ath.c revision 1.21 1 /* $NetBSD: ath.c,v 1.21 2004/03/13 05:43:08 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.36 2003/11/29 01:23:59 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.21 2004/03/13 05:43:08 dyoung Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81
82 #include <machine/bus.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105
106 #include <dev/ic/athcompat.h>
107
108 #define AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116
117 /* unaligned little endian access */
118 #define LE_READ_2(p) \
119 ((u_int16_t) \
120 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
121 #define LE_READ_4(p) \
122 ((u_int32_t) \
123 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
124 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125
126 #ifdef __FreeBSD__
127 static void ath_init(void *);
128 #else
129 static int ath_init(struct ifnet *);
130 #endif
131 static int ath_init1(struct ath_softc *);
132 static int ath_intr1(struct ath_softc *);
133 static void ath_stop(struct ifnet *);
134 static void ath_start(struct ifnet *);
135 static void ath_reset(struct ath_softc *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_initkeytable(struct ath_softc *);
143 static void ath_mode_init(struct ath_softc *);
144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void ath_beacon_proc(void *, int);
146 static void ath_beacon_free(struct ath_softc *);
147 static void ath_beacon_config(struct ath_softc *);
148 static int ath_desc_alloc(struct ath_softc *);
149 static void ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void ath_node_copy(struct ieee80211com *,
153 struct ieee80211_node *, const struct ieee80211_node *);
154 static u_int8_t ath_node_getrssi(struct ieee80211com *,
155 struct ieee80211_node *);
156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void ath_rx_proc(void *, int);
158 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 struct ath_buf *, struct mbuf *);
160 static void ath_tx_proc(void *, int);
161 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
162 static void ath_draintxq(struct ath_softc *);
163 static void ath_stoprecv(struct ath_softc *);
164 static int ath_startrecv(struct ath_softc *);
165 static void ath_next_scan(void *);
166 static void ath_calibrate(void *);
167 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 static void ath_newassoc(struct ieee80211com *,
169 struct ieee80211_node *, int);
170 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor,
171 HAL_BOOL xchanmode);
172
173 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
174 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
175 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
176 static void ath_rate_ctl(void *, struct ieee80211_node *);
177
178 #ifdef __NetBSD__
179 int ath_enable(struct ath_softc *);
180 void ath_disable(struct ath_softc *);
181 void ath_power(int, void *);
182 #endif
183
184 #ifdef __FreeBSD__
185 SYSCTL_DECL(_hw_ath);
186 /* XXX validate sysctl values */
187 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
188 0, "channel dwell time (ms) for AP/station scanning");
189 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
190 0, "chip calibration interval (secs)");
191 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
192 0, "enable/disable outdoor operation");
193 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
194 0, "country code");
195 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
196 0, "regulatory domain");
197 #endif /* __FreeBSD__ */
198
199 #ifdef __NetBSD__
200 static struct sysctlnode *ath_node_root;
201 static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum,
202 ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum;
203 #endif /* __NetBSD__ */
204
205 static int ath_dwelltime = 200; /* 5 channels/second */
206 static int ath_calinterval = 30; /* calibrate every 30 secs */
207 static int ath_outdoor = AH_TRUE; /* outdoor operation */
208 static int ath_xchanmode = AH_TRUE; /* enable extended channels */
209 static int ath_countrycode = CTRY_DEFAULT; /* country code */
210 static int ath_regdomain = 0; /* regulatory domain */
211
212 #ifdef AR_DEBUG
213 int ath_debug = 0;
214 #ifdef __FreeBSD__
215 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
216 0, "control debugging printfs");
217 #endif /* __FreeBSD__ */
218 #define IFF_DUMPPKTS(_ifp) \
219 (ath_debug || \
220 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
221 static void ath_printrxbuf(struct ath_buf *bf, int);
222 static void ath_printtxbuf(struct ath_buf *bf, int);
223 #define DPRINTF(X) if (ath_debug) printf X
224 #define DPRINTF2(X) if (ath_debug > 1) printf X
225 #else
226 #define IFF_DUMPPKTS(_ifp) \
227 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
228 #define DPRINTF(X)
229 #define DPRINTF2(X)
230 #endif
231
232 #ifdef __NetBSD__
233 int
234 ath_activate(struct device *self, enum devact act)
235 {
236 struct ath_softc *sc = (struct ath_softc *)self;
237 int rv = 0, s;
238
239 s = splnet();
240 switch (act) {
241 case DVACT_ACTIVATE:
242 rv = EOPNOTSUPP;
243 break;
244 case DVACT_DEACTIVATE:
245 if_deactivate(&sc->sc_ic.ic_if);
246 break;
247 }
248 splx(s);
249 return rv;
250 }
251
252 int
253 ath_enable(struct ath_softc *sc)
254 {
255 if (ATH_IS_ENABLED(sc) == 0) {
256 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
257 printf("%s: device enable failed\n",
258 sc->sc_dev.dv_xname);
259 return (EIO);
260 }
261 sc->sc_flags |= ATH_ENABLED;
262 }
263 return (0);
264 }
265
266 void
267 ath_disable(struct ath_softc *sc)
268 {
269 if (!ATH_IS_ENABLED(sc))
270 return;
271 if (sc->sc_disable != NULL)
272 (*sc->sc_disable)(sc);
273 sc->sc_flags &= ~ATH_ENABLED;
274 }
275
276 static int
277 sysctl_ath_verify(SYSCTLFN_ARGS)
278 {
279 int error, t;
280 struct sysctlnode node;
281
282 node = *rnode;
283 t = *(int*)rnode->sysctl_data;
284 node.sysctl_data = &t;
285 error = sysctl_lookup(SYSCTLFN_CALL(&node));
286 if (error || newp == NULL)
287 return (error);
288
289 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
290 node.sysctl_num, rnode->sysctl_num));
291
292 if (node.sysctl_num == ath_dwelltime_nodenum) {
293 if (t <= 0)
294 return (EINVAL);
295 } else if (node.sysctl_num == ath_calibrate_nodenum) {
296 if (t <= 0)
297 return (EINVAL);
298 #ifdef AR_DEBUG
299 } else if (node.sysctl_num == ath_debug_nodenum) {
300 if (t < 0 || t > 2)
301 return (EINVAL);
302 #endif /* AR_DEBUG */
303 } else
304 return (EINVAL);
305
306 *(int*)rnode->sysctl_data = t;
307
308 return (0);
309 }
310
311 /*
312 * Setup sysctl(3) MIB, ath.*.
313 *
314 * TBD condition SYSCTL_PERMANENT on being an LKM or not
315 */
316 SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup")
317 {
318 int rc;
319 struct sysctlnode *node = NULL;
320
321 if ((rc = sysctl_createv(SYSCTL_PERMANENT, CTLTYPE_NODE, "ath",
322 &node, NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
323 goto err;
324
325 ath_node_root = node;
326 node = NULL;
327
328 /* channel dwell time (ms) for AP/station scanning */
329 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
330 CTLTYPE_INT, "dwell", &node, sysctl_ath_verify, 0, &ath_dwelltime,
331 0, ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
332 goto err;
333
334 ath_dwelltime_nodenum = node->sysctl_num;
335
336 node = NULL;
337
338 /* chip calibration interval (secs) */
339 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
340 CTLTYPE_INT, "calibrate", &node, sysctl_ath_verify,
341 0, &ath_calinterval, 0, ath_node_root->sysctl_num, CTL_CREATE,
342 CTL_EOL)) != 0)
343 goto err;
344
345 ath_calibrate_nodenum = node->sysctl_num;
346
347 node = NULL;
348
349 /* enable/disable outdoor operation */
350 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READONLY, CTLTYPE_INT,
351 "outdoor", &node, NULL, 0, &ath_outdoor, 0,
352 ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
353 goto err;
354
355 ath_outdoor_nodenum = node->sysctl_num;
356
357 node = NULL;
358
359 /* country code */
360 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READONLY, CTLTYPE_INT,
361 "countrycode", &node, NULL, 0, &ath_countrycode, 0,
362 ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
363 goto err;
364
365 ath_countrycode_nodenum = node->sysctl_num;
366
367 node = NULL;
368
369 /* regulatory domain */
370 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READONLY, CTLTYPE_INT,
371 "regdomain", &node, NULL, 0, &ath_regdomain, 0,
372 ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
373 goto err;
374
375 ath_regdomain_nodenum = node->sysctl_num;
376
377 #ifdef AR_DEBUG
378 node = NULL;
379
380 /* control debugging printfs */
381 if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE, CTLTYPE_INT,
382 "debug", &node, sysctl_ath_verify, 0, &ath_debug, 0,
383 ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
384 goto err;
385
386 ath_debug_nodenum = node->sysctl_num;
387
388 #endif /* AR_DEBUG */
389 return;
390 err:
391 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
392 }
393 #endif /* __NetBSD__ */
394
395 int
396 ath_attach(u_int16_t devid, struct ath_softc *sc)
397 {
398 struct ieee80211com *ic = &sc->sc_ic;
399 struct ifnet *ifp = &ic->ic_if;
400 struct ath_hal *ah;
401 HAL_STATUS status;
402 int error = 0;
403
404 DPRINTF(("ath_attach: devid 0x%x\n", devid));
405
406 #ifdef __FreeBSD__
407 /* set these up early for if_printf use */
408 if_initname(ifp, device_get_name(sc->sc_dev),
409 device_get_unit(sc->sc_dev));
410 #else
411 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
412 #endif
413
414 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
415 if (ah == NULL) {
416 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
417 status);
418 error = ENXIO;
419 goto bad;
420 }
421 if (ah->ah_abi != HAL_ABI_VERSION) {
422 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
423 ah->ah_abi, HAL_ABI_VERSION);
424 error = ENXIO;
425 goto bad;
426 }
427 if_printf(ifp, "mac %d.%d phy %d.%d",
428 ah->ah_macVersion, ah->ah_macRev,
429 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
430 if (ah->ah_analog5GhzRev)
431 printf(" 5ghz radio %d.%d",
432 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
433 if (ah->ah_analog2GhzRev)
434 printf(" 2ghz radio %d.%d",
435 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
436 printf("\n");
437 sc->sc_ah = ah;
438 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
439
440 /*
441 * Collect the channel list using the default country
442 * code and including outdoor channels. The 802.11 layer
443 * is resposible for filtering this list based on settings
444 * like the phy mode.
445 */
446 error = ath_getchannels(sc, ath_countrycode, ath_outdoor,
447 ath_xchanmode);
448 if (error != 0)
449 goto bad;
450 /*
451 * Copy these back; they are set as a side effect
452 * of constructing the channel list.
453 */
454 ath_regdomain = ath_hal_getregdomain(ah);
455 ath_countrycode = ath_hal_getcountrycode(ah);
456
457 /*
458 * Setup rate tables for all potential media types.
459 */
460 ath_rate_setup(sc, IEEE80211_MODE_11A);
461 ath_rate_setup(sc, IEEE80211_MODE_11B);
462 ath_rate_setup(sc, IEEE80211_MODE_11G);
463 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
464
465 error = ath_desc_alloc(sc);
466 if (error != 0) {
467 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
468 goto bad;
469 }
470 ATH_CALLOUT_INIT(&sc->sc_scan_ch);
471 ATH_CALLOUT_INIT(&sc->sc_cal_ch);
472
473 #ifdef __FreeBSD__
474 ATH_TXBUF_LOCK_INIT(sc);
475 ATH_TXQ_LOCK_INIT(sc);
476 #endif
477
478 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
479 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
480 ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
481 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
482 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
483 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
484
485 /*
486 * For now just pre-allocate one data queue and one
487 * beacon queue. Note that the HAL handles resetting
488 * them at the needed time. Eventually we'll want to
489 * allocate more tx queues for splitting management
490 * frames and for QOS support.
491 */
492 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
493 HAL_TX_QUEUE_DATA,
494 AH_TRUE /* enable interrupts */
495 );
496 if (sc->sc_txhalq == (u_int) -1) {
497 if_printf(ifp, "unable to setup a data xmit queue!\n");
498 goto bad;
499 }
500 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
501 HAL_TX_QUEUE_BEACON,
502 AH_TRUE /* enable interrupts */
503 );
504 if (sc->sc_bhalq == (u_int) -1) {
505 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
506 goto bad;
507 }
508
509 ifp->if_softc = sc;
510 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
511 ifp->if_start = ath_start;
512 ifp->if_watchdog = ath_watchdog;
513 ifp->if_ioctl = ath_ioctl;
514 ifp->if_init = ath_init;
515 #ifdef __FreeBSD__
516 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
517 #else
518 #if 0
519 ifp->if_stop = ath_stop; /* XXX */
520 #endif
521 IFQ_SET_READY(&ifp->if_snd);
522 #endif
523
524 ic->ic_softc = sc;
525 ic->ic_newassoc = ath_newassoc;
526 /* XXX not right but it's not used anywhere important */
527 ic->ic_phytype = IEEE80211_T_OFDM;
528 ic->ic_opmode = IEEE80211_M_STA;
529 ic->ic_caps = IEEE80211_C_WEP /* wep supported */
530 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
531 | IEEE80211_C_HOSTAP /* hostap mode */
532 | IEEE80211_C_MONITOR /* monitor mode */
533 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
534 | IEEE80211_C_RCVMGT; /* recv management frames */
535
536 /* get mac address from hardware */
537 ath_hal_getmac(ah, ic->ic_myaddr);
538
539 #ifdef __NetBSD__
540 if_attach(ifp);
541 #endif
542 /* call MI attach routine. */
543 ieee80211_ifattach(ifp);
544 /* override default methods */
545 ic->ic_node_alloc = ath_node_alloc;
546 ic->ic_node_free = ath_node_free;
547 ic->ic_node_copy = ath_node_copy;
548 ic->ic_node_getrssi = ath_node_getrssi;
549 sc->sc_newstate = ic->ic_newstate;
550 ic->ic_newstate = ath_newstate;
551 /* complete initialization */
552 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
553
554 #if NBPFILTER > 0
555 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
556 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
557 &sc->sc_drvbpf);
558 #endif
559 /*
560 * Initialize constant fields.
561 *
562 * NB: the channel is setup each time we transition to the
563 * RUN state to avoid filling it in for each frame.
564 */
565 sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
566 sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
567
568 sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
569 sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
570
571 if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
572
573 #ifdef __NetBSD__
574 sc->sc_flags |= ATH_ATTACHED;
575 /*
576 * Make sure the interface is shutdown during reboot.
577 */
578 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
579 if (sc->sc_sdhook == NULL)
580 printf("%s: WARNING: unable to establish shutdown hook\n",
581 sc->sc_dev.dv_xname);
582 sc->sc_powerhook = powerhook_establish(ath_power, sc);
583 if (sc->sc_powerhook == NULL)
584 printf("%s: WARNING: unable to establish power hook\n",
585 sc->sc_dev.dv_xname);
586 #endif
587 return 0;
588 bad:
589 if (ah)
590 ath_hal_detach(ah);
591 sc->sc_invalid = 1;
592 return error;
593 }
594
595 int
596 ath_detach(struct ath_softc *sc)
597 {
598 struct ifnet *ifp = &sc->sc_ic.ic_if;
599 ath_softc_critsect_decl(s);
600
601 DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
602 if ((sc->sc_flags & ATH_ATTACHED) == 0)
603 return (0);
604
605 ath_softc_critsect_begin(sc, s);
606 ath_stop(ifp);
607 #if NBPFILTER > 0
608 bpfdetach(ifp);
609 #endif
610 ath_desc_free(sc);
611 ath_hal_detach(sc->sc_ah);
612 ieee80211_ifdetach(ifp);
613 #ifdef __NetBSD__
614 if_detach(ifp);
615 #endif /* __NetBSD__ */
616 ath_softc_critsect_end(sc, s);
617 #ifdef __NetBSD__
618 powerhook_disestablish(sc->sc_powerhook);
619 shutdownhook_disestablish(sc->sc_sdhook);
620 #endif /* __NetBSD__ */
621 #ifdef __FreeBSD__
622
623 ATH_TXBUF_LOCK_DESTROY(sc);
624 ATH_TXQ_LOCK_DESTROY(sc);
625
626 #endif /* __FreeBSD__ */
627 return 0;
628 }
629
630 #ifdef __NetBSD__
631 void
632 ath_power(int why, void *arg)
633 {
634 struct ath_softc *sc = arg;
635 int s;
636
637 DPRINTF(("ath_power(%d)\n", why));
638
639 s = splnet();
640 switch (why) {
641 case PWR_SUSPEND:
642 case PWR_STANDBY:
643 ath_suspend(sc, why);
644 break;
645 case PWR_RESUME:
646 ath_resume(sc, why);
647 break;
648 case PWR_SOFTSUSPEND:
649 case PWR_SOFTSTANDBY:
650 case PWR_SOFTRESUME:
651 break;
652 }
653 splx(s);
654 }
655 #endif
656
657 void
658 ath_suspend(struct ath_softc *sc, int why)
659 {
660 struct ifnet *ifp = &sc->sc_ic.ic_if;
661
662 DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
663
664 ath_stop(ifp);
665 if (sc->sc_power != NULL)
666 (*sc->sc_power)(sc, why);
667 }
668
669 void
670 ath_resume(struct ath_softc *sc, int why)
671 {
672 struct ifnet *ifp = &sc->sc_ic.ic_if;
673
674 DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
675
676 if (ifp->if_flags & IFF_UP) {
677 ath_init(ifp);
678 #if 0
679 (void)ath_intr(sc);
680 #endif
681 if (sc->sc_power != NULL)
682 (*sc->sc_power)(sc, why);
683 if (ifp->if_flags & IFF_RUNNING)
684 ath_start(ifp);
685 }
686 }
687
688 #ifdef __NetBSD__
689 void
690 ath_shutdown(void *arg)
691 {
692 struct ath_softc *sc = arg;
693
694 ath_stop(&sc->sc_ic.ic_if);
695 }
696 #else
697 void
698 ath_shutdown(struct ath_softc *sc)
699 {
700 #if 1
701 return;
702 #else
703 struct ifnet *ifp = &sc->sc_ic.ic_if;
704
705 DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
706
707 ath_stop(ifp);
708 #endif
709 }
710 #endif
711
712 #ifdef __NetBSD__
713 int
714 ath_intr(void *arg)
715 {
716 return ath_intr1((struct ath_softc *)arg);
717 }
718 #else
719 void
720 ath_intr(void *arg)
721 {
722 (void)ath_intr1((struct ath_softc *)arg);
723 }
724 #endif
725
726 static int
727 ath_intr1(struct ath_softc *sc)
728 {
729 struct ieee80211com *ic = &sc->sc_ic;
730 struct ifnet *ifp = &ic->ic_if;
731 struct ath_hal *ah = sc->sc_ah;
732 HAL_INT status;
733
734 if (sc->sc_invalid) {
735 /*
736 * The hardware is not ready/present, don't touch anything.
737 * Note this can happen early on if the IRQ is shared.
738 */
739 DPRINTF(("ath_intr: invalid; ignored\n"));
740 return 0;
741 }
742 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
743 DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
744 ath_hal_getisr(ah, &status); /* clear ISR */
745 ath_hal_intrset(ah, 0); /* disable further intr's */
746 return 1; /* XXX */
747 }
748 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
749 DPRINTF2(("ath_intr: status 0x%x\n", status));
750 #ifdef AR_DEBUG
751 if (ath_debug &&
752 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
753 if_printf(ifp, "ath_intr: status 0x%x\n", status);
754 ath_hal_dumpstate(ah);
755 }
756 #endif /* AR_DEBUG */
757 status &= sc->sc_imask; /* discard unasked for bits */
758 if (status & HAL_INT_FATAL) {
759 sc->sc_stats.ast_hardware++;
760 ath_hal_intrset(ah, 0); /* disable intr's until reset */
761 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
762 } else if (status & HAL_INT_RXORN) {
763 sc->sc_stats.ast_rxorn++;
764 ath_hal_intrset(ah, 0); /* disable intr's until reset */
765 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
766 } else {
767 if (status & HAL_INT_RXEOL) {
768 /*
769 * NB: the hardware should re-read the link when
770 * RXE bit is written, but it doesn't work at
771 * least on older hardware revs.
772 */
773 sc->sc_stats.ast_rxeol++;
774 sc->sc_rxlink = NULL;
775 }
776 if (status & HAL_INT_TXURN) {
777 sc->sc_stats.ast_txurn++;
778 /* bump tx trigger level */
779 ath_hal_updatetxtriglevel(ah, AH_TRUE);
780 }
781 if (status & HAL_INT_RX)
782 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
783 if (status & HAL_INT_TX)
784 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
785 if (status & HAL_INT_SWBA)
786 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
787 if (status & HAL_INT_BMISS) {
788 sc->sc_stats.ast_bmiss++;
789 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
790 }
791 }
792 return 1;
793 }
794
795 static void
796 ath_fatal_proc(void *arg, int pending)
797 {
798 struct ath_softc *sc = arg;
799
800 device_printf(sc->sc_dev, "hardware error; resetting\n");
801 ath_reset(sc);
802 }
803
804 static void
805 ath_rxorn_proc(void *arg, int pending)
806 {
807 struct ath_softc *sc = arg;
808
809 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
810 ath_reset(sc);
811 }
812
813 static void
814 ath_bmiss_proc(void *arg, int pending)
815 {
816 struct ath_softc *sc = arg;
817 struct ieee80211com *ic = &sc->sc_ic;
818
819 DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
820 if (ic->ic_opmode != IEEE80211_M_STA)
821 return;
822 if (ic->ic_state == IEEE80211_S_RUN) {
823 /*
824 * Rather than go directly to scan state, try to
825 * reassociate first. If that fails then the state
826 * machine will drop us into scanning after timing
827 * out waiting for a probe response.
828 */
829 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
830 }
831 }
832
833 static u_int
834 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
835 {
836 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
837
838 switch (mode) {
839 case IEEE80211_MODE_AUTO:
840 return 0;
841 case IEEE80211_MODE_11A:
842 return CHANNEL_A;
843 case IEEE80211_MODE_11B:
844 return CHANNEL_B;
845 case IEEE80211_MODE_11G:
846 return CHANNEL_PUREG;
847 case IEEE80211_MODE_TURBO:
848 return CHANNEL_T;
849 default:
850 panic("%s: unsupported mode %d\n", __func__, mode);
851 return 0;
852 }
853 }
854
855 #ifdef __NetBSD__
856 static int
857 ath_init(struct ifnet *ifp)
858 {
859 return ath_init1((struct ath_softc *)ifp->if_softc);
860 }
861 #else
862 static void
863 ath_init(void *arg)
864 {
865 (void)ath_init1((struct ath_softc *)arg);
866 }
867 #endif
868
869 static int
870 ath_init1(struct ath_softc *sc)
871 {
872 struct ieee80211com *ic = &sc->sc_ic;
873 struct ifnet *ifp = &ic->ic_if;
874 struct ieee80211_node *ni;
875 enum ieee80211_phymode mode;
876 struct ath_hal *ah = sc->sc_ah;
877 HAL_STATUS status;
878 HAL_CHANNEL hchan;
879 int error = 0;
880 ath_softc_critsect_decl(s);
881
882 DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
883
884 #ifdef __NetBSD__
885 if ((error = ath_enable(sc)) != 0)
886 return error;
887 #endif
888
889 ath_softc_critsect_begin(sc, s);
890 /*
891 * Stop anything previously setup. This is safe
892 * whether this is the first time through or not.
893 */
894 ath_stop(ifp);
895
896 /*
897 * The basic interface to setting the hardware in a good
898 * state is ``reset''. On return the hardware is known to
899 * be powered up and with interrupts disabled. This must
900 * be followed by initialization of the appropriate bits
901 * and then setup of the interrupt mask.
902 */
903 hchan.channel = ic->ic_ibss_chan->ic_freq;
904 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
905 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
906 if_printf(ifp, "unable to reset hardware; hal status %u\n",
907 status);
908 error = -1;
909 goto done;
910 }
911
912 /*
913 * Setup the hardware after reset: the key cache
914 * is filled as needed and the receive engine is
915 * set going. Frame transmit is handled entirely
916 * in the frame output path; there's nothing to do
917 * here except setup the interrupt mask.
918 */
919 if (ic->ic_flags & IEEE80211_F_WEPON)
920 ath_initkeytable(sc);
921 if ((error = ath_startrecv(sc)) != 0) {
922 if_printf(ifp, "unable to start recv logic\n");
923 goto done;
924 }
925
926 /*
927 * Enable interrupts.
928 */
929 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
930 | HAL_INT_RXEOL | HAL_INT_RXORN
931 | HAL_INT_FATAL | HAL_INT_GLOBAL;
932 ath_hal_intrset(ah, sc->sc_imask);
933
934 ifp->if_flags |= IFF_RUNNING;
935 ic->ic_state = IEEE80211_S_INIT;
936
937 /*
938 * The hardware should be ready to go now so it's safe
939 * to kick the 802.11 state machine as it's likely to
940 * immediately call back to us to send mgmt frames.
941 */
942 ni = ic->ic_bss;
943 ni->ni_chan = ic->ic_ibss_chan;
944 mode = ieee80211_chan2mode(ic, ni->ni_chan);
945 if (mode != sc->sc_curmode)
946 ath_setcurmode(sc, mode);
947 if (ic->ic_opmode != IEEE80211_M_MONITOR)
948 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
949 else
950 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
951 done:
952 ath_softc_critsect_end(sc, s);
953 return error;
954 }
955
956 static void
957 ath_stop(struct ifnet *ifp)
958 {
959 struct ieee80211com *ic = (struct ieee80211com *) ifp;
960 struct ath_softc *sc = ifp->if_softc;
961 struct ath_hal *ah = sc->sc_ah;
962 ath_softc_critsect_decl(s);
963
964 DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
965 sc->sc_invalid, ifp->if_flags));
966
967 ath_softc_critsect_begin(sc, s);
968 if (ifp->if_flags & IFF_RUNNING) {
969 /*
970 * Shutdown the hardware and driver:
971 * disable interrupts
972 * turn off timers
973 * clear transmit machinery
974 * clear receive machinery
975 * drain and release tx queues
976 * reclaim beacon resources
977 * reset 802.11 state machine
978 * power down hardware
979 *
980 * Note that some of this work is not possible if the
981 * hardware is gone (invalid).
982 */
983 ifp->if_flags &= ~IFF_RUNNING;
984 ifp->if_timer = 0;
985 if (!sc->sc_invalid)
986 ath_hal_intrset(ah, 0);
987 ath_draintxq(sc);
988 if (!sc->sc_invalid)
989 ath_stoprecv(sc);
990 else
991 sc->sc_rxlink = NULL;
992 #ifdef __FreeBSD__
993 IF_DRAIN(&ifp->if_snd);
994 #else
995 IF_PURGE(&ifp->if_snd);
996 #endif
997 ath_beacon_free(sc);
998 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
999 if (!sc->sc_invalid) {
1000 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
1001 }
1002 #ifdef __NetBSD__
1003 ath_disable(sc);
1004 #endif
1005 }
1006 ath_softc_critsect_end(sc, s);
1007 }
1008
1009 /*
1010 * Reset the hardware w/o losing operational state. This is
1011 * basically a more efficient way of doing ath_stop, ath_init,
1012 * followed by state transitions to the current 802.11
1013 * operational state. Used to recover from errors rx overrun
1014 * and to reset the hardware when rf gain settings must be reset.
1015 */
1016 static void
1017 ath_reset(struct ath_softc *sc)
1018 {
1019 struct ieee80211com *ic = &sc->sc_ic;
1020 struct ifnet *ifp = &ic->ic_if;
1021 struct ath_hal *ah = sc->sc_ah;
1022 struct ieee80211_channel *c;
1023 HAL_STATUS status;
1024 HAL_CHANNEL hchan;
1025
1026 /*
1027 * Convert to a HAL channel description with the flags
1028 * constrained to reflect the current operating mode.
1029 */
1030 c = ic->ic_ibss_chan;
1031 hchan.channel = c->ic_freq;
1032 hchan.channelFlags = ath_chan2flags(ic, c);
1033
1034 ath_hal_intrset(ah, 0); /* disable interrupts */
1035 ath_draintxq(sc); /* stop xmit side */
1036 ath_stoprecv(sc); /* stop recv side */
1037 /* NB: indicate channel change so we do a full reset */
1038 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
1039 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1040 __func__, status);
1041 ath_hal_intrset(ah, sc->sc_imask);
1042 if (ath_startrecv(sc) != 0) /* restart recv */
1043 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1044 ath_start(ifp); /* restart xmit */
1045 if (ic->ic_state == IEEE80211_S_RUN)
1046 ath_beacon_config(sc); /* restart beacons */
1047 }
1048
1049 static void
1050 ath_start(struct ifnet *ifp)
1051 {
1052 struct ath_softc *sc = ifp->if_softc;
1053 struct ath_hal *ah = sc->sc_ah;
1054 struct ieee80211com *ic = &sc->sc_ic;
1055 struct ieee80211_node *ni;
1056 struct ath_buf *bf;
1057 struct mbuf *m;
1058 struct ieee80211_frame *wh;
1059 ath_txbuf_critsect_decl(s);
1060
1061 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1062 return;
1063 for (;;) {
1064 /*
1065 * Grab a TX buffer and associated resources.
1066 */
1067 ath_txbuf_critsect_begin(sc, s);
1068 bf = TAILQ_FIRST(&sc->sc_txbuf);
1069 if (bf != NULL)
1070 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
1071 ath_txbuf_critsect_end(sc, s);
1072 if (bf == NULL) {
1073 DPRINTF(("ath_start: out of xmit buffers\n"));
1074 sc->sc_stats.ast_tx_qstop++;
1075 ifp->if_flags |= IFF_OACTIVE;
1076 break;
1077 }
1078 /*
1079 * Poll the management queue for frames; they
1080 * have priority over normal data frames.
1081 */
1082 IF_DEQUEUE(&ic->ic_mgtq, m);
1083 if (m == NULL) {
1084 /*
1085 * No data frames go out unless we're associated.
1086 */
1087 if (ic->ic_state != IEEE80211_S_RUN) {
1088 DPRINTF(("ath_start: ignore data packet, "
1089 "state %u\n", ic->ic_state));
1090 sc->sc_stats.ast_tx_discard++;
1091 ath_txbuf_critsect_begin(sc, s);
1092 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1093 ath_txbuf_critsect_end(sc, s);
1094 break;
1095 }
1096 IF_DEQUEUE(&ifp->if_snd, m);
1097 if (m == NULL) {
1098 ath_txbuf_critsect_begin(sc, s);
1099 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1100 ath_txbuf_critsect_end(sc, s);
1101 break;
1102 }
1103 ifp->if_opackets++;
1104
1105 #ifdef __NetBSD__
1106 #if NBPFILTER > 0
1107 if (ifp->if_bpf)
1108 bpf_mtap(ifp->if_bpf, m);
1109 #endif
1110 #endif
1111 #ifdef __FreeBSD__
1112 BPF_MTAP(ifp, m);
1113 #endif
1114 /*
1115 * Encapsulate the packet in prep for transmission.
1116 */
1117 m = ieee80211_encap(ifp, m, &ni);
1118 if (m == NULL) {
1119 DPRINTF(("ath_start: encapsulation failure\n"));
1120 sc->sc_stats.ast_tx_encap++;
1121 goto bad;
1122 }
1123 wh = mtod(m, struct ieee80211_frame *);
1124 if (ic->ic_flags & IEEE80211_F_WEPON)
1125 wh->i_fc[1] |= IEEE80211_FC1_WEP;
1126 } else {
1127 /*
1128 * Hack! The referenced node pointer is in the
1129 * rcvif field of the packet header. This is
1130 * placed there by ieee80211_mgmt_output because
1131 * we need to hold the reference with the frame
1132 * and there's no other way (other than packet
1133 * tags which we consider too expensive to use)
1134 * to pass it along.
1135 */
1136 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1137 m->m_pkthdr.rcvif = NULL;
1138
1139 wh = mtod(m, struct ieee80211_frame *);
1140 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1141 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1142 /* fill time stamp */
1143 u_int64_t tsf;
1144 u_int32_t *tstamp;
1145
1146 tsf = ath_hal_gettsf64(ah);
1147 /* XXX: adjust 100us delay to xmit */
1148 tsf += 100;
1149 tstamp = (u_int32_t *)&wh[1];
1150 tstamp[0] = htole32(tsf & 0xffffffff);
1151 tstamp[1] = htole32(tsf >> 32);
1152 }
1153 sc->sc_stats.ast_tx_mgmt++;
1154 }
1155 #if NBPFILTER > 0
1156 if (ic->ic_rawbpf)
1157 bpf_mtap(ic->ic_rawbpf, m);
1158 #endif
1159
1160 #if NBPFILTER > 0
1161 if (sc->sc_drvbpf) {
1162 #ifdef __FreeBSD__
1163 struct mbuf *mb;
1164
1165 MGETHDR(mb, M_DONTWAIT, m->m_type);
1166 if (mb != NULL) {
1167 sc->sc_tx_th.wt_rate =
1168 ni->ni_rates.rs_rates[ni->ni_txrate];
1169
1170 mb->m_next = m;
1171 mb->m_data = (caddr_t)&sc->sc_tx_th;
1172 mb->m_len = sizeof(sc->sc_tx_th);
1173 mb->m_pkthdr.len += mb->m_len;
1174 bpf_mtap(sc->sc_drvbpf, mb);
1175 m_free(mb);
1176 }
1177 #else
1178 struct mbuf mb;
1179
1180 M_COPY_PKTHDR(&mb, m);
1181 sc->sc_tx_th.wt_rate =
1182 ni->ni_rates.rs_rates[ni->ni_txrate];
1183
1184 mb.m_next = m;
1185 mb.m_data = (caddr_t)&sc->sc_tx_th;
1186 mb.m_len = sizeof(sc->sc_tx_th);
1187 mb.m_pkthdr.len += mb.m_len;
1188 bpf_mtap(sc->sc_drvbpf, &mb);
1189 #endif
1190 }
1191 #endif
1192
1193 if (ath_tx_start(sc, ni, bf, m)) {
1194 bad:
1195 ath_txbuf_critsect_begin(sc, s);
1196 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1197 ath_txbuf_critsect_end(sc, s);
1198 ifp->if_oerrors++;
1199 if (ni && ni != ic->ic_bss)
1200 ieee80211_free_node(ic, ni);
1201 continue;
1202 }
1203
1204 sc->sc_tx_timer = 5;
1205 ifp->if_timer = 1;
1206 }
1207 }
1208
1209 static int
1210 ath_media_change(struct ifnet *ifp)
1211 {
1212 int error;
1213
1214 error = ieee80211_media_change(ifp);
1215 if (error == ENETRESET) {
1216 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1217 (IFF_RUNNING|IFF_UP))
1218 ath_init(ifp); /* XXX lose error */
1219 error = 0;
1220 }
1221 return error;
1222 }
1223
1224 static void
1225 ath_watchdog(struct ifnet *ifp)
1226 {
1227 struct ath_softc *sc = ifp->if_softc;
1228 struct ieee80211com *ic = &sc->sc_ic;
1229
1230 ifp->if_timer = 0;
1231 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1232 return;
1233 if (sc->sc_tx_timer) {
1234 if (--sc->sc_tx_timer == 0) {
1235 if_printf(ifp, "device timeout\n");
1236 #ifdef AR_DEBUG
1237 if (ath_debug)
1238 ath_hal_dumpstate(sc->sc_ah);
1239 #endif /* AR_DEBUG */
1240 ath_init(ifp); /* XXX ath_reset??? */
1241 ifp->if_oerrors++;
1242 sc->sc_stats.ast_watchdog++;
1243 return;
1244 }
1245 ifp->if_timer = 1;
1246 }
1247 if (ic->ic_fixed_rate == -1) {
1248 /*
1249 * Run the rate control algorithm if we're not
1250 * locked at a fixed rate.
1251 */
1252 if (ic->ic_opmode == IEEE80211_M_STA)
1253 ath_rate_ctl(sc, ic->ic_bss);
1254 else
1255 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1256 }
1257 ieee80211_watchdog(ifp);
1258 }
1259
1260 static int
1261 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1262 {
1263 struct ath_softc *sc = ifp->if_softc;
1264 struct ifreq *ifr = (struct ifreq *)data;
1265 int error = 0;
1266 ath_softc_critsect_decl(s);
1267
1268 ath_softc_critsect_begin(sc, s);
1269 switch (cmd) {
1270 case SIOCSIFFLAGS:
1271 if (ifp->if_flags & IFF_UP) {
1272 if (ifp->if_flags & IFF_RUNNING) {
1273 /*
1274 * To avoid rescanning another access point,
1275 * do not call ath_init() here. Instead,
1276 * only reflect promisc mode settings.
1277 */
1278 ath_mode_init(sc);
1279 } else {
1280 /*
1281 * Beware of being called during detach to
1282 * reset promiscuous mode. In that case we
1283 * will still be marked UP but not RUNNING.
1284 * However trying to re-init the interface
1285 * is the wrong thing to do as we've already
1286 * torn down much of our state. There's
1287 * probably a better way to deal with this.
1288 */
1289 if (!sc->sc_invalid)
1290 ath_init(ifp); /* XXX lose error */
1291 }
1292 } else
1293 ath_stop(ifp);
1294 break;
1295 case SIOCADDMULTI:
1296 case SIOCDELMULTI:
1297 #ifdef __FreeBSD__
1298 /*
1299 * The upper layer has already installed/removed
1300 * the multicast address(es), just recalculate the
1301 * multicast filter for the card.
1302 */
1303 if (ifp->if_flags & IFF_RUNNING)
1304 ath_mode_init(sc);
1305 #endif
1306 #ifdef __NetBSD__
1307 error = (cmd == SIOCADDMULTI) ?
1308 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1309 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1310 if (error == ENETRESET) {
1311 if (ifp->if_flags & IFF_RUNNING)
1312 ath_mode_init(sc);
1313 error = 0;
1314 }
1315 #endif
1316 break;
1317 case SIOCGATHSTATS:
1318 error = copyout(&sc->sc_stats,
1319 ifr->ifr_data, sizeof (sc->sc_stats));
1320 break;
1321 case SIOCGATHDIAG: {
1322 struct ath_diag *ad = (struct ath_diag *)data;
1323 struct ath_hal *ah = sc->sc_ah;
1324 void *data;
1325 u_int size;
1326
1327 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
1328 if (size < ad->ad_size)
1329 ad->ad_size = size;
1330 if (data)
1331 error = copyout(data, ad->ad_data, ad->ad_size);
1332 } else
1333 error = EINVAL;
1334 break;
1335 }
1336 default:
1337 error = ieee80211_ioctl(ifp, cmd, data);
1338 if (error == ENETRESET) {
1339 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1340 (IFF_RUNNING|IFF_UP))
1341 ath_init(ifp); /* XXX lose error */
1342 error = 0;
1343 }
1344 break;
1345 }
1346 ath_softc_critsect_end(sc, s);
1347 return error;
1348 }
1349
1350 /*
1351 * Fill the hardware key cache with key entries.
1352 */
1353 static void
1354 ath_initkeytable(struct ath_softc *sc)
1355 {
1356 struct ieee80211com *ic = &sc->sc_ic;
1357 struct ath_hal *ah = sc->sc_ah;
1358 int i;
1359
1360 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1361 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1362 if (k->wk_len == 0)
1363 ath_hal_keyreset(ah, i);
1364 else
1365 /* XXX return value */
1366 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
1367 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
1368 }
1369 }
1370
1371 static void
1372 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1373 {
1374 u_int32_t val;
1375 u_int8_t pos;
1376
1377 val = LE_READ_4(dl + 0);
1378 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1379 val = LE_READ_4(dl + 3);
1380 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1381 pos &= 0x3f;
1382 (*mfilt)[pos / 32] |= (1 << (pos % 32));
1383 }
1384
1385 #ifdef __FreeBSD__
1386 static void
1387 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1388 {
1389 struct ieee80211com *ic = &sc->sc_ic;
1390 struct ifnet *ifp = &ic->ic_if;
1391 struct ifmultiaddr *ifma;
1392
1393 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1394 caddr_t dl;
1395
1396 /* calculate XOR of eight 6bit values */
1397 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1398 ath_mcastfilter_accum(dl, &mfilt);
1399 }
1400 }
1401 #else
1402 static void
1403 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1404 {
1405 struct ifnet *ifp = &sc->sc_ic.ic_if;
1406 struct ether_multi *enm;
1407 struct ether_multistep estep;
1408
1409 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1410 while (enm != NULL) {
1411 /* XXX Punt on ranges. */
1412 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1413 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1414 ifp->if_flags |= IFF_ALLMULTI;
1415 return;
1416 }
1417 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1418 ETHER_NEXT_MULTI(estep, enm);
1419 }
1420 ifp->if_flags &= ~IFF_ALLMULTI;
1421 }
1422 #endif
1423
1424 /*
1425 * Calculate the receive filter according to the
1426 * operating mode and state:
1427 *
1428 * o always accept unicast, broadcast, and multicast traffic
1429 * o maintain current state of phy error reception
1430 * o probe request frames are accepted only when operating in
1431 * hostap, adhoc, or monitor modes
1432 * o enable promiscuous mode according to the interface state
1433 * o accept beacons:
1434 * - when operating in adhoc mode so the 802.11 layer creates
1435 * node table entries for peers,
1436 * - when operating in station mode for collecting rssi data when
1437 * the station is otherwise quiet, or
1438 * - when scanning
1439 */
1440 static u_int32_t
1441 ath_calcrxfilter(struct ath_softc *sc)
1442 {
1443 struct ieee80211com *ic = &sc->sc_ic;
1444 struct ath_hal *ah = sc->sc_ah;
1445 struct ifnet *ifp = &ic->ic_if;
1446 u_int32_t rfilt;
1447
1448 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1449 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1450 if (ic->ic_opmode != IEEE80211_M_STA)
1451 rfilt |= HAL_RX_FILTER_PROBEREQ;
1452 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1453 (ifp->if_flags & IFF_PROMISC))
1454 rfilt |= HAL_RX_FILTER_PROM;
1455 if (ic->ic_opmode == IEEE80211_M_STA ||
1456 ic->ic_opmode == IEEE80211_M_IBSS ||
1457 ic->ic_state == IEEE80211_S_SCAN)
1458 rfilt |= HAL_RX_FILTER_BEACON;
1459 return rfilt;
1460 }
1461
1462 static void
1463 ath_mode_init(struct ath_softc *sc)
1464 {
1465 #ifdef __FreeBSD__
1466 struct ieee80211com *ic = &sc->sc_ic;
1467 #endif
1468 struct ath_hal *ah = sc->sc_ah;
1469 u_int32_t rfilt, mfilt[2];
1470
1471 /* configure rx filter */
1472 rfilt = ath_calcrxfilter(sc);
1473 ath_hal_setrxfilter(ah, rfilt);
1474
1475 /* configure operational mode */
1476 ath_hal_setopmode(ah);
1477
1478 /* calculate and install multicast filter */
1479 #ifdef __FreeBSD__
1480 if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
1481 mfilt[0] = mfilt[1] = 0;
1482 ath_mcastfilter_compute(sc, &mfilt);
1483 } else {
1484 mfilt[0] = mfilt[1] = ~0;
1485 }
1486 #endif
1487 #ifdef __NetBSD__
1488 mfilt[0] = mfilt[1] = 0;
1489 ath_mcastfilter_compute(sc, &mfilt);
1490 #endif
1491 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1492 DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1493 rfilt, mfilt[0], mfilt[1]));
1494 }
1495
1496 #ifdef __FreeBSD__
1497 static void
1498 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1499 {
1500 struct ath_buf *bf = arg;
1501
1502 KASSERT(nseg <= ATH_MAX_SCATTER,
1503 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1504 bf->bf_mapsize = mapsize;
1505 bf->bf_nseg = nseg;
1506 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1507 }
1508 #endif /* __FreeBSD__ */
1509
1510 static struct mbuf *
1511 ath_getmbuf(int flags, int type, u_int pktlen)
1512 {
1513 struct mbuf *m;
1514
1515 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1516 #ifdef __FreeBSD__
1517 if (pktlen <= MHLEN)
1518 MGETHDR(m, flags, type);
1519 else
1520 m = m_getcl(flags, type, M_PKTHDR);
1521 #else
1522 MGETHDR(m, flags, type);
1523 if (m != NULL && pktlen > MHLEN)
1524 MCLGET(m, flags);
1525 #endif
1526 return m;
1527 }
1528
1529 static int
1530 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1531 {
1532 struct ieee80211com *ic = &sc->sc_ic;
1533 struct ifnet *ifp = &ic->ic_if;
1534 struct ath_hal *ah = sc->sc_ah;
1535 struct ieee80211_frame *wh;
1536 struct ath_buf *bf;
1537 struct ath_desc *ds;
1538 struct mbuf *m;
1539 int error, pktlen;
1540 u_int8_t *frm, rate;
1541 u_int16_t capinfo;
1542 struct ieee80211_rateset *rs;
1543 const HAL_RATE_TABLE *rt;
1544
1545 bf = sc->sc_bcbuf;
1546 if (bf->bf_m != NULL) {
1547 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1548 m_freem(bf->bf_m);
1549 bf->bf_m = NULL;
1550 bf->bf_node = NULL;
1551 }
1552 /*
1553 * NB: the beacon data buffer must be 32-bit aligned;
1554 * we assume the mbuf routines will return us something
1555 * with this alignment (perhaps should assert).
1556 */
1557 rs = &ni->ni_rates;
1558 pktlen = sizeof (struct ieee80211_frame)
1559 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1560 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1561 pktlen += 2;
1562 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1563 if (m == NULL) {
1564 DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1565 pktlen));
1566 sc->sc_stats.ast_be_nombuf++;
1567 return ENOMEM;
1568 }
1569
1570 wh = mtod(m, struct ieee80211_frame *);
1571 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1572 IEEE80211_FC0_SUBTYPE_BEACON;
1573 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1574 *(u_int16_t *)wh->i_dur = 0;
1575 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1576 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1577 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1578 *(u_int16_t *)wh->i_seq = 0;
1579
1580 /*
1581 * beacon frame format
1582 * [8] time stamp
1583 * [2] beacon interval
1584 * [2] cabability information
1585 * [tlv] ssid
1586 * [tlv] supported rates
1587 * [tlv] parameter set (IBSS)
1588 * [tlv] extended supported rates
1589 */
1590 frm = (u_int8_t *)&wh[1];
1591 memset(frm, 0, 8); /* timestamp is set by hardware */
1592 frm += 8;
1593 *(u_int16_t *)frm = htole16(ni->ni_intval);
1594 frm += 2;
1595 if (ic->ic_opmode == IEEE80211_M_IBSS)
1596 capinfo = IEEE80211_CAPINFO_IBSS;
1597 else
1598 capinfo = IEEE80211_CAPINFO_ESS;
1599 if (ic->ic_flags & IEEE80211_F_WEPON)
1600 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1601 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1602 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1603 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1604 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1605 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1606 *(u_int16_t *)frm = htole16(capinfo);
1607 frm += 2;
1608 *frm++ = IEEE80211_ELEMID_SSID;
1609 *frm++ = ni->ni_esslen;
1610 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1611 frm += ni->ni_esslen;
1612 frm = ieee80211_add_rates(frm, rs);
1613 *frm++ = IEEE80211_ELEMID_DSPARMS;
1614 *frm++ = 1;
1615 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1616 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1617 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1618 *frm++ = 2;
1619 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1620 } else {
1621 /* TODO: TIM */
1622 *frm++ = IEEE80211_ELEMID_TIM;
1623 *frm++ = 4; /* length */
1624 *frm++ = 0; /* DTIM count */
1625 *frm++ = 1; /* DTIM period */
1626 *frm++ = 0; /* bitmap control */
1627 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1628 }
1629 frm = ieee80211_add_xrates(frm, rs);
1630 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1631 KASSERT(m->m_pkthdr.len <= pktlen,
1632 ("beacon bigger than expected, len %u calculated %u",
1633 m->m_pkthdr.len, pktlen));
1634
1635 DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1636 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1637 if (error != 0) {
1638 m_freem(m);
1639 return error;
1640 }
1641 KASSERT(bf->bf_nseg == 1,
1642 ("ath_beacon_alloc: multi-segment packet; nseg %u",
1643 bf->bf_nseg));
1644 bf->bf_m = m;
1645
1646 /* setup descriptors */
1647 ds = bf->bf_desc;
1648
1649 ds->ds_link = 0;
1650 ds->ds_data = bf->bf_segs[0].ds_addr;
1651
1652 DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
1653 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1654
1655 /*
1656 * Calculate rate code.
1657 * XXX everything at min xmit rate
1658 */
1659 rt = sc->sc_currates;
1660 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1661 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1662 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1663 else
1664 rate = rt->info[0].rateCode;
1665 if (!ath_hal_setuptxdesc(ah, ds
1666 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1667 , sizeof(struct ieee80211_frame) /* header length */
1668 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1669 , 0x20 /* txpower XXX */
1670 , rate, 1 /* series 0 rate/tries */
1671 , HAL_TXKEYIX_INVALID /* no encryption */
1672 , 0 /* antenna mode */
1673 , HAL_TXDESC_NOACK /* no ack for beacons */
1674 , 0 /* rts/cts rate */
1675 , 0 /* rts/cts duration */
1676 )) {
1677 printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1678 return -1;
1679 }
1680 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1681 /* XXX verify mbuf data area covers this roundup */
1682 if (!ath_hal_filltxdesc(ah, ds
1683 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1684 , AH_TRUE /* first segment */
1685 , AH_TRUE /* last segment */
1686 )) {
1687 printf("%s: ath_hal_filltxdesc failed\n", __func__);
1688 return -1;
1689 }
1690
1691 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1692
1693 return 0;
1694 }
1695
1696 static void
1697 ath_beacon_proc(void *arg, int pending)
1698 {
1699 struct ath_softc *sc = arg;
1700 struct ieee80211com *ic = &sc->sc_ic;
1701 struct ath_buf *bf = sc->sc_bcbuf;
1702 struct ath_hal *ah = sc->sc_ah;
1703
1704 DPRINTF2(("%s: pending %u\n", __func__, pending));
1705 if (ic->ic_opmode == IEEE80211_M_STA ||
1706 bf == NULL || bf->bf_m == NULL) {
1707 DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1708 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1709 return;
1710 }
1711 /* TODO: update beacon to reflect PS poll state */
1712 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1713 DPRINTF(("%s: beacon queue %u did not stop?",
1714 __func__, sc->sc_bhalq));
1715 return; /* busy, XXX is this right? */
1716 }
1717 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1718
1719 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1720 ath_hal_txstart(ah, sc->sc_bhalq);
1721 DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
1722 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1723 }
1724
1725 static void
1726 ath_beacon_free(struct ath_softc *sc)
1727 {
1728 struct ath_buf *bf = sc->sc_bcbuf;
1729
1730 if (bf->bf_m != NULL) {
1731 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1732 m_freem(bf->bf_m);
1733 bf->bf_m = NULL;
1734 bf->bf_node = NULL;
1735 }
1736 }
1737
1738 /*
1739 * Configure the beacon and sleep timers.
1740 *
1741 * When operating as an AP this resets the TSF and sets
1742 * up the hardware to notify us when we need to issue beacons.
1743 *
1744 * When operating in station mode this sets up the beacon
1745 * timers according to the timestamp of the last received
1746 * beacon and the current TSF, configures PCF and DTIM
1747 * handling, programs the sleep registers so the hardware
1748 * will wakeup in time to receive beacons, and configures
1749 * the beacon miss handling so we'll receive a BMISS
1750 * interrupt when we stop seeing beacons from the AP
1751 * we've associated with.
1752 */
1753 static void
1754 ath_beacon_config(struct ath_softc *sc)
1755 {
1756 struct ath_hal *ah = sc->sc_ah;
1757 struct ieee80211com *ic = &sc->sc_ic;
1758 struct ieee80211_node *ni = ic->ic_bss;
1759 u_int32_t nexttbtt;
1760
1761 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1762 (LE_READ_4(ni->ni_tstamp) >> 10);
1763 DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1764 nexttbtt += ni->ni_intval;
1765 if (ic->ic_opmode == IEEE80211_M_STA) {
1766 HAL_BEACON_STATE bs;
1767 u_int32_t bmisstime;
1768
1769 /* NB: no PCF support right now */
1770 memset(&bs, 0, sizeof(bs));
1771 bs.bs_intval = ni->ni_intval;
1772 bs.bs_nexttbtt = nexttbtt;
1773 bs.bs_dtimperiod = bs.bs_intval;
1774 bs.bs_nextdtim = nexttbtt;
1775 /*
1776 * Calculate the number of consecutive beacons to miss
1777 * before taking a BMISS interrupt. The configuration
1778 * is specified in ms, so we need to convert that to
1779 * TU's and then calculate based on the beacon interval.
1780 * Note that we clamp the result to at most 10 beacons.
1781 */
1782 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1783 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1784 if (bs.bs_bmissthreshold > 10)
1785 bs.bs_bmissthreshold = 10;
1786 else if (bs.bs_bmissthreshold <= 0)
1787 bs.bs_bmissthreshold = 1;
1788
1789 /*
1790 * Calculate sleep duration. The configuration is
1791 * given in ms. We insure a multiple of the beacon
1792 * period is used. Also, if the sleep duration is
1793 * greater than the DTIM period then it makes senses
1794 * to make it a multiple of that.
1795 *
1796 * XXX fixed at 100ms
1797 */
1798 bs.bs_sleepduration =
1799 roundup((100 * 1000) / 1024, bs.bs_intval);
1800 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1801 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1802
1803 DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1804 , __func__
1805 , bs.bs_intval
1806 , bs.bs_nexttbtt
1807 , bs.bs_dtimperiod
1808 , bs.bs_nextdtim
1809 , bs.bs_bmissthreshold
1810 , bs.bs_sleepduration
1811 ));
1812 ath_hal_intrset(ah, 0);
1813 /*
1814 * Reset our tsf so the hardware will update the
1815 * tsf register to reflect timestamps found in
1816 * received beacons.
1817 */
1818 ath_hal_resettsf(ah);
1819 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1820 sc->sc_imask |= HAL_INT_BMISS;
1821 ath_hal_intrset(ah, sc->sc_imask);
1822 } else {
1823 DPRINTF(("%s: intval %u nexttbtt %u\n",
1824 __func__, ni->ni_intval, nexttbtt));
1825 ath_hal_intrset(ah, 0);
1826 ath_hal_beaconinit(ah, nexttbtt, ni->ni_intval);
1827 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1828 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1829 ath_hal_intrset(ah, sc->sc_imask);
1830 }
1831 }
1832
1833 #ifdef __FreeBSD__
1834 static void
1835 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1836 {
1837 bus_addr_t *paddr = (bus_addr_t*) arg;
1838 *paddr = segs->ds_addr;
1839 }
1840 #endif
1841
1842 #ifdef __FreeBSD__
1843 static int
1844 ath_desc_alloc(struct ath_softc *sc)
1845 {
1846 int i, bsize, error;
1847 struct ath_desc *ds;
1848 struct ath_buf *bf;
1849
1850 /* allocate descriptors */
1851 sc->sc_desc_len = sizeof(struct ath_desc) *
1852 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1853 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1854 if (error != 0)
1855 return error;
1856
1857 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1858 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1859
1860 if (error != 0)
1861 goto fail0;
1862
1863 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1864 sc->sc_desc, sc->sc_desc_len,
1865 ath_load_cb, &sc->sc_desc_paddr,
1866 BUS_DMA_NOWAIT);
1867 if (error != 0)
1868 goto fail1;
1869
1870 ds = sc->sc_desc;
1871 DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1872 ds, sc->sc_desc_len,
1873 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1874
1875 /* allocate buffers */
1876 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1877 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1878 if (bf == NULL) {
1879 printf("%s: unable to allocate Tx/Rx buffers\n",
1880 sc->sc_dev.dv_xname);
1881 error = -1;
1882 goto fail2;
1883 }
1884 sc->sc_bufptr = bf;
1885
1886 TAILQ_INIT(&sc->sc_rxbuf);
1887 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1888 bf->bf_desc = ds;
1889 bf->bf_daddr = sc->sc_desc_paddr +
1890 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1891 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1892 &bf->bf_dmamap);
1893 if (error != 0)
1894 break;
1895 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1896 }
1897
1898 TAILQ_INIT(&sc->sc_txbuf);
1899 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1900 bf->bf_desc = ds;
1901 bf->bf_daddr = sc->sc_desc_paddr +
1902 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1903 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1904 &bf->bf_dmamap);
1905 if (error != 0)
1906 break;
1907 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1908 }
1909 TAILQ_INIT(&sc->sc_txq);
1910
1911 /* beacon buffer */
1912 bf->bf_desc = ds;
1913 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1914 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1915 if (error != 0)
1916 return error;
1917 sc->sc_bcbuf = bf;
1918 return 0;
1919
1920 fail2:
1921 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1922 fail1:
1923 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1924 fail0:
1925 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1926 sc->sc_ddmamap = NULL;
1927 return error;
1928 }
1929 #else
1930 static int
1931 ath_desc_alloc(struct ath_softc *sc)
1932 {
1933 int i, bsize, error = -1;
1934 struct ath_desc *ds;
1935 struct ath_buf *bf;
1936
1937 /* allocate descriptors */
1938 sc->sc_desc_len = sizeof(struct ath_desc) *
1939 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1940 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1941 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1942 printf("%s: unable to allocate control data, error = %d\n",
1943 sc->sc_dev.dv_xname, error);
1944 goto fail0;
1945 }
1946
1947 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1948 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1949 printf("%s: unable to map control data, error = %d\n",
1950 sc->sc_dev.dv_xname, error);
1951 goto fail1;
1952 }
1953
1954 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1955 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1956 printf("%s: unable to create control data DMA map, "
1957 "error = %d\n", sc->sc_dev.dv_xname, error);
1958 goto fail2;
1959 }
1960
1961 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1962 sc->sc_desc_len, NULL, 0)) != 0) {
1963 printf("%s: unable to load control data DMA map, error = %d\n",
1964 sc->sc_dev.dv_xname, error);
1965 goto fail3;
1966 }
1967
1968 ds = sc->sc_desc;
1969 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1970
1971 DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1972 ds, (u_long)sc->sc_desc_len,
1973 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1974
1975 /* allocate buffers */
1976 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1977 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1978 if (bf == NULL) {
1979 printf("%s: unable to allocate Tx/Rx buffers\n",
1980 sc->sc_dev.dv_xname);
1981 error = ENOMEM;
1982 goto fail3;
1983 }
1984 sc->sc_bufptr = bf;
1985
1986 TAILQ_INIT(&sc->sc_rxbuf);
1987 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1988 bf->bf_desc = ds;
1989 bf->bf_daddr = sc->sc_desc_paddr +
1990 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1991 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1992 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1993 printf("%s: unable to create Rx dmamap, error = %d\n",
1994 sc->sc_dev.dv_xname, error);
1995 goto fail4;
1996 }
1997 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1998 }
1999
2000 TAILQ_INIT(&sc->sc_txbuf);
2001 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
2002 bf->bf_desc = ds;
2003 bf->bf_daddr = sc->sc_desc_paddr +
2004 ((caddr_t)ds - (caddr_t)sc->sc_desc);
2005 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
2006 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2007 printf("%s: unable to create Tx dmamap, error = %d\n",
2008 sc->sc_dev.dv_xname, error);
2009 goto fail5;
2010 }
2011 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2012 }
2013 TAILQ_INIT(&sc->sc_txq);
2014
2015 /* beacon buffer */
2016 bf->bf_desc = ds;
2017 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
2018 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
2019 &bf->bf_dmamap)) != 0) {
2020 printf("%s: unable to create beacon dmamap, error = %d\n",
2021 sc->sc_dev.dv_xname, error);
2022 goto fail5;
2023 }
2024 sc->sc_bcbuf = bf;
2025 return 0;
2026
2027 fail5:
2028 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
2029 if (sc->sc_bufptr[i].bf_dmamap == NULL)
2030 continue;
2031 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2032 }
2033 fail4:
2034 for (i = 0; i < ATH_RXBUF; i++) {
2035 if (sc->sc_bufptr[i].bf_dmamap == NULL)
2036 continue;
2037 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2038 }
2039 fail3:
2040 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2041 fail2:
2042 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2043 sc->sc_ddmamap = NULL;
2044 fail1:
2045 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
2046 fail0:
2047 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2048 return error;
2049 }
2050 #endif
2051
2052 static void
2053 ath_desc_free(struct ath_softc *sc)
2054 {
2055 struct ath_buf *bf;
2056
2057 #ifdef __FreeBSD__
2058 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2059 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
2060 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2061 #else
2062 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2063 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2064 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2065 #endif
2066
2067 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2068 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2069 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2070 m_freem(bf->bf_m);
2071 }
2072 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
2073 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2074 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2075 if (bf->bf_m) {
2076 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2077 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2078 m_freem(bf->bf_m);
2079 bf->bf_m = NULL;
2080 }
2081 }
2082 if (sc->sc_bcbuf != NULL) {
2083 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2084 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2085 sc->sc_bcbuf = NULL;
2086 }
2087
2088 TAILQ_INIT(&sc->sc_rxbuf);
2089 TAILQ_INIT(&sc->sc_txbuf);
2090 TAILQ_INIT(&sc->sc_txq);
2091 free(sc->sc_bufptr, M_DEVBUF);
2092 sc->sc_bufptr = NULL;
2093 }
2094
2095 static struct ieee80211_node *
2096 ath_node_alloc(struct ieee80211com *ic)
2097 {
2098 struct ath_node *an =
2099 malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
2100 if (an) {
2101 int i;
2102 for (i = 0; i < ATH_RHIST_SIZE; i++)
2103 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
2104 an->an_rx_hist_next = ATH_RHIST_SIZE-1;
2105 return &an->an_node;
2106 } else
2107 return NULL;
2108 }
2109
2110 static void
2111 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2112 {
2113 struct ath_softc *sc = ic->ic_if.if_softc;
2114 struct ath_buf *bf;
2115
2116 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2117 if (bf->bf_node == ni)
2118 bf->bf_node = NULL;
2119 }
2120 free(ni, M_DEVBUF);
2121 }
2122
2123 static void
2124 ath_node_copy(struct ieee80211com *ic,
2125 struct ieee80211_node *dst, const struct ieee80211_node *src)
2126 {
2127 *(struct ath_node *)dst = *(const struct ath_node *)src;
2128 }
2129
2130 static u_int8_t
2131 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
2132 {
2133 struct ath_node *an = ATH_NODE(ni);
2134 int i, now, nsamples, rssi;
2135
2136 /*
2137 * Calculate the average over the last second of sampled data.
2138 */
2139 now = ATH_TICKS();
2140 nsamples = 0;
2141 rssi = 0;
2142 i = an->an_rx_hist_next;
2143 do {
2144 struct ath_recv_hist *rh = &an->an_rx_hist[i];
2145 if (rh->arh_ticks == ATH_RHIST_NOTIME)
2146 goto done;
2147 if (now - rh->arh_ticks > hz)
2148 goto done;
2149 rssi += rh->arh_rssi;
2150 nsamples++;
2151 if (i == 0)
2152 i = ATH_RHIST_SIZE-1;
2153 else
2154 i--;
2155 } while (i != an->an_rx_hist_next);
2156 done:
2157 /*
2158 * Return either the average or the last known
2159 * value if there is no recent data.
2160 */
2161 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
2162 }
2163
2164 static int
2165 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2166 {
2167 struct ath_hal *ah = sc->sc_ah;
2168 int error;
2169 struct mbuf *m;
2170 struct ath_desc *ds;
2171
2172 m = bf->bf_m;
2173 if (m == NULL) {
2174 /*
2175 * NB: by assigning a page to the rx dma buffer we
2176 * implicitly satisfy the Atheros requirement that
2177 * this buffer be cache-line-aligned and sized to be
2178 * multiple of the cache line size. Not doing this
2179 * causes weird stuff to happen (for the 5210 at least).
2180 */
2181 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
2182 if (m == NULL) {
2183 DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
2184 sc->sc_stats.ast_rx_nombuf++;
2185 return ENOMEM;
2186 }
2187 bf->bf_m = m;
2188 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2189
2190 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
2191 BUS_DMA_NOWAIT);
2192 if (error != 0) {
2193 DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
2194 " error %d\n", error));
2195 sc->sc_stats.ast_rx_busdma++;
2196 return error;
2197 }
2198 KASSERT(bf->bf_nseg == 1,
2199 ("ath_rxbuf_init: multi-segment packet; nseg %u",
2200 bf->bf_nseg));
2201 }
2202 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
2203
2204 /*
2205 * Setup descriptors. For receive we always terminate
2206 * the descriptor list with a self-linked entry so we'll
2207 * not get overrun under high load (as can happen with a
2208 * 5212 when ANI processing enables PHY errors).
2209 *
2210 * To insure the last descriptor is self-linked we create
2211 * each descriptor as self-linked and add it to the end. As
2212 * each additional descriptor is added the previous self-linked
2213 * entry is ``fixed'' naturally. This should be safe even
2214 * if DMA is happening. When processing RX interrupts we
2215 * never remove/process the last, self-linked, entry on the
2216 * descriptor list. This insures the hardware always has
2217 * someplace to write a new frame.
2218 */
2219 ds = bf->bf_desc;
2220 ds->ds_link = bf->bf_daddr; /* link to self */
2221 ds->ds_data = bf->bf_segs[0].ds_addr;
2222 ath_hal_setuprxdesc(ah, ds
2223 , m->m_len /* buffer size */
2224 , 0
2225 );
2226
2227 if (sc->sc_rxlink != NULL)
2228 *sc->sc_rxlink = bf->bf_daddr;
2229 sc->sc_rxlink = &ds->ds_link;
2230 return 0;
2231 }
2232
2233 static void
2234 ath_rx_proc(void *arg, int npending)
2235 {
2236 #define PA2DESC(_sc, _pa) \
2237 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2238 ((_pa) - (_sc)->sc_desc_paddr)))
2239 struct ath_softc *sc = arg;
2240 struct ath_buf *bf;
2241 struct ieee80211com *ic = &sc->sc_ic;
2242 struct ifnet *ifp = &ic->ic_if;
2243 struct ath_hal *ah = sc->sc_ah;
2244 struct ath_desc *ds;
2245 struct mbuf *m;
2246 struct ieee80211_frame *wh, whbuf;
2247 struct ieee80211_node *ni;
2248 struct ath_node *an;
2249 struct ath_recv_hist *rh;
2250 int len;
2251 u_int phyerr;
2252 HAL_STATUS status;
2253
2254 DPRINTF2(("ath_rx_proc: pending %u\n", npending));
2255 do {
2256 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2257 if (bf == NULL) { /* NB: shouldn't happen */
2258 if_printf(ifp, "ath_rx_proc: no buffer!\n");
2259 break;
2260 }
2261 ds = bf->bf_desc;
2262 if (ds->ds_link == bf->bf_daddr) {
2263 /* NB: never process the self-linked entry at the end */
2264 break;
2265 }
2266 m = bf->bf_m;
2267 if (m == NULL) { /* NB: shouldn't happen */
2268 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
2269 continue;
2270 }
2271 /* XXX sync descriptor memory */
2272 /*
2273 * Must provide the virtual address of the current
2274 * descriptor, the physical address, and the virtual
2275 * address of the next descriptor in the h/w chain.
2276 * This allows the HAL to look ahead to see if the
2277 * hardware is done with a descriptor by checking the
2278 * done bit in the following descriptor and the address
2279 * of the current descriptor the DMA engine is working
2280 * on. All this is necessary because of our use of
2281 * a self-linked list to avoid rx overruns.
2282 */
2283 status = ath_hal_rxprocdesc(ah, ds,
2284 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2285 #ifdef AR_DEBUG
2286 if (ath_debug > 1)
2287 ath_printrxbuf(bf, status == HAL_OK);
2288 #endif
2289 if (status == HAL_EINPROGRESS)
2290 break;
2291 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
2292 if (ds->ds_rxstat.rs_status != 0) {
2293 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2294 sc->sc_stats.ast_rx_crcerr++;
2295 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2296 sc->sc_stats.ast_rx_fifoerr++;
2297 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2298 sc->sc_stats.ast_rx_badcrypt++;
2299 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2300 sc->sc_stats.ast_rx_phyerr++;
2301 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2302 sc->sc_stats.ast_rx_phy[phyerr]++;
2303 } else {
2304 /*
2305 * NB: don't count PHY errors as input errors;
2306 * we enable them on the 5212 to collect info
2307 * about environmental noise and, in that
2308 * setting, they don't really reflect tx/rx
2309 * errors.
2310 */
2311 ifp->if_ierrors++;
2312 }
2313 goto rx_next;
2314 }
2315
2316 len = ds->ds_rxstat.rs_datalen;
2317 if (len < IEEE80211_MIN_LEN) {
2318 DPRINTF(("ath_rx_proc: short packet %d\n", len));
2319 sc->sc_stats.ast_rx_tooshort++;
2320 goto rx_next;
2321 }
2322
2323 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2324
2325 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2326 bf->bf_m = NULL;
2327 m->m_pkthdr.rcvif = ifp;
2328 m->m_pkthdr.len = m->m_len = len;
2329
2330 #if NBPFILTER > 0
2331 if (sc->sc_drvbpf) {
2332 #ifdef __FreeBSD__
2333 struct mbuf *mb;
2334
2335 /* XXX pre-allocate space when setting up recv's */
2336 MGETHDR(mb, M_DONTWAIT, m->m_type);
2337 if (mb != NULL) {
2338 sc->sc_rx_th.wr_rate =
2339 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2340 sc->sc_rx_th.wr_antsignal =
2341 ds->ds_rxstat.rs_rssi;
2342 sc->sc_rx_th.wr_antenna =
2343 ds->ds_rxstat.rs_antenna;
2344 /* XXX TSF */
2345
2346 (void) m_dup_pkthdr(mb, m, M_DONTWAIT);
2347 mb->m_next = m;
2348 mb->m_data = (caddr_t)&sc->sc_rx_th;
2349 mb->m_len = sizeof(sc->sc_rx_th);
2350 mb->m_pkthdr.len += mb->m_len;
2351 bpf_mtap(sc->sc_drvbpf, mb);
2352 m_free(mb);
2353 }
2354 #else
2355 /* XXX pre-allocate space when setting up recv's */
2356 struct mbuf mb;
2357
2358 sc->sc_rx_th.wr_rate =
2359 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2360 sc->sc_rx_th.wr_antsignal =
2361 ds->ds_rxstat.rs_rssi;
2362 sc->sc_rx_th.wr_antenna =
2363 ds->ds_rxstat.rs_antenna;
2364 /* XXX TSF */
2365
2366 M_COPY_PKTHDR(&mb, m);
2367 mb.m_next = m;
2368 mb.m_data = (caddr_t)&sc->sc_rx_th;
2369 mb.m_len = sizeof(sc->sc_rx_th);
2370 mb.m_pkthdr.len += mb.m_len;
2371 bpf_mtap(sc->sc_drvbpf, &mb);
2372 #endif
2373 }
2374 #endif
2375
2376 m_adj(m, -IEEE80211_CRC_LEN);
2377 wh = mtod(m, struct ieee80211_frame *);
2378 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2379 /*
2380 * WEP is decrypted by hardware. Clear WEP bit
2381 * and trim WEP header for ieee80211_input().
2382 */
2383 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2384 memcpy(&whbuf, wh, sizeof(whbuf));
2385 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2386 wh = mtod(m, struct ieee80211_frame *);
2387 memcpy(wh, &whbuf, sizeof(whbuf));
2388 /*
2389 * Also trim WEP ICV from the tail.
2390 */
2391 m_adj(m, -IEEE80211_WEP_CRCLEN);
2392 /*
2393 * The header has probably moved.
2394 */
2395 wh = mtod(m, struct ieee80211_frame *);
2396 }
2397
2398 /*
2399 * Locate the node for sender, track state, and
2400 * then pass this node (referenced) up to the 802.11
2401 * layer for its use. We are required to pass
2402 * something so we fall back to ic_bss when this frame
2403 * is from an unknown sender.
2404 */
2405 ni = ieee80211_find_rxnode(ic, wh);
2406
2407 /*
2408 * Record driver-specific state.
2409 */
2410 an = ATH_NODE(ni);
2411 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2412 an->an_rx_hist_next = 0;
2413 rh = &an->an_rx_hist[an->an_rx_hist_next];
2414 rh->arh_ticks = ATH_TICKS();
2415 rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2416 rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2417
2418 /*
2419 * Send frame up for processing.
2420 */
2421 ieee80211_input(ifp, m, ni,
2422 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2423
2424 /*
2425 * The frame may have caused the node to be marked for
2426 * reclamation (e.g. in response to a DEAUTH message)
2427 * so use free_node here instead of unref_node.
2428 */
2429 if (ni == ic->ic_bss)
2430 ieee80211_unref_node(&ni);
2431 else
2432 ieee80211_free_node(ic, ni);
2433 rx_next:
2434 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2435 } while (ath_rxbuf_init(sc, bf) == 0);
2436
2437 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
2438 ath_hal_rxena(ah); /* in case of RXEOL */
2439
2440 #ifdef __NetBSD__
2441 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2442 ath_start(ifp);
2443 #endif /* __NetBSD__ */
2444 #undef PA2DESC
2445 }
2446
2447 /*
2448 * XXX Size of an ACK control frame in bytes.
2449 */
2450 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
2451
2452 static int
2453 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2454 struct mbuf *m0)
2455 {
2456 struct ieee80211com *ic = &sc->sc_ic;
2457 struct ath_hal *ah = sc->sc_ah;
2458 struct ifnet *ifp = &sc->sc_ic.ic_if;
2459 int i, error, iswep, hdrlen, pktlen;
2460 u_int8_t rix, cix, txrate, ctsrate;
2461 struct ath_desc *ds;
2462 struct mbuf *m;
2463 struct ieee80211_frame *wh;
2464 u_int32_t iv;
2465 u_int8_t *ivp;
2466 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2467 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2468 u_int subtype, flags, ctsduration, antenna;
2469 HAL_PKT_TYPE atype;
2470 const HAL_RATE_TABLE *rt;
2471 HAL_BOOL shortPreamble;
2472 struct ath_node *an;
2473 ath_txq_critsect_decl(s);
2474
2475 wh = mtod(m0, struct ieee80211_frame *);
2476 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2477 hdrlen = sizeof(struct ieee80211_frame);
2478 pktlen = m0->m_pkthdr.len;
2479
2480 if (iswep) {
2481 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2482 m_adj(m0, hdrlen);
2483 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2484 if (m0 == NULL) {
2485 sc->sc_stats.ast_tx_nombuf++;
2486 return ENOMEM;
2487 }
2488 ivp = hdrbuf + hdrlen;
2489 wh = mtod(m0, struct ieee80211_frame *);
2490 /*
2491 * XXX
2492 * IV must not duplicate during the lifetime of the key.
2493 * But no mechanism to renew keys is defined in IEEE 802.11
2494 * WEP. And IV may be duplicated between other stations
2495 * because of the session key itself is shared.
2496 * So we use pseudo random IV for now, though it is not the
2497 * right way.
2498 */
2499 iv = ic->ic_iv;
2500 /*
2501 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2502 * (B, 255, N) with 3 <= B < 8
2503 */
2504 if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
2505 iv += 0x000100;
2506 ic->ic_iv = iv + 1;
2507 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
2508 ivp[i] = iv;
2509 iv >>= 8;
2510 }
2511 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
2512 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2513 /*
2514 * The ICV length must be included into hdrlen and pktlen.
2515 */
2516 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2517 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2518 }
2519 pktlen += IEEE80211_CRC_LEN;
2520
2521 /*
2522 * Load the DMA map so any coalescing is done. This
2523 * also calculates the number of descriptors we need.
2524 */
2525 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2526 /*
2527 * Discard null packets and check for packets that
2528 * require too many TX descriptors. We try to convert
2529 * the latter to a cluster.
2530 */
2531 if (error == EFBIG) { /* too many desc's, linearize */
2532 sc->sc_stats.ast_tx_linear++;
2533 MGETHDR(m, M_DONTWAIT, MT_DATA);
2534 if (m == NULL) {
2535 sc->sc_stats.ast_tx_nombuf++;
2536 m_freem(m0);
2537 return ENOMEM;
2538 }
2539 #ifdef __FreeBSD__
2540 M_MOVE_PKTHDR(m, m0);
2541 #else
2542 M_COPY_PKTHDR(m, m0);
2543 #endif
2544 MCLGET(m, M_DONTWAIT);
2545 if ((m->m_flags & M_EXT) == 0) {
2546 sc->sc_stats.ast_tx_nomcl++;
2547 m_freem(m0);
2548 m_free(m);
2549 return ENOMEM;
2550 }
2551 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2552 m_freem(m0);
2553 m->m_len = m->m_pkthdr.len;
2554 m0 = m;
2555 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2556 BUS_DMA_NOWAIT);
2557 if (error != 0) {
2558 sc->sc_stats.ast_tx_busdma++;
2559 m_freem(m0);
2560 return error;
2561 }
2562 KASSERT(bf->bf_nseg == 1,
2563 ("ath_tx_start: packet not one segment; nseg %u",
2564 bf->bf_nseg));
2565 } else if (error != 0) {
2566 sc->sc_stats.ast_tx_busdma++;
2567 m_freem(m0);
2568 return error;
2569 } else if (bf->bf_nseg == 0) { /* null packet, discard */
2570 sc->sc_stats.ast_tx_nodata++;
2571 m_freem(m0);
2572 return EIO;
2573 }
2574 DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
2575 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2576 bf->bf_m = m0;
2577 bf->bf_node = ni; /* NB: held reference */
2578
2579 /* setup descriptors */
2580 ds = bf->bf_desc;
2581 rt = sc->sc_currates;
2582 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2583
2584 /*
2585 * Calculate Atheros packet type from IEEE80211 packet header
2586 * and setup for rate calculations.
2587 */
2588 atype = HAL_PKT_TYPE_NORMAL; /* default */
2589 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2590 case IEEE80211_FC0_TYPE_MGT:
2591 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2592 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2593 atype = HAL_PKT_TYPE_BEACON;
2594 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2595 atype = HAL_PKT_TYPE_PROBE_RESP;
2596 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2597 atype = HAL_PKT_TYPE_ATIM;
2598 rix = 0; /* XXX lowest rate */
2599 break;
2600 case IEEE80211_FC0_TYPE_CTL:
2601 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2602 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2603 atype = HAL_PKT_TYPE_PSPOLL;
2604 rix = 0; /* XXX lowest rate */
2605 break;
2606 default:
2607 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2608 IEEE80211_RATE_VAL];
2609 if (rix == 0xff) {
2610 if_printf(ifp, "bogus xmit rate 0x%x\n",
2611 ni->ni_rates.rs_rates[ni->ni_txrate]);
2612 sc->sc_stats.ast_tx_badrate++;
2613 m_freem(m0);
2614 return EIO;
2615 }
2616 break;
2617 }
2618 /*
2619 * NB: the 802.11 layer marks whether or not we should
2620 * use short preamble based on the current mode and
2621 * negotiated parameters.
2622 */
2623 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2624 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2625 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2626 shortPreamble = AH_TRUE;
2627 sc->sc_stats.ast_tx_shortpre++;
2628 } else {
2629 txrate = rt->info[rix].rateCode;
2630 shortPreamble = AH_FALSE;
2631 }
2632
2633 /*
2634 * Calculate miscellaneous flags.
2635 */
2636 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2637 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2638 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2639 sc->sc_stats.ast_tx_noack++;
2640 } else if (pktlen > ic->ic_rtsthreshold) {
2641 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2642 sc->sc_stats.ast_tx_rts++;
2643 }
2644
2645 /*
2646 * Calculate duration. This logically belongs in the 802.11
2647 * layer but it lacks sufficient information to calculate it.
2648 */
2649 if ((flags & HAL_TXDESC_NOACK) == 0 &&
2650 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2651 u_int16_t dur;
2652 /*
2653 * XXX not right with fragmentation.
2654 */
2655 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2656 rix, shortPreamble);
2657 *((u_int16_t*) wh->i_dur) = htole16(dur);
2658 }
2659
2660 /*
2661 * Calculate RTS/CTS rate and duration if needed.
2662 */
2663 ctsduration = 0;
2664 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2665 /*
2666 * CTS transmit rate is derived from the transmit rate
2667 * by looking in the h/w rate table. We must also factor
2668 * in whether or not a short preamble is to be used.
2669 */
2670 cix = rt->info[rix].controlRate;
2671 ctsrate = rt->info[cix].rateCode;
2672 if (shortPreamble)
2673 ctsrate |= rt->info[cix].shortPreamble;
2674 /*
2675 * Compute the transmit duration based on the size
2676 * of an ACK frame. We call into the HAL to do the
2677 * computation since it depends on the characteristics
2678 * of the actual PHY being used.
2679 */
2680 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2681 ctsduration += ath_hal_computetxtime(ah,
2682 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2683 }
2684 /* SIFS + data */
2685 ctsduration += ath_hal_computetxtime(ah,
2686 rt, pktlen, rix, shortPreamble);
2687 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2688 ctsduration += ath_hal_computetxtime(ah,
2689 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2690 }
2691 } else
2692 ctsrate = 0;
2693
2694 /*
2695 * For now use the antenna on which the last good
2696 * frame was received on. We assume this field is
2697 * initialized to 0 which gives us ``auto'' or the
2698 * ``default'' antenna.
2699 */
2700 an = (struct ath_node *) ni;
2701 if (an->an_tx_antenna)
2702 antenna = an->an_tx_antenna;
2703 else
2704 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2705
2706 /*
2707 * Formulate first tx descriptor with tx controls.
2708 */
2709 /* XXX check return value? */
2710 ath_hal_setuptxdesc(ah, ds
2711 , pktlen /* packet length */
2712 , hdrlen /* header length */
2713 , atype /* Atheros packet type */
2714 , 60 /* txpower XXX */
2715 , txrate, 1+10 /* series 0 rate/tries */
2716 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2717 , antenna /* antenna mode */
2718 , flags /* flags */
2719 , ctsrate /* rts/cts rate */
2720 , ctsduration /* rts/cts duration */
2721 );
2722 #ifdef notyet
2723 ath_hal_setupxtxdesc(ah, ds
2724 , AH_FALSE /* short preamble */
2725 , 0, 0 /* series 1 rate/tries */
2726 , 0, 0 /* series 2 rate/tries */
2727 , 0, 0 /* series 3 rate/tries */
2728 );
2729 #endif
2730 /*
2731 * Fillin the remainder of the descriptor info.
2732 */
2733 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2734 ds->ds_data = bf->bf_segs[i].ds_addr;
2735 if (i == bf->bf_nseg - 1)
2736 ds->ds_link = 0;
2737 else
2738 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2739 ath_hal_filltxdesc(ah, ds
2740 , bf->bf_segs[i].ds_len /* segment length */
2741 , i == 0 /* first segment */
2742 , i == bf->bf_nseg - 1 /* last segment */
2743 );
2744 DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2745 i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2746 ds->ds_hw[0], ds->ds_hw[1]));
2747 }
2748
2749 /*
2750 * Insert the frame on the outbound list and
2751 * pass it on to the hardware.
2752 */
2753 ath_txq_critsect_begin(sc, s);
2754 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2755 if (sc->sc_txlink == NULL) {
2756 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2757 DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2758 (caddr_t)bf->bf_daddr, bf->bf_desc));
2759 } else {
2760 *sc->sc_txlink = bf->bf_daddr;
2761 DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2762 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2763 }
2764 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2765 ath_txq_critsect_end(sc, s);
2766
2767 ath_hal_txstart(ah, sc->sc_txhalq);
2768 return 0;
2769 }
2770
2771 static void
2772 ath_tx_proc(void *arg, int npending)
2773 {
2774 struct ath_softc *sc = arg;
2775 struct ath_hal *ah = sc->sc_ah;
2776 struct ath_buf *bf;
2777 struct ieee80211com *ic = &sc->sc_ic;
2778 struct ifnet *ifp = &ic->ic_if;
2779 struct ath_desc *ds;
2780 struct ieee80211_node *ni;
2781 struct ath_node *an;
2782 int sr, lr;
2783 HAL_STATUS status;
2784 ath_txq_critsect_decl(s);
2785 ath_txbuf_critsect_decl(s2);
2786
2787 DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2788 npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2789 sc->sc_txlink));
2790 for (;;) {
2791 ath_txq_critsect_begin(sc, s);
2792 bf = TAILQ_FIRST(&sc->sc_txq);
2793 if (bf == NULL) {
2794 sc->sc_txlink = NULL;
2795 ath_txq_critsect_end(sc, s);
2796 break;
2797 }
2798 /* only the last descriptor is needed */
2799 ds = &bf->bf_desc[bf->bf_nseg - 1];
2800 status = ath_hal_txprocdesc(ah, ds);
2801 #ifdef AR_DEBUG
2802 if (ath_debug > 1)
2803 ath_printtxbuf(bf, status == HAL_OK);
2804 #endif
2805 if (status == HAL_EINPROGRESS) {
2806 ath_txq_critsect_end(sc, s);
2807 break;
2808 }
2809 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2810 ath_txq_critsect_end(sc, s);
2811
2812 ni = bf->bf_node;
2813 if (ni != NULL) {
2814 an = (struct ath_node *) ni;
2815 if (ds->ds_txstat.ts_status == 0) {
2816 an->an_tx_ok++;
2817 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2818 } else {
2819 an->an_tx_err++;
2820 ifp->if_oerrors++;
2821 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2822 sc->sc_stats.ast_tx_xretries++;
2823 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2824 sc->sc_stats.ast_tx_fifoerr++;
2825 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2826 sc->sc_stats.ast_tx_filtered++;
2827 an->an_tx_antenna = 0; /* invalidate */
2828 }
2829 sr = ds->ds_txstat.ts_shortretry;
2830 lr = ds->ds_txstat.ts_longretry;
2831 sc->sc_stats.ast_tx_shortretry += sr;
2832 sc->sc_stats.ast_tx_longretry += lr;
2833 if (sr + lr)
2834 an->an_tx_retr++;
2835 /*
2836 * Reclaim reference to node.
2837 *
2838 * NB: the node may be reclaimed here if, for example
2839 * this is a DEAUTH message that was sent and the
2840 * node was timed out due to inactivity.
2841 */
2842 if (ni != ic->ic_bss)
2843 ieee80211_free_node(ic, ni);
2844 }
2845 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2846 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2847 m_freem(bf->bf_m);
2848 bf->bf_m = NULL;
2849 bf->bf_node = NULL;
2850
2851 ath_txbuf_critsect_begin(sc, s2);
2852 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2853 ath_txbuf_critsect_end(sc, s2);
2854 }
2855 ifp->if_flags &= ~IFF_OACTIVE;
2856 sc->sc_tx_timer = 0;
2857
2858 ath_start(ifp);
2859 }
2860
2861 /*
2862 * Drain the transmit queue and reclaim resources.
2863 */
2864 static void
2865 ath_draintxq(struct ath_softc *sc)
2866 {
2867 struct ath_hal *ah = sc->sc_ah;
2868 struct ifnet *ifp = &sc->sc_ic.ic_if;
2869 struct ath_buf *bf;
2870 ath_txq_critsect_decl(s);
2871 ath_txbuf_critsect_decl(s2);
2872
2873 /* XXX return value */
2874 if (!sc->sc_invalid) {
2875 /* don't touch the hardware if marked invalid */
2876 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2877 DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2878 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2879 sc->sc_txlink));
2880 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2881 DPRINTF(("ath_draintxq: beacon queue %p\n",
2882 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2883 }
2884 for (;;) {
2885 ath_txq_critsect_begin(sc, s);
2886 bf = TAILQ_FIRST(&sc->sc_txq);
2887 if (bf == NULL) {
2888 sc->sc_txlink = NULL;
2889 ath_txq_critsect_end(sc, s);
2890 break;
2891 }
2892 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2893 ath_txq_critsect_end(sc, s);
2894 #ifdef AR_DEBUG
2895 if (ath_debug)
2896 ath_printtxbuf(bf,
2897 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2898 #endif /* AR_DEBUG */
2899 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2900 m_freem(bf->bf_m);
2901 bf->bf_m = NULL;
2902 bf->bf_node = NULL;
2903 ath_txbuf_critsect_begin(sc, s2);
2904 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2905 ath_txbuf_critsect_end(sc, s2);
2906 }
2907 ifp->if_flags &= ~IFF_OACTIVE;
2908 sc->sc_tx_timer = 0;
2909 }
2910
2911 /*
2912 * Disable the receive h/w in preparation for a reset.
2913 */
2914 static void
2915 ath_stoprecv(struct ath_softc *sc)
2916 {
2917 #define PA2DESC(_sc, _pa) \
2918 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2919 ((_pa) - (_sc)->sc_desc_paddr)))
2920 struct ath_hal *ah = sc->sc_ah;
2921
2922 ath_hal_stoppcurecv(ah); /* disable PCU */
2923 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2924 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2925 DELAY(3000); /* long enough for 1 frame */
2926 #ifdef AR_DEBUG
2927 if (ath_debug) {
2928 struct ath_buf *bf;
2929
2930 DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2931 (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2932 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2933 struct ath_desc *ds = bf->bf_desc;
2934 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2935 PA2DESC(sc, ds->ds_link)) == HAL_OK)
2936 ath_printrxbuf(bf, 1);
2937 }
2938 }
2939 #endif
2940 sc->sc_rxlink = NULL; /* just in case */
2941 #undef PA2DESC
2942 }
2943
2944 /*
2945 * Enable the receive h/w following a reset.
2946 */
2947 static int
2948 ath_startrecv(struct ath_softc *sc)
2949 {
2950 struct ath_hal *ah = sc->sc_ah;
2951 struct ath_buf *bf;
2952
2953 sc->sc_rxlink = NULL;
2954 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2955 int error = ath_rxbuf_init(sc, bf);
2956 if (error != 0) {
2957 DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2958 error));
2959 return error;
2960 }
2961 }
2962
2963 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2964 ath_hal_putrxbuf(ah, bf->bf_daddr);
2965 ath_hal_rxena(ah); /* enable recv descriptors */
2966 ath_mode_init(sc); /* set filters, etc. */
2967 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2968 return 0;
2969 }
2970
2971 /*
2972 * Set/change channels. If the channel is really being changed,
2973 * it's done by resetting the chip. To accomplish this we must
2974 * first cleanup any pending DMA, then restart stuff after a la
2975 * ath_init.
2976 */
2977 static int
2978 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2979 {
2980 struct ath_hal *ah = sc->sc_ah;
2981 struct ieee80211com *ic = &sc->sc_ic;
2982
2983 DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2984 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2985 ic->ic_ibss_chan->ic_freq,
2986 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2987 if (chan != ic->ic_ibss_chan) {
2988 HAL_STATUS status;
2989 HAL_CHANNEL hchan;
2990 enum ieee80211_phymode mode;
2991
2992 /*
2993 * To switch channels clear any pending DMA operations;
2994 * wait long enough for the RX fifo to drain, reset the
2995 * hardware at the new frequency, and then re-enable
2996 * the relevant bits of the h/w.
2997 */
2998 ath_hal_intrset(ah, 0); /* disable interrupts */
2999 ath_draintxq(sc); /* clear pending tx frames */
3000 ath_stoprecv(sc); /* turn off frame recv */
3001 /*
3002 * Convert to a HAL channel description with
3003 * the flags constrained to reflect the current
3004 * operating mode.
3005 */
3006 hchan.channel = chan->ic_freq;
3007 hchan.channelFlags = ath_chan2flags(ic, chan);
3008 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3009 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
3010 "channel %u (%u Mhz)\n",
3011 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3012 return EIO;
3013 }
3014 /*
3015 * Re-enable rx framework.
3016 */
3017 if (ath_startrecv(sc) != 0) {
3018 if_printf(&ic->ic_if,
3019 "ath_chan_set: unable to restart recv logic\n");
3020 return EIO;
3021 }
3022
3023 /*
3024 * Update BPF state.
3025 */
3026 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3027 htole16(chan->ic_freq);
3028 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3029 htole16(chan->ic_flags);
3030
3031 /*
3032 * Change channels and update the h/w rate map
3033 * if we're switching; e.g. 11a to 11b/g.
3034 */
3035 ic->ic_ibss_chan = chan;
3036 mode = ieee80211_chan2mode(ic, chan);
3037 if (mode != sc->sc_curmode)
3038 ath_setcurmode(sc, mode);
3039
3040 /*
3041 * Re-enable interrupts.
3042 */
3043 ath_hal_intrset(ah, sc->sc_imask);
3044 }
3045 return 0;
3046 }
3047
3048 static void
3049 ath_next_scan(void *arg)
3050 {
3051 struct ath_softc *sc = arg;
3052 struct ieee80211com *ic = &sc->sc_ic;
3053 struct ifnet *ifp = &ic->ic_if;
3054 int s;
3055
3056 /* don't call ath_start w/o network interrupts blocked */
3057 s = splnet();
3058
3059 if (ic->ic_state == IEEE80211_S_SCAN)
3060 ieee80211_next_scan(ifp);
3061 splx(s);
3062 }
3063
3064 /*
3065 * Periodically recalibrate the PHY to account
3066 * for temperature/environment changes.
3067 */
3068 static void
3069 ath_calibrate(void *arg)
3070 {
3071 struct ath_softc *sc = arg;
3072 struct ath_hal *ah = sc->sc_ah;
3073 struct ieee80211com *ic = &sc->sc_ic;
3074 struct ieee80211_channel *c;
3075 HAL_CHANNEL hchan;
3076
3077 sc->sc_stats.ast_per_cal++;
3078
3079 /*
3080 * Convert to a HAL channel description with the flags
3081 * constrained to reflect the current operating mode.
3082 */
3083 c = ic->ic_ibss_chan;
3084 hchan.channel = c->ic_freq;
3085 hchan.channelFlags = ath_chan2flags(ic, c);
3086
3087 DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
3088
3089 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3090 /*
3091 * Rfgain is out of bounds, reset the chip
3092 * to load new gain values.
3093 */
3094 sc->sc_stats.ast_per_rfgain++;
3095 ath_reset(sc);
3096 }
3097 if (!ath_hal_calibrate(ah, &hchan)) {
3098 DPRINTF(("%s: calibration of channel %u failed\n",
3099 __func__, c->ic_freq));
3100 sc->sc_stats.ast_per_calfail++;
3101 }
3102 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
3103 }
3104
3105 static HAL_LED_STATE
3106 ath_state_to_led(enum ieee80211_state state)
3107 {
3108 switch (state) {
3109 case IEEE80211_S_INIT:
3110 return HAL_LED_INIT;
3111 case IEEE80211_S_SCAN:
3112 return HAL_LED_SCAN;
3113 case IEEE80211_S_AUTH:
3114 return HAL_LED_AUTH;
3115 case IEEE80211_S_ASSOC:
3116 return HAL_LED_ASSOC;
3117 case IEEE80211_S_RUN:
3118 return HAL_LED_RUN;
3119 default:
3120 panic("%s: unknown 802.11 state %d\n", __func__, state);
3121 return HAL_LED_INIT;
3122 }
3123 }
3124
3125 static int
3126 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3127 {
3128 struct ifnet *ifp = &ic->ic_if;
3129 struct ath_softc *sc = ifp->if_softc;
3130 struct ath_hal *ah = sc->sc_ah;
3131 struct ieee80211_node *ni;
3132 int i, error;
3133 const u_int8_t *bssid;
3134 u_int32_t rfilt;
3135
3136 DPRINTF(("%s: %s -> %s\n", __func__,
3137 ieee80211_state_name[ic->ic_state],
3138 ieee80211_state_name[nstate]));
3139
3140 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */
3141
3142 if (nstate == IEEE80211_S_INIT) {
3143 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3144 ath_hal_intrset(ah, sc->sc_imask);
3145 callout_stop(&sc->sc_scan_ch);
3146 callout_stop(&sc->sc_cal_ch);
3147 return (*sc->sc_newstate)(ic, nstate, arg);
3148 }
3149 ni = ic->ic_bss;
3150 error = ath_chan_set(sc, ni->ni_chan);
3151 if (error != 0)
3152 goto bad;
3153 rfilt = ath_calcrxfilter(sc);
3154 if (nstate == IEEE80211_S_SCAN) {
3155 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
3156 ath_next_scan, sc);
3157 bssid = ifp->if_broadcastaddr;
3158 } else {
3159 callout_stop(&sc->sc_scan_ch);
3160 bssid = ni->ni_bssid;
3161 }
3162 ath_hal_setrxfilter(ah, rfilt);
3163 DPRINTF(("%s: RX filter 0x%x bssid %s\n",
3164 __func__, rfilt, ether_sprintf(bssid)));
3165
3166 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3167 ath_hal_setassocid(ah, bssid, ni->ni_associd);
3168 else
3169 ath_hal_setassocid(ah, bssid, 0);
3170 if (ic->ic_flags & IEEE80211_F_WEPON) {
3171 for (i = 0; i < IEEE80211_WEP_NKID; i++)
3172 if (ath_hal_keyisvalid(ah, i))
3173 ath_hal_keysetmac(ah, i, bssid);
3174 }
3175
3176 if (nstate == IEEE80211_S_RUN) {
3177 DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3178 "capinfo=0x%04x chan=%d\n"
3179 , __func__
3180 , ic->ic_flags
3181 , ni->ni_intval
3182 , ether_sprintf(ni->ni_bssid)
3183 , ni->ni_capinfo
3184 , ieee80211_chan2ieee(ic, ni->ni_chan)));
3185
3186 /*
3187 * Allocate and setup the beacon frame for AP or adhoc mode.
3188 */
3189 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3190 ic->ic_opmode == IEEE80211_M_IBSS) {
3191 error = ath_beacon_alloc(sc, ni);
3192 if (error != 0)
3193 goto bad;
3194 }
3195
3196 /*
3197 * Configure the beacon and sleep timers.
3198 */
3199 ath_beacon_config(sc);
3200
3201 /* start periodic recalibration timer */
3202 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
3203 ath_calibrate, sc);
3204 } else {
3205 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3206 ath_hal_intrset(ah, sc->sc_imask);
3207 callout_stop(&sc->sc_cal_ch); /* no calibration */
3208 }
3209 /*
3210 * Reset the rate control state.
3211 */
3212 ath_rate_ctl_reset(sc, nstate);
3213 /*
3214 * Invoke the parent method to complete the work.
3215 */
3216 return (*sc->sc_newstate)(ic, nstate, arg);
3217 bad:
3218 callout_stop(&sc->sc_scan_ch);
3219 callout_stop(&sc->sc_cal_ch);
3220 /* NB: do not invoke the parent */
3221 return error;
3222 }
3223
3224 /*
3225 * Setup driver-specific state for a newly associated node.
3226 * Note that we're called also on a re-associate, the isnew
3227 * param tells us if this is the first time or not.
3228 */
3229 static void
3230 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3231 {
3232 if (isnew) {
3233 struct ath_node *an = (struct ath_node *) ni;
3234
3235 an->an_tx_ok = an->an_tx_err =
3236 an->an_tx_retr = an->an_tx_upper = 0;
3237 /* start with highest negotiated rate */
3238 /*
3239 * XXX should do otherwise but only when
3240 * the rate control algorithm is better.
3241 */
3242 KASSERT(ni->ni_rates.rs_nrates > 0,
3243 ("new association w/ no rates!"));
3244 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3245 }
3246 }
3247
3248 static int
3249 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor,
3250 HAL_BOOL xchanmode)
3251 {
3252 struct ieee80211com *ic = &sc->sc_ic;
3253 struct ifnet *ifp = &ic->ic_if;
3254 struct ath_hal *ah = sc->sc_ah;
3255 HAL_CHANNEL *chans;
3256 int i, ix, nchan;
3257
3258 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3259 M_TEMP, M_NOWAIT);
3260 if (chans == NULL) {
3261 if_printf(ifp, "unable to allocate channel table\n");
3262 return ENOMEM;
3263 }
3264 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3265 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
3266 if_printf(ifp, "unable to collect channel list from hal\n");
3267 free(chans, M_TEMP);
3268 return EINVAL;
3269 }
3270
3271 /*
3272 * Convert HAL channels to ieee80211 ones and insert
3273 * them in the table according to their channel number.
3274 */
3275 for (i = 0; i < nchan; i++) {
3276 HAL_CHANNEL *c = &chans[i];
3277 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3278 if (ix > IEEE80211_CHAN_MAX) {
3279 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3280 ix, c->channel, c->channelFlags);
3281 continue;
3282 }
3283 DPRINTF(("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
3284 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
3285 ix));
3286 /* NB: flags are known to be compatible */
3287 if (ic->ic_channels[ix].ic_freq == 0) {
3288 ic->ic_channels[ix].ic_freq = c->channel;
3289 ic->ic_channels[ix].ic_flags = c->channelFlags;
3290 } else {
3291 /* channels overlap; e.g. 11g and 11b */
3292 ic->ic_channels[ix].ic_flags |= c->channelFlags;
3293 }
3294 }
3295 free(chans, M_TEMP);
3296 return 0;
3297 }
3298
3299 static int
3300 ath_rate_setup(struct ath_softc *sc, u_int mode)
3301 {
3302 struct ath_hal *ah = sc->sc_ah;
3303 struct ieee80211com *ic = &sc->sc_ic;
3304 const HAL_RATE_TABLE *rt;
3305 struct ieee80211_rateset *rs;
3306 int i, maxrates;
3307
3308 switch (mode) {
3309 case IEEE80211_MODE_11A:
3310 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
3311 break;
3312 case IEEE80211_MODE_11B:
3313 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
3314 break;
3315 case IEEE80211_MODE_11G:
3316 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
3317 break;
3318 case IEEE80211_MODE_TURBO:
3319 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
3320 break;
3321 default:
3322 DPRINTF(("%s: invalid mode %u\n", __func__, mode));
3323 return 0;
3324 }
3325 rt = sc->sc_rates[mode];
3326 if (rt == NULL)
3327 return 0;
3328 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3329 DPRINTF(("%s: rate table too small (%u > %u)\n",
3330 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3331 maxrates = IEEE80211_RATE_MAXSIZE;
3332 } else
3333 maxrates = rt->rateCount;
3334 rs = &ic->ic_sup_rates[mode];
3335 for (i = 0; i < maxrates; i++)
3336 rs->rs_rates[i] = rt->info[i].dot11Rate;
3337 rs->rs_nrates = maxrates;
3338 return 1;
3339 }
3340
3341 static void
3342 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3343 {
3344 const HAL_RATE_TABLE *rt;
3345 int i;
3346
3347 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3348 rt = sc->sc_rates[mode];
3349 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3350 for (i = 0; i < rt->rateCount; i++)
3351 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3352 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3353 for (i = 0; i < 32; i++)
3354 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3355 sc->sc_currates = rt;
3356 sc->sc_curmode = mode;
3357 }
3358
3359 /*
3360 * Reset the rate control state for each 802.11 state transition.
3361 */
3362 static void
3363 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3364 {
3365 struct ieee80211com *ic = &sc->sc_ic;
3366 struct ieee80211_node *ni;
3367 struct ath_node *an;
3368
3369 if (ic->ic_opmode != IEEE80211_M_STA) {
3370 /*
3371 * When operating as a station the node table holds
3372 * the AP's that were discovered during scanning.
3373 * For any other operating mode we want to reset the
3374 * tx rate state of each node.
3375 */
3376 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3377 ni->ni_txrate = 0; /* use lowest rate */
3378 an = (struct ath_node *) ni;
3379 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3380 an->an_tx_upper = 0;
3381 }
3382 }
3383 /*
3384 * Reset local xmit state; this is really only meaningful
3385 * when operating in station or adhoc mode.
3386 */
3387 ni = ic->ic_bss;
3388 an = (struct ath_node *) ni;
3389 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3390 if (state == IEEE80211_S_RUN) {
3391 /* start with highest negotiated rate */
3392 KASSERT(ni->ni_rates.rs_nrates > 0,
3393 ("transition to RUN state w/ no rates!"));
3394 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3395 } else {
3396 /* use lowest rate */
3397 ni->ni_txrate = 0;
3398 }
3399 }
3400
3401 /*
3402 * Examine and potentially adjust the transmit rate.
3403 */
3404 static void
3405 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3406 {
3407 struct ath_softc *sc = arg;
3408 struct ath_node *an = (struct ath_node *) ni;
3409 struct ieee80211_rateset *rs = &ni->ni_rates;
3410 int mod = 0, orate, enough;
3411
3412 /*
3413 * Rate control
3414 * XXX: very primitive version.
3415 */
3416 sc->sc_stats.ast_rate_calls++;
3417
3418 enough = (an->an_tx_ok + an->an_tx_err >= 10);
3419
3420 /* no packet reached -> down */
3421 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3422 mod = -1;
3423
3424 /* all packets needs retry in average -> down */
3425 if (enough && an->an_tx_ok < an->an_tx_retr)
3426 mod = -1;
3427
3428 /* no error and less than 10% of packets needs retry -> up */
3429 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3430 mod = 1;
3431
3432 orate = ni->ni_txrate;
3433 switch (mod) {
3434 case 0:
3435 if (enough && an->an_tx_upper > 0)
3436 an->an_tx_upper--;
3437 break;
3438 case -1:
3439 if (ni->ni_txrate > 0) {
3440 ni->ni_txrate--;
3441 sc->sc_stats.ast_rate_drop++;
3442 }
3443 an->an_tx_upper = 0;
3444 break;
3445 case 1:
3446 if (++an->an_tx_upper < 2)
3447 break;
3448 an->an_tx_upper = 0;
3449 if (ni->ni_txrate + 1 < rs->rs_nrates) {
3450 ni->ni_txrate++;
3451 sc->sc_stats.ast_rate_raise++;
3452 }
3453 break;
3454 }
3455
3456 if (ni->ni_txrate != orate) {
3457 DPRINTF(("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3458 __func__,
3459 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3460 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3461 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3462 }
3463 if (ni->ni_txrate != orate || enough)
3464 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3465 }
3466
3467 #ifdef AR_DEBUG
3468 #ifdef __FreeBSD__
3469 static int
3470 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3471 {
3472 char dmode[64];
3473 int error;
3474
3475 strncpy(dmode, "", sizeof(dmode) - 1);
3476 dmode[sizeof(dmode) - 1] = '\0';
3477 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3478
3479 if (error == 0 && req->newptr != NULL) {
3480 struct ifnet *ifp;
3481 struct ath_softc *sc;
3482
3483 ifp = ifunit("ath0"); /* XXX */
3484 if (!ifp)
3485 return EINVAL;
3486 sc = ifp->if_softc;
3487 if (strcmp(dmode, "hal") == 0)
3488 ath_hal_dumpstate(sc->sc_ah);
3489 else
3490 return EINVAL;
3491 }
3492 return error;
3493 }
3494 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3495 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3496 #endif /* __FreeBSD__ */
3497
3498 #if 0 /* #ifdef __NetBSD__ */
3499 static int
3500 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3501 {
3502 char dmode[64];
3503 int error;
3504
3505 strncpy(dmode, "", sizeof(dmode) - 1);
3506 dmode[sizeof(dmode) - 1] = '\0';
3507 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3508
3509 if (error == 0 && req->newptr != NULL) {
3510 struct ifnet *ifp;
3511 struct ath_softc *sc;
3512
3513 ifp = ifunit("ath0"); /* XXX */
3514 if (!ifp)
3515 return EINVAL;
3516 sc = ifp->if_softc;
3517 if (strcmp(dmode, "hal") == 0)
3518 ath_hal_dumpstate(sc->sc_ah);
3519 else
3520 return EINVAL;
3521 }
3522 return error;
3523 }
3524 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3525 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3526 #endif /* __NetBSD__ */
3527
3528 static void
3529 ath_printrxbuf(struct ath_buf *bf, int done)
3530 {
3531 struct ath_desc *ds;
3532 int i;
3533
3534 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3535 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3536 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3537 ds->ds_link, ds->ds_data,
3538 ds->ds_ctl0, ds->ds_ctl1,
3539 ds->ds_hw[0], ds->ds_hw[1],
3540 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3541 }
3542 }
3543
3544 static void
3545 ath_printtxbuf(struct ath_buf *bf, int done)
3546 {
3547 struct ath_desc *ds;
3548 int i;
3549
3550 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3551 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3552 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3553 ds->ds_link, ds->ds_data,
3554 ds->ds_ctl0, ds->ds_ctl1,
3555 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3556 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3557 }
3558 }
3559 #endif /* AR_DEBUG */
3560