Home | History | Annotate | Line # | Download | only in ic
ath.c revision 1.3
      1 /*-
      2  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer,
     10  *    without modification.
     11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
     13  *    redistribution must be conditioned upon including a substantially
     14  *    similar Disclaimer requirement for further binary redistribution.
     15  * 3. Neither the names of the above-listed copyright holders nor the names
     16  *    of any contributors may be used to endorse or promote products derived
     17  *    from this software without specific prior written permission.
     18  *
     19  * Alternatively, this software may be distributed under the terms of the
     20  * GNU General Public License ("GPL") version 2 as published by the Free
     21  * Software Foundation.
     22  *
     23  * NO WARRANTY
     24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
     27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
     29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
     32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     34  * THE POSSIBILITY OF SUCH DAMAGES.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 #ifdef __FreeBSD__
     39 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.14 2003/09/05 22:22:49 sam Exp $");
     40 #endif
     41 #ifdef __NetBSD__
     42 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.3 2003/10/14 17:47:03 ichiro Exp $");
     43 #endif
     44 
     45 /*
     46  * Driver for the Atheros Wireless LAN controller.
     47  *
     48  * This software is derived from work of Atsushi Onoe; his contribution
     49  * is greatly appreciated.
     50  */
     51 
     52 #include "opt_inet.h"
     53 
     54 #ifdef __NetBSD__
     55 #include "bpfilter.h"
     56 #endif /* __NetBSD__ */
     57 
     58 #include <sys/param.h>
     59 #include <sys/systm.h>
     60 #include <sys/types.h>
     61 #include <sys/sysctl.h>
     62 #include <sys/mbuf.h>
     63 #include <sys/malloc.h>
     64 #include <sys/lock.h>
     65 #ifdef __FreeBSD__
     66 #include <sys/mutex.h>
     67 #endif
     68 #include <sys/kernel.h>
     69 #include <sys/socket.h>
     70 #include <sys/sockio.h>
     71 #include <sys/errno.h>
     72 #include <sys/callout.h>
     73 #ifdef __FreeBSD__
     74 #include <sys/bus.h>
     75 #else
     76 #include <machine/bus.h>
     77 #endif
     78 #include <sys/endian.h>
     79 
     80 #include <machine/bus.h>
     81 
     82 #include <net/if.h>
     83 #include <net/if_dl.h>
     84 #include <net/if_media.h>
     85 #include <net/if_arp.h>
     86 #ifdef __FreeBSD__
     87 #include <net/ethernet.h>
     88 #else
     89 #include <net/if_ether.h>
     90 #endif
     91 #include <net/if_llc.h>
     92 
     93 #include <net80211/ieee80211_var.h>
     94 #include <net80211/ieee80211_compat.h>
     95 
     96 #if NBPFILTER > 0
     97 #include <net/bpf.h>
     98 #endif
     99 
    100 #ifdef INET
    101 #include <netinet/in.h>
    102 #endif
    103 
    104 #include <dev/ic/athcompat.h>
    105 
    106 #define	AR_DEBUG
    107 #ifdef __FreeBSD__
    108 #include <dev/ath/if_athvar.h>
    109 #include <contrib/dev/ath/ah_desc.h>
    110 #else
    111 #include <dev/ic/athvar.h>
    112 #include <../contrib/sys/dev/ic/athhal_desc.h>
    113 #endif
    114 
    115 /* unalligned little endian access */
    116 #define LE_READ_2(p)							\
    117 	((u_int16_t)							\
    118 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
    119 #define LE_READ_4(p)							\
    120 	((u_int32_t)							\
    121 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
    122 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
    123 
    124 #ifdef __FreeBSD__
    125 static void	ath_init(void *);
    126 #else
    127 static int	ath_init(struct ifnet *);
    128 #endif
    129 static int	ath_init1(struct ath_softc *);
    130 static int	ath_intr1(struct ath_softc *);
    131 static void	ath_stop(struct ifnet *);
    132 static void	ath_start(struct ifnet *);
    133 static void	ath_reset(struct ath_softc *);
    134 static int	ath_media_change(struct ifnet *);
    135 static void	ath_watchdog(struct ifnet *);
    136 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
    137 static void	ath_fatal_proc(void *, int);
    138 static void	ath_rxorn_proc(void *, int);
    139 static void	ath_bmiss_proc(void *, int);
    140 static void	ath_initkeytable(struct ath_softc *);
    141 static void	ath_mode_init(struct ath_softc *);
    142 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
    143 static void	ath_beacon_proc(void *, int);
    144 static void	ath_beacon_free(struct ath_softc *);
    145 static void	ath_beacon_config(struct ath_softc *);
    146 static int	ath_desc_alloc(struct ath_softc *);
    147 static void	ath_desc_free(struct ath_softc *);
    148 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
    149 static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
    150 static void	ath_node_copy(struct ieee80211com *,
    151 			struct ieee80211_node *, const struct ieee80211_node *);
    152 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
    153 static void	ath_rx_proc(void *, int);
    154 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
    155 			     struct ath_buf *, struct mbuf *);
    156 static void	ath_tx_proc(void *, int);
    157 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
    158 static void	ath_draintxq(struct ath_softc *);
    159 static void	ath_stoprecv(struct ath_softc *);
    160 static int	ath_startrecv(struct ath_softc *);
    161 static void	ath_next_scan(void *);
    162 static void	ath_calibrate(void *);
    163 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
    164 static void	ath_newassoc(struct ieee80211com *,
    165 			struct ieee80211_node *, int);
    166 static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
    167 
    168 static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
    169 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
    170 static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
    171 static void	ath_rate_ctl(void *, struct ieee80211_node *);
    172 
    173 #ifdef __NetBSD__
    174 int	ath_enable(struct ath_softc *);
    175 void	ath_disable(struct ath_softc *);
    176 void	ath_power(int, void *);
    177 #endif
    178 
    179 #ifdef __FreeBSD__
    180 SYSCTL_DECL(_hw_ath);
    181 /* XXX validate sysctl values */
    182 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
    183 	    0, "channel dwell time (ms) for AP/station scanning");
    184 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
    185 	    0, "chip calibration interval (secs)");
    186 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
    187 	    0, "enable/disable outdoor operation");
    188 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
    189 	    0, "country code");
    190 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
    191 	    0, "regulatory domain");
    192 #endif /* __FreeBSD__ */
    193 
    194 static	int ath_dwelltime = 200;		/* 5 channels/second */
    195 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
    196 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
    197 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
    198 static	int ath_regdomain = 0;			/* regulatory domain */
    199 
    200 #ifdef AR_DEBUG
    201 int	ath_debug = 0;
    202 #ifdef __FreeBSD__
    203 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
    204 	    0, "control debugging printfs");
    205 #endif /* __FreeBSD__ */
    206 #define	IFF_DUMPPKTS(_ifp) \
    207 	(ath_debug || \
    208 	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    209 static	void ath_printrxbuf(struct ath_buf *bf, int);
    210 static	void ath_printtxbuf(struct ath_buf *bf, int);
    211 #define	DPRINTF(X)	if (ath_debug) printf X
    212 #define	DPRINTF2(X)	if (ath_debug > 1) printf X
    213 #else
    214 #define	IFF_DUMPPKTS(_ifp) \
    215 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
    216 #define	DPRINTF(X)
    217 #define	DPRINTF2(X)
    218 #endif
    219 
    220 #ifdef __NetBSD__
    221 int
    222 ath_activate(struct device *self, enum devact act)
    223 {
    224 	struct ath_softc *sc = (struct ath_softc *)self;
    225 	int rv = 0, s;
    226 
    227 	s = splnet();
    228 	switch (act) {
    229 	case DVACT_ACTIVATE:
    230 		rv = EOPNOTSUPP;
    231 		break;
    232 	case DVACT_DEACTIVATE:
    233 		if_deactivate(&sc->sc_ic.ic_if);
    234 		break;
    235 	}
    236 	splx(s);
    237 	return rv;
    238 }
    239 
    240 int
    241 ath_enable(struct ath_softc *sc)
    242 {
    243 	if (ATH_IS_ENABLED(sc) == 0) {
    244 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
    245 			printf("%s: device enable failed\n",
    246 				sc->sc_dev.dv_xname);
    247 			return (EIO);
    248 		}
    249 		sc->sc_flags |= ATH_ENABLED;
    250 	}
    251 	return (0);
    252 }
    253 
    254 void
    255 ath_disable(struct ath_softc *sc)
    256 {
    257 	if (!ATH_IS_ENABLED(sc))
    258 		return;
    259 	if (sc->sc_disable != NULL)
    260 		(*sc->sc_disable)(sc);
    261 	sc->sc_flags &= ~ATH_ENABLED;
    262 }
    263 #endif	/* #ifdef __NetBSD__ */
    264 
    265 int
    266 ath_attach(u_int16_t devid, struct ath_softc *sc)
    267 {
    268 	struct ieee80211com *ic = &sc->sc_ic;
    269 	struct ifnet *ifp = &ic->ic_if;
    270 	struct ath_hal *ah;
    271 	HAL_STATUS status;
    272 	int error = 0;
    273 
    274 	DPRINTF(("ath_attach: devid 0x%x\n", devid));
    275 
    276 #ifdef __FreeBSD__
    277 	/* set these up early for if_printf use */
    278 	ifp->if_unit = device_get_unit(sc->sc_dev);
    279 	ifp->if_name = "ath";
    280 #else
    281 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    282 #endif
    283 
    284 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
    285 	if (ah == NULL) {
    286 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
    287 			status);
    288 		error = ENXIO;
    289 		goto bad;
    290 	}
    291 	sc->sc_ah = ah;
    292 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
    293 
    294 	/*
    295 	 * Collect the channel list using the default country
    296 	 * code and including outdoor channels.  The 802.11 layer
    297 	 * is resposible for filtering this list based on settings
    298 	 * like the phy mode.
    299 	 */
    300 	error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
    301 	if (error != 0)
    302 		goto bad;
    303 	/*
    304 	 * Copy these back; they are set as a side effect
    305 	 * of constructing the channel list.
    306 	 */
    307 	ath_regdomain = ath_hal_getregdomain(ah);
    308 	ath_countrycode = ath_hal_getcountrycode(ah);
    309 
    310 	/*
    311 	 * Setup rate tables for all potential media types.
    312 	 */
    313 	ath_rate_setup(sc, IEEE80211_MODE_11A);
    314 	ath_rate_setup(sc, IEEE80211_MODE_11B);
    315 	ath_rate_setup(sc, IEEE80211_MODE_11G);
    316 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
    317 
    318 	error = ath_desc_alloc(sc);
    319 	if (error != 0) {
    320 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
    321 		goto bad;
    322 	}
    323 	ATH_CALLOUT_INIT(&sc->sc_scan_ch);
    324 	ATH_CALLOUT_INIT(&sc->sc_cal_ch);
    325 
    326 #ifdef __FreeBSD__
    327 	mtx_init(&sc->sc_txbuflock,
    328 		device_get_nameunit(sc->sc_dev), "xmit buf q", MTX_DEF);
    329 	mtx_init(&sc->sc_txqlock,
    330 		device_get_nameunit(sc->sc_dev), "xmit q", MTX_DEF);
    331 #endif
    332 
    333 	ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
    334 	ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
    335 	ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
    336 	ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
    337 	ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
    338 	ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
    339 
    340 	/*
    341 	 * For now just pre-allocate one data queue and one
    342 	 * beacon queue.  Note that the HAL handles resetting
    343 	 * them at the needed time.  Eventually we'll want to
    344 	 * allocate more tx queues for splitting management
    345 	 * frames and for QOS support.
    346 	 */
    347 	sc->sc_txhalq = ath_hal_setuptxqueue(ah,
    348 		HAL_TX_QUEUE_DATA,
    349 		AH_TRUE			/* enable interrupts */
    350 	);
    351 	if (sc->sc_txhalq == (u_int) -1) {
    352 		if_printf(ifp, "unable to setup a data xmit queue!\n");
    353 		goto bad;
    354 	}
    355 	sc->sc_bhalq = ath_hal_setuptxqueue(ah,
    356 		HAL_TX_QUEUE_BEACON,
    357 		AH_TRUE			/* enable interrupts */
    358 	);
    359 	if (sc->sc_bhalq == (u_int) -1) {
    360 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
    361 		goto bad;
    362 	}
    363 
    364 	ifp->if_softc = sc;
    365 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    366 	ifp->if_start = ath_start;
    367 	ifp->if_watchdog = ath_watchdog;
    368 	ifp->if_ioctl = ath_ioctl;
    369 	ifp->if_init = ath_init;
    370 #ifdef __FreeBSD__
    371 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
    372 #else
    373 #if 0
    374 	ifp->if_stop = ath_stop;		/* XXX */
    375 #endif
    376 	IFQ_SET_READY(&ifp->if_snd);
    377 #endif
    378 
    379 	ic->ic_softc = sc;
    380 	ic->ic_newassoc = ath_newassoc;
    381 	/* XXX not right but it's not used anywhere important */
    382 	ic->ic_phytype = IEEE80211_T_OFDM;
    383 	ic->ic_opmode = IEEE80211_M_STA;
    384 	ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP
    385 		| IEEE80211_C_MONITOR;
    386 	/* NB: 11g support is identified when we fetch the channel set */
    387 	if (sc->sc_have11g)
    388 		ic->ic_caps |= IEEE80211_C_SHPREAMBLE;
    389 
    390 	/* get mac address from hardware */
    391 	ath_hal_getmac(ah, ic->ic_myaddr);
    392 
    393 #ifdef __NetBSD__
    394 	if_attach(ifp);
    395 #endif
    396 	/* call MI attach routine. */
    397 	ieee80211_ifattach(ifp);
    398 	/* override default methods */
    399 	ic->ic_node_alloc = ath_node_alloc;
    400 	ic->ic_node_free = ath_node_free;
    401 	ic->ic_node_copy = ath_node_copy;
    402 	sc->sc_newstate = ic->ic_newstate;
    403 	ic->ic_newstate = ath_newstate;
    404 	/* complete initialization */
    405 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
    406 
    407 #if NBPFILTER > 0
    408 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    409 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
    410 		&sc->sc_drvbpf);
    411 #endif
    412 	/*
    413 	 * Initialize constant fields.
    414 	 *
    415 	 * NB: the channel is setup each time we transition to the
    416 	 *     RUN state to avoid filling it in for each frame.
    417 	 */
    418 	sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
    419 	sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
    420 
    421 	sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
    422 	sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
    423 
    424 	if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
    425 
    426 #ifdef __NetBSD__
    427 	sc->sc_flags |= ATH_ATTACHED;
    428 	/*
    429 	 * Make sure the interface is shutdown during reboot.
    430 	 */
    431 #if 0
    432 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
    433 	if (sc->sc_sdhook == NULL)
    434 		printf("%s: WARNING: unable to establish shutdown hook\n",
    435 			sc->sc_dev.dv_xname);
    436 #endif
    437 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
    438 	if (sc->sc_powerhook == NULL)
    439 		printf("%s: WARNING: unable to establish power hook\n",
    440 			sc->sc_dev.dv_xname);
    441 #endif
    442 	return 0;
    443 bad:
    444 	if (ah)
    445 		ath_hal_detach(ah);
    446 	sc->sc_invalid = 1;
    447 	return error;
    448 }
    449 
    450 int
    451 ath_detach(struct ath_softc *sc)
    452 {
    453 	struct ifnet *ifp = &sc->sc_ic.ic_if;
    454 	ath_softc_critsect_decl(s);
    455 
    456 	DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
    457 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
    458 		return (0);
    459 
    460 	ath_softc_critsect_begin(sc, s);
    461 	ath_stop(ifp);
    462 #if NBPFILTER > 0
    463 	bpfdetach(ifp);
    464 #endif
    465 	ath_desc_free(sc);
    466 	ath_hal_detach(sc->sc_ah);
    467 	ieee80211_ifdetach(ifp);
    468 #ifdef __NetBSD__
    469 	if_detach(ifp);
    470 #endif
    471 	ath_softc_critsect_end(sc, s);
    472 	return 0;
    473 }
    474 
    475 void
    476 ath_power(int why, void *arg)
    477 {
    478 	struct ath_softc *sc = arg;
    479 	int s;
    480 
    481 	DPRINTF(("ath_power(%d)\n", why));
    482 
    483 	s = splnet();
    484 	switch (why) {
    485 	case PWR_SUSPEND:
    486 	case PWR_STANDBY:
    487 		ath_suspend(sc, why);
    488 		break;
    489 	case PWR_RESUME:
    490 		ath_resume(sc, why);
    491 		break;
    492 	case PWR_SOFTSUSPEND:
    493 	case PWR_SOFTSTANDBY:
    494 	case PWR_SOFTRESUME:
    495 		break;
    496 	}
    497 	splx(s);
    498 }
    499 
    500 void
    501 ath_suspend(struct ath_softc *sc, int why)
    502 {
    503 	struct ifnet *ifp = &sc->sc_ic.ic_if;
    504 
    505 	DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
    506 
    507 	ath_stop(ifp);
    508 	if (sc->sc_power != NULL)
    509 		(*sc->sc_power)(sc, why);
    510 }
    511 
    512 void
    513 ath_resume(struct ath_softc *sc, int why)
    514 {
    515 	struct ifnet *ifp = &sc->sc_ic.ic_if;
    516 
    517 	DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
    518 
    519 	if (ifp->if_flags & IFF_UP) {
    520 		ath_init(ifp);
    521 #if 0
    522 		(void)ath_intr(sc);
    523 #endif
    524 		if (sc->sc_power != NULL)
    525 			(*sc->sc_power)(sc, why);
    526 		if (ifp->if_flags & IFF_RUNNING)
    527 			ath_start(ifp);
    528 	}
    529 }
    530 
    531 void
    532 ath_shutdown(struct ath_softc *sc)
    533 {
    534 #if 1
    535 	return;
    536 #else
    537 	struct ifnet *ifp = &sc->sc_ic.ic_if;
    538 
    539 	DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
    540 
    541 	ath_stop(ifp);
    542 #endif
    543 }
    544 
    545 #ifdef __NetBSD__
    546 int
    547 ath_intr(void *arg)
    548 {
    549 	return ath_intr1((struct ath_softc *)arg);
    550 }
    551 #else
    552 void
    553 ath_intr(void *arg)
    554 {
    555 	(void)ath_intr1((struct ath_softc *)arg);
    556 }
    557 #endif
    558 
    559 static int
    560 ath_intr1(struct ath_softc *sc)
    561 {
    562 	struct ieee80211com *ic = &sc->sc_ic;
    563 	struct ifnet *ifp = &ic->ic_if;
    564 	struct ath_hal *ah = sc->sc_ah;
    565 	HAL_INT status;
    566 
    567 	if (sc->sc_invalid) {
    568 		/*
    569 		 * The hardware is not ready/present, don't touch anything.
    570 		 * Note this can happen early on if the IRQ is shared.
    571 		 */
    572 		DPRINTF(("ath_intr: invalid; ignored\n"));
    573 		return 0;
    574 	}
    575 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
    576 		DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
    577 		ath_hal_getisr(ah, &status);	/* clear ISR */
    578 		ath_hal_intrset(ah, 0);		/* disable further intr's */
    579 		return 1; /* XXX */
    580 	}
    581 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
    582 	DPRINTF2(("ath_intr: status 0x%x\n", status));
    583 #ifdef AR_DEBUG
    584 	if (ath_debug &&
    585 	    (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
    586 		if_printf(ifp, "ath_intr: status 0x%x\n", status);
    587 		ath_hal_dumpstate(ah);
    588 	}
    589 #endif /* AR_DEBUG */
    590 	if (status & HAL_INT_FATAL) {
    591 		sc->sc_stats.ast_hardware++;
    592 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    593 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
    594 	} else if (status & HAL_INT_RXORN) {
    595 		sc->sc_stats.ast_rxorn++;
    596 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
    597 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
    598 	} else {
    599 		if (status & HAL_INT_RXEOL) {
    600 			/*
    601 			 * NB: the hardware should re-read the link when
    602 			 *     RXE bit is written, but it doesn't work at
    603 			 *     least on older hardware revs.
    604 			 */
    605 			sc->sc_stats.ast_rxeol++;
    606 			sc->sc_rxlink = NULL;
    607 		}
    608 		if (status & HAL_INT_TXURN) {
    609 			sc->sc_stats.ast_txurn++;
    610 			/* bump tx trigger level */
    611 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
    612 		}
    613 		if (status & HAL_INT_RX)
    614 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
    615 		if (status & HAL_INT_TX)
    616 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
    617 		if (status & HAL_INT_SWBA)
    618 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
    619 		if (status & HAL_INT_BMISS) {
    620 			sc->sc_stats.ast_bmiss++;
    621 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
    622 		}
    623 	}
    624 	return 1;
    625 }
    626 
    627 static void
    628 ath_fatal_proc(void *arg, int pending)
    629 {
    630 	struct ath_softc *sc = arg;
    631 
    632 	device_printf(sc->sc_dev, "hardware error; resetting\n");
    633 	ath_reset(sc);
    634 }
    635 
    636 static void
    637 ath_rxorn_proc(void *arg, int pending)
    638 {
    639 	struct ath_softc *sc = arg;
    640 
    641 	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
    642 	ath_reset(sc);
    643 }
    644 
    645 static void
    646 ath_bmiss_proc(void *arg, int pending)
    647 {
    648 	struct ath_softc *sc = arg;
    649 	struct ieee80211com *ic = &sc->sc_ic;
    650 
    651 	DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
    652 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
    653 		("unexpect operating mode %u", ic->ic_opmode));
    654 	if (ic->ic_state == IEEE80211_S_RUN)
    655 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
    656 }
    657 
    658 static u_int
    659 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
    660 {
    661 	static const u_int modeflags[] = {
    662 		0,			/* IEEE80211_MODE_AUTO */
    663 		CHANNEL_A,		/* IEEE80211_MODE_11A */
    664 		CHANNEL_B,		/* IEEE80211_MODE_11B */
    665 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
    666 		CHANNEL_T		/* IEEE80211_MODE_TURBO */
    667 	};
    668 	return modeflags[ieee80211_chan2mode(ic, chan)];
    669 }
    670 
    671 #ifdef __NetBSD__
    672 static int
    673 ath_init(struct ifnet *ifp)
    674 {
    675 	return ath_init1((struct ath_softc *)ifp->if_softc);
    676 }
    677 #else
    678 static void
    679 ath_init(void *arg)
    680 {
    681 	(void)ath_init1((struct ath_softc *)arg);
    682 }
    683 #endif
    684 
    685 static int
    686 ath_init1(struct ath_softc *sc)
    687 {
    688 	struct ieee80211com *ic = &sc->sc_ic;
    689 	struct ifnet *ifp = &ic->ic_if;
    690 	struct ieee80211_node *ni;
    691 	enum ieee80211_phymode mode;
    692 	struct ath_hal *ah = sc->sc_ah;
    693 	HAL_STATUS status;
    694 	HAL_CHANNEL hchan;
    695 	int error = 0;
    696 	ath_softc_critsect_decl(s);
    697 
    698 	DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
    699 
    700 #ifdef __NetBSD__
    701 	if ((error = ath_enable(sc)) != 0)
    702 		return error;
    703 #endif
    704 
    705 	ath_softc_critsect_begin(sc, s);
    706 	/*
    707 	 * Stop anything previously setup.  This is safe
    708 	 * whether this is the first time through or not.
    709 	 */
    710 	ath_stop(ifp);
    711 
    712 	/*
    713 	 * The basic interface to setting the hardware in a good
    714 	 * state is ``reset''.  On return the hardware is known to
    715 	 * be powered up and with interrupts disabled.  This must
    716 	 * be followed by initialization of the appropriate bits
    717 	 * and then setup of the interrupt mask.
    718 	 */
    719 	hchan.channel = ic->ic_ibss_chan->ic_freq;
    720 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
    721 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
    722 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
    723 			status);
    724 		error = -1;
    725 		goto done;
    726 	}
    727 
    728 	/*
    729 	 * Setup the hardware after reset: the key cache
    730 	 * is filled as needed and the receive engine is
    731 	 * set going.  Frame transmit is handled entirely
    732 	 * in the frame output path; there's nothing to do
    733 	 * here except setup the interrupt mask.
    734 	 */
    735 	if (ic->ic_flags & IEEE80211_F_WEPON)
    736 		ath_initkeytable(sc);
    737 	if ((error = ath_startrecv(sc)) != 0) {
    738 		if_printf(ifp, "unable to start recv logic\n");
    739 		goto done;
    740 	}
    741 
    742 	/*
    743 	 * Enable interrupts.
    744 	 */
    745 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
    746 		  | HAL_INT_RXEOL | HAL_INT_RXORN
    747 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
    748 	ath_hal_intrset(ah, sc->sc_imask);
    749 
    750 	ifp->if_flags |= IFF_RUNNING;
    751 	ic->ic_state = IEEE80211_S_INIT;
    752 
    753 	/*
    754 	 * The hardware should be ready to go now so it's safe
    755 	 * to kick the 802.11 state machine as it's likely to
    756 	 * immediately call back to us to send mgmt frames.
    757 	 */
    758 	ni = ic->ic_bss;
    759 	ni->ni_chan = ic->ic_ibss_chan;
    760 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
    761 	if (mode != sc->sc_curmode)
    762 		ath_setcurmode(sc, mode);
    763 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
    764 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
    765 	else
    766 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
    767 done:
    768 	ath_softc_critsect_end(sc, s);
    769 	return error;
    770 }
    771 
    772 static void
    773 ath_stop(struct ifnet *ifp)
    774 {
    775 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
    776 	struct ath_softc *sc = ifp->if_softc;
    777 	struct ath_hal *ah = sc->sc_ah;
    778 	ath_softc_critsect_decl(s);
    779 
    780 	DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
    781 		sc->sc_invalid, ifp->if_flags));
    782 
    783 	ath_softc_critsect_begin(sc, s);
    784 	if (ifp->if_flags & IFF_RUNNING) {
    785 		/*
    786 		 * Shutdown the hardware and driver:
    787 		 *    disable interrupts
    788 		 *    turn off timers
    789 		 *    clear transmit machinery
    790 		 *    clear receive machinery
    791 		 *    drain and release tx queues
    792 		 *    reclaim beacon resources
    793 		 *    reset 802.11 state machine
    794 		 *    power down hardware
    795 		 *
    796 		 * Note that some of this work is not possible if the
    797 		 * hardware is gone (invalid).
    798 		 */
    799 		ifp->if_flags &= ~IFF_RUNNING;
    800 		ifp->if_timer = 0;
    801 		if (!sc->sc_invalid)
    802 			ath_hal_intrset(ah, 0);
    803 		ath_draintxq(sc);
    804 		if (!sc->sc_invalid)
    805 			ath_stoprecv(sc);
    806 		else
    807 			sc->sc_rxlink = NULL;
    808 #ifdef __FreeBSD__
    809 		IF_DRAIN(&ifp->if_snd);
    810 #else
    811 		IF_PURGE(&ifp->if_snd);
    812 #endif
    813 		ath_beacon_free(sc);
    814 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
    815 		if (!sc->sc_invalid) {
    816 			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
    817 		}
    818 #ifdef __NetBSD__
    819 		ath_disable(sc);
    820 #endif
    821 	}
    822 	ath_softc_critsect_end(sc, s);
    823 }
    824 
    825 /*
    826  * Reset the hardware w/o losing operational state.  This is
    827  * basically a more efficient way of doing ath_stop, ath_init,
    828  * followed by state transitions to the current 802.11
    829  * operational state.  Used to recover from errors rx overrun
    830  * and to reset the hardware when rf gain settings must be reset.
    831  */
    832 static void
    833 ath_reset(struct ath_softc *sc)
    834 {
    835 	struct ieee80211com *ic = &sc->sc_ic;
    836 	struct ifnet *ifp = &ic->ic_if;
    837 	struct ath_hal *ah = sc->sc_ah;
    838 	struct ieee80211_channel *c;
    839 	HAL_STATUS status;
    840 	HAL_CHANNEL hchan;
    841 
    842 	/*
    843 	 * Convert to a HAL channel description with the flags
    844 	 * constrained to reflect the current operating mode.
    845 	 */
    846 	c = ic->ic_ibss_chan;
    847 	hchan.channel = c->ic_freq;
    848 	hchan.channelFlags = ath_chan2flags(ic, c);
    849 
    850 	ath_hal_intrset(ah, 0);		/* disable interrupts */
    851 	ath_draintxq(sc);		/* stop xmit side */
    852 	ath_stoprecv(sc);		/* stop recv side */
    853 	/* NB: indicate channel change so we do a full reset */
    854 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
    855 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
    856 			__func__, status);
    857 	ath_hal_intrset(ah, sc->sc_imask);
    858 	if (ath_startrecv(sc) != 0)	/* restart recv */
    859 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
    860 	ath_start(ifp);			/* restart xmit */
    861 	if (ic->ic_state == IEEE80211_S_RUN)
    862 		ath_beacon_config(sc);	/* restart beacons */
    863 }
    864 
    865 static void
    866 ath_start(struct ifnet *ifp)
    867 {
    868 	struct ath_softc *sc = ifp->if_softc;
    869 	struct ath_hal *ah = sc->sc_ah;
    870 	struct ieee80211com *ic = &sc->sc_ic;
    871 	struct ieee80211_node *ni;
    872 	struct ath_buf *bf;
    873 	struct mbuf *m;
    874 	struct ieee80211_frame *wh;
    875 	ath_txbuf_critsect_decl(s);
    876 
    877 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
    878 		return;
    879 	for (;;) {
    880 		/*
    881 		 * Grab a TX buffer and associated resources.
    882 		 */
    883 		ath_txbuf_critsect_begin(sc, s);
    884 		bf = TAILQ_FIRST(&sc->sc_txbuf);
    885 		if (bf != NULL)
    886 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
    887 		ath_txbuf_critsect_end(sc, s);
    888 		if (bf == NULL) {
    889 			DPRINTF(("ath_start: out of xmit buffers\n"));
    890 			sc->sc_stats.ast_tx_qstop++;
    891 			ifp->if_flags |= IFF_OACTIVE;
    892 			break;
    893 		}
    894 		/*
    895 		 * Poll the management queue for frames; they
    896 		 * have priority over normal data frames.
    897 		 */
    898 		IF_DEQUEUE(&ic->ic_mgtq, m);
    899 		if (m == NULL) {
    900 			/*
    901 			 * No data frames go out unless we're associated.
    902 			 */
    903 			if (ic->ic_state != IEEE80211_S_RUN) {
    904 				DPRINTF(("ath_start: ignore data packet, "
    905 					"state %u\n", ic->ic_state));
    906 				sc->sc_stats.ast_tx_discard++;
    907 				ath_txbuf_critsect_begin(sc, s);
    908 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
    909 				ath_txbuf_critsect_end(sc, s);
    910 				break;
    911 			}
    912 			IF_DEQUEUE(&ifp->if_snd, m);
    913 			if (m == NULL) {
    914 				ath_txbuf_critsect_begin(sc, s);
    915 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
    916 				ath_txbuf_critsect_end(sc, s);
    917 				break;
    918 			}
    919 			ifp->if_opackets++;
    920 
    921 #ifdef __NetBSD__
    922 #if NBPFILTER > 0
    923 			if (ifp->if_bpf)
    924 				bpf_mtap(ifp->if_bpf, m);
    925 #endif
    926 #endif
    927 #ifdef __FreeBSD__
    928 			BPF_MTAP(ifp, m);
    929 #endif
    930 			/*
    931 			 * Encapsulate the packet in prep for transmission.
    932 			 */
    933 			m = ieee80211_encap(ifp, m, &ni);
    934 			if (m == NULL) {
    935 				DPRINTF(("ath_start: encapsulation failure\n"));
    936 				sc->sc_stats.ast_tx_encap++;
    937 				goto bad;
    938 			}
    939 			wh = mtod(m, struct ieee80211_frame *);
    940 			if (ic->ic_flags & IEEE80211_F_WEPON)
    941 				wh->i_fc[1] |= IEEE80211_FC1_WEP;
    942 		} else {
    943 			/*
    944 			 * Hack!  The referenced node pointer is in the
    945 			 * rcvif field of the packet header.  This is
    946 			 * placed there by ieee80211_mgmt_output because
    947 			 * we need to hold the reference with the frame
    948 			 * and there's no other way (other than packet
    949 			 * tags which we consider too expensive to use)
    950 			 * to pass it along.
    951 			 */
    952 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
    953 			m->m_pkthdr.rcvif = NULL;
    954 
    955 			wh = mtod(m, struct ieee80211_frame *);
    956 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
    957 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
    958 				/* fill time stamp */
    959 				u_int64_t tsf;
    960 				u_int32_t *tstamp;
    961 
    962 				tsf = ath_hal_gettsf64(ah);
    963 				/* XXX: adjust 100us delay to xmit */
    964 				tsf += 100;
    965 				tstamp = (u_int32_t *)&wh[1];
    966 				tstamp[0] = htole32(tsf & 0xffffffff);
    967 				tstamp[1] = htole32(tsf >> 32);
    968 			}
    969 			sc->sc_stats.ast_tx_mgmt++;
    970 		}
    971 #if NBPFILTER > 0
    972 		if (ic->ic_rawbpf)
    973 			bpf_mtap(ic->ic_rawbpf, m);
    974 #endif
    975 
    976 #if NBPFILTER > 0
    977 		if (sc->sc_drvbpf) {
    978 #ifdef __FreeBSD__
    979 			struct mbuf *mb;
    980 
    981 			MGETHDR(mb, M_DONTWAIT, m->m_type);
    982 			if (mb != NULL) {
    983 				sc->sc_tx_th.wt_rate =
    984 					ni->ni_rates.rs_rates[ni->ni_txrate];
    985 
    986 				mb->m_next = m;
    987 				mb->m_data = (caddr_t)&sc->sc_tx_th;
    988 				mb->m_len = sizeof(sc->sc_tx_th);
    989 				mb->m_pkthdr.len += mb->m_len;
    990 				bpf_mtap(sc->sc_drvbpf, mb);
    991 				m_free(mb);
    992 			}
    993 #else
    994 			struct mbuf mb;
    995 
    996 			M_COPY_PKTHDR(&mb, m);
    997 			sc->sc_tx_th.wt_rate =
    998 				ni->ni_rates.rs_rates[ni->ni_txrate];
    999 
   1000 			mb.m_next = m;
   1001 			mb.m_data = (caddr_t)&sc->sc_tx_th;
   1002 			mb.m_len = sizeof(sc->sc_tx_th);
   1003 			mb.m_pkthdr.len += mb.m_len;
   1004 			bpf_mtap(sc->sc_drvbpf, &mb);
   1005 #endif
   1006 		}
   1007 #endif
   1008 
   1009 		/*
   1010 		 * TODO:
   1011 		 * The duration field of 802.11 header should be filled.
   1012 		 * XXX This may be done in the ieee80211 layer, but the upper
   1013 		 *     doesn't know the detail of parameters such as IFS
   1014 		 *     for now..
   1015 		 */
   1016 		if (ath_tx_start(sc, ni, bf, m)) {
   1017 	bad:
   1018 			ath_txbuf_critsect_begin(sc, s);
   1019 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1020 			ath_txbuf_critsect_end(sc, s);
   1021 			ifp->if_oerrors++;
   1022 			if (ni && ni != ic->ic_bss)
   1023 				ieee80211_free_node(ic, ni);
   1024 			continue;
   1025 		}
   1026 
   1027 		sc->sc_tx_timer = 5;
   1028 		ifp->if_timer = 1;
   1029 	}
   1030 }
   1031 
   1032 static int
   1033 ath_media_change(struct ifnet *ifp)
   1034 {
   1035 	int error;
   1036 
   1037 	error = ieee80211_media_change(ifp);
   1038 	if (error == ENETRESET) {
   1039 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   1040 		    (IFF_RUNNING|IFF_UP))
   1041 			ath_init(ifp);		/* XXX lose error */
   1042 		error = 0;
   1043 	}
   1044 	return error;
   1045 }
   1046 
   1047 static void
   1048 ath_watchdog(struct ifnet *ifp)
   1049 {
   1050 	struct ath_softc *sc = ifp->if_softc;
   1051 	struct ieee80211com *ic = &sc->sc_ic;
   1052 
   1053 	ifp->if_timer = 0;
   1054 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
   1055 		return;
   1056 	if (sc->sc_tx_timer) {
   1057 		if (--sc->sc_tx_timer == 0) {
   1058 			if_printf(ifp, "device timeout\n");
   1059 #ifdef AR_DEBUG
   1060 			if (ath_debug)
   1061 				ath_hal_dumpstate(sc->sc_ah);
   1062 #endif /* AR_DEBUG */
   1063 			ath_init(ifp);		/* XXX ath_reset??? */
   1064 			ifp->if_oerrors++;
   1065 			sc->sc_stats.ast_watchdog++;
   1066 			return;
   1067 		}
   1068 		ifp->if_timer = 1;
   1069 	}
   1070 	if (ic->ic_fixed_rate == -1) {
   1071 		/*
   1072 		 * Run the rate control algorithm if we're not
   1073 		 * locked at a fixed rate.
   1074 		 */
   1075 		if (ic->ic_opmode == IEEE80211_M_STA)
   1076 			ath_rate_ctl(sc, ic->ic_bss);
   1077 		else
   1078 			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
   1079 	}
   1080 	ieee80211_watchdog(ifp);
   1081 }
   1082 
   1083 static int
   1084 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1085 {
   1086 	struct ath_softc *sc = ifp->if_softc;
   1087 	struct ifreq *ifr = (struct ifreq *)data;
   1088 	int error = 0;
   1089 	ath_softc_critsect_decl(s);
   1090 
   1091 	ath_softc_critsect_begin(sc, s);
   1092 	switch (cmd) {
   1093 	case SIOCSIFFLAGS:
   1094 		if (ifp->if_flags & IFF_UP) {
   1095 			if (ifp->if_flags & IFF_RUNNING) {
   1096 				/*
   1097 				 * To avoid rescanning another access point,
   1098 				 * do not call ath_init() here.  Instead,
   1099 				 * only reflect promisc mode settings.
   1100 				 */
   1101 				ath_mode_init(sc);
   1102 			} else
   1103 				ath_init(ifp);		/* XXX lose error */
   1104 		} else
   1105 			ath_stop(ifp);
   1106 		break;
   1107 	case SIOCADDMULTI:
   1108 	case SIOCDELMULTI:
   1109 		/*
   1110 		 * The upper layer has already installed/removed
   1111 		 * the multicast address(es), just recalculate the
   1112 		 * multicast filter for the card.
   1113 		 */
   1114 		if (ifp->if_flags & IFF_RUNNING)
   1115 			ath_mode_init(sc);
   1116 		break;
   1117 	case SIOCGATHSTATS:
   1118 		copyout(&sc->sc_stats, ifr->ifr_data, sizeof (sc->sc_stats));
   1119 		break;
   1120 	default:
   1121 		error = ieee80211_ioctl(ifp, cmd, data);
   1122 		if (error == ENETRESET) {
   1123 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
   1124 			    (IFF_RUNNING|IFF_UP))
   1125 				ath_init(ifp);		/* XXX lose error */
   1126 			error = 0;
   1127 		}
   1128 		break;
   1129 	}
   1130 	ath_softc_critsect_end(sc, s);
   1131 	return error;
   1132 }
   1133 
   1134 /*
   1135  * Fill the hardware key cache with key entries.
   1136  */
   1137 static void
   1138 ath_initkeytable(struct ath_softc *sc)
   1139 {
   1140 	struct ieee80211com *ic = &sc->sc_ic;
   1141 	struct ath_hal *ah = sc->sc_ah;
   1142 	int i;
   1143 
   1144 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
   1145 		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
   1146 		if (k->wk_len == 0)
   1147 			ath_hal_keyreset(ah, i);
   1148 		else
   1149 			/* XXX return value */
   1150 			/* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
   1151 			ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
   1152 	}
   1153 }
   1154 
   1155 static void
   1156 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
   1157 {
   1158 	u_int32_t val;
   1159 	u_int8_t pos;
   1160 
   1161 	val = LE_READ_4(dl + 0);
   1162 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1163 	val = LE_READ_4(dl + 3);
   1164 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
   1165 	pos &= 0x3f;
   1166 	(*mfilt)[pos / 32] |= (1 << (pos % 32));
   1167 }
   1168 
   1169 #ifdef __FreeBSD__
   1170 static void
   1171 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
   1172 {
   1173 	struct ieee80211com *ic = &sc->sc_ic;
   1174 	struct ifnet *ifp = &ic->ic_if;
   1175 	struct ifmultiaddr *ifma;
   1176 
   1177 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
   1178 		caddr_t dl;
   1179 
   1180 		/* calculate XOR of eight 6bit values */
   1181 		dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
   1182 		ath_mcastfilter_accum(dl, &mfilt);
   1183 	}
   1184 }
   1185 #else
   1186 static void
   1187 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
   1188 {
   1189 	struct ether_multi *enm;
   1190 	struct ether_multistep estep;
   1191 
   1192 	ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
   1193 	while (enm != NULL) {
   1194 		/* XXX Punt on ranges. */
   1195 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
   1196 			(*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
   1197 			break;
   1198 		}
   1199 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
   1200 		ETHER_NEXT_MULTI(estep, enm);
   1201 	}
   1202 }
   1203 #endif
   1204 
   1205 static void
   1206 ath_mode_init(struct ath_softc *sc)
   1207 {
   1208 	struct ieee80211com *ic = &sc->sc_ic;
   1209 	struct ath_hal *ah = sc->sc_ah;
   1210 	struct ifnet *ifp = &ic->ic_if;
   1211 	u_int32_t rfilt, mfilt[2];
   1212 
   1213 	/* configure operational mode */
   1214 	ath_hal_setopmode(ah, ic->ic_opmode);
   1215 
   1216 	/* receive filter */
   1217 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   1218 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   1219 	if (ic->ic_opmode != IEEE80211_M_STA)
   1220 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   1221 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   1222 	    (ifp->if_flags & IFF_PROMISC))
   1223 		rfilt |= HAL_RX_FILTER_PROM;
   1224 	if (ic->ic_state == IEEE80211_S_SCAN)
   1225 		rfilt |= HAL_RX_FILTER_BEACON;
   1226 	ath_hal_setrxfilter(ah, rfilt);
   1227 
   1228 	/* calculate and install multicast filter */
   1229 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
   1230 		mfilt[0] = mfilt[1] = 0;
   1231 		ath_mcastfilter_compute(sc, &mfilt);
   1232 	} else {
   1233 		mfilt[0] = mfilt[1] = ~0;
   1234 	}
   1235 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
   1236 	DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
   1237 		rfilt, mfilt[0], mfilt[1]));
   1238 }
   1239 
   1240 #ifdef __FreeBSD__
   1241 static void
   1242 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
   1243 {
   1244 	struct ath_buf *bf = arg;
   1245 
   1246 	KASSERT(nseg <= ATH_MAX_SCATTER,
   1247 		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
   1248 	bf->bf_mapsize = mapsize;
   1249 	bf->bf_nseg = nseg;
   1250 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
   1251 }
   1252 #endif /* __FreeBSD__ */
   1253 
   1254 static struct mbuf *
   1255 ath_getmbuf(int flags, int type, u_int pktlen)
   1256 {
   1257 	struct mbuf *m;
   1258 
   1259 	KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
   1260 #ifdef __FreeBSD__
   1261 	if (pktlen <= MHLEN)
   1262 		MGETHDR(m, flags, type);
   1263 	else
   1264 		m = m_getcl(flags, type, M_PKTHDR);
   1265 #else
   1266 	MGETHDR(m, flags, type);
   1267 	if (m != NULL && pktlen > MHLEN)
   1268 		MCLGET(m, flags);
   1269 #endif
   1270 	return m;
   1271 }
   1272 
   1273 static int
   1274 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
   1275 {
   1276 	struct ieee80211com *ic = &sc->sc_ic;
   1277 	struct ifnet *ifp = &ic->ic_if;
   1278 	struct ath_hal *ah = sc->sc_ah;
   1279 	struct ieee80211_frame *wh;
   1280 	struct ath_buf *bf;
   1281 	struct ath_desc *ds;
   1282 	struct mbuf *m;
   1283 	int error, pktlen;
   1284 	u_int8_t *frm, rate;
   1285 	u_int16_t capinfo;
   1286 	struct ieee80211_rateset *rs;
   1287 	const HAL_RATE_TABLE *rt;
   1288 
   1289 	bf = sc->sc_bcbuf;
   1290 	if (bf->bf_m != NULL) {
   1291 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   1292 		m_freem(bf->bf_m);
   1293 		bf->bf_m = NULL;
   1294 		bf->bf_node = NULL;
   1295 	}
   1296 	/*
   1297 	 * NB: the beacon data buffer must be 32-bit aligned;
   1298 	 * we assume the mbuf routines will return us something
   1299 	 * with this alignment (perhaps should assert).
   1300 	 */
   1301 	rs = &ni->ni_rates;
   1302 	pktlen = sizeof (struct ieee80211_frame)
   1303 	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 6;
   1304 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
   1305 		pktlen += 2;
   1306 	m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
   1307 	if (m == NULL) {
   1308 		DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
   1309 			pktlen));
   1310 		sc->sc_stats.ast_be_nombuf++;
   1311 		return ENOMEM;
   1312 	}
   1313 
   1314 	wh = mtod(m, struct ieee80211_frame *);
   1315 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   1316 	    IEEE80211_FC0_SUBTYPE_BEACON;
   1317 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1318 	*(u_int16_t *)wh->i_dur = 0;
   1319 	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
   1320 	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
   1321 	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
   1322 	*(u_int16_t *)wh->i_seq = 0;
   1323 
   1324 	/*
   1325 	 * beacon frame format
   1326 	 *	[8] time stamp
   1327 	 *	[2] beacon interval
   1328 	 *	[2] cabability information
   1329 	 *	[tlv] ssid
   1330 	 *	[tlv] supported rates
   1331 	 *	[tlv] parameter set (IBSS)
   1332 	 *	[tlv] extended supported rates
   1333 	 */
   1334 	frm = (u_int8_t *)&wh[1];
   1335 	memset(frm, 0, 8);	/* timestamp is set by hardware */
   1336 	frm += 8;
   1337 	*(u_int16_t *)frm = htole16(ni->ni_intval);
   1338 	frm += 2;
   1339 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1340 		capinfo = IEEE80211_CAPINFO_IBSS;
   1341 	else
   1342 		capinfo = IEEE80211_CAPINFO_ESS;
   1343 	if (ic->ic_flags & IEEE80211_F_WEPON)
   1344 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1345 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   1346 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1347 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1348 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1349 	*(u_int16_t *)frm = htole16(capinfo);
   1350 	frm += 2;
   1351 	*frm++ = IEEE80211_ELEMID_SSID;
   1352 	*frm++ = ni->ni_esslen;
   1353 	memcpy(frm, ni->ni_essid, ni->ni_esslen);
   1354 	frm += ni->ni_esslen;
   1355 	frm = ieee80211_add_rates(frm, rs);
   1356 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1357 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1358 		*frm++ = 2;
   1359 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1360 	} else {
   1361 		/* TODO: TIM */
   1362 		*frm++ = IEEE80211_ELEMID_TIM;
   1363 		*frm++ = 4;	/* length */
   1364 		*frm++ = 0;	/* DTIM count */
   1365 		*frm++ = 1;	/* DTIM period */
   1366 		*frm++ = 0;	/* bitmap control */
   1367 		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
   1368 	}
   1369 	frm = ieee80211_add_xrates(frm, rs);
   1370 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1371 	KASSERT(m->m_pkthdr.len <= pktlen,
   1372 		("beacon bigger than expected, len %u calculated %u",
   1373 		m->m_pkthdr.len, pktlen));
   1374 
   1375 	DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
   1376 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
   1377 	if (error != 0) {
   1378 		m_freem(m);
   1379 		return error;
   1380 	}
   1381 	KASSERT(bf->bf_nseg == 1,
   1382 		("ath_beacon_alloc: multi-segment packet; nseg %u",
   1383 		bf->bf_nseg));
   1384 	bf->bf_m = m;
   1385 
   1386 	/* setup descriptors */
   1387 	ds = bf->bf_desc;
   1388 
   1389 	ds->ds_link = 0;
   1390 	ds->ds_data = bf->bf_segs[0].ds_addr;
   1391 
   1392 	DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
   1393 	    (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
   1394 
   1395 	/*
   1396 	 * Calculate rate code.
   1397 	 * XXX everything at min xmit rate
   1398 	 */
   1399 	rt = sc->sc_currates;
   1400 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   1401 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   1402 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
   1403 	else
   1404 		rate = rt->info[0].rateCode;
   1405 	if (!ath_hal_setuptxdesc(ah, ds
   1406 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
   1407 		, sizeof(struct ieee80211_frame)	/* header length */
   1408 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
   1409 		, 0x20				/* txpower XXX */
   1410 		, rate, 1			/* series 0 rate/tries */
   1411 		, HAL_TXKEYIX_INVALID		/* no encryption */
   1412 		, 0				/* antenna mode */
   1413 		, HAL_TXDESC_NOACK		/* no ack for beacons */
   1414 		, 0				/* rts/cts rate */
   1415 		, 0				/* rts/cts duration */
   1416 	)) {
   1417 		printf("%s: ath_hal_setuptxdesc failed\n", __func__);
   1418 		return -1;
   1419 	}
   1420 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
   1421 	/* XXX verify mbuf data area covers this roundup */
   1422 	if (!ath_hal_filltxdesc(ah, ds
   1423 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
   1424 		, AH_TRUE				/* first segment */
   1425 		, AH_TRUE				/* last segment */
   1426 	)) {
   1427 		printf("%s: ath_hal_filltxdesc failed\n", __func__);
   1428 		return -1;
   1429 	}
   1430 
   1431 	/* XXX it is not appropriate to bus_dmamap_sync? -dcy */
   1432 
   1433 	return 0;
   1434 }
   1435 
   1436 static void
   1437 ath_beacon_proc(void *arg, int pending)
   1438 {
   1439 	struct ath_softc *sc = arg;
   1440 	struct ieee80211com *ic = &sc->sc_ic;
   1441 	struct ath_buf *bf = sc->sc_bcbuf;
   1442 	struct ath_hal *ah = sc->sc_ah;
   1443 
   1444 	DPRINTF2(("%s: pending %u\n", __func__, pending));
   1445 	if (ic->ic_opmode == IEEE80211_M_STA ||
   1446 	    bf == NULL || bf->bf_m == NULL) {
   1447 		DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
   1448 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
   1449 		return;
   1450 	}
   1451 	/* TODO: update beacon to reflect PS poll state */
   1452 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
   1453 		DPRINTF(("%s: beacon queue %u did not stop?",
   1454 			__func__, sc->sc_bhalq));
   1455 		return;			/* busy, XXX is this right? */
   1456 	}
   1457 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
   1458 
   1459 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
   1460 	ath_hal_txstart(ah, sc->sc_bhalq);
   1461 	DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
   1462 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
   1463 }
   1464 
   1465 static void
   1466 ath_beacon_free(struct ath_softc *sc)
   1467 {
   1468 	struct ath_buf *bf = sc->sc_bcbuf;
   1469 
   1470 	if (bf->bf_m != NULL) {
   1471 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   1472 		m_freem(bf->bf_m);
   1473 		bf->bf_m = NULL;
   1474 		bf->bf_node = NULL;
   1475 	}
   1476 }
   1477 
   1478 /*
   1479  * Configure the beacon and sleep timers.
   1480  *
   1481  * When operating as an AP this resets the TSF and sets
   1482  * up the hardware to notify us when we need to issue beacons.
   1483  *
   1484  * When operating in station mode this sets up the beacon
   1485  * timers according to the timestamp of the last received
   1486  * beacon and the current TSF, configures PCF and DTIM
   1487  * handling, programs the sleep registers so the hardware
   1488  * will wakeup in time to receive beacons, and configures
   1489  * the beacon miss handling so we'll receive a BMISS
   1490  * interrupt when we stop seeing beacons from the AP
   1491  * we've associated with.
   1492  */
   1493 static void
   1494 ath_beacon_config(struct ath_softc *sc)
   1495 {
   1496 	struct ath_hal *ah = sc->sc_ah;
   1497 	struct ieee80211com *ic = &sc->sc_ic;
   1498 	struct ieee80211_node *ni = ic->ic_bss;
   1499 	u_int32_t nexttbtt;
   1500 
   1501 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
   1502 	    (LE_READ_4(ni->ni_tstamp) >> 10);
   1503 	DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
   1504 	nexttbtt += ni->ni_intval;
   1505 	if (ic->ic_opmode == IEEE80211_M_STA) {
   1506 		HAL_BEACON_STATE bs;
   1507 		u_int32_t bmisstime;
   1508 
   1509 		/* NB: no PCF support right now */
   1510 		memset(&bs, 0, sizeof(bs));
   1511 		bs.bs_intval = ni->ni_intval;
   1512 		bs.bs_nexttbtt = nexttbtt;
   1513 		bs.bs_dtimperiod = bs.bs_intval;
   1514 		bs.bs_nextdtim = nexttbtt;
   1515 		/*
   1516 		 * Calculate the number of consecutive beacons to miss
   1517 		 * before taking a BMISS interrupt.  The configuration
   1518 		 * is specified in ms, so we need to convert that to
   1519 		 * TU's and then calculate based on the beacon interval.
   1520 		 * Note that we clamp the result to at most 10 beacons.
   1521 		 */
   1522 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
   1523 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
   1524 		if (bs.bs_bmissthreshold > 10)
   1525 			bs.bs_bmissthreshold = 10;
   1526 		else if (bs.bs_bmissthreshold <= 0)
   1527 			bs.bs_bmissthreshold = 1;
   1528 
   1529 		/*
   1530 		 * Calculate sleep duration.  The configuration is
   1531 		 * given in ms.  We insure a multiple of the beacon
   1532 		 * period is used.  Also, if the sleep duration is
   1533 		 * greater than the DTIM period then it makes senses
   1534 		 * to make it a multiple of that.
   1535 		 *
   1536 		 * XXX fixed at 100ms
   1537 		 */
   1538 		bs.bs_sleepduration =
   1539 			roundup((100 * 1000) / 1024, bs.bs_intval);
   1540 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
   1541 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
   1542 
   1543 		DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
   1544 			, __func__
   1545 			, bs.bs_intval
   1546 			, bs.bs_nexttbtt
   1547 			, bs.bs_dtimperiod
   1548 			, bs.bs_nextdtim
   1549 			, bs.bs_bmissthreshold
   1550 			, bs.bs_sleepduration
   1551 		));
   1552 		ath_hal_intrset(ah, 0);
   1553 		/*
   1554 		 * Reset our tsf so the hardware will update the
   1555 		 * tsf register to reflect timestamps found in
   1556 		 * received beacons.
   1557 		 */
   1558 		ath_hal_resettsf(ah);
   1559 		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
   1560 		sc->sc_imask |= HAL_INT_BMISS;
   1561 		ath_hal_intrset(ah, sc->sc_imask);
   1562 	} else {
   1563 		DPRINTF(("%s: intval %u nexttbtt %u\n",
   1564 			__func__, ni->ni_intval, nexttbtt));
   1565 		ath_hal_intrset(ah, 0);
   1566 		ath_hal_beaconinit(ah, ic->ic_opmode,
   1567 			nexttbtt, ni->ni_intval);
   1568 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1569 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
   1570 		ath_hal_intrset(ah, sc->sc_imask);
   1571 	}
   1572 }
   1573 
   1574 #ifdef __FreeBSD__
   1575 static void
   1576 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
   1577 {
   1578 	bus_addr_t *paddr = (bus_addr_t*) arg;
   1579 	*paddr = segs->ds_addr;
   1580 }
   1581 #endif
   1582 
   1583 #ifdef __FreeBSD__
   1584 static int
   1585 ath_desc_alloc(struct ath_softc *sc)
   1586 {
   1587 	int i, bsize, error;
   1588 	struct ath_desc *ds;
   1589 	struct ath_buf *bf;
   1590 
   1591 	/* allocate descriptors */
   1592 	sc->sc_desc_len = sizeof(struct ath_desc) *
   1593 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
   1594 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
   1595 	if (error != 0)
   1596 		return error;
   1597 
   1598 	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
   1599 				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
   1600 
   1601 	if (error != 0)
   1602 		goto fail0;
   1603 
   1604 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
   1605 				sc->sc_desc, sc->sc_desc_len,
   1606 				ath_load_cb, &sc->sc_desc_paddr,
   1607 				BUS_DMA_NOWAIT);
   1608 	if (error != 0)
   1609 		goto fail1;
   1610 
   1611 	ds = sc->sc_desc;
   1612 	DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
   1613 	    ds, sc->sc_desc_len,
   1614 	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
   1615 
   1616 	/* allocate buffers */
   1617 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
   1618 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
   1619 	if (bf == NULL) {
   1620 		printf("%s: unable to allocate Tx/Rx buffers\n",
   1621 		    sc->sc_dev.dv_xname);
   1622 		error = -1;
   1623 		goto fail2;
   1624 	}
   1625 	sc->sc_bufptr = bf;
   1626 
   1627 	TAILQ_INIT(&sc->sc_rxbuf);
   1628 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
   1629 		bf->bf_desc = ds;
   1630 		bf->bf_daddr = sc->sc_desc_paddr +
   1631 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
   1632 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
   1633 					  &bf->bf_dmamap);
   1634 		if (error != 0)
   1635 			break;
   1636 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   1637 	}
   1638 
   1639 	TAILQ_INIT(&sc->sc_txbuf);
   1640 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
   1641 		bf->bf_desc = ds;
   1642 		bf->bf_daddr = sc->sc_desc_paddr +
   1643 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
   1644 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
   1645 					  &bf->bf_dmamap);
   1646 		if (error != 0)
   1647 			break;
   1648 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1649 	}
   1650 	TAILQ_INIT(&sc->sc_txq);
   1651 
   1652 	/* beacon buffer */
   1653 	bf->bf_desc = ds;
   1654 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
   1655 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
   1656 	if (error != 0)
   1657 		return error;
   1658 	sc->sc_bcbuf = bf;
   1659 	return 0;
   1660 
   1661 fail2:
   1662 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
   1663 fail1:
   1664 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
   1665 fail0:
   1666 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
   1667 	sc->sc_ddmamap = NULL;
   1668 	return error;
   1669 }
   1670 #else
   1671 static int
   1672 ath_desc_alloc(struct ath_softc *sc)
   1673 {
   1674 	int i, bsize, error = -1;
   1675 	struct ath_desc *ds;
   1676 	struct ath_buf *bf;
   1677 
   1678 	/* allocate descriptors */
   1679 	sc->sc_desc_len = sizeof(struct ath_desc) *
   1680 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
   1681 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
   1682 	    0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
   1683 		printf("%s: unable to allocate control data, error = %d\n",
   1684 		    sc->sc_dev.dv_xname, error);
   1685 		goto fail0;
   1686 	}
   1687 
   1688 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
   1689 	    sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
   1690 		printf("%s: unable to map control data, error = %d\n",
   1691 		    sc->sc_dev.dv_xname, error);
   1692 		goto fail1;
   1693 	}
   1694 
   1695 	if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
   1696 	    sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
   1697 		printf("%s: unable to create control data DMA map, "
   1698 		    "error = %d\n", sc->sc_dev.dv_xname, error);
   1699 		goto fail2;
   1700 	}
   1701 
   1702 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
   1703 	    sc->sc_desc_len, NULL, 0)) != 0) {
   1704 		printf("%s: unable to load control data DMA map, error = %d\n",
   1705 		    sc->sc_dev.dv_xname, error);
   1706 		goto fail3;
   1707 	}
   1708 
   1709 	ds = sc->sc_desc;
   1710 	sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
   1711 
   1712 	DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
   1713 	    ds, (u_long)sc->sc_desc_len,
   1714 	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
   1715 
   1716 	/* allocate buffers */
   1717 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
   1718 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
   1719 	if (bf == NULL) {
   1720 		printf("%s: unable to allocate Tx/Rx buffers\n",
   1721 		    sc->sc_dev.dv_xname);
   1722 		error = ENOMEM;
   1723 		goto fail3;
   1724 	}
   1725 	sc->sc_bufptr = bf;
   1726 
   1727 	TAILQ_INIT(&sc->sc_rxbuf);
   1728 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
   1729 		bf->bf_desc = ds;
   1730 		bf->bf_daddr = sc->sc_desc_paddr +
   1731 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
   1732 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1733 		    MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
   1734 			printf("%s: unable to create Rx dmamap, error = %d\n",
   1735 			    sc->sc_dev.dv_xname, error);
   1736 			goto fail4;
   1737 		}
   1738 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   1739 	}
   1740 
   1741 	TAILQ_INIT(&sc->sc_txbuf);
   1742 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
   1743 		bf->bf_desc = ds;
   1744 		bf->bf_daddr = sc->sc_desc_paddr +
   1745 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
   1746 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
   1747 		    ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
   1748 			printf("%s: unable to create Tx dmamap, error = %d\n",
   1749 			    sc->sc_dev.dv_xname, error);
   1750 			goto fail5;
   1751 		}
   1752 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   1753 	}
   1754 	TAILQ_INIT(&sc->sc_txq);
   1755 
   1756 	/* beacon buffer */
   1757 	bf->bf_desc = ds;
   1758 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
   1759 	if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
   1760 	    &bf->bf_dmamap)) != 0) {
   1761 		printf("%s: unable to create beacon dmamap, error = %d\n",
   1762 		    sc->sc_dev.dv_xname, error);
   1763 		goto fail5;
   1764 	}
   1765 	sc->sc_bcbuf = bf;
   1766 	return 0;
   1767 
   1768 fail5:
   1769 	for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
   1770 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
   1771 			continue;
   1772 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
   1773 	}
   1774 fail4:
   1775 	for (i = 0; i < ATH_RXBUF; i++) {
   1776 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
   1777 			continue;
   1778 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
   1779 	}
   1780 fail3:
   1781 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
   1782 fail2:
   1783 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
   1784 	sc->sc_ddmamap = NULL;
   1785 fail1:
   1786 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
   1787 fail0:
   1788 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
   1789 	return error;
   1790 }
   1791 #endif
   1792 
   1793 static void
   1794 ath_desc_free(struct ath_softc *sc)
   1795 {
   1796 	struct ath_buf *bf;
   1797 
   1798 #ifdef __FreeBSD__
   1799 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
   1800 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
   1801 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
   1802 #else
   1803 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
   1804 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
   1805 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
   1806 #endif
   1807 
   1808 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
   1809 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   1810 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   1811 		m_freem(bf->bf_m);
   1812 	}
   1813 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
   1814 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   1815 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   1816 		if (bf->bf_m) {
   1817 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   1818 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
   1819 			m_freem(bf->bf_m);
   1820 			bf->bf_m = NULL;
   1821 		}
   1822 	}
   1823 	if (sc->sc_bcbuf != NULL) {
   1824 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
   1825 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
   1826 		sc->sc_bcbuf = NULL;
   1827 	}
   1828 
   1829 	TAILQ_INIT(&sc->sc_rxbuf);
   1830 	TAILQ_INIT(&sc->sc_txbuf);
   1831 	TAILQ_INIT(&sc->sc_txq);
   1832 	free(sc->sc_bufptr, M_DEVBUF);
   1833 	sc->sc_bufptr = NULL;
   1834 }
   1835 
   1836 static struct ieee80211_node *
   1837 ath_node_alloc(struct ieee80211com *ic)
   1838 {
   1839 	struct ath_node *an =
   1840 		malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
   1841 	return an ? &an->an_node : NULL;
   1842 }
   1843 
   1844 static void
   1845 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
   1846 {
   1847 	struct ath_softc *sc = ic->ic_if.if_softc;
   1848 	struct ath_buf *bf;
   1849 
   1850 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
   1851 		if (bf->bf_node == ni)
   1852 			bf->bf_node = NULL;
   1853 	}
   1854 	free(ni, M_DEVBUF);
   1855 }
   1856 
   1857 static void
   1858 ath_node_copy(struct ieee80211com *ic,
   1859 	struct ieee80211_node *dst, const struct ieee80211_node *src)
   1860 {
   1861 	*(struct ath_node *)dst = *(const struct ath_node *)src;
   1862 }
   1863 
   1864 static int
   1865 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
   1866 {
   1867 	struct ath_hal *ah = sc->sc_ah;
   1868 	int error;
   1869 	struct mbuf *m;
   1870 	struct ath_desc *ds;
   1871 
   1872 	m = bf->bf_m;
   1873 	if (m == NULL) {
   1874 		/*
   1875 		 * NB: by assigning a page to the rx dma buffer we
   1876 		 * implicitly satisfy the Atheros requirement that
   1877 		 * this buffer be cache-line-aligned and sized to be
   1878 		 * multiple of the cache line size.  Not doing this
   1879 		 * causes weird stuff to happen (for the 5210 at least).
   1880 		 */
   1881 		m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
   1882 		if (m == NULL) {
   1883 			DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
   1884 			sc->sc_stats.ast_rx_nombuf++;
   1885 			return ENOMEM;
   1886 		}
   1887 		bf->bf_m = m;
   1888 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
   1889 
   1890 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
   1891 		                                 BUS_DMA_NOWAIT);
   1892 		if (error != 0) {
   1893 			DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
   1894 				" error %d\n", error));
   1895 			sc->sc_stats.ast_rx_busdma++;
   1896 			return error;
   1897 		}
   1898 		KASSERT(bf->bf_nseg == 1,
   1899 			("ath_rxbuf_init: multi-segment packet; nseg %u",
   1900 			bf->bf_nseg));
   1901 	}
   1902 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
   1903 
   1904 	/* setup descriptors */
   1905 	ds = bf->bf_desc;
   1906 	ds->ds_link = 0;
   1907 	ds->ds_data = bf->bf_segs[0].ds_addr;
   1908 	ath_hal_setuprxdesc(ah, ds
   1909 		, m->m_len		/* buffer size */
   1910 		, 0
   1911 	);
   1912 
   1913 	if (sc->sc_rxlink != NULL)
   1914 		*sc->sc_rxlink = bf->bf_daddr;
   1915 	sc->sc_rxlink = &ds->ds_link;
   1916 	return 0;
   1917 }
   1918 
   1919 static void
   1920 ath_rx_proc(void *arg, int npending)
   1921 {
   1922 	struct ath_softc *sc = arg;
   1923 	struct ath_buf *bf;
   1924 	struct ieee80211com *ic = &sc->sc_ic;
   1925 	struct ifnet *ifp = &ic->ic_if;
   1926 	struct ath_hal *ah = sc->sc_ah;
   1927 	struct ath_desc *ds;
   1928 	struct mbuf *m;
   1929 	struct ieee80211_frame *wh, whbuf;
   1930 	struct ieee80211_node *ni;
   1931 	int len;
   1932 	u_int phyerr;
   1933 	HAL_STATUS status;
   1934 
   1935 	DPRINTF2(("ath_rx_proc: pending %u\n", npending));
   1936 	do {
   1937 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
   1938 		if (bf == NULL) {		/* NB: shouldn't happen */
   1939 			if_printf(ifp, "ath_rx_proc: no buffer!\n");
   1940 			break;
   1941 		}
   1942 		m = bf->bf_m;
   1943 		if (m == NULL) {		/* NB: shouldn't happen */
   1944 			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
   1945 			continue;
   1946 		}
   1947 		ds = bf->bf_desc;
   1948 		status = ath_hal_rxprocdesc(ah, ds);
   1949 #ifdef AR_DEBUG
   1950 		if (ath_debug > 1)
   1951 			ath_printrxbuf(bf, status == HAL_OK);
   1952 #endif
   1953 		if (status == HAL_EINPROGRESS)
   1954 			break;
   1955 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
   1956 		if (ds->ds_rxstat.rs_status != 0) {
   1957 			ifp->if_ierrors++;
   1958 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
   1959 				sc->sc_stats.ast_rx_crcerr++;
   1960 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
   1961 				sc->sc_stats.ast_rx_fifoerr++;
   1962 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
   1963 				sc->sc_stats.ast_rx_badcrypt++;
   1964 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
   1965 				sc->sc_stats.ast_rx_phyerr++;
   1966 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
   1967 				sc->sc_stats.ast_rx_phy[phyerr]++;
   1968 			}
   1969 			goto rx_next;
   1970 		}
   1971 
   1972 		len = ds->ds_rxstat.rs_datalen;
   1973 		if (len < sizeof(struct ieee80211_frame)) {
   1974 			DPRINTF(("ath_rx_proc: short packet %d\n", len));
   1975 			sc->sc_stats.ast_rx_tooshort++;
   1976 			goto rx_next;
   1977 		}
   1978 
   1979 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
   1980 
   1981 		wh = mtod(m, struct ieee80211_frame *);
   1982 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1983 		    IEEE80211_FC0_TYPE_CTL &&
   1984 		    ic->ic_opmode != IEEE80211_M_MONITOR) {
   1985 			/*
   1986 			 * Discard control frame when not in monitor mode.
   1987 			 */
   1988 			DPRINTF(("ath_rx_proc: control frame\n"));
   1989 			sc->sc_stats.ast_rx_ctl++;
   1990 			goto rx_next;
   1991 		}
   1992 
   1993 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   1994 		bf->bf_m = NULL;
   1995 		m->m_pkthdr.rcvif = ifp;
   1996 		m->m_pkthdr.len = m->m_len = len;
   1997 
   1998 #if NBPFILTER > 0
   1999 		if (sc->sc_drvbpf) {
   2000 #ifdef __FreeBSD__
   2001 			struct mbuf *mb;
   2002 
   2003 			/* XXX pre-allocate space when setting up recv's */
   2004 			MGETHDR(mb, M_DONTWAIT, m->m_type);
   2005 			if (mb != NULL) {
   2006 				sc->sc_rx_th.wr_rate =
   2007 					sc->sc_hwmap[ds->ds_rxstat.rs_rate];
   2008 				sc->sc_rx_th.wr_antsignal =
   2009 					ds->ds_rxstat.rs_rssi;
   2010 				sc->sc_rx_th.wr_antenna =
   2011 					ds->ds_rxstat.rs_antenna;
   2012 				/* XXX TSF */
   2013 
   2014 				(void) m_dup_pkthdr(mb, m, M_DONTWAIT);
   2015 				mb->m_next = m;
   2016 				mb->m_data = (caddr_t)&sc->sc_rx_th;
   2017 				mb->m_len = sizeof(sc->sc_rx_th);
   2018 				mb->m_pkthdr.len += mb->m_len;
   2019 				bpf_mtap(sc->sc_drvbpf, mb);
   2020 				m_free(mb);
   2021 			}
   2022 #else
   2023 			/* XXX pre-allocate space when setting up recv's */
   2024 			struct mbuf mb;
   2025 
   2026 			sc->sc_rx_th.wr_rate =
   2027 				sc->sc_hwmap[ds->ds_rxstat.rs_rate];
   2028 			sc->sc_rx_th.wr_antsignal =
   2029 				ds->ds_rxstat.rs_rssi;
   2030 			sc->sc_rx_th.wr_antenna =
   2031 				ds->ds_rxstat.rs_antenna;
   2032 			/* XXX TSF */
   2033 
   2034 			M_COPY_PKTHDR(&mb, m);
   2035 			mb.m_next = m;
   2036 			mb.m_data = (caddr_t)&sc->sc_rx_th;
   2037 			mb.m_len = sizeof(sc->sc_rx_th);
   2038 			mb.m_pkthdr.len += mb.m_len;
   2039 			bpf_mtap(sc->sc_drvbpf, &mb);
   2040 #endif
   2041 		}
   2042 #endif
   2043 
   2044 		m_adj(m, -IEEE80211_CRC_LEN);
   2045 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   2046 			/*
   2047 			 * WEP is decrypted by hardware. Clear WEP bit
   2048 			 * and trim WEP header for ieee80211_input().
   2049 			 */
   2050 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
   2051 			memcpy(&whbuf, wh, sizeof(whbuf));
   2052 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
   2053 			memcpy(mtod(m, caddr_t), &whbuf, sizeof(whbuf));
   2054 			/*
   2055 			 * Also trim WEP ICV from the tail.
   2056 			 */
   2057 			m_adj(m, -IEEE80211_WEP_CRCLEN);
   2058 		}
   2059 
   2060 		/*
   2061 		 * Locate the node for sender, track state, and
   2062 		 * then pass this node (referenced) up to the 802.11
   2063 		 * layer for its use.  We are required to pass
   2064 		 * something so we fall back to ic_bss when this frame
   2065 		 * is from an unknown sender.
   2066 		 */
   2067 		if (ic->ic_opmode != IEEE80211_M_STA) {
   2068 			ni = ieee80211_find_node(ic, wh->i_addr2);
   2069 			if (ni == NULL)
   2070 				ni = ieee80211_ref_node(ic->ic_bss);
   2071 		} else
   2072 			ni = ieee80211_ref_node(ic->ic_bss);
   2073 		ATH_NODE(ni)->an_rx_antenna = ds->ds_rxstat.rs_antenna;
   2074 		/*
   2075 		 * Send frame up for processing.
   2076 		 */
   2077 		ieee80211_input(ifp, m, ni,
   2078 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
   2079 		/*
   2080 		 * The frame may have caused the node to be marked for
   2081 		 * reclamation (e.g. in response to a DEAUTH message)
   2082 		 * so use free_node here instead of unref_node.
   2083 		 */
   2084 		if (ni == ic->ic_bss)
   2085 			ieee80211_unref_node(&ni);
   2086 		else
   2087 			ieee80211_free_node(ic, ni);
   2088   rx_next:
   2089 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
   2090 	} while (ath_rxbuf_init(sc, bf) == 0);
   2091 
   2092 	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
   2093 	ath_hal_rxena(ah);			/* in case of RXEOL */
   2094 }
   2095 
   2096 /*
   2097  * XXX Size of an ACK control frame in bytes.
   2098  */
   2099 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
   2100 
   2101 static int
   2102 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
   2103     struct mbuf *m0)
   2104 {
   2105 	struct ieee80211com *ic = &sc->sc_ic;
   2106 	struct ath_hal *ah = sc->sc_ah;
   2107 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2108 	int i, error, iswep, hdrlen, pktlen;
   2109 	u_int8_t rix, cix, txrate, ctsrate;
   2110 	struct ath_desc *ds;
   2111 	struct mbuf *m;
   2112 	struct ieee80211_frame *wh;
   2113 	u_int32_t iv;
   2114 	u_int8_t *ivp;
   2115 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
   2116 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
   2117 	u_int subtype, flags, ctsduration, antenna;
   2118 	HAL_PKT_TYPE atype;
   2119 	const HAL_RATE_TABLE *rt;
   2120 	HAL_BOOL shortPreamble;
   2121 	struct ath_node *an;
   2122 	ath_txq_critsect_decl(s);
   2123 
   2124 	wh = mtod(m0, struct ieee80211_frame *);
   2125 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
   2126 	hdrlen = sizeof(struct ieee80211_frame);
   2127 	pktlen = m0->m_pkthdr.len;
   2128 
   2129 	if (iswep) {
   2130 		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
   2131 		m_adj(m0, hdrlen);
   2132 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
   2133 		if (m0 == NULL) {
   2134 			sc->sc_stats.ast_tx_nombuf++;
   2135 			return ENOMEM;
   2136 		}
   2137 		ivp = hdrbuf + hdrlen;
   2138 		/*
   2139 		 * XXX
   2140 		 * IV must not duplicate during the lifetime of the key.
   2141 		 * But no mechanism to renew keys is defined in IEEE 802.11
   2142 		 * WEP.  And IV may be duplicated between other stations
   2143 		 * because of the session key itself is shared.
   2144 		 * So we use pseudo random IV for now, though it is not the
   2145 		 * right way.
   2146 		 */
   2147 		iv = arc4random();
   2148 		for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
   2149 			ivp[i] = iv;
   2150 			iv >>= 8;
   2151 		}
   2152 		ivp[i] = sc->sc_ic.ic_wep_txkey << 6;	/* Key ID and pad */
   2153 		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
   2154 		/*
   2155 		 * The ICV length must be included into hdrlen and pktlen.
   2156 		 */
   2157 		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
   2158 		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
   2159 	}
   2160 	pktlen += IEEE80211_CRC_LEN;
   2161 
   2162 	/*
   2163 	 * Load the DMA map so any coalescing is done.  This
   2164 	 * also calculates the number of descriptors we need.
   2165 	 */
   2166 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
   2167 	if (error != 0) {
   2168 		sc->sc_stats.ast_tx_busdma++;
   2169 		m_freem(m0);
   2170 		return error;
   2171 	}
   2172 	/*
   2173 	 * Discard null packets and check for packets that
   2174 	 * require too many TX descriptors.  We try to convert
   2175 	 * the latter to a cluster.
   2176 	 */
   2177 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
   2178 		sc->sc_stats.ast_tx_linear++;
   2179 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   2180 		if (m == NULL) {
   2181 			sc->sc_stats.ast_tx_nombuf++;
   2182 			m_freem(m0);
   2183 			return ENOMEM;
   2184 		}
   2185 #ifdef __FreeBSD__
   2186 		M_MOVE_PKTHDR(m, m0);
   2187 #else
   2188 		M_COPY_PKTHDR(m, m0);
   2189 #endif
   2190 		MCLGET(m, M_DONTWAIT);
   2191 		if ((m->m_flags & M_EXT) == 0) {
   2192 			sc->sc_stats.ast_tx_nomcl++;
   2193 			m_freem(m0);
   2194 			m_free(m);
   2195 			return ENOMEM;
   2196 		}
   2197 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   2198 		m_freem(m0);
   2199 		m->m_len = m->m_pkthdr.len;
   2200 		m0 = m;
   2201 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
   2202 					         BUS_DMA_NOWAIT);
   2203 		if (error != 0) {
   2204 			sc->sc_stats.ast_tx_busdma++;
   2205 			m_freem(m0);
   2206 			return error;
   2207 		}
   2208 		KASSERT(bf->bf_nseg == 1,
   2209 			("ath_tx_start: packet not one segment; nseg %u",
   2210 			bf->bf_nseg));
   2211 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
   2212 		sc->sc_stats.ast_tx_nodata++;
   2213 		m_freem(m0);
   2214 		return EIO;
   2215 	}
   2216 	DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
   2217 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
   2218 	bf->bf_m = m0;
   2219 	bf->bf_node = ni;			/* NB: held reference */
   2220 
   2221 	/* setup descriptors */
   2222 	ds = bf->bf_desc;
   2223 	rt = sc->sc_currates;
   2224 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
   2225 
   2226 	/*
   2227 	 * Calculate Atheros packet type from IEEE80211 packet header
   2228 	 * and setup for rate calculations.
   2229 	 */
   2230 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
   2231 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
   2232 	case IEEE80211_FC0_TYPE_MGT:
   2233 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2234 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
   2235 			atype = HAL_PKT_TYPE_BEACON;
   2236 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   2237 			atype = HAL_PKT_TYPE_PROBE_RESP;
   2238 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
   2239 			atype = HAL_PKT_TYPE_ATIM;
   2240 		rix = 0;			/* XXX lowest rate */
   2241 		break;
   2242 	case IEEE80211_FC0_TYPE_CTL:
   2243 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
   2244 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
   2245 			atype = HAL_PKT_TYPE_PSPOLL;
   2246 		rix = 0;			/* XXX lowest rate */
   2247 		break;
   2248 	default:
   2249 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
   2250 				IEEE80211_RATE_VAL];
   2251 		if (rix == 0xff) {
   2252 			if_printf(ifp, "bogus xmit rate 0x%x\n",
   2253 				ni->ni_rates.rs_rates[ni->ni_txrate]);
   2254 			sc->sc_stats.ast_tx_badrate++;
   2255 			m_freem(m0);
   2256 			return EIO;
   2257 		}
   2258 		break;
   2259 	}
   2260 	/*
   2261 	 * NB: the 802.11 layer marks whether or not we should
   2262 	 * use short preamble based on the current mode and
   2263 	 * negotiated parameters.
   2264 	 */
   2265 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
   2266 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
   2267 		shortPreamble = AH_TRUE;
   2268 		sc->sc_stats.ast_tx_shortpre++;
   2269 	} else {
   2270 		txrate = rt->info[rix].rateCode;
   2271 		shortPreamble = AH_FALSE;
   2272 	}
   2273 
   2274 	/*
   2275 	 * Calculate miscellaneous flags.
   2276 	 */
   2277 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
   2278 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   2279 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
   2280 		sc->sc_stats.ast_tx_noack++;
   2281 	} else if (pktlen > ic->ic_rtsthreshold) {
   2282 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
   2283 		sc->sc_stats.ast_tx_rts++;
   2284 	}
   2285 
   2286 	/*
   2287 	 * Calculate RTS/CTS rate and duration if needed.
   2288 	 */
   2289 	ctsduration = 0;
   2290 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
   2291 		/*
   2292 		 * CTS transmit rate is derived from the transmit rate
   2293 		 * by looking in the h/w rate table.  We must also factor
   2294 		 * in whether or not a short preamble is to be used.
   2295 		 */
   2296 		cix = rt->info[rix].controlRate;
   2297 		ctsrate = rt->info[cix].rateCode;
   2298 		if (shortPreamble)
   2299 			ctsrate |= rt->info[cix].shortPreamble;
   2300 		/*
   2301 		 * Compute the transmit duration based on the size
   2302 		 * of an ACK frame.  We call into the HAL to do the
   2303 		 * computation since it depends on the characteristics
   2304 		 * of the actual PHY being used.
   2305 		 */
   2306 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
   2307 			ctsduration += ath_hal_computetxtime(ah,
   2308 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
   2309 		}
   2310 		/* SIFS + data */
   2311 		ctsduration += ath_hal_computetxtime(ah,
   2312 			rt, pktlen, rix, shortPreamble);
   2313 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
   2314 			ctsduration += ath_hal_computetxtime(ah,
   2315 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
   2316 		}
   2317 	} else
   2318 		ctsrate = 0;
   2319 
   2320 	/*
   2321 	 * For now use the antenna on which the last good
   2322 	 * frame was received on.  We assume this field is
   2323 	 * initialized to 0 which gives us ``auto'' or the
   2324 	 * ``default'' antenna.
   2325 	 */
   2326 	an = (struct ath_node *) ni;
   2327 	if (an->an_tx_antenna)
   2328 		antenna = an->an_tx_antenna;
   2329 	else
   2330 		antenna = an->an_rx_antenna;
   2331 
   2332 	/*
   2333 	 * Formulate first tx descriptor with tx controls.
   2334 	 */
   2335 	/* XXX check return value? */
   2336 	ath_hal_setuptxdesc(ah, ds
   2337 		, pktlen		/* packet length */
   2338 		, hdrlen		/* header length */
   2339 		, atype			/* Atheros packet type */
   2340 		, 60			/* txpower XXX */
   2341 		, txrate, 1+10		/* series 0 rate/tries */
   2342 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
   2343 		, antenna		/* antenna mode */
   2344 		, flags			/* flags */
   2345 		, ctsrate		/* rts/cts rate */
   2346 		, ctsduration		/* rts/cts duration */
   2347 	);
   2348 #ifdef notyet
   2349 	ath_hal_setupxtxdesc(ah, ds
   2350 		, AH_FALSE		/* short preamble */
   2351 		, 0, 0			/* series 1 rate/tries */
   2352 		, 0, 0			/* series 2 rate/tries */
   2353 		, 0, 0			/* series 3 rate/tries */
   2354 	);
   2355 #endif
   2356 	/*
   2357 	 * Fillin the remainder of the descriptor info.
   2358 	 */
   2359 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
   2360 		ds->ds_data = bf->bf_segs[i].ds_addr;
   2361 		if (i == bf->bf_nseg - 1)
   2362 			ds->ds_link = 0;
   2363 		else
   2364 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
   2365 		ath_hal_filltxdesc(ah, ds
   2366 			, bf->bf_segs[i].ds_len	/* segment length */
   2367 			, i == 0		/* first segment */
   2368 			, i == bf->bf_nseg - 1	/* last segment */
   2369 		);
   2370 		DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
   2371 		    i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
   2372 		    ds->ds_hw[0], ds->ds_hw[1]));
   2373 	}
   2374 
   2375 	/*
   2376 	 * Insert the frame on the outbound list and
   2377 	 * pass it on to the hardware.
   2378 	 */
   2379 	ath_txq_critsect_begin(sc, s);
   2380 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
   2381 	if (sc->sc_txlink == NULL) {
   2382 		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
   2383 		DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
   2384 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
   2385 	} else {
   2386 		*sc->sc_txlink = bf->bf_daddr;
   2387 		DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
   2388 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
   2389 	}
   2390 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
   2391 	ath_txq_critsect_end(sc, s);
   2392 
   2393 	ath_hal_txstart(ah, sc->sc_txhalq);
   2394 	return 0;
   2395 }
   2396 
   2397 static void
   2398 ath_tx_proc(void *arg, int npending)
   2399 {
   2400 	struct ath_softc *sc = arg;
   2401 	struct ath_hal *ah = sc->sc_ah;
   2402 	struct ath_buf *bf;
   2403 	struct ieee80211com *ic = &sc->sc_ic;
   2404 	struct ifnet *ifp = &ic->ic_if;
   2405 	struct ath_desc *ds;
   2406 	struct ieee80211_node *ni;
   2407 	struct ath_node *an;
   2408 	int sr, lr;
   2409 	HAL_STATUS status;
   2410 	ath_txq_critsect_decl(s);
   2411 	ath_txbuf_critsect_decl(s2);
   2412 
   2413 	DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
   2414 		npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
   2415 		sc->sc_txlink));
   2416 	for (;;) {
   2417 		ath_txq_critsect_begin(sc, s);
   2418 		bf = TAILQ_FIRST(&sc->sc_txq);
   2419 		if (bf == NULL) {
   2420 			sc->sc_txlink = NULL;
   2421 			ath_txq_critsect_end(sc, s);
   2422 			break;
   2423 		}
   2424 		/* only the last descriptor is needed */
   2425 		ds = &bf->bf_desc[bf->bf_nseg - 1];
   2426 		status = ath_hal_txprocdesc(ah, ds);
   2427 #ifdef AR_DEBUG
   2428 		if (ath_debug > 1)
   2429 			ath_printtxbuf(bf, status == HAL_OK);
   2430 #endif
   2431 		if (status == HAL_EINPROGRESS) {
   2432 			ath_txq_critsect_end(sc, s);
   2433 			break;
   2434 		}
   2435 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
   2436 		ath_txq_critsect_end(sc, s);
   2437 
   2438 		ni = bf->bf_node;
   2439 		if (ni != NULL) {
   2440 			an = (struct ath_node *) ni;
   2441 			if (ds->ds_txstat.ts_status == 0) {
   2442 				an->an_tx_ok++;
   2443 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
   2444 			} else {
   2445 				an->an_tx_err++;
   2446 				ifp->if_oerrors++;
   2447 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
   2448 					sc->sc_stats.ast_tx_xretries++;
   2449 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
   2450 					sc->sc_stats.ast_tx_fifoerr++;
   2451 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
   2452 					sc->sc_stats.ast_tx_filtered++;
   2453 				an->an_tx_antenna = 0;	/* invalidate */
   2454 			}
   2455 			sr = ds->ds_txstat.ts_shortretry;
   2456 			lr = ds->ds_txstat.ts_longretry;
   2457 			sc->sc_stats.ast_tx_shortretry += sr;
   2458 			sc->sc_stats.ast_tx_longretry += lr;
   2459 			if (sr + lr)
   2460 				an->an_tx_retr++;
   2461 			/*
   2462 			 * Reclaim reference to node.
   2463 			 *
   2464 			 * NB: the node may be reclaimed here if, for example
   2465 			 *     this is a DEAUTH message that was sent and the
   2466 			 *     node was timed out due to inactivity.
   2467 			 */
   2468 			if (ni != ic->ic_bss)
   2469 				ieee80211_free_node(ic, ni);
   2470 		}
   2471 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
   2472 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2473 		m_freem(bf->bf_m);
   2474 		bf->bf_m = NULL;
   2475 		bf->bf_node = NULL;
   2476 
   2477 		ath_txbuf_critsect_begin(sc, s2);
   2478 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   2479 		ath_txbuf_critsect_end(sc, s2);
   2480 	}
   2481 	ifp->if_flags &= ~IFF_OACTIVE;
   2482 	sc->sc_tx_timer = 0;
   2483 
   2484 	ath_start(ifp);
   2485 }
   2486 
   2487 /*
   2488  * Drain the transmit queue and reclaim resources.
   2489  */
   2490 static void
   2491 ath_draintxq(struct ath_softc *sc)
   2492 {
   2493 	struct ath_hal *ah = sc->sc_ah;
   2494 	struct ifnet *ifp = &sc->sc_ic.ic_if;
   2495 	struct ath_buf *bf;
   2496 	ath_txq_critsect_decl(s);
   2497 	ath_txbuf_critsect_decl(s2);
   2498 
   2499 	/* XXX return value */
   2500 	if (!sc->sc_invalid) {
   2501 		/* don't touch the hardware if marked invalid */
   2502 		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
   2503 		DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
   2504 		    (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
   2505 		    sc->sc_txlink));
   2506 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
   2507 		DPRINTF(("ath_draintxq: beacon queue %p\n",
   2508 		    (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
   2509 	}
   2510 	for (;;) {
   2511 		ath_txq_critsect_begin(sc, s);
   2512 		bf = TAILQ_FIRST(&sc->sc_txq);
   2513 		if (bf == NULL) {
   2514 			sc->sc_txlink = NULL;
   2515 			ath_txq_critsect_end(sc, s);
   2516 			break;
   2517 		}
   2518 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
   2519 		ath_txq_critsect_end(sc, s);
   2520 #ifdef AR_DEBUG
   2521 		if (ath_debug)
   2522 			ath_printtxbuf(bf,
   2523 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
   2524 #endif /* AR_DEBUG */
   2525 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
   2526 		m_freem(bf->bf_m);
   2527 		bf->bf_m = NULL;
   2528 		bf->bf_node = NULL;
   2529 		ath_txbuf_critsect_begin(sc, s2);
   2530 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
   2531 		ath_txbuf_critsect_end(sc, s2);
   2532 	}
   2533 	ifp->if_flags &= ~IFF_OACTIVE;
   2534 	sc->sc_tx_timer = 0;
   2535 }
   2536 
   2537 /*
   2538  * Disable the receive h/w in preparation for a reset.
   2539  */
   2540 static void
   2541 ath_stoprecv(struct ath_softc *sc)
   2542 {
   2543 	struct ath_hal *ah = sc->sc_ah;
   2544 
   2545 	ath_hal_stoppcurecv(ah);	/* disable PCU */
   2546 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
   2547 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
   2548 	DELAY(3000);			/* long enough for 1 frame */
   2549 #ifdef AR_DEBUG
   2550 	if (ath_debug) {
   2551 		struct ath_buf *bf;
   2552 
   2553 		DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
   2554 		    (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
   2555 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   2556 			if (ath_hal_rxprocdesc(ah, bf->bf_desc) == HAL_OK)
   2557 				ath_printrxbuf(bf, 1);
   2558 		}
   2559 	}
   2560 #endif
   2561 	sc->sc_rxlink = NULL;		/* just in case */
   2562 }
   2563 
   2564 /*
   2565  * Enable the receive h/w following a reset.
   2566  */
   2567 static int
   2568 ath_startrecv(struct ath_softc *sc)
   2569 {
   2570 	struct ath_hal *ah = sc->sc_ah;
   2571 	struct ath_buf *bf;
   2572 
   2573 	sc->sc_rxlink = NULL;
   2574 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
   2575 		int error = ath_rxbuf_init(sc, bf);
   2576 		if (error != 0) {
   2577 			DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
   2578 				error));
   2579 			return error;
   2580 		}
   2581 	}
   2582 
   2583 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
   2584 	ath_hal_putrxbuf(ah, bf->bf_daddr);
   2585 	ath_hal_rxena(ah);		/* enable recv descriptors */
   2586 	ath_mode_init(sc);		/* set filters, etc. */
   2587 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
   2588 	return 0;
   2589 }
   2590 
   2591 /*
   2592  * Set/change channels.  If the channel is really being changed,
   2593  * it's done by resetting the chip.  To accomplish this we must
   2594  * first cleanup any pending DMA, then restart stuff after a la
   2595  * ath_init.
   2596  */
   2597 static int
   2598 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
   2599 {
   2600 	struct ath_hal *ah = sc->sc_ah;
   2601 	struct ieee80211com *ic = &sc->sc_ic;
   2602 
   2603 	DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
   2604 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
   2605 		ic->ic_ibss_chan->ic_freq,
   2606 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
   2607 	if (chan != ic->ic_ibss_chan) {
   2608 		HAL_STATUS status;
   2609 		HAL_CHANNEL hchan;
   2610 		enum ieee80211_phymode mode;
   2611 
   2612 		/*
   2613 		 * To switch channels clear any pending DMA operations;
   2614 		 * wait long enough for the RX fifo to drain, reset the
   2615 		 * hardware at the new frequency, and then re-enable
   2616 		 * the relevant bits of the h/w.
   2617 		 */
   2618 		ath_hal_intrset(ah, 0);		/* disable interrupts */
   2619 		ath_draintxq(sc);		/* clear pending tx frames */
   2620 		ath_stoprecv(sc);		/* turn off frame recv */
   2621 		/*
   2622 		 * Convert to a HAL channel description with
   2623 		 * the flags constrained to reflect the current
   2624 		 * operating mode.
   2625 		 */
   2626 		hchan.channel = chan->ic_freq;
   2627 		hchan.channelFlags = ath_chan2flags(ic, chan);
   2628 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
   2629 			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
   2630 				"channel %u (%u Mhz)\n",
   2631 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
   2632 			return EIO;
   2633 		}
   2634 		/*
   2635 		 * Re-enable rx framework.
   2636 		 */
   2637 		if (ath_startrecv(sc) != 0) {
   2638 			if_printf(&ic->ic_if,
   2639 				"ath_chan_set: unable to restart recv logic\n");
   2640 			return EIO;
   2641 		}
   2642 
   2643 		/*
   2644 		 * Update BPF state.
   2645 		 */
   2646 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
   2647 			htole16(chan->ic_freq);
   2648 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
   2649 			htole16(chan->ic_flags);
   2650 
   2651 		/*
   2652 		 * Change channels and update the h/w rate map
   2653 		 * if we're switching; e.g. 11a to 11b/g.
   2654 		 */
   2655 		ic->ic_ibss_chan = chan;
   2656 		mode = ieee80211_chan2mode(ic, chan);
   2657 		if (mode != sc->sc_curmode)
   2658 			ath_setcurmode(sc, mode);
   2659 
   2660 		/*
   2661 		 * Re-enable interrupts.
   2662 		 */
   2663 		ath_hal_intrset(ah, sc->sc_imask);
   2664 	}
   2665 	return 0;
   2666 }
   2667 
   2668 static void
   2669 ath_next_scan(void *arg)
   2670 {
   2671 	struct ath_softc *sc = arg;
   2672 	struct ieee80211com *ic = &sc->sc_ic;
   2673 	struct ifnet *ifp = &ic->ic_if;
   2674 	int s;
   2675 
   2676 	/* don't call ath_start w/o network interrupts blocked */
   2677 	s = splnet();
   2678 
   2679 	if (ic->ic_state == IEEE80211_S_SCAN)
   2680 		ieee80211_next_scan(ifp);
   2681 	splx(s);
   2682 }
   2683 
   2684 /*
   2685  * Periodically recalibrate the PHY to account
   2686  * for temperature/environment changes.
   2687  */
   2688 static void
   2689 ath_calibrate(void *arg)
   2690 {
   2691 	struct ath_softc *sc = arg;
   2692 	struct ath_hal *ah = sc->sc_ah;
   2693 	struct ieee80211com *ic = &sc->sc_ic;
   2694 	struct ieee80211_channel *c;
   2695 	HAL_CHANNEL hchan;
   2696 
   2697 	sc->sc_stats.ast_per_cal++;
   2698 
   2699 	/*
   2700 	 * Convert to a HAL channel description with the flags
   2701 	 * constrained to reflect the current operating mode.
   2702 	 */
   2703 	c = ic->ic_ibss_chan;
   2704 	hchan.channel = c->ic_freq;
   2705 	hchan.channelFlags = ath_chan2flags(ic, c);
   2706 
   2707 	DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
   2708 
   2709 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
   2710 		/*
   2711 		 * Rfgain is out of bounds, reset the chip
   2712 		 * to load new gain values.
   2713 		 */
   2714 		sc->sc_stats.ast_per_rfgain++;
   2715 		ath_reset(sc);
   2716 	}
   2717 	if (!ath_hal_calibrate(ah, &hchan)) {
   2718 		DPRINTF(("%s: calibration of channel %u failed\n",
   2719 			__func__, c->ic_freq));
   2720 		sc->sc_stats.ast_per_calfail++;
   2721 	}
   2722 	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
   2723 }
   2724 
   2725 static int
   2726 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
   2727 {
   2728 	struct ifnet *ifp = &ic->ic_if;
   2729 	struct ath_softc *sc = ifp->if_softc;
   2730 	struct ath_hal *ah = sc->sc_ah;
   2731 	struct ieee80211_node *ni;
   2732 	int i, error;
   2733 	u_int8_t *bssid;
   2734 	u_int32_t rfilt;
   2735 	static const HAL_LED_STATE leds[] = {
   2736 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
   2737 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
   2738 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
   2739 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
   2740 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
   2741 	};
   2742 
   2743 	DPRINTF(("%s: %s -> %s\n", __func__,
   2744 		ieee80211_state_name[ic->ic_state],
   2745 		ieee80211_state_name[nstate]));
   2746 
   2747 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
   2748 
   2749 	if (nstate == IEEE80211_S_INIT) {
   2750 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   2751 		ath_hal_intrset(ah, sc->sc_imask);
   2752 		callout_stop(&sc->sc_scan_ch);
   2753 		callout_stop(&sc->sc_cal_ch);
   2754 		return (*sc->sc_newstate)(ic, nstate, arg);
   2755 	}
   2756 	ni = ic->ic_bss;
   2757 	error = ath_chan_set(sc, ni->ni_chan);
   2758 	if (error != 0)
   2759 		goto bad;
   2760 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
   2761 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
   2762 	if (ic->ic_opmode != IEEE80211_M_STA)
   2763 		rfilt |= HAL_RX_FILTER_PROBEREQ;
   2764 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
   2765 	    (ifp->if_flags & IFF_PROMISC))
   2766 		rfilt |= HAL_RX_FILTER_PROM;
   2767 	if (nstate == IEEE80211_S_SCAN) {
   2768 		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
   2769 			ath_next_scan, sc);
   2770 		bssid = ifp->if_broadcastaddr;
   2771 		rfilt |= HAL_RX_FILTER_BEACON;
   2772 	} else {
   2773 		callout_stop(&sc->sc_scan_ch);
   2774 		bssid = ni->ni_bssid;
   2775 	}
   2776 	ath_hal_setrxfilter(ah, rfilt);
   2777 	DPRINTF(("%s: RX filter 0x%x bssid %s\n",
   2778 		 __func__, rfilt, ether_sprintf(bssid)));
   2779 
   2780 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
   2781 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
   2782 	else
   2783 		ath_hal_setassocid(ah, bssid, 0);
   2784 	if (ic->ic_flags & IEEE80211_F_WEPON) {
   2785 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
   2786 			if (ath_hal_keyisvalid(ah, i))
   2787 				ath_hal_keysetmac(ah, i, bssid);
   2788 	}
   2789 
   2790 	if (nstate == IEEE80211_S_RUN) {
   2791 		DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
   2792 			"capinfo=0x%04x chan=%d\n"
   2793 			 , __func__
   2794 			 , ic->ic_flags
   2795 			 , ni->ni_intval
   2796 			 , ether_sprintf(ni->ni_bssid)
   2797 			 , ni->ni_capinfo
   2798 			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
   2799 
   2800 		/*
   2801 		 * Allocate and setup the beacon frame for AP or adhoc mode.
   2802 		 */
   2803 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
   2804 		    ic->ic_opmode == IEEE80211_M_IBSS) {
   2805 			error = ath_beacon_alloc(sc, ni);
   2806 			if (error != 0)
   2807 				goto bad;
   2808 		}
   2809 
   2810 		/*
   2811 		 * Configure the beacon and sleep timers.
   2812 		 */
   2813 		ath_beacon_config(sc);
   2814 
   2815 		/* start periodic recalibration timer */
   2816 		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
   2817 			ath_calibrate, sc);
   2818 	} else {
   2819 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
   2820 		ath_hal_intrset(ah, sc->sc_imask);
   2821 		callout_stop(&sc->sc_cal_ch);		/* no calibration */
   2822 	}
   2823 	/*
   2824 	 * Reset the rate control state.
   2825 	 */
   2826 	ath_rate_ctl_reset(sc, nstate);
   2827 	/*
   2828 	 * Invoke the parent method to complete the work.
   2829 	 */
   2830 	return (*sc->sc_newstate)(ic, nstate, arg);
   2831 bad:
   2832 	callout_stop(&sc->sc_scan_ch);
   2833 	callout_stop(&sc->sc_cal_ch);
   2834 	/* NB: do not invoke the parent */
   2835 	return error;
   2836 }
   2837 
   2838 /*
   2839  * Setup driver-specific state for a newly associated node.
   2840  * Note that we're called also on a re-associate, the isnew
   2841  * param tells us if this is the first time or not.
   2842  */
   2843 static void
   2844 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
   2845 {
   2846 	if (isnew) {
   2847 		struct ath_node *an = (struct ath_node *) ni;
   2848 
   2849 		an->an_tx_ok = an->an_tx_err =
   2850 			an->an_tx_retr = an->an_tx_upper = 0;
   2851 		/* start with highest negotiated rate */
   2852 		/*
   2853 		 * XXX should do otherwise but only when
   2854 		 * the rate control algorithm is better.
   2855 		 */
   2856 		KASSERT(ni->ni_rates.rs_nrates > 0,
   2857 			("new association w/ no rates!"));
   2858 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   2859 	}
   2860 }
   2861 
   2862 static int
   2863 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
   2864 {
   2865 	struct ieee80211com *ic = &sc->sc_ic;
   2866 	struct ifnet *ifp = &ic->ic_if;
   2867 	struct ath_hal *ah = sc->sc_ah;
   2868 	HAL_CHANNEL *chans;
   2869 	int i, ix, nchan;
   2870 
   2871 	sc->sc_have11g = 0;
   2872 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
   2873 			M_TEMP, M_NOWAIT);
   2874 	if (chans == NULL) {
   2875 		if_printf(ifp, "unable to allocate channel table\n");
   2876 		return ENOMEM;
   2877 	}
   2878 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
   2879 	    cc, HAL_MODE_ALL, outdoor)) {
   2880 		if_printf(ifp, "unable to collect channel list from hal\n");
   2881 		free(chans, M_TEMP);
   2882 		return EINVAL;
   2883 	}
   2884 
   2885 	/*
   2886 	 * Convert HAL channels to ieee80211 ones and insert
   2887 	 * them in the table according to their channel number.
   2888 	 */
   2889 	for (i = 0; i < nchan; i++) {
   2890 		HAL_CHANNEL *c = &chans[i];
   2891 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
   2892 		if (ix > IEEE80211_CHAN_MAX) {
   2893 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
   2894 				ix, c->channel, c->channelFlags);
   2895 			continue;
   2896 		}
   2897 		/* NB: flags are known to be compatible */
   2898 		if (ic->ic_channels[ix].ic_freq == 0) {
   2899 			ic->ic_channels[ix].ic_freq = c->channel;
   2900 			ic->ic_channels[ix].ic_flags = c->channelFlags;
   2901 		} else {
   2902 			/* channels overlap; e.g. 11g and 11b */
   2903 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
   2904 		}
   2905 		if ((c->channelFlags & CHANNEL_G) == CHANNEL_G)
   2906 			sc->sc_have11g = 1;
   2907 	}
   2908 	free(chans, M_TEMP);
   2909 	return 0;
   2910 }
   2911 
   2912 static int
   2913 ath_rate_setup(struct ath_softc *sc, u_int mode)
   2914 {
   2915 	struct ath_hal *ah = sc->sc_ah;
   2916 	struct ieee80211com *ic = &sc->sc_ic;
   2917 	const HAL_RATE_TABLE *rt;
   2918 	struct ieee80211_rateset *rs;
   2919 	int i, maxrates;
   2920 
   2921 	switch (mode) {
   2922 	case IEEE80211_MODE_11A:
   2923 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
   2924 		break;
   2925 	case IEEE80211_MODE_11B:
   2926 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
   2927 		break;
   2928 	case IEEE80211_MODE_11G:
   2929 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
   2930 		break;
   2931 	case IEEE80211_MODE_TURBO:
   2932 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
   2933 		break;
   2934 	default:
   2935 		DPRINTF(("%s: invalid mode %u\n", __func__, mode));
   2936 		return 0;
   2937 	}
   2938 	rt = sc->sc_rates[mode];
   2939 	if (rt == NULL)
   2940 		return 0;
   2941 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
   2942 		DPRINTF(("%s: rate table too small (%u > %u)\n",
   2943 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
   2944 		maxrates = IEEE80211_RATE_MAXSIZE;
   2945 	} else
   2946 		maxrates = rt->rateCount;
   2947 	rs = &ic->ic_sup_rates[mode];
   2948 	for (i = 0; i < maxrates; i++)
   2949 		rs->rs_rates[i] = rt->info[i].dot11Rate;
   2950 	rs->rs_nrates = maxrates;
   2951 	return 1;
   2952 }
   2953 
   2954 static void
   2955 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
   2956 {
   2957 	const HAL_RATE_TABLE *rt;
   2958 	int i;
   2959 
   2960 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
   2961 	rt = sc->sc_rates[mode];
   2962 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
   2963 	for (i = 0; i < rt->rateCount; i++)
   2964 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
   2965 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
   2966 	for (i = 0; i < 32; i++)
   2967 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
   2968 	sc->sc_currates = rt;
   2969 	sc->sc_curmode = mode;
   2970 }
   2971 
   2972 /*
   2973  * Reset the rate control state for each 802.11 state transition.
   2974  */
   2975 static void
   2976 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
   2977 {
   2978 	struct ieee80211com *ic = &sc->sc_ic;
   2979 	struct ieee80211_node *ni;
   2980 	struct ath_node *an;
   2981 
   2982 	an = (struct ath_node *) ic->ic_bss;
   2983 	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
   2984 	if (ic->ic_opmode == IEEE80211_M_STA) {
   2985 		ni = ic->ic_bss;
   2986 		if (state == IEEE80211_S_RUN) {
   2987 			/* start with highest negotiated rate */
   2988 			KASSERT(ni->ni_rates.rs_nrates > 0,
   2989 				("transition to RUN state w/ no rates!"));
   2990 			ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
   2991 		} else {
   2992 			/* use lowest rate */
   2993 			ni->ni_txrate = 0;
   2994 		}
   2995 	} else {
   2996 		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
   2997 			ni->ni_txrate = 0;		/* use lowest rate */
   2998 			an = (struct ath_node *) ni;
   2999 			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
   3000 			    an->an_tx_upper = 0;
   3001 		}
   3002 	}
   3003 }
   3004 
   3005 /*
   3006  * Examine and potentially adjust the transmit rate.
   3007  */
   3008 static void
   3009 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
   3010 {
   3011 	struct ath_softc *sc = arg;
   3012 	struct ath_node *an = (struct ath_node *) ni;
   3013 	struct ieee80211_rateset *rs = &ni->ni_rates;
   3014 	int mod = 0, orate, enough;
   3015 
   3016 	/*
   3017 	 * Rate control
   3018 	 * XXX: very primitive version.
   3019 	 */
   3020 	sc->sc_stats.ast_rate_calls++;
   3021 
   3022 	enough = (an->an_tx_ok + an->an_tx_err >= 10);
   3023 
   3024 	/* no packet reached -> down */
   3025 	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
   3026 		mod = -1;
   3027 
   3028 	/* all packets needs retry in average -> down */
   3029 	if (enough && an->an_tx_ok < an->an_tx_retr)
   3030 		mod = -1;
   3031 
   3032 	/* no error and less than 10% of packets needs retry -> up */
   3033 	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
   3034 		mod = 1;
   3035 
   3036 	orate = ni->ni_txrate;
   3037 	switch (mod) {
   3038 	case 0:
   3039 		if (enough && an->an_tx_upper > 0)
   3040 			an->an_tx_upper--;
   3041 		break;
   3042 	case -1:
   3043 		if (ni->ni_txrate > 0) {
   3044 			ni->ni_txrate--;
   3045 			sc->sc_stats.ast_rate_drop++;
   3046 		}
   3047 		an->an_tx_upper = 0;
   3048 		break;
   3049 	case 1:
   3050 		if (++an->an_tx_upper < 2)
   3051 			break;
   3052 		an->an_tx_upper = 0;
   3053 		if (ni->ni_txrate + 1 < rs->rs_nrates) {
   3054 			ni->ni_txrate++;
   3055 			sc->sc_stats.ast_rate_raise++;
   3056 		}
   3057 		break;
   3058 	}
   3059 
   3060 	if (ni->ni_txrate != orate) {
   3061 		printf("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
   3062 		    __func__,
   3063 		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
   3064 		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
   3065 		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr);
   3066 	}
   3067 	if (ni->ni_txrate != orate || enough)
   3068 		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
   3069 }
   3070 
   3071 #ifdef AR_DEBUG
   3072 #ifdef __FreeBSD__
   3073 static int
   3074 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
   3075 {
   3076 	char dmode[64];
   3077 	int error;
   3078 
   3079 	strncpy(dmode, "", sizeof(dmode) - 1);
   3080 	dmode[sizeof(dmode) - 1] = '\0';
   3081 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
   3082 
   3083 	if (error == 0 && req->newptr != NULL) {
   3084 		struct ifnet *ifp;
   3085 		struct ath_softc *sc;
   3086 
   3087 		ifp = ifunit("ath0");		/* XXX */
   3088 		if (!ifp)
   3089 			return EINVAL;
   3090 		sc = ifp->if_softc;
   3091 		if (strcmp(dmode, "hal") == 0)
   3092 			ath_hal_dumpstate(sc->sc_ah);
   3093 		else if (strcmp(dmode, "eeprom") == 0)
   3094 			ath_hal_dumpeeprom(sc->sc_ah);
   3095 		else if (strcmp(dmode, "rfgain") == 0)
   3096 			ath_hal_dumprfgain(sc->sc_ah);
   3097 		else if (strcmp(dmode, "ani") == 0)
   3098 			ath_hal_dumpani(sc->sc_ah);
   3099 		else
   3100 			return EINVAL;
   3101 	}
   3102 	return error;
   3103 }
   3104 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
   3105 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
   3106 #endif /* __FreeBSD__ */
   3107 
   3108 static void
   3109 ath_printrxbuf(struct ath_buf *bf, int done)
   3110 {
   3111 	struct ath_desc *ds;
   3112 	int i;
   3113 
   3114 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   3115 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
   3116 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   3117 		    ds->ds_link, ds->ds_data,
   3118 		    ds->ds_ctl0, ds->ds_ctl1,
   3119 		    ds->ds_hw[0], ds->ds_hw[1],
   3120 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
   3121 	}
   3122 }
   3123 
   3124 static void
   3125 ath_printtxbuf(struct ath_buf *bf, int done)
   3126 {
   3127 	struct ath_desc *ds;
   3128 	int i;
   3129 
   3130 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
   3131 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
   3132 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
   3133 		    ds->ds_link, ds->ds_data,
   3134 		    ds->ds_ctl0, ds->ds_ctl1,
   3135 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
   3136 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
   3137 	}
   3138 }
   3139 #endif /* AR_DEBUG */
   3140