Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.27
      1 /*	$NetBSD: ath.c,v 1.27 2004/05/31 11:39:39 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer,
     12  *    without modification.
     13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     15  *    redistribution must be conditioned upon including a substantially
     16  *    similar Disclaimer requirement for further binary redistribution.
     17  * 3. Neither the names of the above-listed copyright holders nor the names
     18  *    of any contributors may be used to endorse or promote products derived
     19  *    from this software without specific prior written permission.
     20  *
     21  * Alternatively, this software may be distributed under the terms of the
     22  * GNU General Public License ("GPL") version 2 as published by the Free
     23  * Software Foundation.
     24  *
     25  * NO WARRANTY
     26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     36  * THE POSSIBILITY OF SUCH DAMAGES.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 #ifdef __FreeBSD__
     41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.54 2004/04/05 04:42:42 sam Exp $");
     42 #endif
     43 #ifdef __NetBSD__
     44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.27 2004/05/31 11:39:39 dyoung Exp $");
     45 #endif
     46 
     47 /*
     48  * Driver for the Atheros Wireless LAN controller.
     49  *
     50  * This software is derived from work of Atsushi Onoe; his contribution
     51  * is greatly appreciated.
     52  */
     53 
     54 #include "opt_inet.h"
     55 
     56 #ifdef __NetBSD__
     57 #include "bpfilter.h"
     58 #endif /* __NetBSD__ */
     59 
     60 #include <sys/param.h>
     61 #include <sys/systm.h>
     62 #include <sys/types.h>
     63 #include <sys/sysctl.h>
     64 #include <sys/mbuf.h>
     65 #include <sys/malloc.h>
     66 #include <sys/lock.h>
     67 #ifdef __FreeBSD__
     68 #include <sys/mutex.h>
     69 #endif
     70 #include <sys/kernel.h>
     71 #include <sys/socket.h>
     72 #include <sys/sockio.h>
     73 #include <sys/errno.h>
     74 #include <sys/callout.h>
     75 #ifdef __FreeBSD__
     76 #include <sys/bus.h>
     77 #else
     78 #include <machine/bus.h>
     79 #endif
     80 #include <sys/endian.h>
     81 
     82 #include <machine/bus.h>
     83 
     84 #include <net/if.h>
     85 #include <net/if_dl.h>
     86 #include <net/if_media.h>
     87 #include <net/if_arp.h>
     88 #ifdef __FreeBSD__
     89 #include <net/ethernet.h>
     90 #else
     91 #include <net/if_ether.h>
     92 #endif
     93 #include <net/if_llc.h>
     94 
     95 #include <net80211/ieee80211_var.h>
     96 #include <net80211/ieee80211_compat.h>
     97 
     98 #if NBPFILTER > 0
     99 #include <net/bpf.h>
    100 #endif
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #endif
    105 
    106 #include <dev/ic/athcompat.h>
    107 
    108 #define	AR_DEBUG
    109 #ifdef __FreeBSD__
    110 #include <dev/ath/if_athvar.h>
    111 #include <contrib/dev/ath/ah_desc.h>
    112 #else
    113 #include <dev/ic/athvar.h>
    114 #include <../contrib/sys/dev/ic/athhal_desc.h>
    115 #endif
    116 
    117 /* unaligned little endian access */
    118 #define LE_READ_2(p)							\
    119 	((u_int16_t)							\
    120 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    121 #define LE_READ_4(p)							\
    122 	((u_int32_t)							\
    123 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    124 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    125 
    126 #ifdef __FreeBSD__
    127 static void	ath_init(void *);
    128 #else
    129 static int	ath_init(struct ifnet *);
    130 #endif
    131 static int	ath_init1(struct ath_softc *);
    132 static int	ath_intr1(struct ath_softc *);
    133 static void	ath_stop(struct ifnet *);
    134 static void	ath_start(struct ifnet *);
    135 static void	ath_reset(struct ath_softc *);
    136 static int	ath_media_change(struct ifnet *);
    137 static void	ath_watchdog(struct ifnet *);
    138 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    139 static void	ath_fatal_proc(void *, int);
    140 static void	ath_rxorn_proc(void *, int);
    141 static void	ath_bmiss_proc(void *, int);
    142 static void	ath_initkeytable(struct ath_softc *);
    143 static void	ath_mode_init(struct ath_softc *);
    144 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    145 static void	ath_beacon_proc(void *, int);
    146 static void	ath_beacon_free(struct ath_softc *);
    147 static void	ath_beacon_config(struct ath_softc *);
    148 static int	ath_desc_alloc(struct ath_softc *);
    149 static void	ath_desc_free(struct ath_softc *);
    150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
    151 static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
    152 static void	ath_node_copy(struct ieee80211com *,
    153 			struct ieee80211_node *, const struct ieee80211_node *);
    154 static u_int8_t	ath_node_getrssi(struct ieee80211com *,
    155 			struct ieee80211_node *);
    156 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    157 static void	ath_rx_proc(void *, int);
    158 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    159 			     struct ath_buf *, struct mbuf *);
    160 static void	ath_tx_proc(void *, int);
    161 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    162 static void	ath_draintxq(struct ath_softc *);
    163 static void	ath_stoprecv(struct ath_softc *);
    164 static int	ath_startrecv(struct ath_softc *);
    165 static void	ath_next_scan(void *);
    166 static void	ath_calibrate(void *);
    167 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    168 static void	ath_newassoc(struct ieee80211com *,
    169 			struct ieee80211_node *, int);
    170 static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor,
    171 			HAL_BOOL xchanmode);
    172 
    173 static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
    174 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    175 static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
    176 static void	ath_rate_ctl(void *, struct ieee80211_node *);
    177 
    178 #ifdef __NetBSD__
    179 int	ath_enable(struct ath_softc *);
    180 void	ath_disable(struct ath_softc *);
    181 void	ath_power(int, void *);
    182 #endif
    183 
    184 #ifdef __FreeBSD__
    185 SYSCTL_DECL(_hw_ath);
    186 /* XXX validate sysctl values */
    187 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
    188 	    0, "channel dwell time (ms) for AP/station scanning");
    189 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
    190 	    0, "chip calibration interval (secs)");
    191 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
    192 	    0, "enable/disable outdoor operation");
    193 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
    194 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
    195 	    0, "country code");
    196 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
    197 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
    198 	    0, "regulatory domain");
    199 #endif /* __FreeBSD__ */
    200 
    201 #ifdef __NetBSD__
    202 static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum,
    203            ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum;
    204 #endif /* __NetBSD__ */
    205 
    206 static	int ath_dwelltime = 200;		/* 5 channels/second */
    207 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
    208 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
    209 static	int ath_xchanmode = AH_TRUE;		/* enable extended channels */
    210 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
    211 static	int ath_regdomain = 0;			/* regulatory domain */
    212 
    213 #ifdef AR_DEBUG
    214 int	ath_debug = 0;
    215 #ifdef __FreeBSD__
    216 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
    217 	    0, "control debugging printfs");
    218 TUNABLE_INT("hw.ath.debug", &ath_debug);
    219 #endif /* __FreeBSD__ */
    220 #define	IFF_DUMPPKTS(_ifp, _m) \
    221 	((ath_debug & _m) || \
    222 	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    223 static	void ath_printrxbuf(struct ath_buf *bf, int);
    224 static	void ath_printtxbuf(struct ath_buf *bf, int);
    225 enum {
    226 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
    227 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
    228 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
    229 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
    230 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
    231 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
    232 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
    233 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
    234 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
    235 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
    236 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
    237 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
    238 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
    239 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
    240 	ATH_DEBUG_ANY		= 0xffffffff
    241 };
    242 #define	DPRINTF(_m,X)	if (ath_debug & (_m)) printf X
    243 #else
    244 #define	IFF_DUMPPKTS(_ifp, _m) \
    245 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    246 #define	DPRINTF(_m, X)
    247 #endif
    248 
    249 #ifdef __NetBSD__
    250 int
    251 ath_activate(struct device *self, enum devact act)
    252 {
    253 	struct ath_softc *sc = (struct ath_softc *)self;
    254 	int rv = 0, s;
    255 
    256 	s = splnet();
    257 	switch (act) {
    258 	case DVACT_ACTIVATE:
    259 		rv = EOPNOTSUPP;
    260 		break;
    261 	case DVACT_DEACTIVATE:
    262 		if_deactivate(&sc->sc_ic.ic_if);
    263 		break;
    264 	}
    265 	splx(s);
    266 	return rv;
    267 }
    268 
    269 int
    270 ath_enable(struct ath_softc *sc)
    271 {
    272 	if (ATH_IS_ENABLED(sc) == 0) {
    273 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    274 			printf("%s: device enable failed\n",
    275 				sc->sc_dev.dv_xname);
    276 			return (EIO);
    277 		}
    278 		sc->sc_flags |= ATH_ENABLED;
    279 	}
    280 	return (0);
    281 }
    282 
    283 void
    284 ath_disable(struct ath_softc *sc)
    285 {
    286 	if (!ATH_IS_ENABLED(sc))
    287 		return;
    288 	if (sc->sc_disable != NULL)
    289 		(*sc->sc_disable)(sc);
    290 	sc->sc_flags &= ~ATH_ENABLED;
    291 }
    292 
    293 static int
    294 sysctl_ath_verify(SYSCTLFN_ARGS)
    295 {
    296 	int error, t;
    297 	struct sysctlnode node;
    298 
    299 	node = *rnode;
    300 	t = *(int*)rnode->sysctl_data;
    301 	node.sysctl_data = &t;
    302 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    303 	if (error || newp == NULL)
    304 		return (error);
    305 
    306 	DPRINTF(ATH_DEBUG_ANY, ("%s: t = %d, nodenum = %d, rnodenum = %d\n",
    307 	    __func__, t, node.sysctl_num, rnode->sysctl_num));
    308 
    309 	if (node.sysctl_num == ath_dwelltime_nodenum) {
    310 		if (t <= 0)
    311 			return (EINVAL);
    312 	} else if (node.sysctl_num == ath_calibrate_nodenum) {
    313 		if (t <= 0)
    314 			return (EINVAL);
    315 #ifdef AR_DEBUG
    316 	} else if (node.sysctl_num == ath_debug_nodenum) {
    317 		if (t < 0 || t > 2)
    318 			return (EINVAL);
    319 #endif /* AR_DEBUG */
    320 	} else
    321 		return (EINVAL);
    322 
    323 	*(int*)rnode->sysctl_data = t;
    324 
    325 	return (0);
    326 }
    327 
    328 /*
    329  * Setup sysctl(3) MIB, ath.*.
    330  *
    331  * TBD condition CTLFLAG_PERMANENT on being an LKM or not
    332  */
    333 SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup")
    334 {
    335 	int rc, ath_node_num;
    336 	struct sysctlnode *node;
    337 
    338 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
    339 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
    340 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
    341 		goto err;
    342 
    343 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
    344 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "ath",
    345 	    SYSCTL_DESCR("ath information and options"),
    346 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
    347 		goto err;
    348 
    349 	ath_node_num = node->sysctl_num;
    350 
    351 	/* channel dwell time (ms) for AP/station scanning */
    352 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
    353 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    354 	    CTLTYPE_INT, "dwell",
    355 	    SYSCTL_DESCR("Channel dwell time (ms) for AP/station scanning"),
    356 	    sysctl_ath_verify, 0, &ath_dwelltime,
    357 	    0, CTL_HW, ath_node_num, CTL_CREATE,
    358 	    CTL_EOL)) != 0)
    359 		goto err;
    360 
    361 	ath_dwelltime_nodenum = node->sysctl_num;
    362 
    363 	/* chip calibration interval (secs) */
    364 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
    365 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    366 	    CTLTYPE_INT, "calibrate",
    367 	    SYSCTL_DESCR("Chip calibration interval (secs)"), sysctl_ath_verify,
    368 	    0, &ath_calinterval, 0, CTL_HW,
    369 	    ath_node_num, CTL_CREATE, CTL_EOL)) != 0)
    370 		goto err;
    371 
    372 	ath_calibrate_nodenum = node->sysctl_num;
    373 
    374 	/* enable/disable outdoor operation */
    375 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
    376 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
    377 	    "outdoor", SYSCTL_DESCR("Enable/disable outdoor operation"),
    378 	    NULL, 0, &ath_outdoor, 0,
    379 	    CTL_HW, ath_node_num, CTL_CREATE,
    380 	    CTL_EOL)) != 0)
    381 		goto err;
    382 
    383 	ath_outdoor_nodenum = node->sysctl_num;
    384 
    385 	/* country code */
    386 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
    387 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
    388 	    "countrycode", SYSCTL_DESCR("Country code"),
    389 	    NULL, 0, &ath_countrycode, 0,
    390 	    CTL_HW, ath_node_num, CTL_CREATE,
    391 	    CTL_EOL)) != 0)
    392 		goto err;
    393 
    394 	ath_countrycode_nodenum = node->sysctl_num;
    395 
    396 	/* regulatory domain */
    397 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
    398 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
    399 	    "regdomain", SYSCTL_DESCR("Regulatory domain"),
    400 	    NULL, 0, &ath_regdomain, 0,
    401 	    CTL_HW, ath_node_num, CTL_CREATE,
    402 	    CTL_EOL)) != 0)
    403 		goto err;
    404 
    405 	ath_regdomain_nodenum = node->sysctl_num;
    406 
    407 #ifdef AR_DEBUG
    408 
    409 	/* control debugging printfs */
    410 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
    411 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
    412 	    "debug", SYSCTL_DESCR("Enable/disable ath debugging output"),
    413 	    sysctl_ath_verify, 0, &ath_debug, 0,
    414 	    CTL_HW, ath_node_num, CTL_CREATE,
    415 	    CTL_EOL)) != 0)
    416 		goto err;
    417 
    418 	ath_debug_nodenum = node->sysctl_num;
    419 
    420 #endif /* AR_DEBUG */
    421 	return;
    422 err:
    423 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
    424 }
    425 #endif /* __NetBSD__ */
    426 
    427 int
    428 ath_attach(u_int16_t devid, struct ath_softc *sc)
    429 {
    430 	struct ieee80211com *ic = &sc->sc_ic;
    431 	struct ifnet *ifp = &ic->ic_if;
    432 	struct ath_hal *ah;
    433 	HAL_STATUS status;
    434 	int error = 0;
    435 
    436 	DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
    437 
    438 #ifdef __FreeBSD__
    439 	/* set these up early for if_printf use */
    440 	if_initname(ifp, device_get_name(sc->sc_dev),
    441 	    device_get_unit(sc->sc_dev));
    442 #else
    443 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    444 #endif
    445 
    446 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    447 	if (ah == NULL) {
    448 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    449 			status);
    450 		error = ENXIO;
    451 		goto bad;
    452 	}
    453 	if (ah->ah_abi != HAL_ABI_VERSION) {
    454 		if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
    455 			ah->ah_abi, HAL_ABI_VERSION);
    456 		error = ENXIO;
    457 		goto bad;
    458 	}
    459 	if_printf(ifp, "mac %d.%d phy %d.%d",
    460 		ah->ah_macVersion, ah->ah_macRev,
    461 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
    462 	if (ah->ah_analog5GhzRev)
    463 		printf(" 5ghz radio %d.%d",
    464 			ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
    465 	if (ah->ah_analog2GhzRev)
    466 		printf(" 2ghz radio %d.%d",
    467 			ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
    468 	printf("\n");
    469 	sc->sc_ah = ah;
    470 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    471 
    472 	/*
    473 	 * Collect the channel list using the default country
    474 	 * code and including outdoor channels.  The 802.11 layer
    475 	 * is resposible for filtering this list based on settings
    476 	 * like the phy mode.
    477 	 */
    478 	error = ath_getchannels(sc, ath_countrycode, ath_outdoor,
    479 	    ath_xchanmode);
    480 	if (error != 0)
    481 		goto bad;
    482 	/*
    483 	 * Copy these back; they are set as a side effect
    484 	 * of constructing the channel list.
    485 	 */
    486 	ath_regdomain = ath_hal_getregdomain(ah);
    487 	ath_countrycode = ath_hal_getcountrycode(ah);
    488 
    489 	/*
    490 	 * Setup rate tables for all potential media types.
    491 	 */
    492 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    493 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    494 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    495 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
    496 
    497 	error = ath_desc_alloc(sc);
    498 	if (error != 0) {
    499 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    500 		goto bad;
    501 	}
    502 	ATH_CALLOUT_INIT(&sc->sc_scan_ch);
    503 	ATH_CALLOUT_INIT(&sc->sc_cal_ch);
    504 
    505 #ifdef __FreeBSD__
    506 	ATH_TXBUF_LOCK_INIT(sc);
    507 	ATH_TXQ_LOCK_INIT(sc);
    508 #endif
    509 
    510 	ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
    511 	ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
    512 	ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
    513 	ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
    514 	ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
    515 
    516 	/*
    517 	 * For now just pre-allocate one data queue and one
    518 	 * beacon queue.  Note that the HAL handles resetting
    519 	 * them at the needed time.  Eventually we'll want to
    520 	 * allocate more tx queues for splitting management
    521 	 * frames and for QOS support.
    522 	 */
    523 	sc->sc_txhalq = ath_hal_setuptxqueue(ah,
    524 		HAL_TX_QUEUE_DATA,
    525 		AH_TRUE			/* enable interrupts */
    526 	);
    527 	if (sc->sc_txhalq == (u_int) -1) {
    528 		if_printf(ifp, "unable to setup a data xmit queue!\n");
    529 		goto bad2;
    530 	}
    531 	sc->sc_bhalq = ath_hal_setuptxqueue(ah,
    532 		HAL_TX_QUEUE_BEACON,
    533 		AH_TRUE			/* enable interrupts */
    534 	);
    535 	if (sc->sc_bhalq == (u_int) -1) {
    536 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    537 		goto bad2;
    538 	}
    539 
    540 	ifp->if_softc = sc;
    541 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    542 	ifp->if_start = ath_start;
    543 	ifp->if_watchdog = ath_watchdog;
    544 	ifp->if_ioctl = ath_ioctl;
    545 	ifp->if_init = ath_init;
    546 #ifdef __FreeBSD__
    547 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
    548 #else
    549 #if 0
    550 	ifp->if_stop = ath_stop;		/* XXX */
    551 #endif
    552 	IFQ_SET_READY(&ifp->if_snd);
    553 #endif
    554 
    555 	ic->ic_softc = sc;
    556 	ic->ic_newassoc = ath_newassoc;
    557 	/* XXX not right but it's not used anywhere important */
    558 	ic->ic_phytype = IEEE80211_T_OFDM;
    559 	ic->ic_opmode = IEEE80211_M_STA;
    560 	ic->ic_caps = IEEE80211_C_WEP		/* wep supported */
    561 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
    562 		| IEEE80211_C_HOSTAP		/* hostap mode */
    563 		| IEEE80211_C_MONITOR		/* monitor mode */
    564 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
    565 		;
    566 
    567 	/* get mac address from hardware */
    568 	ath_hal_getmac(ah, ic->ic_myaddr);
    569 
    570 #ifdef __NetBSD__
    571 	if_attach(ifp);
    572 #endif
    573 	/* call MI attach routine. */
    574 	ieee80211_ifattach(ifp);
    575 	/* override default methods */
    576 	ic->ic_node_alloc = ath_node_alloc;
    577 	sc->sc_node_free = ic->ic_node_free;
    578 	ic->ic_node_free = ath_node_free;
    579 	sc->sc_node_copy = ic->ic_node_copy;
    580 	ic->ic_node_copy = ath_node_copy;
    581 	ic->ic_node_getrssi = ath_node_getrssi;
    582 	sc->sc_newstate = ic->ic_newstate;
    583 	ic->ic_newstate = ath_newstate;
    584 	/* complete initialization */
    585 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
    586 
    587 #if NBPFILTER > 0
    588 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    589 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
    590 		&sc->sc_drvbpf);
    591 #endif
    592 	/*
    593 	 * Initialize constant fields.
    594 	 * XXX make header lengths a multiple of 32-bits so subsequent
    595 	 *     headers are properly aligned; this is a kludge to keep
    596 	 *     certain applications happy.
    597 	 *
    598 	 * NB: the channel is setup each time we transition to the
    599 	 *     RUN state to avoid filling it in for each frame.
    600 	 */
    601 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
    602 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
    603 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
    604 
    605 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
    606 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
    607 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
    608 
    609 #ifdef __NetBSD__
    610 	sc->sc_flags |= ATH_ATTACHED;
    611 	/*
    612 	 * Make sure the interface is shutdown during reboot.
    613 	 */
    614 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
    615 	if (sc->sc_sdhook == NULL)
    616 		printf("%s: WARNING: unable to establish shutdown hook\n",
    617 			sc->sc_dev.dv_xname);
    618 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
    619 	if (sc->sc_powerhook == NULL)
    620 		printf("%s: WARNING: unable to establish power hook\n",
    621 			sc->sc_dev.dv_xname);
    622 #endif
    623 	return 0;
    624 bad2:
    625 	ath_desc_free(sc);
    626 bad:
    627 	if (ah)
    628 		ath_hal_detach(ah);
    629 	sc->sc_invalid = 1;
    630 	return error;
    631 }
    632 
    633 int
    634 ath_detach(struct ath_softc *sc)
    635 {
    636 	struct ifnet *ifp = &sc->sc_ic.ic_if;
    637 	ath_softc_critsect_decl(s);
    638 
    639 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    640 		return (0);
    641 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
    642 
    643 	ath_softc_critsect_begin(sc, s);
    644 	ath_stop(ifp);
    645 #if NBPFILTER > 0
    646 	bpfdetach(ifp);
    647 #endif
    648 	ath_desc_free(sc);
    649 	ath_hal_detach(sc->sc_ah);
    650 	ieee80211_ifdetach(ifp);
    651 #ifdef __NetBSD__
    652 	if_detach(ifp);
    653 #endif /* __NetBSD__ */
    654 	ath_softc_critsect_end(sc, s);
    655 #ifdef __NetBSD__
    656 	powerhook_disestablish(sc->sc_powerhook);
    657 	shutdownhook_disestablish(sc->sc_sdhook);
    658 #endif /* __NetBSD__ */
    659 #ifdef __FreeBSD__
    660 
    661 	ATH_TXBUF_LOCK_DESTROY(sc);
    662 	ATH_TXQ_LOCK_DESTROY(sc);
    663 
    664 #endif /* __FreeBSD__ */
    665 	return 0;
    666 }
    667 
    668 #ifdef __NetBSD__
    669 void
    670 ath_power(int why, void *arg)
    671 {
    672 	struct ath_softc *sc = arg;
    673 	int s;
    674 
    675 	DPRINTF(ATH_DEBUG_ANY, ("ath_power(%d)\n", why));
    676 
    677 	s = splnet();
    678 	switch (why) {
    679 	case PWR_SUSPEND:
    680 	case PWR_STANDBY:
    681 		ath_suspend(sc, why);
    682 		break;
    683 	case PWR_RESUME:
    684 		ath_resume(sc, why);
    685 		break;
    686 	case PWR_SOFTSUSPEND:
    687 	case PWR_SOFTSTANDBY:
    688 	case PWR_SOFTRESUME:
    689 		break;
    690 	}
    691 	splx(s);
    692 }
    693 #endif
    694 
    695 void
    696 ath_suspend(struct ath_softc *sc, int why)
    697 {
    698 	struct ifnet *ifp = &sc->sc_ic.ic_if;
    699 
    700 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
    701 
    702 	ath_stop(ifp);
    703 	if (sc->sc_power != NULL)
    704 		(*sc->sc_power)(sc, why);
    705 }
    706 
    707 void
    708 ath_resume(struct ath_softc *sc, int why)
    709 {
    710 	struct ifnet *ifp = &sc->sc_ic.ic_if;
    711 
    712 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
    713 
    714 	if (ifp->if_flags & IFF_UP) {
    715 		ath_init(ifp);
    716 #if 0
    717 		(void)ath_intr(sc);
    718 #endif
    719 		if (sc->sc_power != NULL)
    720 			(*sc->sc_power)(sc, why);
    721 		if (ifp->if_flags & IFF_RUNNING)
    722 			ath_start(ifp);
    723 	}
    724 }
    725 
    726 #ifdef __NetBSD__
    727 void
    728 ath_shutdown(void *arg)
    729 {
    730 	struct ath_softc *sc = arg;
    731 
    732 	ath_stop(&sc->sc_ic.ic_if);
    733 }
    734 #else
    735 void
    736 ath_shutdown(struct ath_softc *sc)
    737 {
    738 #if 1
    739 	return;
    740 #else
    741 	struct ifnet *ifp = &sc->sc_ic.ic_if;
    742 
    743 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
    744 
    745 	ath_stop(ifp);
    746 #endif
    747 }
    748 #endif
    749 
    750 #ifdef __NetBSD__
    751 int
    752 ath_intr(void *arg)
    753 {
    754 	return ath_intr1((struct ath_softc *)arg);
    755 }
    756 #else
    757 void
    758 ath_intr(void *arg)
    759 {
    760 	(void)ath_intr1((struct ath_softc *)arg);
    761 }
    762 #endif
    763 
    764 static int
    765 ath_intr1(struct ath_softc *sc)
    766 {
    767 	struct ieee80211com *ic = &sc->sc_ic;
    768 	struct ifnet *ifp = &ic->ic_if;
    769 	struct ath_hal *ah = sc->sc_ah;
    770 	HAL_INT status;
    771 
    772 	if (sc->sc_invalid) {
    773 		/*
    774 		 * The hardware is not ready/present, don't touch anything.
    775 		 * Note this can happen early on if the IRQ is shared.
    776 		 */
    777 		DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
    778 		return 0;
    779 	}
    780 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
    781 		return 0;
    782 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    783 		DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
    784 			__func__, ifp->if_flags));
    785 		ath_hal_getisr(ah, &status);	/* clear ISR */
    786 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    787 		return 1; /* XXX */
    788 	}
    789 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    790 	DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
    791 #ifdef AR_DEBUG
    792 	if (ath_debug &&
    793 	    (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
    794 		if_printf(ifp, "ath_intr: status 0x%x\n", status);
    795 		ath_hal_dumpstate(ah);
    796 	}
    797 #endif /* AR_DEBUG */
    798 	status &= sc->sc_imask;			/* discard unasked for bits */
    799 	if (status & HAL_INT_FATAL) {
    800 		sc->sc_stats.ast_hardware++;
    801 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    802 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    803 	} else if (status & HAL_INT_RXORN) {
    804 		sc->sc_stats.ast_rxorn++;
    805 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    806 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    807 	} else {
    808 		if (status & HAL_INT_RXEOL) {
    809 			/*
    810 			 * NB: the hardware should re-read the link when
    811 			 *     RXE bit is written, but it doesn't work at
    812 			 *     least on older hardware revs.
    813 			 */
    814 			sc->sc_stats.ast_rxeol++;
    815 			sc->sc_rxlink = NULL;
    816 		}
    817 		if (status & HAL_INT_TXURN) {
    818 			sc->sc_stats.ast_txurn++;
    819 			/* bump tx trigger level */
    820 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    821 		}
    822 		if (status & HAL_INT_RX)
    823 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    824 		if (status & HAL_INT_TX)
    825 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    826 		if (status & HAL_INT_SWBA) {
    827 			/*
    828 			 * Handle beacon transmission directly; deferring
    829 			 * this is too slow to meet timing constraints
    830 			 * under load.
    831 			 */
    832 			ath_beacon_proc(sc, 0);
    833 		}
    834 		if (status & HAL_INT_BMISS) {
    835 			sc->sc_stats.ast_bmiss++;
    836 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    837 		}
    838 	}
    839 	return 1;
    840 }
    841 
    842 static void
    843 ath_fatal_proc(void *arg, int pending)
    844 {
    845 	struct ath_softc *sc = arg;
    846 
    847 	device_printf(sc->sc_dev, "hardware error; resetting\n");
    848 	ath_reset(sc);
    849 }
    850 
    851 static void
    852 ath_rxorn_proc(void *arg, int pending)
    853 {
    854 	struct ath_softc *sc = arg;
    855 
    856 	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
    857 	ath_reset(sc);
    858 }
    859 
    860 static void
    861 ath_bmiss_proc(void *arg, int pending)
    862 {
    863 	struct ath_softc *sc = arg;
    864 	struct ieee80211com *ic = &sc->sc_ic;
    865 
    866 	DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
    867 	if (ic->ic_opmode != IEEE80211_M_STA)
    868 		return;
    869 	if (ic->ic_state == IEEE80211_S_RUN) {
    870 		/*
    871 		 * Rather than go directly to scan state, try to
    872 		 * reassociate first.  If that fails then the state
    873 		 * machine will drop us into scanning after timing
    874 		 * out waiting for a probe response.
    875 		 */
    876 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
    877 	}
    878 }
    879 
    880 static u_int
    881 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    882 {
    883 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
    884 
    885 	switch (mode) {
    886 	case IEEE80211_MODE_AUTO:
    887 		return 0;
    888 	case IEEE80211_MODE_11A:
    889 		return CHANNEL_A;
    890 	case IEEE80211_MODE_11B:
    891 		return CHANNEL_B;
    892 	case IEEE80211_MODE_11G:
    893 		return CHANNEL_PUREG;
    894 	case IEEE80211_MODE_TURBO:
    895 		return CHANNEL_T;
    896 	default:
    897 		panic("%s: unsupported mode %d\n", __func__, mode);
    898 		return 0;
    899 	}
    900 }
    901 
    902 #ifdef __NetBSD__
    903 static int
    904 ath_init(struct ifnet *ifp)
    905 {
    906 	return ath_init1((struct ath_softc *)ifp->if_softc);
    907 }
    908 #else
    909 static void
    910 ath_init(void *arg)
    911 {
    912 	(void)ath_init1((struct ath_softc *)arg);
    913 }
    914 #endif
    915 
    916 static int
    917 ath_init1(struct ath_softc *sc)
    918 {
    919 	struct ieee80211com *ic = &sc->sc_ic;
    920 	struct ifnet *ifp = &ic->ic_if;
    921 	struct ieee80211_node *ni;
    922 	enum ieee80211_phymode mode;
    923 	struct ath_hal *ah = sc->sc_ah;
    924 	HAL_STATUS status;
    925 	HAL_CHANNEL hchan;
    926 	int error = 0;
    927 	ath_softc_critsect_decl(s);
    928 
    929 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
    930 		__func__, ifp->if_flags));
    931 
    932 #ifdef __NetBSD__
    933 	if ((error = ath_enable(sc)) != 0)
    934 		return error;
    935 #endif
    936 
    937 	ath_softc_critsect_begin(sc, s);
    938 	/*
    939 	 * Stop anything previously setup.  This is safe
    940 	 * whether this is the first time through or not.
    941 	 */
    942 	ath_stop(ifp);
    943 
    944 	/*
    945 	 * The basic interface to setting the hardware in a good
    946 	 * state is ``reset''.  On return the hardware is known to
    947 	 * be powered up and with interrupts disabled.  This must
    948 	 * be followed by initialization of the appropriate bits
    949 	 * and then setup of the interrupt mask.
    950 	 */
    951 	hchan.channel = ic->ic_ibss_chan->ic_freq;
    952 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
    953 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
    954 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    955 			status);
    956 		error = -1;
    957 		goto done;
    958 	}
    959 
    960 	/*
    961 	 * Setup the hardware after reset: the key cache
    962 	 * is filled as needed and the receive engine is
    963 	 * set going.  Frame transmit is handled entirely
    964 	 * in the frame output path; there's nothing to do
    965 	 * here except setup the interrupt mask.
    966 	 */
    967 	if (ic->ic_flags & IEEE80211_F_WEPON)
    968 		ath_initkeytable(sc);
    969 	if ((error = ath_startrecv(sc)) != 0) {
    970 		if_printf(ifp, "unable to start recv logic\n");
    971 		goto done;
    972 	}
    973 
    974 	/*
    975 	 * Enable interrupts.
    976 	 */
    977 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
    978 		  | HAL_INT_RXEOL | HAL_INT_RXORN
    979 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
    980 	ath_hal_intrset(ah, sc->sc_imask);
    981 
    982 	ifp->if_flags |= IFF_RUNNING;
    983 	ic->ic_state = IEEE80211_S_INIT;
    984 
    985 	/*
    986 	 * The hardware should be ready to go now so it's safe
    987 	 * to kick the 802.11 state machine as it's likely to
    988 	 * immediately call back to us to send mgmt frames.
    989 	 */
    990 	ni = ic->ic_bss;
    991 	ni->ni_chan = ic->ic_ibss_chan;
    992 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
    993 	if (mode != sc->sc_curmode)
    994 		ath_setcurmode(sc, mode);
    995 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
    996 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
    997 	else
    998 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
    999 done:
   1000 	ath_softc_critsect_end(sc, s);
   1001 	return error;
   1002 }
   1003 
   1004 static void
   1005 ath_stop(struct ifnet *ifp)
   1006 {
   1007 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
   1008 	struct ath_softc *sc = ifp->if_softc;
   1009 	struct ath_hal *ah = sc->sc_ah;
   1010 	ath_softc_critsect_decl(s);
   1011 
   1012 	DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
   1013 		__func__, sc->sc_invalid, ifp->if_flags));
   1014 
   1015 	ath_softc_critsect_begin(sc, s);
   1016 	if (ifp->if_flags & IFF_RUNNING) {
   1017 		/*
   1018 		 * Shutdown the hardware and driver:
   1019 		 *    disable interrupts
   1020 		 *    turn off timers
   1021 		 *    clear transmit machinery
   1022 		 *    clear receive machinery
   1023 		 *    drain and release tx queues
   1024 		 *    reclaim beacon resources
   1025 		 *    reset 802.11 state machine
   1026 		 *    power down hardware
   1027 		 *
   1028 		 * Note that some of this work is not possible if the
   1029 		 * hardware is gone (invalid).
   1030 		 */
   1031 		ifp->if_flags &= ~IFF_RUNNING;
   1032 		ifp->if_timer = 0;
   1033 		if (!sc->sc_invalid)
   1034 			ath_hal_intrset(ah, 0);
   1035 		ath_draintxq(sc);
   1036 		if (!sc->sc_invalid)
   1037 			ath_stoprecv(sc);
   1038 		else
   1039 			sc->sc_rxlink = NULL;
   1040 #ifdef __FreeBSD__
   1041 		IF_DRAIN(&ifp->if_snd);
   1042 #else
   1043 		IF_PURGE(&ifp->if_snd);
   1044 #endif
   1045 		ath_beacon_free(sc);
   1046 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   1047 		if (!sc->sc_invalid) {
   1048 			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
   1049 		}
   1050 #ifdef __NetBSD__
   1051 		ath_disable(sc);
   1052 #endif
   1053 	}
   1054 	ath_softc_critsect_end(sc, s);
   1055 }
   1056 
   1057 /*
   1058  * Reset the hardware w/o losing operational state.  This is
   1059  * basically a more efficient way of doing ath_stop, ath_init,
   1060  * followed by state transitions to the current 802.11
   1061  * operational state.  Used to recover from errors rx overrun
   1062  * and to reset the hardware when rf gain settings must be reset.
   1063  */
   1064 static void
   1065 ath_reset(struct ath_softc *sc)
   1066 {
   1067 	struct ieee80211com *ic = &sc->sc_ic;
   1068 	struct ifnet *ifp = &ic->ic_if;
   1069 	struct ath_hal *ah = sc->sc_ah;
   1070 	struct ieee80211_channel *c;
   1071 	HAL_STATUS status;
   1072 	HAL_CHANNEL hchan;
   1073 
   1074 	/*
   1075 	 * Convert to a HAL channel description with the flags
   1076 	 * constrained to reflect the current operating mode.
   1077 	 */
   1078 	c = ic->ic_ibss_chan;
   1079 	hchan.channel = c->ic_freq;
   1080 	hchan.channelFlags = ath_chan2flags(ic, c);
   1081 
   1082 	ath_hal_intrset(ah, 0);		/* disable interrupts */
   1083 	ath_draintxq(sc);		/* stop xmit side */
   1084 	ath_stoprecv(sc);		/* stop recv side */
   1085 	/* NB: indicate channel change so we do a full reset */
   1086 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
   1087 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
   1088 			__func__, status);
   1089 	ath_hal_intrset(ah, sc->sc_imask);
   1090 	if (ath_startrecv(sc) != 0)	/* restart recv */
   1091 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
   1092 	ath_start(ifp);			/* restart xmit */
   1093 	if (ic->ic_state == IEEE80211_S_RUN)
   1094 		ath_beacon_config(sc);	/* restart beacons */
   1095 }
   1096 
   1097 static void
   1098 ath_start(struct ifnet *ifp)
   1099 {
   1100 	struct ath_softc *sc = ifp->if_softc;
   1101 	struct ath_hal *ah = sc->sc_ah;
   1102 	struct ieee80211com *ic = &sc->sc_ic;
   1103 	struct ieee80211_node *ni;
   1104 	struct ath_buf *bf;
   1105 	struct mbuf *m;
   1106 	struct ieee80211_frame *wh;
   1107 	ath_txbuf_critsect_decl(s);
   1108 
   1109 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1110 		return;
   1111 	for (;;) {
   1112 		/*
   1113 		 * Grab a TX buffer and associated resources.
   1114 		 */
   1115 		ath_txbuf_critsect_begin(sc, s);
   1116 		bf = TAILQ_FIRST(&sc->sc_txbuf);
   1117 		if (bf != NULL)
   1118 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
   1119 		ath_txbuf_critsect_end(sc, s);
   1120 		if (bf == NULL) {
   1121 			DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
   1122 				__func__));
   1123 			sc->sc_stats.ast_tx_qstop++;
   1124 			ifp->if_flags |= IFF_OACTIVE;
   1125 			break;
   1126 		}
   1127 		/*
   1128 		 * Poll the management queue for frames; they
   1129 		 * have priority over normal data frames.
   1130 		 */
   1131 		IF_DEQUEUE(&ic->ic_mgtq, m);
   1132 		if (m == NULL) {
   1133 			/*
   1134 			 * No data frames go out unless we're associated.
   1135 			 */
   1136 			if (ic->ic_state != IEEE80211_S_RUN) {
   1137 				DPRINTF(ATH_DEBUG_ANY,
   1138 					("%s: ignore data packet, state %u\n",
   1139 					__func__, ic->ic_state));
   1140 				sc->sc_stats.ast_tx_discard++;
   1141 				ath_txbuf_critsect_begin(sc, s);
   1142 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1143 				ath_txbuf_critsect_end(sc, s);
   1144 				break;
   1145 			}
   1146 			IF_DEQUEUE(&ifp->if_snd, m);
   1147 			if (m == NULL) {
   1148 				ath_txbuf_critsect_begin(sc, s);
   1149 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1150 				ath_txbuf_critsect_end(sc, s);
   1151 				break;
   1152 			}
   1153 			ifp->if_opackets++;
   1154 
   1155 #ifdef __NetBSD__
   1156 #if NBPFILTER > 0
   1157 			if (ifp->if_bpf)
   1158 				bpf_mtap(ifp->if_bpf, m);
   1159 #endif
   1160 #endif
   1161 #ifdef __FreeBSD__
   1162 			BPF_MTAP(ifp, m);
   1163 #endif
   1164 			/*
   1165 			 * Encapsulate the packet in prep for transmission.
   1166 			 */
   1167 			m = ieee80211_encap(ifp, m, &ni);
   1168 			if (m == NULL) {
   1169 				DPRINTF(ATH_DEBUG_ANY,
   1170 					("%s: encapsulation failure\n",
   1171 					__func__));
   1172 				sc->sc_stats.ast_tx_encap++;
   1173 				goto bad;
   1174 			}
   1175 			wh = mtod(m, struct ieee80211_frame *);
   1176 		} else {
   1177 			/*
   1178 			 * Hack!  The referenced node pointer is in the
   1179 			 * rcvif field of the packet header.  This is
   1180 			 * placed there by ieee80211_mgmt_output because
   1181 			 * we need to hold the reference with the frame
   1182 			 * and there's no other way (other than packet
   1183 			 * tags which we consider too expensive to use)
   1184 			 * to pass it along.
   1185 			 */
   1186 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
   1187 			m->m_pkthdr.rcvif = NULL;
   1188 
   1189 			wh = mtod(m, struct ieee80211_frame *);
   1190 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1191 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
   1192 				/* fill time stamp */
   1193 				u_int64_t tsf;
   1194 				u_int32_t *tstamp;
   1195 
   1196 				tsf = ath_hal_gettsf64(ah);
   1197 				/* XXX: adjust 100us delay to xmit */
   1198 				tsf += 100;
   1199 				tstamp = (u_int32_t *)&wh[1];
   1200 				tstamp[0] = htole32(tsf & 0xffffffff);
   1201 				tstamp[1] = htole32(tsf >> 32);
   1202 			}
   1203 			sc->sc_stats.ast_tx_mgmt++;
   1204 		}
   1205 
   1206 		if (ath_tx_start(sc, ni, bf, m)) {
   1207 	bad:
   1208 			ath_txbuf_critsect_begin(sc, s);
   1209 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1210 			ath_txbuf_critsect_end(sc, s);
   1211 			ifp->if_oerrors++;
   1212 			if (ni && ni != ic->ic_bss)
   1213 				ieee80211_free_node(ic, ni);
   1214 			continue;
   1215 		}
   1216 
   1217 		sc->sc_tx_timer = 5;
   1218 		ifp->if_timer = 1;
   1219 	}
   1220 }
   1221 
   1222 static int
   1223 ath_media_change(struct ifnet *ifp)
   1224 {
   1225 	int error;
   1226 
   1227 	error = ieee80211_media_change(ifp);
   1228 	if (error == ENETRESET) {
   1229 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   1230 		    (IFF_RUNNING|IFF_UP))
   1231 			ath_init(ifp);		/* XXX lose error */
   1232 		error = 0;
   1233 	}
   1234 	return error;
   1235 }
   1236 
   1237 static void
   1238 ath_watchdog(struct ifnet *ifp)
   1239 {
   1240 	struct ath_softc *sc = ifp->if_softc;
   1241 	struct ieee80211com *ic = &sc->sc_ic;
   1242 
   1243 	ifp->if_timer = 0;
   1244 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1245 		return;
   1246 	if (sc->sc_tx_timer) {
   1247 		if (--sc->sc_tx_timer == 0) {
   1248 			if_printf(ifp, "device timeout\n");
   1249 #ifdef AR_DEBUG
   1250 			if (ath_debug & ATH_DEBUG_WATCHDOG)
   1251 				ath_hal_dumpstate(sc->sc_ah);
   1252 #endif /* AR_DEBUG */
   1253 			ath_reset(sc);
   1254 			ifp->if_oerrors++;
   1255 			sc->sc_stats.ast_watchdog++;
   1256 			return;
   1257 		}
   1258 		ifp->if_timer = 1;
   1259 	}
   1260 	if (ic->ic_fixed_rate == -1) {
   1261 		/*
   1262 		 * Run the rate control algorithm if we're not
   1263 		 * locked at a fixed rate.
   1264 		 */
   1265 		if (ic->ic_opmode == IEEE80211_M_STA)
   1266 			ath_rate_ctl(sc, ic->ic_bss);
   1267 		else
   1268 			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
   1269 	}
   1270 	ieee80211_watchdog(ifp);
   1271 }
   1272 
   1273 static int
   1274 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1275 {
   1276 	struct ath_softc *sc = ifp->if_softc;
   1277 	struct ifreq *ifr = (struct ifreq *)data;
   1278 	int error = 0;
   1279 	ath_softc_critsect_decl(s);
   1280 
   1281 	ath_softc_critsect_begin(sc, s);
   1282 	switch (cmd) {
   1283 	case SIOCSIFFLAGS:
   1284 		if (ifp->if_flags & IFF_UP) {
   1285 			if (ifp->if_flags & IFF_RUNNING) {
   1286 				/*
   1287 				 * To avoid rescanning another access point,
   1288 				 * do not call ath_init() here.  Instead,
   1289 				 * only reflect promisc mode settings.
   1290 				 */
   1291 				ath_mode_init(sc);
   1292 			} else {
   1293 				/*
   1294 				 * Beware of being called during detach to
   1295 				 * reset promiscuous mode.  In that case we
   1296 				 * will still be marked UP but not RUNNING.
   1297 				 * However trying to re-init the interface
   1298 				 * is the wrong thing to do as we've already
   1299 				 * torn down much of our state.  There's
   1300 				 * probably a better way to deal with this.
   1301 				 */
   1302 				if (!sc->sc_invalid)
   1303 					ath_init(ifp);	/* XXX lose error */
   1304 			}
   1305 		} else
   1306 			ath_stop(ifp);
   1307 		break;
   1308 	case SIOCADDMULTI:
   1309 	case SIOCDELMULTI:
   1310 #ifdef __FreeBSD__
   1311 		/*
   1312 		 * The upper layer has already installed/removed
   1313 		 * the multicast address(es), just recalculate the
   1314 		 * multicast filter for the card.
   1315 		 */
   1316 		if (ifp->if_flags & IFF_RUNNING)
   1317 			ath_mode_init(sc);
   1318 #endif
   1319 #ifdef __NetBSD__
   1320 		error = (cmd == SIOCADDMULTI) ?
   1321 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
   1322 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
   1323 		if (error == ENETRESET) {
   1324 			if (ifp->if_flags & IFF_RUNNING)
   1325 				ath_mode_init(sc);
   1326 			error = 0;
   1327 		}
   1328 #endif
   1329 		break;
   1330 	case SIOCGATHSTATS:
   1331 		error = copyout(&sc->sc_stats,
   1332 				ifr->ifr_data, sizeof (sc->sc_stats));
   1333 		break;
   1334 	case SIOCGATHDIAG: {
   1335 		struct ath_diag *ad = (struct ath_diag *)data;
   1336 		struct ath_hal *ah = sc->sc_ah;
   1337 		void *data;
   1338 		u_int size;
   1339 
   1340 		if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
   1341 			if (size < ad->ad_size)
   1342 				ad->ad_size = size;
   1343 			if (data)
   1344 				error = copyout(data, ad->ad_data, ad->ad_size);
   1345 		} else
   1346 			error = EINVAL;
   1347 		break;
   1348 	}
   1349 	default:
   1350 		error = ieee80211_ioctl(ifp, cmd, data);
   1351 		if (error == ENETRESET) {
   1352 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   1353 			    (IFF_RUNNING|IFF_UP))
   1354 				ath_init(ifp);		/* XXX lose error */
   1355 			error = 0;
   1356 		}
   1357 		break;
   1358 	}
   1359 	ath_softc_critsect_end(sc, s);
   1360 	return error;
   1361 }
   1362 
   1363 /*
   1364  * Fill the hardware key cache with key entries.
   1365  */
   1366 static void
   1367 ath_initkeytable(struct ath_softc *sc)
   1368 {
   1369 	struct ieee80211com *ic = &sc->sc_ic;
   1370 	struct ath_hal *ah = sc->sc_ah;
   1371 	int i;
   1372 
   1373 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1374 		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
   1375 		if (k->wk_len == 0)
   1376 			ath_hal_keyreset(ah, i);
   1377 		else
   1378 			/* XXX return value */
   1379 			/* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
   1380 			ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
   1381 	}
   1382 }
   1383 
   1384 static void
   1385 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
   1386 {
   1387 	u_int32_t val;
   1388 	u_int8_t pos;
   1389 
   1390 	val = LE_READ_4(dl + 0);
   1391 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1392 	val = LE_READ_4(dl + 3);
   1393 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1394 	pos &= 0x3f;
   1395 	(*mfilt)[pos / 32] |= (1 << (pos % 32));
   1396 }
   1397 
   1398 #ifdef __FreeBSD__
   1399 static void
   1400 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
   1401 {
   1402 	struct ieee80211com *ic = &sc->sc_ic;
   1403 	struct ifnet *ifp = &ic->ic_if;
   1404 	struct ifmultiaddr *ifma;
   1405 
   1406 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1407 		caddr_t dl;
   1408 
   1409 		/* calculate XOR of eight 6bit values */
   1410 		dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1411 		ath_mcastfilter_accum(dl, &mfilt);
   1412 	}
   1413 }
   1414 #else
   1415 static void
   1416 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
   1417 {
   1418 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   1419 	struct ether_multi *enm;
   1420 	struct ether_multistep estep;
   1421 
   1422 	ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
   1423 	while (enm != NULL) {
   1424 		/* XXX Punt on ranges. */
   1425 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1426 			(*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
   1427 			ifp->if_flags |= IFF_ALLMULTI;
   1428 			return;
   1429 		}
   1430 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1431 		ETHER_NEXT_MULTI(estep, enm);
   1432 	}
   1433 	ifp->if_flags &= ~IFF_ALLMULTI;
   1434 }
   1435 #endif
   1436 
   1437 /*
   1438  * Calculate the receive filter according to the
   1439  * operating mode and state:
   1440  *
   1441  * o always accept unicast, broadcast, and multicast traffic
   1442  * o maintain current state of phy error reception
   1443  * o probe request frames are accepted only when operating in
   1444  *   hostap, adhoc, or monitor modes
   1445  * o enable promiscuous mode according to the interface state
   1446  * o accept beacons:
   1447  *   - when operating in adhoc mode so the 802.11 layer creates
   1448  *     node table entries for peers,
   1449  *   - when operating in station mode for collecting rssi data when
   1450  *     the station is otherwise quiet, or
   1451  *   - when scanning
   1452  */
   1453 static u_int32_t
   1454 ath_calcrxfilter(struct ath_softc *sc)
   1455 {
   1456 	struct ieee80211com *ic = &sc->sc_ic;
   1457 	struct ath_hal *ah = sc->sc_ah;
   1458 	struct ifnet *ifp = &ic->ic_if;
   1459 	u_int32_t rfilt;
   1460 
   1461 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1462 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1463 	if (ic->ic_opmode != IEEE80211_M_STA)
   1464 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1465 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1466 	    (ifp->if_flags & IFF_PROMISC))
   1467 		rfilt |= HAL_RX_FILTER_PROM;
   1468 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1469 	    ic->ic_opmode == IEEE80211_M_IBSS ||
   1470 	    ic->ic_state == IEEE80211_S_SCAN)
   1471 		rfilt |= HAL_RX_FILTER_BEACON;
   1472 	return rfilt;
   1473 }
   1474 
   1475 static void
   1476 ath_mode_init(struct ath_softc *sc)
   1477 {
   1478 #ifdef __FreeBSD__
   1479 	struct ieee80211com *ic = &sc->sc_ic;
   1480 #endif
   1481 	struct ath_hal *ah = sc->sc_ah;
   1482 	u_int32_t rfilt, mfilt[2];
   1483 
   1484 	/* configure rx filter */
   1485 	rfilt = ath_calcrxfilter(sc);
   1486 	ath_hal_setrxfilter(ah, rfilt);
   1487 
   1488 	/* configure operational mode */
   1489 	ath_hal_setopmode(ah);
   1490 
   1491 	/* calculate and install multicast filter */
   1492 #ifdef __FreeBSD__
   1493 	if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
   1494 		mfilt[0] = mfilt[1] = 0;
   1495 		ath_mcastfilter_compute(sc, &mfilt);
   1496 	} else {
   1497 		mfilt[0] = mfilt[1] = ~0;
   1498 	}
   1499 #endif
   1500 #ifdef __NetBSD__
   1501 	mfilt[0] = mfilt[1] = 0;
   1502 	ath_mcastfilter_compute(sc, &mfilt);
   1503 #endif
   1504 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1505 	DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
   1506 		__func__, rfilt, mfilt[0], mfilt[1]));
   1507 }
   1508 
   1509 #ifdef __FreeBSD__
   1510 static void
   1511 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
   1512 {
   1513 	struct ath_buf *bf = arg;
   1514 
   1515 	KASSERT(nseg <= ATH_MAX_SCATTER,
   1516 		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
   1517 	bf->bf_mapsize = mapsize;
   1518 	bf->bf_nseg = nseg;
   1519 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
   1520 }
   1521 #endif /* __FreeBSD__ */
   1522 
   1523 static struct mbuf *
   1524 ath_getmbuf(int flags, int type, u_int pktlen)
   1525 {
   1526 	struct mbuf *m;
   1527 
   1528 	KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
   1529 #ifdef __FreeBSD__
   1530 	if (pktlen <= MHLEN)
   1531 		MGETHDR(m, flags, type);
   1532 	else
   1533 		m = m_getcl(flags, type, M_PKTHDR);
   1534 #else
   1535 	MGETHDR(m, flags, type);
   1536 	if (m != NULL && pktlen > MHLEN)
   1537 		MCLGET(m, flags);
   1538 #endif
   1539 	return m;
   1540 }
   1541 
   1542 static int
   1543 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   1544 {
   1545 	struct ieee80211com *ic = &sc->sc_ic;
   1546 	struct ifnet *ifp = &ic->ic_if;
   1547 	struct ath_hal *ah = sc->sc_ah;
   1548 	struct ieee80211_frame *wh;
   1549 	struct ath_buf *bf;
   1550 	struct ath_desc *ds;
   1551 	struct mbuf *m;
   1552 	int error, pktlen;
   1553 	u_int8_t *frm, rate;
   1554 	u_int16_t capinfo;
   1555 	struct ieee80211_rateset *rs;
   1556 	const HAL_RATE_TABLE *rt;
   1557 
   1558 	bf = sc->sc_bcbuf;
   1559 	if (bf->bf_m != NULL) {
   1560 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   1561 		m_freem(bf->bf_m);
   1562 		bf->bf_m = NULL;
   1563 		bf->bf_node = NULL;
   1564 	}
   1565 	/*
   1566 	 * NB: the beacon data buffer must be 32-bit aligned;
   1567 	 * we assume the mbuf routines will return us something
   1568 	 * with this alignment (perhaps should assert).
   1569 	 */
   1570 	rs = &ni->ni_rates;
   1571 	pktlen = sizeof (struct ieee80211_frame)
   1572 	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
   1573 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   1574 		pktlen += 2;
   1575 	m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
   1576 	if (m == NULL) {
   1577 		DPRINTF(ATH_DEBUG_BEACON,
   1578 			("%s: cannot get mbuf/cluster; size %u\n",
   1579 			__func__, pktlen));
   1580 		sc->sc_stats.ast_be_nombuf++;
   1581 		return ENOMEM;
   1582 	}
   1583 
   1584 	wh = mtod(m, struct ieee80211_frame *);
   1585 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   1586 	    IEEE80211_FC0_SUBTYPE_BEACON;
   1587 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1588 	*(u_int16_t *)wh->i_dur = 0;
   1589 	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
   1590 	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
   1591 	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
   1592 	*(u_int16_t *)wh->i_seq = 0;
   1593 
   1594 	/*
   1595 	 * beacon frame format
   1596 	 *	[8] time stamp
   1597 	 *	[2] beacon interval
   1598 	 *	[2] cabability information
   1599 	 *	[tlv] ssid
   1600 	 *	[tlv] supported rates
   1601 	 *	[tlv] parameter set (IBSS)
   1602 	 *	[tlv] extended supported rates
   1603 	 */
   1604 	frm = (u_int8_t *)&wh[1];
   1605 	memset(frm, 0, 8);	/* timestamp is set by hardware */
   1606 	frm += 8;
   1607 	*(u_int16_t *)frm = htole16(ni->ni_intval);
   1608 	frm += 2;
   1609 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1610 		capinfo = IEEE80211_CAPINFO_IBSS;
   1611 	else
   1612 		capinfo = IEEE80211_CAPINFO_ESS;
   1613 	if (ic->ic_flags & IEEE80211_F_WEPON)
   1614 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1615 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1616 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1617 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1618 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1619 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1620 	*(u_int16_t *)frm = htole16(capinfo);
   1621 	frm += 2;
   1622 	*frm++ = IEEE80211_ELEMID_SSID;
   1623 	*frm++ = ni->ni_esslen;
   1624 	memcpy(frm, ni->ni_essid, ni->ni_esslen);
   1625 	frm += ni->ni_esslen;
   1626 	frm = ieee80211_add_rates(frm, rs);
   1627 	*frm++ = IEEE80211_ELEMID_DSPARMS;
   1628 	*frm++ = 1;
   1629 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
   1630 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1631 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1632 		*frm++ = 2;
   1633 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1634 	} else {
   1635 		/* TODO: TIM */
   1636 		*frm++ = IEEE80211_ELEMID_TIM;
   1637 		*frm++ = 4;	/* length */
   1638 		*frm++ = 0;	/* DTIM count */
   1639 		*frm++ = 1;	/* DTIM period */
   1640 		*frm++ = 0;	/* bitmap control */
   1641 		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
   1642 	}
   1643 	frm = ieee80211_add_xrates(frm, rs);
   1644 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1645 	KASSERT(m->m_pkthdr.len <= pktlen,
   1646 		("beacon bigger than expected, len %u calculated %u",
   1647 		m->m_pkthdr.len, pktlen));
   1648 
   1649 	DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
   1650 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
   1651 	if (error != 0) {
   1652 		m_freem(m);
   1653 		return error;
   1654 	}
   1655 	KASSERT(bf->bf_nseg == 1,
   1656 		("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
   1657 	bf->bf_m = m;
   1658 
   1659 	/* setup descriptors */
   1660 	ds = bf->bf_desc;
   1661 
   1662 	ds->ds_link = 0;
   1663 	ds->ds_data = bf->bf_segs[0].ds_addr;
   1664 
   1665 	DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__,
   1666 	    (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
   1667 
   1668 	/*
   1669 	 * Calculate rate code.
   1670 	 * XXX everything at min xmit rate
   1671 	 */
   1672 	rt = sc->sc_currates;
   1673 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   1674 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   1675 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
   1676 	else
   1677 		rate = rt->info[0].rateCode;
   1678 	if (!ath_hal_setuptxdesc(ah, ds
   1679 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
   1680 		, sizeof(struct ieee80211_frame)	/* header length */
   1681 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   1682 		, 0x20				/* txpower XXX */
   1683 		, rate, 1			/* series 0 rate/tries */
   1684 		, HAL_TXKEYIX_INVALID		/* no encryption */
   1685 		, 0				/* antenna mode */
   1686 		, HAL_TXDESC_NOACK		/* no ack for beacons */
   1687 		, 0				/* rts/cts rate */
   1688 		, 0				/* rts/cts duration */
   1689 	)) {
   1690 		printf("%s: ath_hal_setuptxdesc failed\n", __func__);
   1691 		return -1;
   1692 	}
   1693 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   1694 	/* XXX verify mbuf data area covers this roundup */
   1695 	if (!ath_hal_filltxdesc(ah, ds
   1696 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
   1697 		, AH_TRUE				/* first segment */
   1698 		, AH_TRUE				/* last segment */
   1699 	)) {
   1700 		printf("%s: ath_hal_filltxdesc failed\n", __func__);
   1701 		return -1;
   1702 	}
   1703 
   1704 	/* XXX it is not appropriate to bus_dmamap_sync? -dcy */
   1705 
   1706 	return 0;
   1707 }
   1708 
   1709 static void
   1710 ath_beacon_proc(void *arg, int pending)
   1711 {
   1712 	struct ath_softc *sc = arg;
   1713 	struct ieee80211com *ic = &sc->sc_ic;
   1714 	struct ath_buf *bf = sc->sc_bcbuf;
   1715 	struct ath_hal *ah = sc->sc_ah;
   1716 
   1717 	DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
   1718 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1719 	    bf == NULL || bf->bf_m == NULL) {
   1720 		DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
   1721 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
   1722 		return;
   1723 	}
   1724 	/* TODO: update beacon to reflect PS poll state */
   1725 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   1726 		DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
   1727 			__func__, sc->sc_bhalq));
   1728 		/* NB: the HAL still stops DMA, so proceed */
   1729 	}
   1730 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
   1731 
   1732 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   1733 	ath_hal_txstart(ah, sc->sc_bhalq);
   1734 	DPRINTF(ATH_DEBUG_BEACON_PROC,
   1735 		("%s: TXDP%u = %p (%p)\n", __func__,
   1736 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
   1737 }
   1738 
   1739 static void
   1740 ath_beacon_free(struct ath_softc *sc)
   1741 {
   1742 	struct ath_buf *bf = sc->sc_bcbuf;
   1743 
   1744 	if (bf->bf_m != NULL) {
   1745 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   1746 		m_freem(bf->bf_m);
   1747 		bf->bf_m = NULL;
   1748 		bf->bf_node = NULL;
   1749 	}
   1750 }
   1751 
   1752 /*
   1753  * Configure the beacon and sleep timers.
   1754  *
   1755  * When operating as an AP this resets the TSF and sets
   1756  * up the hardware to notify us when we need to issue beacons.
   1757  *
   1758  * When operating in station mode this sets up the beacon
   1759  * timers according to the timestamp of the last received
   1760  * beacon and the current TSF, configures PCF and DTIM
   1761  * handling, programs the sleep registers so the hardware
   1762  * will wakeup in time to receive beacons, and configures
   1763  * the beacon miss handling so we'll receive a BMISS
   1764  * interrupt when we stop seeing beacons from the AP
   1765  * we've associated with.
   1766  */
   1767 static void
   1768 ath_beacon_config(struct ath_softc *sc)
   1769 {
   1770 	struct ath_hal *ah = sc->sc_ah;
   1771 	struct ieee80211com *ic = &sc->sc_ic;
   1772 	struct ieee80211_node *ni = ic->ic_bss;
   1773 	u_int32_t nexttbtt;
   1774 
   1775 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
   1776 	    (LE_READ_4(ni->ni_tstamp) >> 10);
   1777 	DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt));
   1778 	nexttbtt += ni->ni_intval;
   1779 	if (ic->ic_opmode == IEEE80211_M_STA) {
   1780 		HAL_BEACON_STATE bs;
   1781 		u_int32_t bmisstime;
   1782 
   1783 		/* NB: no PCF support right now */
   1784 		memset(&bs, 0, sizeof(bs));
   1785 		bs.bs_intval = ni->ni_intval;
   1786 		bs.bs_nexttbtt = nexttbtt;
   1787 		bs.bs_dtimperiod = bs.bs_intval;
   1788 		bs.bs_nextdtim = nexttbtt;
   1789 		/*
   1790 		 * Calculate the number of consecutive beacons to miss
   1791 		 * before taking a BMISS interrupt.  The configuration
   1792 		 * is specified in ms, so we need to convert that to
   1793 		 * TU's and then calculate based on the beacon interval.
   1794 		 * Note that we clamp the result to at most 10 beacons.
   1795 		 */
   1796 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
   1797 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
   1798 		if (bs.bs_bmissthreshold > 10)
   1799 			bs.bs_bmissthreshold = 10;
   1800 		else if (bs.bs_bmissthreshold <= 0)
   1801 			bs.bs_bmissthreshold = 1;
   1802 
   1803 		/*
   1804 		 * Calculate sleep duration.  The configuration is
   1805 		 * given in ms.  We insure a multiple of the beacon
   1806 		 * period is used.  Also, if the sleep duration is
   1807 		 * greater than the DTIM period then it makes senses
   1808 		 * to make it a multiple of that.
   1809 		 *
   1810 		 * XXX fixed at 100ms
   1811 		 */
   1812 		bs.bs_sleepduration =
   1813 			roundup((100 * 1000) / 1024, bs.bs_intval);
   1814 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   1815 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   1816 
   1817 		DPRINTF(ATH_DEBUG_BEACON,
   1818 			("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
   1819 			, __func__
   1820 			, bs.bs_intval
   1821 			, bs.bs_nexttbtt
   1822 			, bs.bs_dtimperiod
   1823 			, bs.bs_nextdtim
   1824 			, bs.bs_bmissthreshold
   1825 			, bs.bs_sleepduration
   1826 		));
   1827 		ath_hal_intrset(ah, 0);
   1828 		/*
   1829 		 * Reset our tsf so the hardware will update the
   1830 		 * tsf register to reflect timestamps found in
   1831 		 * received beacons.
   1832 		 */
   1833 		ath_hal_resettsf(ah);
   1834 		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
   1835 		sc->sc_imask |= HAL_INT_BMISS;
   1836 		ath_hal_intrset(ah, sc->sc_imask);
   1837 	} else {
   1838 		DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
   1839 			__func__, ni->ni_intval, nexttbtt));
   1840 		ath_hal_intrset(ah, 0);
   1841 		ath_hal_beaconinit(ah, nexttbtt, ni->ni_intval);
   1842 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1843 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   1844 		ath_hal_intrset(ah, sc->sc_imask);
   1845 	}
   1846 }
   1847 
   1848 #ifdef __FreeBSD__
   1849 static void
   1850 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
   1851 {
   1852 	bus_addr_t *paddr = (bus_addr_t*) arg;
   1853 	*paddr = segs->ds_addr;
   1854 }
   1855 #endif
   1856 
   1857 #ifdef __FreeBSD__
   1858 static int
   1859 ath_desc_alloc(struct ath_softc *sc)
   1860 {
   1861 	int i, bsize, error;
   1862 	struct ath_desc *ds;
   1863 	struct ath_buf *bf;
   1864 
   1865 	/* allocate descriptors */
   1866 	sc->sc_desc_len = sizeof(struct ath_desc) *
   1867 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
   1868 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
   1869 	if (error != 0)
   1870 		return error;
   1871 
   1872 	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
   1873 				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
   1874 
   1875 	if (error != 0)
   1876 		goto fail0;
   1877 
   1878 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
   1879 				sc->sc_desc, sc->sc_desc_len,
   1880 				ath_load_cb, &sc->sc_desc_paddr,
   1881 				BUS_DMA_NOWAIT);
   1882 	if (error != 0)
   1883 		goto fail1;
   1884 
   1885 	ds = sc->sc_desc;
   1886 	DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n",
   1887 	    __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr,
   1888 	    /*XXX*/ (u_long) sc->sc_desc_len));
   1889 
   1890 	/* allocate buffers */
   1891 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
   1892 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
   1893 	if (bf == NULL) {
   1894 		printf("%s: unable to allocate Tx/Rx buffers\n",
   1895 		    sc->sc_dev.dv_xname);
   1896 		error = -1;
   1897 		goto fail2;
   1898 	}
   1899 	sc->sc_bufptr = bf;
   1900 
   1901 	TAILQ_INIT(&sc->sc_rxbuf);
   1902 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
   1903 		bf->bf_desc = ds;
   1904 		bf->bf_daddr = sc->sc_desc_paddr +
   1905 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
   1906 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
   1907 					  &bf->bf_dmamap);
   1908 		if (error != 0)
   1909 			break;
   1910 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   1911 	}
   1912 
   1913 	TAILQ_INIT(&sc->sc_txbuf);
   1914 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
   1915 		bf->bf_desc = ds;
   1916 		bf->bf_daddr = sc->sc_desc_paddr +
   1917 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
   1918 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
   1919 					  &bf->bf_dmamap);
   1920 		if (error != 0)
   1921 			break;
   1922 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1923 	}
   1924 	TAILQ_INIT(&sc->sc_txq);
   1925 
   1926 	/* beacon buffer */
   1927 	bf->bf_desc = ds;
   1928 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
   1929 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   1930 	if (error != 0)
   1931 		return error;
   1932 	sc->sc_bcbuf = bf;
   1933 	return 0;
   1934 
   1935 fail2:
   1936 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
   1937 fail1:
   1938 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
   1939 fail0:
   1940 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
   1941 	sc->sc_ddmamap = NULL;
   1942 	return error;
   1943 }
   1944 #else
   1945 static int
   1946 ath_desc_alloc(struct ath_softc *sc)
   1947 {
   1948 	int i, bsize, error = -1;
   1949 	struct ath_desc *ds;
   1950 	struct ath_buf *bf;
   1951 
   1952 	/* allocate descriptors */
   1953 	sc->sc_desc_len = sizeof(struct ath_desc) *
   1954 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
   1955 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
   1956 	    0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
   1957 		printf("%s: unable to allocate control data, error = %d\n",
   1958 		    sc->sc_dev.dv_xname, error);
   1959 		goto fail0;
   1960 	}
   1961 
   1962 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
   1963 	    sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
   1964 		printf("%s: unable to map control data, error = %d\n",
   1965 		    sc->sc_dev.dv_xname, error);
   1966 		goto fail1;
   1967 	}
   1968 
   1969 	if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
   1970 	    sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
   1971 		printf("%s: unable to create control data DMA map, "
   1972 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1973 		goto fail2;
   1974 	}
   1975 
   1976 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
   1977 	    sc->sc_desc_len, NULL, 0)) != 0) {
   1978 		printf("%s: unable to load control data DMA map, error = %d\n",
   1979 		    sc->sc_dev.dv_xname, error);
   1980 		goto fail3;
   1981 	}
   1982 
   1983 	ds = sc->sc_desc;
   1984 	sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
   1985 
   1986 	DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC,
   1987 	    ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
   1988 	    ds, (u_long)sc->sc_desc_len,
   1989 	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
   1990 
   1991 	/* allocate buffers */
   1992 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
   1993 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
   1994 	if (bf == NULL) {
   1995 		printf("%s: unable to allocate Tx/Rx buffers\n",
   1996 		    sc->sc_dev.dv_xname);
   1997 		error = ENOMEM;
   1998 		goto fail3;
   1999 	}
   2000 	sc->sc_bufptr = bf;
   2001 
   2002 	TAILQ_INIT(&sc->sc_rxbuf);
   2003 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
   2004 		bf->bf_desc = ds;
   2005 		bf->bf_daddr = sc->sc_desc_paddr +
   2006 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
   2007 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   2008 		    MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
   2009 			printf("%s: unable to create Rx dmamap, error = %d\n",
   2010 			    sc->sc_dev.dv_xname, error);
   2011 			goto fail4;
   2012 		}
   2013 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   2014 	}
   2015 
   2016 	TAILQ_INIT(&sc->sc_txbuf);
   2017 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
   2018 		bf->bf_desc = ds;
   2019 		bf->bf_daddr = sc->sc_desc_paddr +
   2020 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
   2021 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   2022 		    ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
   2023 			printf("%s: unable to create Tx dmamap, error = %d\n",
   2024 			    sc->sc_dev.dv_xname, error);
   2025 			goto fail5;
   2026 		}
   2027 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   2028 	}
   2029 	TAILQ_INIT(&sc->sc_txq);
   2030 
   2031 	/* beacon buffer */
   2032 	bf->bf_desc = ds;
   2033 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
   2034 	if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
   2035 	    &bf->bf_dmamap)) != 0) {
   2036 		printf("%s: unable to create beacon dmamap, error = %d\n",
   2037 		    sc->sc_dev.dv_xname, error);
   2038 		goto fail5;
   2039 	}
   2040 	sc->sc_bcbuf = bf;
   2041 	return 0;
   2042 
   2043 fail5:
   2044 	for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
   2045 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
   2046 			continue;
   2047 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
   2048 	}
   2049 fail4:
   2050 	for (i = 0; i < ATH_RXBUF; i++) {
   2051 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
   2052 			continue;
   2053 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
   2054 	}
   2055 fail3:
   2056 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
   2057 fail2:
   2058 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
   2059 	sc->sc_ddmamap = NULL;
   2060 fail1:
   2061 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
   2062 fail0:
   2063 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
   2064 	return error;
   2065 }
   2066 #endif
   2067 
   2068 static void
   2069 ath_desc_free(struct ath_softc *sc)
   2070 {
   2071 	struct ath_buf *bf;
   2072 
   2073 #ifdef __FreeBSD__
   2074 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
   2075 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
   2076 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
   2077 #else
   2078 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
   2079 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
   2080 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
   2081 #endif
   2082 
   2083 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
   2084 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2085 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2086 		m_freem(bf->bf_m);
   2087 	}
   2088 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
   2089 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2090 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   2091 		if (bf->bf_m) {
   2092 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2093 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   2094 			m_freem(bf->bf_m);
   2095 			bf->bf_m = NULL;
   2096 		}
   2097 	}
   2098 	if (sc->sc_bcbuf != NULL) {
   2099 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
   2100 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
   2101 		sc->sc_bcbuf = NULL;
   2102 	}
   2103 
   2104 	TAILQ_INIT(&sc->sc_rxbuf);
   2105 	TAILQ_INIT(&sc->sc_txbuf);
   2106 	TAILQ_INIT(&sc->sc_txq);
   2107 	free(sc->sc_bufptr, M_DEVBUF);
   2108 	sc->sc_bufptr = NULL;
   2109 }
   2110 
   2111 static struct ieee80211_node *
   2112 ath_node_alloc(struct ieee80211com *ic)
   2113 {
   2114 	struct ath_node *an =
   2115 		malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO);
   2116 	if (an) {
   2117 		int i;
   2118 		for (i = 0; i < ATH_RHIST_SIZE; i++)
   2119 			an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
   2120 		an->an_rx_hist_next = ATH_RHIST_SIZE-1;
   2121 		return &an->an_node;
   2122 	} else
   2123 		return NULL;
   2124 }
   2125 
   2126 static void
   2127 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
   2128 {
   2129 	struct ath_softc *sc = ic->ic_if.if_softc;
   2130 	struct ath_buf *bf;
   2131 
   2132 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
   2133 		if (bf->bf_node == ni)
   2134 			bf->bf_node = NULL;
   2135 	}
   2136 	(*sc->sc_node_free)(ic, ni);
   2137 }
   2138 
   2139 static void
   2140 ath_node_copy(struct ieee80211com *ic,
   2141 	struct ieee80211_node *dst, const struct ieee80211_node *src)
   2142 {
   2143         struct ath_softc *sc = ic->ic_if.if_softc;
   2144 
   2145 	memcpy(&dst[1], &src[1],
   2146 		sizeof(struct ath_node) - sizeof(struct ieee80211_node));
   2147 	(*sc->sc_node_copy)(ic, dst, src);
   2148 }
   2149 
   2150 static u_int8_t
   2151 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
   2152 {
   2153 	struct ath_node *an = ATH_NODE(ni);
   2154 	int i, now, nsamples, rssi;
   2155 
   2156 	/*
   2157 	 * Calculate the average over the last second of sampled data.
   2158 	 */
   2159 	now = ATH_TICKS();
   2160 	nsamples = 0;
   2161 	rssi = 0;
   2162 	i = an->an_rx_hist_next;
   2163 	do {
   2164 		struct ath_recv_hist *rh = &an->an_rx_hist[i];
   2165 		if (rh->arh_ticks == ATH_RHIST_NOTIME)
   2166 			goto done;
   2167 		if (now - rh->arh_ticks > hz)
   2168 			goto done;
   2169 		rssi += rh->arh_rssi;
   2170 		nsamples++;
   2171 		if (i == 0)
   2172 			i = ATH_RHIST_SIZE-1;
   2173 		else
   2174 			i--;
   2175 	} while (i != an->an_rx_hist_next);
   2176 done:
   2177 	/*
   2178 	 * Return either the average or the last known
   2179 	 * value if there is no recent data.
   2180 	 */
   2181 	return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
   2182 }
   2183 
   2184 static int
   2185 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   2186 {
   2187 	struct ath_hal *ah = sc->sc_ah;
   2188 	int error;
   2189 	struct mbuf *m;
   2190 	struct ath_desc *ds;
   2191 
   2192 	m = bf->bf_m;
   2193 	if (m == NULL) {
   2194 		/*
   2195 		 * NB: by assigning a page to the rx dma buffer we
   2196 		 * implicitly satisfy the Atheros requirement that
   2197 		 * this buffer be cache-line-aligned and sized to be
   2198 		 * multiple of the cache line size.  Not doing this
   2199 		 * causes weird stuff to happen (for the 5210 at least).
   2200 		 */
   2201 		m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
   2202 		if (m == NULL) {
   2203 			DPRINTF(ATH_DEBUG_ANY,
   2204 				("%s: no mbuf/cluster\n", __func__));
   2205 			sc->sc_stats.ast_rx_nombuf++;
   2206 			return ENOMEM;
   2207 		}
   2208 		bf->bf_m = m;
   2209 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   2210 
   2211 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
   2212 		                                 BUS_DMA_NOWAIT);
   2213 		if (error != 0) {
   2214 			DPRINTF(ATH_DEBUG_ANY,
   2215 				("%s: ath_buf_dmamap_load_mbuf failed;"
   2216 				" error %d\n", __func__, error));
   2217 			sc->sc_stats.ast_rx_busdma++;
   2218 			return error;
   2219 		}
   2220 		KASSERT(bf->bf_nseg == 1,
   2221 			("ath_rxbuf_init: multi-segment packet; nseg %u",
   2222 			bf->bf_nseg));
   2223 	}
   2224 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
   2225 
   2226 	/*
   2227 	 * Setup descriptors.  For receive we always terminate
   2228 	 * the descriptor list with a self-linked entry so we'll
   2229 	 * not get overrun under high load (as can happen with a
   2230 	 * 5212 when ANI processing enables PHY errors).
   2231 	 *
   2232 	 * To insure the last descriptor is self-linked we create
   2233 	 * each descriptor as self-linked and add it to the end.  As
   2234 	 * each additional descriptor is added the previous self-linked
   2235 	 * entry is ``fixed'' naturally.  This should be safe even
   2236 	 * if DMA is happening.  When processing RX interrupts we
   2237 	 * never remove/process the last, self-linked, entry on the
   2238 	 * descriptor list.  This insures the hardware always has
   2239 	 * someplace to write a new frame.
   2240 	 */
   2241 	ds = bf->bf_desc;
   2242 	ds->ds_link = bf->bf_daddr;	/* link to self */
   2243 	ds->ds_data = bf->bf_segs[0].ds_addr;
   2244 	ath_hal_setuprxdesc(ah, ds
   2245 		, m->m_len		/* buffer size */
   2246 		, 0
   2247 	);
   2248 
   2249 	if (sc->sc_rxlink != NULL)
   2250 		*sc->sc_rxlink = bf->bf_daddr;
   2251 	sc->sc_rxlink = &ds->ds_link;
   2252 	return 0;
   2253 }
   2254 
   2255 static void
   2256 ath_rx_proc(void *arg, int npending)
   2257 {
   2258 #define	PA2DESC(_sc, _pa) \
   2259 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
   2260 		((_pa) - (_sc)->sc_desc_paddr)))
   2261 	struct ath_softc *sc = arg;
   2262 	struct ath_buf *bf;
   2263 	struct ieee80211com *ic = &sc->sc_ic;
   2264 	struct ifnet *ifp = &ic->ic_if;
   2265 	struct ath_hal *ah = sc->sc_ah;
   2266 	struct ath_desc *ds;
   2267 	struct mbuf *m;
   2268 	struct ieee80211_frame *wh, whbuf;
   2269 	struct ieee80211_node *ni;
   2270 	struct ath_node *an;
   2271 	struct ath_recv_hist *rh;
   2272 	int len;
   2273 	u_int phyerr;
   2274 	HAL_STATUS status;
   2275 
   2276 	DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
   2277 	do {
   2278 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
   2279 		if (bf == NULL) {		/* NB: shouldn't happen */
   2280 			if_printf(ifp, "ath_rx_proc: no buffer!\n");
   2281 			break;
   2282 		}
   2283 		ds = bf->bf_desc;
   2284 		if (ds->ds_link == bf->bf_daddr) {
   2285 			/* NB: never process the self-linked entry at the end */
   2286 			break;
   2287 		}
   2288 		m = bf->bf_m;
   2289 		if (m == NULL) {		/* NB: shouldn't happen */
   2290 			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
   2291 			continue;
   2292 		}
   2293 		/* XXX sync descriptor memory */
   2294 		/*
   2295 		 * Must provide the virtual address of the current
   2296 		 * descriptor, the physical address, and the virtual
   2297 		 * address of the next descriptor in the h/w chain.
   2298 		 * This allows the HAL to look ahead to see if the
   2299 		 * hardware is done with a descriptor by checking the
   2300 		 * done bit in the following descriptor and the address
   2301 		 * of the current descriptor the DMA engine is working
   2302 		 * on.  All this is necessary because of our use of
   2303 		 * a self-linked list to avoid rx overruns.
   2304 		 */
   2305 		status = ath_hal_rxprocdesc(ah, ds,
   2306 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
   2307 #ifdef AR_DEBUG
   2308 		if (ath_debug & ATH_DEBUG_RECV_DESC)
   2309 			ath_printrxbuf(bf, status == HAL_OK);
   2310 #endif
   2311 		if (status == HAL_EINPROGRESS)
   2312 			break;
   2313 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
   2314 		if (ds->ds_rxstat.rs_status != 0) {
   2315 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   2316 				sc->sc_stats.ast_rx_crcerr++;
   2317 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   2318 				sc->sc_stats.ast_rx_fifoerr++;
   2319 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
   2320 				sc->sc_stats.ast_rx_badcrypt++;
   2321 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   2322 				sc->sc_stats.ast_rx_phyerr++;
   2323 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   2324 				sc->sc_stats.ast_rx_phy[phyerr]++;
   2325 			} else {
   2326 				/*
   2327 				 * NB: don't count PHY errors as input errors;
   2328 				 * we enable them on the 5212 to collect info
   2329 				 * about environmental noise and, in that
   2330 				 * setting, they don't really reflect tx/rx
   2331 				 * errors.
   2332 				 */
   2333 				ifp->if_ierrors++;
   2334 			}
   2335 			goto rx_next;
   2336 		}
   2337 
   2338 		len = ds->ds_rxstat.rs_datalen;
   2339 		if (len < IEEE80211_MIN_LEN) {
   2340 			DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
   2341 				__func__, len));
   2342 			sc->sc_stats.ast_rx_tooshort++;
   2343 			goto rx_next;
   2344 		}
   2345 
   2346 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
   2347 
   2348 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2349 		bf->bf_m = NULL;
   2350 		m->m_pkthdr.rcvif = ifp;
   2351 		m->m_pkthdr.len = m->m_len = len;
   2352 
   2353 #if NBPFILTER > 0
   2354 		if (sc->sc_drvbpf) {
   2355 			sc->sc_rx_th.wr_rate =
   2356 				sc->sc_hwmap[ds->ds_rxstat.rs_rate];
   2357 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
   2358 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
   2359 			/* XXX TSF */
   2360 			bpf_mtap2(sc->sc_drvbpf,
   2361 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
   2362 		}
   2363 #endif
   2364 
   2365 		m_adj(m, -IEEE80211_CRC_LEN);
   2366 		wh = mtod(m, struct ieee80211_frame *);
   2367 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2368 			/*
   2369 			 * WEP is decrypted by hardware. Clear WEP bit
   2370 			 * and trim WEP header for ieee80211_input().
   2371 			 */
   2372 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
   2373 			memcpy(&whbuf, wh, sizeof(whbuf));
   2374 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
   2375 			wh = mtod(m, struct ieee80211_frame *);
   2376 			memcpy(wh, &whbuf, sizeof(whbuf));
   2377 			/*
   2378 			 * Also trim WEP ICV from the tail.
   2379 			 */
   2380 			m_adj(m, -IEEE80211_WEP_CRCLEN);
   2381 			/*
   2382 			 * The header has probably moved.
   2383 			 */
   2384 			wh = mtod(m, struct ieee80211_frame *);
   2385 		}
   2386 
   2387 		/*
   2388 		 * Locate the node for sender, track state, and
   2389 		 * then pass this node (referenced) up to the 802.11
   2390 		 * layer for its use.  We are required to pass
   2391 		 * something so we fall back to ic_bss when this frame
   2392 		 * is from an unknown sender.
   2393 		 */
   2394 		ni = ieee80211_find_rxnode(ic, wh);
   2395 
   2396 		/*
   2397 		 * Record driver-specific state.
   2398 		 */
   2399 		an = ATH_NODE(ni);
   2400 		if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
   2401 			an->an_rx_hist_next = 0;
   2402 		rh = &an->an_rx_hist[an->an_rx_hist_next];
   2403 		rh->arh_ticks = ATH_TICKS();
   2404 		rh->arh_rssi = ds->ds_rxstat.rs_rssi;
   2405 		rh->arh_antenna = ds->ds_rxstat.rs_antenna;
   2406 
   2407 		/*
   2408 		 * Send frame up for processing.
   2409 		 */
   2410 		ieee80211_input(ifp, m, ni,
   2411 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   2412 
   2413 		/*
   2414 		 * The frame may have caused the node to be marked for
   2415 		 * reclamation (e.g. in response to a DEAUTH message)
   2416 		 * so use free_node here instead of unref_node.
   2417 		 */
   2418 		if (ni == ic->ic_bss)
   2419 			ieee80211_unref_node(&ni);
   2420 		else
   2421 			ieee80211_free_node(ic, ni);
   2422   rx_next:
   2423 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   2424 	} while (ath_rxbuf_init(sc, bf) == 0);
   2425 
   2426 	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
   2427 	ath_hal_rxena(ah);			/* in case of RXEOL */
   2428 
   2429 #ifdef __NetBSD__
   2430 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
   2431 		ath_start(ifp);
   2432 #endif /* __NetBSD__ */
   2433 #undef PA2DESC
   2434 }
   2435 
   2436 /*
   2437  * XXX Size of an ACK control frame in bytes.
   2438  */
   2439 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
   2440 
   2441 static int
   2442 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   2443     struct mbuf *m0)
   2444 {
   2445 	struct ieee80211com *ic = &sc->sc_ic;
   2446 	struct ath_hal *ah = sc->sc_ah;
   2447 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2448 	int i, error, iswep, hdrlen, pktlen;
   2449 	u_int8_t rix, cix, txrate, ctsrate;
   2450 	struct ath_desc *ds;
   2451 	struct mbuf *m;
   2452 	struct ieee80211_frame *wh;
   2453 	u_int32_t iv;
   2454 	u_int8_t *ivp;
   2455 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
   2456 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
   2457 	u_int subtype, flags, ctsduration, antenna;
   2458 	HAL_PKT_TYPE atype;
   2459 	const HAL_RATE_TABLE *rt;
   2460 	HAL_BOOL shortPreamble;
   2461 	struct ath_node *an;
   2462 	ath_txq_critsect_decl(s);
   2463 
   2464 	wh = mtod(m0, struct ieee80211_frame *);
   2465 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   2466 	hdrlen = sizeof(struct ieee80211_frame);
   2467 	pktlen = m0->m_pkthdr.len;
   2468 
   2469 	if (iswep) {
   2470 		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
   2471 		m_adj(m0, hdrlen);
   2472 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
   2473 		if (m0 == NULL) {
   2474 			sc->sc_stats.ast_tx_nombuf++;
   2475 			return ENOMEM;
   2476 		}
   2477 		ivp = hdrbuf + hdrlen;
   2478 		wh = mtod(m0, struct ieee80211_frame *);
   2479 		/*
   2480 		 * XXX
   2481 		 * IV must not duplicate during the lifetime of the key.
   2482 		 * But no mechanism to renew keys is defined in IEEE 802.11
   2483 		 * WEP.  And IV may be duplicated between other stations
   2484 		 * because of the session key itself is shared.
   2485 		 * So we use pseudo random IV for now, though it is not the
   2486 		 * right way.
   2487 		 */
   2488                 iv = ic->ic_iv;
   2489 		/*
   2490 		 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
   2491 		 * (B, 255, N) with 3 <= B < 8
   2492 		 */
   2493 		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
   2494 			iv += 0x000100;
   2495 		ic->ic_iv = iv + 1;
   2496 		for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
   2497 			ivp[i] = iv;
   2498 			iv >>= 8;
   2499 		}
   2500 		ivp[i] = sc->sc_ic.ic_wep_txkey << 6;	/* Key ID and pad */
   2501 		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
   2502 		/*
   2503 		 * The ICV length must be included into hdrlen and pktlen.
   2504 		 */
   2505 		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
   2506 		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
   2507 	}
   2508 	pktlen += IEEE80211_CRC_LEN;
   2509 
   2510 	/*
   2511 	 * Load the DMA map so any coalescing is done.  This
   2512 	 * also calculates the number of descriptors we need.
   2513 	 */
   2514 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
   2515 	/*
   2516 	 * Discard null packets and check for packets that
   2517 	 * require too many TX descriptors.  We try to convert
   2518 	 * the latter to a cluster.
   2519 	 */
   2520 	if (error == EFBIG) {		/* too many desc's, linearize */
   2521 		sc->sc_stats.ast_tx_linear++;
   2522 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2523 		if (m == NULL) {
   2524 			sc->sc_stats.ast_tx_nombuf++;
   2525 			m_freem(m0);
   2526 			return ENOMEM;
   2527 		}
   2528 #ifdef __FreeBSD__
   2529 		M_MOVE_PKTHDR(m, m0);
   2530 #else
   2531 		M_COPY_PKTHDR(m, m0);
   2532 #endif
   2533 		MCLGET(m, M_DONTWAIT);
   2534 		if ((m->m_flags & M_EXT) == 0) {
   2535 			sc->sc_stats.ast_tx_nomcl++;
   2536 			m_freem(m0);
   2537 			m_free(m);
   2538 			return ENOMEM;
   2539 		}
   2540 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   2541 		m_freem(m0);
   2542 		m->m_len = m->m_pkthdr.len;
   2543 		m0 = m;
   2544 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
   2545 					         BUS_DMA_NOWAIT);
   2546 		if (error != 0) {
   2547 			sc->sc_stats.ast_tx_busdma++;
   2548 			m_freem(m0);
   2549 			return error;
   2550 		}
   2551 		KASSERT(bf->bf_nseg == 1,
   2552 			("ath_tx_start: packet not one segment; nseg %u",
   2553 			bf->bf_nseg));
   2554 	} else if (error != 0) {
   2555 		sc->sc_stats.ast_tx_busdma++;
   2556 		m_freem(m0);
   2557 		return error;
   2558 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   2559 		sc->sc_stats.ast_tx_nodata++;
   2560 		m_freem(m0);
   2561 		return EIO;
   2562 	}
   2563 	DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
   2564 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
   2565 	bf->bf_m = m0;
   2566 	bf->bf_node = ni;			/* NB: held reference */
   2567 
   2568 	/* setup descriptors */
   2569 	ds = bf->bf_desc;
   2570 	rt = sc->sc_currates;
   2571 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   2572 
   2573 	/*
   2574 	 * Calculate Atheros packet type from IEEE80211 packet header
   2575 	 * and setup for rate calculations.
   2576 	 */
   2577 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
   2578 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   2579 	case IEEE80211_FC0_TYPE_MGT:
   2580 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2581 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   2582 			atype = HAL_PKT_TYPE_BEACON;
   2583 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2584 			atype = HAL_PKT_TYPE_PROBE_RESP;
   2585 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   2586 			atype = HAL_PKT_TYPE_ATIM;
   2587 		rix = 0;			/* XXX lowest rate */
   2588 		break;
   2589 	case IEEE80211_FC0_TYPE_CTL:
   2590 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2591 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
   2592 			atype = HAL_PKT_TYPE_PSPOLL;
   2593 		rix = 0;			/* XXX lowest rate */
   2594 		break;
   2595 	default:
   2596 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
   2597 				IEEE80211_RATE_VAL];
   2598 		if (rix == 0xff) {
   2599 			if_printf(ifp, "bogus xmit rate 0x%x\n",
   2600 				ni->ni_rates.rs_rates[ni->ni_txrate]);
   2601 			sc->sc_stats.ast_tx_badrate++;
   2602 			m_freem(m0);
   2603 			return EIO;
   2604 		}
   2605 		break;
   2606 	}
   2607 	/*
   2608 	 * NB: the 802.11 layer marks whether or not we should
   2609 	 * use short preamble based on the current mode and
   2610 	 * negotiated parameters.
   2611 	 */
   2612 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   2613 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
   2614 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
   2615 		shortPreamble = AH_TRUE;
   2616 		sc->sc_stats.ast_tx_shortpre++;
   2617 	} else {
   2618 		txrate = rt->info[rix].rateCode;
   2619 		shortPreamble = AH_FALSE;
   2620 	}
   2621 
   2622 	/*
   2623 	 * Calculate miscellaneous flags.
   2624 	 */
   2625 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
   2626 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2627 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   2628 		sc->sc_stats.ast_tx_noack++;
   2629 	} else if (pktlen > ic->ic_rtsthreshold) {
   2630 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   2631 		sc->sc_stats.ast_tx_rts++;
   2632 	}
   2633 
   2634 	/*
   2635 	 * Calculate duration.  This logically belongs in the 802.11
   2636 	 * layer but it lacks sufficient information to calculate it.
   2637 	 */
   2638 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
   2639 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
   2640 		u_int16_t dur;
   2641 		/*
   2642 		 * XXX not right with fragmentation.
   2643 		 */
   2644 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
   2645 				rix, shortPreamble);
   2646 		*((u_int16_t*) wh->i_dur) = htole16(dur);
   2647 	}
   2648 
   2649 	/*
   2650 	 * Calculate RTS/CTS rate and duration if needed.
   2651 	 */
   2652 	ctsduration = 0;
   2653 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   2654 		/*
   2655 		 * CTS transmit rate is derived from the transmit rate
   2656 		 * by looking in the h/w rate table.  We must also factor
   2657 		 * in whether or not a short preamble is to be used.
   2658 		 */
   2659 		cix = rt->info[rix].controlRate;
   2660 		ctsrate = rt->info[cix].rateCode;
   2661 		if (shortPreamble)
   2662 			ctsrate |= rt->info[cix].shortPreamble;
   2663 		/*
   2664 		 * Compute the transmit duration based on the size
   2665 		 * of an ACK frame.  We call into the HAL to do the
   2666 		 * computation since it depends on the characteristics
   2667 		 * of the actual PHY being used.
   2668 		 */
   2669 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
   2670 			ctsduration += ath_hal_computetxtime(ah,
   2671 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
   2672 		}
   2673 		/* SIFS + data */
   2674 		ctsduration += ath_hal_computetxtime(ah,
   2675 			rt, pktlen, rix, shortPreamble);
   2676 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
   2677 			ctsduration += ath_hal_computetxtime(ah,
   2678 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
   2679 		}
   2680 	} else
   2681 		ctsrate = 0;
   2682 
   2683 	/*
   2684 	 * For now use the antenna on which the last good
   2685 	 * frame was received on.  We assume this field is
   2686 	 * initialized to 0 which gives us ``auto'' or the
   2687 	 * ``default'' antenna.
   2688 	 */
   2689 	an = (struct ath_node *) ni;
   2690 	if (an->an_tx_antenna)
   2691 		antenna = an->an_tx_antenna;
   2692 	else
   2693 		antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
   2694 
   2695 	if (ic->ic_rawbpf)
   2696 		bpf_mtap(ic->ic_rawbpf, m0);
   2697 	if (sc->sc_drvbpf) {
   2698 		sc->sc_tx_th.wt_flags = 0;
   2699 		if (shortPreamble)
   2700 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   2701 		if (iswep)
   2702 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   2703 		sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   2704 		sc->sc_tx_th.wt_txpower = 60/2;		/* XXX */
   2705 		sc->sc_tx_th.wt_antenna = antenna;
   2706 
   2707 		bpf_mtap2(sc->sc_drvbpf,
   2708 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
   2709 	}
   2710 
   2711 	/*
   2712 	 * Formulate first tx descriptor with tx controls.
   2713 	 */
   2714 	/* XXX check return value? */
   2715 	ath_hal_setuptxdesc(ah, ds
   2716 		, pktlen		/* packet length */
   2717 		, hdrlen		/* header length */
   2718 		, atype			/* Atheros packet type */
   2719 		, 60			/* txpower XXX */
   2720 		, txrate, 1+10		/* series 0 rate/tries */
   2721 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
   2722 		, antenna		/* antenna mode */
   2723 		, flags			/* flags */
   2724 		, ctsrate		/* rts/cts rate */
   2725 		, ctsduration		/* rts/cts duration */
   2726 	);
   2727 #ifdef notyet
   2728 	ath_hal_setupxtxdesc(ah, ds
   2729 		, AH_FALSE		/* short preamble */
   2730 		, 0, 0			/* series 1 rate/tries */
   2731 		, 0, 0			/* series 2 rate/tries */
   2732 		, 0, 0			/* series 3 rate/tries */
   2733 	);
   2734 #endif
   2735 	/*
   2736 	 * Fillin the remainder of the descriptor info.
   2737 	 */
   2738 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   2739 		ds->ds_data = bf->bf_segs[i].ds_addr;
   2740 		if (i == bf->bf_nseg - 1)
   2741 			ds->ds_link = 0;
   2742 		else
   2743 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   2744 		ath_hal_filltxdesc(ah, ds
   2745 			, bf->bf_segs[i].ds_len	/* segment length */
   2746 			, i == 0		/* first segment */
   2747 			, i == bf->bf_nseg - 1	/* last segment */
   2748 		);
   2749 		DPRINTF(ATH_DEBUG_XMIT,
   2750 			("%s: %d: %08x %08x %08x %08x %08x %08x\n",
   2751 			__func__, i, ds->ds_link, ds->ds_data,
   2752 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
   2753 	}
   2754 
   2755 	/*
   2756 	 * Insert the frame on the outbound list and
   2757 	 * pass it on to the hardware.
   2758 	 */
   2759 	ath_txq_critsect_begin(sc, s);
   2760 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
   2761 	if (sc->sc_txlink == NULL) {
   2762 		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
   2763 		DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
   2764 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
   2765 	} else {
   2766 		*sc->sc_txlink = bf->bf_daddr;
   2767 		DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
   2768 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
   2769 	}
   2770 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   2771 	ath_txq_critsect_end(sc, s);
   2772 
   2773 	ath_hal_txstart(ah, sc->sc_txhalq);
   2774 	return 0;
   2775 }
   2776 
   2777 static void
   2778 ath_tx_proc(void *arg, int npending)
   2779 {
   2780 	struct ath_softc *sc = arg;
   2781 	struct ath_hal *ah = sc->sc_ah;
   2782 	struct ath_buf *bf;
   2783 	struct ieee80211com *ic = &sc->sc_ic;
   2784 	struct ifnet *ifp = &ic->ic_if;
   2785 	struct ath_desc *ds;
   2786 	struct ieee80211_node *ni;
   2787 	struct ath_node *an;
   2788 	int sr, lr;
   2789 	HAL_STATUS status;
   2790 	ath_txq_critsect_decl(s);
   2791 	ath_txbuf_critsect_decl(s2);
   2792 
   2793 	DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n",
   2794 		__func__, npending,
   2795 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
   2796 		sc->sc_txlink));
   2797 	for (;;) {
   2798 		ath_txq_critsect_begin(sc, s);
   2799 		bf = TAILQ_FIRST(&sc->sc_txq);
   2800 		if (bf == NULL) {
   2801 			sc->sc_txlink = NULL;
   2802 			ath_txq_critsect_end(sc, s);
   2803 			break;
   2804 		}
   2805 		/* only the last descriptor is needed */
   2806 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   2807 		status = ath_hal_txprocdesc(ah, ds);
   2808 #ifdef AR_DEBUG
   2809 		if (ath_debug & ATH_DEBUG_XMIT_DESC)
   2810 			ath_printtxbuf(bf, status == HAL_OK);
   2811 #endif
   2812 		if (status == HAL_EINPROGRESS) {
   2813 			ath_txq_critsect_end(sc, s);
   2814 			break;
   2815 		}
   2816 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
   2817 		ath_txq_critsect_end(sc, s);
   2818 
   2819 		ni = bf->bf_node;
   2820 		if (ni != NULL) {
   2821 			an = (struct ath_node *) ni;
   2822 			if (ds->ds_txstat.ts_status == 0) {
   2823 				an->an_tx_ok++;
   2824 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
   2825 			} else {
   2826 				an->an_tx_err++;
   2827 				ifp->if_oerrors++;
   2828 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   2829 					sc->sc_stats.ast_tx_xretries++;
   2830 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   2831 					sc->sc_stats.ast_tx_fifoerr++;
   2832 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   2833 					sc->sc_stats.ast_tx_filtered++;
   2834 				an->an_tx_antenna = 0;	/* invalidate */
   2835 			}
   2836 			sr = ds->ds_txstat.ts_shortretry;
   2837 			lr = ds->ds_txstat.ts_longretry;
   2838 			sc->sc_stats.ast_tx_shortretry += sr;
   2839 			sc->sc_stats.ast_tx_longretry += lr;
   2840 			if (sr + lr)
   2841 				an->an_tx_retr++;
   2842 			/*
   2843 			 * Reclaim reference to node.
   2844 			 *
   2845 			 * NB: the node may be reclaimed here if, for example
   2846 			 *     this is a DEAUTH message that was sent and the
   2847 			 *     node was timed out due to inactivity.
   2848 			 */
   2849 			if (ni != ic->ic_bss)
   2850 				ieee80211_free_node(ic, ni);
   2851 		}
   2852 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
   2853 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2854 		m_freem(bf->bf_m);
   2855 		bf->bf_m = NULL;
   2856 		bf->bf_node = NULL;
   2857 
   2858 		ath_txbuf_critsect_begin(sc, s2);
   2859 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   2860 		ath_txbuf_critsect_end(sc, s2);
   2861 	}
   2862 	ifp->if_flags &= ~IFF_OACTIVE;
   2863 	sc->sc_tx_timer = 0;
   2864 
   2865 	ath_start(ifp);
   2866 }
   2867 
   2868 /*
   2869  * Drain the transmit queue and reclaim resources.
   2870  */
   2871 static void
   2872 ath_draintxq(struct ath_softc *sc)
   2873 {
   2874 	struct ath_hal *ah = sc->sc_ah;
   2875 	struct ieee80211com *ic = &sc->sc_ic;
   2876 	struct ifnet *ifp = &ic->ic_if;
   2877 	struct ieee80211_node *ni;
   2878 	struct ath_buf *bf;
   2879 	ath_txq_critsect_decl(s);
   2880 	ath_txbuf_critsect_decl(s2);
   2881 
   2882 	/* XXX return value */
   2883 	if (!sc->sc_invalid) {
   2884 		/* don't touch the hardware if marked invalid */
   2885 		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
   2886 		DPRINTF(ATH_DEBUG_RESET,
   2887 		    ("%s: tx queue %p, link %p\n", __func__,
   2888 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
   2889 		    sc->sc_txlink));
   2890 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   2891 		DPRINTF(ATH_DEBUG_RESET,
   2892 		    ("%s: beacon queue %p\n", __func__,
   2893 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
   2894 	}
   2895 	for (;;) {
   2896 		ath_txq_critsect_begin(sc, s);
   2897 		bf = TAILQ_FIRST(&sc->sc_txq);
   2898 		if (bf == NULL) {
   2899 			sc->sc_txlink = NULL;
   2900 			ath_txq_critsect_end(sc, s);
   2901 			break;
   2902 		}
   2903 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
   2904 		ath_txq_critsect_end(sc, s);
   2905 #ifdef AR_DEBUG
   2906 		if (ath_debug & ATH_DEBUG_RESET)
   2907 			ath_printtxbuf(bf,
   2908 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   2909 #endif /* AR_DEBUG */
   2910 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2911 		m_freem(bf->bf_m);
   2912 		bf->bf_m = NULL;
   2913 		ni = bf->bf_node;
   2914 		bf->bf_node = NULL;
   2915 		ath_txbuf_critsect_begin(sc, s2);
   2916 		if (ni != NULL && ni != ic->ic_bss) {
   2917 			/*
   2918 			 * Reclaim node reference.
   2919 			 */
   2920 			ieee80211_free_node(ic, ni);
   2921 		}
   2922 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   2923 		ath_txbuf_critsect_end(sc, s2);
   2924 	}
   2925 	ifp->if_flags &= ~IFF_OACTIVE;
   2926 	sc->sc_tx_timer = 0;
   2927 }
   2928 
   2929 /*
   2930  * Disable the receive h/w in preparation for a reset.
   2931  */
   2932 static void
   2933 ath_stoprecv(struct ath_softc *sc)
   2934 {
   2935 #define	PA2DESC(_sc, _pa) \
   2936 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
   2937 		((_pa) - (_sc)->sc_desc_paddr)))
   2938 	struct ath_hal *ah = sc->sc_ah;
   2939 
   2940 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   2941 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   2942 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   2943 	DELAY(3000);			/* long enough for 1 frame */
   2944 #ifdef AR_DEBUG
   2945 	if (ath_debug & ATH_DEBUG_RESET) {
   2946 		struct ath_buf *bf;
   2947 
   2948 		printf("%s: rx queue %p, link %p\n", __func__,
   2949 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
   2950 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   2951 			struct ath_desc *ds = bf->bf_desc;
   2952 			if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
   2953 			    PA2DESC(sc, ds->ds_link)) == HAL_OK)
   2954 				ath_printrxbuf(bf, 1);
   2955 		}
   2956 	}
   2957 #endif
   2958 	sc->sc_rxlink = NULL;		/* just in case */
   2959 #undef PA2DESC
   2960 }
   2961 
   2962 /*
   2963  * Enable the receive h/w following a reset.
   2964  */
   2965 static int
   2966 ath_startrecv(struct ath_softc *sc)
   2967 {
   2968 	struct ath_hal *ah = sc->sc_ah;
   2969 	struct ath_buf *bf;
   2970 
   2971 	sc->sc_rxlink = NULL;
   2972 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   2973 		int error = ath_rxbuf_init(sc, bf);
   2974 		if (error != 0) {
   2975 			DPRINTF(ATH_DEBUG_RECV,
   2976 				("%s: ath_rxbuf_init failed %d\n",
   2977 				__func__, error));
   2978 			return error;
   2979 		}
   2980 	}
   2981 
   2982 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
   2983 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   2984 	ath_hal_rxena(ah);		/* enable recv descriptors */
   2985 	ath_mode_init(sc);		/* set filters, etc. */
   2986 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   2987 	return 0;
   2988 }
   2989 
   2990 /*
   2991  * Set/change channels.  If the channel is really being changed,
   2992  * it's done by resetting the chip.  To accomplish this we must
   2993  * first cleanup any pending DMA, then restart stuff after a la
   2994  * ath_init.
   2995  */
   2996 static int
   2997 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   2998 {
   2999 	struct ath_hal *ah = sc->sc_ah;
   3000 	struct ieee80211com *ic = &sc->sc_ic;
   3001 
   3002 	DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
   3003 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
   3004 		ic->ic_ibss_chan->ic_freq,
   3005 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
   3006 	if (chan != ic->ic_ibss_chan) {
   3007 		HAL_STATUS status;
   3008 		HAL_CHANNEL hchan;
   3009 		enum ieee80211_phymode mode;
   3010 
   3011 		/*
   3012 		 * To switch channels clear any pending DMA operations;
   3013 		 * wait long enough for the RX fifo to drain, reset the
   3014 		 * hardware at the new frequency, and then re-enable
   3015 		 * the relevant bits of the h/w.
   3016 		 */
   3017 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   3018 		ath_draintxq(sc);		/* clear pending tx frames */
   3019 		ath_stoprecv(sc);		/* turn off frame recv */
   3020 		/*
   3021 		 * Convert to a HAL channel description with
   3022 		 * the flags constrained to reflect the current
   3023 		 * operating mode.
   3024 		 */
   3025 		hchan.channel = chan->ic_freq;
   3026 		hchan.channelFlags = ath_chan2flags(ic, chan);
   3027 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   3028 			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
   3029 				"channel %u (%u Mhz)\n",
   3030 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
   3031 			return EIO;
   3032 		}
   3033 		/*
   3034 		 * Re-enable rx framework.
   3035 		 */
   3036 		if (ath_startrecv(sc) != 0) {
   3037 			if_printf(&ic->ic_if,
   3038 				"ath_chan_set: unable to restart recv logic\n");
   3039 			return EIO;
   3040 		}
   3041 
   3042 		/*
   3043 		 * Update BPF state.
   3044 		 */
   3045 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   3046 			htole16(chan->ic_freq);
   3047 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   3048 			htole16(chan->ic_flags);
   3049 
   3050 		/*
   3051 		 * Change channels and update the h/w rate map
   3052 		 * if we're switching; e.g. 11a to 11b/g.
   3053 		 */
   3054 		ic->ic_ibss_chan = chan;
   3055 		mode = ieee80211_chan2mode(ic, chan);
   3056 		if (mode != sc->sc_curmode)
   3057 			ath_setcurmode(sc, mode);
   3058 
   3059 		/*
   3060 		 * Re-enable interrupts.
   3061 		 */
   3062 		ath_hal_intrset(ah, sc->sc_imask);
   3063 	}
   3064 	return 0;
   3065 }
   3066 
   3067 static void
   3068 ath_next_scan(void *arg)
   3069 {
   3070 	struct ath_softc *sc = arg;
   3071 	struct ieee80211com *ic = &sc->sc_ic;
   3072 	struct ifnet *ifp = &ic->ic_if;
   3073 	int s;
   3074 
   3075 	/* don't call ath_start w/o network interrupts blocked */
   3076 	s = splnet();
   3077 
   3078 	if (ic->ic_state == IEEE80211_S_SCAN)
   3079 		ieee80211_next_scan(ifp);
   3080 	splx(s);
   3081 }
   3082 
   3083 /*
   3084  * Periodically recalibrate the PHY to account
   3085  * for temperature/environment changes.
   3086  */
   3087 static void
   3088 ath_calibrate(void *arg)
   3089 {
   3090 	struct ath_softc *sc = arg;
   3091 	struct ath_hal *ah = sc->sc_ah;
   3092 	struct ieee80211com *ic = &sc->sc_ic;
   3093 	struct ieee80211_channel *c;
   3094 	HAL_CHANNEL hchan;
   3095 
   3096 	sc->sc_stats.ast_per_cal++;
   3097 
   3098 	/*
   3099 	 * Convert to a HAL channel description with the flags
   3100 	 * constrained to reflect the current operating mode.
   3101 	 */
   3102 	c = ic->ic_ibss_chan;
   3103 	hchan.channel = c->ic_freq;
   3104 	hchan.channelFlags = ath_chan2flags(ic, c);
   3105 
   3106 	DPRINTF(ATH_DEBUG_CALIBRATE,
   3107 		("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
   3108 
   3109 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   3110 		/*
   3111 		 * Rfgain is out of bounds, reset the chip
   3112 		 * to load new gain values.
   3113 		 */
   3114 		sc->sc_stats.ast_per_rfgain++;
   3115 		ath_reset(sc);
   3116 	}
   3117 	if (!ath_hal_calibrate(ah, &hchan)) {
   3118 		DPRINTF(ATH_DEBUG_ANY,
   3119 			("%s: calibration of channel %u failed\n",
   3120 			__func__, c->ic_freq));
   3121 		sc->sc_stats.ast_per_calfail++;
   3122 	}
   3123 	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
   3124 }
   3125 
   3126 static HAL_LED_STATE
   3127 ath_state_to_led(enum ieee80211_state state)
   3128 {
   3129 	switch (state) {
   3130 	case IEEE80211_S_INIT:
   3131 		return HAL_LED_INIT;
   3132 	case IEEE80211_S_SCAN:
   3133 		return HAL_LED_SCAN;
   3134 	case IEEE80211_S_AUTH:
   3135 		return HAL_LED_AUTH;
   3136 	case IEEE80211_S_ASSOC:
   3137 		return HAL_LED_ASSOC;
   3138 	case IEEE80211_S_RUN:
   3139 		return HAL_LED_RUN;
   3140 	default:
   3141 		panic("%s: unknown 802.11 state %d\n", __func__, state);
   3142 		return HAL_LED_INIT;
   3143 	}
   3144 }
   3145 
   3146 static int
   3147 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   3148 {
   3149 	struct ifnet *ifp = &ic->ic_if;
   3150 	struct ath_softc *sc = ifp->if_softc;
   3151 	struct ath_hal *ah = sc->sc_ah;
   3152 	struct ieee80211_node *ni;
   3153 	int i, error;
   3154 	const u_int8_t *bssid;
   3155 	u_int32_t rfilt;
   3156 
   3157 	DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
   3158 		ieee80211_state_name[ic->ic_state],
   3159 		ieee80211_state_name[nstate]));
   3160 
   3161 	ath_hal_setledstate(ah, ath_state_to_led(nstate));	/* set LED */
   3162 
   3163 	if (nstate == IEEE80211_S_INIT) {
   3164 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   3165 		ath_hal_intrset(ah, sc->sc_imask);
   3166 		callout_stop(&sc->sc_scan_ch);
   3167 		callout_stop(&sc->sc_cal_ch);
   3168 		return (*sc->sc_newstate)(ic, nstate, arg);
   3169 	}
   3170 	ni = ic->ic_bss;
   3171 	error = ath_chan_set(sc, ni->ni_chan);
   3172 	if (error != 0)
   3173 		goto bad;
   3174 	rfilt = ath_calcrxfilter(sc);
   3175 	if (nstate == IEEE80211_S_SCAN) {
   3176 		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
   3177 			ath_next_scan, sc);
   3178 		bssid = ifp->if_broadcastaddr;
   3179 	} else {
   3180 		callout_stop(&sc->sc_scan_ch);
   3181 		bssid = ni->ni_bssid;
   3182 	}
   3183 	ath_hal_setrxfilter(ah, rfilt);
   3184 	DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
   3185 		 __func__, rfilt, ether_sprintf(bssid)));
   3186 
   3187 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   3188 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   3189 	else
   3190 		ath_hal_setassocid(ah, bssid, 0);
   3191 	if (ic->ic_flags & IEEE80211_F_WEPON) {
   3192 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   3193 			if (ath_hal_keyisvalid(ah, i))
   3194 				ath_hal_keysetmac(ah, i, bssid);
   3195 	}
   3196 
   3197 	if (nstate == IEEE80211_S_RUN) {
   3198 		DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   3199 			"capinfo=0x%04x chan=%d\n"
   3200 			 , __func__
   3201 			 , ic->ic_flags
   3202 			 , ni->ni_intval
   3203 			 , ether_sprintf(ni->ni_bssid)
   3204 			 , ni->ni_capinfo
   3205 			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
   3206 
   3207 		/*
   3208 		 * Allocate and setup the beacon frame for AP or adhoc mode.
   3209 		 */
   3210 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   3211 		    ic->ic_opmode == IEEE80211_M_IBSS) {
   3212 			error = ath_beacon_alloc(sc, ni);
   3213 			if (error != 0)
   3214 				goto bad;
   3215 		}
   3216 
   3217 		/*
   3218 		 * Configure the beacon and sleep timers.
   3219 		 */
   3220 		ath_beacon_config(sc);
   3221 
   3222 		/* start periodic recalibration timer */
   3223 		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
   3224 			ath_calibrate, sc);
   3225 	} else {
   3226 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   3227 		ath_hal_intrset(ah, sc->sc_imask);
   3228 		callout_stop(&sc->sc_cal_ch);		/* no calibration */
   3229 	}
   3230 	/*
   3231 	 * Reset the rate control state.
   3232 	 */
   3233 	ath_rate_ctl_reset(sc, nstate);
   3234 	/*
   3235 	 * Invoke the parent method to complete the work.
   3236 	 */
   3237 	return (*sc->sc_newstate)(ic, nstate, arg);
   3238 bad:
   3239 	callout_stop(&sc->sc_scan_ch);
   3240 	callout_stop(&sc->sc_cal_ch);
   3241 	/* NB: do not invoke the parent */
   3242 	return error;
   3243 }
   3244 
   3245 /*
   3246  * Setup driver-specific state for a newly associated node.
   3247  * Note that we're called also on a re-associate, the isnew
   3248  * param tells us if this is the first time or not.
   3249  */
   3250 static void
   3251 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
   3252 {
   3253 	if (isnew) {
   3254 		struct ath_node *an = (struct ath_node *) ni;
   3255 
   3256 		an->an_tx_ok = an->an_tx_err =
   3257 			an->an_tx_retr = an->an_tx_upper = 0;
   3258 		/* start with highest negotiated rate */
   3259 		/*
   3260 		 * XXX should do otherwise but only when
   3261 		 * the rate control algorithm is better.
   3262 		 */
   3263 		KASSERT(ni->ni_rates.rs_nrates > 0,
   3264 			("new association w/ no rates!"));
   3265 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   3266 	}
   3267 }
   3268 
   3269 static int
   3270 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor,
   3271     HAL_BOOL xchanmode)
   3272 {
   3273 	struct ieee80211com *ic = &sc->sc_ic;
   3274 	struct ifnet *ifp = &ic->ic_if;
   3275 	struct ath_hal *ah = sc->sc_ah;
   3276 	HAL_CHANNEL *chans;
   3277 	int i, ix, nchan;
   3278 
   3279 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   3280 			M_TEMP, M_NOWAIT);
   3281 	if (chans == NULL) {
   3282 		if_printf(ifp, "unable to allocate channel table\n");
   3283 		return ENOMEM;
   3284 	}
   3285 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   3286 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
   3287 		if_printf(ifp, "unable to collect channel list from hal\n");
   3288 		free(chans, M_TEMP);
   3289 		return EINVAL;
   3290 	}
   3291 
   3292 	/*
   3293 	 * Convert HAL channels to ieee80211 ones and insert
   3294 	 * them in the table according to their channel number.
   3295 	 */
   3296 	for (i = 0; i < nchan; i++) {
   3297 		HAL_CHANNEL *c = &chans[i];
   3298 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
   3299 		if (ix > IEEE80211_CHAN_MAX) {
   3300 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
   3301 				ix, c->channel, c->channelFlags);
   3302 			continue;
   3303 		}
   3304 		DPRINTF(ATH_DEBUG_ANY,
   3305 		    ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
   3306 		    sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
   3307 		    ix));
   3308 		/* NB: flags are known to be compatible */
   3309 		if (ic->ic_channels[ix].ic_freq == 0) {
   3310 			ic->ic_channels[ix].ic_freq = c->channel;
   3311 			ic->ic_channels[ix].ic_flags = c->channelFlags;
   3312 		} else {
   3313 			/* channels overlap; e.g. 11g and 11b */
   3314 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
   3315 		}
   3316 	}
   3317 	free(chans, M_TEMP);
   3318 	return 0;
   3319 }
   3320 
   3321 static int
   3322 ath_rate_setup(struct ath_softc *sc, u_int mode)
   3323 {
   3324 	struct ath_hal *ah = sc->sc_ah;
   3325 	struct ieee80211com *ic = &sc->sc_ic;
   3326 	const HAL_RATE_TABLE *rt;
   3327 	struct ieee80211_rateset *rs;
   3328 	int i, maxrates;
   3329 
   3330 	switch (mode) {
   3331 	case IEEE80211_MODE_11A:
   3332 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
   3333 		break;
   3334 	case IEEE80211_MODE_11B:
   3335 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
   3336 		break;
   3337 	case IEEE80211_MODE_11G:
   3338 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
   3339 		break;
   3340 	case IEEE80211_MODE_TURBO:
   3341 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   3342 		break;
   3343 	default:
   3344 		DPRINTF(ATH_DEBUG_ANY,
   3345 			("%s: invalid mode %u\n", __func__, mode));
   3346 		return 0;
   3347 	}
   3348 	rt = sc->sc_rates[mode];
   3349 	if (rt == NULL)
   3350 		return 0;
   3351 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   3352 		DPRINTF(ATH_DEBUG_ANY,
   3353 			("%s: rate table too small (%u > %u)\n",
   3354 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
   3355 		maxrates = IEEE80211_RATE_MAXSIZE;
   3356 	} else
   3357 		maxrates = rt->rateCount;
   3358 	rs = &ic->ic_sup_rates[mode];
   3359 	for (i = 0; i < maxrates; i++)
   3360 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   3361 	rs->rs_nrates = maxrates;
   3362 	return 1;
   3363 }
   3364 
   3365 static void
   3366 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   3367 {
   3368 	const HAL_RATE_TABLE *rt;
   3369 	int i;
   3370 
   3371 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   3372 	rt = sc->sc_rates[mode];
   3373 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   3374 	for (i = 0; i < rt->rateCount; i++)
   3375 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   3376 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   3377 	for (i = 0; i < 32; i++)
   3378 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
   3379 	sc->sc_currates = rt;
   3380 	sc->sc_curmode = mode;
   3381 }
   3382 
   3383 /*
   3384  * Reset the rate control state for each 802.11 state transition.
   3385  */
   3386 static void
   3387 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
   3388 {
   3389 	struct ieee80211com *ic = &sc->sc_ic;
   3390 	struct ieee80211_node *ni;
   3391 	struct ath_node *an;
   3392 
   3393 	if (ic->ic_opmode != IEEE80211_M_STA) {
   3394 		/*
   3395 		 * When operating as a station the node table holds
   3396 		 * the AP's that were discovered during scanning.
   3397 		 * For any other operating mode we want to reset the
   3398 		 * tx rate state of each node.
   3399 		 */
   3400 		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
   3401 			ni->ni_txrate = 0;		/* use lowest rate */
   3402 			an = (struct ath_node *) ni;
   3403 			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
   3404 			    an->an_tx_upper = 0;
   3405 		}
   3406 	}
   3407 	/*
   3408 	 * Reset local xmit state; this is really only meaningful
   3409 	 * when operating in station or adhoc mode.
   3410 	 */
   3411 	ni = ic->ic_bss;
   3412 	an = (struct ath_node *) ni;
   3413 	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
   3414 	if (state == IEEE80211_S_RUN) {
   3415 		/* start with highest negotiated rate */
   3416 		KASSERT(ni->ni_rates.rs_nrates > 0,
   3417 			("transition to RUN state w/ no rates!"));
   3418 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   3419 	} else {
   3420 		/* use lowest rate */
   3421 		ni->ni_txrate = 0;
   3422 	}
   3423 }
   3424 
   3425 /*
   3426  * Examine and potentially adjust the transmit rate.
   3427  */
   3428 static void
   3429 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
   3430 {
   3431 	struct ath_softc *sc = arg;
   3432 	struct ath_node *an = (struct ath_node *) ni;
   3433 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3434 	int mod = 0, orate, enough;
   3435 
   3436 	/*
   3437 	 * Rate control
   3438 	 * XXX: very primitive version.
   3439 	 */
   3440 	sc->sc_stats.ast_rate_calls++;
   3441 
   3442 	enough = (an->an_tx_ok + an->an_tx_err >= 10);
   3443 
   3444 	/* no packet reached -> down */
   3445 	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
   3446 		mod = -1;
   3447 
   3448 	/* all packets needs retry in average -> down */
   3449 	if (enough && an->an_tx_ok < an->an_tx_retr)
   3450 		mod = -1;
   3451 
   3452 	/* no error and less than 10% of packets needs retry -> up */
   3453 	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
   3454 		mod = 1;
   3455 
   3456 	orate = ni->ni_txrate;
   3457 	switch (mod) {
   3458 	case 0:
   3459 		if (enough && an->an_tx_upper > 0)
   3460 			an->an_tx_upper--;
   3461 		break;
   3462 	case -1:
   3463 		if (ni->ni_txrate > 0) {
   3464 			ni->ni_txrate--;
   3465 			sc->sc_stats.ast_rate_drop++;
   3466 		}
   3467 		an->an_tx_upper = 0;
   3468 		break;
   3469 	case 1:
   3470 		if (++an->an_tx_upper < 2)
   3471 			break;
   3472 		an->an_tx_upper = 0;
   3473 		if (ni->ni_txrate + 1 < rs->rs_nrates) {
   3474 			ni->ni_txrate++;
   3475 			sc->sc_stats.ast_rate_raise++;
   3476 		}
   3477 		break;
   3478 	}
   3479 
   3480 	if (ni->ni_txrate != orate) {
   3481 		DPRINTF(ATH_DEBUG_RATE,
   3482 		    ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
   3483 		    __func__,
   3484 		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
   3485 		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
   3486 		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
   3487 	}
   3488 	if (ni->ni_txrate != orate || enough)
   3489 		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
   3490 }
   3491 
   3492 #ifdef AR_DEBUG
   3493 #ifdef __FreeBSD__
   3494 static int
   3495 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
   3496 {
   3497 	char dmode[64];
   3498 	int error;
   3499 
   3500 	strncpy(dmode, "", sizeof(dmode) - 1);
   3501 	dmode[sizeof(dmode) - 1] = '\0';
   3502 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
   3503 
   3504 	if (error == 0 && req->newptr != NULL) {
   3505 		struct ifnet *ifp;
   3506 		struct ath_softc *sc;
   3507 
   3508 		ifp = ifunit("ath0");		/* XXX */
   3509 		if (!ifp)
   3510 			return EINVAL;
   3511 		sc = ifp->if_softc;
   3512 		if (strcmp(dmode, "hal") == 0)
   3513 			ath_hal_dumpstate(sc->sc_ah);
   3514 		else
   3515 			return EINVAL;
   3516 	}
   3517 	return error;
   3518 }
   3519 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
   3520 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
   3521 #endif /* __FreeBSD__ */
   3522 
   3523 #if 0 /* #ifdef __NetBSD__ */
   3524 static int
   3525 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
   3526 {
   3527 	char dmode[64];
   3528 	int error;
   3529 
   3530 	strncpy(dmode, "", sizeof(dmode) - 1);
   3531 	dmode[sizeof(dmode) - 1] = '\0';
   3532 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
   3533 
   3534 	if (error == 0 && req->newptr != NULL) {
   3535 		struct ifnet *ifp;
   3536 		struct ath_softc *sc;
   3537 
   3538 		ifp = ifunit("ath0");		/* XXX */
   3539 		if (!ifp)
   3540 			return EINVAL;
   3541 		sc = ifp->if_softc;
   3542 		if (strcmp(dmode, "hal") == 0)
   3543 			ath_hal_dumpstate(sc->sc_ah);
   3544 		else
   3545 			return EINVAL;
   3546 	}
   3547 	return error;
   3548 }
   3549 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
   3550 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
   3551 #endif /* __NetBSD__ */
   3552 
   3553 static void
   3554 ath_printrxbuf(struct ath_buf *bf, int done)
   3555 {
   3556 	struct ath_desc *ds;
   3557 	int i;
   3558 
   3559 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   3560 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
   3561 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   3562 		    ds->ds_link, ds->ds_data,
   3563 		    ds->ds_ctl0, ds->ds_ctl1,
   3564 		    ds->ds_hw[0], ds->ds_hw[1],
   3565 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   3566 	}
   3567 }
   3568 
   3569 static void
   3570 ath_printtxbuf(struct ath_buf *bf, int done)
   3571 {
   3572 	struct ath_desc *ds;
   3573 	int i;
   3574 
   3575 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   3576 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   3577 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   3578 		    ds->ds_link, ds->ds_data,
   3579 		    ds->ds_ctl0, ds->ds_ctl1,
   3580 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   3581 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   3582 	}
   3583 }
   3584 #endif /* AR_DEBUG */
   3585