ts_shortretry;
2827 lr = ds->ds_txstat.ts_longretry;
2828 sc->sc_stats.ast_tx_shortretry += sr;
2829 sc->sc_stats.ast_tx_longretry += lr;
2830 if (sr + lr)
2831 an->an_tx_retr++;
2832 /*
2833 * Reclaim reference to node.
2834 *
2835 * NB: the node may be reclaimed here if, for example
2836 * this is a DEAUTH message that was sent and the
2837 * node was timed out due to inactivity.
2838 */
2839 if (ni != ic->ic_bss)
2840 ieee80211_free_node(ic, ni);
2841 }
2842 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2843 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2844 m_freem(bf->bf_m);
2845 bf->bf_m = NULL;
2846 bf->bf_node = NULL;
2847
2848 ath_txbuf_critsect_begin(sc, s2);
2849 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2850 ath_txbuf_critsect_end(sc, s2);
2851 }
2852 ifp->if_flags &= ~IFF_OACTIVE;
2853 sc->sc_tx_timer = 0;
2854
2855 ath_start(ifp);
2856 }
2857
2858 /*
2859 * Drain the transmit queue and reclaim resources.
2860 */
2861 static void
2862 ath_draintxq(struct ath_softc *sc)
2863 {
2864 struct ath_hal *ah = sc->sc_ah;
2865 struct ifnet *ifp = &sc->sc_ic.ic_if;
2866 struct ath_buf *bf;
2867 ath_txq_critsect_decl(s);
2868 ath_txbuf_critsect_decl(s2);
2869
2870 /* XXX return value */
2871 if (!sc->sc_invalid) {
2872 /* don't touch the hardware if marked invalid */
2873 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2874 DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2875 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2876 sc->sc_txlink));
2877 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2878 DPRINTF(("ath_draintxq: beacon queue %p\n",
2879 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2880 }
2881 for (;;) {
2882 ath_txq_critsect_begin(sc, s);
2883 bf = TAILQ_FIRST(&sc->sc_txq);
2884 if (bf == NULL) {
2885 sc->sc_txlink = NULL;
2886 ath_txq_critsect_end(sc, s);
2887 break;
2888 }
2889 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2890 ath_txq_critsect_end(sc, s);
2891 #ifdef AR_DEBUG
2892 if (ath_debug)
2893 ath_printtxbuf(bf,
2894 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2895 #endif /* AR_DEBUG */
2896 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2897 m_freem(bf->bf_m);
2898 bf->bf_m = NULL;
2899 bf->bf_node = NULL;
2900 ath_txbuf_critsect_begin(sc, s2);
2901 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2902 ath_txbuf_critsect_end(sc, s2);
2903 }
2904 ifp->if_flags &= ~IFF_OACTIVE;
2905 sc->sc_tx_timer = 0;
2906 }
2907
2908 /*
2909 * Disable the receive h/w in preparation for a reset.
2910 */
2911 static void
2912 ath_stoprecv(struct ath_softc *sc)
2913 {
2914 #define PA2DESC(_sc, _pa) \
2915 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2916 ((_pa) - (_sc)->sc_desc_paddr)))
2917 struct ath_hal *ah = sc->sc_ah;
2918
2919 ath_hal_stoppcurecv(ah); /* disable PCU */
2920 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2921 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2922 DELAY(3000); /* long enough for 1 frame */
2923 #ifdef AR_DEBUG
2924 if (ath_debug) {
2925 struct ath_buf *bf;
2926
2927 DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2928 (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2929 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2930 struct ath_desc *ds = bf->bf_desc;
2931 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2932 PA2DESC(sc, ds->ds_link)) == HAL_OK)
2933 ath_printrxbuf(bf, 1);
2934 }
2935 }
2936 #endif
2937 sc->sc_rxlink = NULL; /* just in case */
2938 #undef PA2DESC
2939 }
2940
2941 /*
2942 * Enable the receive h/w following a reset.
2943 */
2944 static int
2945 ath_startrecv(struct ath_softc *sc)
2946 {
2947 struct ath_hal *ah = sc->sc_ah;
2948 struct ath_buf *bf;
2949
2950 sc->sc_rxlink = NULL;
2951 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2952 int error = ath_rxbuf_init(sc, bf);
2953 if (error != 0) {
2954 DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2955 error));
2956 return error;
2957 }
2958 }
2959
2960 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2961 ath_hal_putrxbuf(ah, bf->bf_daddr);
2962 ath_hal_rxena(ah); /* enable recv descriptors */
2963 ath_mode_init(sc); /* set filters, etc. */
2964 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2965 return 0;
2966 }
2967
2968 /*
2969 * Set/change channels. If the channel is really being changed,
2970 * it's done by resetting the chip. To accomplish this we must
2971 * first cleanup any pending DMA, then restart stuff after a la
2972 * ath_init.
2973 */
2974 static int
2975 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2976 {
2977 struct ath_hal *ah = sc->sc_ah;
2978 struct ieee80211com *ic = &sc->sc_ic;
2979
2980 DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2981 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2982 ic->ic_ibss_chan->ic_freq,
2983 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2984 if (chan != ic->ic_ibss_chan) {
2985 HAL_STATUS status;
2986 HAL_CHANNEL hchan;
2987 enum ieee80211_phymode mode;
2988
2989 /*
2990 * To switch channels clear any pending DMA operations;
2991 * wait long enough for the RX fifo to drain, reset the
2992 * hardware at the new frequency, and then re-enable
2993 * the relevant bits of the h/w.
2994 */
2995 ath_hal_intrset(ah, 0); /* disable interrupts */
2996 ath_draintxq(sc); /* clear pending tx frames */
2997 ath_stoprecv(sc); /* turn off frame recv */
2998 /*
2999 * Convert to a HAL channel description with
3000 * the flags constrained to reflect the current
3001 * operating mode.
3002 */
3003 hchan.channel = chan->ic_freq;
3004 hchan.channelFlags = ath_chan2flags(ic, chan);
3005 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3006 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
3007 "channel %u (%u Mhz)\n",
3008 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3009 return EIO;
3010 }
3011 /*
3012 * Re-enable rx framework.
3013 */
3014 if (ath_startrecv(sc) != 0) {
3015 if_printf(&ic->ic_if,
3016 "ath_chan_set: unable to restart recv logic\n");
3017 return EIO;
3018 }
3019
3020 /*
3021 * Update BPF state.
3022 */
3023 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3024 htole16(chan->ic_freq);
3025 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3026 htole16(chan->ic_flags);
3027
3028 /*
3029 * Change channels and update the h/w rate map
3030 * if we're switching; e.g. 11a to 11b/g.
3031 */
3032 ic->ic_ibss_chan = chan;
3033 mode = ieee80211_chan2mode(ic, chan);
3034 if (mode != sc->sc_curmode)
3035 ath_setcurmode(sc, mode);
3036
3037 /*
3038 * Re-enable interrupts.
3039 */
3040 ath_hal_intrset(ah, sc->sc_imask);
3041 }
3042 return 0;
3043 }
3044
3045 static void
3046 ath_next_scan(void *arg)
3047 {
3048 struct ath_softc *sc = arg;
3049 struct ieee80211com *ic = &sc->sc_ic;
3050 struct ifnet *ifp = &ic->ic_if;
3051 int s;
3052
3053 /* don't call ath_start w/o network interrupts blocked */
3054 s = splnet();
3055
3056 if (ic->ic_state == IEEE80211_S_SCAN)
3057 ieee80211_next_scan(ifp);
3058 splx(s);
3059 }
3060
3061 /*
3062 * Periodically recalibrate the PHY to account
3063 * for temperature/environment changes.
3064 */
3065 static void
3066 ath_calibrate(void *arg)
3067 {
3068 struct ath_softc *sc = arg;
3069 struct ath_hal *ah = sc->sc_ah;
3070 struct ieee80211com *ic = &sc->sc_ic;
3071 struct ieee80211_channel *c;
3072 HAL_CHANNEL hchan;
3073
3074 sc->sc_stats.ast_per_cal++;
3075
3076 /*
3077 * Convert to a HAL channel description with the flags
3078 * constrained to reflect the current operating mode.
3079 */
3080 c = ic->ic_ibss_chan;
3081 hchan.channel = c->ic_freq;
3082 hchan.channelFlags = ath_chan2flags(ic, c);
3083
3084 DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
3085
3086 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3087 /*
3088 * Rfgain is out of bounds, reset the chip
3089 * to load new gain values.
3090 */
3091 sc->sc_stats.ast_per_rfgain++;
3092 ath_reset(sc);
3093 }
3094 if (!ath_hal_calibrate(ah, &hchan)) {
3095 DPRINTF(("%s: calibration of channel %u failed\n",
3096 __func__, c->ic_freq));
3097 sc->sc_stats.ast_per_calfail++;
3098 }
3099 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
3100 }
3101
3102 static HAL_LED_STATE
3103 ath_state_to_led(enum ieee80211_state state)
3104 {
3105 switch (state) {
3106 case IEEE80211_S_INIT:
3107 return HAL_LED_INIT;
3108 case IEEE80211_S_SCAN:
3109 return HAL_LED_SCAN;
3110 case IEEE80211_S_AUTH:
3111 return HAL_LED_AUTH;
3112 case IEEE80211_S_ASSOC:
3113 return HAL_LED_ASSOC;
3114 case IEEE80211_S_RUN:
3115 return HAL_LED_RUN;
3116 default:
3117 panic("%s: unknown 802.11 state %d\n", __func__, state);
3118 return HAL_LED_INIT;
3119 }
3120 }
3121
3122 static int
3123 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3124 {
3125 struct ifnet *ifp = &ic->ic_if;
3126 struct ath_softc *sc = ifp->if_softc;
3127 struct ath_hal *ah = sc->sc_ah;
3128 struct ieee80211_node *ni;
3129 int i, error;
3130 const u_int8_t *bssid;
3131 u_int32_t rfilt;
3132
3133 DPRINTF(("%s: %s -> %s\n", __func__,
3134 ieee80211_state_name[ic->ic_state],
3135 ieee80211_state_name[nstate]));
3136
3137 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */
3138
3139 if (nstate == IEEE80211_S_INIT) {
3140 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3141 ath_hal_intrset(ah, sc->sc_imask);
3142 callout_stop(&sc->sc_scan_ch);
3143 callout_stop(&sc->sc_cal_ch);
3144 return (*sc->sc_newstate)(ic, nstate, arg);
3145 }
3146 ni = ic->ic_bss;
3147 error = ath_chan_set(sc, ni->ni_chan);
3148 if (error != 0)
3149 goto bad;
3150 rfilt = ath_calcrxfilter(sc);
3151 if (nstate == IEEE80211_S_SCAN) {
3152 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
3153 ath_next_scan, sc);
3154 bssid = ifp->if_broadcastaddr;
3155 } else {
3156 callout_stop(&sc->sc_scan_ch);
3157 bssid = ni->ni_bssid;
3158 }
3159 ath_hal_setrxfilter(ah, rfilt);
3160 DPRINTF(("%s: RX filter 0x%x bssid %s\n",
3161 __func__, rfilt, ether_sprintf(bssid)));
3162
3163 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3164 ath_hal_setassocid(ah, bssid, ni->ni_associd);
3165 else
3166 ath_hal_setassocid(ah, bssid, 0);
3167 if (ic->ic_flags & IEEE80211_F_WEPON) {
3168 for (i = 0; i < IEEE80211_WEP_NKID; i++)
3169 if (ath_hal_keyisvalid(ah, i))
3170 ath_hal_keysetmac(ah, i, bssid);
3171 }
3172
3173 if (nstate == IEEE80211_S_RUN) {
3174 DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3175 "capinfo=0x%04x chan=%d\n"
3176 , __func__
3177 , ic->ic_flags
3178 , ni->ni_intval
3179 , ether_sprintf(ni->ni_bssid)
3180 , ni->ni_capinfo
3181 , ieee80211_chan2ieee(ic, ni->ni_chan)));
3182
3183 /*
3184 * Allocate and setup the beacon frame for AP or adhoc mode.
3185 */
3186 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3187 ic->ic_opmode == IEEE80211_M_IBSS) {
3188 error = ath_beacon_alloc(sc, ni);
3189 if (error != 0)
3190 goto bad;
3191 }
3192
3193 /*
3194 * Configure the beacon and sleep timers.
3195 */
3196 ath_beacon_config(sc);
3197
3198 /* start periodic recalibration timer */
3199 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
3200 ath_calibrate, sc);
3201 } else {
3202 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3203 ath_hal_intrset(ah, sc->sc_imask);
3204 callout_stop(&sc->sc_cal_ch); /* no calibration */
3205 }
3206 /*
3207 * Reset the rate control state.
3208 */
3209 ath_rate_ctl_reset(sc, nstate);
3210 /*
3211 * Invoke the parent method to complete the work.
3212 */
3213 return (*sc->sc_newstate)(ic, nstate, arg);
3214 bad:
3215 callout_stop(&sc->sc_scan_ch);
3216 callout_stop(&sc->sc_cal_ch);
3217 /* NB: do not invoke the parent */
3218 return error;
3219 }
3220
3221 /*
3222 * Setup driver-specific state for a newly associated node.
3223 * Note that we're called also on a re-associate, the isnew
3224 * param tells us if this is the first time or not.
3225 */
3226 static void
3227 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3228 {
3229 if (isnew) {
3230 struct ath_node *an = (struct ath_node *) ni;
3231
3232 an->an_tx_ok = an->an_tx_err =
3233 an->an_tx_retr = an->an_tx_upper = 0;
3234 /* start with highest negotiated rate */
3235 /*
3236 * XXX should do otherwise but only when
3237 * the rate control algorithm is better.
3238 */
3239 KASSERT(ni->ni_rates.rs_nrates > 0,
3240 ("new association w/ no rates!"));
3241 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3242 }
3243 }
3244
3245 static int
3246 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
3247 {
3248 struct ieee80211com *ic = &sc->sc_ic;
3249 struct ifnet *ifp = &ic->ic_if;
3250 struct ath_hal *ah = sc->sc_ah;
3251 HAL_CHANNEL *chans;
3252 int i, ix, nchan;
3253
3254 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3255 M_TEMP, M_NOWAIT);
3256 if (chans == NULL) {
3257 if_printf(ifp, "unable to allocate channel table\n");
3258 return ENOMEM;
3259 }
3260 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3261 cc, HAL_MODE_ALL, outdoor, 0 /* no extended channels */)) {
3262 if_printf(ifp, "unable to collect channel list from hal\n");
3263 free(chans, M_TEMP);
3264 return EINVAL;
3265 }
3266
3267 /*
3268 * Convert HAL channels to ieee80211 ones and insert
3269 * them in the table according to their channel number.
3270 */
3271 for (i = 0; i < nchan; i++) {
3272 HAL_CHANNEL *c = &chans[i];
3273 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3274 if (ix > IEEE80211_CHAN_MAX) {
3275 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3276 ix, c->channel, c->channelFlags);
3277 continue;
3278 }
3279 /* NB: flags are known to be compatible */
3280 if (ic->ic_channels[ix].ic_freq == 0) {
3281 ic->ic_channels[ix].ic_freq = c->channel;
3282 ic->ic_channels[ix].ic_flags = c->channelFlags;
3283 } else {
3284 /* channels overlap; e.g. 11g and 11b */
3285 ic->ic_channels[ix].ic_flags |= c->channelFlags;
3286 }
3287 }
3288 free(chans, M_TEMP);
3289 return 0;
3290 }
3291
3292 static int
3293 ath_rate_setup(struct ath_softc *sc, u_int mode)
3294 {
3295 struct ath_hal *ah = sc->sc_ah;
3296 struct ieee80211com *ic = &sc->sc_ic;
3297 const HAL_RATE_TABLE *rt;
3298 struct ieee80211_rateset *rs;
3299 int i, maxrates;
3300
3301 switch (mode) {
3302 case IEEE80211_MODE_11A:
3303 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
3304 break;
3305 case IEEE80211_MODE_11B:
3306 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
3307 break;
3308 case IEEE80211_MODE_11G:
3309 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
3310 break;
3311 case IEEE80211_MODE_TURBO:
3312 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
3313 break;
3314 default:
3315 DPRINTF(("%s: invalid mode %u\n", __func__, mode));
3316 return 0;
3317 }
3318 rt = sc->sc_rates[mode];
3319 if (rt == NULL)
3320 return 0;
3321 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3322 DPRINTF(("%s: rate table too small (%u > %u)\n",
3323 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3324 maxrates = IEEE80211_RATE_MAXSIZE;
3325 } else
3326 maxrates = rt->rateCount;
3327 rs = &ic->ic_sup_rates[mode];
3328 for (i = 0; i < maxrates; i++)
3329 rs->rs_rates[i] = rt->info[i].dot11Rate;
3330 rs->rs_nrates = maxrates;
3331 return 1;
3332 }
3333
3334 static void
3335 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3336 {
3337 const HAL_RATE_TABLE *rt;
3338 int i;
3339
3340 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3341 rt = sc->sc_rates[mode];
3342 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3343 for (i = 0; i < rt->rateCount; i++)
3344 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3345 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3346 for (i = 0; i < 32; i++)
3347 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3348 sc->sc_currates = rt;
3349 sc->sc_curmode = mode;
3350 }
3351
3352 /*
3353 * Reset the rate control state for each 802.11 state transition.
3354 */
3355 static void
3356 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3357 {
3358 struct ieee80211com *ic = &sc->sc_ic;
3359 struct ieee80211_node *ni;
3360 struct ath_node *an;
3361
3362 if (ic->ic_opmode != IEEE80211_M_STA) {
3363 /*
3364 * When operating as a station the node table holds
3365 * the AP's that were discovered during scanning.
3366 * For any other operating mode we want to reset the
3367 * tx rate state of each node.
3368 */
3369 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3370 ni->ni_txrate = 0; /* use lowest rate */
3371 an = (struct ath_node *) ni;
3372 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3373 an->an_tx_upper = 0;
3374 }
3375 }
3376 /*
3377 * Reset local xmit state; this is really only meaningful
3378 * when operating in station or adhoc mode.
3379 */
3380 ni = ic->ic_bss;
3381 an = (struct ath_node *) ni;
3382 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3383 if (state == IEEE80211_S_RUN) {
3384 /* start with highest negotiated rate */
3385 KASSERT(ni->ni_rates.rs_nrates > 0,
3386 ("transition to RUN state w/ no rates!"));
3387 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3388 } else {
3389 /* use lowest rate */
3390 ni->ni_txrate = 0;
3391 }
3392 }
3393
3394 /*
3395 * Examine and potentially adjust the transmit rate.
3396 */
3397 static void
3398 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3399 {
3400 struct ath_softc *sc = arg;
3401 struct ath_node *an = (struct ath_node *) ni;
3402 struct ieee80211_rateset *rs = &ni->ni_rates;
3403 int mod = 0, orate, enough;
3404
3405 /*
3406 * Rate control
3407 * XXX: very primitive version.
3408 */
3409 sc->sc_stats.ast_rate_calls++;
3410
3411 enough = (an->an_tx_ok + an->an_tx_err >= 10);
3412
3413 /* no packet reached -> down */
3414 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3415 mod = -1;
3416
3417 /* all packets needs retry in average -> down */
3418 if (enough && an->an_tx_ok < an->an_tx_retr)
3419 mod = -1;
3420
3421 /* no error and less than 10% of packets needs retry -> up */
3422 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3423 mod = 1;
3424
3425 orate = ni->ni_txrate;
3426 switch (mod) {
3427 case 0:
3428 if (enough && an->an_tx_upper > 0)
3429 an->an_tx_upper--;
3430 break;
3431 case -1:
3432 if (ni->ni_txrate > 0) {
3433 ni->ni_txrate--;
3434 sc->sc_stats.ast_rate_drop++;
3435 }
3436 an->an_tx_upper = 0;
3437 break;
3438 case 1:
3439 if (++an->an_tx_upper < 2)
3440 break;
3441 an->an_tx_upper = 0;
3442 if (ni->ni_txrate + 1 < rs->rs_nrates) {
3443 ni->ni_txrate++;
3444 sc->sc_stats.ast_rate_raise++;
3445 }
3446 break;
3447 }
3448
3449 if (ni->ni_txrate != orate) {
3450 DPRINTF(("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3451 __func__,
3452 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3453 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3454 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3455 }
3456 if (ni->ni_txrate != orate || enough)
3457 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3458 }
3459
3460 #ifdef AR_DEBUG
3461 #ifdef __FreeBSD__
3462 static int
3463 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3464 {
3465 char dmode[64];
3466 int error;
3467
3468 strncpy(dmode, "", sizeof(dmode) - 1);
3469 dmode[sizeof(dmode) - 1] = '\0';
3470 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3471
3472 if (error == 0 && req->newptr != NULL) {
3473 struct ifnet *ifp;
3474 struct ath_softc *sc;
3475
3476 ifp = ifunit("ath0"); /* XXX */
3477 if (!ifp)
3478 return EINVAL;
3479 sc = ifp->if_softc;
3480 if (strcmp(dmode, "hal") == 0)
3481 ath_hal_dumpstate(sc->sc_ah);
3482 else
3483 return EINVAL;
3484 }
3485 return error;
3486 }
3487 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3488 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3489 #endif /* __FreeBSD__ */
3490
3491 #if 0 /* #ifdef __NetBSD__ */
3492 static int
3493 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3494 {
3495 char dmode[64];
3496 int error;
3497
3498 strncpy(dmode, "", sizeof(dmode) - 1);
3499 dmode[sizeof(dmode) - 1] = '\0';
3500 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3501
3502 if (error == 0 && req->newptr != NULL) {
3503 struct ifnet *ifp;
3504 struct ath_softc *sc;
3505
3506 ifp = ifunit("ath0"); /* XXX */
3507 if (!ifp)
3508 return EINVAL;
3509 sc = ifp->if_softc;
3510 if (strcmp(dmode, "hal") == 0)
3511 ath_hal_dumpstate(sc->sc_ah);
3512 else
3513 return EINVAL;
3514 }
3515 return error;
3516 }
3517 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3518 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3519 #endif /* __NetBSD__ */
3520
3521 static void
3522 ath_printrxbuf(struct ath_buf *bf, int done)
3523 {
3524 struct ath_desc *ds;
3525 int i;
3526
3527 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3528 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3529 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3530 ds->ds_link, ds->ds_data,
3531 ds->ds_ctl0, ds->ds_ctl1,
3532 ds->ds_hw[0], ds->ds_hw[1],
3533 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3534 }
3535 }
3536
3537 static void
3538 ath_printtxbuf(struct ath_buf *bf, int done)
3539 {
3540 struct ath_desc *ds;
3541 int i;
3542
3543 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3544 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3545 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3546 ds->ds_link, ds->ds_data,
3547 ds->ds_ctl0, ds->ds_ctl1,
3548 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3549 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3550 }
3551 }
3552 #endif /* AR_DEBUG */
3553