ath.c revision 1.23 1 /* $NetBSD: ath.c,v 1.23 2004/03/24 15:34:52 atatat Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
24 *
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
37 */
38
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.36 2003/11/29 01:23:59 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.23 2004/03/24 15:34:52 atatat Exp $");
45 #endif
46
47 /*
48 * Driver for the Atheros Wireless LAN controller.
49 *
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
52 */
53
54 #include "opt_inet.h"
55
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81
82 #include <machine/bus.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105
106 #include <dev/ic/athcompat.h>
107
108 #define AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116
117 /* unaligned little endian access */
118 #define LE_READ_2(p) \
119 ((u_int16_t) \
120 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
121 #define LE_READ_4(p) \
122 ((u_int32_t) \
123 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
124 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125
126 #ifdef __FreeBSD__
127 static void ath_init(void *);
128 #else
129 static int ath_init(struct ifnet *);
130 #endif
131 static int ath_init1(struct ath_softc *);
132 static int ath_intr1(struct ath_softc *);
133 static void ath_stop(struct ifnet *);
134 static void ath_start(struct ifnet *);
135 static void ath_reset(struct ath_softc *);
136 static int ath_media_change(struct ifnet *);
137 static void ath_watchdog(struct ifnet *);
138 static int ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void ath_fatal_proc(void *, int);
140 static void ath_rxorn_proc(void *, int);
141 static void ath_bmiss_proc(void *, int);
142 static void ath_initkeytable(struct ath_softc *);
143 static void ath_mode_init(struct ath_softc *);
144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void ath_beacon_proc(void *, int);
146 static void ath_beacon_free(struct ath_softc *);
147 static void ath_beacon_config(struct ath_softc *);
148 static int ath_desc_alloc(struct ath_softc *);
149 static void ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void ath_node_copy(struct ieee80211com *,
153 struct ieee80211_node *, const struct ieee80211_node *);
154 static u_int8_t ath_node_getrssi(struct ieee80211com *,
155 struct ieee80211_node *);
156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void ath_rx_proc(void *, int);
158 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 struct ath_buf *, struct mbuf *);
160 static void ath_tx_proc(void *, int);
161 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
162 static void ath_draintxq(struct ath_softc *);
163 static void ath_stoprecv(struct ath_softc *);
164 static int ath_startrecv(struct ath_softc *);
165 static void ath_next_scan(void *);
166 static void ath_calibrate(void *);
167 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 static void ath_newassoc(struct ieee80211com *,
169 struct ieee80211_node *, int);
170 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor,
171 HAL_BOOL xchanmode);
172
173 static int ath_rate_setup(struct ath_softc *sc, u_int mode);
174 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
175 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
176 static void ath_rate_ctl(void *, struct ieee80211_node *);
177
178 #ifdef __NetBSD__
179 int ath_enable(struct ath_softc *);
180 void ath_disable(struct ath_softc *);
181 void ath_power(int, void *);
182 #endif
183
184 #ifdef __FreeBSD__
185 SYSCTL_DECL(_hw_ath);
186 /* XXX validate sysctl values */
187 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
188 0, "channel dwell time (ms) for AP/station scanning");
189 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
190 0, "chip calibration interval (secs)");
191 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
192 0, "enable/disable outdoor operation");
193 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
194 0, "country code");
195 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
196 0, "regulatory domain");
197 #endif /* __FreeBSD__ */
198
199 #ifdef __NetBSD__
200 static struct sysctlnode *ath_node_root;
201 static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum,
202 ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum;
203 #endif /* __NetBSD__ */
204
205 static int ath_dwelltime = 200; /* 5 channels/second */
206 static int ath_calinterval = 30; /* calibrate every 30 secs */
207 static int ath_outdoor = AH_TRUE; /* outdoor operation */
208 static int ath_xchanmode = AH_TRUE; /* enable extended channels */
209 static int ath_countrycode = CTRY_DEFAULT; /* country code */
210 static int ath_regdomain = 0; /* regulatory domain */
211
212 #ifdef AR_DEBUG
213 int ath_debug = 0;
214 #ifdef __FreeBSD__
215 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
216 0, "control debugging printfs");
217 #endif /* __FreeBSD__ */
218 #define IFF_DUMPPKTS(_ifp) \
219 (ath_debug || \
220 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
221 static void ath_printrxbuf(struct ath_buf *bf, int);
222 static void ath_printtxbuf(struct ath_buf *bf, int);
223 #define DPRINTF(X) if (ath_debug) printf X
224 #define DPRINTF2(X) if (ath_debug > 1) printf X
225 #else
226 #define IFF_DUMPPKTS(_ifp) \
227 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
228 #define DPRINTF(X)
229 #define DPRINTF2(X)
230 #endif
231
232 #ifdef __NetBSD__
233 int
234 ath_activate(struct device *self, enum devact act)
235 {
236 struct ath_softc *sc = (struct ath_softc *)self;
237 int rv = 0, s;
238
239 s = splnet();
240 switch (act) {
241 case DVACT_ACTIVATE:
242 rv = EOPNOTSUPP;
243 break;
244 case DVACT_DEACTIVATE:
245 if_deactivate(&sc->sc_ic.ic_if);
246 break;
247 }
248 splx(s);
249 return rv;
250 }
251
252 int
253 ath_enable(struct ath_softc *sc)
254 {
255 if (ATH_IS_ENABLED(sc) == 0) {
256 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
257 printf("%s: device enable failed\n",
258 sc->sc_dev.dv_xname);
259 return (EIO);
260 }
261 sc->sc_flags |= ATH_ENABLED;
262 }
263 return (0);
264 }
265
266 void
267 ath_disable(struct ath_softc *sc)
268 {
269 if (!ATH_IS_ENABLED(sc))
270 return;
271 if (sc->sc_disable != NULL)
272 (*sc->sc_disable)(sc);
273 sc->sc_flags &= ~ATH_ENABLED;
274 }
275
276 static int
277 sysctl_ath_verify(SYSCTLFN_ARGS)
278 {
279 int error, t;
280 struct sysctlnode node;
281
282 node = *rnode;
283 t = *(int*)rnode->sysctl_data;
284 node.sysctl_data = &t;
285 error = sysctl_lookup(SYSCTLFN_CALL(&node));
286 if (error || newp == NULL)
287 return (error);
288
289 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
290 node.sysctl_num, rnode->sysctl_num));
291
292 if (node.sysctl_num == ath_dwelltime_nodenum) {
293 if (t <= 0)
294 return (EINVAL);
295 } else if (node.sysctl_num == ath_calibrate_nodenum) {
296 if (t <= 0)
297 return (EINVAL);
298 #ifdef AR_DEBUG
299 } else if (node.sysctl_num == ath_debug_nodenum) {
300 if (t < 0 || t > 2)
301 return (EINVAL);
302 #endif /* AR_DEBUG */
303 } else
304 return (EINVAL);
305
306 *(int*)rnode->sysctl_data = t;
307
308 return (0);
309 }
310
311 /*
312 * Setup sysctl(3) MIB, ath.*.
313 *
314 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
315 */
316 SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup")
317 {
318 int rc;
319 struct sysctlnode *node;
320
321 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
322 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
323 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
324 goto err;
325
326 if ((rc = sysctl_createv(clog, 0, NULL, &node,
327 CTLFLAG_PERMANENT, CTLTYPE_NODE, "ath", NULL,
328 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
329 goto err;
330
331 ath_node_root = node;
332
333 /* channel dwell time (ms) for AP/station scanning */
334 if ((rc = sysctl_createv(clog, 0, NULL, &node,
335 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
336 CTLTYPE_INT, "dwell", NULL, sysctl_ath_verify, 0, &ath_dwelltime,
337 0, CTL_HW, ath_node_root->sysctl_num, CTL_CREATE,
338 CTL_EOL)) != 0)
339 goto err;
340
341 ath_dwelltime_nodenum = node->sysctl_num;
342
343 /* chip calibration interval (secs) */
344 if ((rc = sysctl_createv(clog, 0, NULL, &node,
345 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
346 CTLTYPE_INT, "calibrate", NULL, sysctl_ath_verify,
347 0, &ath_calinterval, 0, CTL_HW,
348 ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
349 goto err;
350
351 ath_calibrate_nodenum = node->sysctl_num;
352
353 /* enable/disable outdoor operation */
354 if ((rc = sysctl_createv(clog, 0, NULL, &node,
355 CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
356 "outdoor", NULL, NULL, 0, &ath_outdoor, 0,
357 CTL_HW, ath_node_root->sysctl_num, CTL_CREATE,
358 CTL_EOL)) != 0)
359 goto err;
360
361 ath_outdoor_nodenum = node->sysctl_num;
362
363 /* country code */
364 if ((rc = sysctl_createv(clog, 0, NULL, &node,
365 CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
366 "countrycode", NULL, NULL, 0, &ath_countrycode, 0,
367 CTL_HW, ath_node_root->sysctl_num, CTL_CREATE,
368 CTL_EOL)) != 0)
369 goto err;
370
371 ath_countrycode_nodenum = node->sysctl_num;
372
373 /* regulatory domain */
374 if ((rc = sysctl_createv(clog, 0, NULL, &node,
375 CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
376 "regdomain", NULL, NULL, 0, &ath_regdomain, 0,
377 CTL_HW, ath_node_root->sysctl_num, CTL_CREATE,
378 CTL_EOL)) != 0)
379 goto err;
380
381 ath_regdomain_nodenum = node->sysctl_num;
382
383 #ifdef AR_DEBUG
384
385 /* control debugging printfs */
386 if ((rc = sysctl_createv(clog, 0, NULL, &node,
387 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
388 "debug", NULL, sysctl_ath_verify, 0, &ath_debug, 0,
389 CTL_HW, ath_node_root->sysctl_num, CTL_CREATE,
390 CTL_EOL)) != 0)
391 goto err;
392
393 ath_debug_nodenum = node->sysctl_num;
394
395 #endif /* AR_DEBUG */
396 return;
397 err:
398 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
399 }
400 #endif /* __NetBSD__ */
401
402 int
403 ath_attach(u_int16_t devid, struct ath_softc *sc)
404 {
405 struct ieee80211com *ic = &sc->sc_ic;
406 struct ifnet *ifp = &ic->ic_if;
407 struct ath_hal *ah;
408 HAL_STATUS status;
409 int error = 0;
410
411 DPRINTF(("ath_attach: devid 0x%x\n", devid));
412
413 #ifdef __FreeBSD__
414 /* set these up early for if_printf use */
415 if_initname(ifp, device_get_name(sc->sc_dev),
416 device_get_unit(sc->sc_dev));
417 #else
418 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
419 #endif
420
421 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
422 if (ah == NULL) {
423 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
424 status);
425 error = ENXIO;
426 goto bad;
427 }
428 if (ah->ah_abi != HAL_ABI_VERSION) {
429 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
430 ah->ah_abi, HAL_ABI_VERSION);
431 error = ENXIO;
432 goto bad;
433 }
434 if_printf(ifp, "mac %d.%d phy %d.%d",
435 ah->ah_macVersion, ah->ah_macRev,
436 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
437 if (ah->ah_analog5GhzRev)
438 printf(" 5ghz radio %d.%d",
439 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
440 if (ah->ah_analog2GhzRev)
441 printf(" 2ghz radio %d.%d",
442 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
443 printf("\n");
444 sc->sc_ah = ah;
445 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
446
447 /*
448 * Collect the channel list using the default country
449 * code and including outdoor channels. The 802.11 layer
450 * is resposible for filtering this list based on settings
451 * like the phy mode.
452 */
453 error = ath_getchannels(sc, ath_countrycode, ath_outdoor,
454 ath_xchanmode);
455 if (error != 0)
456 goto bad;
457 /*
458 * Copy these back; they are set as a side effect
459 * of constructing the channel list.
460 */
461 ath_regdomain = ath_hal_getregdomain(ah);
462 ath_countrycode = ath_hal_getcountrycode(ah);
463
464 /*
465 * Setup rate tables for all potential media types.
466 */
467 ath_rate_setup(sc, IEEE80211_MODE_11A);
468 ath_rate_setup(sc, IEEE80211_MODE_11B);
469 ath_rate_setup(sc, IEEE80211_MODE_11G);
470 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
471
472 error = ath_desc_alloc(sc);
473 if (error != 0) {
474 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
475 goto bad;
476 }
477 ATH_CALLOUT_INIT(&sc->sc_scan_ch);
478 ATH_CALLOUT_INIT(&sc->sc_cal_ch);
479
480 #ifdef __FreeBSD__
481 ATH_TXBUF_LOCK_INIT(sc);
482 ATH_TXQ_LOCK_INIT(sc);
483 #endif
484
485 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
486 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
487 ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
488 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
489 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
490 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
491
492 /*
493 * For now just pre-allocate one data queue and one
494 * beacon queue. Note that the HAL handles resetting
495 * them at the needed time. Eventually we'll want to
496 * allocate more tx queues for splitting management
497 * frames and for QOS support.
498 */
499 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
500 HAL_TX_QUEUE_DATA,
501 AH_TRUE /* enable interrupts */
502 );
503 if (sc->sc_txhalq == (u_int) -1) {
504 if_printf(ifp, "unable to setup a data xmit queue!\n");
505 goto bad;
506 }
507 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
508 HAL_TX_QUEUE_BEACON,
509 AH_TRUE /* enable interrupts */
510 );
511 if (sc->sc_bhalq == (u_int) -1) {
512 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
513 goto bad;
514 }
515
516 ifp->if_softc = sc;
517 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
518 ifp->if_start = ath_start;
519 ifp->if_watchdog = ath_watchdog;
520 ifp->if_ioctl = ath_ioctl;
521 ifp->if_init = ath_init;
522 #ifdef __FreeBSD__
523 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
524 #else
525 #if 0
526 ifp->if_stop = ath_stop; /* XXX */
527 #endif
528 IFQ_SET_READY(&ifp->if_snd);
529 #endif
530
531 ic->ic_softc = sc;
532 ic->ic_newassoc = ath_newassoc;
533 /* XXX not right but it's not used anywhere important */
534 ic->ic_phytype = IEEE80211_T_OFDM;
535 ic->ic_opmode = IEEE80211_M_STA;
536 ic->ic_caps = IEEE80211_C_WEP /* wep supported */
537 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
538 | IEEE80211_C_HOSTAP /* hostap mode */
539 | IEEE80211_C_MONITOR /* monitor mode */
540 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
541 | IEEE80211_C_RCVMGT; /* recv management frames */
542
543 /* get mac address from hardware */
544 ath_hal_getmac(ah, ic->ic_myaddr);
545
546 #ifdef __NetBSD__
547 if_attach(ifp);
548 #endif
549 /* call MI attach routine. */
550 ieee80211_ifattach(ifp);
551 /* override default methods */
552 ic->ic_node_alloc = ath_node_alloc;
553 ic->ic_node_free = ath_node_free;
554 ic->ic_node_copy = ath_node_copy;
555 ic->ic_node_getrssi = ath_node_getrssi;
556 sc->sc_newstate = ic->ic_newstate;
557 ic->ic_newstate = ath_newstate;
558 /* complete initialization */
559 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
560
561 #if NBPFILTER > 0
562 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
563 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
564 &sc->sc_drvbpf);
565 #endif
566 /*
567 * Initialize constant fields.
568 *
569 * NB: the channel is setup each time we transition to the
570 * RUN state to avoid filling it in for each frame.
571 */
572 sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
573 sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
574
575 sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
576 sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
577
578 if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
579
580 #ifdef __NetBSD__
581 sc->sc_flags |= ATH_ATTACHED;
582 /*
583 * Make sure the interface is shutdown during reboot.
584 */
585 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
586 if (sc->sc_sdhook == NULL)
587 printf("%s: WARNING: unable to establish shutdown hook\n",
588 sc->sc_dev.dv_xname);
589 sc->sc_powerhook = powerhook_establish(ath_power, sc);
590 if (sc->sc_powerhook == NULL)
591 printf("%s: WARNING: unable to establish power hook\n",
592 sc->sc_dev.dv_xname);
593 #endif
594 return 0;
595 bad:
596 if (ah)
597 ath_hal_detach(ah);
598 sc->sc_invalid = 1;
599 return error;
600 }
601
602 int
603 ath_detach(struct ath_softc *sc)
604 {
605 struct ifnet *ifp = &sc->sc_ic.ic_if;
606 ath_softc_critsect_decl(s);
607
608 DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
609 if ((sc->sc_flags & ATH_ATTACHED) == 0)
610 return (0);
611
612 ath_softc_critsect_begin(sc, s);
613 ath_stop(ifp);
614 #if NBPFILTER > 0
615 bpfdetach(ifp);
616 #endif
617 ath_desc_free(sc);
618 ath_hal_detach(sc->sc_ah);
619 ieee80211_ifdetach(ifp);
620 #ifdef __NetBSD__
621 if_detach(ifp);
622 #endif /* __NetBSD__ */
623 ath_softc_critsect_end(sc, s);
624 #ifdef __NetBSD__
625 powerhook_disestablish(sc->sc_powerhook);
626 shutdownhook_disestablish(sc->sc_sdhook);
627 #endif /* __NetBSD__ */
628 #ifdef __FreeBSD__
629
630 ATH_TXBUF_LOCK_DESTROY(sc);
631 ATH_TXQ_LOCK_DESTROY(sc);
632
633 #endif /* __FreeBSD__ */
634 return 0;
635 }
636
637 #ifdef __NetBSD__
638 void
639 ath_power(int why, void *arg)
640 {
641 struct ath_softc *sc = arg;
642 int s;
643
644 DPRINTF(("ath_power(%d)\n", why));
645
646 s = splnet();
647 switch (why) {
648 case PWR_SUSPEND:
649 case PWR_STANDBY:
650 ath_suspend(sc, why);
651 break;
652 case PWR_RESUME:
653 ath_resume(sc, why);
654 break;
655 case PWR_SOFTSUSPEND:
656 case PWR_SOFTSTANDBY:
657 case PWR_SOFTRESUME:
658 break;
659 }
660 splx(s);
661 }
662 #endif
663
664 void
665 ath_suspend(struct ath_softc *sc, int why)
666 {
667 struct ifnet *ifp = &sc->sc_ic.ic_if;
668
669 DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
670
671 ath_stop(ifp);
672 if (sc->sc_power != NULL)
673 (*sc->sc_power)(sc, why);
674 }
675
676 void
677 ath_resume(struct ath_softc *sc, int why)
678 {
679 struct ifnet *ifp = &sc->sc_ic.ic_if;
680
681 DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
682
683 if (ifp->if_flags & IFF_UP) {
684 ath_init(ifp);
685 #if 0
686 (void)ath_intr(sc);
687 #endif
688 if (sc->sc_power != NULL)
689 (*sc->sc_power)(sc, why);
690 if (ifp->if_flags & IFF_RUNNING)
691 ath_start(ifp);
692 }
693 }
694
695 #ifdef __NetBSD__
696 void
697 ath_shutdown(void *arg)
698 {
699 struct ath_softc *sc = arg;
700
701 ath_stop(&sc->sc_ic.ic_if);
702 }
703 #else
704 void
705 ath_shutdown(struct ath_softc *sc)
706 {
707 #if 1
708 return;
709 #else
710 struct ifnet *ifp = &sc->sc_ic.ic_if;
711
712 DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
713
714 ath_stop(ifp);
715 #endif
716 }
717 #endif
718
719 #ifdef __NetBSD__
720 int
721 ath_intr(void *arg)
722 {
723 return ath_intr1((struct ath_softc *)arg);
724 }
725 #else
726 void
727 ath_intr(void *arg)
728 {
729 (void)ath_intr1((struct ath_softc *)arg);
730 }
731 #endif
732
733 static int
734 ath_intr1(struct ath_softc *sc)
735 {
736 struct ieee80211com *ic = &sc->sc_ic;
737 struct ifnet *ifp = &ic->ic_if;
738 struct ath_hal *ah = sc->sc_ah;
739 HAL_INT status;
740
741 if (sc->sc_invalid) {
742 /*
743 * The hardware is not ready/present, don't touch anything.
744 * Note this can happen early on if the IRQ is shared.
745 */
746 DPRINTF(("ath_intr: invalid; ignored\n"));
747 return 0;
748 }
749 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
750 DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
751 ath_hal_getisr(ah, &status); /* clear ISR */
752 ath_hal_intrset(ah, 0); /* disable further intr's */
753 return 1; /* XXX */
754 }
755 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
756 DPRINTF2(("ath_intr: status 0x%x\n", status));
757 #ifdef AR_DEBUG
758 if (ath_debug &&
759 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
760 if_printf(ifp, "ath_intr: status 0x%x\n", status);
761 ath_hal_dumpstate(ah);
762 }
763 #endif /* AR_DEBUG */
764 status &= sc->sc_imask; /* discard unasked for bits */
765 if (status & HAL_INT_FATAL) {
766 sc->sc_stats.ast_hardware++;
767 ath_hal_intrset(ah, 0); /* disable intr's until reset */
768 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
769 } else if (status & HAL_INT_RXORN) {
770 sc->sc_stats.ast_rxorn++;
771 ath_hal_intrset(ah, 0); /* disable intr's until reset */
772 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
773 } else {
774 if (status & HAL_INT_RXEOL) {
775 /*
776 * NB: the hardware should re-read the link when
777 * RXE bit is written, but it doesn't work at
778 * least on older hardware revs.
779 */
780 sc->sc_stats.ast_rxeol++;
781 sc->sc_rxlink = NULL;
782 }
783 if (status & HAL_INT_TXURN) {
784 sc->sc_stats.ast_txurn++;
785 /* bump tx trigger level */
786 ath_hal_updatetxtriglevel(ah, AH_TRUE);
787 }
788 if (status & HAL_INT_RX)
789 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
790 if (status & HAL_INT_TX)
791 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
792 if (status & HAL_INT_SWBA)
793 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
794 if (status & HAL_INT_BMISS) {
795 sc->sc_stats.ast_bmiss++;
796 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
797 }
798 }
799 return 1;
800 }
801
802 static void
803 ath_fatal_proc(void *arg, int pending)
804 {
805 struct ath_softc *sc = arg;
806
807 device_printf(sc->sc_dev, "hardware error; resetting\n");
808 ath_reset(sc);
809 }
810
811 static void
812 ath_rxorn_proc(void *arg, int pending)
813 {
814 struct ath_softc *sc = arg;
815
816 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
817 ath_reset(sc);
818 }
819
820 static void
821 ath_bmiss_proc(void *arg, int pending)
822 {
823 struct ath_softc *sc = arg;
824 struct ieee80211com *ic = &sc->sc_ic;
825
826 DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
827 if (ic->ic_opmode != IEEE80211_M_STA)
828 return;
829 if (ic->ic_state == IEEE80211_S_RUN) {
830 /*
831 * Rather than go directly to scan state, try to
832 * reassociate first. If that fails then the state
833 * machine will drop us into scanning after timing
834 * out waiting for a probe response.
835 */
836 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
837 }
838 }
839
840 static u_int
841 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
842 {
843 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
844
845 switch (mode) {
846 case IEEE80211_MODE_AUTO:
847 return 0;
848 case IEEE80211_MODE_11A:
849 return CHANNEL_A;
850 case IEEE80211_MODE_11B:
851 return CHANNEL_B;
852 case IEEE80211_MODE_11G:
853 return CHANNEL_PUREG;
854 case IEEE80211_MODE_TURBO:
855 return CHANNEL_T;
856 default:
857 panic("%s: unsupported mode %d\n", __func__, mode);
858 return 0;
859 }
860 }
861
862 #ifdef __NetBSD__
863 static int
864 ath_init(struct ifnet *ifp)
865 {
866 return ath_init1((struct ath_softc *)ifp->if_softc);
867 }
868 #else
869 static void
870 ath_init(void *arg)
871 {
872 (void)ath_init1((struct ath_softc *)arg);
873 }
874 #endif
875
876 static int
877 ath_init1(struct ath_softc *sc)
878 {
879 struct ieee80211com *ic = &sc->sc_ic;
880 struct ifnet *ifp = &ic->ic_if;
881 struct ieee80211_node *ni;
882 enum ieee80211_phymode mode;
883 struct ath_hal *ah = sc->sc_ah;
884 HAL_STATUS status;
885 HAL_CHANNEL hchan;
886 int error = 0;
887 ath_softc_critsect_decl(s);
888
889 DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
890
891 #ifdef __NetBSD__
892 if ((error = ath_enable(sc)) != 0)
893 return error;
894 #endif
895
896 ath_softc_critsect_begin(sc, s);
897 /*
898 * Stop anything previously setup. This is safe
899 * whether this is the first time through or not.
900 */
901 ath_stop(ifp);
902
903 /*
904 * The basic interface to setting the hardware in a good
905 * state is ``reset''. On return the hardware is known to
906 * be powered up and with interrupts disabled. This must
907 * be followed by initialization of the appropriate bits
908 * and then setup of the interrupt mask.
909 */
910 hchan.channel = ic->ic_ibss_chan->ic_freq;
911 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
912 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
913 if_printf(ifp, "unable to reset hardware; hal status %u\n",
914 status);
915 error = -1;
916 goto done;
917 }
918
919 /*
920 * Setup the hardware after reset: the key cache
921 * is filled as needed and the receive engine is
922 * set going. Frame transmit is handled entirely
923 * in the frame output path; there's nothing to do
924 * here except setup the interrupt mask.
925 */
926 if (ic->ic_flags & IEEE80211_F_WEPON)
927 ath_initkeytable(sc);
928 if ((error = ath_startrecv(sc)) != 0) {
929 if_printf(ifp, "unable to start recv logic\n");
930 goto done;
931 }
932
933 /*
934 * Enable interrupts.
935 */
936 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
937 | HAL_INT_RXEOL | HAL_INT_RXORN
938 | HAL_INT_FATAL | HAL_INT_GLOBAL;
939 ath_hal_intrset(ah, sc->sc_imask);
940
941 ifp->if_flags |= IFF_RUNNING;
942 ic->ic_state = IEEE80211_S_INIT;
943
944 /*
945 * The hardware should be ready to go now so it's safe
946 * to kick the 802.11 state machine as it's likely to
947 * immediately call back to us to send mgmt frames.
948 */
949 ni = ic->ic_bss;
950 ni->ni_chan = ic->ic_ibss_chan;
951 mode = ieee80211_chan2mode(ic, ni->ni_chan);
952 if (mode != sc->sc_curmode)
953 ath_setcurmode(sc, mode);
954 if (ic->ic_opmode != IEEE80211_M_MONITOR)
955 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
956 else
957 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
958 done:
959 ath_softc_critsect_end(sc, s);
960 return error;
961 }
962
963 static void
964 ath_stop(struct ifnet *ifp)
965 {
966 struct ieee80211com *ic = (struct ieee80211com *) ifp;
967 struct ath_softc *sc = ifp->if_softc;
968 struct ath_hal *ah = sc->sc_ah;
969 ath_softc_critsect_decl(s);
970
971 DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
972 sc->sc_invalid, ifp->if_flags));
973
974 ath_softc_critsect_begin(sc, s);
975 if (ifp->if_flags & IFF_RUNNING) {
976 /*
977 * Shutdown the hardware and driver:
978 * disable interrupts
979 * turn off timers
980 * clear transmit machinery
981 * clear receive machinery
982 * drain and release tx queues
983 * reclaim beacon resources
984 * reset 802.11 state machine
985 * power down hardware
986 *
987 * Note that some of this work is not possible if the
988 * hardware is gone (invalid).
989 */
990 ifp->if_flags &= ~IFF_RUNNING;
991 ifp->if_timer = 0;
992 if (!sc->sc_invalid)
993 ath_hal_intrset(ah, 0);
994 ath_draintxq(sc);
995 if (!sc->sc_invalid)
996 ath_stoprecv(sc);
997 else
998 sc->sc_rxlink = NULL;
999 #ifdef __FreeBSD__
1000 IF_DRAIN(&ifp->if_snd);
1001 #else
1002 IF_PURGE(&ifp->if_snd);
1003 #endif
1004 ath_beacon_free(sc);
1005 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1006 if (!sc->sc_invalid) {
1007 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
1008 }
1009 #ifdef __NetBSD__
1010 ath_disable(sc);
1011 #endif
1012 }
1013 ath_softc_critsect_end(sc, s);
1014 }
1015
1016 /*
1017 * Reset the hardware w/o losing operational state. This is
1018 * basically a more efficient way of doing ath_stop, ath_init,
1019 * followed by state transitions to the current 802.11
1020 * operational state. Used to recover from errors rx overrun
1021 * and to reset the hardware when rf gain settings must be reset.
1022 */
1023 static void
1024 ath_reset(struct ath_softc *sc)
1025 {
1026 struct ieee80211com *ic = &sc->sc_ic;
1027 struct ifnet *ifp = &ic->ic_if;
1028 struct ath_hal *ah = sc->sc_ah;
1029 struct ieee80211_channel *c;
1030 HAL_STATUS status;
1031 HAL_CHANNEL hchan;
1032
1033 /*
1034 * Convert to a HAL channel description with the flags
1035 * constrained to reflect the current operating mode.
1036 */
1037 c = ic->ic_ibss_chan;
1038 hchan.channel = c->ic_freq;
1039 hchan.channelFlags = ath_chan2flags(ic, c);
1040
1041 ath_hal_intrset(ah, 0); /* disable interrupts */
1042 ath_draintxq(sc); /* stop xmit side */
1043 ath_stoprecv(sc); /* stop recv side */
1044 /* NB: indicate channel change so we do a full reset */
1045 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
1046 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1047 __func__, status);
1048 ath_hal_intrset(ah, sc->sc_imask);
1049 if (ath_startrecv(sc) != 0) /* restart recv */
1050 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1051 ath_start(ifp); /* restart xmit */
1052 if (ic->ic_state == IEEE80211_S_RUN)
1053 ath_beacon_config(sc); /* restart beacons */
1054 }
1055
1056 static void
1057 ath_start(struct ifnet *ifp)
1058 {
1059 struct ath_softc *sc = ifp->if_softc;
1060 struct ath_hal *ah = sc->sc_ah;
1061 struct ieee80211com *ic = &sc->sc_ic;
1062 struct ieee80211_node *ni;
1063 struct ath_buf *bf;
1064 struct mbuf *m;
1065 struct ieee80211_frame *wh;
1066 ath_txbuf_critsect_decl(s);
1067
1068 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1069 return;
1070 for (;;) {
1071 /*
1072 * Grab a TX buffer and associated resources.
1073 */
1074 ath_txbuf_critsect_begin(sc, s);
1075 bf = TAILQ_FIRST(&sc->sc_txbuf);
1076 if (bf != NULL)
1077 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
1078 ath_txbuf_critsect_end(sc, s);
1079 if (bf == NULL) {
1080 DPRINTF(("ath_start: out of xmit buffers\n"));
1081 sc->sc_stats.ast_tx_qstop++;
1082 ifp->if_flags |= IFF_OACTIVE;
1083 break;
1084 }
1085 /*
1086 * Poll the management queue for frames; they
1087 * have priority over normal data frames.
1088 */
1089 IF_DEQUEUE(&ic->ic_mgtq, m);
1090 if (m == NULL) {
1091 /*
1092 * No data frames go out unless we're associated.
1093 */
1094 if (ic->ic_state != IEEE80211_S_RUN) {
1095 DPRINTF(("ath_start: ignore data packet, "
1096 "state %u\n", ic->ic_state));
1097 sc->sc_stats.ast_tx_discard++;
1098 ath_txbuf_critsect_begin(sc, s);
1099 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1100 ath_txbuf_critsect_end(sc, s);
1101 break;
1102 }
1103 IF_DEQUEUE(&ifp->if_snd, m);
1104 if (m == NULL) {
1105 ath_txbuf_critsect_begin(sc, s);
1106 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1107 ath_txbuf_critsect_end(sc, s);
1108 break;
1109 }
1110 ifp->if_opackets++;
1111
1112 #ifdef __NetBSD__
1113 #if NBPFILTER > 0
1114 if (ifp->if_bpf)
1115 bpf_mtap(ifp->if_bpf, m);
1116 #endif
1117 #endif
1118 #ifdef __FreeBSD__
1119 BPF_MTAP(ifp, m);
1120 #endif
1121 /*
1122 * Encapsulate the packet in prep for transmission.
1123 */
1124 m = ieee80211_encap(ifp, m, &ni);
1125 if (m == NULL) {
1126 DPRINTF(("ath_start: encapsulation failure\n"));
1127 sc->sc_stats.ast_tx_encap++;
1128 goto bad;
1129 }
1130 wh = mtod(m, struct ieee80211_frame *);
1131 if (ic->ic_flags & IEEE80211_F_WEPON)
1132 wh->i_fc[1] |= IEEE80211_FC1_WEP;
1133 } else {
1134 /*
1135 * Hack! The referenced node pointer is in the
1136 * rcvif field of the packet header. This is
1137 * placed there by ieee80211_mgmt_output because
1138 * we need to hold the reference with the frame
1139 * and there's no other way (other than packet
1140 * tags which we consider too expensive to use)
1141 * to pass it along.
1142 */
1143 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1144 m->m_pkthdr.rcvif = NULL;
1145
1146 wh = mtod(m, struct ieee80211_frame *);
1147 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1148 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1149 /* fill time stamp */
1150 u_int64_t tsf;
1151 u_int32_t *tstamp;
1152
1153 tsf = ath_hal_gettsf64(ah);
1154 /* XXX: adjust 100us delay to xmit */
1155 tsf += 100;
1156 tstamp = (u_int32_t *)&wh[1];
1157 tstamp[0] = htole32(tsf & 0xffffffff);
1158 tstamp[1] = htole32(tsf >> 32);
1159 }
1160 sc->sc_stats.ast_tx_mgmt++;
1161 }
1162 #if NBPFILTER > 0
1163 if (ic->ic_rawbpf)
1164 bpf_mtap(ic->ic_rawbpf, m);
1165 #endif
1166
1167 #if NBPFILTER > 0
1168 if (sc->sc_drvbpf) {
1169 #ifdef __FreeBSD__
1170 struct mbuf *mb;
1171
1172 MGETHDR(mb, M_DONTWAIT, m->m_type);
1173 if (mb != NULL) {
1174 sc->sc_tx_th.wt_rate =
1175 ni->ni_rates.rs_rates[ni->ni_txrate];
1176
1177 mb->m_next = m;
1178 mb->m_data = (caddr_t)&sc->sc_tx_th;
1179 mb->m_len = sizeof(sc->sc_tx_th);
1180 mb->m_pkthdr.len += mb->m_len;
1181 bpf_mtap(sc->sc_drvbpf, mb);
1182 m_free(mb);
1183 }
1184 #else
1185 struct mbuf mb;
1186
1187 M_COPY_PKTHDR(&mb, m);
1188 sc->sc_tx_th.wt_rate =
1189 ni->ni_rates.rs_rates[ni->ni_txrate];
1190
1191 mb.m_next = m;
1192 mb.m_data = (caddr_t)&sc->sc_tx_th;
1193 mb.m_len = sizeof(sc->sc_tx_th);
1194 mb.m_pkthdr.len += mb.m_len;
1195 bpf_mtap(sc->sc_drvbpf, &mb);
1196 #endif
1197 }
1198 #endif
1199
1200 if (ath_tx_start(sc, ni, bf, m)) {
1201 bad:
1202 ath_txbuf_critsect_begin(sc, s);
1203 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1204 ath_txbuf_critsect_end(sc, s);
1205 ifp->if_oerrors++;
1206 if (ni && ni != ic->ic_bss)
1207 ieee80211_free_node(ic, ni);
1208 continue;
1209 }
1210
1211 sc->sc_tx_timer = 5;
1212 ifp->if_timer = 1;
1213 }
1214 }
1215
1216 static int
1217 ath_media_change(struct ifnet *ifp)
1218 {
1219 int error;
1220
1221 error = ieee80211_media_change(ifp);
1222 if (error == ENETRESET) {
1223 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1224 (IFF_RUNNING|IFF_UP))
1225 ath_init(ifp); /* XXX lose error */
1226 error = 0;
1227 }
1228 return error;
1229 }
1230
1231 static void
1232 ath_watchdog(struct ifnet *ifp)
1233 {
1234 struct ath_softc *sc = ifp->if_softc;
1235 struct ieee80211com *ic = &sc->sc_ic;
1236
1237 ifp->if_timer = 0;
1238 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1239 return;
1240 if (sc->sc_tx_timer) {
1241 if (--sc->sc_tx_timer == 0) {
1242 if_printf(ifp, "device timeout\n");
1243 #ifdef AR_DEBUG
1244 if (ath_debug)
1245 ath_hal_dumpstate(sc->sc_ah);
1246 #endif /* AR_DEBUG */
1247 ath_init(ifp); /* XXX ath_reset??? */
1248 ifp->if_oerrors++;
1249 sc->sc_stats.ast_watchdog++;
1250 return;
1251 }
1252 ifp->if_timer = 1;
1253 }
1254 if (ic->ic_fixed_rate == -1) {
1255 /*
1256 * Run the rate control algorithm if we're not
1257 * locked at a fixed rate.
1258 */
1259 if (ic->ic_opmode == IEEE80211_M_STA)
1260 ath_rate_ctl(sc, ic->ic_bss);
1261 else
1262 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1263 }
1264 ieee80211_watchdog(ifp);
1265 }
1266
1267 static int
1268 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1269 {
1270 struct ath_softc *sc = ifp->if_softc;
1271 struct ifreq *ifr = (struct ifreq *)data;
1272 int error = 0;
1273 ath_softc_critsect_decl(s);
1274
1275 ath_softc_critsect_begin(sc, s);
1276 switch (cmd) {
1277 case SIOCSIFFLAGS:
1278 if (ifp->if_flags & IFF_UP) {
1279 if (ifp->if_flags & IFF_RUNNING) {
1280 /*
1281 * To avoid rescanning another access point,
1282 * do not call ath_init() here. Instead,
1283 * only reflect promisc mode settings.
1284 */
1285 ath_mode_init(sc);
1286 } else {
1287 /*
1288 * Beware of being called during detach to
1289 * reset promiscuous mode. In that case we
1290 * will still be marked UP but not RUNNING.
1291 * However trying to re-init the interface
1292 * is the wrong thing to do as we've already
1293 * torn down much of our state. There's
1294 * probably a better way to deal with this.
1295 */
1296 if (!sc->sc_invalid)
1297 ath_init(ifp); /* XXX lose error */
1298 }
1299 } else
1300 ath_stop(ifp);
1301 break;
1302 case SIOCADDMULTI:
1303 case SIOCDELMULTI:
1304 #ifdef __FreeBSD__
1305 /*
1306 * The upper layer has already installed/removed
1307 * the multicast address(es), just recalculate the
1308 * multicast filter for the card.
1309 */
1310 if (ifp->if_flags & IFF_RUNNING)
1311 ath_mode_init(sc);
1312 #endif
1313 #ifdef __NetBSD__
1314 error = (cmd == SIOCADDMULTI) ?
1315 ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1316 ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1317 if (error == ENETRESET) {
1318 if (ifp->if_flags & IFF_RUNNING)
1319 ath_mode_init(sc);
1320 error = 0;
1321 }
1322 #endif
1323 break;
1324 case SIOCGATHSTATS:
1325 error = copyout(&sc->sc_stats,
1326 ifr->ifr_data, sizeof (sc->sc_stats));
1327 break;
1328 case SIOCGATHDIAG: {
1329 struct ath_diag *ad = (struct ath_diag *)data;
1330 struct ath_hal *ah = sc->sc_ah;
1331 void *data;
1332 u_int size;
1333
1334 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
1335 if (size < ad->ad_size)
1336 ad->ad_size = size;
1337 if (data)
1338 error = copyout(data, ad->ad_data, ad->ad_size);
1339 } else
1340 error = EINVAL;
1341 break;
1342 }
1343 default:
1344 error = ieee80211_ioctl(ifp, cmd, data);
1345 if (error == ENETRESET) {
1346 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1347 (IFF_RUNNING|IFF_UP))
1348 ath_init(ifp); /* XXX lose error */
1349 error = 0;
1350 }
1351 break;
1352 }
1353 ath_softc_critsect_end(sc, s);
1354 return error;
1355 }
1356
1357 /*
1358 * Fill the hardware key cache with key entries.
1359 */
1360 static void
1361 ath_initkeytable(struct ath_softc *sc)
1362 {
1363 struct ieee80211com *ic = &sc->sc_ic;
1364 struct ath_hal *ah = sc->sc_ah;
1365 int i;
1366
1367 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1368 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1369 if (k->wk_len == 0)
1370 ath_hal_keyreset(ah, i);
1371 else
1372 /* XXX return value */
1373 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
1374 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
1375 }
1376 }
1377
1378 static void
1379 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1380 {
1381 u_int32_t val;
1382 u_int8_t pos;
1383
1384 val = LE_READ_4(dl + 0);
1385 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1386 val = LE_READ_4(dl + 3);
1387 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1388 pos &= 0x3f;
1389 (*mfilt)[pos / 32] |= (1 << (pos % 32));
1390 }
1391
1392 #ifdef __FreeBSD__
1393 static void
1394 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1395 {
1396 struct ieee80211com *ic = &sc->sc_ic;
1397 struct ifnet *ifp = &ic->ic_if;
1398 struct ifmultiaddr *ifma;
1399
1400 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1401 caddr_t dl;
1402
1403 /* calculate XOR of eight 6bit values */
1404 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1405 ath_mcastfilter_accum(dl, &mfilt);
1406 }
1407 }
1408 #else
1409 static void
1410 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1411 {
1412 struct ifnet *ifp = &sc->sc_ic.ic_if;
1413 struct ether_multi *enm;
1414 struct ether_multistep estep;
1415
1416 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1417 while (enm != NULL) {
1418 /* XXX Punt on ranges. */
1419 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1420 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1421 ifp->if_flags |= IFF_ALLMULTI;
1422 return;
1423 }
1424 ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1425 ETHER_NEXT_MULTI(estep, enm);
1426 }
1427 ifp->if_flags &= ~IFF_ALLMULTI;
1428 }
1429 #endif
1430
1431 /*
1432 * Calculate the receive filter according to the
1433 * operating mode and state:
1434 *
1435 * o always accept unicast, broadcast, and multicast traffic
1436 * o maintain current state of phy error reception
1437 * o probe request frames are accepted only when operating in
1438 * hostap, adhoc, or monitor modes
1439 * o enable promiscuous mode according to the interface state
1440 * o accept beacons:
1441 * - when operating in adhoc mode so the 802.11 layer creates
1442 * node table entries for peers,
1443 * - when operating in station mode for collecting rssi data when
1444 * the station is otherwise quiet, or
1445 * - when scanning
1446 */
1447 static u_int32_t
1448 ath_calcrxfilter(struct ath_softc *sc)
1449 {
1450 struct ieee80211com *ic = &sc->sc_ic;
1451 struct ath_hal *ah = sc->sc_ah;
1452 struct ifnet *ifp = &ic->ic_if;
1453 u_int32_t rfilt;
1454
1455 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1456 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1457 if (ic->ic_opmode != IEEE80211_M_STA)
1458 rfilt |= HAL_RX_FILTER_PROBEREQ;
1459 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1460 (ifp->if_flags & IFF_PROMISC))
1461 rfilt |= HAL_RX_FILTER_PROM;
1462 if (ic->ic_opmode == IEEE80211_M_STA ||
1463 ic->ic_opmode == IEEE80211_M_IBSS ||
1464 ic->ic_state == IEEE80211_S_SCAN)
1465 rfilt |= HAL_RX_FILTER_BEACON;
1466 return rfilt;
1467 }
1468
1469 static void
1470 ath_mode_init(struct ath_softc *sc)
1471 {
1472 #ifdef __FreeBSD__
1473 struct ieee80211com *ic = &sc->sc_ic;
1474 #endif
1475 struct ath_hal *ah = sc->sc_ah;
1476 u_int32_t rfilt, mfilt[2];
1477
1478 /* configure rx filter */
1479 rfilt = ath_calcrxfilter(sc);
1480 ath_hal_setrxfilter(ah, rfilt);
1481
1482 /* configure operational mode */
1483 ath_hal_setopmode(ah);
1484
1485 /* calculate and install multicast filter */
1486 #ifdef __FreeBSD__
1487 if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
1488 mfilt[0] = mfilt[1] = 0;
1489 ath_mcastfilter_compute(sc, &mfilt);
1490 } else {
1491 mfilt[0] = mfilt[1] = ~0;
1492 }
1493 #endif
1494 #ifdef __NetBSD__
1495 mfilt[0] = mfilt[1] = 0;
1496 ath_mcastfilter_compute(sc, &mfilt);
1497 #endif
1498 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1499 DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1500 rfilt, mfilt[0], mfilt[1]));
1501 }
1502
1503 #ifdef __FreeBSD__
1504 static void
1505 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1506 {
1507 struct ath_buf *bf = arg;
1508
1509 KASSERT(nseg <= ATH_MAX_SCATTER,
1510 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1511 bf->bf_mapsize = mapsize;
1512 bf->bf_nseg = nseg;
1513 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1514 }
1515 #endif /* __FreeBSD__ */
1516
1517 static struct mbuf *
1518 ath_getmbuf(int flags, int type, u_int pktlen)
1519 {
1520 struct mbuf *m;
1521
1522 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1523 #ifdef __FreeBSD__
1524 if (pktlen <= MHLEN)
1525 MGETHDR(m, flags, type);
1526 else
1527 m = m_getcl(flags, type, M_PKTHDR);
1528 #else
1529 MGETHDR(m, flags, type);
1530 if (m != NULL && pktlen > MHLEN)
1531 MCLGET(m, flags);
1532 #endif
1533 return m;
1534 }
1535
1536 static int
1537 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1538 {
1539 struct ieee80211com *ic = &sc->sc_ic;
1540 struct ifnet *ifp = &ic->ic_if;
1541 struct ath_hal *ah = sc->sc_ah;
1542 struct ieee80211_frame *wh;
1543 struct ath_buf *bf;
1544 struct ath_desc *ds;
1545 struct mbuf *m;
1546 int error, pktlen;
1547 u_int8_t *frm, rate;
1548 u_int16_t capinfo;
1549 struct ieee80211_rateset *rs;
1550 const HAL_RATE_TABLE *rt;
1551
1552 bf = sc->sc_bcbuf;
1553 if (bf->bf_m != NULL) {
1554 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1555 m_freem(bf->bf_m);
1556 bf->bf_m = NULL;
1557 bf->bf_node = NULL;
1558 }
1559 /*
1560 * NB: the beacon data buffer must be 32-bit aligned;
1561 * we assume the mbuf routines will return us something
1562 * with this alignment (perhaps should assert).
1563 */
1564 rs = &ni->ni_rates;
1565 pktlen = sizeof (struct ieee80211_frame)
1566 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1567 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1568 pktlen += 2;
1569 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1570 if (m == NULL) {
1571 DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1572 pktlen));
1573 sc->sc_stats.ast_be_nombuf++;
1574 return ENOMEM;
1575 }
1576
1577 wh = mtod(m, struct ieee80211_frame *);
1578 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1579 IEEE80211_FC0_SUBTYPE_BEACON;
1580 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1581 *(u_int16_t *)wh->i_dur = 0;
1582 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1583 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1584 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1585 *(u_int16_t *)wh->i_seq = 0;
1586
1587 /*
1588 * beacon frame format
1589 * [8] time stamp
1590 * [2] beacon interval
1591 * [2] cabability information
1592 * [tlv] ssid
1593 * [tlv] supported rates
1594 * [tlv] parameter set (IBSS)
1595 * [tlv] extended supported rates
1596 */
1597 frm = (u_int8_t *)&wh[1];
1598 memset(frm, 0, 8); /* timestamp is set by hardware */
1599 frm += 8;
1600 *(u_int16_t *)frm = htole16(ni->ni_intval);
1601 frm += 2;
1602 if (ic->ic_opmode == IEEE80211_M_IBSS)
1603 capinfo = IEEE80211_CAPINFO_IBSS;
1604 else
1605 capinfo = IEEE80211_CAPINFO_ESS;
1606 if (ic->ic_flags & IEEE80211_F_WEPON)
1607 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1608 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1609 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1610 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1611 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1612 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1613 *(u_int16_t *)frm = htole16(capinfo);
1614 frm += 2;
1615 *frm++ = IEEE80211_ELEMID_SSID;
1616 *frm++ = ni->ni_esslen;
1617 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1618 frm += ni->ni_esslen;
1619 frm = ieee80211_add_rates(frm, rs);
1620 *frm++ = IEEE80211_ELEMID_DSPARMS;
1621 *frm++ = 1;
1622 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1623 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1624 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1625 *frm++ = 2;
1626 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1627 } else {
1628 /* TODO: TIM */
1629 *frm++ = IEEE80211_ELEMID_TIM;
1630 *frm++ = 4; /* length */
1631 *frm++ = 0; /* DTIM count */
1632 *frm++ = 1; /* DTIM period */
1633 *frm++ = 0; /* bitmap control */
1634 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1635 }
1636 frm = ieee80211_add_xrates(frm, rs);
1637 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1638 KASSERT(m->m_pkthdr.len <= pktlen,
1639 ("beacon bigger than expected, len %u calculated %u",
1640 m->m_pkthdr.len, pktlen));
1641
1642 DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1643 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1644 if (error != 0) {
1645 m_freem(m);
1646 return error;
1647 }
1648 KASSERT(bf->bf_nseg == 1,
1649 ("ath_beacon_alloc: multi-segment packet; nseg %u",
1650 bf->bf_nseg));
1651 bf->bf_m = m;
1652
1653 /* setup descriptors */
1654 ds = bf->bf_desc;
1655
1656 ds->ds_link = 0;
1657 ds->ds_data = bf->bf_segs[0].ds_addr;
1658
1659 DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
1660 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1661
1662 /*
1663 * Calculate rate code.
1664 * XXX everything at min xmit rate
1665 */
1666 rt = sc->sc_currates;
1667 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1668 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1669 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1670 else
1671 rate = rt->info[0].rateCode;
1672 if (!ath_hal_setuptxdesc(ah, ds
1673 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1674 , sizeof(struct ieee80211_frame) /* header length */
1675 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1676 , 0x20 /* txpower XXX */
1677 , rate, 1 /* series 0 rate/tries */
1678 , HAL_TXKEYIX_INVALID /* no encryption */
1679 , 0 /* antenna mode */
1680 , HAL_TXDESC_NOACK /* no ack for beacons */
1681 , 0 /* rts/cts rate */
1682 , 0 /* rts/cts duration */
1683 )) {
1684 printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1685 return -1;
1686 }
1687 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1688 /* XXX verify mbuf data area covers this roundup */
1689 if (!ath_hal_filltxdesc(ah, ds
1690 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1691 , AH_TRUE /* first segment */
1692 , AH_TRUE /* last segment */
1693 )) {
1694 printf("%s: ath_hal_filltxdesc failed\n", __func__);
1695 return -1;
1696 }
1697
1698 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1699
1700 return 0;
1701 }
1702
1703 static void
1704 ath_beacon_proc(void *arg, int pending)
1705 {
1706 struct ath_softc *sc = arg;
1707 struct ieee80211com *ic = &sc->sc_ic;
1708 struct ath_buf *bf = sc->sc_bcbuf;
1709 struct ath_hal *ah = sc->sc_ah;
1710
1711 DPRINTF2(("%s: pending %u\n", __func__, pending));
1712 if (ic->ic_opmode == IEEE80211_M_STA ||
1713 bf == NULL || bf->bf_m == NULL) {
1714 DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1715 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1716 return;
1717 }
1718 /* TODO: update beacon to reflect PS poll state */
1719 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1720 DPRINTF(("%s: beacon queue %u did not stop?",
1721 __func__, sc->sc_bhalq));
1722 return; /* busy, XXX is this right? */
1723 }
1724 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1725
1726 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1727 ath_hal_txstart(ah, sc->sc_bhalq);
1728 DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
1729 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1730 }
1731
1732 static void
1733 ath_beacon_free(struct ath_softc *sc)
1734 {
1735 struct ath_buf *bf = sc->sc_bcbuf;
1736
1737 if (bf->bf_m != NULL) {
1738 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1739 m_freem(bf->bf_m);
1740 bf->bf_m = NULL;
1741 bf->bf_node = NULL;
1742 }
1743 }
1744
1745 /*
1746 * Configure the beacon and sleep timers.
1747 *
1748 * When operating as an AP this resets the TSF and sets
1749 * up the hardware to notify us when we need to issue beacons.
1750 *
1751 * When operating in station mode this sets up the beacon
1752 * timers according to the timestamp of the last received
1753 * beacon and the current TSF, configures PCF and DTIM
1754 * handling, programs the sleep registers so the hardware
1755 * will wakeup in time to receive beacons, and configures
1756 * the beacon miss handling so we'll receive a BMISS
1757 * interrupt when we stop seeing beacons from the AP
1758 * we've associated with.
1759 */
1760 static void
1761 ath_beacon_config(struct ath_softc *sc)
1762 {
1763 struct ath_hal *ah = sc->sc_ah;
1764 struct ieee80211com *ic = &sc->sc_ic;
1765 struct ieee80211_node *ni = ic->ic_bss;
1766 u_int32_t nexttbtt;
1767
1768 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1769 (LE_READ_4(ni->ni_tstamp) >> 10);
1770 DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1771 nexttbtt += ni->ni_intval;
1772 if (ic->ic_opmode == IEEE80211_M_STA) {
1773 HAL_BEACON_STATE bs;
1774 u_int32_t bmisstime;
1775
1776 /* NB: no PCF support right now */
1777 memset(&bs, 0, sizeof(bs));
1778 bs.bs_intval = ni->ni_intval;
1779 bs.bs_nexttbtt = nexttbtt;
1780 bs.bs_dtimperiod = bs.bs_intval;
1781 bs.bs_nextdtim = nexttbtt;
1782 /*
1783 * Calculate the number of consecutive beacons to miss
1784 * before taking a BMISS interrupt. The configuration
1785 * is specified in ms, so we need to convert that to
1786 * TU's and then calculate based on the beacon interval.
1787 * Note that we clamp the result to at most 10 beacons.
1788 */
1789 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1790 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1791 if (bs.bs_bmissthreshold > 10)
1792 bs.bs_bmissthreshold = 10;
1793 else if (bs.bs_bmissthreshold <= 0)
1794 bs.bs_bmissthreshold = 1;
1795
1796 /*
1797 * Calculate sleep duration. The configuration is
1798 * given in ms. We insure a multiple of the beacon
1799 * period is used. Also, if the sleep duration is
1800 * greater than the DTIM period then it makes senses
1801 * to make it a multiple of that.
1802 *
1803 * XXX fixed at 100ms
1804 */
1805 bs.bs_sleepduration =
1806 roundup((100 * 1000) / 1024, bs.bs_intval);
1807 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1808 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1809
1810 DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1811 , __func__
1812 , bs.bs_intval
1813 , bs.bs_nexttbtt
1814 , bs.bs_dtimperiod
1815 , bs.bs_nextdtim
1816 , bs.bs_bmissthreshold
1817 , bs.bs_sleepduration
1818 ));
1819 ath_hal_intrset(ah, 0);
1820 /*
1821 * Reset our tsf so the hardware will update the
1822 * tsf register to reflect timestamps found in
1823 * received beacons.
1824 */
1825 ath_hal_resettsf(ah);
1826 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1827 sc->sc_imask |= HAL_INT_BMISS;
1828 ath_hal_intrset(ah, sc->sc_imask);
1829 } else {
1830 DPRINTF(("%s: intval %u nexttbtt %u\n",
1831 __func__, ni->ni_intval, nexttbtt));
1832 ath_hal_intrset(ah, 0);
1833 ath_hal_beaconinit(ah, nexttbtt, ni->ni_intval);
1834 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1835 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1836 ath_hal_intrset(ah, sc->sc_imask);
1837 }
1838 }
1839
1840 #ifdef __FreeBSD__
1841 static void
1842 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1843 {
1844 bus_addr_t *paddr = (bus_addr_t*) arg;
1845 *paddr = segs->ds_addr;
1846 }
1847 #endif
1848
1849 #ifdef __FreeBSD__
1850 static int
1851 ath_desc_alloc(struct ath_softc *sc)
1852 {
1853 int i, bsize, error;
1854 struct ath_desc *ds;
1855 struct ath_buf *bf;
1856
1857 /* allocate descriptors */
1858 sc->sc_desc_len = sizeof(struct ath_desc) *
1859 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1860 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1861 if (error != 0)
1862 return error;
1863
1864 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1865 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1866
1867 if (error != 0)
1868 goto fail0;
1869
1870 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1871 sc->sc_desc, sc->sc_desc_len,
1872 ath_load_cb, &sc->sc_desc_paddr,
1873 BUS_DMA_NOWAIT);
1874 if (error != 0)
1875 goto fail1;
1876
1877 ds = sc->sc_desc;
1878 DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1879 ds, sc->sc_desc_len,
1880 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1881
1882 /* allocate buffers */
1883 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1884 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1885 if (bf == NULL) {
1886 printf("%s: unable to allocate Tx/Rx buffers\n",
1887 sc->sc_dev.dv_xname);
1888 error = -1;
1889 goto fail2;
1890 }
1891 sc->sc_bufptr = bf;
1892
1893 TAILQ_INIT(&sc->sc_rxbuf);
1894 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1895 bf->bf_desc = ds;
1896 bf->bf_daddr = sc->sc_desc_paddr +
1897 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1898 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1899 &bf->bf_dmamap);
1900 if (error != 0)
1901 break;
1902 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1903 }
1904
1905 TAILQ_INIT(&sc->sc_txbuf);
1906 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1907 bf->bf_desc = ds;
1908 bf->bf_daddr = sc->sc_desc_paddr +
1909 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1910 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1911 &bf->bf_dmamap);
1912 if (error != 0)
1913 break;
1914 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1915 }
1916 TAILQ_INIT(&sc->sc_txq);
1917
1918 /* beacon buffer */
1919 bf->bf_desc = ds;
1920 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1921 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1922 if (error != 0)
1923 return error;
1924 sc->sc_bcbuf = bf;
1925 return 0;
1926
1927 fail2:
1928 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1929 fail1:
1930 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1931 fail0:
1932 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1933 sc->sc_ddmamap = NULL;
1934 return error;
1935 }
1936 #else
1937 static int
1938 ath_desc_alloc(struct ath_softc *sc)
1939 {
1940 int i, bsize, error = -1;
1941 struct ath_desc *ds;
1942 struct ath_buf *bf;
1943
1944 /* allocate descriptors */
1945 sc->sc_desc_len = sizeof(struct ath_desc) *
1946 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1947 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1948 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1949 printf("%s: unable to allocate control data, error = %d\n",
1950 sc->sc_dev.dv_xname, error);
1951 goto fail0;
1952 }
1953
1954 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1955 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1956 printf("%s: unable to map control data, error = %d\n",
1957 sc->sc_dev.dv_xname, error);
1958 goto fail1;
1959 }
1960
1961 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1962 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1963 printf("%s: unable to create control data DMA map, "
1964 "error = %d\n", sc->sc_dev.dv_xname, error);
1965 goto fail2;
1966 }
1967
1968 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1969 sc->sc_desc_len, NULL, 0)) != 0) {
1970 printf("%s: unable to load control data DMA map, error = %d\n",
1971 sc->sc_dev.dv_xname, error);
1972 goto fail3;
1973 }
1974
1975 ds = sc->sc_desc;
1976 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1977
1978 DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1979 ds, (u_long)sc->sc_desc_len,
1980 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1981
1982 /* allocate buffers */
1983 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1984 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1985 if (bf == NULL) {
1986 printf("%s: unable to allocate Tx/Rx buffers\n",
1987 sc->sc_dev.dv_xname);
1988 error = ENOMEM;
1989 goto fail3;
1990 }
1991 sc->sc_bufptr = bf;
1992
1993 TAILQ_INIT(&sc->sc_rxbuf);
1994 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1995 bf->bf_desc = ds;
1996 bf->bf_daddr = sc->sc_desc_paddr +
1997 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1998 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1999 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2000 printf("%s: unable to create Rx dmamap, error = %d\n",
2001 sc->sc_dev.dv_xname, error);
2002 goto fail4;
2003 }
2004 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2005 }
2006
2007 TAILQ_INIT(&sc->sc_txbuf);
2008 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
2009 bf->bf_desc = ds;
2010 bf->bf_daddr = sc->sc_desc_paddr +
2011 ((caddr_t)ds - (caddr_t)sc->sc_desc);
2012 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
2013 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2014 printf("%s: unable to create Tx dmamap, error = %d\n",
2015 sc->sc_dev.dv_xname, error);
2016 goto fail5;
2017 }
2018 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2019 }
2020 TAILQ_INIT(&sc->sc_txq);
2021
2022 /* beacon buffer */
2023 bf->bf_desc = ds;
2024 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
2025 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
2026 &bf->bf_dmamap)) != 0) {
2027 printf("%s: unable to create beacon dmamap, error = %d\n",
2028 sc->sc_dev.dv_xname, error);
2029 goto fail5;
2030 }
2031 sc->sc_bcbuf = bf;
2032 return 0;
2033
2034 fail5:
2035 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
2036 if (sc->sc_bufptr[i].bf_dmamap == NULL)
2037 continue;
2038 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2039 }
2040 fail4:
2041 for (i = 0; i < ATH_RXBUF; i++) {
2042 if (sc->sc_bufptr[i].bf_dmamap == NULL)
2043 continue;
2044 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2045 }
2046 fail3:
2047 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2048 fail2:
2049 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2050 sc->sc_ddmamap = NULL;
2051 fail1:
2052 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
2053 fail0:
2054 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2055 return error;
2056 }
2057 #endif
2058
2059 static void
2060 ath_desc_free(struct ath_softc *sc)
2061 {
2062 struct ath_buf *bf;
2063
2064 #ifdef __FreeBSD__
2065 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2066 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
2067 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2068 #else
2069 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2070 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2071 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2072 #endif
2073
2074 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2075 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2076 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2077 m_freem(bf->bf_m);
2078 }
2079 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
2080 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2081 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2082 if (bf->bf_m) {
2083 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2084 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2085 m_freem(bf->bf_m);
2086 bf->bf_m = NULL;
2087 }
2088 }
2089 if (sc->sc_bcbuf != NULL) {
2090 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2091 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2092 sc->sc_bcbuf = NULL;
2093 }
2094
2095 TAILQ_INIT(&sc->sc_rxbuf);
2096 TAILQ_INIT(&sc->sc_txbuf);
2097 TAILQ_INIT(&sc->sc_txq);
2098 free(sc->sc_bufptr, M_DEVBUF);
2099 sc->sc_bufptr = NULL;
2100 }
2101
2102 static struct ieee80211_node *
2103 ath_node_alloc(struct ieee80211com *ic)
2104 {
2105 struct ath_node *an =
2106 malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
2107 if (an) {
2108 int i;
2109 for (i = 0; i < ATH_RHIST_SIZE; i++)
2110 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
2111 an->an_rx_hist_next = ATH_RHIST_SIZE-1;
2112 return &an->an_node;
2113 } else
2114 return NULL;
2115 }
2116
2117 static void
2118 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2119 {
2120 struct ath_softc *sc = ic->ic_if.if_softc;
2121 struct ath_buf *bf;
2122
2123 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2124 if (bf->bf_node == ni)
2125 bf->bf_node = NULL;
2126 }
2127 free(ni, M_DEVBUF);
2128 }
2129
2130 static void
2131 ath_node_copy(struct ieee80211com *ic,
2132 struct ieee80211_node *dst, const struct ieee80211_node *src)
2133 {
2134 *(struct ath_node *)dst = *(const struct ath_node *)src;
2135 }
2136
2137 static u_int8_t
2138 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
2139 {
2140 struct ath_node *an = ATH_NODE(ni);
2141 int i, now, nsamples, rssi;
2142
2143 /*
2144 * Calculate the average over the last second of sampled data.
2145 */
2146 now = ATH_TICKS();
2147 nsamples = 0;
2148 rssi = 0;
2149 i = an->an_rx_hist_next;
2150 do {
2151 struct ath_recv_hist *rh = &an->an_rx_hist[i];
2152 if (rh->arh_ticks == ATH_RHIST_NOTIME)
2153 goto done;
2154 if (now - rh->arh_ticks > hz)
2155 goto done;
2156 rssi += rh->arh_rssi;
2157 nsamples++;
2158 if (i == 0)
2159 i = ATH_RHIST_SIZE-1;
2160 else
2161 i--;
2162 } while (i != an->an_rx_hist_next);
2163 done:
2164 /*
2165 * Return either the average or the last known
2166 * value if there is no recent data.
2167 */
2168 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
2169 }
2170
2171 static int
2172 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2173 {
2174 struct ath_hal *ah = sc->sc_ah;
2175 int error;
2176 struct mbuf *m;
2177 struct ath_desc *ds;
2178
2179 m = bf->bf_m;
2180 if (m == NULL) {
2181 /*
2182 * NB: by assigning a page to the rx dma buffer we
2183 * implicitly satisfy the Atheros requirement that
2184 * this buffer be cache-line-aligned and sized to be
2185 * multiple of the cache line size. Not doing this
2186 * causes weird stuff to happen (for the 5210 at least).
2187 */
2188 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
2189 if (m == NULL) {
2190 DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
2191 sc->sc_stats.ast_rx_nombuf++;
2192 return ENOMEM;
2193 }
2194 bf->bf_m = m;
2195 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2196
2197 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
2198 BUS_DMA_NOWAIT);
2199 if (error != 0) {
2200 DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
2201 " error %d\n", error));
2202 sc->sc_stats.ast_rx_busdma++;
2203 return error;
2204 }
2205 KASSERT(bf->bf_nseg == 1,
2206 ("ath_rxbuf_init: multi-segment packet; nseg %u",
2207 bf->bf_nseg));
2208 }
2209 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
2210
2211 /*
2212 * Setup descriptors. For receive we always terminate
2213 * the descriptor list with a self-linked entry so we'll
2214 * not get overrun under high load (as can happen with a
2215 * 5212 when ANI processing enables PHY errors).
2216 *
2217 * To insure the last descriptor is self-linked we create
2218 * each descriptor as self-linked and add it to the end. As
2219 * each additional descriptor is added the previous self-linked
2220 * entry is ``fixed'' naturally. This should be safe even
2221 * if DMA is happening. When processing RX interrupts we
2222 * never remove/process the last, self-linked, entry on the
2223 * descriptor list. This insures the hardware always has
2224 * someplace to write a new frame.
2225 */
2226 ds = bf->bf_desc;
2227 ds->ds_link = bf->bf_daddr; /* link to self */
2228 ds->ds_data = bf->bf_segs[0].ds_addr;
2229 ath_hal_setuprxdesc(ah, ds
2230 , m->m_len /* buffer size */
2231 , 0
2232 );
2233
2234 if (sc->sc_rxlink != NULL)
2235 *sc->sc_rxlink = bf->bf_daddr;
2236 sc->sc_rxlink = &ds->ds_link;
2237 return 0;
2238 }
2239
2240 static void
2241 ath_rx_proc(void *arg, int npending)
2242 {
2243 #define PA2DESC(_sc, _pa) \
2244 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2245 ((_pa) - (_sc)->sc_desc_paddr)))
2246 struct ath_softc *sc = arg;
2247 struct ath_buf *bf;
2248 struct ieee80211com *ic = &sc->sc_ic;
2249 struct ifnet *ifp = &ic->ic_if;
2250 struct ath_hal *ah = sc->sc_ah;
2251 struct ath_desc *ds;
2252 struct mbuf *m;
2253 struct ieee80211_frame *wh, whbuf;
2254 struct ieee80211_node *ni;
2255 struct ath_node *an;
2256 struct ath_recv_hist *rh;
2257 int len;
2258 u_int phyerr;
2259 HAL_STATUS status;
2260
2261 DPRINTF2(("ath_rx_proc: pending %u\n", npending));
2262 do {
2263 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2264 if (bf == NULL) { /* NB: shouldn't happen */
2265 if_printf(ifp, "ath_rx_proc: no buffer!\n");
2266 break;
2267 }
2268 ds = bf->bf_desc;
2269 if (ds->ds_link == bf->bf_daddr) {
2270 /* NB: never process the self-linked entry at the end */
2271 break;
2272 }
2273 m = bf->bf_m;
2274 if (m == NULL) { /* NB: shouldn't happen */
2275 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
2276 continue;
2277 }
2278 /* XXX sync descriptor memory */
2279 /*
2280 * Must provide the virtual address of the current
2281 * descriptor, the physical address, and the virtual
2282 * address of the next descriptor in the h/w chain.
2283 * This allows the HAL to look ahead to see if the
2284 * hardware is done with a descriptor by checking the
2285 * done bit in the following descriptor and the address
2286 * of the current descriptor the DMA engine is working
2287 * on. All this is necessary because of our use of
2288 * a self-linked list to avoid rx overruns.
2289 */
2290 status = ath_hal_rxprocdesc(ah, ds,
2291 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2292 #ifdef AR_DEBUG
2293 if (ath_debug > 1)
2294 ath_printrxbuf(bf, status == HAL_OK);
2295 #endif
2296 if (status == HAL_EINPROGRESS)
2297 break;
2298 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
2299 if (ds->ds_rxstat.rs_status != 0) {
2300 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2301 sc->sc_stats.ast_rx_crcerr++;
2302 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2303 sc->sc_stats.ast_rx_fifoerr++;
2304 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2305 sc->sc_stats.ast_rx_badcrypt++;
2306 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2307 sc->sc_stats.ast_rx_phyerr++;
2308 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2309 sc->sc_stats.ast_rx_phy[phyerr]++;
2310 } else {
2311 /*
2312 * NB: don't count PHY errors as input errors;
2313 * we enable them on the 5212 to collect info
2314 * about environmental noise and, in that
2315 * setting, they don't really reflect tx/rx
2316 * errors.
2317 */
2318 ifp->if_ierrors++;
2319 }
2320 goto rx_next;
2321 }
2322
2323 len = ds->ds_rxstat.rs_datalen;
2324 if (len < IEEE80211_MIN_LEN) {
2325 DPRINTF(("ath_rx_proc: short packet %d\n", len));
2326 sc->sc_stats.ast_rx_tooshort++;
2327 goto rx_next;
2328 }
2329
2330 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2331
2332 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2333 bf->bf_m = NULL;
2334 m->m_pkthdr.rcvif = ifp;
2335 m->m_pkthdr.len = m->m_len = len;
2336
2337 #if NBPFILTER > 0
2338 if (sc->sc_drvbpf) {
2339 #ifdef __FreeBSD__
2340 struct mbuf *mb;
2341
2342 /* XXX pre-allocate space when setting up recv's */
2343 MGETHDR(mb, M_DONTWAIT, m->m_type);
2344 if (mb != NULL) {
2345 sc->sc_rx_th.wr_rate =
2346 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2347 sc->sc_rx_th.wr_antsignal =
2348 ds->ds_rxstat.rs_rssi;
2349 sc->sc_rx_th.wr_antenna =
2350 ds->ds_rxstat.rs_antenna;
2351 /* XXX TSF */
2352
2353 (void) m_dup_pkthdr(mb, m, M_DONTWAIT);
2354 mb->m_next = m;
2355 mb->m_data = (caddr_t)&sc->sc_rx_th;
2356 mb->m_len = sizeof(sc->sc_rx_th);
2357 mb->m_pkthdr.len += mb->m_len;
2358 bpf_mtap(sc->sc_drvbpf, mb);
2359 m_free(mb);
2360 }
2361 #else
2362 /* XXX pre-allocate space when setting up recv's */
2363 struct mbuf mb;
2364
2365 sc->sc_rx_th.wr_rate =
2366 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2367 sc->sc_rx_th.wr_antsignal =
2368 ds->ds_rxstat.rs_rssi;
2369 sc->sc_rx_th.wr_antenna =
2370 ds->ds_rxstat.rs_antenna;
2371 /* XXX TSF */
2372
2373 M_COPY_PKTHDR(&mb, m);
2374 mb.m_next = m;
2375 mb.m_data = (caddr_t)&sc->sc_rx_th;
2376 mb.m_len = sizeof(sc->sc_rx_th);
2377 mb.m_pkthdr.len += mb.m_len;
2378 bpf_mtap(sc->sc_drvbpf, &mb);
2379 #endif
2380 }
2381 #endif
2382
2383 m_adj(m, -IEEE80211_CRC_LEN);
2384 wh = mtod(m, struct ieee80211_frame *);
2385 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2386 /*
2387 * WEP is decrypted by hardware. Clear WEP bit
2388 * and trim WEP header for ieee80211_input().
2389 */
2390 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2391 memcpy(&whbuf, wh, sizeof(whbuf));
2392 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2393 wh = mtod(m, struct ieee80211_frame *);
2394 memcpy(wh, &whbuf, sizeof(whbuf));
2395 /*
2396 * Also trim WEP ICV from the tail.
2397 */
2398 m_adj(m, -IEEE80211_WEP_CRCLEN);
2399 /*
2400 * The header has probably moved.
2401 */
2402 wh = mtod(m, struct ieee80211_frame *);
2403 }
2404
2405 /*
2406 * Locate the node for sender, track state, and
2407 * then pass this node (referenced) up to the 802.11
2408 * layer for its use. We are required to pass
2409 * something so we fall back to ic_bss when this frame
2410 * is from an unknown sender.
2411 */
2412 ni = ieee80211_find_rxnode(ic, wh);
2413
2414 /*
2415 * Record driver-specific state.
2416 */
2417 an = ATH_NODE(ni);
2418 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2419 an->an_rx_hist_next = 0;
2420 rh = &an->an_rx_hist[an->an_rx_hist_next];
2421 rh->arh_ticks = ATH_TICKS();
2422 rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2423 rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2424
2425 /*
2426 * Send frame up for processing.
2427 */
2428 ieee80211_input(ifp, m, ni,
2429 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2430
2431 /*
2432 * The frame may have caused the node to be marked for
2433 * reclamation (e.g. in response to a DEAUTH message)
2434 * so use free_node here instead of unref_node.
2435 */
2436 if (ni == ic->ic_bss)
2437 ieee80211_unref_node(&ni);
2438 else
2439 ieee80211_free_node(ic, ni);
2440 rx_next:
2441 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2442 } while (ath_rxbuf_init(sc, bf) == 0);
2443
2444 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
2445 ath_hal_rxena(ah); /* in case of RXEOL */
2446
2447 #ifdef __NetBSD__
2448 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2449 ath_start(ifp);
2450 #endif /* __NetBSD__ */
2451 #undef PA2DESC
2452 }
2453
2454 /*
2455 * XXX Size of an ACK control frame in bytes.
2456 */
2457 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
2458
2459 static int
2460 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2461 struct mbuf *m0)
2462 {
2463 struct ieee80211com *ic = &sc->sc_ic;
2464 struct ath_hal *ah = sc->sc_ah;
2465 struct ifnet *ifp = &sc->sc_ic.ic_if;
2466 int i, error, iswep, hdrlen, pktlen;
2467 u_int8_t rix, cix, txrate, ctsrate;
2468 struct ath_desc *ds;
2469 struct mbuf *m;
2470 struct ieee80211_frame *wh;
2471 u_int32_t iv;
2472 u_int8_t *ivp;
2473 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2474 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2475 u_int subtype, flags, ctsduration, antenna;
2476 HAL_PKT_TYPE atype;
2477 const HAL_RATE_TABLE *rt;
2478 HAL_BOOL shortPreamble;
2479 struct ath_node *an;
2480 ath_txq_critsect_decl(s);
2481
2482 wh = mtod(m0, struct ieee80211_frame *);
2483 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2484 hdrlen = sizeof(struct ieee80211_frame);
2485 pktlen = m0->m_pkthdr.len;
2486
2487 if (iswep) {
2488 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2489 m_adj(m0, hdrlen);
2490 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2491 if (m0 == NULL) {
2492 sc->sc_stats.ast_tx_nombuf++;
2493 return ENOMEM;
2494 }
2495 ivp = hdrbuf + hdrlen;
2496 wh = mtod(m0, struct ieee80211_frame *);
2497 /*
2498 * XXX
2499 * IV must not duplicate during the lifetime of the key.
2500 * But no mechanism to renew keys is defined in IEEE 802.11
2501 * WEP. And IV may be duplicated between other stations
2502 * because of the session key itself is shared.
2503 * So we use pseudo random IV for now, though it is not the
2504 * right way.
2505 */
2506 iv = ic->ic_iv;
2507 /*
2508 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2509 * (B, 255, N) with 3 <= B < 8
2510 */
2511 if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
2512 iv += 0x000100;
2513 ic->ic_iv = iv + 1;
2514 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
2515 ivp[i] = iv;
2516 iv >>= 8;
2517 }
2518 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
2519 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2520 /*
2521 * The ICV length must be included into hdrlen and pktlen.
2522 */
2523 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2524 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2525 }
2526 pktlen += IEEE80211_CRC_LEN;
2527
2528 /*
2529 * Load the DMA map so any coalescing is done. This
2530 * also calculates the number of descriptors we need.
2531 */
2532 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2533 /*
2534 * Discard null packets and check for packets that
2535 * require too many TX descriptors. We try to convert
2536 * the latter to a cluster.
2537 */
2538 if (error == EFBIG) { /* too many desc's, linearize */
2539 sc->sc_stats.ast_tx_linear++;
2540 MGETHDR(m, M_DONTWAIT, MT_DATA);
2541 if (m == NULL) {
2542 sc->sc_stats.ast_tx_nombuf++;
2543 m_freem(m0);
2544 return ENOMEM;
2545 }
2546 #ifdef __FreeBSD__
2547 M_MOVE_PKTHDR(m, m0);
2548 #else
2549 M_COPY_PKTHDR(m, m0);
2550 #endif
2551 MCLGET(m, M_DONTWAIT);
2552 if ((m->m_flags & M_EXT) == 0) {
2553 sc->sc_stats.ast_tx_nomcl++;
2554 m_freem(m0);
2555 m_free(m);
2556 return ENOMEM;
2557 }
2558 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2559 m_freem(m0);
2560 m->m_len = m->m_pkthdr.len;
2561 m0 = m;
2562 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2563 BUS_DMA_NOWAIT);
2564 if (error != 0) {
2565 sc->sc_stats.ast_tx_busdma++;
2566 m_freem(m0);
2567 return error;
2568 }
2569 KASSERT(bf->bf_nseg == 1,
2570 ("ath_tx_start: packet not one segment; nseg %u",
2571 bf->bf_nseg));
2572 } else if (error != 0) {
2573 sc->sc_stats.ast_tx_busdma++;
2574 m_freem(m0);
2575 return error;
2576 } else if (bf->bf_nseg == 0) { /* null packet, discard */
2577 sc->sc_stats.ast_tx_nodata++;
2578 m_freem(m0);
2579 return EIO;
2580 }
2581 DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
2582 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2583 bf->bf_m = m0;
2584 bf->bf_node = ni; /* NB: held reference */
2585
2586 /* setup descriptors */
2587 ds = bf->bf_desc;
2588 rt = sc->sc_currates;
2589 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2590
2591 /*
2592 * Calculate Atheros packet type from IEEE80211 packet header
2593 * and setup for rate calculations.
2594 */
2595 atype = HAL_PKT_TYPE_NORMAL; /* default */
2596 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2597 case IEEE80211_FC0_TYPE_MGT:
2598 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2599 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2600 atype = HAL_PKT_TYPE_BEACON;
2601 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2602 atype = HAL_PKT_TYPE_PROBE_RESP;
2603 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2604 atype = HAL_PKT_TYPE_ATIM;
2605 rix = 0; /* XXX lowest rate */
2606 break;
2607 case IEEE80211_FC0_TYPE_CTL:
2608 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2609 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2610 atype = HAL_PKT_TYPE_PSPOLL;
2611 rix = 0; /* XXX lowest rate */
2612 break;
2613 default:
2614 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2615 IEEE80211_RATE_VAL];
2616 if (rix == 0xff) {
2617 if_printf(ifp, "bogus xmit rate 0x%x\n",
2618 ni->ni_rates.rs_rates[ni->ni_txrate]);
2619 sc->sc_stats.ast_tx_badrate++;
2620 m_freem(m0);
2621 return EIO;
2622 }
2623 break;
2624 }
2625 /*
2626 * NB: the 802.11 layer marks whether or not we should
2627 * use short preamble based on the current mode and
2628 * negotiated parameters.
2629 */
2630 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2631 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2632 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2633 shortPreamble = AH_TRUE;
2634 sc->sc_stats.ast_tx_shortpre++;
2635 } else {
2636 txrate = rt->info[rix].rateCode;
2637 shortPreamble = AH_FALSE;
2638 }
2639
2640 /*
2641 * Calculate miscellaneous flags.
2642 */
2643 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
2644 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2645 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
2646 sc->sc_stats.ast_tx_noack++;
2647 } else if (pktlen > ic->ic_rtsthreshold) {
2648 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2649 sc->sc_stats.ast_tx_rts++;
2650 }
2651
2652 /*
2653 * Calculate duration. This logically belongs in the 802.11
2654 * layer but it lacks sufficient information to calculate it.
2655 */
2656 if ((flags & HAL_TXDESC_NOACK) == 0 &&
2657 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2658 u_int16_t dur;
2659 /*
2660 * XXX not right with fragmentation.
2661 */
2662 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2663 rix, shortPreamble);
2664 *((u_int16_t*) wh->i_dur) = htole16(dur);
2665 }
2666
2667 /*
2668 * Calculate RTS/CTS rate and duration if needed.
2669 */
2670 ctsduration = 0;
2671 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2672 /*
2673 * CTS transmit rate is derived from the transmit rate
2674 * by looking in the h/w rate table. We must also factor
2675 * in whether or not a short preamble is to be used.
2676 */
2677 cix = rt->info[rix].controlRate;
2678 ctsrate = rt->info[cix].rateCode;
2679 if (shortPreamble)
2680 ctsrate |= rt->info[cix].shortPreamble;
2681 /*
2682 * Compute the transmit duration based on the size
2683 * of an ACK frame. We call into the HAL to do the
2684 * computation since it depends on the characteristics
2685 * of the actual PHY being used.
2686 */
2687 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2688 ctsduration += ath_hal_computetxtime(ah,
2689 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2690 }
2691 /* SIFS + data */
2692 ctsduration += ath_hal_computetxtime(ah,
2693 rt, pktlen, rix, shortPreamble);
2694 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2695 ctsduration += ath_hal_computetxtime(ah,
2696 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2697 }
2698 } else
2699 ctsrate = 0;
2700
2701 /*
2702 * For now use the antenna on which the last good
2703 * frame was received on. We assume this field is
2704 * initialized to 0 which gives us ``auto'' or the
2705 * ``default'' antenna.
2706 */
2707 an = (struct ath_node *) ni;
2708 if (an->an_tx_antenna)
2709 antenna = an->an_tx_antenna;
2710 else
2711 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2712
2713 /*
2714 * Formulate first tx descriptor with tx controls.
2715 */
2716 /* XXX check return value? */
2717 ath_hal_setuptxdesc(ah, ds
2718 , pktlen /* packet length */
2719 , hdrlen /* header length */
2720 , atype /* Atheros packet type */
2721 , 60 /* txpower XXX */
2722 , txrate, 1+10 /* series 0 rate/tries */
2723 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2724 , antenna /* antenna mode */
2725 , flags /* flags */
2726 , ctsrate /* rts/cts rate */
2727 , ctsduration /* rts/cts duration */
2728 );
2729 #ifdef notyet
2730 ath_hal_setupxtxdesc(ah, ds
2731 , AH_FALSE /* short preamble */
2732 , 0, 0 /* series 1 rate/tries */
2733 , 0, 0 /* series 2 rate/tries */
2734 , 0, 0 /* series 3 rate/tries */
2735 );
2736 #endif
2737 /*
2738 * Fillin the remainder of the descriptor info.
2739 */
2740 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2741 ds->ds_data = bf->bf_segs[i].ds_addr;
2742 if (i == bf->bf_nseg - 1)
2743 ds->ds_link = 0;
2744 else
2745 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2746 ath_hal_filltxdesc(ah, ds
2747 , bf->bf_segs[i].ds_len /* segment length */
2748 , i == 0 /* first segment */
2749 , i == bf->bf_nseg - 1 /* last segment */
2750 );
2751 DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2752 i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2753 ds->ds_hw[0], ds->ds_hw[1]));
2754 }
2755
2756 /*
2757 * Insert the frame on the outbound list and
2758 * pass it on to the hardware.
2759 */
2760 ath_txq_critsect_begin(sc, s);
2761 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2762 if (sc->sc_txlink == NULL) {
2763 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2764 DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2765 (caddr_t)bf->bf_daddr, bf->bf_desc));
2766 } else {
2767 *sc->sc_txlink = bf->bf_daddr;
2768 DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2769 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2770 }
2771 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2772 ath_txq_critsect_end(sc, s);
2773
2774 ath_hal_txstart(ah, sc->sc_txhalq);
2775 return 0;
2776 }
2777
2778 static void
2779 ath_tx_proc(void *arg, int npending)
2780 {
2781 struct ath_softc *sc = arg;
2782 struct ath_hal *ah = sc->sc_ah;
2783 struct ath_buf *bf;
2784 struct ieee80211com *ic = &sc->sc_ic;
2785 struct ifnet *ifp = &ic->ic_if;
2786 struct ath_desc *ds;
2787 struct ieee80211_node *ni;
2788 struct ath_node *an;
2789 int sr, lr;
2790 HAL_STATUS status;
2791 ath_txq_critsect_decl(s);
2792 ath_txbuf_critsect_decl(s2);
2793
2794 DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2795 npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2796 sc->sc_txlink));
2797 for (;;) {
2798 ath_txq_critsect_begin(sc, s);
2799 bf = TAILQ_FIRST(&sc->sc_txq);
2800 if (bf == NULL) {
2801 sc->sc_txlink = NULL;
2802 ath_txq_critsect_end(sc, s);
2803 break;
2804 }
2805 /* only the last descriptor is needed */
2806 ds = &bf->bf_desc[bf->bf_nseg - 1];
2807 status = ath_hal_txprocdesc(ah, ds);
2808 #ifdef AR_DEBUG
2809 if (ath_debug > 1)
2810 ath_printtxbuf(bf, status == HAL_OK);
2811 #endif
2812 if (status == HAL_EINPROGRESS) {
2813 ath_txq_critsect_end(sc, s);
2814 break;
2815 }
2816 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2817 ath_txq_critsect_end(sc, s);
2818
2819 ni = bf->bf_node;
2820 if (ni != NULL) {
2821 an = (struct ath_node *) ni;
2822 if (ds->ds_txstat.ts_status == 0) {
2823 an->an_tx_ok++;
2824 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2825 } else {
2826 an->an_tx_err++;
2827 ifp->if_oerrors++;
2828 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2829 sc->sc_stats.ast_tx_xretries++;
2830 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2831 sc->sc_stats.ast_tx_fifoerr++;
2832 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2833 sc->sc_stats.ast_tx_filtered++;
2834 an->an_tx_antenna = 0; /* invalidate */
2835 }
2836 sr = ds->ds_txstat.ts_shortretry;
2837 lr = ds->ds_txstat.ts_longretry;
2838 sc->sc_stats.ast_tx_shortretry += sr;
2839 sc->sc_stats.ast_tx_longretry += lr;
2840 if (sr + lr)
2841 an->an_tx_retr++;
2842 /*
2843 * Reclaim reference to node.
2844 *
2845 * NB: the node may be reclaimed here if, for example
2846 * this is a DEAUTH message that was sent and the
2847 * node was timed out due to inactivity.
2848 */
2849 if (ni != ic->ic_bss)
2850 ieee80211_free_node(ic, ni);
2851 }
2852 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2853 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2854 m_freem(bf->bf_m);
2855 bf->bf_m = NULL;
2856 bf->bf_node = NULL;
2857
2858 ath_txbuf_critsect_begin(sc, s2);
2859 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2860 ath_txbuf_critsect_end(sc, s2);
2861 }
2862 ifp->if_flags &= ~IFF_OACTIVE;
2863 sc->sc_tx_timer = 0;
2864
2865 ath_start(ifp);
2866 }
2867
2868 /*
2869 * Drain the transmit queue and reclaim resources.
2870 */
2871 static void
2872 ath_draintxq(struct ath_softc *sc)
2873 {
2874 struct ath_hal *ah = sc->sc_ah;
2875 struct ifnet *ifp = &sc->sc_ic.ic_if;
2876 struct ath_buf *bf;
2877 ath_txq_critsect_decl(s);
2878 ath_txbuf_critsect_decl(s2);
2879
2880 /* XXX return value */
2881 if (!sc->sc_invalid) {
2882 /* don't touch the hardware if marked invalid */
2883 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2884 DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2885 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2886 sc->sc_txlink));
2887 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2888 DPRINTF(("ath_draintxq: beacon queue %p\n",
2889 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2890 }
2891 for (;;) {
2892 ath_txq_critsect_begin(sc, s);
2893 bf = TAILQ_FIRST(&sc->sc_txq);
2894 if (bf == NULL) {
2895 sc->sc_txlink = NULL;
2896 ath_txq_critsect_end(sc, s);
2897 break;
2898 }
2899 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2900 ath_txq_critsect_end(sc, s);
2901 #ifdef AR_DEBUG
2902 if (ath_debug)
2903 ath_printtxbuf(bf,
2904 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2905 #endif /* AR_DEBUG */
2906 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2907 m_freem(bf->bf_m);
2908 bf->bf_m = NULL;
2909 bf->bf_node = NULL;
2910 ath_txbuf_critsect_begin(sc, s2);
2911 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2912 ath_txbuf_critsect_end(sc, s2);
2913 }
2914 ifp->if_flags &= ~IFF_OACTIVE;
2915 sc->sc_tx_timer = 0;
2916 }
2917
2918 /*
2919 * Disable the receive h/w in preparation for a reset.
2920 */
2921 static void
2922 ath_stoprecv(struct ath_softc *sc)
2923 {
2924 #define PA2DESC(_sc, _pa) \
2925 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2926 ((_pa) - (_sc)->sc_desc_paddr)))
2927 struct ath_hal *ah = sc->sc_ah;
2928
2929 ath_hal_stoppcurecv(ah); /* disable PCU */
2930 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2931 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2932 DELAY(3000); /* long enough for 1 frame */
2933 #ifdef AR_DEBUG
2934 if (ath_debug) {
2935 struct ath_buf *bf;
2936
2937 DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2938 (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2939 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2940 struct ath_desc *ds = bf->bf_desc;
2941 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2942 PA2DESC(sc, ds->ds_link)) == HAL_OK)
2943 ath_printrxbuf(bf, 1);
2944 }
2945 }
2946 #endif
2947 sc->sc_rxlink = NULL; /* just in case */
2948 #undef PA2DESC
2949 }
2950
2951 /*
2952 * Enable the receive h/w following a reset.
2953 */
2954 static int
2955 ath_startrecv(struct ath_softc *sc)
2956 {
2957 struct ath_hal *ah = sc->sc_ah;
2958 struct ath_buf *bf;
2959
2960 sc->sc_rxlink = NULL;
2961 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2962 int error = ath_rxbuf_init(sc, bf);
2963 if (error != 0) {
2964 DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2965 error));
2966 return error;
2967 }
2968 }
2969
2970 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2971 ath_hal_putrxbuf(ah, bf->bf_daddr);
2972 ath_hal_rxena(ah); /* enable recv descriptors */
2973 ath_mode_init(sc); /* set filters, etc. */
2974 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2975 return 0;
2976 }
2977
2978 /*
2979 * Set/change channels. If the channel is really being changed,
2980 * it's done by resetting the chip. To accomplish this we must
2981 * first cleanup any pending DMA, then restart stuff after a la
2982 * ath_init.
2983 */
2984 static int
2985 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2986 {
2987 struct ath_hal *ah = sc->sc_ah;
2988 struct ieee80211com *ic = &sc->sc_ic;
2989
2990 DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2991 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2992 ic->ic_ibss_chan->ic_freq,
2993 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2994 if (chan != ic->ic_ibss_chan) {
2995 HAL_STATUS status;
2996 HAL_CHANNEL hchan;
2997 enum ieee80211_phymode mode;
2998
2999 /*
3000 * To switch channels clear any pending DMA operations;
3001 * wait long enough for the RX fifo to drain, reset the
3002 * hardware at the new frequency, and then re-enable
3003 * the relevant bits of the h/w.
3004 */
3005 ath_hal_intrset(ah, 0); /* disable interrupts */
3006 ath_draintxq(sc); /* clear pending tx frames */
3007 ath_stoprecv(sc); /* turn off frame recv */
3008 /*
3009 * Convert to a HAL channel description with
3010 * the flags constrained to reflect the current
3011 * operating mode.
3012 */
3013 hchan.channel = chan->ic_freq;
3014 hchan.channelFlags = ath_chan2flags(ic, chan);
3015 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3016 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
3017 "channel %u (%u Mhz)\n",
3018 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3019 return EIO;
3020 }
3021 /*
3022 * Re-enable rx framework.
3023 */
3024 if (ath_startrecv(sc) != 0) {
3025 if_printf(&ic->ic_if,
3026 "ath_chan_set: unable to restart recv logic\n");
3027 return EIO;
3028 }
3029
3030 /*
3031 * Update BPF state.
3032 */
3033 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3034 htole16(chan->ic_freq);
3035 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3036 htole16(chan->ic_flags);
3037
3038 /*
3039 * Change channels and update the h/w rate map
3040 * if we're switching; e.g. 11a to 11b/g.
3041 */
3042 ic->ic_ibss_chan = chan;
3043 mode = ieee80211_chan2mode(ic, chan);
3044 if (mode != sc->sc_curmode)
3045 ath_setcurmode(sc, mode);
3046
3047 /*
3048 * Re-enable interrupts.
3049 */
3050 ath_hal_intrset(ah, sc->sc_imask);
3051 }
3052 return 0;
3053 }
3054
3055 static void
3056 ath_next_scan(void *arg)
3057 {
3058 struct ath_softc *sc = arg;
3059 struct ieee80211com *ic = &sc->sc_ic;
3060 struct ifnet *ifp = &ic->ic_if;
3061 int s;
3062
3063 /* don't call ath_start w/o network interrupts blocked */
3064 s = splnet();
3065
3066 if (ic->ic_state == IEEE80211_S_SCAN)
3067 ieee80211_next_scan(ifp);
3068 splx(s);
3069 }
3070
3071 /*
3072 * Periodically recalibrate the PHY to account
3073 * for temperature/environment changes.
3074 */
3075 static void
3076 ath_calibrate(void *arg)
3077 {
3078 struct ath_softc *sc = arg;
3079 struct ath_hal *ah = sc->sc_ah;
3080 struct ieee80211com *ic = &sc->sc_ic;
3081 struct ieee80211_channel *c;
3082 HAL_CHANNEL hchan;
3083
3084 sc->sc_stats.ast_per_cal++;
3085
3086 /*
3087 * Convert to a HAL channel description with the flags
3088 * constrained to reflect the current operating mode.
3089 */
3090 c = ic->ic_ibss_chan;
3091 hchan.channel = c->ic_freq;
3092 hchan.channelFlags = ath_chan2flags(ic, c);
3093
3094 DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
3095
3096 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3097 /*
3098 * Rfgain is out of bounds, reset the chip
3099 * to load new gain values.
3100 */
3101 sc->sc_stats.ast_per_rfgain++;
3102 ath_reset(sc);
3103 }
3104 if (!ath_hal_calibrate(ah, &hchan)) {
3105 DPRINTF(("%s: calibration of channel %u failed\n",
3106 __func__, c->ic_freq));
3107 sc->sc_stats.ast_per_calfail++;
3108 }
3109 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
3110 }
3111
3112 static HAL_LED_STATE
3113 ath_state_to_led(enum ieee80211_state state)
3114 {
3115 switch (state) {
3116 case IEEE80211_S_INIT:
3117 return HAL_LED_INIT;
3118 case IEEE80211_S_SCAN:
3119 return HAL_LED_SCAN;
3120 case IEEE80211_S_AUTH:
3121 return HAL_LED_AUTH;
3122 case IEEE80211_S_ASSOC:
3123 return HAL_LED_ASSOC;
3124 case IEEE80211_S_RUN:
3125 return HAL_LED_RUN;
3126 default:
3127 panic("%s: unknown 802.11 state %d\n", __func__, state);
3128 return HAL_LED_INIT;
3129 }
3130 }
3131
3132 static int
3133 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3134 {
3135 struct ifnet *ifp = &ic->ic_if;
3136 struct ath_softc *sc = ifp->if_softc;
3137 struct ath_hal *ah = sc->sc_ah;
3138 struct ieee80211_node *ni;
3139 int i, error;
3140 const u_int8_t *bssid;
3141 u_int32_t rfilt;
3142
3143 DPRINTF(("%s: %s -> %s\n", __func__,
3144 ieee80211_state_name[ic->ic_state],
3145 ieee80211_state_name[nstate]));
3146
3147 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */
3148
3149 if (nstate == IEEE80211_S_INIT) {
3150 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3151 ath_hal_intrset(ah, sc->sc_imask);
3152 callout_stop(&sc->sc_scan_ch);
3153 callout_stop(&sc->sc_cal_ch);
3154 return (*sc->sc_newstate)(ic, nstate, arg);
3155 }
3156 ni = ic->ic_bss;
3157 error = ath_chan_set(sc, ni->ni_chan);
3158 if (error != 0)
3159 goto bad;
3160 rfilt = ath_calcrxfilter(sc);
3161 if (nstate == IEEE80211_S_SCAN) {
3162 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
3163 ath_next_scan, sc);
3164 bssid = ifp->if_broadcastaddr;
3165 } else {
3166 callout_stop(&sc->sc_scan_ch);
3167 bssid = ni->ni_bssid;
3168 }
3169 ath_hal_setrxfilter(ah, rfilt);
3170 DPRINTF(("%s: RX filter 0x%x bssid %s\n",
3171 __func__, rfilt, ether_sprintf(bssid)));
3172
3173 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3174 ath_hal_setassocid(ah, bssid, ni->ni_associd);
3175 else
3176 ath_hal_setassocid(ah, bssid, 0);
3177 if (ic->ic_flags & IEEE80211_F_WEPON) {
3178 for (i = 0; i < IEEE80211_WEP_NKID; i++)
3179 if (ath_hal_keyisvalid(ah, i))
3180 ath_hal_keysetmac(ah, i, bssid);
3181 }
3182
3183 if (nstate == IEEE80211_S_RUN) {
3184 DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3185 "capinfo=0x%04x chan=%d\n"
3186 , __func__
3187 , ic->ic_flags
3188 , ni->ni_intval
3189 , ether_sprintf(ni->ni_bssid)
3190 , ni->ni_capinfo
3191 , ieee80211_chan2ieee(ic, ni->ni_chan)));
3192
3193 /*
3194 * Allocate and setup the beacon frame for AP or adhoc mode.
3195 */
3196 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3197 ic->ic_opmode == IEEE80211_M_IBSS) {
3198 error = ath_beacon_alloc(sc, ni);
3199 if (error != 0)
3200 goto bad;
3201 }
3202
3203 /*
3204 * Configure the beacon and sleep timers.
3205 */
3206 ath_beacon_config(sc);
3207
3208 /* start periodic recalibration timer */
3209 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
3210 ath_calibrate, sc);
3211 } else {
3212 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3213 ath_hal_intrset(ah, sc->sc_imask);
3214 callout_stop(&sc->sc_cal_ch); /* no calibration */
3215 }
3216 /*
3217 * Reset the rate control state.
3218 */
3219 ath_rate_ctl_reset(sc, nstate);
3220 /*
3221 * Invoke the parent method to complete the work.
3222 */
3223 return (*sc->sc_newstate)(ic, nstate, arg);
3224 bad:
3225 callout_stop(&sc->sc_scan_ch);
3226 callout_stop(&sc->sc_cal_ch);
3227 /* NB: do not invoke the parent */
3228 return error;
3229 }
3230
3231 /*
3232 * Setup driver-specific state for a newly associated node.
3233 * Note that we're called also on a re-associate, the isnew
3234 * param tells us if this is the first time or not.
3235 */
3236 static void
3237 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3238 {
3239 if (isnew) {
3240 struct ath_node *an = (struct ath_node *) ni;
3241
3242 an->an_tx_ok = an->an_tx_err =
3243 an->an_tx_retr = an->an_tx_upper = 0;
3244 /* start with highest negotiated rate */
3245 /*
3246 * XXX should do otherwise but only when
3247 * the rate control algorithm is better.
3248 */
3249 KASSERT(ni->ni_rates.rs_nrates > 0,
3250 ("new association w/ no rates!"));
3251 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3252 }
3253 }
3254
3255 static int
3256 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor,
3257 HAL_BOOL xchanmode)
3258 {
3259 struct ieee80211com *ic = &sc->sc_ic;
3260 struct ifnet *ifp = &ic->ic_if;
3261 struct ath_hal *ah = sc->sc_ah;
3262 HAL_CHANNEL *chans;
3263 int i, ix, nchan;
3264
3265 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3266 M_TEMP, M_NOWAIT);
3267 if (chans == NULL) {
3268 if_printf(ifp, "unable to allocate channel table\n");
3269 return ENOMEM;
3270 }
3271 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3272 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
3273 if_printf(ifp, "unable to collect channel list from hal\n");
3274 free(chans, M_TEMP);
3275 return EINVAL;
3276 }
3277
3278 /*
3279 * Convert HAL channels to ieee80211 ones and insert
3280 * them in the table according to their channel number.
3281 */
3282 for (i = 0; i < nchan; i++) {
3283 HAL_CHANNEL *c = &chans[i];
3284 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3285 if (ix > IEEE80211_CHAN_MAX) {
3286 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3287 ix, c->channel, c->channelFlags);
3288 continue;
3289 }
3290 DPRINTF(("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
3291 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
3292 ix));
3293 /* NB: flags are known to be compatible */
3294 if (ic->ic_channels[ix].ic_freq == 0) {
3295 ic->ic_channels[ix].ic_freq = c->channel;
3296 ic->ic_channels[ix].ic_flags = c->channelFlags;
3297 } else {
3298 /* channels overlap; e.g. 11g and 11b */
3299 ic->ic_channels[ix].ic_flags |= c->channelFlags;
3300 }
3301 }
3302 free(chans, M_TEMP);
3303 return 0;
3304 }
3305
3306 static int
3307 ath_rate_setup(struct ath_softc *sc, u_int mode)
3308 {
3309 struct ath_hal *ah = sc->sc_ah;
3310 struct ieee80211com *ic = &sc->sc_ic;
3311 const HAL_RATE_TABLE *rt;
3312 struct ieee80211_rateset *rs;
3313 int i, maxrates;
3314
3315 switch (mode) {
3316 case IEEE80211_MODE_11A:
3317 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
3318 break;
3319 case IEEE80211_MODE_11B:
3320 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
3321 break;
3322 case IEEE80211_MODE_11G:
3323 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
3324 break;
3325 case IEEE80211_MODE_TURBO:
3326 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
3327 break;
3328 default:
3329 DPRINTF(("%s: invalid mode %u\n", __func__, mode));
3330 return 0;
3331 }
3332 rt = sc->sc_rates[mode];
3333 if (rt == NULL)
3334 return 0;
3335 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3336 DPRINTF(("%s: rate table too small (%u > %u)\n",
3337 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3338 maxrates = IEEE80211_RATE_MAXSIZE;
3339 } else
3340 maxrates = rt->rateCount;
3341 rs = &ic->ic_sup_rates[mode];
3342 for (i = 0; i < maxrates; i++)
3343 rs->rs_rates[i] = rt->info[i].dot11Rate;
3344 rs->rs_nrates = maxrates;
3345 return 1;
3346 }
3347
3348 static void
3349 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3350 {
3351 const HAL_RATE_TABLE *rt;
3352 int i;
3353
3354 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3355 rt = sc->sc_rates[mode];
3356 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3357 for (i = 0; i < rt->rateCount; i++)
3358 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3359 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3360 for (i = 0; i < 32; i++)
3361 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3362 sc->sc_currates = rt;
3363 sc->sc_curmode = mode;
3364 }
3365
3366 /*
3367 * Reset the rate control state for each 802.11 state transition.
3368 */
3369 static void
3370 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3371 {
3372 struct ieee80211com *ic = &sc->sc_ic;
3373 struct ieee80211_node *ni;
3374 struct ath_node *an;
3375
3376 if (ic->ic_opmode != IEEE80211_M_STA) {
3377 /*
3378 * When operating as a station the node table holds
3379 * the AP's that were discovered during scanning.
3380 * For any other operating mode we want to reset the
3381 * tx rate state of each node.
3382 */
3383 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3384 ni->ni_txrate = 0; /* use lowest rate */
3385 an = (struct ath_node *) ni;
3386 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3387 an->an_tx_upper = 0;
3388 }
3389 }
3390 /*
3391 * Reset local xmit state; this is really only meaningful
3392 * when operating in station or adhoc mode.
3393 */
3394 ni = ic->ic_bss;
3395 an = (struct ath_node *) ni;
3396 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3397 if (state == IEEE80211_S_RUN) {
3398 /* start with highest negotiated rate */
3399 KASSERT(ni->ni_rates.rs_nrates > 0,
3400 ("transition to RUN state w/ no rates!"));
3401 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3402 } else {
3403 /* use lowest rate */
3404 ni->ni_txrate = 0;
3405 }
3406 }
3407
3408 /*
3409 * Examine and potentially adjust the transmit rate.
3410 */
3411 static void
3412 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3413 {
3414 struct ath_softc *sc = arg;
3415 struct ath_node *an = (struct ath_node *) ni;
3416 struct ieee80211_rateset *rs = &ni->ni_rates;
3417 int mod = 0, orate, enough;
3418
3419 /*
3420 * Rate control
3421 * XXX: very primitive version.
3422 */
3423 sc->sc_stats.ast_rate_calls++;
3424
3425 enough = (an->an_tx_ok + an->an_tx_err >= 10);
3426
3427 /* no packet reached -> down */
3428 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3429 mod = -1;
3430
3431 /* all packets needs retry in average -> down */
3432 if (enough && an->an_tx_ok < an->an_tx_retr)
3433 mod = -1;
3434
3435 /* no error and less than 10% of packets needs retry -> up */
3436 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3437 mod = 1;
3438
3439 orate = ni->ni_txrate;
3440 switch (mod) {
3441 case 0:
3442 if (enough && an->an_tx_upper > 0)
3443 an->an_tx_upper--;
3444 break;
3445 case -1:
3446 if (ni->ni_txrate > 0) {
3447 ni->ni_txrate--;
3448 sc->sc_stats.ast_rate_drop++;
3449 }
3450 an->an_tx_upper = 0;
3451 break;
3452 case 1:
3453 if (++an->an_tx_upper < 2)
3454 break;
3455 an->an_tx_upper = 0;
3456 if (ni->ni_txrate + 1 < rs->rs_nrates) {
3457 ni->ni_txrate++;
3458 sc->sc_stats.ast_rate_raise++;
3459 }
3460 break;
3461 }
3462
3463 if (ni->ni_txrate != orate) {
3464 DPRINTF(("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3465 __func__,
3466 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3467 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3468 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3469 }
3470 if (ni->ni_txrate != orate || enough)
3471 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3472 }
3473
3474 #ifdef AR_DEBUG
3475 #ifdef __FreeBSD__
3476 static int
3477 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3478 {
3479 char dmode[64];
3480 int error;
3481
3482 strncpy(dmode, "", sizeof(dmode) - 1);
3483 dmode[sizeof(dmode) - 1] = '\0';
3484 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3485
3486 if (error == 0 && req->newptr != NULL) {
3487 struct ifnet *ifp;
3488 struct ath_softc *sc;
3489
3490 ifp = ifunit("ath0"); /* XXX */
3491 if (!ifp)
3492 return EINVAL;
3493 sc = ifp->if_softc;
3494 if (strcmp(dmode, "hal") == 0)
3495 ath_hal_dumpstate(sc->sc_ah);
3496 else
3497 return EINVAL;
3498 }
3499 return error;
3500 }
3501 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3502 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3503 #endif /* __FreeBSD__ */
3504
3505 #if 0 /* #ifdef __NetBSD__ */
3506 static int
3507 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3508 {
3509 char dmode[64];
3510 int error;
3511
3512 strncpy(dmode, "", sizeof(dmode) - 1);
3513 dmode[sizeof(dmode) - 1] = '\0';
3514 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3515
3516 if (error == 0 && req->newptr != NULL) {
3517 struct ifnet *ifp;
3518 struct ath_softc *sc;
3519
3520 ifp = ifunit("ath0"); /* XXX */
3521 if (!ifp)
3522 return EINVAL;
3523 sc = ifp->if_softc;
3524 if (strcmp(dmode, "hal") == 0)
3525 ath_hal_dumpstate(sc->sc_ah);
3526 else
3527 return EINVAL;
3528 }
3529 return error;
3530 }
3531 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3532 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3533 #endif /* __NetBSD__ */
3534
3535 static void
3536 ath_printrxbuf(struct ath_buf *bf, int done)
3537 {
3538 struct ath_desc *ds;
3539 int i;
3540
3541 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3542 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3543 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3544 ds->ds_link, ds->ds_data,
3545 ds->ds_ctl0, ds->ds_ctl1,
3546 ds->ds_hw[0], ds->ds_hw[1],
3547 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3548 }
3549 }
3550
3551 static void
3552 ath_printtxbuf(struct ath_buf *bf, int done)
3553 {
3554 struct ath_desc *ds;
3555 int i;
3556
3557 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3558 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3559 i, ds, (struct ath_desc *)bf->bf_daddr + i,
3560 ds->ds_link, ds->ds_data,
3561 ds->ds_ctl0, ds->ds_ctl1,
3562 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3563 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3564 }
3565 }
3566 #endif /* AR_DEBUG */
3567